GÉOMÉTRIE POUR LE CAPES

Devoir maison à rendre le mercredi 25 février

Exercice 1. Soit *E* un espace affine et soit A_0, \ldots, A_m des points de *E*.

- a) Montrer que les conditions suivantes sont équivalentes :
 - (a) le sous-espace affine $\langle A_0, \dots, A_m \rangle$ est de dimension m;
 - (b) si $i \in \{0,...,m\}$, le sous-espace affine $\langle A_0,...,A_{i-1},A_{i+1},...,A_m \rangle$ ne contient pas le point A_i ;
 - (c) si $i \in \{1, ..., m\}$, le point A_i n'appartient pas au sous-espace affine $\langle A_0, ..., A_{i-1} \rangle$.
 - (d) si $i \in \{0, ..., m\}$, le sous-espace affine $\langle A_0, ..., A_i \rangle$ est de dimension i.

Si elles sont vérifiées, on dit que les points $(A_0, ..., A_m)$ sont affinement indépendants.

b) On suppose que E est un espace affine de dimension n. Montrer que les points A_0, \ldots, A_m sont affinement indépendants si et seulement si il existe des points A_{m+1}, \ldots, A_n dans E tels que (A_0, \ldots, A_n) soit un repère affine de E.

Exercice 2. Soit E un espace affine; soit A et A' des points de E, λ et λ' des scalaires non nuls. Notons h l'homothétie de centre A et de rapport λ , h' l'homothétie de centre A' et de rapport λ' .

- a) Quelle est l'application linéaire associée à l'application affine $h' \circ h$? Que peut-on en déduire sur $h' \circ h$.
 - b) Si $\lambda \lambda' = 1$, montrer que $h' \circ h$ est une translation et préciser son vecteur.
- c) Si $\lambda\lambda'\neq 1$, montrer que $h'\circ h$ est une homothétie. Préciser son rapport et exprimer son centre comme le barycentre des points A et A' avec des coefficients convenables.

Exercice 3. Soit *E* un espace affine.

- a) Si $u \in \overrightarrow{E}$, on note t_u la translation de vecteur u dans E. Si $g \in GA(E)$, montrer que $g \circ t_u \circ g^{-1}$ est une translation, quel est son vecteur?
- b) Soit F un sous-espace affine de E, soit V un supplémentaire de \overrightarrow{F} dans \overrightarrow{E} et soit p la projection sur F parallèlement à V. Si $g \in GA(E)$, montrer que $g \circ p \circ g^{-1}$ est une projection affine. Sur quel et parallèlement à quels sous-espaces?
 - c) Reprendre la question précédente avec l'affinité de base F, de direction V et de rapport λ .

Exercice 4. Soit E un espace affine et soit \mathscr{L}_E l'espace des fonctions de E dans \overrightarrow{E} qui sont de la forme $L_{\lambda A} : M \mapsto \lambda \overrightarrow{MA}$, pour un certain point $A \in E$ et un scalaire $\lambda \in k$.

- a) Montrer que \mathcal{L}_E est un sous-espace vectoriel de dimension dim E+1 de l'espace des applications de E dans \overrightarrow{E} .
 - b) Montrer qu'il existe une unique application linéaire $\varphi \colon \mathscr{L}_E \to k$ telle que $\varphi(L_{\lambda A}) = \lambda$.
 - c) Montrer que $\varphi^{-1}(1)$ est un sous-espace affine de \mathscr{L}_E dont la direction est isomorphe à \overrightarrow{E} .
- d) Montrer que l'application de E dans \mathcal{L}_E qui associe au point A la fonction L_A est un isomorphisme de E sur le sous-espace affine $\varphi^{-1}(1)$.