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CHAPTER 1

ELLIPTIC FUNCTIONS
AND THE THEOREMS OF PICARD

§ 1. INTRODUCTION: THE THEOREMS OF PICARD

The theorems of Picard are about the values of holomorphic functions. Let us begin by
stating them.

Little Picard Theorem (1.1). — Let f:C — C be an entire function. If f is not constant, then
f omits at most one value: the cardinality of C \ f(C) is at most equal to 1.

Observe that non constant polynomials take every value, but the exponential function
takes every value except for o.

Great Picard Theorem (1.2). — Let r be a positive real number and let D(o, r) be the comple-
ment of the origin in the disk D(o, r) of radius r centered at the origin. Let f:D(o,r) - C be
any holomorphic function with an essential singularity at the origin. Then f omits at most
one value: the cardinality of C ~ f(D(o,r)) is at most equal to 1.

The “Little” theorem is indeed a consequence of the “Great” one. Let indeed f:C - Cbe
an entire function and let us consider the holomorphic function g on D(0,1) defined by
g(2) = f(1/z). Unless f is a polynomial, the function g has an essential singularity at the
origin. According to the Great Picard Theorem, g omits at most one value, and so does the
restriction of f to any neighborhood of infinity. A fortiori, f omits at most one value.

1.3. For any open subset Q) of C, or any Riemann surface, one denotes with &'(Q) the set
of all holomorphic functions on Q and with .Z (Q) the set of all meromorphic functions
on ().

1.4. A trichotomy. — Let a € C, let r be a positive real number and let f be a holomorphic
function on the disk D(a, r) deprived of a. Then f can be developed as a Laurent series:
there are complex numbers a,,, for n € Z, such that for any z € D(a, ), f(z) is the sum of

the converging series
f(2) =) au(z-a)",
neZ
the convergence being in fact locally uniform.
There are three mutually exclusive possibilities.
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a) The function f is bounded in a neighborhood of a. Then a, = o for all negative n, and
f extends to a holomorphic function on the disk D(a, r).

b) When z — a, |f(z)| tends to +oo. Then, there exists a negative integer n, such that
a,, # o but a, = o for every n < n,, and f extends to a meromorphic function on D(a,r),
with a pole of order —n, at a.

c¢) In the remaining case, the set of negative integers n such that a, # o is infinite and
one says that f has an essential singularity at a. Moreover, for any real number s € (o, 1),
f(D(a,s)) is dense in C (Theorem of Casorati—Weierstraf3).

Let us give some details. The first case relies on Riemann’s extension theorem. If f
is bounded in a neighborhood of a, then the function g on D(a,r) defined by g(z) =
(z—a)*f(z) for z + a and g(a) = o is holomorphic since it is C-differentiable on Q \ {a},
as well as at a (with derivative o). Let g(z) = 3,5, bn(z — a)" be the Taylor expansion of g
at a. Since g(a) = g'(a) = o,one has b, = b, = o hence f(z) = 3,5, bn+22"

The rest is mainly algebra. Assume that [f(z)| - oo for z - a. Then, there exists a
real number s € (o, ) such that f(z) # o for any z € D(a, s); let g be the holomorphic
function on D(a, s) given by g(z) = 1/f(2). One has g(z) — o for z — a); by the first case,
g extends to a holomorphic function on D(a, s). Let 1, be the order of vanishing of g at a;
the function h on D(a, s) defined by h(z) = g(z)/(z — a)" is holomorphic and does not
vanish at z = a, nor at any z € D(a, s). Then, the function z = (z — a)"™ f(z) = h(z)™ is
holomorphic around a, as well as on D(a, 7). Let ¥,,., b,(z — a)" be its Taylor expansion;
we obtain that f(z) = ¥ ,5_,,. buin,(z — a)". Consequently, a, = o for n < —n, a_,, = b, =
h(0)™ # o. This shows that f is meromorphic at a, with a pole of order —#, at a.

The remaining case is the definition of an essential singularity. Let s € (o, ) and let us
show that f(D(a,s)) is dense in C. Otherwise, there would exist a complex number b and
a positive real number 8 such that f(z) — b > § for any z € D(a,s). Then, the function
z+ 1/(f(z) - b) is holomorphic and nonzero on D(a, s), and bounded. By the first case,
it extends to a holomorphic function g on D(a,s). One has f(z) = b +1/g(z) for any
zeD(a,s). if g(o) # o, then f extends to a holomorphic function on D(a,s); if g has a
zero of order n, at a, then f is meromorphic at a with a pole of order n,.

1.5. “Little” Picard and uniformization. — The modern point of view proves the Little Picard
theorem as a consequence of the uniformization of Riemann surfaces. So let f: C - C be
any entire function omitting at least two values; we need to show that f is constant. We may
assume that f(C) c C~ {o,1}. The universal cover of C \ {0,1}, being a simply connected
Riemann surface, is isomorphic either to the Riemann sphere P*(C), or to the complex
plane C, or to the unit disk D = D(0,1).

It cannot be P*(C) because C \ {0,1} is not compact.

It cannot be C neither. Indeed, let T be the fundamental group of C \ {0,1} (at some
base-point u). Then, I' can be viewed as a subgroup of the group G of holomorphic diffeo-
morphisms of C, which is the group of affine transformations z — az + b. No nontrivial
element of T' can have a fixed point, because its orbit in C, which is discrete, would have a
limit point. Consequently, T acts by translations on C, and must be isomorphic to {0}, Z
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or Z2. However, 7,(C \ {0,1}) is the free group on two generators, and in particular, is not
abelian.

So the universal cover of C \ {0, 1} is the open unit disk D. The map f lifts to a holomor-
phic function f:C — D, which is therefore bounded. By Liouville theorem, f is constant,
and so is f.

1.6. The classical proof of the theorems of Picard predate the uniformization theorem. In
fact, the universal cover of C \ {0,1} is constructed explicitly, via elliptic and modular
functions. This construction is the topic of the next sections, and we prove the theorems of
Picard in Section

§ 2. LATTICES OF THE COMPLEX PLANE

2.1. Bases of the complex plane. — Let 2 be the set of R-bases of C, and let #* be its
subset consisting of oriented bases. A pair (w,, w,) of complex numbers belongs to # if
and only if w,, w, are non zero, and w,/w, is not a real number. The oriented area of the
parallelogram drawn on a pair of vectors (w,, w,) is equal to

(2.1.1) Area(w,, w,) = J(w,/w,) |w,| .

Consequently, a pair belongs to #* if, moreover, the imaginary part of w,/w, is positive.
Observe also that 4 and " are open subsets of C2.

2.2. The group GL,(R) acts on % by multiplication on the right. Namely, for g = ( al ) €
GL,(R), and (w,, w,) € A, set

(0, 0,) g =(w,w,) (? Z) = (aw, + cw,, bw, + dw,);

this is again a basis of C. Assume that (w,, w,) is oriented; then (w,, w,) - ¢ is oriented if
and only if ¢ belongs to the subgroup GL,(R)* of matrices with positive determinant. We
have thus defined a right-action of GL,(R) on %, and a right-action of GL,(R)* on %*.
We transfer this right-action to a left-action by transposing matrices: namely, we set, for
g€GL,(R) and (w,, w,) € A,

g (a)l) wz) = (wp wz) : gT~
Explicitly,

(2.2.1) (? 2) N(wy, w,) = (aw, + bw,, cw, + dw,).

Lemma (2.3). — The group GL,(R) acts simply transitively on %; the group GL,(R)* acts
simply transitively on *.
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Proof. — The pair (1, i) is obviously an oriented basis of R. Observe that for any matrix
g=(24) € GL(R),

g~(1,i)=(i Z)-(Li):(l,i)-(z 2)=(a+ib,c+id).

This shows that for any basis (w,, w,) € 4, there exists a unique matrix g € GL,(R) such
that g- (1,1) = (w,, w,). If (w,, w,) is oriented, then g € GL,(R)*. N

2.4. Lattices. — Any subgroup of C generated by a basis of C as a real vector space is
called a lattice. By definition, a subgroup A of C is a lattice if and only if there exists a
basis (w,, w,) € # such that A = Zw, ® Zw,. We shall say that (w,, w,) is a basis of A,
and an oriented basis if it is oriented. Exchanging w, and w, if necessary, we see that any
lattice possesses an oriented basis. The absolute value of the area the parallelogram drawn
on (w,, w,) is then independent of the chosen basis; it is called the covolume of the lattice
and denoted covol(A).

Let Z be the set of all lattices in C. We have seen that there is a natural surjective map
B+ — X, which associates to an oriented basis the lattice it generates. We shall endow &%
with the quotient topology.

Lemma (2.5). — Let A be a lattice of C, let (w,, w,) be an oriented basis of A.

Let g € GL,(R)*. Then g (w,, w,) is a basis of A if and only if g € SL,(Z), and g - (w,, w,)
generates a sublattice of A if and only if g € M,(Z).

In particular, for any oriented basis (w!, ') of A, there exists a unique matrix g € SL,(Z)
such that (0!, w}) = g+ (0!, wh).

Proof. — Letg=(%Y) € GL,(R). We have
¢ (0w, w,) =(aw, + bw,, cw, + dw,).

By definition of a basis of a lattice, aw, + bw, belongs to A if and only if (a, b) € Z?, and
cw, + w, belongs to A if and only if (¢, d) € Z>. It follows that the lattice A’ generated by
¢ (w,, w,) is contained in A if and only if g € M,(Z). Conversely, using that (w,, w,) =
g (g (w,, w,)) we see that A’ = A if and only if both ¢ and g~* have integral coefficients,
that is, if and only if g € GL,(Z). The lemma follows from that, since g € GL,(R)*. N

§ 3. THE UPPER HALF PLANE

Definition (3.1). — The set I1 of all complex numbers z such that 3(z) > o is called the
Poincaré upper half plane
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3.2. The upper half plane appears naturally when one considers bases, or lattices, of C only
up to homothety. Let indeed A be a lattice and let (w,, w,) be a basis of A. One can write

A=Zw, ®Zw, = 0.(Z+2Z) = w,(Z + 1Z),
w,

where 7 = w,/w, is a non-real complex number. The basis (w,, w, ) is oriented if and only if
J(7) > o, thatis if 7 € II.

This shows that the map (w,, w,) — w,/w, identifies the space Z*/C* of bases modulo
homothety with the upper half plane II.

3.3. Action of SL,(R) on the upper half plane. — The action of SL,(R) on % and #*
commutes with homotheties, hence it induces an action of SL,(R) on II.
Let g = (“4) € SL,(R). From the computation

g-(,1)=(a+br,c+dr),
we see that g acts on 7 € IT by an homography:

c+drt

(3.3.1) g-T= T br

The scalar matrices act trivially on IT, so that we get an action of PSL,(R).

3.4. Let 7,7, € II. The two corresponding lattices A, = Z + Z7, and A, = Z + Z7, are
homothetic if and only if there exists g € PSL,(Z) such that 7, = g - 7,.

We have shown that the set & of lattices of C is isomorphic to the quotient
space SL,(Z)\%#". The set of lattices up to homothety is thus isomorphic to SL,(Z)\II.

Remark (3.5). — Usually, the action of PSL,(R) on IT is defined by the formula:

(3.5.1) gxT= Lw

which does not coincide with the action of PSL,(R) on IT we have introduced. However,
these actions are conjugate one to the other via an automorphism of SL,(R). Let indeed w be
the element (§ 3 ) of GL,(Z). The inner automorphism of GL,(R) givenby g —» g¥ = wgw™
is an involution and induces automorphisms of SL,(R) and SL,(Z). Moreover, if g = ( ab ),

then g* = (¢ ¢), so that
(3.5.2) g'rT=g-1.

3.6. Reduced bases. — A reduced basis of a lattice A such that w, is an element of minimal
norm in A \ {0} and w, is an element of minimal norm among all elements w, € A \ Zw,
such that (w,, w,) is an oriented basis of A.

Lemma (3.7). — Any lattice possesses a reduced basis.

Proof. — Let z be any nonzero element of A. Since A is discrete, there are finitely many
nonzero elements A € A such that || < |z|. Hence there exists one, w,, of smallest absolute
value.

The vector w, is primitive in the lattice A, so can be completed in a basis (w,, w,) of A,
a basis which we may even assume to be oriented. The set of A € A such that (w,, 1) is an
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oriented basis and |A| < |w,| is finite, so contains an element w’, of smallest absolute value,
and (w,, w!) is a reduced basis of A. O

Proposition (3.8). — Let (w,, w,) be a basis of a lattice A and let T = w,/w,. Then (w,, w,)
is a reduced basis if and only if 1| > 1 and |R(7)| < 3.

Proof. — Assume that (w,, w,) is reduced. By definition of w,, one has |w,| > |w,|, whence
|7| > 1. Moreover, (w,, w, + w,) is also an oriented basis of A. by definition of a reduced
basis, |w, + w,| > |w,|, hence |7 £ 1| > |7|. This means than 7 is closer to o than to 1 or —1,
hence -3 <9i(7) < 1.

Conversely, assume that these inequalities are satisfied. Let (m,n) € Z> \ {o}. Let us
prove that |m + nt| > 1, and that |m + nt| > 7if m # o.

If n = o, then |m + nt| = |m| > 1. Assume that n = 1. If m = o, we have |m + 7| = |7| > ;5
otherwise, we see geometrically that [m + 7| > |[t—1] > |7] if R(7) > o, and |m + 7| >
|7 +1] > |7] if R(7) < o. The case n = —1 is analogous. Let us now assume that |n| > 2.
Then, |m + nt| > |n|J(1) > 23(7). Moreover, J(7) > 3,/3 and |R(7)| < 1, so that J(7) >
V/3|9(7)|. This implies 43(7)* > 3|7[°, hence |m + n1| > \/3|7] > |1].

This implies that |w,| is a nonzero element of A of shortest absolute value, while any
element of A \ Z has absolute value at least |7| |w,| = |w,|, hence the proposition. O

3.9. Let §§ be the subset of II given by the inequalities of Proposition It is called the
fundamental domain of T1. One has PSL,(Z) - § = II.

7l = |7 +1] 7= |7 -1

|
|
|
|
|
|
:
-1 - 0 i 1
2

FIGURE 1. The fundamental domain § for the action of SL,(Z) on II

§ 4. BI-PERIODIC MEROMORPHIC FUNCTIONS

Definition (4.1). — Let A be a lattice in C. An elliptic function with respect to the lattice A
is a meromorphic function on C which is invariant by translations under every element of A.

We write .# (C/A) for the set of elliptic functions with respect to A.
Proposition (4.2). — # (C/A) is a field extension of C.
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Remark (4.3). — Let A be alattice in C and let f be an elliptic function with respect to A.
Let p € C. By definition of a periodic function, f(p + 1) = f(p) for every A € A. This
allows to write f(u) = f(p) if u € C/A is the class of p.
For A € A, the relation f(z + A) = f(z) implies that the order of vanishing v,(f) of f
at p equals the order of vanishing of f at p + A. If u € C/A is the class of p, we may thus

write v, (f) for v,(f).
Similarly, the residue Res,(f) of f at p is equal to the residue of f at p + A, so that we

may set Res, (f) = Res,(f).
Proposition (4.4). — Let A be a lattice in C and let f be an elliptic function with respect to A.

a) One has ¥,cc/a Resyu(f) = o;
b) Iff # o, then ZMEC/A Vu(f) = 0.

Proof. — Let (w,, w,) be an oriented basis of A. To prove the first relation, we integrate f
along the boundary oF of a fundamental parallelogram. Since f is meromorphic, it has
finitely many poles in any compact subset of C and there exists a € C such that f has no
pole on the boundary oF of the fundamental parallelogram F = a + [0,1]w, + [0,1]w,. By
the residue theorem, one has

/aFfzzniZResp(f).

pef
Since f has no pole on JF, any pole of f is congruent modulo A to a unique pole
of f contained in F, so that the right-hand-side of the previous formula is equal to

271 Y yec/n Resy (f)-
On the other hand,

faFf=folf(a+twl)dt+f01f(a+w1+th)dt
+[01f(a+(1—t)w1+w2)dt+[olf(a+(1—t)wz)dt.
Since f is an elliptic function, f(z + w,) = f(z + w,) = f(z), hence
folf(a+tw1)dt+folf(a+(1—t)w1+w2)dt
:/olf(a+tw1)dt+/:f(a+(1—t)wl)dt:o

and

ﬂlf(a+wl+th)dt+/:f(a+(1—t)wz)dt
:/:f(a+th)dt+folf(a+(1—t)w2)dt:o.

Consequently, [, f = o, which proves the first equality.
If f + o, we can apply this formula to the elliptic function f’/f. For any p € F, one has
Res,(f) = v,(f'/f), hence the second equality. O
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4.5. Let a € C. If f is not the constant function a, then the set of elements u € C/A such
that f(u) = a is finite. We can thus define n(f,a) = ¥,c/-1(a) vu(f — @). Similarly, the
set of u € C/A such that f(u) = oo (the poles of f) is finite and we define n(f, o) =

Y f1(00) (=¥ (f))-

Proposition (4.6). — Let A be a lattice in C and let f be a non-constant elliptic function with
respect to A. Forany a € C, n(f,a) =n(f,0) =n(f, ).

Proof. — Proposition[4.4} applied to the function f, implies readily that n(f, 0)-n(f, 00) =
o. If a € C, replacing f by f — a, we get that n(f,a) = n(f-a,0) = n(f-a,00) =
n(f, o0). =

Corollary (4.7). — Any non-constant elliptic function has at least one pole. If a non-constant
elliptic function has a single pole modulo A, then its order is at least 2.

Proof. — Let f be a non-constant elliptic function, let a be some value taken by f. One
has n(f, a) > o. Consequently, n( f, o) > o which shows that f cannot be holomorphic
everywhere. Assume that u is the only pole of f modulo A. Then, Res, (f) = o; this implies
that v, (f) # 1, whence the result since v, (f) > o. O

§ 5. THE p-FUNCTION

Lemma (5.1). — Let A be a lattice in C. For any z € C \ A, the series

1 1 1
(5.0 1, (_ - _)
z? AGAZ\:{O} (z-A1)> A2

converges to a complex number p 5 (z), the convergence being locally uniform.
The function p is an elliptic function with respect to A.

Proof. — For A — oo, we have the following asymptotic expansion

1 11 z\* 1 1 1
—— =l == O(1/1)) - — =0(1/23).
o (0 3) Cm oo - =00/r)
More precisely, for any positive real number R, there exists a real number B such that

ot
(z-1)> X

for any pair (z, 1) such that |z| < R and |A| > 2R. This implies the convergence of the series

M&((z— o )T)

for any z € C such that |z| < R. The convergence being uniform, the limit is a holomorphic
function on the open disk D(0, R). Adding the finitely many missing terms, we see that the

<B/|
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given series converges to a meromorphic function on that disk, whose only poles are in A.
Since R is arbitrary, p, is a meromorphic function on C, holomorphic on C \ A.

According to Cauchy’s theory, its derivative is given by the termwise derivative of the
series. Therefore, for any z € C \ A,

/ _ 1
#i(2) = Z)LeA (z-A)3

This formula shows that /, is an elliptic function.

Let (w,, w,) beabasis of A. Since p/\ (z+w,) = g, (z) forany z € C\N A, pa (z2+w,)—pa(2)
is a constant c,. oreover, +w, /2 is not a pole of p 5, because w,/2 does not belong to A. We
thus get ¢, = pa(w,/2) — pa(-w,/2) = o since, by the very definition of p, this is an even
function. Consequently, w, is a period of p,. Similarly, w, is a period of p. This proves
that g is an elliptic function. O

5.2. We see that u = o is the only pole of p, in C/A, and that v,(p,) = —2. This gives
n(gpa,o0) = 2. Consequently, n(pn, a) =2 foranya € C.

Similarly, n(p’,a) = 3 for any a € Cu {oo}. Moreover, the function g’, is odd. Let
(w,, w,) be an oriented basis of A. The three points w,/2, w,/2 and (w, + w,)/2 are the
(only) three non-zero elements of C/A which are equal to their opposite. The function ',
must vanish at any of them. Since n(p’,0) = 3, ,/2, w,/2 and (w, + w,)/2 are the only
zeroes of ', , and these zeroes are simple.

Proposition (5.3). — For any pair (u,v) of points in C/A, pa(u) = pa(v) ifand only ifu = v
of u=-v.

Proof. — Since p, is even, px(u) = pa(v) if u = v or u = —v. Conversely, fix u € C/A;
we have seen that n(pa,pa(#)) = n(pa,0) =2. Ifu ¢ 1A/A, z = uand z = —u are two
distinct elements of C/A where p, takes the value g, (u); consequently, they are the only
ones. If u = o, we observe that p, has a pole of order 2 at o, and no other pole modulo A.
Finally, if u € ;A/A but u ¢ A, the relation !, (1) = o shows that z = u is a double root
of pa(z) — pa(u). Consequently, there is no other element of C/A at which g, takes the
value p, (u). O

§ 6. THE FIELD OF ELLIPTIC FUNCTIONS

6.1. Laurent expansions of p, and p',. — Let A be a lattice in C; let A* = A\ {o}. Let
(w,, w,) be a reduced basis of A; in particular, |A| > |w,| for any A € A*. The meromorphic
functions p, and ', are meromorphic on the open disk D(o, |w,|) with o as only pole. We
compute here their Laurent expansion.

For every z € Cand A € A such that |z| < |A|, one can write

1 1 1 1S, 2Z\n
b e b OGO

n=o0
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Differentiating, we obtain

so that

1 1 1S vt & z
(A—z)fﬁ‘ignm AR
<

In particular, for any z € C such that o < |z| < |w, |, we get

@A(Z)=§+§)1(n+1)( > A:ﬂ)z”.

AeAN{o}

For any positive integer k such k > 3, let us define the Eisenstein series Gx(A) of weight k
by the converging series:

1
(6.1.1) Gr(A)= > e
AeA~{o}
We also observe that for any u € C*,
(6.1.2) Gi(uA) = u™*Gi(A).

For odd k, one has G;(A) = 0. We thus have, for any z € D(o, |,|),

1 [ee]
(6.1.3) pa(z) = po + Z(zk +1)Gorra (M) 22,
k=1
By termwise differentiation, we also get
/ _ __2‘ — 2k—1
(6.1.4) ph(2) = il ; 2k(2k +1)G,ppn (A) 2
Theorem (6.2). — For any z € C\ A, one has
(6.2.1) () (2) = 493 (2) — 60G,(A)pa(2) —140Gs(A).
To shorten the notation, we set
(6.2.2) 2(A)=60G,(A), g(A)=140Gs(A).

The differential equation of p, can then be written
(6.2.3) (Ph)*(2) = 49 (2) - &£(AM)pa(z) — g (A).

Proof. — Modulo A, the origin is the only pole of the six elliptic functions p, 3, 5 ©'y»
pap’, and (p', ), and the order of this pole is at most 6. Consequently, their must be a
nontrivial linear combination of them which is an elliptic function without a pole of order
at most 1 at the origin, hence is constant. Since p,, g3, ), and (p/, )* are even, while p/,
and g, ', are odd, there is already such a linear combination among those functions. Let
us compute it explicitly.
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We first compute the terms of low order in the Laurent expansion of these functions. To

shorten the notation, we write Gy for Gx(A). We have

1
= 3G,z* +5Gsz* + O(2°)

)
>
—~
I
~
I}

ph(2) = —2% +6G,z +20Gs2* + O(2°)
Pi(2) = (1+3G,24+ O("))’
= i +6G, +0(z%)
(1)*(2) = 4= (1-3G,2" ~10Gez" + O(2"))’
= 4Z—16 - 24G4é - 80Gs + O(z?)
p(2) = % (1+3G,z* +5Ge2z° + O(2%))’
= % (1+9G,z* +15G4z° + O(2%))
= % + 9G4§ +15Gs + O(2%).
Consequently,
(01)*(2) - 493 (2) = —24G4§ — 80Ge +O(2?) - 36G4é ~ 60Gg + O(z%)
= —60G4§ -140G¢ + O(2?),
so that
() (2) — 49 (2) + 60G,p(2) = —6oG4§ —140Gs + O(2*) + 60G4§ +0(z%)
=—-140Gs + O(z*)
and

(91)*(2) - 49} (2) + 60Gpn(2) +140Ge = O(2).

The left-hand-side is an elliptic function with respect to A whose poles are contained in A.
It extends to a holomorphic function at o, with value o. By periodicity, it is holomorphic

everywhere, hence must be a constant, necessarily zero.

]

Differentiating the preceding relation and simplifying by the non-zero elliptic function g’

we get the following corollary.

Corollary (6.3). — Forany z € C\ A, one has

pi(2) = 6p3(2) —30G,(A).
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6.4. We have already proven that p’ vanishes at w,/2, w,/2 and (w, + w,)/2, and that the
values of p at these points,

(6.4.1) e, =p(w/2), e =p(w,/2), and e, =p((w, +w,)/2)

are distinct. By Theorem[6.2} e,, e, and e, are the roots of the polynomial of degree 3,
4X° = g:(A)X = g5(A).

Therefore, its discriminant

(6.4.2) A(A)=16(e,—e,)*(e—1-¢;)* (e, —€;)* = £,(A)> — 278, (A)?

does not vanish.

Proposition (6.5). — Let A be a lattice in C. Any even elliptic function with respect to A can
be expressed as a rational function in @, any elliptic function can be expressed as a rational
function in p , and p',. More precisely, the minimal polynomial of p', over the subfield C(px)
generated by p  in A (C|A) is equal to T>— 40’ + g,(A)pr+g;(A). There is an isomorphism
of field extensions of C,

C(X)[Y]/(Y? - 4X* + &(A)X + &(A)) = 4(C/A),
which maps X to g, and Y to @',

Proof. — By Theorem|6.2} g/, is a root of the polynomial P(T) = T2 - (4% — g&.(A)px -
2;(A)) with coefficients in the subfield C(p,) generated by p,. The function g/, does
not belong to this subfield because it is odd, while any elliptic function in C(g, ) is even.
This shows that this polynomial P(T) is irreducible. Since p, is non-constant, C(g, ) is
isomorphic to the field of rational functions C(X), and the field C(gpx, ', ) is isomorphic
to C(X)[Y]/(Y2-4X3+ g,(A)X + g;), as claimed.

It remains to show that g, and g/, generate the field of elliptic functions .# (C/A), and
that g, generates the subfield of even elliptic functions. Let f be any non-constant elliptic
function. The formula

fl)=1

expresses f as the sum of an even and of an odd elliptic function. Observing that f/, is
even if f is an odd elliptic function, it suffices to show that any even elliptic function belongs
to C(PA)

Let thus f be an even elliptic function. If p € Cis a zero (resp. a pole) of f, then so is
—p, with the same order. Moreover, if p = —p (mod A), then this order is even. Indeed,
let A € A such that —p = p + A. For any integer k, one has f(¥)(-z) = (-1)kf(¥)(z) and
F®(z+ 1) = fR)(2), so that

fOp) = (1) fO(=p) = () fP(p+A) = (-1)" fO(p).
In particular, f*)(p) = o if k is odd.
Leta,, ..., a, be complex numbers not belonging to A, pairwise distinct modulo A, and
such for any zero (reps. any pole) p of f with p ¢ A, there is an integer i € {1,...,n} such
that p = +a;. Foranyi € {1,...,n},setd; = 2if a; = —a; (mod A) and d; = 1 otherwise.

(2) +f(=2) , f(2) - f(~2)

2



CHAPTER 1. ELLIPTIC FUNCTIONS AND THE THEOREMS OF PICARD 15

The function p(z) — g (a;) has a pole of order 2 at z = 0, and a zero of order d; at +a;. Let
us define an elliptic function g € C(p, ) by

g(Z) = ﬁ (@(Z) — p(ai))V”i(f)/di )

Since for every i, a; ¢ A, the function g has a zero (or pole) of order v, (f) at £a;. At the
origin, it has a zero of order

=L (Nfdi== 5 ()= ()

Consequently, the quotient f(z)/g(z) is an elliptic function without zeroes nor poles, hence
is constant. This shows that f € C(gp,) and concludes the proof of the proposition. ]

§ 7. ELLIPTIC CURVES VIEWED AS RIEMANN SURFACES

7.1. Let A be a lattice in C. Let 71: C - C/ A be the natural projection. If () is any open subset
of C/ A, we say that a function f: Q — C is holomorphic if the function f o 7 on 771(Q) is
holomorphic. This endowed C/A with the structure of a Riemann surface.

Proposition (7.2). — Let A, and A, be lattices in C. Let m,: C - C/A, and m,: C - C/A, be
the natural projections.

Let a € C such that al, c A, and let b € C. There exists a unique map f:C/A, - C/A,
such that f(m,(z)) = m,(az + b). It is holomorphic.

Conversely, any morphism of Riemann surfaces f:C/A, - C/A, is of this form, for some
unique pair (a,b) € Cx C/A.

Proof. — The first part is obvious. Let b € C be any point in 71;*( f(0)). Since C is simply
connected, the theory of coverings shows the existence of a unique holomorphic map f:C -
C such that 7,(f(z)) = f(n.(2z)) and f(0) = b. Forany A € A, let p(1) = f(A) = f(o0).
Then, z — f(z+ 1) — ¢(1) is a lift of f o 7, which takes the value b = f(0) at the origin.
Consequently, f(z+A) = f(z) + phi()) for every z € C. This implies that the function f’
is an elliptic function. It is entire, hence takes a constant value a, and f(z) = az + b. For
AeA,

f(0) = f(A) = m(f(A)) = m(ar +b) = my(ad) + m(f(0)) = m(ak),
so that al € A,. O

7.3. An elliptic curve is a Riemann surface endowed with a base-point which is isomorphic
to the quotient C/A of C by a lattice A, with base-point o.

Morphism of elliptic curves are supposed to respect the base-points. By the proposition,
any morphism of elliptic curves f: (C/A,, [0]) = (C/A,, [0]) is of the form 7,(z) +~ am,(z)
for some unique a € C such that aA, c A,.
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Corollary (7.4). — Any elliptic curve has a unique structure of a complex Lie group for which
the origin is the neutral element. A morphism of elliptic curves is a morphism of groups.

§ 8. ELLIPTIC CURVES AS ALGEBRAIC CURVES

8.1. Let P ¢ C[X] be a polynomial of degree 3 with simple roots. Let Fp = X, X2 —
X3P(X,/X,); this is ahomogeneous polynomial of degree 3 in the indeterminates X,, X,, X,.
Let Cp be the projective algebraic curve defined by the polynomial Fp in the complex projec-
tive space P>(C), namely the set of points [x, : x, : x,] € P>(C) such that Fp(x,, x,,X,) = 0.

Lemma (8.2). — The curve Cp is irreducible and nonsingular.

Proof. — We study this question in affine charts of P2(C). On the open set U, given by
X, # 0, We can write [x, : x, : x,] = [1: x : y] and the equation of Cp is F,(X,Y) =
F(1,X,Y) =Y?- P(X). Since the polynomial P has odd degreen it is not a square, hence
F, is irreducible in C[ X, Y]. Therefore, the curve Cp n U, is irreducible. Since deg(P) = 3,
the coefficient of X} in Fp is nonzero, so that Fp is prime to X,. This implies that the
polynomial Fp is irreducible, so that Cp is an irreducible curve.

A singular point of Cp n U, is a point (x, y) at which F, vanishes, as well as the partial
derivatives of F,. One has % F, = —P'(X) and 2 F, = 2Y. The equations F,(x, y) = 2y =
—P'(x) = o imply that x is a common root of P and of P’; since all roots of P are distinct,
Cp n U, is nonsingular.

The only point of Cp which does not belong to U, is the point 0 = [0 : 0 : 1] and it remains
to show that Cp is nonsingular there. On the open set U, given by x, # 1, we can write
[%0: %, :x,] =[t:x:1]and CpnU, is defined by the polynomial F,(T,X) = T—-P(X/T)T>.
Since P(X/T)T3 is a homogeneous polynomial of degree 3 in X, T, its partial derivatives
at (0, 0) vanish; consequently, -2 F,(0,0) =1 # 0. Consequently, o is a nonsingular point
of Cp. OJ

Proposition (8.3). — Let iy: C/A — P2>(C) be the map given by
in(2) = [1:94(2) : 0 (2)]

forz+o0andiy(o) =[o:o0:1]. It is holomorphic and induces an isomorphism of Riemann
surfaces from C| A to the curve Cp defined by the polynomial P = 4X3 — g,(A)X — g,(A).

Proof. — The map i, is well-defined and holomorphic on C/A \ {o}. In a neighborhood
of 0, we may write iy (z) = [23 : 230 (2) : 230, (z) ]. The three functions 23, z3p and z3p’
are holomorphic there and equal 0,0, -2 at z = o, so they do not vanish simultaneously.
This shows that i, is holomorphic.

Let us show that i, is injective. First of all, if z ¢ A, then iy (z) # is(0). Soletz,w €
C \ A be such that i5(z) = in(w). This means p,(2) = pa(w) and g, (z) = p/,(w). By
Proposition z=w (mod A) or z = —w (mod A). In the latter case, we then have
p’\ (z) = —p', (w) so that p/, (z) = ', (w) = 0. If (w,, w,) is a basis of A, we have seen that
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necessarily z and w belong to {w,/2, w,/2,, w, + w,)/2 modulo A. Since g, takes distinct
values at these three points, we get z = w.

It follows that i, is étale. Indeed, if the differential of i, would vanish at some point
of C/A, then i, would not be injective in a neighborhood of that point.

By Theorem 6.2} the image of i, is contained in C. Let us show that its image is the whole
of C. Since ip(0) = [0 : 0 : 1], it suffices to show that for any point [1: x : y] € C, there
exists z € C\ A such that x = p,(z) and y = g/, (z). The elliptic function p, is surjective,
so there exists z € C such that p, (z) = x. It then follows from Theorem [6.2that y = ¢/, (z).
Up to replacing z by -z if necessary, we thus have x = p,(z) and y = p/, (z). O

8.4. Let P € C[X] be a polynomial of degree 3 with simple roots. Let us show that the
curve Cp in P?(C), endowed with the base-point 0 = [0 : 0 : 1], is an elliptic curve. Let
e, €,, e; be the three roots of P, and let ¢ be its leading coefficient, so that

P(X)=c(X-e)(X-e)(X-e)=c(X>-0,X*+0,X-0,),
with
o=e te, te, 0,=ee,+ee+ee, 0,=eee,.

We consider points of P2(C) of the form [1 : x : y]. If we make the affine change of
Ve

variables x = x’ + 0, and y = %y, the equation y* = P(x) of Cp N U, can be rewritten as
(y")> = Q(x"), with
Q(x") = 4(x" - &) (%" - 1) (x" - &) = 4(x)’ - ax' - b,

where e} = e; - %01 for i € {1,2,3} and a, b are complex numbers. (Indeed, e] + e} + €] = 0.)
The discriminant a® — 27b* of Q is given by

A(Q) =16(e; —e;)*(e; —¢€;)*(e, —€;)* =16(e, — €,) (e, — &) (er — ;)7
so is nonzero. In fact,

a=-4(eje; +eje, +eer)=—4(e — l(fl)(e2 - 1(71) — symmetric terms = —4(0, — lof)
3 3

and

1 1 1 4 1
b = 4eleje; = 4(e, — 501)(62 - g(rl)(e3 - gal) = —ZP(gal).

We shall prove in Theorem [9.3| that there exists a (unique) lattice A in C such that
2, (A) =aand g,(A) = b, so that (Cq, 0) is an elliptic curve.

The affine transformation (x', y’) = (x' + 101, 4 y") of C? is induced by the automor-

curve Cp, and the point o = [0 : 0 : 1] to itself. This implies that the pointed curves (Cp, 0)
and (Cy, 0) are isomorphic. Consequently, (Cp, 0) is an elliptic curve.

phism [x} : x] s x}] =[x} : x] + loux : /€ %11 of P>(C) which maps the curve Cq to the
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§ 9. THE MODULI SPACE OF ELLIPTIC CURVES

9.1. One defines the j-invariant j(A) € C of a lattice A in C by the formula
3 3
= 123g2(A) =1728 g.(A) .
A(A) &(A) —27g,(A)?
Recall that A(A) is the discriminant of the polynomial 4X3 — g,(A)X — g,(A) whose roots

are distinct, hence j(A) is well-defined as a complex number. For any nonzero complex
number u € C*, one has

(9.1.1) j(A)

(9.1.2) jun) = j(A).
Consequently, the function j descends to a function, still denoted j, on IT:
(9.1.3) FII->C, 71+ j(Z+1Z1).

It is constant along the orbits of the action of SL,(Z) on II.

Lemma (9.2). — Let A be a lattice in C and let (a,b) € C*> be complex numbers such that
a3 — 27b* # 0. Assume that j(A) = 123a3/(a® — 27b*). Then, there exists u € C* such that
&(uA) =aand g;(ul) = b.

Proof. — Assume first that j(A) = o, so that g,(A) = a = o. Necessarily, g;(A) and
b are nonzero and there exists u € C* such that g,(A) = u®b. Consequently, g,(uA) =
u°g,(A)=band g,(uA) = o.

If j(A) # o, then g,(A) and a are nonzero too, so that there exists u € C* such that
2,(A) = u*a. From the relation j(uA) = j(A) and the definition of j, it then follows that
g2 (uA) = b2 If g,(uA) = b, we are done. Otherwise, one has b = —g,(uA) = g,(iul)
while a = g,(uA) = g,(iul). N

Theorem (9.3). — Let Z be the set of lattices in C. The map (g,, g;) from % to C? given by
A~ (g,(A), g(A)) induces a bijection from X to the set of points (a,b) € C? such that
a3 —27b* £ o.

Remark (9.4). — Let 2 be the open subset of C* consisting of pairs (w,, w,) of nonzero
complex numbers such that w,/w, ¢ R. Let 1: # — % be the map that associates to a
pair (w,, w,) € Z the lattice Zw, ® Zw, generated by w, and w,. One can show that the
set Z possesses a unique structure of a complex manifold of dimension 2 for which the
map 7 is a local holomorphic diffeomorphism. When % is endowed with this structure,
the map (g,, g;) is actually a biholomorphic diffeomorphism.

Lemma (9.5). — The functions j are holomorphic on % and on I1.
Proof. — We show that for any even integer k > 4, the function Gy on & defined by

1
W, w,) = G(Zw, + Zw,) =
( ) ( ) meg\:{o} (m,w, + m,w,)*

is holomorphic. Let S be the set of (x,,x,) € R? such that |x,| + [x,| = 1. The function
from S x % to R defined by (x,, x,, w,, w,) = |x,0, + x,w,| is continuous and takes positive
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values. Therefore, it has a positive lower bound on any compact subset. Since S is compact,
for any compact subset K of %, there exists a positive real number C such that

|m,w, + m,w,| > Cx min(|m,|, |m,)|)

for any (m,, m,) € Z>. This implies that the series defining G converges uniformly on any
compact subset of 4, so defines a holomorphic function on 4.

Moreover, we have seen that for any lattice A, g,(A)? — 27g;(A)? # o. Therefore, the
function (w,, w,) ~ j(Zw, + Zw,) on A is also holomorphic.

In particular, the function 7~ j(Z & Z7) on II is holomorphic. O

Theorem (9.6). — The map j: PSL,(Z)\I1 — C is bijective.

Remark (9.7). — This map is not a local homeomorphism at the points of IT for which
the action of SL,(Z) has fixed points. These points of IT correspond to lattices with more
symmetries than usual.

9.8. Injectivity. — Let us first show that the map (g,, g;) from Theorem|g.3]is injective. Let
A and A’ be lattices in C such that g,(A) = g,(A’) and g;(A) = g,(A’). Let f:C/A — C/A’
be the map given by iys o f = i,. It is an isomorphism of Riemann surfaces. Since i, (0) =
in(0) = [0:0:1], f maps o to o. Consequently, there exists a complex number a € C*
such that aA c A’ and f(z) = az for any z € C. Reversing the roles of A and A’, we obtain
that aA = A’ so that the lattices A and A’ are homothetic.

Since ix(0) = [0 : o : 1], the image of a neighborhood of o in C/A is contained
in in the open subset of P>(C) where x, # o. There, i, is expressed as the map z —

(94 (2) A () (2) ). Since
pa(2) == +0(), ph(2) = — +O(),

one has i,(z) = (0(2?), -1z + O(z)) and the differential of 7, at the origin is given by
i’ (0) = (0,-1). The same result holds for the differential of i,. Since the differential of f
at o is the multiplication by a, we obtain a =1, and A = A’

This implies that the map j is injective too. Let indeed 7, 7/ € II be such that j(7) = j(7’)
and let us show that the lattices A = Z+Z7 and A’ = Z + Z1' are homothetic. By Lemmalg.2]
applied to the lattice A and to a = g,(A’), b = g(A’), there exists u € C* such that
& (uA) = g,(A') and g,(uA) = g,(A’). This implies that the lattices A’ and uA are equal,
so that the lattices A and A’ are homothetic.

Remark (9.9). — Prove the injectivity by showing how to recover the period lattice through
elliptic integrals.

Lemma (9.10). — Let §§ be the fundamental domain of I1. One has

lim |j(7)|= +o0.
Jdim i)l
Tell
Proof. — Since j(7+n) = j(7) for any 7 € IT and any » € Z, it suffices to prove this limit
formula under the assumption that -3 < 93(7) < 1. We may thus suppose that 7 belongs to
the fundamental domain §.
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For given (x, y) € R? and 7 € II of given real part, |x + y7| is an increasing function
of 3(7), so that

V3

ety 2 e+ R(7)pl+ ==yl

Then, |x + R(7)y| > |x| - 1 [y|, hence

(9.10.1) |x + y7| > x| + Iyl > x| + [y1).

VERRINPERLY,

This inequality implies that for k > 3, the convergence of the series

1
G (Z+71Z) = S —
(m,n)eZZ:Z\{o} (m+nt)*

is uniform for 7 € §. Therefore, we can pass to the limit termwise. All terms with n # o
converge to o when 7 — co. As a consequence, for any integer k > 3,

1

lim Gi(Z+71Z)= ), — =2{(k),
|T_|r:§° meZ~{o}

where ( is Riemann’s zeta function.

In particular, the numerator of j(7) has a finite positive limit when 7 — oo in §.

It is known that {(4) = 74/90 and {(6) = 7°/945. Consequently, when |7| - oo, while
T€F, &(Z+Zt) = 60G,(Z + Z7) —~ *n* and g(Z + Z1) = 140Gs(Z + Z7) ~ 2%716.

Consequently, A(7) converges to
26 26
(— - 27—6) 2 = o.

3 3
Finally, |j(7)| - oo.
Using that j(7+n) = j(7) for 7 € IT and n € Z, we deduce the slightly stronger result that

e (5 = 400,
JJimj(7)] = oo

]

Remark (9.11). — Let us give an alternative argument which does not make use of the
computation of the values of Riemann’s zeta function at even integers.

Let A = Z + Z7. One has A(7) = 16(e, — €,)*(e, — €;)*(e, — €;)% where e, = ps(1/2),
e, =pa(7/2) and e; = pp((1+7)/2). When 7€ F,

v 3 (i i

(mmyezino (m+nt+3)> - (m+nt)?

remains bounded. Moreover, when 7| > oo,

e, = - 4+ > ! !
. T (m,n)eZ>~o (m+nT+iT)2 (m+l’lT)2
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converges to —2{(2). Indeed, the convergence is uniform, so that we can compute the limit
termwise. The term of index (m, n) goes to o if n # 0, and to —1/m? if n = 0o and m # o. By
the same argument,

0= —4 44 > ! - !
POt Sde\(mant+i(141))  (m+n7)

converges to —2((2) too. This implies that A(7) — o, hence |j(7)| - oo as before.

9.12. Surjectivity. — We now prove that the map j is surjective. It is holomorphic and
non constant, so its image is a connected open subset of C. Let us show that j(II) is
closed. Since j is invariant under the action of SL,(Z), one has j(II) = j(§). Let (7,) bea
sequence of elements of § such that j(7,) converges to a complex number z; we need to
show that z belongs to the image of j. Up to passing to a subsequence, we may assume that
either 7, converges an element 7 € §, or that |7,| - co. In the first case, we get j(7) = z,
so that z € j(IT). The second case cannot happen, since the preceding lemma shows that
|j(7,)| = oo. Since the complex plane is connected, j(IT) = C, as claimed.

It remains to show that the map (g,, g;) of Theorem|9.3]is surjective. Let (a, b) € C* be
two complex numbers such that a® — 27b* # o. Let 7 € I be any element such that

&(Z+Z7)3 , @

S(Z+Z7)3 - 27¢,(Z+ Z71)? RPTIPYT

() =12

Lemmalg.2Jabove shows that there exists u € C* such that g,(u(Z + Z1)) = a and g,(u(Z +
Z7)) = b. This concludes the proof of Theorems|y.3/and|9.6|

9.13. To conclude this section, let us give some examples of computations of j-invariants.

Fort=i,A=2Z+iZ,onehasiA = A,sothat g;(A) =i %g,;(A) = —g,(A). Consequently,
&(A) =oand j(i) =123 = 1728.

Let p = exp(in/3) = (1 + i\/3)/2; since p*> = (-1+i,/3)/2 = p — 1, one has pA = A. This
implies that g,(A) = (*4g,(A), hence g,(A) = o since {* = - # 1. Finally, j(p) = o.

For A € C~ {0,1}, let E) be the elliptic curve with affine equation y> = x(x —1)(x — 1).
It is called the Legendre elliptic curve with parameter A. Let A be the lattice corresponding
to the curve E,. With the notation of (8.4), 0, =1+ 1 and 0, = A. As we have shown,

(9.13.1) L(A) =—41+ ‘—‘(1+/\)2 = ﬂ(1—)L+)L2)
3 3
and
(9.13.2) A(A) =161*(1 - 1)
Consequently,
-1+ A2)3
13. () =228
(9.13.3) j(A)=2 JECED
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§ 10. ELLIPTIC CURVES WITH A STRUCTURE OF LEVEL 2

10.1. Let E be an elliptic curve. Since it is an Abelian group, multiplication by 2 is an
endomorphism; let E, be its kernel. If A is a lattice in Cand E = C/A, then E, = (2A)/A.
Let (w,, w,) be abasis of E; then E, = {0, w,/2, w,/2, (0, + w,)/2} is isomorphic to (Z/2Z)>.

Definition (10.2). — A 2-marking of an elliptic curve E is an isomorphism of groups
n:(Z/2Z)* - E,.

We shall sometimes identify a 2-marking with the two points of order 2, #(1,0) and
1(0,1), of E. Conversely any ordered pair of distinct points E, defines a marking. Since
there are three points of order 2, it follows that an elliptic curve admits exactly 6 distinct
2-markings. More precisely, the group SL,(F,) = Aut((Z/2Z)?) acts (by composition on the
left, hence on the right) on the set of all 2-markings and makes it a principal homogeneous
space.

Lemma (10.3). — Let (E, (P,, P,)) be an elliptic curve with a 2-marking. An automorphism
¢ of E respects the 2-marking if and only if ¢ = 1d or ¢ = —1d.

Proof. — Let ¢ be an automorphism of E such that ¢(P;) = P; for every i. We may assume
that E = C/A; then A has a basis (w,, w,) such that P, = w,/2 (mod A) and P, = w,/2
(mod A). There exists a complex number u € C* such that uA = A and such that the
automorphism ¢ is given by ¢(z) = uz (mod A). Necessarily, |u| = 1.

Assume thatu # +1and let g = ( @ Z) € SL,(Z) be such that

u(w,, w,) = g (w0, w,) = (aw, + bw,, cw, + dw,).

We see that u is an eigenvalue of the matrix ( j ; ), with eigenvector ( 3! ), the other eigenvalue
being u~* since g € SL,(Z). Consequently, |a + d| < |u+u™| < 2; since u ¢ R, the last
inequality is strict, so that |a + d| < 2.

Since ¢(P,) = P,, one has uw,/2 = w,/2 (mod A) and uw,/2 = w,/2 (mod A). Conse-
quently, uw; = w; (mod 2A). This implies that a,d = 1 (mod 2) and b,¢ = o (mod 2).
On particular, a + d = 2 (mod 4). Combined with the inequality |a + d| < 2, we obtain
a+d = o. Since ad —bc =1, we get a> = —1-bc = -1 (mod 4), which is absurd. So u € {+1},
and ¢ € {+1d}. ]
10.4. Let T = PSL,(Z) = SL,(Z)/{+1d}. Since —Id = Id (mod 2), there exists a morphism

of groups I' - SL,(F,) which maps the class of a matrix (; ;) to its reduction modulo 2.
The kernel of this morphism is denoted T'(2).

Lemma (10.5). — Let 7,7' € I1. The 2-marked elliptic curves (C/(Z + 1Z),1/2,7/2) and
(C/(Z+7Z),1/2,1[2) are isomorphic if and only if T € T(2) - 7. If this holds, there exists a
unique y € T'(2) such that v/ = y - 1.

Proof. — Let A and A’ be the lattices Z + Zt and Z + Z1'. Let ¢ be an isomorphism
from C/A to C/A’. There exists u € C* such thatuA = A’ and such that ¢(z (mod A)) = uz
(mod A’) for any z € C. For such an isomorphism to exist, it is necessary and sufficient
that there exists g = (‘; Z) in SL,(Z), such that u = a + b1’ and ut = ¢ + d7’. In that case,



CHAPTER 1. ELLIPTIC FUNCTIONS AND THE THEOREMS OF PICARD 23

! . . . .
one has 7 = <84T = ¢. 7. Moreover, such an isomorphism respects the 2-markings if and

onlyifu =1 (mod 2A’) and ut = 7/ (mod 2A’). These congruences are equivalent to the
facta,d =1 (mod 2) and b, c = 0 (mod 2), or that g € T'(2).

To show the uniqueness, it suffices to prove that the action of I'(2) on IT is free. So let
Tell,let A=Z+Zr,andlet g = ( a s) a matrix in SL,(Z) which is congruent to the
identity modulo 2 and such that 7 = g - 7.

As above, g defines an automorphism ¢:z — (a + b7)z (mod A) of C/A, and this
automorphism respects the 2-marking (1/2, 7/2). By Lemmalio.3} ¢ = Id or ¢ = —1d, that
is, a + bt € {1, —1}. This implies that a € {1} and b = o. Finally, 7= g- 7= (c + d1)/a, so
that d = a and ¢ = o. Therefore, g = aId and its class in I'(2) is the neutral element. O

10.6. Let A € C~ {0,1}, and let E, be the Legendre elliptic curve with parameter A. This is
the curve with affine equation y*> = x(x —1)(x — 1), whose points of order 2 are the three
points [1:0:0],[1:1:0] and [1: A : 0] of P2(C). We shall write E, for the elliptic curve
E, endowed with the 2-marking ([1:1:0],[1:0: 0]).

Proposition (10.7). — For any elliptic curve E with a 2-marking (p, q), there exists a unique
A € C~{o,1} such that (E, p, q) is isomorphic to E,.

Proof. — Let A be the lattice such that E ~ C/A. There exists a unique homography ¢
fixing oo such that ¢(pA(p)) =1and ¢(pa(q)) = o; it is given by

(t)z t_wpl\(q) .
pa(P) —pa(q)
Besides p and g, the third point of order 2 of E is p + g; set

palp+4q) —palq)

or(p) —palq)

I claim that .Z(E, p, q) is the unique complex number A € C \ {o,1} such that (E, p, q) is
isomorphic to E,. ]

(10.7.1) ZL(E, p,q) = ¢(pa(p+q)) =

10.8. Let A: IT - C ~ {0, 1} be the map given by

PZ+ZT(1+7T) - PZ+ZT(f)

pZ+ZT(i) - PZ+ZT(£) .
It is holomorphic, surjective, and invariant under the action of I'(2) on II. Moreover, the
induced map A:T(2)\IT - C ~ {o, 1} is bijective.

Observe also that the quotient map IT — I'(2)\I1 is a covering, because I'(2) acts freely
on IT. There exists a unique structure of a Riemann surface on I'(2)\IT such that this quotient
map is a local biholomorphic diffeomorphism. Then, the map A:T'(2)\IT - C\ {o,1} is an
isomorphism of Riemann surfaces.

(10.8.1) M7)=Z(C/(Z+Z7);1/2,7/2) =

Lemma (10.9). — For any 7 € I1, one has
- M1) 1,
(10.9.1) AMr+1) = O A ;) =1-A(1).
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Proof. — By definition, A(7) is the Legendre invariant .Z(C/(Z + Z1);1/2,7/2) of the
elliptic curve C/(Z + Z7), endowed with the 2-marking (1/2, 7/2). Let A = Z+ Z7 and write
e, =pa(1/2), e, =pa(7/2) and e; = A ((1+ 7)/2). According to Equation (10.7.1),

e, — e,

A7) = ,

€, — e,

so that
e;=e,+ (e, —e,)A(T).
Since Z + Z(7 +1) = A, A(7 +1) is the Legendre invariant of the same elliptic curve, but
with the 2-marking (1/2, (1 + 7)/2). By Equation (10.7.1),
A(r+1) = e - e _ —(e,—e,)A(7) _ -A(7) ‘
e—e; (e,—e)—(ea—e)A(1) 1-A(7)

One has Z + (-1/7)Z = 1A, so that A(-1/7) is the Legendre invariant of the elliptic
curve C/77'A with the 2-marking (1/2, —1/27), which is isomorphic to the elliptic curve
C/A with the 2-marking (7/2, —1/2). Therefore,

M(1/7) = e e _ (e;—e)+ (e, —e)A(7) _
e

2T € e, — €&

1-A(7).
[

10.10. Let PGL,(C) act on P'(C) by homographies and let G be the stabilizer of {0,1, 00 }.
It follows from the preceding lemma that there is a unique isomorphism 1:T'/T(2) ~ G such
that, forany r e ITand any y € T,

A(y(1)) = () (A(7)).
In fact, fory = (1), onehas(y)(z) = z/(z—1), whilefory = ( % ), onehas :(y)(z) = 1-=z.

Lemma (10.11). — One has

(10.11.1) j(71)1200 AMt) =o.

Proof. — We have proved that |j(7)] - oo when J(7) — +oco. According to Equa-
tion ([9.13.3)), the only limit values of 1(7) belong to {0,1, c0}. a connectedness argument
would then show that A(7) has a limit for J(7) — +o0. To determine the value of this limit,
let us return to the notation of Section (9.11). The computations there show that when
J(1) - oo, while 7 € F, then e,, e,, e, have finite limits, and that the limits of e, and e,
coincide. This implies that A(7) — o, when 7 € § and J(7) — +o0. The lemma follows
from that, using that A(7 +1) = -A(7)/(1 = A(7)),and A(7 +2) = A(7) forany 7€ II. [J

§ 11. THE THEOREMS OF PICARD

Theorem (11.1) (“Little Picard Theorem”). — Let f: C — C be an entire function. If f is not
constant, then f omits at most one value.
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Proof. — Assume that f omits two values; replacing f by af + b for suitable complex
numbers a and b, we may suppose that these two omitted values are o and 1. The map
AT - € {o,1} is a holomorphic covering map. Since C is simply connected, there exists
a holomorphic map f:C — IT such that f = A o f. However, IT is biholomorphic to the
unit disk D, for example through the map b: 7~ . Then, b o f is entire and bounded; by
Liouville’s Theorem, it is constant. It follows that f is constant. O

Theorem (11.2) (“Great Picard Theorem”). — Let D(0,1) be the unit disk deprived of o and
let f:D(0,1) — C be a holomorphic function. If f has an essential singularity, then f omits
at most one value.

11.3. Let e:IT — D(o0,1) be the map 7 ~ exp(2mit). It is a universal covering map, its
group of deck transformations is Z, given by the translations by integers in II. As in the
proof of the Little Picard Theorem, there exists a holomorphic map f:II - II such that
Ao f(1) = f(e(r)) forany 7 € IL

Observe that f(i+1) and f(i) have the same image by A, namely f(e(7)). Consequently,
there is a unique element y € I'(2) such that y - f(i +1) = f(i). The map 7+ y=- f(7 +1)
is another lift of f o e to IT which coincides with f at 7 = i. Since A is a covering map, it
must coincide everywhere, so that

(11.3.1) f(r+1)=y-f(r), foranyrell

Let 0: 11 — (y)\II be the quotient of IT by the subgroup generated by y. The holomorphic
map A descends to a holomorphic map A,: (y)\IT - C~{o, 1} and there exists a holomorphic

map h:D(0,1) - (y)\II such that f = A, o h.

Lemma (11.4). — Let g € SL,(Z) be any element lifting y.

If y = 1d, then (y)\II ~ IL.

If|Tr(g)| > 2, then (y)\IL is isomorphic to an open annulus with positive inner radius and
finite outer radius.

Otherwise, |Tr(g)| = 2. Then, there exists an isomorphism b from (y)\II to D(0,1) such
that A, o b:D(0,1) - C is meromorphic at o.

11.5. From this lemma, we can finish the proof of the Great Picard Theorem.
If y = Id, then composing g with a biholomorphism b:II - D(0,1), we obtain a mero-
morphic map b o g:D(0,1) - D(0,1). Necessarily, b o h extends to a holomorphic map

from D(o0,1) to D(0,1). Moreover, the maximum principle implies that unless b o h is
constant, [b(h(0))] < supy,,y |b o h| < 1. In any case, h(0) € D(o,1) and f itself extends
holomorphically at o.

If |Tr(g)| > 2, the lemma shows that there exists a biholomorphism b: (y)\IT — C(r, R).
In particular, boh extends to a holomorphic map from D(o, 1) to the closed annulus C(7, R),
for some real numbers r and R such that R > r > 0. As above, it follows from the maximum
principle that |i(0)| < R; by the maximum principle applied to the map z — 1/b(h(z)), we
also have |h(0)| < r. This shows that / extends to a holomorphic map from D(o,1) to y)\IL,
hence f extends holomorphically at o.
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In the remaining case, let us show that f is meromorphic. As in the first two cases,
the holomorphic map b o h:D(0,1):D(0,1) — D(0,1) extends to a holomorphic map
from D(0,1) to D(o,1). Since A, o b~ is meromorphic at o, the formula

f=A0h=(A0b")o(boh)

implies that f is meromorphic, as claimed.
This concludes the proof of the Great Picard Theorem, but it remains to prove Lemmal[i1.4]

11.6. We first recall the classification of matrices in SL,(R), and of the corresponding trans-
formations of the upper half plane. Let g € SL,(R) and let u, v be its eigenvalues; one has
uv =1and u +v = Tr(g) is a real number. Let y be the image of g in PSL,(R).

If u and v are real and distinct, then g is conjugate to the diagonal matrix ( fu o ), so that
the homography of I it defines is conjugate to the map 7 — u>7. Moreover, since u and 1/u
have the same sign, |Tr(g)| = |u| + |u|™" > 2. One says that g, or y, is hyperbolic.

Assume that u = v. Since u + v is a real number and uv = 1, if comes u = v = +1
and |Tr(g)| = 2. Observe that g is semisimple, if and only if ¢ = +1d, if and only if the
corresponding homography is the identity. Otherwise, g is conjugate to a matrix + (] ¢ ),
and the corresponding homography is conjugate to the map 7~ 7 + 1. One says that g (or
y) is parabolic.

Finally, assume that u and v are non-real, and distinct. Then v = u = u™, so that
|u| = |v| = 1. Then, |Tr(g)| = |u + v| < 2 and one says that g and y are elliptic. In fact, this case
will not happen in the discussion below. Indeed, if one assumes, moreover, that g = ( al ) is
an element of SL,(Z), congruent the identity modulo 2, then a + d is an even integer, so
that a = —d. It follows that 1 = ad — bc = —a*> (mod 4), a contradiction.

11.7. We now prove Lemmali1.4} Since y € I'(2), the classification of elements in SL,(R)
shows that we need to treat the cases where y = +1d, y is hyperbolic, or y is parabolic. There
is nothing to do if y = +1d, so assume that y is hyperbolic. Up to conjugation, we may
suppose that y induces the automorphism 7 ~ u7 of I, for some real number u > 1. Let
log: C \ R, = C be the principal determination of logarithm. It induces a biholomorphic
mayp, still denoted log, from IT to the band B = {0 < J(z) < n} in C. Moreover, since
log(ut) =log(u) +log(7), the action of y on II is conjugate to the translation t by log(u)
on B, so that B/(t) is biholomorphic with (y)\IL. The map z — exp(2miz/u) is an injective
holomorphic from B/(t) to C, whose image is the annulus C(exp(—272/u),1).

11.8. Finally, let us treat the case where y is parabolic. We have seen that g is conjugate to
a matrix + (] 9) in SL,(R). However, since g € SL,(Z), g # +1d, there exists g, € SL,(Z)
and a positive integer n such that g = +g, (;, ¢) g5*, so that y acts by 7~ g, - (g5* - 7+ n).
Therefore, the map b:7 — exp(2mi(g;* - 7)/n) from II to C* induces a biholomorphic
map b, from (y)\II to D(o,1).

Then, there is a unique holomorphic map v:D(0,1) - C~{o,1} such that A(7) = vob(1)
for any 7 € II. We need to show that v is meromorphic at o.

We have seen that there is a homography ¢, € PGL,(C) such that ¢,({0,1,00}) =

¢o({0,1,100}) and A(go - 7) = 9o (A(7)).
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Let g € D(0,1); write g = b(g, - ), for 7 € IT; one has |g| = exp(—273(7)/n) and
v(q) = M(&" - 7) = 9o(M(7)).

When g — o, J(7) - +o0, hence A(7) — o. Since ¢, is a rational function such that
¥,(0) € {0,1,00}, v(q) converges to ¢,(0). In particular, v is meromorphic at the origin.
The precise nature of v, whether it extends holomorphically, or whether it has a pole, depends
on the actual value of ¢,(0).






CHAPTER 2

PRELIMINARIES FROM COMPLEX GEOMETRY

This chapter gathers material from differential geometry and complex analysis that will
be used in the sequel. The reader may either read it first, or only when needed.

§ 1. DIFFERENTIAL CALCULUS ON COMPLEX MANIFOLDS

1.1. As usual, a complex number z = x + iy can be viewed as the pair (x, y) consisting of
its real and its imaginary parts, giving an identification of the complex line C with the real
plane R2. This furnishes equalities of differential forms on C:

(1.1.1) dz=dx +idy, dz=dx-idy,

which compares the two bases (dz, dz) and (dx, dy) of the complex 2-dimensional vector
space Homg (C, C).

For any complex valued differentiable function f on Let Q be an open subset Q) of C and
let f:Q — C be a complex-valued differentiable function. For any a € Q, the differential
df, is a R-linear map C — C given in the two given bases by:

A, = 32 (@) s 2 f(a)dE = S (@)ds+ S f(a)dy,

so that
(1.1.2) i:l(i—ii), i:l(iJrii).
dz 2\dx dy dz 2\odx dy
If one defines
(1..3) Wziﬂ@@ @eiﬂ@&
0z 0z

then

(1.1.4) df, =of +of
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is the decomposition of the R-linear map df, € Homg(C, C) into a C-linear part df and a
C-antilinear part df. Observe also that

(1.1.5) of = E, of = ?

Moreover, one has the following formula for the 2-form giving the area element:

(1.1.6) dx Ady = 1dz Adz.
2

1.2. These decompositions extend to the higher dimensional case. Let d be a positive integer.
We can identify a point (z,,...,z4)C? with the point (x,, y.,..., x4, ya) € (R*)? = R,
where zj = x; + ixy forevery k € {1,...,d}.

1.3. Let X be a complex manifold of dimension d. Let «7"(X) be the space of complex-
valued smooth differential forms of degree n on X, let &7*( X) be the subspace of forms
with compact support.

Let a be a differential form of degree 1 on X. For any point a on X, « is a R-linear
map from the tangent space T,X to C. Since X is a complex manifold, T, X is a complex
vector space and « can be decomposed canonically as the sum of a C-linear part, and of
C-antilinear part. This decomposes the space .«7*(X) as the direct sum of two subspaces
2/%°(X) and A°'(X) consisting of forms which are respectively C-linear and C-antilinear
at each point of X.

For any integer #, the space «7/"(X) has a similar decomposition

(1.3.1) d"(X)= @ API(X),
p+q=n
where a form « € &/"(X) belongs to A?4(X) ifand only if it is p-times C-linear, and g-times
C-antilinear, meaning: a,(Av) = A?A”a,(v) for any v € T,(X) and any A € C.
There are differential operators

(1.3.2) 0: A/ PU(X) - APP(X), 0:a/P1(X) - APTH(X)
such that

(1.3.3) d=0+0.

From the relation d o d = o and looking at the possible degrees, one gets
(1.3.4) dod=0, dod=0, dod+dod=o.

Theses decompositions respect the support, hence similar decomposition of .7 ( X).

(1.3.1) One defines a differential operator d° by the formula
1 —
(1.3.5) d°=—(0-9).

2711

Observe that this is a real operator, namely: d¢ f = d° f. Moreover, if f = 9%(u) is the real
part of a holomorphic function u,

d°f = d(R(u)) = ﬁ(a ~N(u+7) = ﬁ(au —91) = ij(au)
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since du = 1 = o.
The composition d o d° of the operators d and d¢ is of tremendous importance of complex
analysis; it satisfies

(1.3.6) dd*= 1 (3+2)(0-9) = L9 =-"230.
271 i T

Proposition (1.4). — Let X be a complex manifold and let f be an invertible holomorphic
function on X. Then ddlog|f| = o.

Proof. — It suffices to prove the result locally, hence we may assume that X is simply con-
nected. Since the exponential C — C* is a covering, there exists a holomorphic function h
on X such that f = e”. Then,

dd“log|f| = dd*R(h) == — (90h + d0h) — (90h — doh) = o.
27 27
Indeed, h being holomorphic, oh =o,and oh = ﬁ = 0. ]
1.5. Assume that X is an open subset of C. For any ¢ *°-function on X, one can write
1 ou ou
5. du= 2 -Zax+ 24
(1.5.1) u 27r( 3 X+ o y)
so that
(15.2) ddu = —Audx A dy,
27
where
Ay o o*u . o*u
ox*  dy*

is the Laplace operator applied to u. In particular, this shows directly that harmonic
functions are preserved by a holomorphic changes of variables.

Let u, v be ¥*°-functions on X. Since non-zero 2-forms on X have bidegree (1,1),
du A dv=0undv=oand

(1.5.3) du ndv = i (au AV + OV A su)

1 (Juodv Juodv
(1.5.4) —;(£5+55)dx/\dy
(1.5.5) =dv Adu.

In particular, this is a symmetric expression in u and v.

Proposition (1.6) (Green formula). — Let X be a Riemann surface with boundary, let u and v
be €>-functions on X such that supp(u) nsupp(v) is compact. Then,

(1.6.1) f (uddv — vddu) = [ (udv —vdu).
X ax
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Proof. — Since
du A d® = d(udv) — udd®v,

fdwzf w,
X 0X

valid for any ¢"-differential form of degree 1 on X, implies

/du/\dCVZf udcv—fuddcv.
X ax X

Green formula follows by symmetry. O

Stokes formula

1.7. It is occasionally useful to express the operators d, d¢, dd° in polar coordinates. If
z=x+1iy = re we have

(1.7.1) dz = e®(dr + irdd), dz=e°(dr-ird0),
(L7.2)  dr= i(e”'edz +ei®dz), do= j(e”'edz ~ e%dz), édz A dz = rdrdo.

Then, for any differentiable function u on an open subset of C*,

ou Ju
du = gdr + %dg
e (ou idu el (ou idu
- (5 st )a e S (5 v o) e
so that
1/{0u iodu ) - 1({0u iodu )
(1.7.3) ou = ; (5 - ;£+) (dr +irdf), ou= ; (E + ;%) (dr —ird0).
Finally,
(1.7.4) du = —(u—ou) = — (r%de - la—”dr)
74 omi o\ or rof )’
and, if u is twice differentiable,
e i.= 1 (10 ( du 1 0*u
(175) ddu=200u= (12 (15 ) + L2 rdrdp.

§ 2. CURRENTS

2.1. Let X be an oriented manifold (everywhere) of dimension d. Currents of degree p
on X are continuous linear forms on <7 7 (X), where the continuity condition comes from
distribution theory: one says that a linear form T on A (X) is continuous if for any
compact subset K contained in a coordinate open Q) set of X, there exists an integer k such
that for any sequence («,) of forms in 7277 (X) whose support is contained in K whose
coefficients converge uniformly to o, as well as their partial derivatives up to order k, T(«,,)
converges to 0. (One then says that T has order < k on K.)
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The space of currents of degree p is denoted 27 (X).

2.2. Currents and integration theory. — Since X is oriented, one can integrate any differen-
tial form with compact support of degree d. The map « ~ [, « is linear, continuous, hence
defines a current [ X] (of order o) of degree o on X.

More generally, a locally integrable function f on X defines a current [ f] of degree o
on X , by the formula

(22) ()= [ fa feli(X), aesd(X).
This gives an injection of L (X) in 2°(X).

loc
Let 4 be a Radon measure on X. By definition, u is a continuous linear form on the space
¢°(X) of continuous functions with compact support on X. It defines naturally a current

of degree d. The map .# (X) - 2¢(X) so defined is injective.

2.3. Let T € Z7(X) be a current of degree p on X and let w be a differential form of degree g.
One defines a current T A w on X of degree p + g by the formula:

(2.3.1) Trw(a)=T(wra), acdPIX).

In particular, the map a — [a] = [X] A « associates to every differential form of degree g
a current of degree q. This map is injective.

2.4. Let U be an open subset of X. Any form «a € A (U) can be viewed as a form with
compact support on X (whose support is actually contained in U). Therefore, any current T
of degree p on X defines a current T'|y of degree p on X, obtained by evaluating T on forms
with compact support on U.

As shown be the following lemma, the restriction maps 2?(X) — 2?(U) define a sheaf
of vector spaces on X.

Lemma (2.5). — Let (U;);c; be an open cover of X; forevery i € I, let T; € 2(U,) be a current
of degree p on U,. Assume that for every i, j € I, the currents T,-|Uint and Tj|U,~r1Uj onU;nU;
coincide. Then, there exists a unique current T € PP (X) such that T; = T|y, for every i € I.

Proof. — Manifolds are assumed to be paracompact, and possess smooth partitions of
unity. In other words, there is a family (A1) j; of nonnegative ¢’ -functions on X, and a
map i:] — I such that for every j € ], supp(A;) c Uy(j) and such that },;; A;(x) = 1, the
sum being locally finite.

Let a € «7° ?(X). For every j € J, the form A& on X is supported by U ;) and one has
a =Y iy Aja; the sum is locally finite but since a has compact support, only finitely many
terms are nonzero. Define

T(oc) = Z]: T,-(]-)(/\joc).
_]E

I claim that this is the unique current on X which statisfies the required conditions.

Let us first check uniqueness: if S is any current such that T; = S|y, for every i € I,
then S(Aja) = T (), since supp(A;a) c Ti;. Consequently, S(a) = S(XAja) =
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One leaves to the reader to check that T is continuous, hence really is a current. Let i € I
and assume that supp(e) c U;. Then, for every j € J, supp(A;a) c U; n Uj(;, so that

Tz(])(/\]‘x) = TI(AJOC)
Consequently,
T(OC) = Z Tz(])(/\]a) = Z TZ(AJ(X) = ’T,(Z A](X) = Ti((X).
jel jel jel
In other words, Ty, = T;. O

2.6. Although the exterior product of differential forms is well defined, there is no exterior
product of currents in general.

Let T be a current of degree p on X. There is a largest open subset U of X such that Ty is
of the form [ay ], for some form ay; € 77 (U). The complement of U is the singular support
of T; it is closed subset of X, and is denoted sing supp(T).

Let S and T be two currents of degrees p and g on X such that singsupp(S) n
singsupp(T) = @. Then, one can define the current S A T as follows: let a be a form on
U = X \ singsupp(S) such that S|y = [«], let S be a form on V = X \ singsupp(T) such
that T|y = [B]; then S A T is the unique current on X such that

(SAT)u=[a]AT, (SAT)y=SA[B]

To see that it exists, observe that U u V = X, and that, denoting W =UnV, ([a] A T)|w =
lalw] A [Blw] = (SATBDIw-

2.7. Functoriality f., f*, projection formula.

2.8. Differential calculus for currents. — Let T be a current of degree p on X; one defines a
current dT of degree p + 1 by the formula
(2.8.1) dT(B) = (-1)P"'T(dB), Pe "7 (X).

This definition is compatible with the injection of /?(X) in 27(X). Indeed, for any
aeo/P(X)andanyf € A27P7(X), Stokes’s formula implies that

fxd(a/\ﬁ):o.

Since
d(anpf)=danp+(-1)’andp,

it comes:
dla](B) = (-1)P"[«](dp)
= ()P fX o ndp
- [ (d(@np)-dunp)

/Xdoc/\[)’

= [da](B)-



CHAPTER 2. PRELIMINARIES FROM COMPLEX GEOMETRY 35

The following formulae follow from the definition and their counterparts for differential
forms: for any current T, and any differential form «,

(2.8.2) dodT =0
and
(2.8.3) d(SAa)=dSAa+ (-1)%85S A da.

Indeed, for any form f8 € <7 7 (X),
(dodT)(B) = (~1)NdT(B) = ~T(d o dB) = o,
while
d(S A @)(B) = (-1 2 6(dp)
= (~1)des(®)+des(@) g (o A dP)
= (1)t des@ g ( ()@ d(q A B) — (-1)%E@ dac A B)
= ()M (d(@ n ) + (1) HO5(da n )
=dS(a A )+ (-1)%Os(Ada)(B)
= (dS Ao+ (—1)%E) s A doc)(ﬁ).
This formula extends to the product of two currents whose singular supports do not meet,
(2.8.4) d(SAT)=dS AT+ (-1)%8) s AdT.

Indeed, the latter formula needs only to be shown after restricting to an open subset of X
whese S (resp. T) is given by a differential form, in which case it reduces to Equation (?2.8.3)).

2.9. On complex manifolds, bigraduation of currents, operators 9, 0, d¢.

§ 3. THE POINCARE-LELONG FORMULA (IN DIMENSION 1)

3.1. Let X be a connected Riemann surface. A divisor on X is a function from X to Z
whose support is discrete — this means that for any compact subset K of X, there are
only finitely many points of K which are mapped to a nonzero value. In fact, whatever
the technical definition, one does not consider a divisor D: p + n, as a function but as a
linear combination D = ¥ n,p of points. The support |D| of this divisor is then the set of all
points p € X such that n, # o.

The set Div(X) of divisors on X is an Abelian group.

3.2.Let D = 3  n,p be a divisor on X; the current §;, = 3 1,8, is defined by the formula
(3.2.1) Sp(f) =Y n,f(p), forfed(X).
p

This is a finite sum.
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3.3. Let ¢ € . (X)* be a meromorphic function on X. We shall say that ¢ is “regular”[(V]if
it does not vanish identically on any non-empty open subset of X.
If ¢ is “regular’, its divisor div(¢) is defined by:
(3-3.1) div(p) = >, v,(@)p-
peX
It is a divisor; indeed, the set of zeroes and poles of any “regular” meromorphic function
on X is discrete, and its order of vanishing is well-defined.

Proposition (3.4) (Poincaré-Lelong). — Let ¢ be a “regular” meromorphic function on X.
The function log |¢| on X is locally integrable and

(3-4-1) dd*[log|¢|] = Saiv(e)-

Proof. — Let p € X; there exists a neighborhood U of P and an isomorphism z: U - D(0,1)
such that z(P) = o. One can choose U small enough so that, besides possibly p, ¢ has no
zero and no pole on U. One can then write ¢ = (z — z(P))*#(#) @, where ¢ is a holomorphic
function on U, without zero nor pole. Then,

log|g| = -v,(¢)log|z — z(P)|™" +log|¢|.

The first term, log|z — z(P)| ', is integrable on U since it is nonnegative and

/‘log|z—Z(P)|_1 Ldzndz = f log|z|™ Ldzndz= [1 fm log(1/r) rdrdf
U 2 D(o,1) 2 o Jo

and the integral [’ rlog(1/r) dr converges absolutely. The second term is continuous, hence
is locally integrable. This shows that log|¢| is locally integrable on X, hence defines a
current.

Let us show the given equality of currents. Let u € 27°(X) be a smooth function with
compact support on X. Let I be the set of points p € supp(u) such that v,(¢) # o; since
supp(u) is compact, it is a finite set. Any point p € I has an open neighborhood U that is
isomorphic to a unit disk via an isomorphism z,: U, - D(0,1) such that z,(p) = 0. We
may moreover assume that the closures of the open sets U, for p € I, are pairwise disjoint.

For r € (0,1) and any p € I, let D(p, r) be the set of points g € U, such that |zp(p)| <r.
Let X, be the complement of |div(¢)| U U, D(p, r) in X; this is a Riemann surface with
boundary. The function ¢ is holomorphic on X, and has neither zeroes, nor poles, so that
log|¢| is a €°°-function on X,; the function u has compact support on X,. One has

[ddclog|(p|](u)=/10g|go| ddcuzlimf log|¢| dd“u.
X -1 Jx,

Moreover, for any r € (0, 1), the Green formula asserts that

flogkp\dd“uz[ uddclog|go|+[ (log|e| d“u — ud<log|g]) .
X, X, ax,

() The terminology, borrowed from Grothendieck’s Eléments de géométrie algébrique, refers to the
fact that regular elements, e.g., non-zero-divisors, of the ring of meromorphic functions are precisely such
meromorphic functions which are not identically zero on any non-empty open subsets; the quotes are there
to prevent any confusion: regular meromorphic functions may have poles!
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Since ¢ is holomorphic on X, and has no zeroes and no poles, dd°log|¢| = o on X,.
Moreover, the boundary of X, is the union, for p € I, of the boundaries of the disks D,(r)
with the clockwise orientation. First of all, for any p € I, log|p| = O(logr™) on 0D,(r),
and the length of 0D, (r) = O(r). Consequently,

f log|¢| d°u = O(rlog(r™))
9Dp(r)

converges to o when r — o. Then we analyse the terms /. oD, (1) udclog|g|. On U, we can

write ¢ = ZZP ¢, where n, = v,(¢) and ¢ is a holomorphic function without zeroes nor poles.
Then,

d‘log|g| = d°log|@| + n,dlog|z,|.
The integrals f 2D, (1) udclog|p| converge to o when r — o. Passing in polar coordinates and
writing z = re’?, we have (see

d“log|z| =

1

de
J(dz/z)), so that

27
(we could also have used d¢log|z| = A9 (logz) =

L7
27

c 7 -1 i 1
[aDp(r) ud log|zp‘ = /; u(z,'(re ) ;d@

converges to u(z,'(0)) = u(p) when r — o. Finally,

/ulog|go|—hmsupf ud‘log|g| = > n,lim udlog|z,| = > n,u(p
X r—

pel =0 JaDy(r) pel
This concludes the proof of the proposition. ]

Corollary (3.5). — Let X be a Riemann surface and let S, T be currents of order o on X. Let )
be a relatively compact open subset of X whose boundary 0Q) is €. Assume that sing supp(S),
singsupp(T') and 0Q are pairwise disjoint. Then,

(3.5.1) f (SAd°T — Tdd<S) = /a (ST — Td<S).
Q Q

Proof. — First observe that every term of this formula is well defined. Since the singular
supports of the currents S and T do not meet, the products Sdd°T and Tdd°S are defined
as in Moreover, S and T are given by smooth forms in a neighborhood of 9Q).

Let a, b, c be €*°-functions on X such that a + b + ¢ = 1, a = o in a neighborhood
of singsupp(T) U 0Q, b = o in a neighborhood of singsupp(S) UdQ and ¢ = oin a
neighborhood of sing supp(S) U sing supp(T).

After multiplying everything by a, the formula reduces to Green formula in the case
where T is a differential form with compact support contained in Q. Then the right hand
side vanishes and the asserted formula is the definition of the current dd<S.

After multiplying everything by b, one gets the analogous situation where the roles of S
and T are exchanged.

After multiplying by c, one is reduced to the case where S and T are smooth differential
forms. The formula is then nothing but Green formula for the Riemann surface with
boundary Q.
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Since a + b + ¢ = 1, the result follows. O]

Let us now derive a few consequences.

Proposition (3.6) (Jensen's formula). — Let r be a positive real number, let f be a meromorphic
function on a neighborhood of D(o, r) such that f(o) € C*. Then,

(3.6.1) log|f(o)l = > Vp(f)logM + i fOMlOg |f(re')| db.

zeD(o,r) r

Proof. — We define currents S = log|f| and T = log|z/r| on a neighborhood of D(o, r).
Their singular supports are |div(f)| and {o}. First assume that |div(f)| does not meet
the boundary 0D(o, r). Then we can apply the Green formula for currents on the open
set D(o,r). Since dd°S = d4iy(s) and dd°T = &,

f (SAd°T - Tdd<S) = log|f(0)| - 3 loglz/r].
D(o.r) zeD(o,r)

Moreover, in a neighborhood of dD(o, r) which does not contain any zero or pole of f, nor
the origin,

ST =log |f ()’ i de,

and T'd¢S vanishes on dD(o, r). Consequently,

1 27T i 2
cr_rds)= -~ [ 0\ o,
faD(o,r)(Sd d&s) Mfo og|f(re)|" do

and Jensen’s formula follows from Green’s one.
In the general case, f may have zeroes or poles on the boundary 0D (o, r), and we apply
Jensen’s formula for s < r, and let s converge to r. It thus suffices to show that

f2n10g|f(sei9)| do — —/2ﬂlog‘f(rei6)| de.

The convergence is pointwise, and is locally uniform around any 6 such that re’® is neither a
zero nor a pole of f. We shall prove that the convergence is dominated in a neighborhood of
these points. Assume indeed that f has a zero of order n at re’?; then we can estimate f(z)
for z close to re'? by

¢ |re'? - 2" <|f(2)| < e

where ¢, and c, are positive real numbers. If f has a pole of order #, then a similar inequality
holds for |f(z)|™". Since |re’? — se’| > s|1— e!(%-9)|, we get in both cases that

|10g |f(sei0)|‘ < O(log|1 - ei(e_"’)‘_l) <O(log|0 - ¢|™)

Since the function t ~— log |¢| ", is integrable in a neighborhood of the origin, the convergence
is dominated, whence the result by Lebesgue’s theorem. ]
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3.7. One of the ideas behind value distribution theory is that there is a relation between the
zeroes of a meromorphic function and its growth. In the case of entire functions, Jensen’s
formula allows to turn this idea into a precise estimate.

Let thus f € &'(C) be a holomorphic function on C. Assume for simplicity that f(o) # o
For any positive real number r, Jensen’s formula asserts that

> v(f)log = log|f(re)] ~loglf (o))

zeD(o,r)

Let € > 0. Applying Jensen’s formula again on the disk of radius (1 + €) and neglecting
zeroes of f in the annulus C(r, r(1 + €) ), we obtain

1+¢ ‘
> v(Nlog T Liog|p(r(a+ o) - loglf (o)
zeD(o,r) | | 27T
so that
Z Vz(f) < C(S) lOg ||f||L°°(D(o,r(1+£))) :
zeD(o,r)
Proposition (3.8) (Formula of “Poisson-Jensen”). — Let r be a positive real number, let f be

a meromorphic function on a neighborhood of D(o,r). Let w € D(o, ) be any point such
that w ¢ |div(f)|, write w = pe’¢. Then

—-zw
(3.8.1) log|f(w)|= v.(f)lo
glf(w) D;) f)log r(z )
L7 o rop do.
" f g (re )| —2rpcos(0 —¢) + p?
Proof. — We apply Green’s formula to the currents S = [log|f|] and T'(z) = [log r’(ZZ‘_EJVV) Jon

Q = D(o,r). One has ddS = 84iy(s) and dd°T = —6,,. We assume that f has no zeroes and
no poles on the boundary dD(o, 1), the general case can be treated by a similar argument
as in the proof of Jensen’s formula. Then, Green’s formula implies

2 —2zZw

“loglf (W)~ 3 vi(f)log|

zeD(o,r)

- [ (loglfldT - Tt log|f]).
oD(o,r)

In a neighborhood of dD(o, r), the current T is given by a ©*°-function which vanishes
identically on 0D(o, ), so that [, » Td°log|f|* = 0. On the other hand,

d(r2 -zw) d(z-w)
> —Zw z-w

dCT_; (

).
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We express the integral on dD(o,7) in polar coordinates and set z = re’® and w = pei?;
then dz = izd6 and dz = —izd6f. Moreover, z = r?/r, so that, on dD(o, ),
&T:—iﬂ% Sl yw
271 r—-zw z-w

:—i%(z+w)d9

27 Z—-w

:_i%(rz—zzrpsm(go—6)—p2)d0

am \ r2—2rpcos(gp —0) + p>
1 r* —p?
=—— do.
g r>—arpcos(¢p —0) + p2
Therefore,
1 21 ] rz — Pz
log|f| T =~ [T & de.
[an(o,r) oglfl amto OB ‘f(re )| r2 —arpcos(6 — ¢) + p?
Combining these equalities, we get the asserted formula. O]

Proposition (3.9) (Weil). — Let X be a compact connected Riemann surface, let f, g be
nonzero meromorphic functions on X such that |div(f)| n|div(g)| = @. Then,

[Tlg " =TTIf(2)

zeX zeX

vz(g) .

Proof. — Tt follows directly from Green’s formula, as applied to the currents S = [log|f]],

T = [log|g|] on X. O
Exercise (3.10). — Prove that the formula holds without the absolute values, namely
[Te(2)" =[] ().
zeX zeX

(First treat the case where X = P'(C), identifying f and g with rational functions. In the
general case, view f as a morphism from X to P*(C).)

3.11. Let Q) be as in Green’s formula. For any point w € , there exists a unique function
gw.a on Q ~ {w} satisfying the following properties:
- itis harmonic on Q ~ {w};
— it has a logarithmic singularity at w: if z is a local holomorphic coordinate in a
neighborhood of w, then g,, o —log|z — z(w)|* extends to a harmonic function near w;
- it extends to a harmonic function in a neighborhood of 0(, vanishing identically
on 0Q.
Such a function can be defined as follows. First glue two copies of the compact set Q along
the boundary via the complex conjugation; this furnishes a compact Riemann surface Y with
an antiholomorphic automorphism c. There exists a harmonic function u on Y ~ {w, c(w)}
with the prescribed holomorphic singularity at w, the opposite one at ¢(w) which is changed
into its opposite by c. It remains to identify a neighborhood of Q in X to a neighborhood
of Q in Y, and to consider the restriction of u. Since ¢(z) = z for any z € 9Q, u = 0 on Q.
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Then g, q is locally integrable, hence defines a current on a neighborhood of Q and
(3.11.1) dd[g,.o] =8, ona neighborhood of Q.

Moreover, for any continuous function on  which is harmonic function on ), one has

L h =[ hdg, o
(3.11.2) (w) o gw.a

§ 4. GEOMETRY OF THE RIEMANN SPHERE

4.1. The projective line P*(C) is the set of lines of C? passing through the origin. For
(x0,%;) € C*~ {0}, write [x, : x,] for the line I = C(x,, x,). One says that x, and x, are
the homogeneous coordinates of [; they are well-defined up to a common multiplicative
constant. Let p: C> \ {0} — P*(C) be the natural projection.

The map z ~ [1: z] from C to P*(C) identifies the complex line with the complement of
the point at infinity oo = [0 : 1] of P*(C).
4.2. Let S, be the unit sphere in R3. The stereographic projection is the map

(4.2.1) s:S, > P(C), (x,y,2)~[1—z:x+iy].
In other words, s(x, y,z) = x:—lzy if z # 1, while the north pole N = (0, 0,1) is mapped to oo.
It is a bijection, the inverse of w € C is given by the formulae

(4.2.2) x=NR iz , y=7J AZ , z=|w|2—_1.
1+ |w| 1+ |w| lw|” +1
The groups SO(3) and SU(2)/{%1} act transitively on the sphere S, and on P*(C)
respectively; There is a unique group isomorphism p:SO(3) — SU(2)/{z1} such that

s(g-p)=p(g)-s(p) forany p € S, and any g € SO(3).

4.3. Let v,,v, € C* \ {o}; write [v,] = p(v,) and [v,] = p(v,) in P(C). One defines the
chordal distance between [v,] and [v,] by the formula

[vo A v
(4.3.1) [[vo], [vi]ll = :
I A
Observe that for & and § € C*,
lavo A vl _ [[vo Awil
favol [Bvill - lvol v

so that the chordal distance between two points p, and p, of P*(C) is well-defined, inde-
pendently of the choice of homogeneous coordinates needed for its computation.

Moreover, ||[v,], [v.]] is an element of [0, 1], and it vanishes if and only if v, and v, are
collinear, i.e., if [v,] = [v,]. It is also symmetric in [v,] and [v,].
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Let w, and w, € C, write v, = (1,w,) and v, = (1, w,) so that p(v,) = w, and p(v,) = w,.
Then,

2
(43.2) [waw, | = —l
(1 + wi[) (1 + [wa]")
Moreover,
1
(4.3.3) |y, oo]|* =

.
1+ ||

Let also p, = (x,, y1,2,) and p, = (x,, ¥, z,) be two points of the sphere S,. Then,

(43.4) Is(p.).s(p) ] == o - pal

where the norm in R3 is the Euclidean one. This formula explains the terminology chosen:
up to the normalization factor 2, the chordal distance between two points of P*(C) is the
length of the chord that joins the corresponding points of the unit sphere.

Indeed, in the case where p, is the North pole and p, # p,, onehass(p,) = [1-z, : x,+iy,]
and s(p,) = [0 : 1], so that

(1-2)2 _ 4(1-z,)?
1-2,)2+ X2+ )2 1-22,+xX2+ Y2+ 22

=2(1-2z)

Is(p2)s(p) = (
using that p, € S, hence x? + y2 + z2 = 1. On the other hand,

[pi=pal = x3+ 7+ (2 -1)* =2(1- 2,).

This implies the given formula in this particular case. The general case follows from the
particular one and the fact that both sides of the formula are unchanged under the actions
of SO(3) and SU(2).

Anyway, we can also make the computation. In the remaining case where p, and p, are
both distinct from the North pole, one has s(p,) =w, = (x, +iy,)/(1—-z,) and s(p,) = w, =
(x,+iy,)/(1-z,), so that

s s 2 _ (0(1-2) -%0-2))+ ()0 -2) -y.(0-2))
Is(p1)ss(p2)] ((1_21)2+x12+y12)((1_22)2+x§+y§)

_ (3 +y1)(1-2z)2+ (2 +y2)(1-2) = 2(0x, + 119,)(1-2,) (1 - 2,)
(1—221+x12+y12+zf)(1—2zz+x§+y§+z§)

Since p, and p, belong to S,, it comes

2 2 2 _ 2 2 2 _
x1+y1+zl_x2+y2+zz_1’
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hence
(1-22)(1-2)2+(1-22)(1-2)* —2(1-2,) (1 - 2,) (X, + Y1 ),)
4(1-z)(1-2,)

[s(p2)s(p2)" =

- i((1 +z2)(1-2)+(1+2)1-2z)-2(xx, +y1y2))

1
- ;(1— 2p, -pz)
= Zp-pa|®
2 1 2 .

Proposition (4.4). — There exists a unique differential form w on P*(C) such that

(4.4.1) prw = ~ddlog (|xo + |x.[') onC {o}.
2

Proof. — Write @ = dd¢log ( |x,| +|x,* ). Since the map p is a holomorphic submersion, it
induces an injection on differential forms, so that there exists at most one such w. Moreover,
since @ is of type (1,1), so will be w.

To prove the existence of w, we show that for any open set U c P*(C) and any holomorphic
section s of p, @ = p*s*@ on p~*(U). By definition, so p(x,, x, ) is a nonzero point of the line
C(x, : x,), for any (x,, x,) € p7*(U). Consequently, there exists an holomorphic function
A:p7(U) - C* such that

50 (X0, %) = A%, %;) (X0, X, ).
Then,
p's"@ = ~dd‘log|so pl*
1

= ;ddc log( |A(xo) X1)|2 (|x0|2 + |x1|2))

=ddlog|A| + @

:a)’

since A is holomorphic and invertible.

The projective line P*(C) can be covered by open sets over which the map p admits
holomorphic sections, e.g., the section s,:[1 : w] = (1,w) on U, = P'(C) \ {oo} and
the section s,:[z : 1] = (z,1) on U, = P(C) \ {[1 : o]}. The restrictions to U, n U, of
the forms w, = s*@ on U, and w, = s @ on U, coincide, since they both pull-back to @
on p~*(U,nU,) by the submersion p. Consequently, they glue to a global differential form w
on U,u U, = P*(C). O

Lemma (4.5). — Let a € P*(C). One has the following equality of currents on P*(C):
(4.5.1) w =-dd°log|a,-| + d,.

Proof. — First assume that a # oo. Then, for z € P*(C) \ {co},

oz = — 2=
A= ey
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so that, as currents on P*(C) \ {oo},
dd<log |a, z| = dd<log|a - 2| - %ddc log (1 +2[*) = 8, - .

Since the function log||a,-| is > on P*(C) \ {a}, the singular support of the current
ddclog|a,-|—&, is contained in {a}. Since it equals the restriction of the smooth differential
form w on this open set, one must have dd°log | a,-| — §, = w on P*(C), hence the lemma
when a # oo.

When a = 0o = [0 : 1], one identifies U, = P*(C)\{[1: 0]} with Cviathe mapw — [w : 1]
and one writes R
[wl

. 2:
oo, w411 = 70

so that
dd®log | oo, [w:1]| = dd‘log|w| - w = 6 — w.

4.6. Let us compute explicitly the form w on the open set C = P*(C) \ {oo}. We have
w= lddC log (1+2[*)

= ;aalog (1+22)

=—8 —dz
27 1+ 22

=i( ot = )dz/\dE

am\1+zz 271 (1+2z)?
i dzadz
Com (14 ]2f)?

f f 1 f _dxdy
Pl(c) S Jre (14 X2+ y2)?

(4.6.2) °  rdr o dr

.6.2 =2 = =1,

4 o (1+12)2 Jo (1+712)?

a formula which justifies various normalizations. On the other hand, we could have also
used the equations of currents given by lemma |4.5/and written, for some a € P*(C),

= ddcl | +62) =1,
Jiey @ Joe, (@ logla ] +8) =

since, for any current T of degree o,

f dd°T = dd°T(1) = T(dd1) = o.
P(0)

(4.6.1)

In particular,

4.7. The action of SU(2) on P*(C) is transitive, and lets invariant the form w. Consequently,
the normalization condition /, (c) W = 1 characterizes the form w among invariant forms.
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§ 5. LINE BUNDLES

5.1. Let X be a complex manifold. From the point of view of differential geometry, a holo-
morphic line bundle on X is a complex manifold L together with a holomorphic map
p: L — X which is a locally trivial fibration with fiber C and structure group C*. In other
words, the space X is covered by open subsets U; on which there is an isomorphism
fi = (plu,»gi): p7(U;) =~ U; x C such that for any i and j, there is a holomorphic function
fi UinU; - C* such that g;(y) = fi;(p(x))g;(y) for any y € p=*(U; n U;). The maps f;
are called the trivializations of L, and the f;; the transition maps.

These data furnish a structure of C-vector space (of dimension 1) on the fibers of p, given
by

(6 &i(y+5)) = (&) +&(), A (x8(y) = (xA&(»)),

for x € U;, y, " € p7(x) and A € C, because this structure is independent on the choice of i
such that x € U;.

If M is a second line bundle on X, a morphism of line bundles ¢: L — M is a holomorphic
map which is C-linear on each fiber of p.

5.2. A holomorphic section of p on an open set U of X is a holomorphic map s: U — p~*(U)
such that p o s = idy. The addition on the fibers of p varies “varies holomorphically”with
the point x, in the following sense: if s and s’ are holomorphic sections of p over an open
subset U of X, then x — s(x) + s’(x) is again holomorphic. Indeed, on U n U;, one can

write

s(x) +5'(x) = f7(x, &i(s(x)) + &i(s'(x)))-
Similarly, if A: U — C is holomorphic and s is a holomorphic section of p, then x
A(x) - s(x) is a holomorphic section of p.

Let s beasection of p on an open set U of X. On UnUj, this section induces a holomorphic
map g; os: U n U; - C. Conversely, if h;: U n U; — C is holomorphic, there exists a unique
section s on U n U; such that g; o s = h;; it is given by s(x) = f*(x, h;i(x)) for x e Un U..
Moreover, for x € U n U; n Uj, one has the relation

hi(x) = fij(x)h;(x).

Conversely, for any family (g;), where g; is a holomorphic function U n U; — C, satisfying
these relations, there exists a unique section s on U such that h; o s = h; for every i.

For each open subset U of X, let Z(U) be the set of holomorphic sections of p on U. It
is naturally a module over the ring &x(U) of holomorphic functions on U. Moreover, .Z
and O satisfy the axioms of sheaves, so that .Z is a sheaf of x-modules. Moreover, on any
open set U c U;, we have described a bijection s — h = g; o s between sections s € Z(U)
and holomorphic functions h € Ox(U). This bijection is compatible with restriction to
open subsets and to the module structure. Consequently, it defines an isomorphism of
sheaves from the restriction to U of the sheaf .Z to the restriction to U of the sheaf 0. In
particular, the sheaf . is locally isomorphic to &x; we shall sum up this property by saying
that . is a line sheaf.

Let M is a second line bundle on X and let .# be its sheaf of sections. Let ¢: L - M be a
morphism. For each open set U c X and each section s € £ (U), x — ¢(s(x)) is a section
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of M on U, so is an element of .# (U). This defines a map ¢y: £ (U) - #(U); itisa
morphism of Ox(U)-modules. Moreover, when U varies, these maps define a morphism
of sheaves ® from .2 to ./ .

5.3. By associating to a holomorphic line bundle its sheaf of sections, we thus have defined a
functor from the category of holomorphic line bundles on X to the category of line sheaves,
that is, the category of sheaves of x-modules which are locally isomorphic to 0. Let us
show that this functor is an equivalence of categories.

We first prove that it is fully faithful, namely: if L and M are holomorphic line bundles
on X and @ is a morphism of sheaves from £ to ., there exists a unique morphism of
holomorphic line bundles ¢: L -~ M giving rise to ®.

It is necessarily given by the formula ®(s)(x) = ¢(s(x)) for any open set U c X, any
section s.Z(U) and any point x € U. Conversely, it suffices to check that this formula
actually defines a morphism of holomorphic line bundles.

Then, we show that this functor is essentially surjective: any line sheaf £ is associated to
a holomorphic line bundle on X.

Let (U;) an open cover of X and, for every i, let ¢; be an isomorphism of 0y, to Z|y;;
lets; € Z(U;) be the section ¢;(1). Let ¢;; = ¢ilu,nu, © (¢j]u,nu;) % it is an automorphism
of the sheaf O'y,y, (as a sheaf of modules over itself); let f;; = ¢;;(1). By the sheaf property,
one has ¢;;(h) = fij|uh for any open set U c U; n U; and any section h € Ox(U). The
function f;; is invertible because ¢;; is an automorphism. Moreover, on U; n U; n U, we
have the cocycle relation:

Pij© Pjk = Pik-

We can now define a holomorphic line bundle L on X as follows. On the disjoint union of
the spaces U; x C, we define a binary relation ~ by

(x,t); ~ (x, fij(x)t);, forxeUnU;teC.

The cocycle relation shows indeed that it is an equivalence relation. The quotient space is
the desired holomorphic line bundle.

If .Z is a line sheaf on X, a basis of £ over an open subset U is a section s € .Z(U)
such that s|y is a basis of Z (V') as a Ox(V')-module for any open subset V of U—in other
words, the morphism of sheaves from 0y to .Z|y given by f ~ fs is an isomorphism.

5.4. Divisors and line bundles on Riemann surfaces. — Let X be a Riemann surface and
let D be a divisor on X. Let Ox(D) be the subsheaf of the sheaf of meromorphic functions
on X defined as follows: a section of &x(D) on an open subset U of X is a meromorphic
function f on U such that div(f) + D|y > o. Let us detail this condition. Recall that a
divisor on U is a function from X to Z whose support is locally finite. The divisor D|y is
the restriction to U of the divisor D; it is a divisor on U. The inequality div(f) + D|y > o
means that the divisor div(f) + Dy takes only nonnegative values; it is rephrased by saying
that this divisor is effective.

Let us show that Oy (D) is line sheaf on X. First of all, for any open subset U of X, any
meromorphic function f on U such that div(f) + D|y > o and any holomorphic function g
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on U, one has div(g) > o, hence
div(g f) + D|y = div(g) + div(f) + D|y > o.

This endowes Ox(D)(U) with a structure of a Ox(U)-module, and this structure is com-
patible with restriction to open subsets of U, so that &x(D) is a sheaf of &'x-modules.

Let p € X, let U be an open neighborhood of p in X which is isomorphic to the unit disk;
fix such an isomorphism z: U ~ D(o0,1). We may also assume that U \ {p} does not contain
any point of the support |D| of D. Let n, be the coefficient of p in D, so that D|y = n,p.
Since div(z—z(p)) = p, a meromorphic function f on U belongs to &x(D)(U) if and only
ifdiv((z—-z(p)" f)) > o, that s, if and only if (z — z(p))" f is holomorphic on U. Since
z—z(p) is invertible as a meromorphic function, Ox(D)(U) is a free Ox (U )-module with
basis z — z(p). This implies the result.

5.5. Let .2 be a line sheaf on a Riemann surface X. Let U be an open subset of X. A
meromorphic section of £ on U is the datum of a discrete subset A of U and of a section
s e Z(U \ A) satistying the following condition: for any point p € U, there exists an open
neighborhood V of p, a basis s, of £ on V, such that the unique holomorphic function
f V~(AnV)suchthats = fs, is meromorphic on V. We identify two meromorphic
sections s € Z(U N A)and s € Z(U \ A’) if they coincide on U \ (AU A").

Let s be a meromorphic section of .’ on X, holomorphic on X \ A. In analogy with the
corresponding definition for meromorphic functions, we shall say that s is “regular” if it does
not vanish identically on any non-empty open subset of X \ A. If this holds, there is a unique
divisor D on X such that, for any open subset U of X, any basis s, of £ on U, D|y = div(f),
where f is the unique meromorphic function on U such that s = fs, on U \ (An U).
This divisor is denoted div(s), and referred to as the divisor of the meromorphic section s.
Observe that div(s) is effective if and only s extends to a holomorphic section of . on X.

For example, a meromorphic section of Ox(D) on an open set U of X is nothing but a
meromorphic function f on U. If moreover f is “regular’, then its divisor (as a section
of Ox(D)) is given by div(f) + D.

Lemma (5.6). — Let X be a Riemann surface. The map that associates to a pair (£, s)
consisting of a line sheaf £ on X and of a regular meromorphic section s of £ its divisor
div(s) induces a bijection from the set of isomorphism classes of such pairs to the set of divisors
on X.

Proof. — Let (Z,s) and (.¢",s’) be such pairs, and let ¢: ¥ — %’ be an isomorphism
of line sheaves such that ¢(s) = s’. By the very definition of these divisors, div(s) = div(s’).

Conversely, let D = div(s); let us show that there is an isomorphism of Ox (D) to .Z that
maps the meromorphic section 1 to the meromorphic section s. It suffices to observe that
for any meromorphic function f € &x(D)(U) on an open subset U of X, the meromorphic

section fs of .Z|y is in fact a holomorphic section. Moreover, if f is a basis of Ox(D)|y,
namely, if div(f) + D|y = o, then div¢(fs) = o and fs is a basis of .Z|y. O

Corollary (5.7). — Let (£,s) and (. ,t) be line sheaves on a Riemann surface X both
equipped with a “regular” meromorphic section. One has canonical isomorphisms

Hom(.Z, . #) ~ Ox(div(t) - div(s))(X).
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Similarly, if D, and D, are divisors on X, then

Hom(Ox(D,), Ox(D,)) ~ Ox(D, - D,)(X).

Proof. — By the preceding lemma, it suffices to show the second assertion. A morphism
from Ox(D,) to Ox(D,) is characterized by the image f of the meromorphic section 1
of Ox(D,); and there is such a morphism if and only if fg is a holomorphic section
of Ox(D,) whenever g is a holomorphic section of Ox(D,). This condition means that
div(fg)+D, > o whenever div, > o. It certainly suffices that div( f)+D,—D, # o. Conversely,
any point of X has a neighborhood U on which there is a meromorphic function g with
div(g) + D,|y = o; then div(fg) + D,|y = div(f)|y + D, — D,|y, so that the condition
div(f) + D, — D, > o is necessary. This concludes the proof of the corollary. ]

5.8. Operations on line bundles and line sheaves

(5.8.1) Tensor product. — Let L, and L, be line bundles on a complex space X, let .Z]
and ., be the corresponding line sheaves. There is a unique line bundle L on X whose
fiber over a point x € X is the tensor product L, , ® L,, such that, whenever s, and s, are
nonvanishing sections of L, and L, on an open subset U of X, the section x ~ s,(x) ® s,(x)
is a nonvanishing section of L on U.

Let (U;) be an open cover of X such that L, is defined by a cocycle (f;;) and L, is defined
by a cocycle (g;;). Then L can be defined by the cocycle (h;;) = (fi;gij)-

This line bundle L is called the tensor product of L, and L, and denotes L, ® L,. Its sheaf of
sections is called the tensor product of the line sheaves .Z] and .%, and denotes .7, ® .%,. In
fact, .Z is the sheaf of &x-modules associated to the presheaf U = Z,(U) ® ¢, (v) -Z,(U).

When X is a Riemann surface and D,, D, are divisors on X, Ox(D,) ® Ox(D,) is iso-
morphic to Ox (D, + D,).

(5.8.2) Dual. — Let L be a line bundle on a complex space X, let .Z be its sheaf of sections.
There is a unique line bundle LY on X such that the fiber of LV at any point x € X is the dual
(Ly)Y of L., and such that for any local nonvanishing section s of L, the map x — ¢,(x) is
a local nonvanishing section of LY, where, for any x € U, ¢,(x) is the unique linear form
on L, that maps s to 1. Its sheaf of sections is the sheaf £’V associated to the the presheaf
U~ Hom@X(U)(iﬂ(U); C).

Let (U;) be an open cover of X such that L is defined by a cocycle (f;;); then LY can be
defined by the cocycle (7).

When X is a Riemann surface and D is a divisor on X, Ox(D)V is isomorphic to Ox(-D).

There are isomorphisms

LOLY~CxX, s®¢~(¢(s)x),
whenever x € X, s € L, and ¢ € LY = Hom(L,; C), and
(L,®L,)"simeqL) ® L},

where L, and L, are line bundles on X.
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(5.8.3) Inverse image. — Let f: X — Y be a holomorphic map of complex spaces, let L be a
line bundle on Y. Then, the space f*L = L xy X consisting of pairs (v, x) € L x X such that
v € Ly(x), together with the natural projection to X, is a line bundle on X. The fiber f*L,
of f*L over a point x € X is identified with the fiber L,y of L over f(x), by the map
(v, x) ~ v, and the structure of a complex line on f*L, is deduced from this identification.

Let s be a nonvanishing section of L over an open subset U of Y. Then, f*s:x ~
(s(f(x)), x) is a nonvanishing section of f*L over f~(U).

Assume that X and Y are Riemann surfaces. Let s be a meromorphic section of L on Y,
holomorphic on the complement U = Y \ B to a discrete subset B of Y. If no connected
component of X is sent identically to a point, then f~*(B) is discrete in X and the section f*s
of f*L over f~*(U) is actually a meromorphic section of f*L on X. Its divisor div s, (f*s)
and the divisor div; (s) of s satisfy the following relation:

divp  (f*s) = f*(dive(s)).

In the right hand side, f*:Div(X) — Div(Y) is the linear map that sends a divisor p
(namely, the divisor sending p to 1 and any other point to o) to the divisor ¥ . /- (,) M1,49,
for adequate multiplicities m , defined as follows. Let g € X and p = f(x) € Y; let U
be an open neighborhood of p which admits an isomorphism z: U - D(o0,1) such that
z(p) = o; let V be an open neighborhood of g such that f(V') c U and which admits an
isomorphism w: V' — D(o0,1) such that w(q) = o. Let ¢:D(0,1) - D(0,1) be the unique
holomorphic map such that zo f = ¢ o w on V. It satisfies ¢(0) = o0 and is not constant;
one has my , = vo(¢@).

One has the following compatibilities between tensor products, duals and inverse image:

(5.8.1) f*L®fL,~f(L®L,),
(5.8.2) (f7L)" = f*(LY),
both defined in the obvious way fiberwise.

5.9. The tautological line bundle on the Riemann sphere. — We now discuss a fundamental
example. We consider the product P*(C) x C? over the Riemann sphere P'(C), which we
view as a family of two-dimensional vector spaces C* (the trivial vector bundle of rank two).
Let &(—1) be the subspace of P*(C) x C? consisting of pairs (x, v) such that v belongs to the
line L, corresponding to x — we call it the tautological line bundle. 1t is indeed a line bundle.
On the complement U, to the point at infinity [o : 1] of P*(C), we have the isomorphism

(5.9.1) $o: Uy x C~ O(-1)|u,, ([1:2],t) » ([1:2], (8, t2)),
while on the complement U, to the point [1: 0], we have an isomorphism
(5.9.2) ¢: U, xC~ O(-1)|y,, ([z:1],u) » ([z:1], (uz, u)).

On the intersection U, n U,, any point can be written as [1: z] or as [1/z : 1] and these two
isomorphisms differ by the composition by the automorphism

(5.9.3) (UonU) xC=(UpnUy) xC,  ([1:2],1) = ([1/z:1], £2),

so that &'(—1) is the line bundle on P*(C) associated to the cocycle ( f,,: z — z) relative to
the open covering (U,, U,).
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In other words, the line bundle &'(-1) has trivializing sections s, on U, and s, on U,
given by
(5.9.4) so([1:2]) = (1,2),  si([z:1]) = (2,1).

The line bundle €(1) is defined as the dual of the line bundle &'(-1). Its fiber over a
point x € P'(C) is the complex space of linear forms on the line L,. In particular, the linear
forms on C? induce global sections of (1), hence a morphism of complex vector spaces

(C)" = I(P(C), (1)), ¢+~ (x~9l).
Let X, and X, be the images in I'(P*(C), (1)) of the two coordinates on C2.

Let us compute their divisors. By definition, div,,)(X,) is the divisor on P*(C) which
coincides with the divisor div(X,(s,)) on U, and with the divisor div(X,(s,)) on U,.
Returning to the definitions, X, (s, ) is the holomorphic function on U, given by [1: z] ~ 1,
and X, (s,) is the holomorphic function on U, given by [z : 1] = z. Consequently,

(5.9.5) divyy(Xo) = [0 :1].
Similarly,

(5.9.6) dive)(X,) = [1:0].
and, more generally, for any (a,b) € C>~ {(0,0)},

(5.9.7) diveq)(aX, + bX,) = [-b: al.

§ 6. HERMITIAN LINE BUNDLES

Definition (6.1). — Let L — X be a holomorphic line bundle on a complex space X. A
hermitian metric on L is the data of a map |-||, : L - R, such that:
— For any x € X, the restriction of |-||, to the complex line L, is a hermitian norm;
— For any non-vanishing section s of L on an open subset U of X, the map U — R given
by x = |s(x)||, is €.

The last condition amounts to saying that the restriction of |||, to the complement of the
zero section in L is €’*. There is an analogous notion of a continuous metric, where this
map is only assumed to be continuous.

A hermitian line bundle (L, |-, ) is a holomorphic line bundle equiped with a hermitian
metric. We will often write L to indicate that we are talking of a hermitian line bundle L.

6.2. Let X be a complex space which is paracompact (this assumption is automatic if X is a
Riemann surface) and let L be a holomorphic line bundle on X. Then, L admits hermitian
metrics.

Indeed, let (U;);c; be an open cover of X and, for every i, let s; be a non-vanishing section
of L on U,. Since X is paracompact, we may consider a partition of unity relative to the
open cover (U;) : this is a family (1) ; of nonnegative "> -functions on X satisfying the
following properties:
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- Itislocally finite (every p € X has a neighborhood U such that the set of indices j
such that supp(A;) meets U is finite);
- For every j, there exists an index i = i(j) such that supp(1;) c U;;
- Onehas };4; =1.
Let x € X andletv € L,. Let ], be the set of indices j such that x € supp(A;); for any
such j, x € Uj(;) by assumption, so that s;;y(x) # o. In particular, there is a complex
number a; such that v = a;s;(;) and we set

1= 24,0 o]
Jjelx
I claim that this defines a hermitian metric on the line bundle L.

On each complex line L,, the right hand side is a sum of hermitian forms with nonnegative
coefficients, so it is a nonnegative hermitian form. If v # o, then a; # o for any j € J,; since
Y. A; =1, 0ne has |v| # o, hence this hermitian form is positive definite.

Let us show that for any non-vanishing section s of L on an open set U of X, the function
x> |s(x)] on U is €.

Let x € U; since the family (A;) is locally finite, there exists a neighborhood V of x
contained in U and a finite subset ], of J such that J, c ], for any point y € V. Moreover, we
may replace V' by its intersection with the finitely many open sets U; ), for j € J,. This allows
us to assume that V' ¢ Uj(j) for any j € J,.. Then, for any j € J,, there exists a ¢’ >°-function a;
on V such that s|y = a;s;(;)|v. Consequently, for any y € V,

%UW=;MMWMW:;MwMUW-

The right hand side is a finite sum of ¢’*-functions on V, hence it defines a ¢’ -function
onV.

6.3. Operations on hermitian line bundles. — Tensor product, duals, inverse images of line
bundles have a counterpart for hermitian metrics. The formulae are as follows.

Let L, and L, be hermitian line bundles on X; let s, and s, be sections of L, and L, on an
open subset U of X. The hermitian metric on the tensor product L, ® L, is given by

(6.3.1) s, ®s,(x)

for any x € U.

Let L be a hermitian line bundle on X, let s be a non-vanishing section of L on an open
subset U of X; let ¢ be the section of the dual line bundle LY which maps s to 1; then, for
any x € U,

(6.3.2) los Gl = IsC)lL

Finally, let L be a hermitian line bundle on a complex space Y, let f: X — Y be a morphism
of complex spaces; the hermitian metric |- sor-f*L = R, on the inverse image f*L is just

Li®L, Is,(x) L, Sz(X)HL2

the composition of the projection f*L — L with the hermitian metric |||, on L. For any
section s of L on an open subset U of Y, one has

(6.3.3) [f*sC)ep = IsCF (D),
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forany x € f(U).
Observe that with these definitions, all canonical isomorphisms described earlier become
isometries.

Proposition (6.4). — Let L be a hermitian line bundle on a complex space X. There exists a
unique real differential form « € o/**(X) such that, for any non-vanishing section s of L on
an open subset U of X,

i
(6.4.1) aly = —ddlog |s|| = ;aalog Is| -

This form is denoted ¢, (L) and is called the curvature form of the hermitian line bundle L.

Proof. — We first prove that whenever s and ¢ are non-vanishing sections of L on an open
subset U of X, one has the following equality

ddlog|s| = dd“log| ¢]

of differential forms of degree 2 on U. Indeed, there exists a holomorphic function f on U
such that t = fs, and f is invertible. By the definition of a hermitian metric

[t = 1£Ce)s(x) [ =[£Gl s »
hence
log [s(x)| = log|f ()| +log [s(x)] .

By Proposition|r.4} the image of log| f| under the operator dd¢ vanishes, hence the desired
formula.

Let us cover X by open subsets U; such that for each i L admits a non-vanishing section s;
on U;. Let «; be the differential form —dd¢log |s;| on U;. Applying our first observation to
the restrictions to U; N U; of the sections s; and s, we see that «; and «; coincide on U; n U;.
Consequently, there exists a unique differential form « on X such that «|y, = a;.

Let U be any open subset of X and s be a non-vanishing section of L on U. We apply the ob-
servation to the restrictions to U;n U of s and s;; this says that the restriction of dd°log ||s| ™"
to U n U; coincides with the form «;|yny, = @|yny,. Consequently, —dd€log |s| = a|v.

The proposition now follows from the fact that the operator dd® maps real functions to
real differential forms of bidegree (1,1). O

6.5. Examples. — The trivial line bundle C x X on X has a hermitian metric such that
|(a,x)| = |a| for any (a, x) € C x X. This line bundle admits a global section 1, given by
x + (1,x), and log | 1| = 0. Consequently, its curvature form vanishes.

Let L and M be hermitian line bundles on X. Then, when the line bundle L ® M is
equiped with the tensor product of the hermitian metrics on L and M, we have

(6.5.1) c(L®M) =c,(L) + ¢,(M).

Indeed, this follows from the definition applied to sections s of L, t of M and s® t of L ® M.
Similarly, the curvature form of the dual hermitial line bundle LV satisfies

(6-5-2) CI(F) = _Cl(z)'
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Finally, let f:X — Y be a morphism of complex spaces and let L be a hermitian line
bundle on Y. Then,

(6.5.3) a(fL) = fra(L).

Proposition (6.6) (Formula of Poincaré-Lelong). — Let X be a Riemann surface, let L be a
hermitian line bundle on X, and let s be a “regular” meromorphic section of L on X.

Then, the function log ||s||, on X is locally integrable and the current it defines satisfies the
equation:

(6.6.1) dd[log | s] ] = aiv, (s) — cl(f).

Proof. — This proposition can be proved locally, hence we may assume that the line bun-
dle L admits a non-vanishing section s,. Then, there exists a meromorphic function f on X
such that s = fs,. By definition,

log|s|, =log|f| +log|so] -
Moreover, log |s,|; is > on X, hence locally integrable. As we saw earlier (Proposi-
tion[3.4)), log|f| is locally integrable and dd<[log|f|] = daiv(s); moreover, div;(s) = div(f).
Finally, -dd°log ||s,||; = ¢;(L), by definition of the curvature of a hermitian line bundle.
Consequently,

dd°[log|s],] = dd[log|f]] + dd°log|/so|; = daiv,(s) = &:(L),
as was to be shown. O

6.7. Let X be a compact Riemann surface and let D be a divisor on X. Write D = }  n,p.
Since D is locally finite and X is compact, there are only finitely many points p € X such
that n,, # 0. The sum Y. .y 11, is called the degreeof D and denoted deg(D).

If D, and D, are divisors on X, one has deg(D, + D,) = deg(D,) + deg(D,).

Corollary (6.8). — Let L be a holomorphic line bundle on a compact Riemann surface X.
For any hermitian metric |||, on L and any “regular” meromorphic section s of L, one has

deg(divy (5)) = fX (D).

Proof. — Since X is compact, we may integrate the Poincaré-Lelong equation on X; the
right hand side gives deg(div.(s)) — [, ¢.(L). By the definition of the operator dd¢ for
currents, the left hand side is equal to

fx[ddclog sl ]x= fX[log Is],]dd°(x) = o.
0

6.9. In particular, the degree of the divisor of a regular meromorphic section of L is in-
dependent on the choice of that section. It is called the degree of the line bundle L. Two
isomorphic line bundles have the same degree. Moreover, for any two line bundles L, and L,
on X, one has

deg(L,® L,) = deg(L,) + deg(L,).
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6.10. Let X be a compact connected (non-empty) Riemann surface. One has the following
exact sequence of complex vector spaces:

(6.10.1) 0—>C—>gQ7°(X)d—dc>4271’l(X)£>C—>o.

The map C — &7°(X) associates to any complex number a the constant function with
value g; it is injective. The image by dd° of a constant function is zero, so that the composition
of the first two maps is zero.

Conversely, let a € &7°(X) be any function such that dd°(«) = o. Since X is compact,
there exists a point p € X such that a(p) = sup, «. We will prove that « is constant, with
value a(p). The set a7*(a(p)) is closed in X. Let U be an open neighborhood of p which
is isomorphic to the unit disk and let z: U - D(o0,1) be such an isomorphism; let f be
the ¢’ -function on D(o0,1) such that a(q) = f(z(q)) for any g € U. One has dd°f = o,
hence A(f) = o. By the maximum principle for harmonic functions, f is constant, equal
to a(p), so that « is constant in a neighborhood of p. Applying this argument to any
point of a™*(a(p)) implies that this set is open. Since X is connected, this implies that
a(a(p)) = X, hence «a is constant.

Let again « € 7°(X). By the Green formula, One has |, dd°a = o. The converse holds:
if w € &' (X) is a differential form of bidegree (1,1) such that [, w = o, then there exists
a € o7°(X) such that w = dd°a. This follows from the analysis of the Laplace operator on
compact Riemann surfaces, but we shall not prove it here.

6.11. Let X be a compact connected (non-empty) Riemann surface and let L be a holomor-
phic line bundle on X. Let « be a real form of bidegree (1,1) such that [, a = deg(L). Then,
there exists a hermitian metric ||, on L such that « = ¢,(L). Two such metrics are pro-
portional: if |-|, and ||-|, are hermitian metrics on L such that « = ¢,(L, |-|,) = c.(L, |-],)>
there exists a real number ¢ such that |-, = e~ || .

Indeed, let us choose an arbitrary hermitian metric |||, on L. If |-|, is any other metric
on L, there exists a (unique) real valued ¢’ *-function ¢ on X such that |v|, = e=®™) |v|_
for any x € X and any v € L,. Conversely, any real-valued € *-function ¢ gives rise to a
metric on L. Then, the definition of the curvature form gives

CI(I) = (L, [-],) + ddg,
so that the equation & = ¢,(L) is equivalent to the condition
dd‘p = a - a (L, [,

Since [, & = deg(L) = [, &(L, |-[,), the integral of the right hand side is zero. By the
preceding paragraph, there exists a ¢’ °-function ¢ on X satisfying this equation. Since « is
real, its real part is again a solution and the associated hermitian metric is a solution to our
problem.

If |-||, and ||-|, are two hermitian metrics on L with curvature form «, the corresponding
functions ¢, and ¢, satisfy dd°(¢,) = dd°(¢,), hence dd*(¢, — ¢,) = o. By the results of the
preceding paragraph, ¢, — ¢, is constant (and real) on X, hence the claim.
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6.12. The tautological line bundle on the Riemann sphere. — We now discuss a hermitian
metric on the tautological line bundles &'(1) and &'(—1) on P*(C) that we had defined in
Recall that &'(—1) had been defined as a subspace (a sub-bundle, in fact) of P*(C) x C>.
On this larger space, we can consider the function induced by the hermitian norm on the
factor C2. It induces an hermitian metric on &'(-1). In fact, for any x € P*(C), and any
vector v = (v, v,) in the line L, |v|| = ([vo|* + [v.|)/>.

On the dual line bundle &'(-1), this gives a dual hermitian metric: if x € P*(C) and ¢ is
a linear form on the line L,, then

(6.12.1) Il = % for any vector v € L,.
Explicitly,
(6.12.2) HaXO + leH ([xo . x1]) _ |61x0 + bx1|

(%] + )12
Proposition (6.13). — With this metric, the curvature of € (1) is equal to the form w.

Proof. — The section X, of 0'(1) does not vanish on the open set U, of P*(C) consisting
of points of the form [1: z], with z € C and

| Xof ([1:2]) = EERIE

Consequently,

a.(0(1))

The computation on the open set U, (consisting of points of the form [z : 1], with z € C) is

v, = dd°log | X, | ™

U, = iddC log(1+|z]*) = w|u,.

similar. Anyway, the differential forms ¢,(€(1)) and w agree on the dense open subset U,
so must be equal. ]

§ 7. RIEMANNIAN METRICS AND CURVATURE ON RIEMANN SURFACES

7.1. Let X be a Riemann surface. Let Tx denote its holomorphic tangent bundle. For any
point p € X, Tx , is the tangent space to X at p, endowed with its natural structure of a
complex vector space.

When X is an open subset of C, Ty is a trivial line bundle. Indeed, let p € X. A basis
of Tx,, as a real vector space is (%, %). Its complex structure is defined by the relation
iL = —%, so that 2 is a basis of T, , as a complex vector space. This gives an identification
of Ty with X x C.

As a complex vector space of dimension 2, T,, ®x C admits the basis (<, £) and the
natural injection Ty, — Ty, ®g C maps % to % and a_ay to i%. Therefore, we can view
Tx,p as a complex line in the complex vector space Tx,, ® C (of dimension 2). In this
identification, Ty is a subbundle of a trivial vector bundle of rank 2.
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Let us return to the case of a general Riemann surface X. Let U be an open subset of X
together with a holomorphic bijection ¢: U — Q to an open subset Q of C. Then the
differential operator 0 = ¢~*(2) is a non-vanishing section of the restriction to U of T, so
that we identity Ty with U x C.

7.2. The dual line bundle O}, = Ty is the holomorphic cotangent bundle.

7.3. The data of a hermitian metric on Ty is equivalent to various other data.
Let U be an open subset of X together with a holomorphic local chart z: U — C. This
furnishes a non-vanishing section 2 on U. Consequently, there exists a positive €>-

0z
function A on U such that

0

— =A.
0z

Tx

(7.3.1) ‘

By duality, the cotangent bundle Q) admits a non-vanishing section dz on U, and its
norm satisfies the equation

(7.3-2) |dz] = A7

For any point p € X, we have identified the (complex) tangent line of X at p with the
(real) tangent plane of X at p. Consequently, the hermitian metric on Ty also furnishes a
Riemannian metric on X, given by the length element

2

= A (dx* +dy>.

. 0
(7.3.3) ds* = Haz

Observe that this Riemannian metric is a multiple of the euclidean metric dx* + dy?; we
say that it is conformal. In the coordinates (x, y), angles are the same whether they are
computed with the Riemannian metric or with the euclidean metric.

Finally, we also get a positive area form on X, given locally by

(7.3.4) dA=AdxAdy= ;Zoc A
2| af

for any local non-vanishing section « of Q.
We see from the formulae that any of these data allows to recover the function A, so that
they are all equivalent.

7-4. Let us endow Tx with a Hermitian metric. The Gauf§ curvature R of the associated
Riemannian metric is related to the curvature form of the hermitian line bundle Tx by the
following equation

— 1
(7.4.1) a(Tx) = —RdA.
27

Assuming that X is connected, compact and non-empty, and integrating over X, we deduce
the GaufS-Bonnet theorem:

(7.4.2) ¥(X) = deg(Tx) = [X c,(Ty) = ﬁ LRdA.
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In this formula, y(X) is the Euler characteristic of the Riemann surface X. The equality
between y(X) and deg(Tx) reflects the computation of y(X) via indices of vector fields.
The rest of the equation is a consequence of the Poincaré-Lelong equation.

7.5. Let f: X — Y be a nowhere locally constant morphism between two Riemann surfaces.

For each point x of X, the derivative of f at x is a C-linear map D f(x): Tx,. = Ty, f(x),
hence an element of Ty , ® Ty, f(x). Consequently, the derivative of f is a section D f of the
line bundle Ty ® f* Ty. This section is holomorphic, and nowhere locally zero. Its divisor
div(Df) is called the ramification divisor of f, and denoted Ram( f). This is an effective
divisor (each point of X comes with a nonnegative coefficient) and its support is the set of
points of X at which f is not a local diffeomorphism.

Endow the line bundles Tx and Ty with hermitian metrics. Then, Ty ® f* Ty has a natural
hermitian metric too and

(7'5'1) dd® 108 ”Df“ = 8Ram(f) - CI(T_XV ® f*T_Y) = 5Ram(f) + CI(T_X) - f*cl(T_Y)'
In the case where both X and Y are connected, we may integrate this relation on X. Since
[ fa(@) = [ faa(Ty) = deg(Ni(¥),

we obtain the Riemann-Hurwitz formula:

(7.5.2) deg(Ram(f)) + x(X) = deg(f) x(Y)-

7.6. The sphere. — Lets:§, - P'(C) be the stereographic projection and let us define a
hermitian metric on Tp:(c) by the formula

1
(76.1) DS I, = = 171

for any vector v € R3. The stereographic projection maps the complement to the North pole
to the complement of the point at infinity in P*(C), which is identified to C; the formula is

x+zy’ for (x,y,z) €5, N~ {N}.
1

s(x,y,2z) = .

Its inverse is given by

2U 2V 2

);

- 1 2
sHw) = W(%(ZW)’%ZW))I_W' )= (1+u2+v2’1+u2+v2’1_ 1+ u>+v?

where w = u + iv, so that the vector field < is the image of the vector field

( 2 4u* 4uv 4U )
1+ur+v: (1w +92)r (1+ur+v2)2 (14 ur+02)?
2

- m@ —u+ v, —2uv, —2u).
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Consequently,

0
HéuH = ﬁ (14 u* + v —20® + 207 — 20V + 4uPV? + 4u°)
1+ |[w
= ﬁ(1+u4+v4+2u2+2v2+2u2v2)
1+ |w
1

TPy

Moreover, the identification of the holomorphic tangent space to a Riemann surface at a
point (a complex line) with its real tangent space at that point (a real plane) maps % to a%’
where w is a local holomorphic coordinate and (u, v) are its real and imaginary parts. It

follows that on Tp:(c),

§ 8. JENSEN’S INEQUALITY

9
ou

1

9 v
ou C 1+ W)

0
.6. — | =
(7.6.2) H ow H ‘

Theorem (8.1). — Let ¢:(a,b) — R be a convex function. Let (X, u) be a probability space
and let f: X — (a,b) be a u-integrable function. The following properties hold:

a) One has [, fdu € (a,b);

b) The function ¢ o f is u-measurable, and is bounded from below by some u-integrable
function. In particular, [, (¢ o f)du is a well defined element of RU {+00};

¢) One has

(8.1 o [ fan)< [(popdn

Proof. — Since ¢ is convex on the open interval (a, b) of R, it is continuous, and admits
left and right derivatives, ¢{(t) and ¢.(t) at any point € (a, b). Moreover, ¢{(t) < ¢.(t)
and for any real number A such that ¢{(t) <A < ¢/(t),and any s, t € (a, b), one has

o(s) > o(t) + A(s - t).
Consequently, for any x € X,
o(f(x)) 2 9(t) + A(f(x) - 1).

This shows that ¢ o f is bounded from below by a y-integrable function. Let us integrate
this inequality on X; we get

Joenduzoea( [ fdu-t).

Set t = [, fdu; one has t € (a,b). Taking any A € [¢[(t), ¢.(t)], we obtain the desired
inequality. [



CHAPTER 3

NEVANLINNA THEORY FOR MEROMORPHIC
FUNCTIONS IN ONE VARIABLE

Let r, be a positive real number. Let Q be an open subset of C containing the complement
C(r,, ) of the disk D(o, 1, ) in C and let f be a non constant meromorphic function on Q.
Since the inversion z ~ 1/z identifies C(r,, oo ) with the complement D(o, r,) of the origin
in the disk D(o, , ), we really are in the situation of the Great Picard Theorem.

The point of Nevanlinna theory is to consider f as a holomorphic function from Q
with values in the Riemann sphere P*(C), without (almost) any reference to holomorphic
functions on Q. Let w be the canonical differential form of degree 2 on P*(C).

§ 1. THE CHARACTERISTIC FUNCTION

1.1. Let 7 € [ 1, +00). One defines

1.1.1 roor) = t = X f'(2)° X
(1.1.1) A(f>1o57) fcw)f ﬂfc(w) (1+|f(z)|2)2d dy.

This is the area of f(C(r,,7)) on the sphere with respect to the measure w, taking multi-
plicities into account.

Definition (1.2). — The characteristic function is defined by
r dt LT
(1.2.1) T(f,re;1) = f A(f,ro3t) — = [ log" — f*w.
ro t JC(ro,0) k4

As for the function A(f, r,;-), the characteristic function measures the “growth” of f,
that is, the growth of the area of the Riemann sphere it covers.

The equality of the two formulae in the definition is a consequence of the following
lemma.

Lemma (1.3). — Let « be a positive Borel measure on Q. For any real number r € [r,, 00),
one has

r r dt
log" — da(z :f a(C(ro,t)) —,
[CM & da() = [ a(Clrot)
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an equality of elements of [0, +o0].

Proof. — Indeed,

[ [ [, ) §
_ f °°( | 1[,O,t](|z|)doc(z))1t<r%
:[Q(/rooo 1t<,1rog|z|£t%)doc(z)

by Fubini’s theorem. Moreover, the expression within parentheses is an integral on the
interval given by |z| < t < r; it vanishes if r > |z| and equals

rdt 1 r

- = Og R

ot 2]
if |z| > r. This implies the lemma. O
Proposition (1.4). — The function T(f,1.;-) is continuous on [r,, +00) with values in R,

vanishing at r,. It is a strictly convex function of log(r).

Proof. — The function r — log" 7 = max(o,log(r) —log|z]) is a convex, continuous,
nondecreasing function of log(). Since w is a positive measure, this implies that T( f, r,;7)
is a continuous nondecreasing, and convex function of log(r) as well, while it is obvious
that it vanishes at r,. In fact, one has

d
Tiog(r) TV 1) = 1T (freir) = A(f s ),
a strictly increasing and positive function of log(r), so that T(f, r,;7) is a strictly convex
function of log(r). O
Corollary (1.5). — Whenr — +oo, T(f,1,;7) converges to +oo; more precisely,
T(f,r05
(1.5.1) lim M >0

T " log(1)

Proof. — Thisis a general fact: for any convex, strictly increasing function ¢: [u,, +o0) - R,
@(u)/u has a positive limit when u — oo. Indeed, for any u > u,, one has the following
equality

(P(u) _(P(u°+o) - /u(p'(uo+t(u_uo))'

U — U,

Since ¢! is increasing, this shows that (¢ () — ¢(u,+0))/(u—u,) is increasing and positive
for u > u,, hence has a positive limit when u — oo. The claim follows. H
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1.6. Let Q' be an open neighborhood of C(7,,r) on which f:Q — P'(C) lifts to a map
f:Q - C>~ {o}. For example, f has finitely many poles on C(r,, r), so that there exists a
nonzero polynomial P € C[z] such that P(z) f(z) is holomorphic in a neighborhood ()’
of this compact set; we can then set f(z) = (P(z), P(z) f(z)). Then, one has the following
equality

frw= if*ddC log ((|xof* +|x,[* ) = dd“log | £|

of differential forms on Q)'. By Green’s formula,

1 = r 7
T(f,re57) = — ./;D(o,r)—aD(o,ro) log HfH do - logr—O —/BD(o,ro) d‘log HfH )

27T

In the particular case where f is holomorphic, we may take f(z) = (1, f(z)). It follows
that there exist real numbers A and B such that

1 : 2
6. T(f, ro; =—f 1 ) )d6 + Al B.
(1.6.1) (f,ros1) 2 Javion) og (1+|f(re )‘ ) + Alog(r) +

Moreover, using the inequality
(1.6.2) max(1, [u])? <1+ |u|* < 2max(1, |ul*)
we deduce that

1 27
.6. T(f,re;1r) = — / | ,
(1.6.3) (f>7o51) o og max(1

Consequently, the characteristic function T(f, ro;-) is a measure of the growth of f.

f(rei9)|) df + Alog(r) + O(1).

§ 2. THE COUNTING FUNCTION

2.1. Let a € P'(C). Let f*(a) be the divisor on (), inverse image by f of the divisor a. One
has

(2.1.1) f*(a)=divi(f-a)= z(:)max(o,vz(f— a))z, if a # oo;
(2.1.2) f*(00) =div (1/f) = Z(:Imax(o, -v,(f))z.

For any r € [r,,+00), let n(f,ro;r) be the number of solutions of f(z) = a in C(r,,r),
counted with multiplicities. Thus,

(2.1.3) n(f,ror,a) = O r+(a)-
(f ) oy @

Definition (2.2). — The counting function is defined by

(2.2.1) N(f,ro;r)zfrrn(f,ro;t,a)%=_/;

o (7’0;00

r
10+—6*a.
) g’Z|f()
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It measures the incidence of f on a, i.e., how many times f takes the value a, with a
logarithmic weight.
The second equality follows from Lemma[.3|

Proposition (2.3). — The function r = N(f,ro;1,a) is continuous, nondecreasing, and
vanishes at r; it is a convex function of log(r).

Proof. — It is similar to that of Proposition 1.4, up to replacing f*w by ¢« (q). [

Proposition (2.4). —[()] The function a — N(f,ro;1,a) is upper semicontinuous, locally
uniformly in r.

§ 3. THE PROXIMITY FUNCTION

Definition (3.1). — Let a € P*(C). The proximity function is defined, for r € [r,, 00), by
1 Y4 ) =
(3.1.1) m(f;r,a) = ;/ log Hf(re’e),aH dé.

The proximity function measures how much f is close to a on a circle of radius r. When
a = oo, this is a measure of the size of f on the circle of radius r; other definitions can be

found in the litterature. For example, since ||u, oo| = 1//1+ |u|” for any u € C, it follows
from Equation that

(3.1.2) m(f;r,00) = ilogJ“ |f(re'®)| d6 + O(1).
27
Proposition (3.2). — The proximity function is continuous and takes nonnegative values.

Proof. — Since the chordal distance |a, b| of any two points on P'(C) belongs to [0, 1], we
have m(f;r,a) > o for any r. Let us show the continuity assertion. By Lebesgue’s dominated
convergence theorem, it suffices to show that for any ¢ € [0, 27], there exists a neighbor-
hood U of ¢ in [0,27] and a neighborhood V of r such that sup,., log | f(te’),a| " is
integrable on U. This is clear if f(re'?) # a, for then the function z — log | f(z,a)| is
uniformly continuous in a neighborhood of re’?. In general, letting #n be the coeflicient
of re’? in f*(a), there exists a positive real number ¢ and an open neighborhood B of re’¢
such that

n

|f(2);a| >clz—re*|", foranyzeB.

() Veérifier si Cest vrai, et si cest utile. En fait, oui : cest lendroit pour discuter la propriété de semicontinuité
de n(f,r,,7) en lien avec le théoréme de Rouché.
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By continuity of the exponential function, there are open neighborhoods U of ¢ and V of r
such that te’® € B forany 6 € U. and any ¢ € V. Then, for any 6 € U,

suplog | f(te®);a| " <logc™ + nlog|te™ - re'|™
teV

<logc™ +nlog ((t—rcos(6 - ¢))*+r*sin*(0 - (p))_1
< O(log(6 - ¢)™).
The result follows, since the function u + log|u| ™" is locally integrable on R. O

3.3. For later reference, we observe the following estimate

f(reie)‘) dé + O(1),

(3.3.1) m(f;r,00) = iﬂ log max(1,
2
which follows from Equation [1.6.2]

§ 4. NEVANLINNA’S FIRST THEOREM

Theorem (4.1) (Nevanlinna’s first theorem). — Let a € P*(C) and any r € [r,,+o0). If
a¢ f(oD(o,1,)), then
(4.1.1)

T(forsr) = N(frrina) < m(fira) = m(firoa) +log = [ dloglfoal”.
Yo JoD(o,ro
Moreover, for r — +oo,

(4.1.2) T(f,re;1r) = N(f,ros1r,a) + m(f;r,a)+O(log(r)),
where the constant underlying the O is independent of a € P*(C).

Lemma (4.2). — For any a € P'(C), one has the following equality of currents on Q:

(4.2.1) frw = 85+(a) — dd°[log | a, f]].
Proof. — We know the equality
(4.2.2) w = 0, — dd[log | a,|]

in 22(Q) and, in principle, we would want to pull back this relation by f. However, the
inverse image of a current is not defined in general, so we need a computation.

First of all, it suffices to prove the equality locally, in the neighborhood of any point b of Q.
There exists an open neighborhood V of f(b) in P*(C) and a section s of the projection
p:C>~ {o} - P'(C) defined over V. Let U be an open neighborhood of b such that
f(U) c Vandset f = so f. Themap f: U — C>~ {0} is holomorphic and satisfies po f = f.
Fix a point @ in p~*(a). Then one has, for any z € U,

an f(z
gl (2)] 2L
lall | f(2)]
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The function ¢ = @ A f on U is holomorphic and the construction of the divisor f*(a) gives
(flv)*(a) = X v:(9)z
zeU

Moreover, by the definition of the form w, we have

(flU)*w = (f|U)s*dd[log |-|] = dd°[log  f -

Consequently, one gets the following equality of currents on U,

dd°[log|a, f[] = dd*[log|p|] - dd“[log | ][] = 8-(a) - wlu.
This implies the lemma. [

4.3. Proof of Nevanlinnass first theorem. — Among the three currents in the equality of
the previous lemma, two of them are measures on (, hence so is the third. In particular,
we may multiply this relation by the function log(r/|z|) and integrate it on the annulus
C(r,, 7). This gives

T(foroir) = f<o>

= lo —8 “(a —f ddlog | a,
fcw) 8% Jon gla. f|
= N(fore;r,a) - fc(r  ddlogla. .

Let us apply Green’s formula to the currents S = [log é] and T = [log | a, f]] on the closed

e/

annulus C(7,, r). It follows that if f(z) does not take the value a for |z| = 1, or |z| = 7,

[ adlogla.fl=- [ (log d°log|a, f| ~log|a, /] d*log )
C(Toﬂ") aD( || ||

oo (18 00151 g sl acog )
(or) \  |2] 2]

Observe that log(r/|z|) is identically o on dD(o, r), d°log|z| = =d0; similarly, log(r/ |z|)
is identically log(r/r,) on dD(o,r), d°log|z| = -=d0. Since log | a, f| is €= in a neighbor-
hood of these circles, the definition of the proximity function implies that

f( )dd“log||a,f|| -m(f;r,a)+m(f; ro,a)+log—/( )dclog||a,f||.
C(ro,r 0,70
This gives the first asserted formula, namely

.
T(f,r37) = N(f,ros1,a) + m(f;r,a) —m(f;ro,a)—logr—/;D(or )dclog la, fll »

under the stronger assumption that f does not take the value a on 0D (o, r) or on dD(o, 1,).
In fact, all terms of this equation define continuous functions of r, so that we only need that
a does not belong to f(dD(o,1,)).

Turning our interest to order of growth, the relation obviously implies that for r — oo,

T(f,te31r) = N(f,ros1,a) + m(f;r,a) + O(log(r)),
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uniformly for a in any compact subset of P*(C) \ f(dD(o,,)). However, considering
another radius r,, we have

T(f,rosr) =T(f,rsr)+O(log(r)), N(f,res1,a)=N(f,rs1,a)+0(log(r)),

so that the desired asymptotic behavior also holds if a does not belong to f(9D(o,1,)).
Since

f(9D(o, 1)) n f(9D(o,1,))

is finite, for any pair (r,, r,) of distinct real numbers such that C(r,,7,) c Q, we may find
tow real numbers r, < r, < r, such that

f(aD(o0,71,)) N f(aD(o0,1,)) N f(dD(o,1,)) = @,

and three compact subsets U,, U,, U, covering P'(C) such that U; does not meet
f(oD(o,r;)) for any j € {0,1,2}. The theorem follows from that.

Theorem (4.4) (Mean theorem). — Foranyr € [r,,+00), a = N(f,1o;1, a) is a nonnegative
bounded Borel function of a € P*(C) and

(4.4.1) T(f,re;1) = / N(f,ro;1,a) w(a).

P(C)
Lemma (4.5). — Let X and Y be Riemann surfaces and let f: X — Y be a holomorphic map.
Let ¢: X — C be a Borel function on X; assume that ¢ either takes nonnegative real values, or
has compact support. For any y € Y, define

L0 = [ 90y = X nep(x),
xeX
with f*(y) = Y gex NaX.
Assume that ¢ is continuous and compactly supported (resp. that ¢ is Borel and takes
nonnegative values). Then so is f.¢ and

fyf*(wa:fxfpf*a

for any differential form (resp. for any positive differential form) of degree 2 on Y.

Proof. — We shall use the Theorem of Rouché in the following form: for any x € X, there
exists a neighborhood U of x and a neighborhood V of f(x) such that, for any y € V \
{f(x)}, the equation f = f(y) admits exactly n, distinct roots in U, all with multiplicity 1.
Moreover, U and V can be chosen to be contained in any prescribed neighborhoods of x
and f(x) respectively.

Assume that ¢ is continuous and that its support K, is compact. Then, the function
f+ () vanishes outside of the compact subset f(K) of Y. It suffices to show its continuity
at every point of f(K). Let b € f(K), let (a,, ..., a,,) be the family of preimages of y in K,
write n; for the multiplicity of a; as a root of f(x) = f(b). For each i, let U; be an open
neighborhood of a; as above, and let V; = f(U;). We may assume that |p(x) — ¢(a;)| < ¢
for any x € U;. Replacing V; by the intersection V = V,n---nV,, and U; by U; n f7(V),
we may also assume that all V; are equal to a common neighborhood V.
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I claim that there exists a neighborhood W of b, contained in V, such that for any
y € W and any x € f7'(y), either x belongs to U, U --- U Uy, or ¢(x) = o. Otherwise,
there would exist a sequence (y,) of elements of W converging to b, and for each #, an
element x, € Kn f7*(y,) which does not belong to U, u--- u U,,. By compactness of K,
we may replace the sequence (x,) by a subsequence and assume that the sequence (x,)
converges to some point x € K. Then, f(x) = b so that x € f7*(b) n K. It follows that
xe{a,...,an} If x = a;, then x,, € U, for n large enough, contradiction.

For any y € W \ {b}, we thus have

(£-9)0) - (F)(0) - ( 5 ¢uﬂ—§me>

xeUinf=1(y)

i M§ EME

> (o(x) - ¢(ai),

xeUinf=(y)

so that
OERIDICE e

This shows that f, ¢ is continuous at b.

When ¢ is lower semi-continuous and nonnegative, the same argument shows that f, ¢ is
lower semi-continuous and nonnegative at each point where it is finite. Indeed, if f,¢(b) <
0o, we first choose finitely many elements a; € f~*(b) such that (f.¢)(b) < X7 nip(a;) +¢,
where #; is the multiplicity of a; as a root of f(x) = f(b). For each i, choose also an open
neighborhood U; of a; such that ¢(x) > ¢(a;) — € for any x € U,. Since ¢ is nonnegative,
we then have

fww>zm¢w><z ez (£.0)(B) - (1+3 m)e.

=1

If ¢ is measurable and nonnegative, then so is f, ¢.[*)]

We now show that the two indicated integrals coincide. This is exactly the change of
variables formula in the case where f is a diffeomorphism of X onto its image. Let us explain
how to reduce to this case.

Let Z c Y be the set of critical values of f. This is a countable subset of Y and f is a local
diffeomorphism at any point of X \ f='(Z). Let (A;) be a partition of unity in X \ f~(Z)
subordinate to an open covering (U;) of X \ f7'(Z) such that f induces a diffeomorphism

(2) Prouver la mesurabilité...
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of U; onto its image f(U;) in Y. Then,

fxqvf oc=fX\f_l(Z)¢f a

= Z[]t Ligf a
i Zi:/J:(Ui)f*(/\i(P)(x
=3 [ £.(up)

since f,(A;¢) vanishes outside of f(U;). Now, forany y e Y \ Z,

2o () =2 Y M(ex) = X o(x)=fie(y)

ioxef7(y) xef7(y)
sothat [ of*a = [,(f.9)a, as claimed. O

4.6. Proof of the Mean theorem. — Let ¢ = 1¢(y,»)log 17; Forany a € P'(C), one has

N(f)ro;r) a) = A¢8f*(ﬂ) :f*(P(a)'
By Lemmal 4.5}

,
N)o;a :f *:/ log—fw=T sVosT).
S NGrana = [ offe= [ o w=T(f,rsr)

Corollary (4.7). — For any a € P*(C) and any r € [r,, +0),
(4.7.1) N(f,rosr,a) < T(f,7051) + O(log(r)).
Proof. — Indeed, m(f;r,a) > o. O

Corollary (4.8). — The function f is meromorphic at infinity (equivalently, f(1/z) does not
have en essential singularity at o) if and only if

lim —T(f’ roi7) < 00

= " log(r)
(Recall that, according to Corollary 1.5} the limit exists.)

Proof. — If f is meromorphic at infinity, it extends to a holomorphic function f
from P'(C) \ D(o,7,) to P*(C). Then, f*w is a € differential form on P*(C) \ D(o, 7).
Since w is positive on P*(C), there exists a ¥ function ¢ on P*(C) \ D(o, r,) such that
f*w = gw. Then ¢ is bounded, because P*(C) \ D(o, r,) is compact, so that

T(f,ro;r) = Arlogéf*w < /rorlogrg‘w < logr—z.
Conversely, if T(f,7,;7) = O(log(r)), then
N(f,ro;r,a) < T(f,7r057) + O(log(r)) < O(log(r)),
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as well. However, if m = n(f,ro;1,), one has, for r > r,,

N(f,ro;r,a)zfrn(f,ro;t)%2n(f,r0;rl,a)fr%zn(f,ro;rl,a)logri.

To
Consequently, n( f, ro; 1y, a) is uniformly bounded from above, when r, > r, and a € P*(C).
In other words, f takes each value at most finitely many times.

For any n € N, let F,, c P*(C) be the set of points a such that f takes the value a at most n
times, counted with multiplicities. Rouché’s theorem asserts that if f takes the value a
at w € Q, with multiplicity m, there exists an open neighborhood V of a in P*(C) and an
open neighborhood U of w in Q such that for any b € V, the function f takes m times the
value b on V, again counted with multiplicities. This implies that the complement to F,
in P'(C), the set of values taken at least # + 1 times, is open, so that F, is closed in P*(C).

Moreover, U,,», F, = P*(C). By Baire’s theorem, one of these sets, say F,;, has a non-empty
interior. For any element in F,, the number of solutions of the equation f(z) = a, counted
with multiplicities, is at most n. Let a be such an element where this number is maximal,
say m, so that a € F,; let r, be the largest absolute value of an element in f(a). By Rouché&s
theorem again, there is an open neighborhood U of a in P*(C), contained in F,,, such that

for any b € U, the equation f(z) = w has at least m roots in C(r,, 7, + 1), counted with
multiplicities.
Necessarily f omits every value in U on C(r, + 1, o): indeed, such a value is taken at

most m times on C(r,, o), and at least m times on C(r,, 1, + 1). It then follows from the
theorem of Casorati-Weierstrass (see that f is meromorphic at infinity. O

4.9. Assume that f has an essential singularity at infinity. By the preceding corollary,
T(f, 10
lim —(f o)

= +00.
% log()
For a € P*(C), the defect of f at a is defined by
m(f;r,a
(4.9.1) 6(f,a) = lim m(fira)

r=oo T(f>7037)
Since
T(f,te;1r) = N(f,ros1,a) + m(f;r,a) + O(log(r)),
we also have

— N(f,ro;1,0a)

. . 5 = —_ l —_—m—
(4.9:2) O(f2a)=1-lim ===
From these two formulae, we see in particular that
(4.9.3) 0(f,a) €[o,1] foreveryaeP'(C).

One has §(f, a) = 1if f omits the value a. In general, the defect §( f, a) measures in what
respect the function f does not take the value a as much as is allowed by its growth.

By the Mean theorem,
N(f,r07,a) ~
/1;((;) (1 T(Fror) ) w(a) =o.
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When r — +o0, the infimum limit of the term within the parentheses is precisely 8( f, a). It
then follows from Fatou’s lemma that

' _N(f,ro;r,a) wla) o
[Pl(c)é(f,a)w(a)Srh%rzlo P](C)(l T ) (a) =o.

Since w is a positive differential form, this implies that

(4.9.4) 3(f,a) =0 foralmostevery a € P'(C).

In other words, the set of points a such that §(f, a) > o is Lebesgue negligible in P*(C).
In particular, the set of omitted values (at which the defect equals 1) is negligible, a much
stronger property than the one asserted by theorem of Casorati-Weierstraf3.

We shall prove later, this is the content of Nevanlinna’s Second theorem, that

> 8(f,a) <2

aeP'(C)

In particular, the set of points a such that §(f, a) > o is at most countable, and the set of
omitted values has cardinality at most 2 — we will thus recover the Great Picard theorem!

Example (4.10). — Let us assume that f(z) = e?. Then, |f(re'?)| = e"<*5(6) 5o that

log max(1, f(reie)‘) = max(0,rcos(0)).
One has R . .
;_/o log max(1, f(re’e)‘)de = ;/on/zrcos(e) deé = —

Given Equation (1.6.3), this implies
(4.10.1) T(f,1o57) = %” +O(log(r)).

Since f is holomorphic,
(4.10.2) N(fro31,00) = n(f, 1037, 00) = 0
and §(f, o) = 1. Similarly,
(4.10.3) N(f,ro31,00) =n(f,re51,00) =0, 8(f,0)=1.

Let now a € C*. The roots of the equation f(z) = a are z = log(|a|) + i(arg(a) + 2kn),
for k € Z, and all have multiplicity 1. Consequently,

(4.10.4) n(f,rer,a) = %r+ O(1),
so that
(4.10.5) N(f,ro;1,a) = %T’Jf O(log(r))

and 8(f, a) = o. By Nevanlinnass first theorem, it follows that

(4.10.6) m(f;r,a) =o(log(r)) foranyaeC".
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Example (4.11). — Let A be a real number such that o < A < 1and let g(z) = €% + ¢*?. In
this case, we have |g(z)| < 2 if R(z) < o while, for 0 € [-7/2, /2],

rcos 6 1+ e—(l—)t)reie - ercos@(1+O(e—(l—)t)rCOSG))'

g(re’®)| = e
Consequently,
(4.11.1) T(g,1051) = %V +O(log(r)).

Since g is holomorphic, one has §(g, o) = o. The equation g(z) = o is equivalent to
e}z = —1 and is roots are (2k +1)in/(1— 1), for k € Z, each with multiplicity 1. Therefore,

(4.11.2) n(g,7r0;7,0) = %r+ O(1),N(g,10;1,0) = %r+ O(log(r)),d8(g,0) = A.

Moreover, one can prove that

(4.11.3) d(g,a) =0 foranyaeC".

§ 5. A VARIANT OF NEVANLINNA’S FIRST THEOREM

5.1. Let u be a Borel probability measure on P*(C). We define analogues of the counting,
and proximity functions by averaging their values with respect to y. Namely, we let, for any
r> Tos

(5.1.1) N(f,rosts 1) = ./;l(c) N(f,ro;1,a)du(a)
and
(5:12) m(firw)= [ m(fira)du(a)

By Nevanlinnass first theorem, especially its uniformity in a € P*(C), one has

(5.1.3) T(f,r057) = N(f,ros1, ) + m(f;r, u) + O(log(r)).

The function N(f, 7.5+, ¢t) is an increasing, convex function of log(r).
The function m(f;-, u) is nonnegative and continuous.[*]

Lemma (5.2). — Let g, be the function on P'(C) given by

2. = 1 ,a| " d .
(52.) gu(x)= [ loglv.al” du(a)

a) The function g, is lower semi-continuous: for any real number t, the set of all x such
that g,(x) > t is open in P'(C).

(3) Comment?
(4) Ca mérite une preuve...
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b) The function g, is integrable on P*(C) and

(5:22) Jog @@ e =2
¢) One has
(5.2.3) dd‘[g.] = w—p.

Proof. — a) For any positive integer n and any x € P*(C), define
gun(x) = [ min(n,log % a| ™) du(a).
P(C)

By Lebesgue’s dominated convergence theorem, g, , is a continuous function on P*(C).
Since the sequence (g, ,) is nondecreasing, the monotone convergence theorem implies

gu(x) = lim min(n,log|x,a| ") du(a)

n—oo P! (C)

for any x € P'(C). In particular, g, is a non-decreasing limit of continuous functions. This
implies the claim. Indeed, let t € R and let x € P*(C) such that g, (x) > t. Let n be an integer
such that g, ,(x) > t. Since g, , is continuous, the point x has an open neighborhood U
such that g, ,(y) > t for any y € U. In particular, g,(y) > t for any y € U. We have shown
that g,*((, %)) is open.

b) Let us apply the theorem of Fubini for the nonnegative function log | x, a| " on P*(C) x
P'(C) endowed with the measure dy(a) ® dw(x). This implies

= l , -1
-A;«»gw(x)dw(x) ];(cypwc)og‘x a| " du(a)dw(x)

Since the chordal distance and the measure dw(x) on P'(C) are invariant under the action
of the group SU(2),

Ma)= [ loglx,al™ du(x)

is independent of a. Let us compute it when a = co. For z € C, we know that |z, oo =
(1+]z[)*andw = 2(1 + |z|2)‘2 dxdy, hence

log(1 +|2[*)
)L( ) = Wdﬁ(,'dy

f f”’ log(1+7?) rdrdo
(1+7r2)?
~ < log(1+s) s)
2 _/o (1+s)”
by the change of variables s = r2. Integrating by parts, we have

M‘X’)Zil log( 1+s):|

1+ (1+s) 2
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Since A(00) < oo, we conclude that g, is integrable on P(C) for the measure dw, and that
Jor(c) 8u(x) dw(x) =1/2, as claimed.

c) Let ¢ € o7°(P*(C)). By definition of the current dd°[g,] and Fubini’s theorem, we
have

a(g)(9) = [  gux)ddp(x)

- [ [ toglx.al ™ du(a)ddco(x)
p:(C) JP(C)

- [ ( / 1og||x,au‘ldd°(p<x>)du<a>.
pi(c) \Jp(C)
ByLemma

Joey o8l al ™ ddpx) = ~ddflog |x,al () = (w = 8.)(p)

= fo, P00~ pla).

Consequently,

4(g)(9)= [ o oo, #@0@ du(@) = [ pla)d(a)

= fro, 9000~ [ pa)duta)
= (0-u)(9),

as was to be shown. O
Proposition (5.3). — For any real number r > r,,

1 27 )
(5:3:) m(firw) == [ gu(f(re)ao.

Proof. — This is a simple application of the theorem of Fubini for nonnegative functions.
Indeed,

mfirp) = o mifira)dua)

= R i0
_[pm 271_/0 log [ f(re®). a

-1 log Hf(re"@),a’_1 du(a)dé

~an Je(o)
1 ”
= — 7)) do. O
L gu(f(re?))
5.4. Let us assume that 4 = w. The computation done in Part b) of the proof of the preceding

lemma shows that g, is the constant function 1/2. Then m(f;r, w) = 1/2. We recover the
Mean Theorem.[)]

" d6du(a)

() Ah bon...
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Proposition (5.5). — Let us assume that g, is bounded on P'(C). If f has an essential
singularity at infinity, then 8(f, a) = o for u-almost every a € P*(C).

Proof. — By Proposition[s.3} m(f;r, u) is a bounded function of r. Then, Equation
implies that for r — oo,

T(f,re31r) = N(f,ros1, 1) + O(log(r)) = /};(C)N(f, rost,a)du(a) + O(log(r)).

Then we write

T(f,ros1) (f>7os1)

Arguing as in it follows from Fatou’s lemma that

ooy 30 @) duta) = o

hence the proposition. ]

_N(f,ro3r.a) 1) = log(r) ol
Jooo (1 52D ) - O ) <o)

Remark (5.6). — This is a remarkable strengthening of the property that the defects 8( f, a)
vanish for almost every a € P*(C). Indeed, it is possible to construct measures y for which
g, is bounded and whose supports have w-measure zero in P'(C).

For example, let y: [0,1] - P'(C) be a parameterized %*-curve with nonzero derivative.
Let u = y.dt be the image of Lebesgue measure on [o,1]. Then, for any x € P'(C), one has

gu(x) = [ logllx.y(n)] ™ ar.

By Jensen’s formula, for any « > o, one has

1 1 —-a 1 ! —a
g(x)= = [ logllx (0] dr < Zlog [ |xy(1)] ™ dr.

Up to decomposing the curve y in finitely many part, small enough so as to be contained in
open charts, we may assume that the image of y is contained in the domain U of a chart
¢: U — C. Up to a diffeomorphism, we may assume that the image of ¢ is the disk D(o,2)
and that y(t) = t for t € [0, 1]. It suffices to prove that g, is bounded on some neighborhood
of y([0,1]).

m = (%, 7)s (%, ), (0,) = x| + ]y - tl

f log|y -t dtSZ[ log|u|™ dt = 2.

§ 6. NEVANLINNA'S SECOND THEOREM

6.1. If we view f as a holomorphic map from Q to P*(C), its derivative is a holomorphic
map from the tangent bundle T, of Q) to the tangent bundle of P*(C). We can view it as
a section on () of the line bundle T ® f*Tp:(c). For any z € (), the order of vanishing
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v.(Df) atz of Df is given in terms of f, now viewed as a meromorphic function to C, by
the formulae:

(6.1.1) v.(Df) = {vz( 1y iff(2) # oo

v(f'f?) if f(2) = ce.
The ramification divisor of f, Ram(f), is the divisor on Q given by

(6.1.2) Ram(f) =) v.(Df)z.

zeQ)

Its support is the set of points at which the holomorphic map f: Q) — P*(C) is not a local
biholomorphism. For any a € P*(C), one defines Ram( f, a) as

(6.1.3) Ram(f,a) = le:( )vz(Df)z.
For any divisor D, one can define the corresponding reduced divisor D,q by
1 if D(z) > o;
Dia(z) =50 if D(z) = o;
-1 if D(z) <o.
with this notation,
(6.1.4) Ram(f,a) = f*(a) = f*(a)red>
and
(6.1.5) Ram(f) = le(:c) Ram( f, a).

For any effective divisor D, one defines naturally the counting function with respect to D
by the formula

(6.1.6) N(D,ry;1) = f log" L 6p.
C(ror+00) 2|
For a € P*(C), the ramification excess of f at the point a is then defined by

(647) e(f.a) = liminf N(R??Jg;i)/)rog .

Since Ram(f,a) < f*(a), it follows from Nevanlinna’s First Theorem that ¢(f, a) is a
nonnegative real number.

Theorem (6.2) (Nevanlinna’s Defects Relation). — Assume that f has an essential singularity
at infinity. Then,
(6.2.1) > 8(f.a)+e(f,a)<a

aeP(C)

Corollary (6.3). — The set of points a € P(C) such that §(f,a) + o ore(f,a) + o is
countable.

Corollary (6.4) (Picard’s Great Theorem). — If f omits at least three values, then f is
meromorphic at infinity.
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Proof. — Assume that f has an essential singularity at infinity. If f omits the value a, then
the defect §(f, a) = 1. All other terms in Nevanlinna’s Second Theorem being nonnegative,
we obtain that f omits at most two values. O]

We now prove Nevanlinna’s Defects Relation, beginning with a technical proposition
whose interest will appear later.

Lemma (6.5) (Emile Borel). — Let u, be a real number, let I be an interval in R let
@: [Uo, +00) — I be an increasing €*-function.

a) For any Borel function a: 1 — R there exists a Borel subset E of [u,, +00) of measure at
most [, dt/a(t) such that ¢'(u) < a(@(u)) for every u € [u,, +00) such that u ¢ E.

b) Assume that inf(I) > o. For any ¢ > 1, there exists a Borel subset E of [u,, +00) of finite
Lebesgue measure such that ¢'(u) < ¢(u)¢ for every u € [u,, +00) such that u ¢ E.

Proof. — a) Let E be the set of real numbers ¢ € [u,, +00) such that ¢'(u) > a(¢(u)).
Then, the measure of E can be estimated as follows:

Jodus ), a?’éd» ”Sfm%Sff%'

b) Since inf(I) > o and ¢ > 1, the function a:t — ¢=¢ is integrable on I. The first part
of the lemma shows that there exists a Borel subset of finite Lebesgue measure such that
@' (1) < (u)° for any u € [u,, +00) such that u ¢ E. O

Corollary (6.6). — Let u, be a real number, let A:[u,,+o0) — R, be a nonnegative continu-
ous function. For any u € [u,, +00),

O(u) - [+°° max(u — £,0) A(£) dt.

The function © is €* and satisfies ©(u,) = ©'(u,) = o, and ®" = A. Moreover, for
any ¢ > 1, there exists an open subset E of R of finite Lebesgue measure surch that A(u) < ©(u)°
for every u € [u,, +00) such that u ¢ E.

Proof. — For every u € [u,, +00), one has

@(u)=fu(u—t)A(t)dt:uqu(t)dt—futA(t)dt
so that ® is " and
®'(u) - uA(u)+/uouA(t)dt—uA(u) _ fuouA(t)dt

for every u € [u,, +00). It follows that ®’ is € and that ®” = A. In particular, ® is convex
and increasing.

There is nothing to show if A = o. Otherwise, there exists 1, > o such that A(u,) > o,
so that ®(u,) > 0o and ©®’(u,) > o. Let b = \/c. By the preceding lemma, applied to the
function @', the interval I = [@’(u,), +00) and the real number b, there exists a subset E’ c
[u,, +00) of finite Lebesgue measure such that ®”(u) < @'(u)? for every u € [u,, +o00) \ E'.
Applying the lemma once again, to the function @, the interval [@(u,, +o0) and the real
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number b, there exists a subset E c [u,, +00) of finite Lebesgue measure such that ®'(u) <
O(u)? for every u € [u,,+00) \ E.
Consequently, for every u € [u,, +00) such that u ¢ [u,, u,] U E U E’, one has

Au) =0"(u) <@ (u)’ <0(u)" = O(u)",
whence the corollary. O]

6.7. Let g be a nonnegative integer and let a,, . . ., a4 be distinct elements of P*(C). To prove
Theorem[6.2], it suffices to show the inequality

(6.7.1) zq_:é(f,an)+£(f,an)32.

For the proof, we shall consider the section Df of the line bundle Ty ® f* Ty, and its
norm | Df| for suitable hermitian metrics on Ty and Ty.
The chosen metric on Ty is the one for which

0

6.7. —
(6.7.2) 2

=1.

The metric on Ty takes the points a, into account, and is given by
(6.7.3) [l = 1-lles €
where the function ¢ is defined by

1

+C,

q
(6.7.4) ¢(x) =) log —
DO P P

for some real number c¢. We then get a new measure

(6.7.5) wy = e*w

on P*(C).

Lemma (6.8). — For any a € P*(C), let ¢, be the function x + log (|| a, x| log(e/ | a, x||))71
on P(C).

a) The function ¢, is smooth outside of a, the function e*%s is integrable on P*(C) with
respect to the measure given by the canonical 2-form w.

b) There is a unique real number c such that w, is a probability measure on P*(C).

Proof. — a) For x e P(C), e/ |a, x| > e, hence log(e/ | a, x||) > 1, so that the function ¢,
is well-defined and nonnegative. By its definition, we see that it is smooth outside of a. It
remains to show that [ e?+w is finite. Since the form w is invariant under the (transitive)
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action of the group SU(2, C), it suffices to treat the case a = oo. Then, for z € C,
1

9= p(z) = - —=w(z)
oo, 2|* (log(e o0, 2] ™))
S 1+ |z idzdz

7 (log(ey/1+]z[*))" (1+ )2
1 rdrd@
(1) (1+ tlog(1+r2))?’

using polar coordinates. Since 1/r(log(r))? is integrable around oo, we obtain the required
integrability.

b) Since the points a,, are pairwise distinct, it follows from part a) that e? is smooth outside
of {a,,...,a,} and that it is bounded by a constant multiple of e?+» in a neighborhood of a,,,
forany n € {1,..., q}. Consequently, e>¢ is integrable on P'(C) with respect to w. It is then
clear that there exists a unique real number ¢ such that e*?w is a probability measure. [

6.9. Since Df sends the tangent vector d/0z at z € Q) to the tangent vector f’(z)d/ow at
w = f(z), one has

so that
/(2]
(6.9.1) IDf(2)|, = |z] e?U @) i
’ 1+f(2)]
Consequently,
(6-9-2) f*wa = eﬂp(z) |f (Z)| ledZ ||Df( )Hz ledZ

(+1f () an el
We then consider the counting function with respect to the probability measure w,,. As
in the proof of the Mean theorem (Theorem [4.4), one deduces from Lemma [4.5|that

(6.9.3) N(f,ros1s0p) = o )log+ﬁf*w<p-

Replacing f*w, by its expression (6 in terms of | D f(z)| and passing in polar coordi-
nates, we obtain

694  N(rina,)- [C . max(1og() - 1og([z),) [DF ), < b,
We make the change of variables u = log(r), and u, = log(r,). For any r > r,, set

(6.95) A =2 [T Dfre)] do.

This gives

(6.9.6) N(f,ro;1, wg) = /oo max(log(r) —log(t),0)A(t) %

Uo
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Let b > 1. By Corollary[6.6] there exists a set E of finite Lebesgue measure in [u,, +00) such

that

= | |pf(re ) 460 < SN (frsir,w,)"

for any real number r > r, such that log(r) ¢ E. By Equation (5.1.3), we also have
N(fsrosmswp) = T(f1057) = m(f31, wg) + O(log(r)),

and m(f;r, w,) is nonnegative. Therefore,

(6.9.7) log(% fom HDf(re"e)Hq,df)) <O(log(T(f,r037))) + O(log(r)),

for any real number r > r, such that log(r) ¢ E.
Applying Jensen’s inequality, it follows that

698) = [log|Ds(re™)[ 48 < O(log(T(f.ri7))) + Ollog(r))

for any r > r, such that log(r) ¢ E.
On the other hand, we have the following estimate:

Proposition (6.10). — For any r > r,, one has

1 27 i0
(6.10.1) gy [) log HDf(re )Hq) do
q

= N(Ram(f),ro;7) = 2T(f,ro37) + Yy m(f51, an)

n=1

+0(log(r)) + O(log T(f370,7)).

Proof. — Recall that [Df(z)|, = e?® [Df(z)], so that
(6.10.2)

1 27 . 1 27 ) 1 27 )
~ [ T1og|Df(re®)[, a0 =~ [Tog|Df(re®)| a0+ = | ) do
= [ Ttog|py(re)|, 46 = = [Trog|Df(re )] a0+ [T p(s(re™)

The proposition obviously follows from the two following lemmas. O

Lemma (6.11). — For any r > r,, one has
(6.11.1) iﬂ fm log [Df(re®)| d6 = N(Ram(f), ro;7) — 2T (f, 1o;7) + O(log(r)).
2 o

Proof. — Observe that ¢,(Tx) = o and ¢,(Ty) = 2w. Consequently,
dd“log||Df| = Oram(s) — 2f " w.

This also follows from the formula:
IDfl = |l L2

1+ f(2)f
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Indeed, this expression, together with the definition of the form w, implies the desired
relation in a neighrborhood of any point z € Q such that f(z) # oo, since v,(Df) = v,(f")
in that case. On the other hand, if f(z) = oo, we write

f@l 1
(@) 1+ 1/ f)I”

and we get the desired formula, since v,(Df) = v,(f'/f?). Since d°log|z| = d6/2m, Green’s
formula implies that

N(Ram(f),ro;7) =2T(f,1057)
r
= log — (6 am(f) — 2f"
fc(w) 0g = (Oram(f) — 2f ")

IDf| = 2!

2]
r C
= ..., log ddlog |
_i 27 0 _i L 27 0
- = [T log|Dy(re) | a0 2ﬂlogrofo log | Df (re™®)| d6
== [T log| D (re)| 6 + O(log(r)). 0

Lemma (6.12). — Let a € P*(C) and let ¢,(x) = log(||a,x|\ log(e la,x|™ ))_1. For any
r > 1y, one has

(6.12.1) ﬁ [)M @a(f(re®))d0 = m(f;r,a) + O(log(T(f,757))).
Proof. — By definition of the proximity function,
a, f(re'®)| ™)
+ ; fomlog(log(e |a, x| ™)™)d6

1 a7 i
=m(f;r,a)—;fo log (loge [[a,x|™)d6.

By Jensen’s formula, the second term satisfies

1 2 1

= [T earredo =~ [T og

27T Jo 27T

i /mlog(log(e la,x]™))d6 < log(i [mlog(e ]a,x]|_1)d6) =log (1+ m(f;r,a)).

By Nevanlinna’s First Theorem,

1+m(fsr,a) <T(f,r037) +O(log(r)) = O(T(f, ro57))-

This concludes the proof of the lemma. ]

At this point, we have proved the following theorem.
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Theorem (6.13) (Nevanlinna’s Second Theorem). — There exists a set E of finite Lebesgue
measure such that, for any r > r, such that log(r) ¢ E,

(6.13.1)
Zq: m(f;r,a,) + N(Ram(f),r57) —2T(f,7r0;7) < O(log(r)) + O(log(T(f,1657))).

n=1

6.14. We may now complete (at last!) the proof of Nevanlinna’s Defect Relation. Since
Ram( f) is the sum of the effective divisors Ram( f, a), for a € P'(C), we also have

Zq: N(Ram(f,a,),r0;7) < N(Ram(f), ro; 1)

for any r > r,. Consequ;ntly, iflog(r) ¢ E,
(6. 14 1)
m(fir,a,)  N(Ram(f,a,),rr) - log(r) log(T(f,707))
TGt T 2ol ) ol )

Assume that f has an essential singularity at infinity. By Corollary|4.8]

lim —T(f’ roi7)
A g

= +00.

If we let r converge to infinity within the set of real numbers such that log(r) ¢ E, we thus
obtain the inequality

im m(f;r,a ) Jim N(Ram(f,a,),ro;7) X
dotim 7 i MO <o

In other words,

(6.14.2) Zq:B(f,an)nLe(f,an) < 2.

This concludes the proof of Nevanlinna’s Defects Relation. Considering the particular case
where we have only two points, a similar analysis will show the following theorem.

Theorem (6.15) (Theorem of the logarithmic derivative). — There exists a subset E of finite
Lebesgue measure in R such that

(6.15.1) m(f'[f;r,00) <Oog(T(f,7057))).

for any real number r > r, such that log(r) ¢ E.

Proof. — Let us consider the particular case where we have only two points, taken to o
and oo (in other words, g = 2, g, = 0, a, = o). Then,

HDf(Z) H(P = % |Z| e90(2) p#oo(2)
= ﬂ(z)‘ |Z| 1 1 |
log(e | f(z),0] ") log(e|f(z), 0] ")
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This will allow to estimate m(f'/f;r, 00) in terms of | Df| . Indeed, for |z| > 1, we have

log =log |Df(2)|, ~log|z| +loglog(e | f(2), 0] ") + loglog(e | f(2), o[ )

1 2
< Llog(1+ IDf()]2)
+loglog(e | f(2),0[ ™) +loglog(e | f(2), 00| ™).
Since the right hand side is nonnegative, it follows that for |z| > 1,
! 1 2
logmax(|f'/f(2)].0) < ~log(1+[Df(2)],)

+loglog(e [ f(2),0] ") +loglog(e | f(z), oo ™).

Let us integrate this relation on dD(r), for r > 1. Recalling Equation and applying
Jensen’s inequality, this gives

m(fIfireo) < Tlog (2= [T+ [Df(re)|)a0)
+log($ /omlog(e |f(re’®), 0 ‘_l)de)
+log(i /;Mlog(eHf(reiH),ooH_l)dG)

Silog(1+$v/:ﬂ ”Df(reie)”;de)
+log (1+ m(f;r,0)) +log(1+ m(f;r,0)).

E
)

For any a € P(C), we have

m(fir,a)=T(f,r3r) = N(f,re31,a) + O(log(r)) < O(T(f,r057))
since N(f,10;7,a) > oandlog(r) = O(T(f,.;7)). By Equation (6.9.7), there exists a set
E c R of finite Lebesgue measure such that

tog(= [ [Df(re®)[ d6) < O(log(1(f. rs1))).

for any real number r > r, such that log(r) ¢ E. This concludes the proof of the theorem of
the logarithmic derivative. [






CHAPTER 4

ANALYTIC CURVES IN PROJECTIVE VARIETIES

§ 1. GEOMETRY OF THE PROJECTIVE SPACE

1.1. The projective space. — We will consider holomorphic functions with values into the
projective space P"(C). Recall that it is the space of lines in C"*, written as the quotient of
C1 \ {0} by the action of C* acting by multiplication coordinatewise. For (z,,...,z,) €
C"* \ {0}, the line C(z,,...,z,) will be written [z, : ... : z,]; the complex numbers
(205 - - - »2,) will be called the homogeneous coordinates of [z, : ... : z,].

The projective space has a natural structure of a complex manifold. Let j € {o,...,n}
and let U; be the open subset of P"(C) consisting of points [z, : ... : z,] with z; # o.
On Uj, one may choose homogeneous coordinates so that the one with index j is equal to 1;
this identifies U; with the affine hyperplane of C"** with equation z; = 1 or, forgetting this
coordinate the coordinate with index j, with the affine space C”.

1.2. The tautological line bundle on P*(C). — Let €(—1) be the subspace of P"(C) x C"*
consisting of pairs (p,z) such that z € p. Together with the first projection : '(-1) —
P"(C), it is a line bundle, the structure of a vector space on the fibers is induced by the
corresponding structure of C"*'.

The restriction to U; of the line bundle &'(~1) is trivial, for &'(-1)|y, possesses a nonvan-
ishing section ¢, associating to a point p € U; the unique pair (p, z) such that z € p and
zj=1.Forp=[z,:...:2,] € Uin Uj, one has

zi&i(p) = (Z0s- - - 2n) = 2j€;(p).

The line bundle €(1) is defined as the dual of &'(-1). Any linear form & on C"** gives
rise to a section s; of &'(1). In this way, we get a morphism of vector spaces (C"*)" —
['(P"(C), 0(1)). This morphism is an isomorphism. First of all, it is injective: for & =
(8or..»&n) € (C")Y, p=[25:...:2,4] € Uj, we have

stj(p) = (ZO,...,ZH), Zj55(ej(p)) =& zo+ -+ &pzy.

If s; = o, then &z, + -+ + £,2, = o for any (z,,...,2,) € C""* \ {0}, hence £ = 0. It is also
surjective.
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1.3. Endow C™*' with its natural structure of a hermitian space, given by ||(2,, ..., z,)|" =
Yo |zj|2. This induces a hermitian metric on the line bundle &(-1), as well as on its
dual O(1). Let p € P*(C) be a point of the projective space, let L, c C"** be the correspond-

ing line, let z = (2o, ...,2,) € L, and let £ be a linear form on L,. So
2 2 2 f(z)
Iz = lzol + -+ zal™s €1 = =7
|zl
In particular, let (&,,...,&,) € C"** considered as the linear form & on C*** such that

&(2os...>24) = 2. &jz;. Then,
|£ozo te gnzn|

(|ZO|2 bt |Zn|2)1/2.

We will write €'(1) to denote the line bundle &'(1) together with this hermitian metric.

Ise(p)| =

1.4. The canonical Fubiny-Study form on the projective space. — The Fubini-Study form w

on P"(C) is defined as the curvature of the metrized line bundle &'(1). It is also the unique
differential form on P"(C) such that

7w = ~dd‘log (Z \z,~|2) ,
2 et
where 7: C*** \ {0} — P*(C) is the natural projection.
1.5. A (projective) hyperplane of P"(C) is the image by the projection 7: C*** \ {0} of a
hyperplane of C"**'. In other words, a hyperplane H of P"(C) is the set of points p = [z, :
... z,] whose homogeneous coordinates satisfy some linear equation &,z, + -+ + &,2,.
For p={z,:...:z,] € P*(C), one defines
|€ozo +--t fnzn|
2 2\1/2"

(|50| oot |£n| )

This is the distance of p to the hyperplane H. It vanishes if and only if p € H. If one writes
&E=(¢,,...,¢&,), it follows that

d(p,H) =

d(p, H) = |se(p)| &]-

§ 2. CHARACTERISTIC, COUNTING AND PROXIMITY FUNCTIONS

Definition (2.1). — The characteristic function of f is defined by

T(f,7o,7) = log" |-| f*w.

C(ro,+00)

r
z
Proposition (2.2). — The function T(f, ;1) is increasing, and a convex function in log(r).
In particular, T(f,ro;1)/log(r) has a limit when r — +oo.
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Definition (2.3). — Let H be a hyperplane of P"(C), with equation {,z, + -+ + £,z, = 0; let
f: (foa--->£n)-
If f(Q) ¢ H, then, the proximity function is defined by

m(fir H) = fc(,) logd(f,H)™ = /;mlogd(f(re“g))H)_1 g

Proposition (2.4). — The proximity function is a continuous and nonnegative function of r.

2.5. Let H be a hyperplane of P"(C), with equation .z, +---+§,z, = o;let £ = (&,, ..., ).
Then, f*s; is a section of f*¢(1) on Q which vanishes at points z € Q such that f(z) € H.
In particular, it is not identically o if f(Q) ¢ H; in this case, we will write f*H for its divisor.

Lemma (2.6). — Assume that f(Q) ¢ H. Then, f*log|s¢| is locally integrable on Q and
frw=08pp—dd°[f* logse].

Definition (2.7). — The counting function of f with respect to H is defined by

r

N(f,r;r,H) = o oo)10g+

2 (Sf*H-

Theorem (2.8) (First main theorem). — For any hyperplane H such that f(Q) ¢ H, one has
T(f,r057) = N(f 151, H) + m(f;r, H) + O(log(r)).

Proposition (2.9). — Embed P"(C) into P"*(C) by the map i: [z : ... z,] = [20:...:
2y :0]. Then T(f,ro31) = T(io f,ro37) forany r > r,.

Corollary (2.10). — When r — +oo, T(f,,;7)/log(r) has a finite limit if and only if f is
holomorphic at infinity, i.e., extends to a holomorphic function from Q U {co} to P"(C).

§ 3. WRONSKIAN

Definition (3.1). — Let U be an open subset of C and let F = (f,, ..., f,) be a holomorphic
function from U to C"*'. The Wronskian of F is the holomorphic function on U given by

fo fiooo
W(F) = det| S ST f{") .
fo fiooo £

Lemma (3.2). — Let U be an open subset of C, let F: U — C"** be a holomorphic function
from U to C"*.

a) For any matrix A € M,,,,(C), one has
W(A-F) = det(A) W(F).
b) For any holomorphic function ¢ on U, one has W(¢F) = ¢"** W(F).
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Proof. — a) Write A = (a;;), F = (fo»...,fs) and G = A-F = (g,,...,gs). Forany i
and j € {o,...,n},

gi = Z aikfk’
k=0
hence
(J) Z ai (J')_

This implies the following equality of matr1ces

( (J)) ( f(1)>
hence W(G) = det(A) W(F).
b) Set g; = ¢ f;. By the Leibniz rule for derivation of products, one has

-3 (o

k=0
forany i and j € {o,...,n}. Let ® = (¢4;) be the matrix with (k, j)-entry given by

o (e ik
/ o} otherwise.

One has the equality of matrices

()-(7)-»

The matrix @ is upper-triangular, and all diagonal entries are equal to ¢, so that det(®) =
¢"*1. Consequently, W(¢F) = ¢"** W(F), as was to be shown. O

Proposition (3.3). — Let U be a connected open subset of C, let F: U — C"** be a holomorphic
function from U to C"*'. Then the following properties are equivalent:

a) The Wronskian W (F) vanishes identically on U;
b) There exists an hyperplane of C"** which contains the image of F;

c) There exists a nonzero linear form ¢ on C"** such that (¢, F(z)) = o for every z € U.

Proof. — The last two properties are obviously equivalent; assume they hold and let
(ao,...,a,) be a nonzero vector in C**' such that a,f, + --- + a, f, vanishes identically
on U. Consequently,

aofo(j) +---+anfn(j) =0
for each j € {o,...,n}, so that the columns of the Wronskian matrix of F are linearly
dependent. This implies W(F) = o.

Let us prove the result in the other direction. For n = o, F = f, = W(F), hence the
result in that case. We prove the result by induction on 7, assuming that # > 1 and that the
result holds for n — 1. Let F: U - C"*! be a holomorphic map such that W(F) = o. If f,
is identically o, then the image of F is contained in the hyperplane with equation x, = o.
Otherwise, there exists a non-empty connected open subset V of U such that f, is invertible
onV.Setg; = fi/f, forie{o,...,n} and let G: V — C"*! be the holomorphic map given
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by (go>--->8x)- One has G = f;'F, hence W(G) = f;"*W(F) = o. On the other hand,
since g, = 1, one has

1 0o ... o© g g(")
/ (n) [EEEEEINP )
W(G) = det & & o 8o det] : :
P : / (n)
oo g0 s
By induction, g/, ..., g/, are linearly dependent and there exist a nonzero family (a,, ..., a,)

of complex numbers such that a,g] + --- + a,g], vanishes identically on V. Since V is
connected, a,g, +---+4a,g, takes a constant value on V, say —a,, so that a, + a,¢, +---+a,g,
vanishes identically on V. Multiplying by f,, we see that a, f, + a,f, + --- + a,, f, vanishes
identically on V. Since U is connected, the principle of analytic extension implies that this
identity holds on the whole of U, as was to be shown. [

§ 4. THE THEOREM OF CARTAN

4.1. Let Q) be a connected open neighborhood of oo in C; let , > o be such that Q >
C(ro,+00). Let f: Q — P"(C) be a holomorphic map. One says that f is nondegenerate if its
image f(Q) is not contained in a hyperplane of P"(C). As we have see, this is equivalent to
the fact that the Wronskian w(f) € I'(Q, f*&(n+1)) of f is nonzero. Its divisor div(w( f))
is called the ramification divisor.

4.2.Let H,, ..., H, be hyperplanes of P"(C). For every j € {1,...,q}, let {; be a nonzero
linear form on C"** defining H;. One says that (H,,...,H,) are in general position if
(&,5...»&;,) is free, for any integer p € {1,...,n + 1} and any sequence (ji,...,j,) of
distinct integers in {1,...,g}.

Theorem (4.3) (Cartan). — Let f: Q — P"(C) be a nondegenerate holomorphic map. Let
(H,,...,H,) be a family of hyperplanes in general position. Then, there exists a subset E of R
such that log(E) has finite measure and such that

(g-n-0)T(fsrir) € 3 N(F i, H))-N(ras Ram( £))+O(log(T(f. i) +O(log(r))
j=1
forany r € (r,,+00) \ E.

Remark (4.4). — The case where n =1 is exactly Nevanlinna’s second theorem.

Corollary (4.5). — Let f:Q — P" be a non degenerate holomorphic map. Let q > n + 2 and
let H,, ..., H, be hyperplanes in general positition. Assume that f(Q) c C U}Ll H;. Then f is
holomorphic at infinity.

Proof. — Indeed, N(f,r.;r,H;) = o for every j and every r > r,. Since ¢ > n + 2 and
N(ro;7,Ram(f)) > o, we get

T(fsr07) < O(log(T(f,1037))) + O(log(r)),
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for every r > r, such that r ¢ E. As a consequence, T(f,r,;7) < O(log(r)), hence f is
holomorphic at infinity. ]

Corollary (4.6). — Let f:C — P" be a holomorphic map, let g > n+2andlet H,, ..., H, be
hyperplanes in general position. If f(C) c CUHj, then f is degenerate.

Proof. — By the preceding corollary, f extends to a holomorphic map from P* to P". Since
g > n+2>2,thereexists j € {1,...,n+2} such that f(oo) ¢ Hj, so that f is a holomorphic
map from P'(C) to P*(C) \ H;. However, P"(C) \ H; is biholomorphically isomorphic
to C". This identifies f with a holomorphic map from P*(C) to C”. It must be bounded,
hence constant. [

Corollary (4.7) (Borel). — Let f,, ..., f, be holomorphic nonvanishing functions on C such
that f, + -+ f, = 1. Then there exists a finite family (g,,) mem of holomorphic nonvanishing
functions on C, a surjective map ¢:{o,...,n} - M, as well as complex numbers (a;)o<i<n
such that

- form + m', g,, and g, are not proportional;

- foranyie{o,...,n}, fi = aigy(i

~ for any m € M such that g, is nonconstant, then 3 c,-(m @i = O.

Say two functions are equivalent if their quotient is constant. In the sum f, +--- + f,, we
can trivially combine all terms from a given equivalence class; we get either the function o,
or an invertible function of the same class. The meaning of the corollary is the following:
the sum of all functions f; in a given equivalence class is equal to o, unless this is the class
of the constant function.

Proof. — We may also assume that the relation f, + --- + f, is minimal, in the sense that
no two functions f,, ..., f, are proportional; we then need to prove that n = 0. We shall
therefore prove by induction on # the following statement: there is no minimal relation if
nz1.

Argue by contradiction, and let us consider a minimal relation f, +-- -+ f,. Let us consider
themap f:C - P"(C) givenby f(z) = [fo(2) : ... fu(2)]. For je {o,...,n},let H; be the
hyperplane with equation z; = o; let H,,, be the hyperplane with equation z, +--- + z, = o.
By assumption, f(C) c CU H;. By the preceding corollary, the map f is degenerate, hence
there exist complex numbers a,, ..., a,, notall o, such that a, f, +--- + a, f, = 0. In other
words, (fo, ..., f,) are linearly dependent.

To fix the ideas, suppose that a, # o. Then, by subtraction, we get a relation

(=)ot

Eliminating the terms with a; = a,, we obtain a relation of the same form, but with < n
terms. By induction and the assumption that no two f; are proportional, this relation must
be trivial. In particular, up to renumbering the indices, we have a, = --- = a,,_, = a,, a, # a,,
and f, is constant. It follows that

1 a a
fit ot fa= —(aofot -+ anfs) - — fo=-—fo
a, an a,

n
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If a, # o, the right hand side is a nonzero constant; dividing by —a, f,/a,, we obtain a
minimal relation with » terms. This implies that n = 1 and that f, is constant, contradicting
the minimality of the original relation f, +--- + f, = 1.

Therefore, a, = o and f, +--- + f, = 0. We now write the latter relation as

(=L/f) +-+ (=ful f) =1
This is a minimal relation of the same form with n — 1 terms. Therefore, n =2 and - f,/ f, =

1, so that f, and f, are proportional, contradicting again the minimality of the original
relation. N
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