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Abstract. Let k be a field finitely generated over Q and let X be a curve over k. Fix a prime `. A
representation ρ : π1(X)→ GLm(Z`) is said to be geometrically Lie perfect if any open subgroup of ρ(π1(Xk))

has finite abelianization. Let G denote the image of ρ. Any closed point x on X induces a splitting x : Γκ(x) :=

π1(Spec(κ(x)))→ π1(Xκ(x)) of the restriction epimorphism π1(Xκ(x))→ Γκ(x) (here, κ(x) denotes the residue

field of X at x) so one can define the closed subgroup Gx := ρ ◦ x(Γκ(x)) ⊂ G. The main result of this paper

is the following uniform open image theorem. Under the above assumptions, for any geometrically Lie perfect

representation ρ : π1(X) → GLm(Z`) and any integer d ≥ 1, the set Xρ,d of all closed points x ∈ X such that
Gx is not open in G and [κ(x) : k] ≤ d is finite and there exists an integer Bρ,d ≥ 1 such that [G : Gx] ≤ Bρ,d
for any closed point x ∈ X rXρ,d with [κ(x) : k] ≤ d.

A key ingredient of our proof is that, for any integer γ ≥ 1 there exist an integer ν = ν(γ) ≥ 1 such that,
given any projective system · · · → Yn+1 → Yn → · · · → Y0 of curves (over an algebraically closed field of

characteristic 0) with the same gonality γ and with Yn+1 → Yn a Galois cover of degree > 1, one can construct
a projective system of genus 0 curves · · · → Bn+1 → Bn → · · · → Bν and degree γ morphisms fn : Yn → Bn,

n ≥ ν such that Yn+1 is birational to Bn+1 ×Bn,fn Yn, n ≥ ν. This, together with the case for d = 1 (which is

the main result of part I of this paper), gives the proof for general d.
Our method also yields the following unconditional variant of our main result. With the above assumptions

on k and X, for any `-adic representation ρ : π1(X)→ GLm(Z`) and integer d ≥ 1, the set of all closed points

x ∈ X such that Gx is of codimension at least 3 in G and [κ(x) : k] ≤ d is finite.
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1. Introduction

Let ` be a prime. A compact `-adic Lie group G is said to be Lie perfect if one of the following two
equivalent conditions holds:

(i) Lie(G)ab = 0;
(ii) For any open subgroup U ⊂ G, Uab is finite.

Observe that, given an open subgroup U ⊂ G, G is Lie perfect if and only if U is Lie perfect.
Let k be a field and let X be a scheme geometrically connected and of finite type over k. Then,

the structure morphism X → Spec(k) induces at the level of etale fundamental groups a short exact
sequence of profinite groups (sometimes referred to as the fundamental short exact sequence for π1(X)):

1→ π1(Xk)→ π1(X)→ Γk → 1.

An `-adic representation ρ : π1(X) → GLm(Z`) is said to be Lie perfect (LP for short) if G :=
ρ(π1(X)) ⊂ GLm(Z`) is Lie perfect and geometrically Lie perfect (GLP for short) ifGgeo := ρ(π1(Xk)) ⊂
G is Lie perfect.

Any closed point x ∈ X induces a splitting x : Γκ(x) → π1(Xκ(x)) of the fundamental short ex-
act sequence for π1(Xκ(x)), identifying Γκ(x) with a closed subgroup of π1(Xκ(x)) ⊂ π1(X). Set
Gx := ρ ◦ x(Γκ(x)) for the corresponding closed subgroup of G.

We will use the following notation: Xcl for the set of closed points of X and, for any integer d ≥ 1,

Xcl, ≤d := {x ∈ Xcl | [κ(x) : k] ≤ d}.

Also, when, in addition, X is smooth, separated of dimension 1 over k, we will say that X is a k-curve
and denote by Xcpt the smooth compactification of X (if any); we will then denote the genus of Xcpt

k

by gX and the gonality of Xcpt

k
by γX .

The main result of this paper is the following one-dimensional uniform open image theorem for
GLP representations.
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Theorem 1.1. Assume that k is a field finitely generated over Q, that X is a k-curve and that
ρ : π1(X) → GLm(Z`) is a GLP representation. Then, for any integer d ≥ 1 the set Xρ,d of all

x ∈ Xcl, ≤d such that Gx is not open in G is finite and there exists an integer Bρ,d ≥ 1 such that

[G : Gx] ≤ Bρ,d for any x ∈ Xcl, ≤d rXρ,d.

As classical examples of GLP representations, let us mention the ones arising from the action of
π1(X) on the generic `-adic Tate module T`(Aη) of an abelian scheme A over X or, more generally,

from the action of π1(X) on the `-adic etale cohomology groups Hi
et(Yη,Q`), i ≥ 0 of the geometric

generic fiber of a smooth proper scheme Y over X [CT12c, Sect. 4].

Theorem 1.1 is a strong version of [CT12c, Thm. 1.1], which only deals with the case d = 1. A
crucial step in the proof of [CT12c, Thm. 1.1] consists in showing that the genus gXn of a projective
system (Xn+1 → Xn)n≥0 of certain etale covers of X is becoming larger than 2 for n large enough,
which allows us to resort to Mordell’s conjecture [FW84]. The strategy to obtain bounds depending no
longer on κ(x) but only on [κ(x) : k] is to prove that the gonality γXn of the covers (Xn+1 → Xn)n≥0

goes to infinity with n and to replace Mordell’s conjecture by the following corollary (see [Fr94]) of
Lang’s conjecture [Fa91] (see also [Mc95]):

Theorem 1.2. Let k be a field finitely generated over Q and X a smooth, proper, geometrically

connected curve over k of k-gonality γ (≥ γX). Then, for any integer 1 ≤ d ≤
[
γ−1

2

]
the set Xcl, ≤d

is finite.

The main technical tool we resort to is that, for any integer γ ≥ 1 there exists an integer ν = ν(γ) ≥ 1
such that, given any projective system · · · → Yn+1 → Yn → · · · → Y0 of curves with the same gonality
γ and with Yn+1 → Yn a Galois cover of degree > 1, one can construct a projective system of genus 0
curves · · · → Bn+1 → Bn → · · · → Bν and degree γ morphisms fn : Yn → Bn, n ≥ ν such that Yn+1

is birational to Bn+1 ×Bn,fn Yn, n ≥ ν. We apply this general construction to the projective system
(Xn+1 → Xn)n≥0 in order to show that γn → +∞.

Modifying slightly the definition of the projective system (Xn+1 → Xn)n≥0, our method yields the
following unconditional variant of theorem 1.1.

Theorem 1.3. Assume that k is a field finitely generated over Q, that X is a k-curve and that
ρ : π1(X) → GLm(Z`) is any `-adic representation. Then, for any integer d ≥ 1 the set of all
x ∈ Xcl, ≤d such that Gx is of codimension ≥ 3 in G is finite.

The paper is organized as follows. Section 2 is devoted to the general construction of the Bn and
fn : Yn → Bn, n ≥ ν. In section 3, we carry out the proof of theorem 1.1 following the strategy of
[CT12c] with gonality replacing genus. The group-theoretical construction of [CT12c] is recalled in
subsection 3.1 whereas the main geometrical result (theorem 3.3) is stated and proved in subsection
3.2. Eventually, we conclude the proof of theorem 1.1 in subsection 3.3. In section 4, we give some
applications of theorem 1.1. In subsection 4.1, we prove certain strong uniform boundedness results
(corollary 4.2 (1)(2)) for arbitrary GLP `-adic representations. In subsection 4.1.2, we state them
more specificaly for GLP `-adic representations arising from the action of π1(X) on the generic `-adic
Tate module T`(Aη) of an abelian scheme A over X; this yields strong uniform boundedness results
for the `-primary torsion of abelian varieties varying in one-dimensional families. In subsection 4.2,
we also show how to recover the Hecke-Deuring-Heilbronn theorem (cf. [Si35]) and the finiteness of
CM elliptic curves defined over a number field of degree ≤ d from our results. Eventually, section 5
is devoted to theorem 1.3, which we prove in subsection 5.1. In subsection 5.2, we exhibit an `-adic
representation ρ : π1(X)→ GLm(Z`) such that the set of all x ∈ X(k) such that Gx is of codimension
≥ 2 in G is infinite.

Acknowledgments: We are grateful to the second referee for suggesting that the cohomology groups
in Lemma 5.5 should be finite (see Remark 5.6 (2)). The first author is partially supported by the
project ANR-10-JCJC 0107 from the Agence Nationale de la Recherche.
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2. Gonality

Let k be an algebraically closed field of characteristic 0. The aim of this section is to prove the
following result about the growth of gonality along projective systems of proper k-curves.

Theorem 2.1. Let:

(1) · · ·
πn+1 // Yn

πn // Yn−1
πn−1 // · · · π2 // Y1

π1 // Y0

be a projective system of proper k-curves. Assume that:

(i) πn : Yn → Yn−1 is a Galois cover with Galois group Gn, n ≥ 1.
(ii) γYn = γ, n� 1;
(iii) Gn is cyclic of order ≥ 3 for infinitely many n ≥ 1.

Then there exists N ≥ 0 such that diagram (1) can be completed as follows:

(2) · · ·
πn+1 // Yn

πn //

fn
��

�̃

Yn−1
πn−1 //

fn−1

��
�̃

· · ·

�̃

πN+1 // YN
πN //

fN
��

YN−1
πN−1 // · · ·

· · ·
π′n+1

// Bn
π′n

// Bn−1
π′n−1

// · · ·
π′N+1

// BN ,

where π′n : Bn → Bn−1 is a Galois cover with Galois group Gn, each square:

Yn
πn //

fn
��

�̃

Yn−1

fn−1

��
Bn

π′n

// Bn−1

.

is cartesian (up to normalization1) and Gn-equivariant and gBn = 0, deg(fn) = γ or gBn = 1,
deg(fn) = γ

2 , n ≥ N .

Theorem 2.1 is enough to carry out the proof of theorem 1.1. In subsection 2.4, we will give a more
general statement about gonality (corollary 2.8). In subsection 2.1, we collect some elementary facts
about gonality. In subsection 2.2, we perform the construction of theorem 2.1 when the projective
system is finite (and without condition (iii) on the Gn). Eventually, in subsection 2.3, we pass to the
projective limit using a classical finiteness argument; this is where condition (iii) is required.

2.1. One step. Given a diagram of proper k-curves:

(3) Y
f //

π
��

B

Y ′,

where f : Y → B is a non-constant morphism of proper k-curves and π : Y → Y ′ is a Galois cover
with Galois group G, we will say that (3) is equivariant if for any σ ∈ G there exists σB ∈ Autk(B)
such that f ◦ σ = σB ◦ f and that (3) is primitive if for any commutative diagram of morphisms of
proper k-curves:

(4) Y

π
��

f

''f ′ // B′
j // B

Y ′

1That is, Yn is the normalization of the fiber product Bn ×π′n,Bn−1,fn−1
Yn−1.
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with f ′ of degree ≥ 2 the diagram:

Y
f ′ //

π
��

B′

Y ′,

is not equivariant.

We will resort to the following result from [T04, §2].

Lemma 2.2. ([T04, Thm. 2.4]). If (3) is primitive then

deg(f) ≥
√
gY + 1

gB + 1

and if, furthermore, gY ′ ≥ 2 then

deg(f) ≥

√
|G|(gY ′ − 1) + 2

gB + 1
≥

√
|G|+ 2

gB + 1
.

For any diagram (3), consider a decomposition:

(5) Y

f

''

π
��

// C // B

Y ′,

with

Y

π
��

// C

Y ′

equivariant and Y → C of degree maximal for such a property. Then, by definition, the action of G on
Y induces that on C, hence we obtain a homomorphism G→ Autk(C). Set K := Ker(G→ Autk(C))
and G := G/K. Then (5) can be decomposed as follows:

(6) Y

f

**//

K

Z := Y/K //

��
G �̃

C //

��
G

B

Y ′
f ′
// B′ := C/G

with, by construction,

Z //

��

C

Y ′

equivariant and C //

��

B

B′

primitive.
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We will say that (6) is an equivariant-primitive decomposition (an E-P decomposition for short) of
(3). Note that such a decomposition is not unique. We will use the following notation:

a = |K|;
b := |G|;
c := |G|;
e := deg(C → B);
d := deg(f);
d′ := deg(f ′) = deg(Z → C).

Then, one has:

Lemma 2.3. If c > 1 and gB′ ≥ 2, then

d ≥

√
2

(
1− 1

gB′ + 1

)√
gB′ + 1

gB + 1
d′ ≥

√
4

3

√
gB′ + 1

gB + 1
d′.

Proof. This is a direct computation. From lemma 2.2, e ≥
√

b(gB′−1)+2
gB+1 hence:

d = d′ae ≥ d′a

√
b(gB′ − 1) + 2

gB + 1
= d′

√
a2b(gB′ − 1) + 2a2

gB′ + 1

√
gB′ + 1

gB + 1
.

But, also:

a2b(gB′ − 1) + 2a2

gB′ + 1
=
ac(gB′ − 1) + 2a2

gB′ + 1
≥ c(gB′ − 1) + 2

gB′ + 1
≥ 2(gB′ − 1) + 2

gB′ + 1
= 2− 2

gB′ + 1
≥ 4

3
. �

2.2. Finitely many steps. Let:

(7) YN

fN
��

πN // YN−1
πN−1 // · · · Y1

π1 // Y0

BN

be a diagram of proper k-curves, where fN : YN → BN is a non-constant morphism of proper k-curves
and πk : Yk → Yk−1 is a Galois cover with Galois group Gk, k = 1, . . . , N .

Using successive E-P decompositions, we construct from (7) a huge diagram of proper k-curves:
(8)

YN //

KN

fN

--ZN

��
GN

// CN

��
GN

// BN

YN−1

fN−1

,,//

KN−1

ZN−1

��
GN−1

// CN−1

��
GN−1

// BN−1

YN−2

fN−2

++
· · · · · · BN−2

· · · · · ·

Y1

f1

((//

K1

Z1

�̃
��

G1

// C1

��
G1

// B1

Y0
f0 // B0,
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where:

Yk

fk

((//

Kk

Zk //

��
Gk �̃

Ck //

��
Gk

Bk

Yk−1
fk−1

// Bk−1

is an E-P decomposition of fk : Yk → Bk, k = 1, . . . , N . We will use the following notation:

ak = |Kk|;
bk := |Gk|;
ck := |Gk|;
ek := deg(Ck → Bk);
dk := deg(fk),

and assume that ck > 1 for all k = 1, . . . , N . Also, set Ak,N :=
∏
k≤l≤N al, Ek,N :=

∏
k≤l≤N el,

k = 1, . . . , N and AN+1,N = EN+1,N = 1.

Lemma 2.4. Assume that γYk = γ, k = 0, . . . , N , dN = γ and gBN = 0. Then there exist two integers
0 ≤ N1 ≤ N0 ≤ N such that:

- gBk = 0, Ak+1,N = Ek+1,N = 1, N0 ≤ k ≤ N ;
- gBk = 1, Ak+1,N = 1, Ek+1,N = 2, N1 ≤ k < N0;
- γBk > 2 (hence, in particular, gBk ≥ 3), Ek+1,N > 2, 0 ≤ k < N1.

Furthermore,
- gCN0

= 1, unless N0 = N1;

- N1 ≤ log(γ
√

2)

log(
√

3
2

)
is bounded only in terms of γ;

- one can complete diagram (8) as follows:

(9) YN
πN //

��

· · · // YN0

πN0 //

��
�̃

YN0−1

πN0−1 //

��
�̃

· · ·
πN1+1//

�̃

YN1

��
CN0

��

π′N0

//

�̃

BN0−1

��

π′N0−1

//

�̃

· · ·
π′N1+1

//

�̃

BN1

��
BN

π′N

// · · ·
π′N0+1

// BN0
// B′N0−1

// · · · // B′N1

where gB′k = 0 for N1 ≤ k < N0.

Proof. We begin with the following elementary lemma.

Lemma 2.5. Let

(10) C //

π
��

B

B′

be a diagram of proper k-curves with deg(C → B) = 2 and π : C → B′ a Galois cover with Galois
group G.

(1) If gB = 0 and gC ≥ 2 then (10) is equivariant.
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(2) If gB = 0 and gC = gB′ = 1 then there exists a smooth proper k-curve B′′ with gB′′ = 0 and a
cartesian square (up to normalization)

(11) C //

π
��

�̃

B

��
B′ // B′′.

Proof. (1) Since gB = 0 and deg(C → B) = 2, C is hyperelliptic. Let i : C→̃C denote the hyperelliptic
involution. Then C → B is just C → C/〈i〉. Since gC ≥ 2, i is a unique hyperelliptic involution, hence
lies in the center of Autk(C). In particular, G ⊂ Autk(C) normalizes 〈i〉, as required.

(2) Since deg(C → B) = 2, C → B is Galois with group say 〈i〉. As gB = 0 and gC = 1, C → B has
exactly four ramified points Q1, . . . , Q4 ∈ C. Regarding C as an elliptic curve with origin Q1 ∈ C, one
may identify i : C→̃C with the multiplication by −1 automorphism [−1]C : C→̃C. Let P ′1 denote the
image of Q1 in B′ and regard B′ as an elliptic curve with origin P ′1 ∈ B′. Then π : C → B′ becomes
an isogeny and, in particular, π ◦ [−1]C = [−1]B′ ◦ π. Hence B′′ := B′/〈[−1]B′〉 works. �

Now, we carry out the proof of lemma 2.4. Set:

N0 := min{0 ≤ k ≤ N | Ek+1,N = 1}
and

N1 := min{0 ≤ k ≤ N | Ek+1,N ≤ 2}.
Since EN+1,N = 1, these are well-defined and satisfy 0 ≤ N1 ≤ N0 ≤ N . Since Ek+1,N is monotonically
non-increasing in k, one has Ek+1,N = 1 (resp. = 2, resp. > 2) for N0 ≤ k ≤ N (resp. N1 ≤ k < N0,
resp. 0 ≤ k < N1).

For any 0 ≤ k ≤ N one has:

Ak+1,NEk+1,Ndk = dN = γ = γYk ≤ dkγBk ,
hence:

Ak+1,NEk+1,N ≤ γBk .
First, we shall prove that the following (I-i)-(I-iv) are all equivalent: (I-i) N0 ≤ k ≤ N (i.e.,

Ek+1,N = 1); (I-ii) gBk = 0; (I-iii) γBk = 1; and (I-iv) Ak+1,N = Ek+1,N = 1. Indeed, if N0 ≤ k ≤ N ,

or, equivalently, Ek+1,N = 1, then Cl
∼→ Bl for k + 1 ≤ l ≤ N . Thus, BN dominates Bk. Since

gBN = 0, one has gBk = 0. Thus, (I-i) =⇒ (I-ii). It is clear that (I-ii) ⇐⇒ (I-iii). If γBk = 1, then
Ak+1,NEk+1,N ≤ 1. Thus, (I-iii) =⇒ (I-iv). It is clear that (I-iv) =⇒ (I-i).

Next, we shall prove that the following (II-i)-(II-iv) are all equivalent: (II-i) N1 ≤ k < N0 (i.e.,
Ek+1,N = 2); (II-ii) gBk = 1; (II-iii) γBk = 2; and (II-iv) Ak+1,N = 1, Ek+1,N = 2. Indeed, if

N1 ≤ k < N0, one has El+1,N = 2 for k ≤ l < N0, hence Cl
∼→ Bl for k ≤ l < N0 and CN0 → BN0 is

a double cover. Thus, CN0 dominates Bk and γCN0
≤ 2, since gBN0

= 0. Therefore, γBk ≤ 2. Since

γBk > 1 (as k < N0), one has γBk = 2. Moreover, by construction,

CN0
//

��

BN0

BN0−1

is not equivariant. So, from lemma 2.5 (1), gCN0
= 1, hence gBk ≤ 1. But, since γYk = γ, one

necessarily has gBk ≥ 1, hence gBk = 1. Thus, (II-i) =⇒ (II-ii). If γBk = 2, then Ak+1,NEk+1,N ≤ 2.
However, if Ek+1,N = 1, that is, N0 ≤ k ≤ N , then γBk = 1: a contradiction. So, one must have
Ak+1,N = 1, Ek+1,N = 2. Thus, (II-iii) =⇒ (II-iv). It is clear that (II-ii) =⇒ (II-iii) and (II-iv) =⇒ (II-
i).

From these, the following (III-i)-(III-iii) are also all equivalent: (III-i) 0 ≤ k < N1 (i.e., Ek+1,N > 2);
(III-ii) gBk ≥ 2; and (III-iii) γBk ≥ 3. (In particular, gBk ≥ 2 automatically implies gBk ≥ 3.)

The above proof of (II-i) =⇒ (II-ii) already shows that gCN0
= 1 if N0 > N1. (Take any N1 ≤ k <
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N0, say, k = N1.) The bound for N1 follows from the first inequality of lemma 2.3. Indeed, since
gBk ≥ 3, 0 ≤ k < N1, one has:

γ ≥ dN1 ≥
(

3

2

)N1
2

√
gB0 + 1

gBN1
+ 1

d0 ≥
1√
2

(
3

2

)N1
2

.

Eventually, the last part of lemma 2.4 follows from lemma 2.5 (2). �

2.3. Infinitely many steps. We now carry out the proof of theorem 2.1. Recall that we start with
a projective system of proper k-curves

· · · → Yn
πn→ Yn−1

πn−1→ · · · π1→ Y0

satisfying conditions (i), (ii), (iii) of theorem 2.1. According to condition (ii) and up to renumbering,
one may assume that γYn = γ for all n ≥ 0 and Gn is cyclic of order ≥ 3 for all n ≥ 1. Set:

ν(γ) :=

 log(γ
√

2)

log(
√

3
2)

 .
For each n > ν(γ) define Fn to be the set of all diagrams (modulo isomorphism) of proper k-curves:

(12) Yn
πn //

fn

��

�̃

Yn−1
πn−1 //

fn−1

��

�̃

· · ·

�̃

πN0+1

// YN0

πN0 //

fN0

!!

��
�̃

YN0−1

πN0−1 //

fN0−1

��
�̃

· · ·

�̃

πN1+1// YN1

πN1 //

fN1

��

YN1−1

πN1−1 // · · ·

CN0 π′N0

//

��

BN0−1
π′N0−1

// · · ·
π′N1+1

// BN1

Bn
π′n

// Bn−1
π′n−1

// · · ·
π′N0+1

// BN0

of the type constructed in subsection 2.2. (Strictly speaking, in the extreme case N0 = N1 (resp.
N0 = n), we do not consider CN0 , YN0 → CN0 , CN0 → BN0 (resp. BN0 , fN0 : YN0 → BN0 , CN0 → BN0)
as part of the data.) More precisely, 0 ≤ N1 ≤ N0 ≤ n; N1 ≤ ν(γ); gBk = 0, deg(fk) = γ, for
N0 ≤ k ≤ n; gBk = 1, deg(fk) = γ

2 , for N1 ≤ k < N0; gCN0
= 1, if N1 < N0; the square

Yk
πk //

fk
��

�̃

Yk−1

fk−1

��
Bk

π′k

// Bk−1

is cartesian up to normalization and Gk-equivariant, for N1 < k ≤ n, k 6= N0; and the square

YN0

πN0 //

��
�̃

YN0−1

fN0−1

��
CN0 π′N0

// BN0−1

is cartesian up to normalization and GN0-equivariant, if N0 > N1. Then the maps φn : Fn+1 → Fn
defined by deleting the last vertical arrow fn endows the Fn, n > ν(γ) with a canonical structure of

projective system (Fn+1
φn→ Fn)n>ν(γ). From lemma 2.4, Fn 6= ∅, n > ν(γ). Since a projective system

of non-empty finite sets is non-empty, to obtain the desired result, it would be enough to prove that
Fn is finite, n� ν(γ). But this follows from condition (iii) and the two finiteness lemmas below.
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2.3.1. Finiteness lemmas.

Lemma 2.6. (Genus 0 case) Let c be an integer ≥ 3. Given a Galois cover Y → Z of proper k-curves
with Galois group Z/c and such that γY = γZ = γ, there are only finitely many isomorphism classes
of equivariant diagrams:

Y
f //

��
Z/c �̃

P1
k

��
Z/c

Z g
// P1
k

with deg(f) = deg(g) = γ.

Proof. Since P1
k → P1

k is Galois with Galois group Z/c, one can assume that it is given by x 7→ xc (for
some choice of the coordinate x of P1

k) and that the data of a diagram of covers:

Y
f //

��
Z/c �̃

P1
k

��
Z/c

Z g
// P1
k

is equivalent to the data of field extensions:

k(Y ) = k(Z)(g
1
c )

�̃

k(g
1
c )? _oo

k(Z)
� ?

OO

Z/c

k(g).? _oo
� ?

OO

Z/c

From Kummer theory, the cyclic subgroup 〈g〉 ⊂ k(Z)×/k(Z)×c is uniquely determined by the exten-
sion k(Z) ↪→ k(Y ). So, it is enough to prove that there are only finitely many g′ ∈ k(Z)×/k× such
that (i) deg(g′) = γ and (ii) g′ = gihc, for some 0 ≤ i < c, (i, c) = 1 and h ∈ k(Z)×. So, fix such i,

and, for j = 1, 2, assume that g′j = gihcj , hj ∈ k(Z)× with deg(g′j) = γ. Then g′1g
′
2
−1 = (h1h

−1
2 )c.

Assume that g′1g
′
2
−1 /∈ k×, then h1h

−1
2 /∈ k× and deg(g′1g

′
2
−1) = cdeg(h1h

−1
2 ). But, since h1h

−1
2 /∈ k×,

deg(h1h
−1
2 ) ≥ γ(= γZ), whereas deg(g′1g

′
2
−1) ≤ deg(g′1) + deg(g′2) = 2γ. Whence a contradiction, since

c ≥ 3 by assumption. As a result, the number of isomorphism classes of diagrams as in lemma 2.6 is
at most ϕ(c) ≤ c− 1. �

Lemma 2.7. (Genus 1 case) Let Y be a proper k-curve and let d be an integer ≥ 1. Denote by EY,d
the set of all pairs (E, f), where E is an elliptic curve over k and f : Y → E is a finite morphism of
degree d, regarded up to isomorphism of E as k-scheme. Then EY,d is finite.

Proof. Fix P ∈ Y and let EY,d,P be the set of all pairs (E, f), where E is an elliptic curve over k and
f : Y → E is a finite morphism of degree d, regarded up to isomorphism of E as pointed k-scheme
(or, equivalently, as k-abelian variety), such that f(P ) = 0. Then EY,d is canonically in bijection
with EY,d,P so it is enough to prove that EY,d,P is finite. Denote by jP : Y → JY |k the canonical
morphism induced by P from Y into its jacobian variety JY |k. Then, from the albanese property of
jP : Y → JY |k, EY,d,P is canonically in bijection with the set of all pairs (E, φ), where E is an elliptic
curve over k and φ : JY |k � E is an epimorphism of abelian varieties, regarded up to isomorphism of
E as k-abelian variety, such that φ ◦ jP : Y → E has degree d. (Here, note that EY,d,P 6= ∅ implies
that gY ≥ 1, hence jP : Y → JY |k is a closed immersion.) For any such pair (E, φ), consider the
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factorization:

Y �
� jP // JY |k // //

φ
����

JY |k/ ker(φ)0

φ0vvvvlll
lll

lll
lll

l

E ' JY |k/ ker(φ),

where ker(φ)0 denotes the connected component of 0 in ker(φ). Then, since φ◦ jP : Y → E has degree
d, φ0 : JY |k/ ker(φ)0 � JY |k/ ker(φ) has degree [ker(φ) : ker(φ)0] ≤ d.

So, let E0
Y,d,P denote the set of all pairs (E, φ) ∈ EY,d,P such that ker(φ) = ker(φ)0 is connected.

Assume that for any d′|d, E0
Y,d′,P is finite. Then, for any (E, φ) ∈ EY,d,P , there are only finitely many

possibilities for ker(φ)0. But since [ker(φ) : ker(φ)0] ≤ d, for each ker(φ)0 there are only finitely many
possibilities for ker(φ). Thus one only has to prove that E0

Y,d,P is finite.

But E0
Y,d,P is in canonical bijective correspondence with the set of all abelian subvarieties K ⊂ JY |k

of codimension 1 such that Y
jP
↪→ JY |k � JY |k/K has degree d. As deg(Y → JY |k/K) = K · Y and,

since Y is numerically equivalent to 1
(g−1)!Θ

g−1 (Poincaré’s formula, cf. [GH78, Chap. 2, Sect. 7]),

where Θ stands for the usual theta divisor on JY |k, one has, actually, d = deg(Y → JY |k/K) = K ·Y =
1

(g−1)!K · Θ
g−1 = 1

(g−1)!degΘ(K). Whence degΘ(K) = d(g − 1)!. But it is classically known2 that,

given an abelian variety, there are only finitely many abelian subvarieties with bounded degree (with
respect to a fixed ample divisor). �

2.3.2. End of the proof. To conclude the proof, observe first that for a fixed arrow Yn → Bn (resp.
Yn → Cn) when N0 < n (resp. N0 = n), there are only finitely many diagrams of the type (12) in Fn
which contains this arrow. Indeed, this follows from the fact that a diagram

Y ′ //

��
�̃

Y

��
B′ // B

that is cartesian up to normalization is uniquely determined (modulo isomorphism) by:

Y ′ //

��

Y

B′

(birationally, k(B) = k(B′)∩k(Y ) ⊂ k(Y ′)), and (if N1 < N0 < n) the fact that YN0 → CN0 → BN0 is
determined up to finite possibilities (modulo isomorphism) by YN0 → BN0 , since the latter is a finite
cover of curves over an algebraically closed field.

So, let n > ν(γ). Note that n > N1, since N1 ≤ ν(γ). If N0 < n, then, from lemma 2.6, there are
only finitely many choices for the arrow fn : Yn → Bn. If N0 = n, then from lemma 2.7, there are
only finitely many choices for the arrow Yn → Cn. In any case, from the above considerations, there
are only finitely many such diagram in Fn.

2For lack of suitable reference we recall the main argument. Let A be an abelian variety over an algebraically closed
field k and Θ an ample divisor of A (hence, 3Θ is very ample). Let K be an abelian subvariety of A and set e = dim(K)
and δ = degΘ(K). Then the Hilbert polynomial of K embedded in PN via (3Θ)|K is 3eδT e (cf. [CT12b, Lem. 1.4])
and, in particular, depends only on δ and e. Classical theory of Hilbert schemes shows that there exists a scheme Sδ,e
of finite type over k and an abelian subscheme K of A×k Sδ,e over Sδ,e such that any abelian subvariety K of A whose
embedding in PN via (3Θ)|K has Hilbert polynomial 3eδT e is the pull-back of K → Sδ,e by a unique morphism fK :
Spec(k) → Sδ,e. But then, it follows from [Mi86, Prop. 20.3] (taking care that the statement there requires the base
scheme S to be connected) that for each of the finitely many connected components C of Sδ,e there exists an abelian
subvariety KC ↪→ A such that K ×Sδ,e C = KC ×k C.
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2.4. A general statement. It follows from the classification of finite subgroups of PGL2(k) that the
only possible automorphism groups for a Galois cover of a genus 0 curve are the cyclic groups Z/m,
m ≥ 1, the dihedral groups D2m, m ≥ 2, the alternating groups A4, A5 and the symmetric group S4.
Also, since a Galois cover of a genus 1 curve is automatically etale, the only possible automorphism

groups for a Galois cover of a genus 1 curve E are the finite quotients of π1(E) ' Ẑ2. We will say that
a finite group that appears as the automorphism group of a Galois cover of genus 0 curves or of genus
1 curves is exceptional. Observe that an exceptional finite group G admits a cyclic subgroup of order
≥ 3, unless G ' (Z/2)r with r ≤ 2. We will say that a finite group is very exceptional, if G ' (Z/2)r

with r ≤ 2.

Corollary 2.8. Let · · · πn+2→ Yn+1
πn+1→ Yn

πn→ · · · π1→ Y0 be a projective system of proper k-curves with
πn : Yn → Yn−1 a Galois cover of group Gn, n ≥ 1. Suppose that one does not have γYn → +∞
(n→∞). (Or, equivalently, suppose that γYn is constant for n� 0.) Then:

(1) For all but finitely many n ≥ 0, Gn is exceptional.
(2) lim

←−
Fn 6= ∅, where Fn (n� 0) is as in subsection 2.3.

Proof. Assertion (1) follows from the definition of exceptional finite groups, lemma 2.4 and the fact
that N1 ≤ ν(γ) is bounded only in terms of γ in lemma 2.4.

As for assertion (2), one may assume, up to renumbering, that, for all n ≥ 0, |Gn| > 1, Gn is
exceptional, and γn = γ (constant). Then, from lemma 2.4, one always has Fn 6= ∅, n > ν(γ). Define
F ′n to be the image of Fn+2 in Fn, which is also nonempty. Then F ′n, n > ν(γ) form a projective
subsystem of (Fn+1 → Fn)n>ν(γ), and lim

←−
Fn = lim

←−
F ′n. Thus, it suffices to prove that F ′n is finite for

n > ν(γ).
First, if Gn is (exceptional but) not very exceptional, Gn admits a cyclic subgroup of order ≥ 3. So,

in this case, Fn is finite by lemmas 2.6 and 2.7, hence F ′n is finite, a fortiori. Similarly, if Gn+1 (resp.
Gn+2) is not very exceptional, then Fn+1 (resp. Fn+2) is finite, hence F ′n is finite, a fortiori. Next,

define Fg=1
n to be the subset of elements (12) of Fn with N0 = n. Then Fg=1

n is finite by lemma 2.7.

So, it suffices to prove the finiteness of F ′n r F
g=1
n under the extra assumption that Gn, Gn+1 and

Gn+2 are all (non-trivial and) very exceptional. This follows from (2) of the following finiteness lemma.

Lemma 2.9. (1) Let Y ′′
(Z/2)r

′′

→ Y ′
(Z/2)r

′

→ Y be a sequence of Galois covers of proper k-curves with
r′, r′′ ∈ {1, 2} , γY ′′ = γY ′ = γY = γ. Then either there are only finitely many isomorphism
classes of equivariant diagrams:

Y ′′
(Z/2)r

′′

//

f ′′

��
�̃

Y ′
(Z/2)r

′

//

f ′

��
�̃

Y

f
��

P1
k

(Z/2)r
′′
// P1
k

(Z/2)r
′
// P1
k,

or Y ′′ → Y is Galois with Galois group (Z/2)2 (hence, in particular, r′ = r′′ = 1 in the latter
case).

(2) Let Y ′′′
(Z/2)r

′′′

→ Y ′′
(Z/2)r

′′

→ Y ′
(Z/2)r

′

→ Y be a sequence of Galois covers of proper k-curves
with r′, r′′, r′′′ ∈ {1, 2} , γY ′′′ = γY ′′ = γY ′ = γY = γ. Then there are only finitely many
isomorphism classes of equivariant diagrams:

Y ′′′
(Z/2)r

′′′

//

f ′′′

��
�̃

Y ′′
(Z/2)r

′′

//

f ′′

��
�̃

Y ′
(Z/2)r

′

//

f ′

��
�̃

Y

f
��

P1
k

(Z/2)r
′′′
// P1
k

(Z/2)r
′′
// P1
k

(Z/2)r
′
// P1
k.
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Proof. (1) First, consider the case where Y ′′ → Y is Galois with Galois group G. Then it follows again
from the classification of finite subgroups of PGL2(k) that, necessarily, only one of the three following
cases can occur:
- r′ = r′′ = 1 and G ' Z/4;
- (r′, r′′) = (1, 2) or (2, 1) and G ' D8;
- r′ = r′′ = 1 and G ' (Z/2)2.
In the first two cases, G admits a cyclic subgroup of order 4. Thus, the finiteness follows again from
lemma 2.6.

Next, consider the case where Y ′′ → Y is not Galois. Assume first that r′′ = r′ = 1 and fix a
diagram

Y ′′
(Z/2)r

′′

//

f ′′

��
�̃

Y ′
(Z/2)r

′

//

f ′

��
�̃

Y

f
��

B′′ = P1
k

(Z/2)r
′′
// B′ = P1

k
(Z/2)r

′
// B = P1

k.

Let Ŷ → Y denote the Galois closure of Y ′′ → Y and B̂ → B the Galois closure of B′′ → B. Note

that Ŷ → Y depends only on the data Y ′′
(Z/2)r

′′

→ Y ′
(Z/2)r

′

→ Y .
Then Y ′′ has at most one distinct conjugate - say Y ′′1 under the automorphism group of Ŷ → Y .

Similarly, B′′ has at most one distinct conjugate - say B′′1 under the automorphism group of B̂ → B.

As, by assumption, Y ′′ 6= Ŷ , this implies that Ŷ → Y ′′ has degree 2 and, as the natural restriction
morphism Aut(Ŷ /Y ′′) ↪→ Aut(B̂/B′′) is a monomorphism, one obtains that B̂ → B′′ has degree 2 as
well and that the square:

Ŷ //

��
�̃

Y ′′

��
B̂ // B′′

is cartesian up to normalization. Now, consider the commutative square:

B̂
Z/2

  @
@@

@@
@@

@
Z/2

~~~~
~~
~~
~~

B′′

Z/2   A
AA

AA
AA

A B′′1

Z/2~~}}
}}
}}
}

B′

Since gB′ = gB′′ = gB′′1 = 0, each cover B′′ → B′ and B′′1 → B′ is ramified at exactly two points. Let

R and R1 denote the branch locus of B′′ → B′ and B′′1 → B′ respectively. There are three possible
cases:
- |R ∩R1| = 2. Then B′′ = B′′1 hence B̂ = B′′: a contradiction;
- |R ∩ R1| = 0. Then gB̂ = 1 so, from lemma 2.7, there are only finitely many possibilities for the

arrow Ŷ → B̂ hence for the arrow Y ′′ → B′′.
- |R ∩ R1| = 1. Let P ′ denote the common branch point in R ∩ R1 and P ′′1 its lifting to B′′1 . From

Abhyankar’s lemma, B̂ → B′′1 is unramified at P ′′1 so it is ramified at exactly two points. Hence

gB̂ = 0. but, then B̂ → B is a degree 8 Galois cover of genus 0 curves. So, it follows once again from
the classification of finite subgroups of PGL2(k) that the only possibilities for its automorphism group
are Z/8 or D8, which both contain a cyclic subgroup of order ≥ 3. So, from lemma 2.6, there are only

finitely many possibilities for the arrow Ŷ → B̂. (In fact, the abelian group Z/8 does not occur, since
B′′ → B is non-Galois.)

The three other cases reduce to the case r′′ = r′ = 1. Indeed,
- If r′ = 2, r′′ = 1. Since Y ′′ → Y is not Galois, there exists an automorphism σ′ of Y ′ → Y such
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that σ′Y ′′ 6= Y ′′ hence Y ′′ → Y ′ → Y ′/〈σ′〉 satisfies the hypotheses of the r′′ = r′ = 1 case. So, if σ′B
denotes the automorphism of B′ → B corresponding to σ, there are only finitely many possibilities
for the diagram:

Y ′′
Z/2 //

f ′′

��
�̃

Y ′
Z/2 //

f ′

��
�̃

Y ′/〈σ′〉

f
′

��
B′′

Z/2
// B′

Z/2
// B′/〈σ′B〉,

hence, in particular, for the arrow Y ′′ → B′′.
- If r′ = 1 or 2, r′′ = 2. If r′ = 2, by the same argument as in the case r′ = 2, r′′ = 1, one may
reduce to the case r′ = 1. If r′ = 1, since Y ′′ → Y is not Galois, σ

′
Y ′′ 6= Y ′′, where σ′ denotes the

non-trivial automorphism of Y ′ → Y . So, if Z1, Z2, Z3 denote the three non-trivial intermediate
covers of Y ′′ → Y ′, there exists 1 ≤ i ≤ 3 such that σ′Zi 6= Zi hence Zi → Y ′ → Y satisfies the
hypotheses of the r′′ = r′ = 1 case and one can conclude as in the r′ = 2, r′′ = 1 case.

(2) Apply (1) to Y ′′′ → Y ′′ → Y ′, then the only remaining case is that Y ′′′ → Y ′ is Galois with
Galois group (Z/2)2. In this case, however, the proof is completed by applying (1) to Y ′′′ → Y ′ → Y . �

3. Proof of theorem 1.1

3.1. Preliminaries. In this subsection, we recall some of the basic notation and results introduced
in [CT12c] and that we will re-use in the proof of theorem 1.1. We refer to [CT12c, Sect. 3.1 and
Sect. 3.2] for more details.

3.1.1. Group-theoretical preliminaries. Let G ⊂ GLm(Z`) be a closed subgroup. For any n ≥ 0,
let ( )n : GLm(Z`) → GLm(Z/`n) denote the reduction modulo `n morphism and write G(n) :=
G ∩ (Id + `nMm(Z`)) for the kernel of G � Gn. Recall that the G(n), n ≥ 0 form a fundamental
system of open neighborhoods of 1 in G. Also, write Φ(G) for its Frattini subgroup (that is the
intersection of all maximal open subgroups of G) and dG for its dimension as `-adic analytic space.

Lemma 3.1. (1) [G(n) : G(n+ 1)] = `dG, n� 0;
(2) If r(G(n)) denotes the minimal number of topological generators of G(n) then r(G(n)) = dG,

n� 0;
(3) G(n+ 1) is the Frattini subgroup Φ(G(n)) of G(n), n� 0.

We are going to associate with G a projective system (Hn+1(G)→ Hn(G))n≥0 of finite sets of open
subgroups of G. For each n ≥ 1, let Hn(G) denotes the set of all open subgroups U ⊂ G such that
Φ(G(n − 1)) ⊂ U but G(n − 1) 6⊂ U and set H0(G) := {G}. Then the Hn(G), n ≥ 0 satisfy the
following elementary properties:

Lemma 3.2. (1) Hn(G) is finite, n ≥ 0.
(2) The maps φn : Hn+1(G)→ Hn(G), U 7→ UΦ(G(n−1)) (with the convention that Φ(G(−1)) =

G) endow the Hn(G), n ≥ 0 with a canonical structure of projective system (Hn+1(G)
φn→

Hn(G))n≥0.
(3) For any H := (H[n])n≥0 ∈ lim

←−
Hn(G),

H[∞] := lim
←−

H[n] =
⋂
n≥0

H[n] ⊂ G

is a closed but not open subgroup of G.
(4) For any closed subgroup H ⊂ G such that G(n − 1) 6⊂ H there exists U ∈ Hn(G) such that

H ⊂ U .
(5) For n� 0, Hn(G) is the set of all open subgroups U ⊂ G such that G(n) ⊂ U but G(n−1) 6⊂ U .
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3.1.2. General remarks. From now on and till the end of section 3, we let k be a field of characteristic
0, X a smooth, separated, geometrically connected curve over k, and ρ : π1(X) → GLm(Z`) a GLP
representation. We retain the notation of the introduction. In particular, we set G := ρ(π1(X)),
Ggeo := ρ(π1(Xk)), and Gx := ρ ◦ x(Γκ(x)), x ∈ Xcl.

(1) For any open subgroup U ⊂ G such that G(n) ⊂ U one has [G : U ] ≤ [G : G(n)] =: Bn.
Conversely, since G is a finitely generated profinite group, for any integer B ≥ 1 the set
S(G,B) of all open subgroups U ⊂ G with [G : U ] ≤ B is finite. So:⋂

U∈S(G,B)

U ⊂ G

is again an open subgroup of G, hence contains G(nB) for some integer nB ≥ 0. As a result,
the second assertion of theorem 1.1 is also equivalent to the following: There exists an integer
nρ,d ≥ 0 such that G(nρ,d) ⊂ Gx, x ∈ Xcl, ≤d rXρ,d.

(2) For any open subgroup U ⊂ G let XU → X denote the corresponding etale cover; it is defined
over a finite extension kU of k and it satisfies the following two properties:
(a) XU ×kU k → Xk is the etale cover corresponding to the inclusion of open subgroups

Ggeo ∩ U ⊂ Ggeo.
(b) For any closed point x ∈ X, Gx ⊂ U (up to conjugacy) if and only if x : Spec(κ(x))→ X

lifts to a κ(x)-rational point:

XU

��
X Spec(κ(x))s
oo

xU
ee

Write gU for the genus of (the smooth compactification of) U and γU for its (k-)gonality. It
follows from (a) that gU = gGgeo∩U and that γU = γGgeo∩U .

3.2. A key geometrical result and its corollaries. One of the main results of [CT12c] (theorem
3.4) is that, for any closed but not open subgroup H ⊂ Ggeo,

lim
n7→∞

gHGgeo(n) = +∞.

Our aim here is to improve this statement, as follows.

Theorem 3.3. For any closed but not open subgroup H ⊂ Ggeo one has

lim
n7→∞

γHGgeo(n) = +∞.

Remark 3.4. Given a cover of proper k-curves f : Y → Z one always has γZ ≤ γY ≤ deg(f)γZ . So,
given a sequence of cartesian squares of covers of proper k-curves

· · · // Y ′n+1
//

��
�̃

Y ′n //

��
�̃

· · · //

�̃

Y ′0

��
· · · // Yn+1

// Yn // · · · // Y0,

one has γYn →∞ if and only if γY ′n →∞. This will allow us to perform finitely many arbitrary base
changes in our argument below.

To prove theorem 3.3, we make a few reductions. First, up to replacing k by k, we shall assume,
without loss of generality, that k is algebraically closed, till the end of subsection 3.2.2. Thus, in
particular, G = Ggeo.
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For technical reasons (see Lemma 3.6), we also need to ensure that the (solvable) radical of Lie(G)
is abelian (in the following, we will simply say that an `-adic representation with this property has
abelian radical). So, set g := Lie(G) and write r(g) for the radical of g. One can find3 a (non-unique)
sequence of closed normal subgroups of G

D ⊂ R ⊂ G

corresponding under the Lie algebra functor to the inclusion of ideals of g

[r(g), r(g)] ⊂ r(g) ⊂ g.

Then, by construction, the `-adic representation

ρ : π1(X)→ G→ G/D (↪→ GLm(Z`) for some m)

has abelian radical and is still (G)LP. We claim that it is enough to prove Theorem 3.3 for ρ. This
is a consequence of the following three elementary observations. Given a subgroup U ⊂ G, write
U := UD/D ⊂ G/D.

(1) As HG(n) ⊂ HDG(n) and ρ−1(HDG(n)) = ρ−1(HG(n)) one has

γHG(n) ≥ γHDG(n) = γ
HG(n)

.

Thus, it is enough to prove that lim
n7→∞

γ
HG(n)

= ∞. Note that G(n), n ≥ 0 is a fundamental

system of open normal neighborhoods of 1 in G.

(2) In Theorem 3.3, the property lim
n 7→∞

γHG(n) = +∞ is equivalent to lim
n7→∞

γHUn = +∞ for any

fundamental system {Un}n≥0 of open normal neighborhoods of 1 in G. In terms of Lie age-
bras, this is equivalent to saying that In particular, to prove that lim

n7→∞
γ
HG(n)

= ∞ it is

enough to prove that lim
n 7→∞

γHG(n) = ∞, where {G(n)}n≥0 is the fundamental system of open

normal neighborhoods of 1 in G defined by any choice of an embedding of `-adic Lie groups
G ⊂ GLm(Z`).

(3) If H ⊂ G is closed but not open in G then H ⊂ G is not open in G as well. In terms of Lie al-
gebras, this is equivalent to saying that for a Lie subalgebra h ( g, one has h+ [r(g), r(g)] ( g.
But, as gab = 0 (i.e., g = [g, g]), r(g) = r(g) ∩ [g, g] is nilpotent [B72a, §5.3, Theorem 1 and
Remark 2 to Definition 3], hence its Frattini subalgebra is [r(g), r(g)] [M67, §2, Corollary 2].
Now, suppose h + [r(g), r(g)] = g. Then one has (h ∩ r(g)) + [r(g), r(g)] = r(g), which in turn
implies r(g) = h ∩ r(g) ⊂ h, hence g = h. This contradicts the assumption h ( g.

So, from now on, we also assume that g has abelian radical.’

Next, from remark 3.4, one can replace X by XG(n) for any n ≥ 0. In particular, we shall assume
that G = G(n0) with n0 ≥ 1 (resp. n0 ≥ 2) for ` 6= 2 (resp. ` = 2). Thus, in particular, G is a pro-`
group.

3More precisely, the following always holds. Let G be a compact `-adic Lie group with Lie algebra g and let g ⊃ h1 ⊃
· · · ⊃ hn be a finite decreasing sequence of ideals which are stable under every Lie algebra automorphism of g. Then
there exists a decreasing sequence G ⊃ H1 ⊃ · · · ⊃ Hn of normal closed subgroups of G such that hi is the Lie algebra
of Hi for i = 1, . . . , n. Indeed, since the Lie algebra functor commutes with finite intersections, it is enough to prove
the statement for n = 1. So let h ⊂ g be an ideal which is stable under every Lie algebra automorphism of g. From [?,
Chapter 3, §7, Proposition 2], there exists an open subgroup G′ ⊂ G and a normal closed subgroup H ′ ⊂ G′ such that h
is the Lie algebra of H ′. Set H := ∩g∈G/G′gH ′g−1. This is a closed normal subgroup of G contained in H ′ so it is enough

to show that H is open in H ′. But for every g ∈ G one has Lie(gH ′g−1) = Ad(g)(Lie(H ′)) = Ad(g)(h) = h = Lie(H ′).
So the conclusion follows from [?, Chapter 3, §7, Theorem 2].
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3.2.1. A group-theoretical lemma. We begin with a group-theoretical lemma.

Lemma 3.5. Consider the sequence of open subgroups

(13) · · · ⊂ HG(i+ 1) ⊂ HG(i) ⊂ · · · ⊂ HG(1) ⊂ G

Then,

(1) HG(n+ n0) is normal in HG(n), n ≥ 0;
(2) HG(n)/HG(n+ n0) ' (Z/`n0)∆, n� 0 where ∆ = dim(G)− dim(H) > 0.

Proof. (1) For short, write GL := GLm(Z`). A direct computation shows that [GL(n),GL(n′)] ⊂
GL(n + n′), n, n′ ≥ 0. Since G is a closed subgroup of GL one also has [G(n), G(n′)] ⊂ G(n +
n′), n, n′ ≥ 0. For any h, h′ ∈ H, gn ∈ G(n), gn+n0 ∈ G(n + n0), (h′gn)(hgn+n0)(h′gn)−1 =

h′(gnhg
−1
n )(gngn+n0g

−1
n )h

′−1 ∈ HG(n + n0) if and only if gnhg
−1
n ∈ HG(n + n0). But gnhg

−1
n =

h[h−1, gn] ∈ H[G(n0), G(n)] ⊂ HG(n+ n0) (recall that G = G(n0) by assumption).
(2) Since G(n+ n0) ⊂ G(n), one has (HG(n+ n0)) ∩G(n) = H(n)G(n+ n0), n ≥ 0. Set:

Qn := HG(n)/HG(n+ n0) ' G(n)/((HG(n+ n0) ∩G(n)) = G(n)/(H(n)G(n+ n0)), n ≥ 0.

One has canonical isomorphisms:

(G(n)/G(n+ n0))/(H(n)/H(n+ n0)) ' G(n)/(H(n)G(n+ n0)) ' Qn, n ≥ 0.

Let dG and dH denote the dimensions of G and H as `-adic analytic spaces.
Assume now that n is large enough so that conditions (1), (2), (3) of lemma 3.1 are fulfilled for both

G and H. Since [G(n), G(n)] ⊂ [G(n), G(n0)] ⊂ G(n + n0) (use, again, that G = G(n0)), the group
G(n)/G(n+n0) is abelian. Also, from (3) of lemma 3.1, G(n+n0) = Φn0(G(n)). But G = G(n0) is a
pro-` group and the Frattini subgroup of a pro-` group L being generated by L`[L,L], G(n)/G(n+n0)
has exponent ≤ `n0 . So, from (2) of lemma 3.1, one gets an epimorphism (Z/`n0)dG � G(n)/G(n+n0)
which, from (1) of lemma 3.1, is actually an isomorphism (Z/`n0)dG→̃G(n)/G(n + n0). Similarly,
(Z/`n0)dH→̃H(n)/H(n+ n0). These imply that Qn ' (Z/`n0)∆, as desired, since the exact sequence

0→ H(n)/H(n+ n0)→ G(n)/G(n+ n0)→ Qn → 0

splits (as H(n)/H(n+ n0) ' (Z/`n0)dH is an injective Z/`n0-module). �

So, after replacing X by XG(n) for some n � 0, one may assume that HG(n + n0) is normal in

HG(n) and that HG(n)/HG(n+ n0) ' (Z/`n0)∆, n ≥ 0. Extract from (13) the sequence:

(14) H ⊂ · · ·HG((i+ 1)n0) ⊂ HG(in0) ⊂ · · · ⊂ HG(n0) ⊂ G.

It is enough to prove that

lim
i 7→∞

γHG(in0)) = +∞

For each i ≥ 0 decompose HG((i+ 1)n0) ⊂ HG(in0) into a subsequence

(15) HG((i+ 1)n0) = Ui,∆ ⊂ Ui,∆−1 ⊂ · · · ⊂ Ui,j+1 ⊂ Ui,j ⊂ · · · ⊂ HG(in0) = Ui,0

such that Ui,j+1 is normal in Ui,j and Ui,j/Ui,j+1 ' Z/`n0 , j = 0, · · ·∆− 1. Then (15) gives rise to a
sequence of connected etale covers

(16) · · · → XUi,∆ = XUi+1,0 → XUi,∆−1
→ · · · → XUi,1 → XUi,0 = XUi−1,∆ → · · · → X,

which, for simplicity, we rewrite as:

(17) · · · → Xi+1 → Xi → · · · → Xi−1 → · · · → X0 = X,

with Xi → Xi−1 a Galois cover with Galois group Gi = Z/`n0 , i ≥ 1. It is enough to prove that

lim
i 7→∞

γXi = +∞

For this, we are going to apply the techniques of section 2 to (17).
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3.2.2. End of the proof of theorem 3.3. Assume that the gonalities γXi , i ≥ 0 are bounded. Then, up
to replacing X by Xi and G by G(i) for some i large enough, one may assume that γXi = γX = γ,
i ≥ 0. So, according to theorem 2.1, one may assume (again up to replacing X by Xi and G by G(i)
for some i large enough) that (17) can be completed as follows:

(18) · · · // Xcpt
i+1

Gi+1 //

fi+1

��
�̃

Xcpt
i

Gi //

fi

��
�̃

· · · G2 //

�̃

Xcpt
1

G1//

�̃f1

��

Xcpt
0 = Xcpt

��
· · · // Bi+1

Gi+1

// Bi
Gi
// · · ·

G2

// B1
G1

// B0 =: B

where Bi+1 → Bi is a Galois cover of proper k-curves with Galois group Gi+1, each square:

Xcpt
i+1

Gi+1 //

fi+1

��
�̃

Xcpt
i

fi

��
Bi+1

Gi+1

// Bi

is cartesian up to normalization and equivariant, deg(fi) = γ′ (constant), i ≥ 0, and either γ′ = γ,
gBi = 0, i ≥ 0 or γ′ = γ

2 , gBi = 1, i ≥ 0.
Let S ⊂ B denote the ramification locus of f := f0 : Xcpt → B, and set C := Br(S∪f(XcptrX)).

Then, up to replacing X by f−1(C) ⊂ Xcpt, one may assume that X → C is finite etale, hence that
π1(X)→ π1(C) is injective. Define Ci to be the inverse image of C in Bi. Then it is easy to see that
Ci+1 → Ci and fi : Xi → Ci are finite etale, i ≥ 0.

Let X̂i → Ci denote the Galois closure of Xi → Ci. Then k(X̂i) = k(X̂0) · k(Ci) and, in particular,

[k(X̂i+1) : k(Ci+1)] ≤ [k(X̂i) : k(Ci)]. So, up to replacing X by Xi for i � 0, one may assume that

[k(X̂i+1) : k(Ci+1)] = [k(X̂i) : k(Ci)] or, equivalently, that X̂i is the normalization of the fiber product

X̂0×C0 Ci, i ≥ 0. Then, up to replacing X0 by X̂0 and γ′ by some integer γ0 ≤ (γ′)!, one may assume
that fi : Xi → Ci is Galois, i ≥ 0.

Write M := Zm` for the π1(X)-module associated with our (G)LP representation ρ : π1(X) →
GLm(Z`), N := Ind

π1(X)
π1(C) (M) for the π1(C)-module induced from M and ρ0 : π1(C)→ GLmγ0(Z`) for

the corresponding representation.

Lemma 3.6. ρ0 : π1(C)→ GLmγ0(Z`) is, again, a (G)LP representation.

Proof. Let ∆ : π1(X) ↪→ π1(X)γ0 denote the diagonal embedding and fix a system T ⊂ π1(C) of
representatives of π1(C)/π1(X). Then (*) ρ0|π1(X) =

∏
t∈T ρ|π1(X)(t t−1) ◦∆. As a result, to prove

Lemma 3.6, it is enough to prove that, given two `-adic (G)LP representations ρi : π1(X)→ GLmi(Z`)
with abelian radical, i = 1, 2, the direct sum representation ρ := ρ1 ⊕ ρ2 : π1(X) → GLm1+m2(Z`) is
again (G)LP with abelian radical.

So, let g1, g2 and g denote the Lie algebras of the images of ρ1, ρ2 and ρ respectively. By definition
g ⊂ g1 ⊕ g2. For i = 1, 2, write pi : g ⊂ g1 ⊕ g2 � gi for the composite of this inclusion with the
ith projection. Then g surjects onto gi via pi, which yields the following commutative diagram of Lie
algebras with split short exact rows

0 // r(g)

����

// g

pi
����

// s(g)

pi����

//{{
0

0 // r(gi) // gi // s(gi) //
{{

0,

in which s(g) := g/r(g) and s(gi) := gi/r(gi) are semisimple. In particular, r(g) ⊂ r(g1) ⊕ r(g2)
(which already shows that ρ has abelian radical); gab = r(g)s(g), g

ab
i = r(gi)s(gi) (here (−)s(g), (−)s(gi)

stand for the coinvariant functors); and r(g1), r(g2) are equipped with a structure of s(g)-modules
via pi : s(g) � s(gi). With this structure, the embedding r(g) ⊂ r(g1) ⊕ r(g2) is an embedding
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of s(g)-modules. As s(g) is semisimple, the coinvariant functor is left exact hence one obtains an
embedding

r(g)s(g) ⊂ r(g1)s(g) ⊕ r(g2)s(g) = r(g1)s(g1) ⊕ r(g2)s(g2),

where the last equality comes from the surjectivity of s(g)� s(gi). Now, one gets

gab = r(g)s(g) ⊂ r(g1)s(g1) ⊕ r(g2)s(g2) = gab
1 ⊕ gab

2 = 0,

as desired. �

Now, set Ui := ρ0(π1(Ci)) and let CUi → C be, as usual, the etale connected cover corresponding
to the inclusion of open subgroups Ui ⊂ U0, i ≥ 0. From the inclusions

π1(Ci) ⊂ π1(CUi) ⊂ π1(C),

one actually has a sequence of etale covers Ci → CUi → C. In particular, gCUi ≤ gCi ≤ 1, i ≥ 0.

Assume for a while that U∞ :=
⋂
i≥0

Ui ⊂ U0 is (closed but) not open in U0. Then, it follows from

[CT12c, Thm. 3.4] that lim
i 7→∞

gCUi = +∞: a contradiction.

So, it only remains to prove that U∞ =
⋂
i≥0

Ui ⊂ U0 is (closed but) not open in U0. This will follow

from:

Lemma 3.7. [Ui : Ui+1] ≥ `, i� 0.

Proof. Set Vi := ρ0(π1(Xi)) ⊂ Ui. From (*), one has ρ(π1(Xi)) ' Vi hence Vi/Vi+1 ' Gi = Z/`n0 . Let
J denote the set of all j ≥ 0 such that Uj+1 = Uj and set Ji := J ∩ {0, · · · , i}, i ≥ 0. Then, on the
one hand:

[U0 : Vi] = [U0 : Ui][Ui : Vi] ≤ [U0 : Ui]γ0 ≤ `n0(i−|Ji|)γ0.

And, on the other hand:

[U0 : Vi] = [U0 : V0]
∏

0≤j≤i−1

[Vj : Vj+1] ≥ `n0i.

Hence |Ji| ≤ log(γ0)
n0 log(`) , i ≥ 0 so, as well, |J | ≤ log(γ0)

n0 log(`) . �

Remark 3.8. For simplicity, we have given a uniform proof using theorem 2.1. (Or, alternatively, one
can apply directly corollary 2.8.) However, it is worth noticing that this is only necessary if ∆ = 1.
Else, the result of subsection 2.2 is enough to conclude. Indeed, if ∆ = 2 then, from the classification
of finite subgroups of PGL2(k), (Z/`n0)2 cannot appear as the Galois group of a Galois cover of genus
0 curves. But the result of subsection 2.2 then implies that gXi = 1, i� 0, which is ruled out by the
GLP assumption. If ∆ ≥ 3 then one can conclude directly from the result of subsection 2.2 since then
(Z/`n0)∆ cannot appear as the Galois group of a Galois cover of genus 0 curves or of a Galois cover
of genus 1 curves.

3.2.3. Corollaries to theorem 3.3.

Corollary 3.9. For any H = (H[n])n≥0 ∈ lim
←−
Hn(Ggeo), γH[n] → +∞.

Proof. (cf. [CT12c, Cor. 3.6].) Set

H[∞] := lim
←−

H[n] =
⋂
n≥0

H[n] ⊂ Ggeo,

which is a closed but not open subgroup of Ggeo by lemma 3.2. By theorem 3.3, one has γH[∞]Ggeo(n) →
∞ (n→∞). Thus, it suffices to prove that H[n] = H[∞]Ggeo(n) for n� 0. However, this is already
proved in the proof of [CT12c, Cor. 3.6]. �
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Corollary 3.10. For any integer c ≥ 1, there exists an integer Nρ(c) ≥ 0 such that for any n ≥ Nρ(c)
and any U ∈ Hn(Ggeo), one has γU ≥ c.

Proof. (cf. [CT12c, Cor. 3.7].) Else, the subset Hn,<c(Ggeo) ⊂ Hn(Ggeo) of all U ∈ Hn(Ggeo)
such that γU < c is non-empty, n ≥ 0 hence lim

←−
Hn,<c(Ggeo) is non-empty as well. But for any

H = (H[n])n≥0 ∈ lim
←−
Hn,<c(Ggeo), γH[n] → +∞ by corollary 3.9: a contradiction. �

Corollary 3.11. For any integers c1 ≥ 1, c2 ≥ 1, there exists an integer Nρ(c1, c2) ≥ 0, such that,
for any n ≥ Nρ(c1, c2) and any U ∈ Hn(G), either γU ≥ c1 or [kU : k] ≥ c2.

Proof. (cf. [CT12c, Cor. 3.8].) First, by lemma 3.2(5) for G and Ggeo, there exists an integer Nρ > 0
such that for any n ≥ Nρ:

Hn(G) = {U ⊂ G | G(n) ⊂ U, G(n− 1) 6⊂ U},

Hn(Ggeo) = {U ⊂ Ggeo | Ggeo(n) ⊂ U, Ggeo(n− 1) 6⊂ U}.
Second, by theorem 3.3, there exists an integer Nρ(c1) ≥ Nρ such that for any n ≥ Nρ(c1) and any
U ∈ Hn(Ggeo), one has γU ≥ c1. Third, as noticed in remark (1) of subsection 3.1.2, there exists
an integer Nρ(c1, c2) ≥ Nρ(c1) such that for any open subgroup U ⊂ G with [G : U ] < c2[Ggeo :
Ggeo(Nρ(c1)− 1)], one has G(Nρ(c1, c2)− 1) ⊂ U .

Now, for any n ≥ Nρ(c1, c2) and any U ∈ Hn(G), set Ugeo = U ∩ Ggeo. Recall that U ∈ Hn(G) is
equivalent to saying that G(n) ⊂ U and G(n − 1) 6⊂ U . Since G(n) ⊂ U , one has Ggeo(n) ⊂ Ugeo.
Let n0 be the minimal integer ≥ Nρ(c1) − 1 such that Ggeo(n0) ⊂ Ugeo. If n0 ≥ Nρ(c1), then one
has Ggeo(n0 − 1) 6⊂ Ugeo, hence Ugeo ∈ Hn0(Ggeo). Then one has γU = γUgeo ≥ c1 by the definition
of Nρ(c1). Else, n0 = Nρ(c1) − 1, that is, Ggeo(Nρ(c1) − 1) ⊂ Ugeo. Since G(n − 1) 6⊂ U , one has
G(Nρ(c1, c2) − 1) 6⊂ U , a fortiori. Thus, by the definition of Nρ(c1, c2), one has [G : U ] ≥ c2[Ggeo :
Ggeo(Nρ(c1)− 1)], hence

[kU : k] =
[G : U ]

[Ggeo : Ugeo]
≥ c2

[Ggeo : Ggeo(Nρ(c1)− 1)]

[Ggeo : Ugeo]
≥ c2,

as desired. �

Corollary 3.12. Let k be an algebraically closed field of characteristic 0 and let K/k be a function
field of transcendence degree 1. Let L/K be a Galois extension with Galois group G such that:
(i) G is an `-adic Lie group and Lie(G)ab = 0;
(ii) L/K is ramified only over a finite number of places of K.
Then, for any γ ≥ 1, there are only finitely many finite subextensions K ′/K of L/K with gonality
≤ γ.

Proof. See [CT12c, Cor. 3.9]. �

3.3. End of the proof of theorem 1.1. Now, assume that k is finitely generated over Q. Set:

Xn :=
∐

U∈Hn(G)

XU .

Then (Xn+1 → Xn)n≥0 is a projective system of (possibly disconnected) etale covers with transition
morphisms induced by the maps φn : Hn+1(G) → Hn(G), n ≥ 0. But, from corollary 3.11, for any
integer d ≥ 1, there exists an integer N ≥ 0 such that for any U ∈ Hn(G) either γU ≥ 2d + 1 or

[kU : k] ≥ d + 1, n ≥ N . If [kU : k] ≥ d + 1 then, clearly, Xcl, ≤d
U = ∅ and, if γU ≥ 2d + 1 then, from

theorem 1.2, Xcl, ≤d
U is finite. As a result, X cl, ≤dn is finite for all n ≥ N . Let Xρ,d,N denote the image

of X cl, ≤dN in Xcl, ≤d then:

- Xρ,d,N is finite since X cl, ≤dN is;

- No x ∈ Xcl, ≤drXρ,d,N lifts to a κ(x)-rational point on XN . So, by the definition of N , Gx 6⊂ U , for
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any U ∈ HN (G). But then, by lemma 3.2 (4), G(N − 1) ⊂ Gx.
So, Xρ,d ⊂ Xρ,d,N and, in particular, Xρ,d is finite. Finally, by the definition of Xρ,d, for each

x ∈ Xcl, ≤drXρ,d, Gx is open in G, or, equivalently, there exists an integer Nx such that G(Nx) ⊂ Gx.

Set nρ := max{N,Nx (x ∈ Xρ,N,d rXρ,d)}. Then, for each x ∈ Xcl, ≤d rXρ,d, one has G(nρ) ⊂ Gx,
as desired. �

Actually, by lemma 3.2 (4), Xρ,d coincides with the image of lim
←−
X cl ≤dn in Xcl, ≤d.

4. Applications

4.1. Strong uniform boundedness of `-primary torsion.

4.1.1. General formulation. As in the case of [CT12c], theorem 1.1 yields a certain uniform bound-
edness of `-primary χ-torsion for arbitrary GLP `-adic representations (defined over fields finitely
generated over Q). So, let k be a field finitely generated over Q and X a smooth, separated, geo-
metrically connected curve over k. Let M be a finitely generated free Z`-module of rank m < ∞
(i.e., M ' Zm` ), and ρ : π1(X) → GL(M) a GLP representation. Set V := M ⊗Z` Q` (' Qm

` ) and
D := V/M = M ⊗Z` (Q`/Z`) (' (Q`/Z`)m ). Thus, we have a natural identification M/`n = D[`n]
for each n ≥ 0.

Then ρ induces π1(X)-actions on V and D naturally.
Denote by M(0) the maximal isotrivial submodule of M , or, more precisely, M(0) is the maximal

submodule of M on which the geometric part π1(Xk) of π1(X) acts via a finite quotient.
Recall that each morphism ξ : Spec(L) → X (where L is any field) induces a homomorphism

ξ : ΓL → π1(X), hence a representation ρξ := ρ ◦ ξ and, for each `-adic character χ : π1(X)→ Z×` , an
`-adic character χξ := χ ◦ ξ. Set

Dξ := {v ∈ D | ρξ(σ)v ∈ 〈v〉 for any σ ∈ ΓL},

M ξ := {v ∈M | ρξ(σ)v ∈ 〈v〉 for any σ ∈ ΓL},
which are ΓL-sets, and, for each `-adic character χ : π1(X)→ Z×` , set

Dξ(χ) := {v ∈ D | ρξ(σ)v = χξ(σ)v for any σ ∈ ΓL},
Mξ(χ) := {v ∈M | ρξ(σ)v = χξ(σ)v for any σ ∈ ΓL},

which are ΓL-modules. Next, for each subset E ⊂ D and n ≥ 0, set E[`n] := E ∩ D[`n] and
E[`n]∗ := E∩ (D[`n]rD[`n−1]), where D[`−1] := ∅. For each subset E of M , set E∗ := E∩ (M r `M).
Then one has

lim
←−

Dξ[`
n] = M ξ, lim

←−
Dξ[`

n]∗ = M
∗
ξ ,

and
lim
←−

Dξ(χ)[`n] = Mξ(χ), lim
←−

Dξ(χ)[`n]∗ = Mξ(χ)∗.

Let d ≥ 1.

Definition 4.1. Let χ : π1(X)→ Z×` be an `-adic character. Then χ is said to be d-non-sub-ρ if χx
is not isomorphic to a subrepresentation of ρx for any x ∈ Xcl, ≤d.

Now, the main result of this section, which is a corollary of theorem 1.1, is as follows.

Corollary 4.2. (1) For any d-non-sub-ρ `-adic character χ : π1(X)→ Z×` , there exists an integer

N := N(ρ, χ, d), such that, for any x ∈ Xcl, ≤d, the Γκ(x)-module Dx(χ) is contained in D[`N ].
(2) Assume furthermore that M(0) = 0. Then there exists an integer N := N(ρ, d), such that, for

any x ∈ Xcl ≤d rXρ,d, the Γκ(x)-set Dx is contained in D[`N ].

Proof. (cf. [CT12c, Cor. 4.3].) From theorem 1.1 applied to the GLP `-adic representation
ρ : π1(X) → GL(M), the set Xρ,d of all x ∈ Xcl, ≤d with Gx ⊂ G not open is finite and there

exists an integer N0 := Nρ,d ≥ 0 such that for all x ∈ Xcl, ≤d r Xρ,d, G(N0) ⊂ Gx. Let ηN0 denote
the generic point of the geometrically connected etale cover XG(N0) → X corresponding to the open



A UNIFORM OPEN IMAGE THEOREM FOR `-ADIC REPRESENTATIONS II. 21

subgroup G(N0) ⊂ G.
(2) For each v ∈ MηN0

r {0}, one has: γ · v = λγ,vv for some (unique) λγ,v ∈ Z×` . One can easily

check that the map χv : π1(XG(N0)) → Z×` , γ 7→ λγ,v is a character. Since Ggeo ∩ G(N0) has finite
abelianization (as ρ is GLP), π1(XG(Nv),k) acts trivially on v for some Nv ≥ N0. Thus, one gets:

MηN0
⊂M(0).

From the inclusion GηN0
= G(N0) ⊂ Gx, one gets the inclusion: Dx ⊂ DηN0

. Now, suppose

that Dx is infinite. Then DηN0
is also infinite, hence DηN0

[`n]∗ is nonempty for any n ≥ 0, and

M
∗
ηN0

= lim
←−

DηN0
[`n]∗ is nonempty. As MηN0

⊂M(0), this implies that M(0) 6= 0, as desired.

(1) First, consider the special case that χ is the trivial character 1. In this case, the inclusion
GηN0

= G(N0) ⊂ Gx implies Dx(1) ⊂ DηN0
(1). Observe that the action of π1(X) on DηN0

(1) factors

through π1(X) � π1(X)/π1(XG(N0)) = G/G(N0) = GN0 . Thus, Dx(1) coincides with the module of
elements of DηN0

(1) fixed by the subgroup (Gx)N0 ⊂ GN0 . As GN0 is a finite group, there are only

finitely many subgroups of GN0 that coincide with (Gx)N0 for some x ∈ Xcl, ≤d. Accordingly, there
are only finitely many submodules of DηN0

(1) that coincide with Dx(1) for some x ∈ X(k). Since

Dx(1) is finite for each x ∈ Xcl, ≤d (as 1 is d-non-sub-ρ), this completes the proof in the special case.
For general χ, define the π1(X)-module M [χ−1] as follows: M [χ−1] = M as Z`-modules, and

the π1(X)-action on M [χ−1] is given by ρ · χ−1. (Thus, M [χ−1] = M ⊗ Z`[χ−1].) Set D[χ−1] :=
M [χ−1]⊗ (Q`/Z`), and let ρ[χ−1] denote the `-adic representation of π1(X) associated to the π1(X)-
module M [χ−1]. Observe that the trivial character 1 is d-non-sub-ρ[χ−1], as χ is d-non-sub-ρ. Also,
as shown in the proof of [CT12c, Cor. 4.3], ρ[χ−1] = ρ · χ−1 is a GLP representation.

Now, applying the preceding argument to ρ[χ−1], one concludes that there exists an integer N , such
that D[χ−1]x(1) ⊂ D[χ−1][`N ] for any x ∈ Xcl, ≤d. Here, observe that the identification M [χ−1] = M
(as Z`-modules) induces the identifications D[χ−1][`N ] = D[`N ] and D[χ−1]x(1) = Dx(χ). From this,
the assertion follows. �

4.1.2. Generic Tate modules of abelian schemes. Let A→ X be an abelian scheme over X. Then, from
[CT12c, Thm. 4.1], for any prime ` the corresponding `-adic representation ρA,` : π1(X)→ GL(T`(Aη))
is a GLP representation. In this particular case, one can derive from theorem 1.1 strong uniform
boundedness results for the `-primary torsion in the special fibers of A→ X.

Corollary 4.3. Fix an integer d ≥ 1.

(1) For any d-non-sub-ρA,` `-adic character χ : π1(X) → Z×` there exists an integer N :=

N(ρA,`, χ, d), such that, for any x ∈ Xcl, ≤d, the Γκ(x)-module Ax[`∞](χx) := {v ∈ Ax[`∞] | σv =

χx(σ)v, σ ∈ Γκ(x)} is contained in Ax[`N ].
(2) Assume furthermore that Aη contains no non-trivial isotrivial subvariety. Then there exists an

integer N := N(ρA,`, d), such that, for any x ∈ Xcl, ≤drXρA,`,d, the Γκ(x)-set Ax[`∞](κ(x)) :=

{v ∈ Ax[`∞] | σ · v ∈ 〈v〉, σ ∈ Γκ(x)} is contained in Ax[`N ].

Proof. (cf. [CT12c, Cor. 5.2]) One may apply corollary 4.2 to ρA,`. This completes the proof, since

Ax[`∞](χx) (resp. Ax[`∞](κ(x))) is identified with (Aη[`
∞])x(χ) (resp. (Aη[`∞])x) via the specializa-

tion isomorphism Ax[`∞] ' Aη[`
∞] and since T`(Aη)(0) = 0 if and only if Aη contains no non-trivial

isotrivial subvariety ([CT12a, Cor. 2.4]). �

Remark 4.4. Recall ([CT12a, Sect. 2.2], [CT09, §3]) that an `-adic character Γk → Z×` is said to
be non-Tate if it does not appear as a subrepresentation of Γk acting on the `-adic Tate module of
an abelian variety over k. By [CT12a, Lem. 2.1], if χ : Γk → Z×` is a non-Tate `-adic character, then

χ ◦ r : π1(X) → Z×` is d-non-sub-ρA,` for any d ≥ 1, where r : π1(X) → Γk denotes the canonical
restriction homomorphism. Thus, corollary 4.3 applies to such χ (like the trivial character or the
cyclotomic character).
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Remark 4.5. As in [CT12a, Sect. 5], corollary 4.3 for the cyclotomic character yields the following
strong version of the 1-dimensional modular tower conjecture. For any 1-dimensional modular tower
H = (Hn+1 → Hn) defined over a number field k, any curve X over k, any ζ : X → H0 and any

integer d ≥ 1, there exists an integer N = N(H,X, ζ, d) such that Xcl, ≤d
n = ∅, n ≥ N . Here, we set

Xn = X ×ζ,H0 Hn. For more details about the 1-dimensional modular tower conjecture, see [CT12a,
Sect. 5].

4.2. Finiteness of the number of CM elliptic curves over number fields. Let d ≥ 1 be an
integer and let J (d) ⊂ (P1

Q)cl, ≤d denote the set of j-invariants with [Q(j) : Q] ≤ d such that the

corresponding curve Ej/Q (which is defined over Q(j) ) has complex multiplication. Then |J (d)| is
known to be finite.4 We can recover this result from theorem 1.1. Indeed, consider for instance the
family of elliptic curves E → X := P1

Q r {0, 1728,∞} defined by:

Ej : y2 + xy − x3 +
36

j − 1728
x+

1

j − 1728
= 0.

It defines an abelian scheme and the image of the corresponding `-adic representation ρE,` : π1(X)→
GL2(T`(Eη)) is open [CT12c, Lemma 5.4]. Observe that, for j ∈ X = P1

Qr{0, 1728,∞}, the j-invariant

j(Ej) of Ej is just j.
For each j ∈ J (d), the Galois image Gj at j is almost abelian (as Ej has complex multiplication),

hence not open in GL(T`(Eη)) ' GL2(Z`). Thus, the finiteness of J (d) follows from theorem 1.1.
One can also recover the classical Hecke-Deuring-Heilbronn theorem (cf. [Si35]), to the effect that

there are only finitely many imaginary quadratic fields with bounded class number, from theorem 1.1.
Indeed, suppose that for some integer h ≥ 1 there are infinitely many imaginary quadratic fields k with
class number h(Ok) ≤ h. Then, for each such k, one can construct an elliptic curve Ek (say, over C)
with CM by Ok. Let j(Ek) denote the j-invariant of Ek. As k(j(Ek)) is the Hilbert class field of k, one
has [Q(j(Ek)) : Q] ≤ [k(j(Ek)) : Q] = 2[k(j(Ek)) : k] = 2h(Ok) ≤ 2h. But this contradicts theorem
1.1 for d = 2h applied to the above abelian scheme E → X = P1

Q r {0, 1728,∞}, as Ej(Ek) ' Ek (say,

over C).

5. Proof of theorem 1.3

5.1. Proof.

5.1.1. Group-theoretical preliminaries. For any closed subgroup G ⊂ GLm(Z`), it is known that |Gn| =
O(`ndim(G)) [Se81]. Here, we describe more precisely the hidden constant in O(`ndim(G)).

Lemma 5.1. Let n0 be any integer ≥ 1 (resp. ≥ 2) if ` 6= 2 (resp. ` = 2). Then, for any closed

subgroup G ⊂ GLm(Z`)(n0), one has |Gn| ≤ `(n−n0)dim(G) for any n ≥ n0.

Proof. Set Γ := GLm(Z`). Since Γ(n0) is a powerful pro-` group and Φ(Γ(n0 + n)) = Γ(n0 + n + 1)
[DSMS91, Thm. 5.2] the map Γ(n0 + n)→̃Γ(n0 + n+ 1), x 7→ x` is a homeomorphism and induces a
bijection:

πn : Γ(n0 + n)/Γ(n0 + n+ 1)→̃Γ(n0 + n+ 1)/Γ(n0 + n+ 2),

which is actually a group isomorphism [DSMS91, Lemmas 2.4 (ii) and 4.10]. The restriction of πn to
G(n0 + n)/G(n0 + n+ 1) ⊂ Γ(n0 + n)/Γ(n0 + n+ 1) induces a group monomorphism:

πn : G(n0 + n)/G(n0 + n+ 1) ↪→ G(n0 + n+ 1)/G(n0 + n+ 2).

As a result, one has:

|G(n0 + n)/G(n0 + n+ 1)| ≤ |G(n0 + n+ 1)/G(n0 + n+ 2)|, n ≥ 0.

4For instance, |J (1)| = 13. More generally, Let E be an elliptic curve defined over a number field of degree ≤ d
and with CM by an order CE = Ofκ := Z + fOκ (f ∈ Z≥1) in a imaginary quadratic field κ; here Oκ stands for the
ring of integers of κ. Then, one has [L87, Chap. 10, §3, Thm. 5] h(Oκ) ≤ h(CE) = [κ(j(E)) : κ] ≤ d. So, from the
Hecke-Deuring-Heilbronn theorem (cf. [Si35]), there are only finitely many possibilities for κ. But, for each such κ, one

has [L87, Chap. 8, §1, Thm. 7]: d ≥ h(Ofκ) ≥ h(κ)
3
ϕ(f), where ϕ(f) = |(Z/f)×| → +∞. So, there are only finitely many

possible orders Ofκ in a fixed κ. Finally, for any such κ and Ofκ, the number of elliptic curves with CM by Ofκ is exactly
h(Ofκ).
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But, from lemma 3.5 (2), |G(n0 + n)/G(n0 + n+ 1)| = `dim(G) for n� 0. So:

|Gn| = |G/G(n)| = |G(n0)/G(n0+(n−n0))| =
n−n0−1∏
i=0

|G(n0+i)/G(n0+i+1)| ≤ `(n−n0)dim(G), n ≥ n0. �

Corollary 5.2. There exists an absolute constant Cm,` > 0 depending only on ` and m such that for

any closed subgroup G ⊂ GLm(Z`) one has |Gn| ≤ Cm,``ndim(G) for any n ≥ 0.

Proof. Just observe that, with n0 = 2, one has:

|Gn| ≤ |G(n0)n||Gn0 | ≤ `ndim(G)|GLm(Z/`n0)|. �

Corollary 5.3. Let C ⊂ G ⊂ GLm(Z`) be closed subgroups and fix an integer 0 ≤ k ≤ dim(G).
Assume that there exists a closed subgroup C[n] ⊂ G of codimension ≥ k such that CG(n) = C[n]G(n),
n� 0. Then C has codimension ≥ k as well.

Proof. From [Se81], there exists a constant µ(C) > 0 such that |Cn| = µ(C)`ndim(C), n � 0. Hence,
one has:

µ(C)`ndim(C) = |Cn| = |C[n]n| ≤ Cm,``ndim(C[n]) ≤ Cm,``n(dim(G)−k), n� 0.

Thus, dim(C) ≤ dim(G)− k, as desired. �

5.1.2. Proof of theorem 1.3. We can now adapt the proof of theorem 1.1 to prove its unconditional
variant. The key point consists in replacing the projective system:

(Hn+1(G)
φn→ Hn(G))n≥0

by the projective system:

(Hk,n+1(G)
φk,n→ Hk,n(G))n≥0,

where Hk,n(G) denotes the set of all open subgroups U ⊂ G which can be written as U = CG(n) for
some closed subgroup C ⊂ G of codimension ≥ k and the transition map φk,n : Hk,n+1(G)→ Hk,n(G)
is U 7→ UG(n).

From corollary 5.3 and the proof of [CT12c, Cor. 3.6], for any H := (H[n])n≥0 ∈ lim
←−
Hk,n(G), the

group:

H[∞] := lim
←−

H[n] =
⋂
n≥0

H[n] ⊂ G

is closed of codimension ≥ k.
Now, if k ≥ 3, from remark 3.8, theorem 3.3 still holds under the assumption that H is of codimen-

sion ≥ k in Ggeo. Accordingly, corollaries 3.9 and 3.10 still hold with (Hn+1(Ggeo) → Hn(Ggeo))n≥0

replaced by (Hk,n+1(Ggeo) → Hk,n(Ggeo))n≥0. Corollary 3.11 holds as well but its proof has to be
modified as follows:

(1) Assume that for some integers c1 ≥ 1, c2 ≥ 1 the statement of corollary 3.11 no longer holds.
Then, for any n ≥ 0 the subset Hk,n,<c1,<c2(G) of all U ∈ Hk,n(G) such that γU < c1 and
[kU : k] < c2 is non-empty. Furthermore, the projective system structure on the Hk,n(G),
n ≥ 0 induces a projective system structure on the Hk,n,<c1,<c2(G), n ≥ 0. In particular,
lim
←−
Hk,n,<c1,<c2(G) 6= ∅. Take any H := (H[n])n≥0 ∈ lim

←−
Hk,n,<c1,<c2(G). Recall from the

proof of [CT12c, Cor. 3.6] that H[∞]G(n) = H[n] for n� 0.
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(2) Then, in particular, H[∞]GgeoG(n) = H[n]Ggeo for n� 0, hence [G : H[∞]GgeoG(n)] = [G :
H[n]Ggeo] < c2 for n� 0. Thus, the sequence

H[∞]GgeoG(0) ⊃ H[∞]GgeoG(1) ⊃ H[∞]GgeoG(2) ⊃ · · ·
of open subgroups stabilizes. This implies that H[∞]Ggeo =

⋂
n≥0H[∞]GgeoG(n) is open

in G. (Here, the equality follows from the fact that {G(n)}n≥0 forms a fundamental open
neighborhood of 1 ∈ G and that H[∞]Ggeo is closed in G.) Now, since H[∞]Ggeo ⊂ G is open,
the codimension of H[∞] ∩Ggeo in Ggeo is the same as the codimension of H[∞] in G and, in
particular, is ≥ k ≥ 3. So,

γ(H[∞]∩Ggeo)Ggeo(n) → +∞.

Thus, to prove that γ(H[∞]G(n))∩Ggeo → +∞ (which contradicts γH[n] < c1, n ≥ 0), it is enough
to prove that the degree of the cover:

X(H[∞]∩Ggeo)Ggeo(n) → X(H[∞]G(n))∩Ggeo

is bounded independently of n.

(3) For this, write An := (H[∞]G(n)) ∩Ggeo and Bn := (H[∞] ∩Ggeo)Ggeo(n). Then:

[Bn : Ggeo(n)] = [(H[∞] ∩Ggeo)Ggeo(n) : Ggeo(n)] = |(H[∞] ∩Ggeo)n|
so:

[Ggeo : Bn] =
[Ggeo : Ggeo(n)]

[Bn : Ggeo(n)]
=

|Ggeon |
|(H[∞] ∩Ggeo)n|

and:

[Ggeo : An] = [Ggeo : (H[∞]G(n)) ∩Ggeo]

= [(H[∞]G(n))Ggeo : H[∞]G(n)]

=
[G : G(n)]

[G : (H[∞]G(n))Ggeo][H[∞]G(n) : G(n)]

≥ |Gn|
[G : H[∞]Ggeo]|H[∞]n|

.

Hence:

[An : Bn] =
[Ggeo : Bn]

[Ggeo : An]
≤ |Ggeon |
|(H[∞] ∩Ggeo)n|

[G : H[∞]Ggeo]|H[∞]n|
|Gn|

.

But, from [Se81], for n� 0, the right-hand term is:

K
`ndim(Ggeo)

`ndim(H[∞]∩Ggeo)
`ndim(H[∞])

`ndim(G)
= K,

where K is a constant > 0 depending only on G, H[∞], Ggeo and H[∞] ∩Ggeo.

Now, one can conclude the proof of theorem 1.3 exactly as in subsection 3.3.

5.2. A counterexample. In this last subsection, we construct an `-adic representation ρ : π1(X)→
GL4(Z`) such that the set of all x ∈ X(k) such that Gx is of codimension ≥ 2 in G is infinite. The idea
is to generalize the counterexample to (1) in [CT12c, §3.5.2], with X = Gm replaced by a non-CM
elliptic curve X = E of positive (Mordell-Weil) rank.

So, let k be a field finitely generated over Q and let E be a non-CM elliptic curve over k with positive
rank; let η denote its generic point. Since E is non-CM, the image of ρE,` : Γk → GL(T`(E)) ' GL2(Z`)
is open. For any field extension F/k, the Kummer short exact sequence:

0→ E[`n]→ E
[`n]→ E → 0
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on (Spec(F ))et yields an exact sequence:

0→ E[`n](F )→ E(F )
[`n]→ E(F )→ H1(ΓF , E[`n]).

Taking projective limits one thus gets a monomorphism:

E(F )∧` := lim
←−

E(F )/[`n]E(F ) ↪→ H1(ΓF , T`(E)).

Given any ζ ∈ E(F ), we will write ψ(ζ), ψ̃(ζ) and ψ(ζ) for the image of ζ in H1(ΓF , T`(E)),
H1(ΓFk(E[`∞]), T`(E)) and H1(ΓFk, T`(E)) respectively (where, as usual, k(E[`∞]) denotes the sub-

field fixed by ker(ρE,`) in k). Also, by fixing a compatible system ( 1
[`n]ζ)n≥0, we define a map

ψζ : ΓF → T`(E) by ψζ(γ) = (γ( 1
[`n]ζ) − 1

[`n]ζ)n≥0, which is a cocycle for the Kummer class

ψ(ζ) ∈ H1(ΓF , T`(E)). In particular ψζ(γγ
′) = ψζ(γ) + γ · ψζ(γ′), γ, γ′ ∈ ΓF . By a suitable choice of

the above compatible systems, one may assume that the cocycle ψη : Γk(η) → T`(E) induces a cocycle

π1(E)→ T`(E) (denoted again by ψη) and that for any closed point x ∈ Ecl, ψη ◦ x = ψx.
Fix a point a ∈ E(k) and let ρ : Γk(η) → GL4(Z`) defined by:

ρ(γ) =

(
ρE,`(γ|k) ψa,η(γ)
02 I2

)
, γ ∈ Γk(η),

where:

ψa,η(γ) = (ψa(γ|k), ψη(γ)) ∈ M2(Z`).
Note that, by construction, ρ : Γk(η) → GL4(Z`) factors through:

ρ : π1(E)→ GL4(Z`).

Proposition 5.4. Assume that a ∈ E(k) is not torsion. Then G has dimension 8 whereas G[n]a has
dimension ≤ 6 for any n ∈ Z.

Proof The second part of the assertion follows from the identity ψ([n]a) = [n]ψ(a). Indeed, this partic-
ularly implies ψ([n]a)|Γk(E[`∞])

= [n]ψ(a)|Γk(E[`∞])
, which is equivalent to: ψ[n]a|Γk(E[`∞])

= [n]ψa|Γk(E[`∞])
,

as Γk(E[`∞]) acts trivially on T`(E).
As for the first part, dim(G) ≤ 8 is clear. Consider the filtration:

G ⊃ ρ(π1(Ek(E[`∞]))) ⊃ ρ(π1(Ek)) ⊃ {1}.

We are going to prove that:

(1) dim(G/ρ(π1(Ek(E[`∞])))) = 4;
(2) dim(ρ(π1(Ek(E[`∞])))/ρ(π1(Ek))) ≥ 2;
(3) dim(ρ(π1(Ek))) = 2.

Proof of (1):

One has a profinite group isomorphism:

G/ρ(π1(Ek(E[`∞])))
∼→ ρE,`(Γk).

But, by assumption, ρE,`(Γk) ⊂ GL2(Z`) is open. Hence dim(G/ρ(π1(Ek(E[`∞])))) = 4.

Proof of (2):

Again, one has a profinite group epimorphism:

ρ(π1(Ek(E[`∞])))/ρ(π1(Ek))� ψ̃(a)(Γk(E[`∞])).

So it is enough to prove that dim(ψ̃(a)(Γk(E[`∞]))) = 2. Note that the image of H1(Γk, T`(E)) in

H1(Γk(E[`∞]), T`(E)) = Hom(Γk(E[`∞]), T`(E))
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lies in HomGal(k(E[`∞])/k)(Γk(E[`∞]), T`(E)). In particular, ψ̃(a)(Γk(E[`∞])) ⊂ T`(E) is a Gal(k(E[`∞])/k)-

submodule. But Gal(k(E[`∞])/k) ' ρE,`(Γk) ⊂ GL(T`)(E) is open, hence ψ̃(a)(Γk(E[`∞])) ⊂ T`(E) is

open if and only if ψ̃(a) 6= 0.

Lemma 5.5. Hm(Gal(k(E[`∞])/k), T`(E)) is torsion for all m ≥ 0.

Proof. Set H := Gal(k(E[`∞])/k). By assumption, H ⊂ GL(T`(E)) is open so H ∩ Z×` I2 ⊂ Z×` I2 is
open as well and, in particular, contains an open subgroup Z ' Z`. Note that Z is central, hence
normal, in H. Consider the Hochschild-Serre spectral sequence:

Hi(H/Z,Hj(Z, T`(E)))⇒ Hi+j(H,T`(E)).

Let:

{F i(Hm(H,T`(E)))}0≤i≤m
denote the filtration on Hm(H,T`(E)) induced by the spectral sequence. Then:

F i(Hm(H,T`(E)))/F i+1(Hm(H,T`(E)))

is a subquotient of Hi(H/Z,Hm−i(Z, T`(E))), i = 0, . . . ,m and, thus, it is enough to prove that
Hi(H/Z,Hj(Z, T`(E))) is torsion. Since Z acts on T`(E) by scalar multiplication, one has:

Hj(Z, T`(E)) = T`(E)Z = 0 if j = 0;
= T`(E)Z if j = 1;
= 0 if j > 1.

The second equality comes from the classical computation of cohomology of cyclic groups and the
third one from the fact that Z ' Z` has `-cohomological dimension 1. Eventually, since Z ⊂ Z×` I2 is

open, Z ⊃ (1 + `NZ`)I2 for some N ≥ 1. Hence T`(E)Z is of `N -torsion. So Hi(H/Z,Hm−i(Z, T`(E)))
is 0 for i 6= m−1 and Hm−1(H/Z,H1(Z, T`(E))) is of `N -torsion. Hence Hm(H,T`(E)) is of `N -torsion
as well. �

Remark 5.6.

(1) The statement of Lemma 5.5 remains true for any abelian variety A over a finitely generated
field extension k of Q since Gal(k(A[`∞])/k) always contains an open subgroup of Z×` Id [Bo80,
Cor. 1].

(2) One can actually prove that the group Hm(Gal(k(E[`∞])/k), T`(E)) is finite for all m ≥ 0.
Indeed, as T`(E)Z is finite, the kernel of H/Z → GL(T`(E)Z) is a normal open subgroup
K Cop H/Z. As K is a compact (recall that H is) `-adic Lie group, it contains a characteristic
open subgroup which is torsion-free (for instance uniform powerful). So let U be a normal
open torsion-free subgroup of H/Z acting trivially on T`(E)Z . The Hoschild-Serre spectral
sequence

Hi((H/Z)/U,Hi(U, T`(E)Z))⇒ Hi+j(H/Z, T`(E)Z)

shows that to prove the finiteness of Hm−1(H/Z, T`(E)Z), it is enough to prove the finiteness
of the Hi(U, T`(E)Z). By an elementary devissage, one is reduced to the case where T`(E)Z
is the trivial U -module F`. Now the conclusion follows from [Laz65], where it is shown that a
compact torsion-free `-adic Lie group is a Poincaré group in the sense of Serre [Se00, I, §4.5].

Let c : E(k)→ E(k)∧` denote the canonical morphism. Then, from the injectivity of:

E(k)∧` ↪→ H1(Γk, T`(E)),

to prove that ψ̃(a) 6= 0 it is enough to prove that:

c(a) /∈ ker(H1(Γk, T`(E))→ H1(Γk(E[`∞]), T`(E))).

This kernel is given by the inflation-restriction exact sequence:

0→ H1(Gal(k(E[`∞])/k), T`(E))→ H1(Γk, T`(E))→ H1(Γk(E[`∞]), T`(E)).
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Since:
H1(Γk(E[`∞]), T`(E)) = Hom(Γk(E[`∞]), T`(E))

is torsion free whereas, from lemma 5.5, H1(Gal(k(E[`∞])/k), T`(E)) is torsion, one has:

H1(Gal(k(E[`∞])/k), T`(E)) = H1(Γk, T`(E))tors.

Since E(k) is finitely generated, one has c−1((E(k)∧` )tors) = E(k)tors, which shows that c(a) /∈
H1(Γk, T`(E))tors ∩ E(k)∧` , as required.

Proof of (3):

As in (2), the image of H1(π1(E), T`(E)) in

H1(π1(Ek), T`(E)) = Hom(π1(Ek), T`(E))

lies in HomΓk(π1(Ek), T`(E)). Thus, again, ψ(η)(π1(Ek)) ⊂ T`(E) is a Γk-submodule. But ρE,`(Γk) ⊂
GL(T`)(E) is open hence ψ(η)(π1(Ek)) ⊂ T`(E) is open if and only if ψ(η) 6= 0. To prove that

ψ(η) 6= 0, consider the commutative diagram:

E(k(η))
c //

_�

��

E(k(η))∧`
� � //

��

H1(π1(E), T`(E))

��
E(k(η)k)

c // E(k(η)k)∧`
� � // H1(π1(Ek), T`(E)).

Here, note that the image of η ∈ E(k(η)) in E(k(η)k) = Ek(k(η)k) coincides with ηk. From the

injectivity of E(k(η)k)∧` ↪→ H1(π1(Ek), T`(E)), it is enough to prove that c(ηk) 6= 0 that is,

ηk /∈ ker(c) =
⋂
n≥0

[`n]E(k(η)k).

But, one has:
E(k(η)k) = HomSch/k(k(η)k,Ek)

= HomSch/k(Ek, Ek)

= HomAV/k(Ek, Ek)⊕ E(k),

with HomAV/k(Ek, Ek) a finitely generated free Z-module of positive rank. So, on the one hand,

ker(c) = E(k) and, one the other hand, ηk = IdEk 6= 0 in E(k(η)k)/E(k), as required. �

Remark 5.7.

(1) The above construction can be extended to any d-dimensional abelian variety A over k of
positive (Mordell-Weil) rank and such that ρA,`(Γk) ⊂ GSp2d(Z`) is open. In particular, it
shows that over a d-dimensional basis X, k = 3 in theorem 1.3 should be replaced, at least,
by k = 2d+ 1.

(2) At the time of writing this paper, the authors do not know whether or not we could replace
Xcl, ≤d by Xcl in the assertion of theorem 1.3.
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