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CHAPTER 1

ELLIPTIC FUNCTIONS
AND THE THEOREMS OF PICARD

§ 1. INTRODUCTION: THE THEOREMS OF PICARD

�e theorems of Picard are about the values of holomorphic functions. Let us begin by
stating them.

Little Picard�eorem (1.1). — Let f ∶C→ C be an entire function. If f is not constant, then
f omits at most one value: the cardinality of C ∖ f (C) is at most equal to 1.

Observe that non constant polynomials take every value, but the exponential function
takes every value except for 0.

Great Picard�eorem (1.2). — Let r be a positive real number and let Ḋ(0, r) be the comple-
ment of the origin in the diskD(0, r) of radius r centered at the origin. Let f ∶ Ḋ(0, r)→ C be
any holomorphic function with an essential singularity at the origin. �en f omits at most
one value: the cardinality of C ∖ f (Ḋ(0, r)) is at most equal to 1.

�e “Little” theorem is indeed a consequence of the “Great” one. Let indeed f ∶C→ C be
an entire function and let us consider the holomorphic function g on Ḋ(0, 1) de�ned by
g(z) = f (1/z). Unless f is a polynomial, the function g has an essential singularity at the
origin. According to the Great Picard�eorem, g omits at most one value, and so does the
restriction of f to any neighborhood of in�nity. A fortiori, f omits at most one value.
1.3. For any open subset Ω of C, or any Riemann surface, one denotes with O(Ω) the set
of all holomorphic functions on Ω and withM (Ω) the set of all meromorphic functions
on Ω.
1.4. A trichotomy. — Let a ∈ C, let r be a positive real number and let f be a holomorphic
function on the disk Ḋ(a, r) deprived of a.�en f can be developed as a Laurent series:
there are complex numbers an, for n ∈ Z, such that for any z ∈ Ḋ(a, r), f (z) is the sum of
the converging series

f (z) =∑
n∈Z

an(z − a)n ,

the convergence being in fact locally uniform.
�ere are three mutually exclusive possibilities.
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a) �e function f is bounded in a neighborhood of a. �en an = 0 for all negative n, and
f extends to a holomorphic function on the diskD(a, r).

b) When z → a, ∣ f (z)∣ tends to +∞. �en, there exists a negative integer n0 such that
an0 ≠ 0 but an = 0 for every n < n0, and f extends to a meromorphic function onD(a, r),
with a pole of order −n0 at a.

c) In the remaining case, the set of negative integers n such that an ≠ 0 is in�nite and
one says that f has an essential singularity at a. Moreover, for any real number s ∈ (0, r),
f (Ḋ(a, s)) is dense in C (�eorem of Casorati–Weierstraß).

Let us give some details. �e �rst case relies on Riemann’s extension theorem. If f
is bounded in a neighborhood of a, then the function g on D(a, r) de�ned by g(z) =
(z − a)2 f (z) for z ≠ a and g(a) = 0 is holomorphic since it is C-di�erentiable on Ω ∖ {a},
as well as at a (with derivative 0). Let g(z) = ∑n≥0 bn(z − a)n be the Taylor expansion of g
at a. Since g(a) = g′(a) = 0, one has b0 = b1 = 0 hence f (z) = ∑n≥0 bn+2zn.
�e rest is mainly algebra. Assume that ∣ f (z)∣ → ∞ for z → a. �en, there exists a

real number s ∈ (0, r) such that f (z) ≠ 0 for any z ∈ Ḋ(a, s); let g be the holomorphic
function on Ḋ(a, s) given by g(z) = 1/ f (z). One has g(z)→ 0 for z → a); by the �rst case,
g extends to a holomorphic function on Ḋ(a, s). Let n0 be the order of vanishing of g at a;
the function h on Ḋ(a, s) de�ned by h(z) = g(z)/(z − a)n0 is holomorphic and does not
vanish at z = a, nor at any z ∈ Ḋ(a, s).�en, the function z ↦ (z − a)n0 f (z) = h(z)−1 is
holomorphic around a, as well as on Ḋ(a, r). Let∑n≥0 bn(z − a)n be its Taylor expansion;
we obtain that f (z) = ∑n≥−n0 bn+n0(z − a)n. Consequently, an = 0 for n < −n0, a−n0 = b0 =
h(0)−1 ≠ 0.�is shows that f is meromorphic at a, with a pole of order −n0 at a.
�e remaining case is the de�nition of an essential singularity. Let s ∈ (0, r) and let us

show that f (Ḋ(a, s)) is dense in C. Otherwise, there would exist a complex number b and
a positive real number δ such that f (z) − b ≥ δ for any z ∈ Ḋ(a, s). �en, the function
z ↦ 1/( f (z) − b) is holomorphic and nonzero on Ḋ(a, s), and bounded. By the �rst case,
it extends to a holomorphic function g on D(a, s). One has f (z) = b + 1/g(z) for any
z ∈ Ḋ(a, s). if g(0) ≠ 0, then f extends to a holomorphic function on D(a, s); if g has a
zero of order n0 at a, then f is meromorphic at a with a pole of order n0.
1.5. “Little” Picard and uniformization. — �emodern point of view proves the Little Picard
theorem as a consequence of the uniformization of Riemann surfaces. So let f ∶C→ C be
any entire function omitting at least two values; we need to show that f is constant. We may
assume that f (C) ⊂ C ∖ {0, 1}.�e universal cover of C ∖ {0, 1}, being a simply connected
Riemann surface, is isomorphic either to the Riemann sphere P1(C), or to the complex
plane C, or to the unit diskD = D(0, 1).
It cannot be P1(C) because C ∖ {0, 1} is not compact.
It cannot be C neither. Indeed, let Γ be the fundamental group of C ∖ {0, 1} (at some

base-point u).�en, Γ can be viewed as a subgroup of the group G of holomorphic di�eo-
morphisms of C, which is the group of a�ne transformations z ↦ az + b. No nontrivial
element of Γ can have a �xed point, because its orbit in C, which is discrete, would have a
limit point. Consequently, Γ acts by translations on C, and must be isomorphic to {0}, Z
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or Z2. However, π1(C ∖ {0, 1}) is the free group on two generators, and in particular, is not
abelian.
So the universal cover of C ∖ {0, 1} is the open unit diskD.�e map f li�s to a holomor-

phic function f̃ ∶C→ D, which is therefore bounded. By Liouville theorem, f̃ is constant,
and so is f .
1.6.�e classical proof of the theorems of Picard predate the uniformization theorem. In
fact, the universal cover of C ∖ {0, 1} is constructed explicitly, via elliptic and modular
functions.�is construction is the topic of the next sections, and we prove the theorems of
Picard in Section 11.

§ 2. LATTICES OF THE COMPLEX PLANE

2.1. Bases of the complex plane. — Let B be the set of R-bases of C, and let B+ be its
subset consisting of oriented bases. A pair (ω1,ω2) of complex numbers belongs toB if
and only if ω1,ω2 are non zero, and ω2/ω1 is not a real number.�e oriented area of the
parallelogram drawn on a pair of vectors (ω1,ω2) is equal to

(2.1.1) Area(ω1,ω2) = I(ω2/ω1) ∣ω1∣ .

Consequently, a pair belongs toB+ if, moreover, the imaginary part of ω2/ω1 is positive.
Observe also thatB andB+ are open subsets of C2.

2.2.�e group GL2(R) acts onB by multiplication on the right. Namely, for g = ( a b
c d ) ∈

GL2(R), and (ω1,ω2) ∈ B, set

(ω1,ω2) ⋅ g = (ω1,ω2)(
a b
c d) = (aω1 + cω2, bω1 + dω2);

this is again a basis of C. Assume that (ω1,ω2) is oriented; then (ω1,ω2) ⋅ g is oriented if
and only if g belongs to the subgroup GL2(R)+ of matrices with positive determinant. We
have thus de�ned a right-action of GL2(R) onB, and a right-action of GL2(R)+ onB+.
We transfer this right-action to a le�-action by transposing matrices: namely, we set, for
g ∈ GL2(R) and (ω1,ω2) ∈ B,

g ⋅ (ω1,ω2) = (ω1,ω2) ⋅ gT.

Explicitly,

(2.2.1) (a b
c d) ⋅ (ω1,ω2) = (aω1 + bω2, cω1 + dω2).

Lemma (2.3). — �e group GL2(R) acts simply transitively on B; the group GL2(R)+ acts
simply transitively on B+.
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Proof. — �e pair (1, i) is obviously an oriented basis of R. Observe that for any matrix
g = ( a b

c d ) ∈ GL2(R),

g ⋅ (1, i) = (a b
c d) ⋅ (1, i) = (1, i) ⋅ (a c

b d) = (a + ib, c + id).

�is shows that for any basis (ω1,ω2) ∈ B, there exists a unique matrix g ∈ GL2(R) such
that g ⋅ (1, i) = (ω1,ω2). If (ω1,ω2) is oriented, then g ∈ GL2(R)+.

2.4. Lattices. — Any subgroup of C generated by a basis of C as a real vector space is
called a lattice. By de�nition, a subgroup Λ of C is a lattice if and only if there exists a
basis (ω1,ω2) ∈ B such that Λ = Zω1 ⊕ Zω2. We shall say that (ω1,ω2) is a basis of Λ,
and an oriented basis if it is oriented. Exchanging ω1 and ω2 if necessary, we see that any
lattice possesses an oriented basis.�e absolute value of the area the parallelogram drawn
on (ω1,ω2) is then independent of the chosen basis; it is called the covolume of the lattice
and denoted covol(Λ).
LetR be the set of all lattices in C. We have seen that there is a natural surjective map

B+ →R, which associates to an oriented basis the lattice it generates. We shall endowR
with the quotient topology.

Lemma (2.5). — Let Λ be a lattice of C, let (ω1,ω2) be an oriented basis of Λ.
Let g ∈ GL2(R)+.�en g ⋅ (ω1,ω2) is a basis of Λ if and only if g ∈ SL2(Z), and g ⋅ (ω1,ω2)

generates a sublattice of Λ if and only if g ∈M2(Z).
In particular, for any oriented basis (ω′

1,ω′
2) of Λ, there exists a unique matrix g ∈ SL2(Z)

such that (ω′
1,ω′

2) = g ⋅ (ω′
1,ω′

2).

Proof. — Let g = ( a b
c d ) ∈ GL2(R). We have

g ⋅ (ω1,ω2) = (aω1 + bω2, cω1 + dω2).

By de�nition of a basis of a lattice, aω1 + bω2 belongs to Λ if and only if (a, b) ∈ Z2, and
cω1 + ω2 belongs to Λ if and only if (c, d) ∈ Z2. It follows that the lattice Λ′ generated by
g ⋅ (ω1,ω2) is contained in Λ if and only if g ∈ M2(Z). Conversely, using that (ω1,ω2) =
g−1 ⋅ (g ⋅ (ω1,ω2)) we see that Λ′ = Λ if and only if both g and g−1 have integral coe�cients,
that is, if and only if g ∈ GL2(Z).�e lemma follows from that, since g ∈ GL2(R)+.

§ 3. THE UPPER HALF PLANE

De�nition (3.1). — �e set Π of all complex numbers z such that I(z) > 0 is called the
Poincaré upper half plane
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3.2.�e upper half plane appears naturally when one considers bases, or lattices, of C only
up to homothety. Let indeed Λ be a lattice and let (ω1,ω2) be a basis of Λ. One can write

Λ = Zω1 ⊕ Zω2 = ω1(Z +
ω2
ω1
Z) = ω1(Z + τZ),

where τ = ω2/ω1 is a non-real complex number.�e basis (ω1,ω2) is oriented if and only if
I(τ) > 0, that is if τ ∈ Π.
�is shows that the map (ω1,ω2)↦ ω2/ω1 identi�es the spaceB+/C∗ of bases modulo

homothety with the upper half plane Π.
3.3. Action of SL2(R) on the upper half plane. — �e action of SL2(R) on B and B+

commutes with homotheties, hence it induces an action of SL2(R) on Π.
Let g = ( a b

c d ) ∈ SL2(R). From the computation
g ⋅ (1, τ) = (a + bτ, c + dτ),

we see that g acts on τ ∈ Π by an homography:

(3.3.1) g ⋅ τ = c + dτ
a + bτ

.

�e scalar matrices act trivially on Π, so that we get an action of PSL2(R).
3.4. Let τ1, τ2 ∈ Π. �e two corresponding lattices Λ1 = Z + Zτ1 and Λ2 = Z + Zτ2 are
homothetic if and only if there exists g ∈ PSL2(Z) such that τ2 = g ⋅ τ1.
We have shown that the set R of lattices of C is isomorphic to the quotient

space SL2(Z)/B+.�e set of lattices up to homothety is thus isomorphic to SL2(Z)/Π.
Remark (3.5). — Usually, the action of PSL2(R) on Π is de�ned by the formula:

(3.5.1) g ∗ τ = aτ + b
cτ + b

,

which does not coincide with the action of PSL2(R) on Π we have introduced. However,
these actions are conjugate one to the other via an automorphism of SL2(R). Let indeedw be
the element ( 0 11 0 ) of GL2(Z).�e inner automorphism ofGL2(R) given by g ↦ gw = wgw−1

is an involution and induces automorphisms of SL2(R) and SL2(Z). Moreover, if g = ( a b
c d ),

then gw = ( d c
b a ), so that

(3.5.2) gw ∗ τ = g ⋅ τ.
3.6. Reduced bases. — A reduced basis of a lattice Λ such that ω1 is an element of minimal
norm in Λ ∖ {0} and ω2 is an element of minimal norm among all elements ω2 ∈ Λ ∖ Zω1
such that (ω1,ω2) is an oriented basis of Λ.
Lemma (3.7). — Any lattice possesses a reduced basis.

Proof. — Let z be any nonzero element of Λ. Since Λ is discrete, there are �nitely many
nonzero elements λ ∈ Λ such that ∣λ∣ ≤ ∣z∣. Hence there exists one, ω1, of smallest absolute
value.

�e vector ω1 is primitive in the lattice Λ, so can be completed in a basis (ω1,ω2) of Λ,
a basis which we may even assume to be oriented.�e set of λ ∈ Λ such that (ω1, λ) is an
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oriented basis and ∣λ∣ ≤ ∣ω2∣ is �nite, so contains an element ω′
2 of smallest absolute value,

and (ω1,ω′
2) is a reduced basis of Λ.

Proposition (3.8). — Let (ω1,ω2) be a basis of a lattice Λ and let τ = ω2/ω1.�en (ω1,ω2)
is a reduced basis if and only if ∣τ∣ ≥ 1 and ∣R(τ)∣ ≤ 1

2 .

Proof. — Assume that (ω1,ω2) is reduced. By de�nition of ω1, one has ∣ω2∣ ≥ ∣ω1∣, whence
∣τ∣ ≥ 1. Moreover, (ω1,ω2 ± ω1) is also an oriented basis of Λ. by de�nition of a reduced
basis, ∣ω2 ± ω1∣ ≥ ∣ω2∣, hence ∣τ ± 1∣ ≥ ∣τ∣. �is means than τ is closer to 0 than to 1 or −1,
hence − 12 ≤R(τ) ≤ 1

2 .
Conversely, assume that these inequalities are satis�ed. Let (m, n) ∈ Z2 ∖ {0}. Let us

prove that ∣m + nτ∣ ≥ 1, and that ∣m + nτ∣ ≥ τ if m ≠ 0.
If n = 0, then ∣m + nτ∣ = ∣m∣ ≥ 1. Assume that n = 1. If m = 0, we have ∣m + τ∣ = ∣τ∣ ≥ 1;

otherwise, we see geometrically that ∣m + τ∣ ≥ ∣τ − 1∣ ≥ ∣τ∣ if R(τ) ≥ 0, and ∣m + τ∣ ≥
∣τ + 1∣ ≥ ∣τ∣ if R(τ) ≤ 0. �e case n = −1 is analogous. Let us now assume that ∣n∣ ≥ 2.
�en, ∣m + nτ∣ ≥ ∣n∣I(τ) ≥ 2I(τ). Moreover, I(τ) ≥ 1

2
√3 and ∣R(τ)∣ ≤ 1

2 , so that I(τ) ≥√3 ∣R(τ)∣.�is implies 4I(τ)2 ≥ 3 ∣τ∣2, hence ∣m + nτ∣ ≥ √3 ∣τ∣ > ∣τ∣.
�is implies that ∣ω1∣ is a nonzero element of Λ of shortest absolute value, while any

element of Λ ∖ Z has absolute value at least ∣τ∣ ∣ω1∣ = ∣ω2∣, hence the proposition.
3.9. Let F be the subset of Π given by the inequalities of Proposition 3.8. It is called the
fundamental domain of Π. One has PSL2(Z) ⋅ F = Π.

−1 − 12 0 1
2 1

∣τ∣ = ∣τ − 1∣∣τ∣ = ∣τ + 1∣

∣τ∣ = 1

F

Figure 1. �e fundamental domain F for the action of SL2(Z) on Π

§ 4. BI-PERIODIC MEROMORPHIC FUNCTIONS

De�nition (4.1). — Let Λ be a lattice in C. An elliptic function with respect to the lattice Λ
is a meromorphic function on C which is invariant by translations under every element of Λ.

We writeM (C/Λ) for the set of elliptic functions with respect to Λ.
Proposition (4.2). — M (C/Λ) is a �eld extension of C.
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Remark (4.3). — Let Λ be a lattice in C and let f be an elliptic function with respect to Λ.
Let p ∈ C. By de�nition of a periodic function, f (p + λ) = f (p) for every λ ∈ Λ.�is

allows to write f (u) = f (p) if u ∈ C/Λ is the class of p.
For λ ∈ Λ, the relation f (z + λ) = f (z) implies that the order of vanishing vp( f ) of f

at p equals the order of vanishing of f at p + λ. If u ∈ C/Λ is the class of p, we may thus
write vu( f ) for vp( f ).
Similarly, the residue Resp( f ) of f at p is equal to the residue of f at p + λ, so that we

may set Resu( f ) = Resp( f ).

Proposition (4.4). — Let Λ be a lattice in C and let f be an elliptic function with respect to Λ.

a) One has∑u∈C/Λ Resu( f ) = 0;
b) If f ≠ 0, then∑u∈C/Λ vu( f ) = 0.

Proof. — Let (ω1,ω2) be an oriented basis of Λ. To prove the �rst relation, we integrate f
along the boundary ∂F of a fundamental parallelogram. Since f is meromorphic, it has
�nitely many poles in any compact subset of C and there exists a ∈ C such that f has no
pole on the boundary ∂F of the fundamental parallelogram F = a + [0, 1]ω1 + [0, 1]ω2. By
the residue theorem, one has

∫
∂F

f = 2πi∑
p∈F̊
Resp( f ).

Since f has no pole on ∂F, any pole of f is congruent modulo Λ to a unique pole
of f contained in F̊, so that the right-hand-side of the previous formula is equal to
2πi∑u∈C/Λ Resu( f ).
On the other hand,

∫
∂F

f = ∫
1

0
f (a + tω1)dt + ∫

1

0
f (a + ω1 + tω2)dt

+ ∫
1

0
f (a + (1 − t)ω1 + ω2)dt + ∫

1

0
f (a + (1 − t)ω2)dt.

Since f is an elliptic function, f (z + ω1) = f (z + ω2) = f (z), hence

∫
1

0
f (a + tω1)dt + ∫

1

0
f (a + (1 − t)ω1 + ω2)dt

= ∫
1

0
f (a + tω1)dt + ∫

1

0
f (a + (1 − t)ω1)dt = 0

and

∫
1

0
f (a + ω1 + tω2)dt + ∫

1

0
f (a + (1 − t)ω2)dt

= ∫
1

0
f (a + tω2)dt + ∫

1

0
f (a + (1 − t)ω2)dt = 0.

Consequently, ∫∂F f = 0, which proves the �rst equality.
If f ≠ 0, we can apply this formula to the elliptic function f ′/ f . For any p ∈ F, one has

Resp( f ) = vp( f ′/ f ), hence the second equality.



10 CHAPTER 1. ELLIPTIC FUNCTIONS AND THE THEOREMS OF PICARD

4.5. Let a ∈ C. If f is not the constant function a, then the set of elements u ∈ C/Λ such
that f (u) = a is �nite. We can thus de�ne n( f , a) = ∑u∈ f −1(a) vu( f − a). Similarly, the
set of u ∈ C/Λ such that f (u) = ∞ (the poles of f ) is �nite and we de�ne n( f ,∞) =
∑u∈ f −1(∞)(−vu( f )).

Proposition (4.6). — Let Λ be a lattice in C and let f be a non-constant elliptic function with
respect to Λ. For any a ∈ C, n( f , a) = n( f , 0) = n( f ,∞).

Proof. — Proposition 4.4, applied to the function f , implies readily that n( f , 0)−n( f ,∞) =
0. If a ∈ C, replacing f by f − a, we get that n( f , a) = n( f − a, 0) = n( f − a,∞) =
n( f ,∞).

Corollary (4.7). — Any non-constant elliptic function has at least one pole. If a non-constant
elliptic function has a single pole modulo Λ, then its order is at least 2.

Proof. — Let f be a non-constant elliptic function, let a be some value taken by f . One
has n( f , a) > 0. Consequently, n( f ,∞) > 0 which shows that f cannot be holomorphic
everywhere. Assume that u is the only pole of f modulo Λ.�en, Resu( f ) = 0; this implies
that vu( f ) ≠ 1, whence the result since vu( f ) > 0.

§ 5. THE ℘-FUNCTION

Lemma (5.1). — Let Λ be a lattice in C. For any z ∈ C ∖ Λ, the series

(5.1.1)
1
z2
+ ∑

λ∈Λ∖{0}
( 1
(z − λ)2 −

1
λ2

)

converges to a complex number ℘Λ(z), the convergence being locally uniform.
�e function ℘Λ is an elliptic function with respect to Λ.

Proof. — For λ →∞, we have the following asymptotic expansion
1

(z − λ)2 −
1
λ2

= 1
λ2

(1 − z
λ
)
−2
− 1

λ2
= 1

λ2
(1 +O(1/λ)) − 1

λ2
= O(1/λ3).

More precisely, for any positive real number R, there exists a real number B such that

∣ 1
(z − λ)2 −

1
λ2

∣ ≤ B/ ∣λ3∣

for any pair (z, λ) such that ∣z∣ ≤ R and ∣λ∣ > 2R.�is implies the convergence of the series

∑
∣λ∣>2R

( 1
(z − λ)2 −

1
λ2

)

for any z ∈ C such that ∣z∣ ≤ R.�e convergence being uniform, the limit is a holomorphic
function on the open disk Ḋ(0, R). Adding the �nitely many missing terms, we see that the
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given series converges to a meromorphic function on that disk, whose only poles are in Λ.
Since R is arbitrary, ℘Λ is a meromorphic function on C, holomorphic on C ∖ Λ.
According to Cauchy’s theory, its derivative is given by the termwise derivative of the

series.�erefore, for any z ∈ C ∖ Λ,

℘′Λ(z) = −2∑
λ∈Λ

1
(z − λ)3 .

�is formula shows that ℘′Λ is an elliptic function.
Let (ω1,ω2) be a basis of Λ. Since℘′Λ(z+ω1) = ℘′Λ(z) for any z ∈ C∖Λ,℘Λ(z+ω1)−℘Λ(z)

is a constant c1. oreover, ±ω1/2 is not a pole of ℘Λ, because ω1/2 does not belong to Λ. We
thus get c1 = ℘Λ(ω1/2) − ℘Λ(−ω1/2) = 0 since, by the very de�nition of ℘Λ, this is an even
function. Consequently, ω1 is a period of ℘Λ. Similarly, ω2 is a period of ℘Λ.�is proves
that ℘Λ is an elliptic function.

5.2.We see that u = 0 is the only pole of ℘Λ in C/Λ, and that v0(℘Λ) = −2. �is gives
n(℘Λ ,∞) = 2. Consequently, n(℘Λ , a) = 2 for any a ∈ C.
Similarly, n(℘′Λ , a) = 3 for any a ∈ C ∪ {∞}. Moreover, the function ℘′Λ is odd. Let

(ω1,ω2) be an oriented basis of Λ. �e three points ω1/2, ω2/2 and (ω1 + ω2)/2 are the
(only) three non-zero elements of C/Λ which are equal to their opposite.�e function ℘′Λ
must vanish at any of them. Since n(℘′Λ , 0) = 3, ω1/2, ω2/2 and (ω1 + ω2)/2 are the only
zeroes of ℘′Λ, and these zeroes are simple.

Proposition (5.3). — For any pair (u, v) of points inC/Λ, ℘Λ(u) = ℘Λ(v) if and only if u = v
of u = −v.

Proof. — Since ℘Λ is even, ℘Λ(u) = ℘Λ(v) if u = v or u = −v. Conversely, �x u ∈ C/Λ;
we have seen that n(℘Λ ,℘Λ(u)) = n(℘Λ ,∞) = 2. If u /∈ 1

2Λ/Λ, z = u and z = −u are two
distinct elements of C/Λ where ℘Λ takes the value ℘Λ(u); consequently, they are the only
ones. If u = 0, we observe that ℘Λ has a pole of order 2 at 0, and no other pole modulo Λ.
Finally, if u ∈ 1

2Λ/Λ but u /∈ Λ, the relation ℘′Λ(u) = 0 shows that z = u is a double root
of ℘Λ(z) − ℘Λ(u). Consequently, there is no other element of C/Λ at which ℘Λ takes the
value ℘Λ(u).

§ 6. THE FIELD OF ELLIPTIC FUNCTIONS

6.1. Laurent expansions of ℘Λ and ℘′Λ. — Let Λ be a lattice in C; let Λ∗ = Λ ∖ {0}. Let
(ω1,ω2) be a reduced basis of Λ; in particular, ∣λ∣ ≥ ∣ω1∣ for any λ ∈ Λ∗.�e meromorphic
functions ℘Λ and ℘′Λ are meromorphic on the open disk Ḋ(0, ∣ω1∣) with 0 as only pole. We
compute here their Laurent expansion.
For every z ∈ C and λ ∈ Λ such that ∣z∣ < ∣λ∣, one can write

1
λ − z

= 1
λ

1
1 − z/λ

= 1
λ

∞
∑
n=0

( z
λ
)n .
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Di�erentiating, we obtain
1

(λ − z)2 = −
d
dz

( 1
λ − z

) = 1
λ

∞
∑
n=1

nz
n−1

λn ,

so that
1

(λ − z)2 −
1
λ2

= 1
λ

∞
∑
n=2

nz
n−1

λn =
∞
∑
n=1

(n + 1) zn
λn+2 .

In particular, for any z ∈ C such that 0 < ∣z∣ < ∣ω1∣, we get

℘Λ(z) =
1
z2
+

∞
∑
n=1

(n + 1)
⎛
⎝ ∑

λ∈Λ∖{0}

1
λn+2

⎞
⎠
zn .

For any positive integer k such k ≥ 3, let us de�ne the Eisenstein seriesGk(Λ) of weight k
by the converging series:

(6.1.1) Gk(Λ) = ∑
λ∈Λ∖{0}

1
λk .

We also observe that for any u ∈ C∗,
(6.1.2) Gk(uΛ) = u−kGk(Λ).

For odd k, one has Gk(Λ) = 0. We thus have, for any z ∈ Ḋ(0, ∣ω1∣),

(6.1.3) ℘Λ(z) =
1
z2
+

∞
∑
k=1

(2k + 1)G2k+2(Λ)z2k .

By termwise di�erentiation, we also get

(6.1.4) ℘′Λ(z) =
−2
z3

+
∞
∑
k=1
2k(2k + 1)G2k+2(Λ)z2k−1.

�eorem (6.2). — For any z ∈ C ∖ Λ, one has
(6.2.1) (℘′Λ)2(z) = 4℘3Λ(z) − 60G4(Λ)℘Λ(z) − 140G6(Λ).

To shorten the notation, we set

(6.2.2) g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ).
�e di�erential equation of ℘Λ can then be written
(6.2.3) (℘′Λ)2(z) = 4℘3Λ(z) − g2(Λ)℘Λ(z) − g3(Λ).

Proof. — Modulo Λ, the origin is the only pole of the six elliptic functions ℘Λ, ℘2Λ, ℘
3
Λ, ℘′Λ,

℘Λ℘′Λ and (℘′Λ)2, and the order of this pole is at most 6. Consequently, their must be a
nontrivial linear combination of them which is an elliptic function without a pole of order
at most 1 at the origin, hence is constant. Since ℘Λ, ℘2Λ, ℘

3
Λ, and (℘′Λ)2 are even, while ℘′Λ

and ℘Λ℘′Λ are odd, there is already such a linear combination among those functions. Let
us compute it explicitly.
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We �rst compute the terms of low order in the Laurent expansion of these functions. To
shorten the notation, we write Gk for Gk(Λ). We have

℘Λ(z) =
1
z2
+ 3G4z2 + 5G6z4 +O(z6)

℘′Λ(z) = −2
1
z3
+ 6G4z + 20G6z3 +O(z5)

℘2Λ(z) =
1
z4

(1 + 3G4z4 +O(z6))2

= 1
z4
+ 6G4 +O(z2)

(℘′Λ)2(z) = 4
1
z6

(1 − 3G4z4 − 10G6z6 +O(z8))2

= 4 1
z6
− 24G4

1
z2
− 80G6 +O(z2)

℘3Λ(z) =
1
z6

(1 + 3G4z4 + 5G6z6 +O(z8))3

= 1
z6

(1 + 9G4z4 + 15G6z6 +O(z8))

= 1
z6
+ 9G4

1
z2
+ 15G6 +O(z2).

Consequently,

(℘′Λ)2(z) − 4℘3Λ(z) = −24G4
1
z2
− 80G6 +O(z2) − 36G4

1
z2
− 60G6 +O(z2)

= −60G4
1
z2
− 140G6 +O(z2),

so that

(℘′Λ)2(z) − 4℘3Λ(z) + 60G4℘Λ(z) = −60G4
1
z2
− 140G6 +O(z2) + 60G4

1
z2
+O(z2)

= − 140G6 +O(z2)

and
(℘′Λ)2(z) − 4℘3Λ(z) + 60G4℘Λ(z) + 140G6 = O(z2).

�e le�-hand-side is an elliptic function with respect to Λ whose poles are contained in Λ.
It extends to a holomorphic function at 0, with value 0. By periodicity, it is holomorphic
everywhere, hence must be a constant, necessarily zero.

Di�erentiating the preceding relation and simplifying by the non-zero elliptic function℘′Λ,
we get the following corollary.

Corollary (6.3). — For any z ∈ C ∖ Λ, one has

℘′′Λ(z) = 6℘2Λ(z) − 30G4(Λ).
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6.4.We have already proven that ℘′ vanishes at ω1/2, ω2/2 and (ω1 + ω2)/2, and that the
values of ℘ at these points,
(6.4.1) e1 = ℘(ω1/2), e2 = ℘(ω2/2), and e3 = ℘((ω1 + ω2)/2)
are distinct. By�eorem 6.2, e1, e2 and e3 are the roots of the polynomial of degree 3,

4X3 − g2(Λ)X − g3(Λ).
�erefore, its discriminant
(6.4.2) ∆(Λ) = 16(e1 − e2)2(e − 1 − e3)2(e2 − e3)2 = g2(Λ)3 − 27g2(Λ)2

does not vanish.

Proposition (6.5). — Let Λ be a lattice in C. Any even elliptic function with respect to Λ can
be expressed as a rational function in ℘Λ, any elliptic function can be expressed as a rational
function in ℘Λ and ℘′Λ. More precisely, the minimal polynomial of ℘′Λ over the sub�eld C(℘Λ)
generated by℘Λ inM (C/Λ) is equal to T2−4℘3Λ+g2(Λ)℘Λ+g3(Λ).�ere is an isomorphism
of �eld extensions of C,

C(X)[Y]/(Y 2 − 4X3 + g2(Λ)X + g3(Λ))
∼Ð→M (C/Λ),

which maps X to ℘Λ and Y to ℘′Λ.

Proof. — By�eorem 6.2, ℘′Λ is a root of the polynomial P(T) = T2 − (4℘3Λ − g2(Λ)℘Λ −
g3(Λ)) with coe�cients in the sub�eld C(℘Λ) generated by ℘Λ. �e function ℘′Λ does
not belong to this sub�eld because it is odd, while any elliptic function in C(℘Λ) is even.
�is shows that this polynomial P(T) is irreducible. Since ℘Λ is non-constant, C(℘Λ) is
isomorphic to the �eld of rational functions C(X), and the �eld C(℘Λ ,℘′Λ) is isomorphic
to C(X)[Y]/(Y 2 − 4X3 + g2(Λ)X + g3), as claimed.
It remains to show that ℘Λ and ℘′Λ generate the �eld of elliptic functionsM (C/Λ), and

that ℘Λ generates the sub�eld of even elliptic functions. Let f be any non-constant elliptic
function.�e formula

f (z) = f (z) + f (−z)
2

+ f (z) − f (−z)
2

expresses f as the sum of an even and of an odd elliptic function. Observing that f℘′Λ is
even if f is an odd elliptic function, it su�ces to show that any even elliptic function belongs
to C(℘Λ).
Let thus f be an even elliptic function. If p ∈ C is a zero (resp. a pole) of f , then so is

−p, with the same order. Moreover, if p ≡ −p (mod Λ), then this order is even. Indeed,
let λ ∈ Λ such that −p = p + λ. For any integer k, one has f (k)(−z) = (−1)k f (k)(z) and
f (k)(z + λ) = f (k)(z), so that

f (k)(p) = (−1)k f (k)(−p) = (−1)k f (k)(p + λ) = (−1)k f (k)(p).
In particular, f (k)(p) = 0 if k is odd.
Let a1, . . . , an be complex numbers not belonging to Λ, pairwise distinct modulo Λ, and

such for any zero (reps. any pole) p of f with p /∈ Λ, there is an integer i ∈ {1, . . . , n} such
that p = ±ai . For any i ∈ {1, . . . , n}, set di = 2 if ai ≡ −ai (mod Λ) and di = 1 otherwise.
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�e function ℘(z) − ℘(ai) has a pole of order 2 at z = 0, and a zero of order di at ±ai . Let
us de�ne an elliptic function g ∈ C(℘Λ) by

g(z) =
n
∏
i=1

(℘(z) − ℘(ai))vai ( f )/d i .

Since for every i, ai /∈ Λ, the function g has a zero (or pole) of order va i( f ) at ±ai . At the
origin, it has a zero of order

−2
n
∑
i=1

va i( f )/di = − ∑
u∈C/Λ
u≠0

vu( f ) = v0( f ).

Consequently, the quotient f (z)/g(z) is an elliptic function without zeroes nor poles, hence
is constant.�is shows that f ∈ C(℘Λ) and concludes the proof of the proposition.

§ 7. ELLIPTIC CURVES VIEWED AS RIEMANN SURFACES

7.1. Let Λ be a lattice inC. Let π∶C→ C/Λ be the natural projection. If Ω is any open subset
of C/Λ, we say that a function f ∶Ω → C is holomorphic if the function f ○ π on π−1(Ω) is
holomorphic.�is endowed C/Λ with the structure of a Riemann surface.

Proposition (7.2). — Let Λ1 and Λ2 be lattices in C. Let π1∶C→ C/Λ1 and π2∶C→ C/Λ2 be
the natural projections.
Let a ∈ C such that aΛ1 ⊂ Λ2 and let b ∈ C. �ere exists a unique map f ∶C/Λ1 → C/Λ2

such that f (π1(z)) = π2(az + b). It is holomorphic.
Conversely, any morphism of Riemann surfaces f ∶C/Λ1 → C/Λ2 is of this form, for some

unique pair (a, b) ∈ C ×C/Λ.

Proof. — �e �rst part is obvious. Let b ∈ C be any point in π−12 ( f (0)). Since C is simply
connected, the theory of coverings shows the existence of a unique holomorphicmap f̃ ∶C→
C such that π2( f̃ (z)) = f (π1(z)) and f̃ (0) = b. For any λ ∈ Λ1, let φ(λ) = f̃ (λ) − f̃ (0).
�en, z ↦ f̃ (z + λ) − φ(λ) is a li� of f ○ π1 which takes the value b = f̃ (0) at the origin.
Consequently, f̃ (z + λ) = f̃ (z) + phi(λ) for every z ∈ C.�is implies that the function f̃ ′
is an elliptic function. It is entire, hence takes a constant value a, and f̃ (z) = az + b. For
λ ∈ Λ1,

f (0) = f (λ) = π2( f̃ (λ)) = π2(aλ + b) = π2(aλ) + π2( f̃ (0)) = π2(aλ),
so that aλ ∈ Λ2.
7.3. An elliptic curve is a Riemann surface endowed with a base-point which is isomorphic
to the quotient C/Λ of C by a lattice Λ, with base-point 0.
Morphism of elliptic curves are supposed to respect the base-points. By the proposition,

anymorphism of elliptic curves f ∶ (C/Λ1, [0])→ (C/Λ2, [0]) is of the form π1(z)↦ aπ2(z)
for some unique a ∈ C such that aΛ2 ⊂ Λ1.
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Corollary (7.4). — Any elliptic curve has a unique structure of a complex Lie group for which
the origin is the neutral element. A morphism of elliptic curves is a morphism of groups.

§ 8. ELLIPTIC CURVES AS ALGEBRAIC CURVES

8.1. Let P ∈ C[X] be a polynomial of degree 3 with simple roots. Let FP = X0X22 −
X30P(X1/X0); this is a homogeneous polynomial of degree 3 in the indeterminates X0, X1, X2.
Let CP be the projective algebraic curve de�ned by the polynomial FP in the complex projec-
tive space P2(C), namely the set of points [x0 ∶ x1 ∶ x2] ∈ P2(C) such that FP(x0, x1, x2) = 0.

Lemma (8.2). — �e curve CP is irreducible and nonsingular.

Proof. — We study this question in a�ne charts of P2(C). On the open set U0 given by
x0 ≠ 0, we can write [x0 ∶ x1 ∶ x2] = [1 ∶ x ∶ y] and the equation of CP is F0(X ,Y) =
F(1, X ,Y) = Y 2 − P(X). Since the polynomial P has odd degreen it is not a square, hence
F0 is irreducible in C[X ,Y].�erefore, the curve CP ∩U0 is irreducible. Since deg(P) = 3,
the coe�cient of X31 in FP is nonzero, so that FP is prime to X0. �is implies that the
polynomial FP is irreducible, so that CP is an irreducible curve.
A singular point of CP ∩U0 is a point (x , y) at which F0 vanishes, as well as the partial

derivatives of F0. One has ∂
∂X F0 = −P′(X) and ∂

∂Y F0 = 2Y .�e equations F0(x , y) = 2y =
−P′(x) = 0 imply that x is a common root of P and of P′; since all roots of P are distinct,
CP ∩U0 is nonsingular.

�e only point of CP which does not belong toU0 is the point o = [0 ∶ 0 ∶ 1] and it remains
to show that CP is nonsingular there. On the open set U2 given by x2 ≠ 1, we can write
[x0 ∶ x1 ∶ x2] = [t ∶ x ∶ 1] andCP∩U1 is de�ned by the polynomial F2(T , X) = T−P(X/T)T3.
Since P(X/T)T3 is a homogeneous polynomial of degree 3 in X , T , its partial derivatives
at (0, 0) vanish; consequently, ∂

∂T F0(0, 0) = 1 ≠ 0. Consequently, o is a nonsingular point
of CP.

Proposition (8.3). — Let iΛ∶C/Λ → P2(C) be the map given by

iΛ(z) = [1 ∶ ℘Λ(z) ∶ ℘′Λ(z)]
for z ≠ 0 and iΛ(0) = [0 ∶ 0 ∶ 1]. It is holomorphic and induces an isomorphism of Riemann
surfaces from C/Λ to the curve CP de�ned by the polynomial P = 4X3 − g2(Λ)X − g3(Λ).

Proof. — �e map iΛ is well-de�ned and holomorphic on C/Λ ∖ {0}. In a neighborhood
of 0, we may write iΛ(z) = [z3 ∶ z3℘Λ(z) ∶ z3℘′Λ(z)].�e three functions z3, z3℘Λ and z3℘′Λ
are holomorphic there and equal 0, 0,−2 at z = 0, so they do not vanish simultaneously.
�is shows that iΛ is holomorphic.
Let us show that iΛ is injective. First of all, if z /∈ Λ, then iΛ(z) ≠ iΛ(0). So let z,w ∈

C ∖ Λ be such that iΛ(z) = iΛ(w). �is means ℘Λ(z) = ℘Λ(w) and ℘′Λ(z) = ℘′Λ(w). By
Proposition 5.3, z ≡ w (mod Λ) or z ≡ −w (mod Λ). In the latter case, we then have
℘′Λ(z) = −℘′Λ(w) so that ℘′Λ(z) = ℘′Λ(w) = 0. If (ω1,ω2) is a basis of Λ, we have seen that
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necessarily z and w belong to {ω1/2,ω2/2, ,ω1 + ω2)/2 modulo Λ. Since ℘Λ takes distinct
values at these three points, we get z = w.
It follows that iΛ is étale. Indeed, if the di�erential of iΛ would vanish at some point

of C/Λ, then iΛ would not be injective in a neighborhood of that point.
By�eorem 6.2, the image of iΛ is contained in C. Let us show that its image is the whole

of C. Since iΛ(0) = [0 ∶ 0 ∶ 1], it su�ces to show that for any point [1 ∶ x ∶ y] ∈ C, there
exists z ∈ C ∖ Λ such that x = ℘Λ(z) and y = ℘′Λ(z).�e elliptic function ℘Λ is surjective,
so there exists z ∈ C such that ℘Λ(z) = x. It then follows from�eorem 6.2 that y = ±℘′Λ(z).
Up to replacing z by −z if necessary, we thus have x = ℘Λ(z) and y = ℘′Λ(z).

8.4. Let P ∈ C[X] be a polynomial of degree 3 with simple roots. Let us show that the
curve CP in P2(C), endowed with the base-point o = [0 ∶ 0 ∶ 1], is an elliptic curve. Let
e1, e2, e3 be the three roots of P, and let c be its leading coe�cient, so that

P(X) = c(X − e1)(X − e2)(X − e3) = c(X3 − σ1X2 + σ2X − σ3),

with

σ1 = e1 + e2 + e3, σ2 = e1e2 + e2e3 + e3e1, σ3 = e1e2e3.

We consider points of P2(C) of the form [1 ∶ x ∶ y]. If we make the a�ne change of
variables x = x′ + 1

3σ1 and y =
√
c
2 y′, the equation y2 = P(x) of CP ∩U0 can be rewritten as

(y′)2 = Q(x′), with

Q(x′) = 4(x′ − e′1)(x′ − e′2)(x′ − e′3) = 4(x′)3 − ax′ − b,

where e′i = ei − 1
3σ1 for i ∈ {1, 2, 3} and a, b are complex numbers. (Indeed, e′1 + e′2 + e′3 = 0.)

�e discriminant a3 − 27b2 of Q is given by

∆(Q) = 16(e′1 − e′2)2(e′2 − e′3)2(e′1 − e′3)2 = 16(e1 − e2)2(e2 − e3)2(e1 − e3)2,

so is nonzero. In fact,

a = −4(e′1e′2 + e′1e′3 + e′2e′3) = −4(e1 −
1
3

σ1)(e2 −
1
3

σ1) − symmetric terms = −4(σ2 −
1
3

σ 21 )

and

b = 4e′1e′2e′3 = 4(e1 −
1
3

σ1)(e2 −
1
3

σ1)(e3 −
1
3

σ1) = −
4
c
P( 1
3

σ1).

We shall prove in �eorem 9.3 that there exists a (unique) lattice Λ in C such that
g2(Λ) = a and g3(Λ) = b, so that (CQ , o) is an elliptic curve.
�e a�ne transformation (x′, y′) ↦ (x′ + 1

3σ1,
√
c
2 y′) of C2 is induced by the automor-

phism [x′0 ∶ x′1 ∶ x′2] ↦ [x′0 ∶ x′1 + 1
3σ1x′0 ∶

√
c
2 x′2] of P2(C) which maps the curve CQ to the

curve CP , and the point o = [0 ∶ 0 ∶ 1] to itself.�is implies that the pointed curves (CP , o)
and (CQ , o) are isomorphic. Consequently, (CP , o) is an elliptic curve.
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§ 9. THE MODULI SPACE OF ELLIPTIC CURVES

9.1.One de�nes the j-invariant j(Λ) ∈ C of a lattice Λ in C by the formula

(9.1.1) j(Λ) = 123 g2(Λ)
3

∆(Λ) = 1728 g2(Λ)3
g2(Λ)3 − 27g3(Λ)2

.

Recall that ∆(Λ) is the discriminant of the polynomial 4X3 − g2(Λ)X − g3(Λ) whose roots
are distinct, hence j(Λ) is well-de�ned as a complex number. For any nonzero complex
number u ∈ C∗, one has
(9.1.2) j(uΛ) = j(Λ).
Consequently, the function j descends to a function, still denoted j, on Π:
(9.1.3) j∶Π → C, τ ↦ j(Z + Zτ).
It is constant along the orbits of the action of SL2(Z) on Π.
Lemma (9.2). — Let Λ be a lattice in C and let (a, b) ∈ C2 be complex numbers such that
a3 − 27b2 ≠ 0. Assume that j(Λ) = 123a3/(a3 − 27b2). �en, there exists u ∈ C∗ such that
g2(uΛ) = a and g3(uΛ) = b.

Proof. — Assume �rst that j(Λ) = 0, so that g2(Λ) = a = 0. Necessarily, g3(Λ) and
b are nonzero and there exists u ∈ C∗ such that g3(Λ) = u6b. Consequently, g3(uΛ) =
u−6g3(Λ) = b and g2(uΛ) = 0.
If j(Λ) ≠ 0, then g2(Λ) and a are nonzero too, so that there exists u ∈ C∗ such that

g2(Λ) = u4a. From the relation j(uΛ) = j(Λ) and the de�nition of j, it then follows that
g23(uΛ) = b2. If g3(uΛ) = b, we are done. Otherwise, one has b = −g3(uΛ) = g3(iuΛ)
while a = g2(uΛ) = g2(iuΛ).
�eorem (9.3). — Let R be the set of lattices in C.�e map (g2, g3) from R to C2 given by
Λ ↦ (g2(Λ), g3(Λ)) induces a bijection from R to the set of points (a, b) ∈ C2 such that
a3 − 27b2 ≠ 0.
Remark (9.4). — LetB be the open subset of C2 consisting of pairs (ω1,ω2) of nonzero
complex numbers such that ω2/ω1 /∈ R. Let π∶B → R be the map that associates to a
pair (ω1,ω2) ∈ B the lattice Zω1 ⊕ Zω2 generated by ω1 and ω2. One can show that the
setR possesses a unique structure of a complex manifold of dimension 2 for which the
map π is a local holomorphic di�eomorphism. WhenR is endowed with this structure,
the map (g2, g3) is actually a biholomorphic di�eomorphism.
Lemma (9.5). — �e functions j are holomorphic on B and on Π.

Proof. — We show that for any even integer k ≥ 4, the function Gk onB de�ned by

(ω1,ω2)↦ Gk(Zω1 + Zω2) = ∑
m∈Z2∖{0}

1
(m1ω1 +m2ω2)k

is holomorphic. Let S be the set of (x1, x2) ∈ R2 such that ∣x1∣ + ∣x2∣ = 1. �e function
from S ×B to R de�ned by (x1, x2,ω1,ω2)↦ ∣x1ω1 + x2ω2∣ is continuous and takes positive



CHAPTER 1. ELLIPTIC FUNCTIONS AND THE THEOREMS OF PICARD 19

values.�erefore, it has a positive lower bound on any compact subset. Since S is compact,
for any compact subset K ofB, there exists a positive real number CK such that

∣m1ω1 +m2ω2∣ ≥ CKmin(∣m1∣ , ∣m2∣)
for any (m1,m2) ∈ Z2.�is implies that the series de�ning Gk converges uniformly on any
compact subset ofB, so de�nes a holomorphic function onB.
Moreover, we have seen that for any lattice Λ, g2(Λ)3 − 27g3(Λ)2 ≠ 0. �erefore, the

function (ω1,ω2)↦ j(Zω1 + Zω2) onB is also holomorphic.
In particular, the function τ ↦ j(Z⊕ Zτ) on Π is holomorphic.

�eorem (9.6). — �e map j∶PSL2(Z)/Π → C is bijective.

Remark (9.7). — �is map is not a local homeomorphism at the points of Π for which
the action of SL2(Z) has �xed points.�ese points of Π correspond to lattices with more
symmetries than usual.

9.8. Injectivity. — Let us �rst show that the map (g2, g3) from�eorem 9.3 is injective. Let
Λ and Λ′ be lattices inC such that g2(Λ) = g2(Λ′) and g3(Λ) = g3(Λ′). Let f ∶C/Λ → C/Λ′
be the map given by iΛ′ ○ f = iΛ. It is an isomorphism of Riemann surfaces. Since iΛ(0) =
iΛ′(0) = [0 ∶ 0 ∶ 1], f maps 0 to 0. Consequently, there exists a complex number a ∈ C∗
such that aΛ ⊂ Λ′ and f (z) = az for any z ∈ C. Reversing the roles of Λ and Λ′, we obtain
that aΛ = Λ′ so that the lattices Λ and Λ′ are homothetic.
Since iΛ(0) = [0 ∶ 0 ∶ 1], the image of a neighborhood of 0 in C/Λ is contained

in in the open subset of P2(C) where x2 ≠ 0. �ere, iΛ is expressed as the map z ↦
ĩΛ(℘′Λ(z)−1,℘Λ(z)℘′Λ(z)−1). Since

℘Λ(z) =
1
z2
+O(1), ℘′Λ(z) =

−2
z3

+O(1),

one has ĩΛ(z) = (O(z3),− 12z + O(z)) and the di�erential of ĩΛ at the origin is given by
ĩ′Λ(0) = (0,− 12).�e same result holds for the di�erential of ĩΛ′ . Since the di�erential of f
at 0 is the multiplication by a, we obtain a = 1, and Λ = Λ′.

�is implies that the map j is injective too. Let indeed τ, τ′ ∈ Π be such that j(τ) = j(τ′)
and let us show that the lattices Λ = Z+Zτ and Λ′ = Z+Zτ′ are homothetic. By Lemma 9.2
applied to the lattice Λ and to a = g2(Λ′), b = g3(Λ′), there exists u ∈ C∗ such that
g2(uΛ) = g2(Λ′) and g3(uΛ) = g3(Λ′).�is implies that the lattices Λ′ and uΛ are equal,
so that the lattices Λ and Λ′ are homothetic.

Remark (9.9). — Prove the injectivity by showing how to recover the period lattice through
elliptic integrals.

Lemma (9.10). — Let F be the fundamental domain of Π. One has
lim

I(τ)→∞
τ∈Π

∣ j(τ)∣ = +∞.

Proof. — Since j(τ + n) = j(τ) for any τ ∈ Π and any n ∈ Z, it su�ces to prove this limit
formula under the assumption that − 12 ≤R(τ) ≤ 1

2 . We may thus suppose that τ belongs to
the fundamental domain F.
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For given (x , y) ∈ R2 and τ ∈ Π of given real part, ∣x + yτ∣ is an increasing function
of I(τ), so that

∣x + yτ∣ ≥ ∣x +R(τ)y∣ +
√3
2

∣y∣ .

�en, ∣x +R(τ)y∣ ≥ ∣x∣ − 1
2 ∣y∣, hence

(9.10.1) ∣x + yτ∣ ≥ ∣x∣ +
√3 − 1
2

∣y∣ ≥
√3 − 1
2

(∣x∣ + ∣y∣).

�is inequality implies that for k ≥ 3, the convergence of the series

Gk(Z + τZ) = ∑
(m,n)∈Z2∖{0}

1
(m + nτ)k

is uniform for τ ∈ F. �erefore, we can pass to the limit termwise. All terms with n ≠ 0
converge to 0 when τ →∞. As a consequence, for any integer k ≥ 3,

lim
∣τ∣→∞

τ∈F

Gk(Z + τZ) = ∑
m∈Z∖{0}

1
mK = 2ζ(k),

where ζ is Riemann’s zeta function.
In particular, the numerator of j(τ) has a �nite positive limit when τ →∞ in F.
It is known that ζ(4) = π4/90 and ζ(6) = π6/945. Consequently, when ∣τ∣ →∞, while

τ ∈ F, g2(Z + Zτ) = 60G4(Z + Zτ) → 4
3π4 and g3(Z + Zτ) = 140G6(Z + Zτ) → 8

27π6.
Consequently, ∆(τ) converges to

(2
6

33
− 272

6

36
) π12 = 0.

Finally, ∣ j(τ)∣→∞.
Using that j(τ + n) = j(τ) for τ ∈ Π and n ∈ Z, we deduce the slightly stronger result that

lim
I(τ)→+∞

∣ j(τ)∣ = +∞.

Remark (9.11). — Let us give an alternative argument which does not make use of the
computation of the values of Riemann’s zeta function at even integers.
Let Λ = Z + Zτ. One has ∆(τ) = 16(e1 − e2)2(e2 − e3)2(e1 − e3)2, where e1 = ℘Λ(1/2),

e2 = ℘Λ(τ/2) and e3 = ℘Λ((1 + τ)/2). When τ ∈ F,

e1 = 4 + ∑
(m,n)∈Z2∖0

( 1
(m + nτ + 1

2)2
− 1

(m + nτ)2)

remains bounded. Moreover, when ∣τ∣→∞,

e2 =
4
τ2
+ + ∑

(m,n)∈Z2∖0
( 1
(m + nτ + 1

2τ)2
− 1

(m + nτ)2)
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converges to −2ζ(2). Indeed, the convergence is uniform, so that we can compute the limit
termwise.�e term of index (m, n) goes to 0 if n ≠ 0, and to −1/m2 if n = 0 and m ≠ 0. By
the same argument,

e3 =
4

(1 + τ)2 + + ∑
(m,n)∈Z2∖0

( 1
(m + nτ + 1

2(1 + τ))2 −
1

(m + nτ)2)

converges to −2ζ(2) too.�is implies that ∆(τ)→ 0, hence ∣ j(τ)∣→∞ as before.

9.12. Surjectivity. — We now prove that the map j is surjective. It is holomorphic and
non constant, so its image is a connected open subset of C. Let us show that j(Π) is
closed. Since j is invariant under the action of SL2(Z), one has j(Π) = j(F). Let (τn) be a
sequence of elements of F such that j(τn) converges to a complex number z; we need to
show that z belongs to the image of j. Up to passing to a subsequence, we may assume that
either τn converges an element τ ∈ F, or that ∣τn∣ → ∞. In the �rst case, we get j(τ) = z,
so that z ∈ j(Π).�e second case cannot happen, since the preceding lemma shows that
∣ j(τn)∣→∞. Since the complex plane is connected, j(Π) = C, as claimed.
It remains to show that the map (g2, g3) of�eorem 9.3 is surjective. Let (a, b) ∈ C2 be

two complex numbers such that a3 − 27b2 ≠ 0. Let τ ∈ Π be any element such that

j(τ) = 123 g2(Z + Zτ)3
g2(Z + Zτ)3 − 27g3(Z + Zτ)2 = 12

3 a3
a3 − 27b2 .

Lemma 9.2 above shows that there exists u ∈ C∗ such that g2(u(Z +Zτ)) = a and g3(u(Z +
Zτ)) = b.�is concludes the proof of�eorems 9.3 and 9.6
9.13. To conclude this section, let us give some examples of computations of j-invariants.
For τ = i, Λ = Z+ iZ, one has iΛ = Λ, so that g3(Λ) = i−6g3(Λ) = −g3(Λ). Consequently,

g3(Λ) = 0 and j(i) = 123 = 1728.
Let ρ = exp(iπ/3) = (1 + i√3)/2; since ρ2 = (−1 + i√3)/2 = ρ − 1, one has ρΛ = Λ.�is

implies that g2(Λ) = ζ−4g2(Λ), hence g2(Λ) = 0 since ζ4 = −ζ ≠ 1. Finally, j(ρ) = 0.
For λ ∈ C ∖ {0, 1}, let Eλ be the elliptic curve with a�ne equation y2 = x(x − 1)(x − λ).

It is called the Legendre elliptic curve with parameter λ. Let Λ be the lattice corresponding
to the curve Eλ. With the notation of (8.4), σ1 = 1 + λ and σ2 = λ. As we have shown,

(9.13.1) g2(Λ) = −4λ + 4
3
(1 + λ)2 = 4

3
(1 − λ + λ2)

and

(9.13.2) ∆(Λ) = 16λ2(1 − λ)2.

Consequently,

(9.13.3) j(Λ) = 28 (1 − λ + λ2)3
λ2(1 − λ2) .
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§ 10. ELLIPTIC CURVES WITH A STRUCTURE OF LEVEL 2

10.1. Let E be an elliptic curve. Since it is an Abelian group, multiplication by 2 is an
endomorphism; let E2 be its kernel. If Λ is a lattice in C and E = C/Λ, then E2 = ( 12Λ)/Λ.
Let (ω1,ω2) be a basis of E; then E2 = {0,ω1/2,ω2/2, (ω1+ω2)/2} is isomorphic to (Z/2Z)2.
De�nition (10.2). — A 2-marking of an elliptic curve E is an isomorphism of groups
η∶ (Z/2Z)2 → E2.

We shall sometimes identify a 2-marking with the two points of order 2, η(1, 0) and
η(0, 1), of E. Conversely any ordered pair of distinct points E2 de�nes a marking. Since
there are three points of order 2, it follows that an elliptic curve admits exactly 6 distinct
2-markings. More precisely, the group SL2(F2) = Aut((Z/2Z)2) acts (by composition on the
le�, hence on the right) on the set of all 2-markings and makes it a principal homogeneous
space.

Lemma (10.3). — Let (E , (P1, P2)) be an elliptic curve with a 2-marking. An automorphism
φ of E respects the 2-marking if and only if φ = Id or φ = − Id.
Proof. — Let φ be an automorphism of E such that φ(Pi) = Pi for every i. We may assume
that E = C/Λ; then Λ has a basis (ω1,ω2) such that P1 = ω1/2 (mod Λ) and P2 = ω2/2
(mod Λ). �ere exists a complex number u ∈ C∗ such that uΛ = Λ and such that the
automorphism φ is given by φ(z) = uz (mod Λ). Necessarily, ∣u∣ = 1.
Assume that u ≠ ±1 and let g = ( a b

c d ) ∈ SL2(Z) be such that
u(ω1,ω2) = g ⋅ (ω1,ω2) = (aω1 + bω2, cω1 + dω2).

We see thatu is an eigenvalue of thematrix ( a c
b d ), with eigenvector ( ω1

ω2 ), the other eigenvalue
being u−1 since g ∈ SL2(Z). Consequently, ∣a + d∣ ≤ ∣u + u−1∣ ≤ 2; since u /∈ R, the last
inequality is strict, so that ∣a + d∣ < 2.
Since φ(P1) = P1, one has uω1/2 ≡ ω1/2 (mod Λ) and uω2/2 ≡ ω2/2 (mod Λ). Conse-

quently, uωi ≡ ωi (mod 2Λ). �is implies that a, d ≡ 1 (mod 2) and b, c ≡ 0 (mod 2).
On particular, a + d ≡ 2 (mod 4). Combined with the inequality ∣a + d∣ < 2, we obtain
a+d = 0. Since ad−bc = 1, we get a2 = −1−bc ≡ −1 (mod 4), which is absurd. So u ∈ {±1},
and φ ∈ {± Id}.
10.4. Let Γ = PSL2(Z) = SL2(Z)/{± Id}. Since − Id ≡ Id (mod 2), there exists a morphism
of groups Γ → SL2(F2) which maps the class of a matrix ( a c

b d ) to its reduction modulo 2.
�e kernel of this morphism is denoted Γ(2).
Lemma (10.5). — Let τ, τ′ ∈ Π. �e 2-marked elliptic curves (C/(Z + τZ), 1/2, τ/2) and
(C/(Z + τZ), 1/2, τ/2) are isomorphic if and only if τ′ ∈ Γ(2) ⋅ τ. If this holds, there exists a
unique γ ∈ Γ(2) such that τ′ = γ ⋅ τ.
Proof. — Let Λ and Λ′ be the lattices Z + Zτ and Z + Zτ′. Let φ be an isomorphism
fromC/Λ toC/Λ′.�ere exists u ∈ C∗ such that uΛ = Λ′ and such that φ(z (mod Λ)) = uz
(mod Λ′) for any z ∈ C. For such an isomorphism to exist, it is necessary and su�cient
that there exists g = ( a b

c d ) in SL2(Z), such that u = a + bτ′ and uτ = c + dτ′. In that case,
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one has τ = c+dτ′
a+bτ′ = g ⋅ τ′. Moreover, such an isomorphism respects the 2-markings if and

only if u = 1 (mod 2Λ′) and uτ = τ′ (mod 2Λ′).�ese congruences are equivalent to the
fact a, d ≡ 1 (mod 2) and b, c ≡ 0 (mod 2), or that g ∈ Γ(2).
To show the uniqueness, it su�ces to prove that the action of Γ(2) on Π is free. So let

τ ∈ Π, let Λ = Z + Zτ, and let g = ( a b
c d ) a matrix in SL2(Z) which is congruent to the

identity modulo 2 and such that τ = g ⋅ τ.
As above, g de�nes an automorphism φ∶ z ↦ (a + bτ)z (mod Λ) of C/Λ, and this

automorphism respects the 2-marking (1/2, τ/2). By Lemma 10.3, φ = Id or φ = − Id, that
is, a + bτ ∈ {1,−1}.�is implies that a ∈ {±1} and b = 0. Finally, τ = g ⋅ τ = (c + dτ)/a, so
that d = a and c = 0.�erefore, g = a Id and its class in Γ(2) is the neutral element.

10.6. Let λ ∈ C ∖ {0, 1}, and let Eλ be the Legendre elliptic curve with parameter λ.�is is
the curve with a�ne equation y2 = x(x − 1)(x − λ), whose points of order 2 are the three
points [1 ∶ 0 ∶ 0], [1 ∶ 1 ∶ 0] and [1 ∶ λ ∶ 0] of P2(C). We shall write Ẽλ for the elliptic curve
Eλ endowed with the 2-marking ([1 ∶ 1 ∶ 0], [1 ∶ 0 ∶ 0]).

Proposition (10.7). — For any elliptic curve E with a 2-marking (p, q), there exists a unique
λ ∈ C ∖ {0, 1} such that (E , p, q) is isomorphic to Ẽλ.

Proof. — Let Λ be the lattice such that E ≃ C/Λ. �ere exists a unique homography φ
�xing∞ such that φ(℘Λ(p)) = 1 and φ(℘Λ(q)) = 0; it is given by

φ(t) = t −wpΛ(q)
℘Λ(p) − ℘Λ(q)

.

Besides p and q, the third point of order 2 of E is p + q; set

(10.7.1) L (E , p, q) = φ(℘Λ(p + q)) = ℘Λ(p + q) − ℘Λ(q)
℘Λ(p) − ℘Λ(q)

.

I claim thatL (E , p, q) is the unique complex number λ ∈ C ∖ {0, 1} such that (E , p, q) is
isomorphic to Ẽλ.

10.8. Let λ∶Π → C ∖ {0, 1} be the map given by

(10.8.1) λ(τ) = L (C/(Z + Zτ); 1/2, τ/2) =
℘Z+Zτ( 1+τ

2 ) − ℘Z+Zτ( τ
2)

℘Z+Zτ( 12) − ℘Z+Zτ( τ
2)
.

It is holomorphic, surjective, and invariant under the action of Γ(2) on Π. Moreover, the
induced map λ∶ Γ(2)/Π → C ∖ {0, 1} is bijective.
Observe also that the quotient map Π → Γ(2)/Π is a covering, because Γ(2) acts freely

on Π.�ere exists a unique structure of a Riemann surface on Γ(2)/Π such that this quotient
map is a local biholomorphic di�eomorphism.�en, the map λ∶ Γ(2)/Π → C ∖ {0, 1} is an
isomorphism of Riemann surfaces.

Lemma (10.9). — For any τ ∈ Π, one has

(10.9.1) λ(τ + 1) = λ(τ)
λ(τ) − 1 , λ(− 1

τ
) = 1 − λ(τ).
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Proof. — By de�nition, λ(τ) is the Legendre invariant L (C/(Z + Zτ); 1/2, τ/2) of the
elliptic curveC/(Z+Zτ), endowed with the 2-marking (1/2, τ/2). Let Λ = Z+Zτ and write
e1 = ℘Λ(1/2), e2 = ℘Λ(τ/2) and e3 = ℘Λ((1 + τ)/2). According to Equation (10.7.1),

λ(τ) = e3 − e2
e1 − e2

,

so that
e3 = e2 + (e1 − e2)λ(τ).

Since Z + Z(τ + 1) = Λ, λ(τ + 1) is the Legendre invariant of the same elliptic curve, but
with the 2-marking (1/2, (1 + τ)/2). By Equation (10.7.1),

λ(τ + 1) = e2 − e3
e1 − e3

= −(e1 − e2)λ(τ)
(e1 − e2) − (e1 − e2)λ(τ) = −λ(τ)

1 − λ(τ) .

One has Z + (−1/τ)Z = 1
τΛ, so that λ(−1/τ) is the Legendre invariant of the elliptic

curve C/τ−1Λ with the 2-marking (1/2,−1/2τ), which is isomorphic to the elliptic curve
C/Λ with the 2-marking (τ/2,−1/2).�erefore,

λ(−1/τ) = e3 − e1
e2 − e1

= (e2 − e1) + (e1 − e2)λ(τ)
e2 − e1

= 1 − λ(τ).

10.10. Let PGL2(C) act on P1(C) by homographies and let G be the stabilizer of {0, 1,∞}.
It follows from the preceding lemma that there is a unique isomorphism ι∶ Γ/Γ(2) ≃ G such
that, for any τ ∈ Π and any γ ∈ Γ,

λ(γ(τ)) = ι(γ)(λ(τ)).
In fact, for γ = ( 1 10 1 ), one has ι(γ)(z) = z/(z−1), while for γ = ( 0 1−1 0 ), one has ι(γ)(z) = 1−z.

Lemma (10.11). — One has
(10.11.1) lim

I(τ)→+∞
λ(τ) = 0.

Proof. — We have proved that ∣ j(τ)∣ → ∞ when I(τ) → +∞. According to Equa-
tion (9.13.3), the only limit values of λ(τ) belong to {0, 1,∞}. a connectedness argument
would then show that λ(τ) has a limit for I(τ)→ +∞. To determine the value of this limit,
let us return to the notation of Section (9.11). �e computations there show that when
I(τ) → ∞, while τ ∈ F, then e1, e2, e3 have �nite limits, and that the limits of e2 and e3
coincide. �is implies that λ(τ) → 0, when τ ∈ F and I(τ) → +∞. �e lemma follows
from that, using that λ(τ + 1) = −λ(τ)/(1 − λ(τ)), and λ(τ + 2) = λ(τ) for any τ ∈ Π.

§ 11. THE THEOREMS OF PICARD

�eorem (11.1) (“Little Picard�eorem”). — Let f ∶C→ C be an entire function. If f is not
constant, then f omits at most one value.
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Proof. — Assume that f omits two values; replacing f by a f + b for suitable complex
numbers a and b, we may suppose that these two omitted values are 0 and 1. �e map
λ∶Π → C ∖ {0, 1} is a holomorphic covering map. Since C is simply connected, there exists
a holomorphic map f̃ ∶C → Π such that f = λ ○ f̃ . However, Π is biholomorphic to the
unit diskD, for example through the map b∶ τ ↦ τ−i

τ+i .�en, b ○ f̃ is entire and bounded; by
Liouville’s�eorem, it is constant. It follows that f is constant.

�eorem (11.2) (“Great Picard�eorem”). — Let Ḋ(0, 1) be the unit disk deprived of 0 and
let f ∶ Ḋ(0, 1)→ C be a holomorphic function. If f has an essential singularity, then f omits
at most one value.

11.3. Let e∶Π → Ḋ(0, 1) be the map τ ↦ exp(2πiτ). It is a universal covering map, its
group of deck transformations is Z, given by the translations by integers in Π. As in the
proof of the Little Picard�eorem, there exists a holomorphic map f̃ ∶Π → Π such that
λ ○ f̃ (τ) = f (e(τ)) for any τ ∈ Π.
Observe that f̃ (i + 1) and f̃ (i) have the same image by λ, namely f (e(i)). Consequently,

there is a unique element γ ∈ Γ(2) such that γ ⋅ f̃ (i + 1) = f̃ (i).�e map τ ↦ γ−1 ⋅ f̃ (τ + 1)
is another li� of f ○ e to Π which coincides with f̃ at τ = i. Since λ is a covering map, it
must coincide everywhere, so that

(11.3.1) f̃ (τ + 1) = γ ⋅ f̃ (τ), for any τ ∈ Π.
Let θ∶Π → ⟨γ⟩/Π be the quotient of Π by the subgroup generated by γ.�e holomorphic

map λ descends to a holomorphicmap λγ∶ ⟨γ⟩/Π → C∖{0, 1} and there exists a holomorphic
map h∶ Ḋ(0, 1)→ ⟨γ⟩/Π such that f = λγ ○ h.

Lemma (11.4). — Let g ∈ SL2(Z) be any element li�ing γ.
If γ = Id, then ⟨γ⟩/Π ≃ Π.
If ∣Tr(g)∣ > 2, then ⟨γ⟩/Π is isomorphic to an open annulus with positive inner radius and

�nite outer radius.
Otherwise, ∣Tr(g)∣ = 2.�en, there exists an isomorphism b from ⟨γ⟩/Π to Ḋ(0, 1) such

that λγ ○ b−1∶ Ḋ(0, 1)→ C is meromorphic at 0.

11.5. From this lemma, we can �nish the proof of the Great Picard�eorem.
If γ = Id, then composing g with a biholomorphism b∶Π → D(0, 1), we obtain a mero-

morphic map b ○ g∶ Ḋ(0, 1) → D(0, 1). Necessarily, b ○ h extends to a holomorphic map
from D(0, 1) to D(0, 1). Moreover, the maximum principle implies that unless b ○ h is
constant, ∣b(h(0))∣ < supḊ(0,1) ∣b ○ h∣ ≤ 1. In any case, h(0) ∈ D(0, 1) and f itself extends
holomorphically at 0.
If ∣Tr(g)∣ > 2, the lemma shows that there exists a biholomorphism b∶ ⟨γ⟩/Π → C(r, R).

In particular, b○h extends to a holomorphicmap fromD(0, 1) to the closed annulus C(r, R),
for some real numbers r and R such that R > r > 0. As above, it follows from the maximum
principle that ∣h(0)∣ < R; by the maximum principle applied to the map z ↦ 1/b(h(z)), we
also have ∣h(0)∣ < r.�is shows that h extends to a holomorphic map fromD(0, 1) to γ⟩/Π,
hence f extends holomorphically at 0.
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In the remaining case, let us show that f is meromorphic. As in the �rst two cases,
the holomorphic map b ○ h∶ Ḋ(0, 1)∶ Ḋ(0, 1) → Ḋ(0, 1) extends to a holomorphic map
fromD(0, 1) toD(0, 1). Since λγ ○ b−1 is meromorphic at 0, the formula

f = λγ ○ h = (λγ ○ b−1) ○ (b ○ h)

implies that f is meromorphic, as claimed.
�is concludes the proof of the Great Picard�eorem, but it remains to prove Lemma 11.4.

11.6.We �rst recall the classi�cation of matrices in SL2(R), and of the corresponding trans-
formations of the upper half plane. Let g ∈ SL2(R) and let u, v be its eigenvalues; one has
uv = 1 and u + v = Tr(g) is a real number. Let γ be the image of g in PSL2(R).
If u and v are real and distinct, then g is conjugate to the diagonal matrix ( 1/u 00 u ), so that

the homography of Π it de�nes is conjugate to the map τ ↦ u2τ. Moreover, since u and 1/u
have the same sign, ∣Tr(g)∣ = ∣u∣ + ∣u∣−1 > 2. One says that g, or γ, is hyperbolic.
Assume that u = v. Since u + v is a real number and uv = 1, if comes u = v = ±1

and ∣Tr(g)∣ = 2. Observe that g is semisimple, if and only if g = ± Id, if and only if the
corresponding homography is the identity. Otherwise, g is conjugate to a matrix ± ( 1 01 1 ),
and the corresponding homography is conjugate to the map τ ↦ τ + 1. One says that g (or
γ) is parabolic.
Finally, assume that u and v are non-real, and distinct. �en v = u = u−1, so that

∣u∣ = ∣v∣ = 1.�en, ∣Tr(g)∣ = ∣u + v∣ < 2 and one says that g and γ are elliptic. In fact, this case
will not happen in the discussion below. Indeed, if one assumes, moreover, that g = ( a b

c d ) is
an element of SL2(Z), congruent the identity modulo 2, then a + d is an even integer, so
that a = −d. It follows that 1 = ad − bc ≡ −a2 (mod 4), a contradiction.
11.7.We now prove Lemma 11.4. Since γ ∈ Γ(2), the classi�cation of elements in SL2(R)
shows that we need to treat the cases where γ = ± Id, γ is hyperbolic, or γ is parabolic.�ere
is nothing to do if γ = ± Id, so assume that γ is hyperbolic. Up to conjugation, we may
suppose that γ induces the automorphism τ ↦ uτ of Π, for some real number u > 1. Let
log∶C ∖R≤0 → C be the principal determination of logarithm. It induces a biholomorphic
map, still denoted log, from Π to the band B = {0 < I(z) < π} in C. Moreover, since
log(uτ) = log(u) + log(τ), the action of γ on Π is conjugate to the translation t by log(u)
on B, so that B/⟨t⟩ is biholomorphic with ⟨γ⟩/Π.�e map z ↦ exp(2πiz/u) is an injective
holomorphic from B/⟨t⟩ to C, whose image is the annulus C(exp(−2π2/u), 1).
11.8. Finally, let us treat the case where γ is parabolic. We have seen that g is conjugate to
a matrix ± ( 1 01 1 ) in SL2(R). However, since g ∈ SL2(Z), g ≠ ± Id, there exists g0 ∈ SL2(Z)
and a positive integer n such that g = ±g0 ( 1 0n 1 ) g−10 , so that γ acts by τ ↦ g0 ⋅ (g−10 ⋅ τ + n).
�erefore, the map b∶ τ ↦ exp(2πi(g−10 ⋅ τ)/n) from Π to C∗ induces a biholomorphic
map bγ from ⟨γ⟩/Π to Ḋ(0, 1).

�en, there is a unique holomorphicmap ν∶ Ḋ(0, 1)→ C∖{0, 1} such that λ(τ) = ν○b(τ)
for any τ ∈ Π. We need to show that ν is meromorphic at 0.
We have seen that there is a homography φ0 ∈ PGL2(C) such that φ0({0, 1,∞}) =

φ0({0, 1, 1∞}) and λ(g0 ⋅ τ) = φ0(λ(τ)).
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Let q ∈ Ḋ(0, 1); write q = b(g0 ⋅ τ), for τ ∈ Π; one has ∣q∣ = exp(−2πI(τ)/n) and
ν(q) = λ(g−10 ⋅ τ) = φ0(λ(τ)).

When q → 0, I(τ) → +∞, hence λ(τ) → 0. Since φ0 is a rational function such that
φ0(0) ∈ {0, 1,∞}, ν(q) converges to φ0(0). In particular, ν is meromorphic at the origin.
�e precise nature of ν, whether it extends holomorphically, or whether it has a pole, depends
on the actual value of φ0(0).





CHAPTER 2

PRELIMINARIES FROM COMPLEX GEOMETRY

�is chapter gathers material from di�erential geometry and complex analysis that will
be used in the sequel.�e reader may either read it �rst, or only when needed.

§ 1. DIFFERENTIAL CALCULUS ON COMPLEX MANIFOLDS

1.1. As usual, a complex number z = x + iy can be viewed as the pair (x , y) consisting of
its real and its imaginary parts, giving an identi�cation of the complex line C with the real
plane R2.�is furnishes equalities of di�erential forms on C:

(1.1.1) dz = dx + idy, dz = dx − idy,

which compares the two bases (dz, dz) and (dx , dy) of the complex 2-dimensional vector
space HomR(C,C).
For any complex valued di�erentiable function f on Let Ω be an open subset Ω of C and

let f ∶Ω → C be a complex-valued di�erentiable function. For any a ∈ Ω, the di�erential
d fa is a R-linear map C→ C given in the two given bases by:

d fa =
∂
∂z

f (a)dz + ∂
∂z

f (a)dz = ∂
∂x

f (a)dx + ∂
∂y

f (a)dy,

so that

(1.1.2)
∂
∂z

= 1
2
( ∂
∂x

− i ∂
∂y

) , ∂
∂z

= 1
2
( ∂
∂x

+ i ∂
∂y

) .

If one de�nes

(1.1.3) ∂ f = ∂
∂z

f (a)dz, ∂ f = ∂
∂z

f (a)dz,

then

(1.1.4) d fa = ∂ f + ∂ f
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is the decomposition of the R-linear map d fa ∈ HomR(C,C) into a C-linear part ∂ f and a
C-antilinear part ∂ f . Observe also that

(1.1.5) ∂ f = ∂ f , ∂ f = f .

Moreover, one has the following formula for the 2-form giving the area element:

(1.1.6) dx ∧ dy = i
2
dz ∧ dz.

1.2.�ese decompositions extend to the higher dimensional case. Let d be a positive integer.
We can identify a point (z1, . . . , zd)Cd with the point (x1, y1, . . . , xd , yd) ∈ (R2)d = R2d ,
where zk = xk + ixk for every k ∈ {1, . . . , d}.
1.3. Let X be a complex manifold of dimension d. Let A n(X) be the space of complex-
valued smooth di�erential forms of degree n on X, let A n

c (X) be the subspace of forms
with compact support.
Let α be a di�erential form of degree 1 on X. For any point a on X, α is a R-linear

map from the tangent space TaX to C. Since X is a complex manifold, TaX is a complex
vector space and α can be decomposed canonically as the sum of a C-linear part, and of
C-antilinear part.�is decomposes the spaceA 1(X) as the direct sum of two subspaces
A 1,0(X) and A0,1(X) consisting of forms which are respectively C-linear and C-antilinear
at each point of X.
For any integer n, the spaceA n(X) has a similar decomposition

(1.3.1) A n(X) = ⊕
p+q=n

Ap,q(X),

where a form α ∈ A n(X) belongs to Ap,q(X) if and only if it is p-timesC-linear, and q-times
C-antilinear, meaning: αa(λv) = λpλ

q
αa(v) for any v ∈ Ta(X) and any λ ∈ C.

�ere are di�erential operators

(1.3.2) ∂∶A p,q(X)→ Ap+1,q(X), ∂∶A p,q(X)→ Ap,q+1(X)
such that

(1.3.3) d = ∂ + ∂.
From the relation d ○ d = 0 and looking at the possible degrees, one gets
(1.3.4) ∂ ○ ∂ = 0, ∂ ○ ∂ = 0, ∂ ○ ∂ + ∂ ○ ∂ = 0.
�eses decompositions respect the support, hence similar decomposition ofA n

c (X).
(1.3.1) One de�nes a di�erential operator dc by the formula

(1.3.5) dc = 1
2πi

(∂ − ∂).

Observe that this is a real operator, namely: dc f = dc f . Moreover, if f = R(u) is the real
part of a holomorphic function u,

dc f = dc(R(u)) = 1
4πi

(∂ − ∂)(u + u) = 1
4πi

(∂u − ∂u) = 1
2π

I(∂u)
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since ∂u = ∂u = 0.
�e composition d○dc of the operators d and dc is of tremendous importance of complex

analysis; it satis�es

(1.3.6) ddc = 1
2πi

(∂ + ∂)(∂ − ∂) = i
π
∂∂ = − i

π
∂∂.

Proposition (1.4). — Let X be a complex manifold and let f be an invertible holomorphic
function on X.�en ddc log ∣ f ∣ = 0.

Proof. — It su�ces to prove the result locally, hence we may assume that X is simply con-
nected. Since the exponential C→ C∗ is a covering, there exists a holomorphic function h
on X such that f = eh.�en,

ddc log ∣ f ∣ = ddcR(h) == i
2π

(∂∂h + ∂∂h) i
2π

(∂∂h − ∂∂h) = 0.

Indeed, h being holomorphic, ∂h = 0, and ∂h = ∂h = 0.

1.5. Assume that X is an open subset of C. For any C∞-function on X, one can write

(1.5.1) dcu = 1
2π

(−∂u
∂y
dx + ∂u

∂x
dy)

so that

(1.5.2) ddcu = 1
2π
∆u dx ∧ dy,

where
∆u = ∂2u

∂x2
+ ∂2u
∂y2

is the Laplace operator applied to u. In particular, this shows directly that harmonic
functions are preserved by a holomorphic changes of variables.
Let u, v be C∞-functions on X. Since non-zero 2-forms on X have bidegree (1, 1),

∂u ∧ ∂v = ∂u ∧ ∂v = 0 and

du ∧ dcv = i
2π

(∂u ∧ ∂v + ∂v ∧ ∂u)(1.5.3)

= 1
2π

(∂u
∂x

∂v
∂y

+ ∂u
∂y

∂v
∂x

)dx ∧ dy(1.5.4)

= dv ∧ dcu.(1.5.5)

In particular, this is a symmetric expression in u and v.

Proposition (1.6) (Green formula). — Let X be a Riemann surface with boundary, let u and v
be C 2-functions on X such that supp(u) ∩ supp(v) is compact.�en,

(1.6.1) ∫
X
(uddcv − vddcu) = ∫

∂X
(udcv − vdcu) .



32 CHAPTER 2. PRELIMINARIES FROM COMPLEX GEOMETRY

Proof. — Since
du ∧ dcv = d(udcv) − uddcv ,

Stokes formula
∫

X
dω = ∫

∂X
ω,

valid for any C 1-di�erential form of degree 1 on X, implies

∫
X
du ∧ dcv = ∫

∂X
udcv − ∫

X
uddcv .

Green formula follows by symmetry.

1.7. It is occasionally useful to express the operators d, dc, ddc in polar coordinates. If
z = x + iy = re iθ we have

dz = e iθ(dr + irdθ), dz = e−iθ(dr − irdθ),(1.7.1)

dr = 1
2
(e−iθdz + e iθdz), dθ = 1

2ir
(e−iθdz − e iθdz), i

2
dz ∧ dz = rdrdθ .(1.7.2)

�en, for any di�erentiable function u on an open subset of C∗,

du = ∂u
∂r
dr + ∂u

∂θ
dθ

= e−iθ
2

(∂u
∂r

− i
r
∂u
∂θ
+)dz + e iθ

2
(∂u
∂r

+ i
r
∂u
∂θ

)dθ

so that

(1.7.3) ∂u = 1
2
(∂u
∂r

− i
r
∂u
∂θ
+) (dr + irdθ), ∂u = 1

2
(∂u
∂r

+ i
r
∂u
∂θ

) (dr − irdθ).

Finally,

(1.7.4) dcu = 1
2πi

(∂u − ∂u) = 1
2π

(r ∂u
∂r
dθ − 1

r
∂u
∂θ
dr) .

and, if u is twice di�erentiable,

(1.7.5) ddcu = i
π
∂∂u = 1

2π
( 1
r
∂
∂r

(r ∂u
∂r

) + 1
r2
∂2u
∂θ2

) rdrdθ .

§ 2. CURRENTS

2.1. Let X be an oriented manifold (everywhere) of dimension d. Currents of degree p
on X are continuous linear forms onA d−p

c (X), where the continuity condition comes from
distribution theory: one says that a linear form T on A d−p

c (X) is continuous if for any
compact subset K contained in a coordinate open Ω set of X, there exists an integer k such
that for any sequence (αn) of forms inA d−p

c (X) whose support is contained in K whose
coe�cients converge uniformly to 0, as well as their partial derivatives up to order k, T(αn)
converges to 0. (One then says that T has order ≤ k on K.)
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�e space of currents of degree p is denotedD p(X).
2.2. Currents and integration theory. — Since X is oriented, one can integrate any di�eren-
tial form with compact support of degree d.�e map α ↦ ∫X α is linear, continuous, hence
de�nes a current [X] (of order 0) of degree 0 on X.
More generally, a locally integrable function f on X de�nes a current [ f ] of degree 0

on X , by the formula

(2.2.1) [ f ](α) = ∫
X
f α, f ∈ L1loc(X), α ∈ A d

c (X).

�is gives an injection of L1loc(X) inD0(X).
Let µ be a Radon measure on X. By de�nition, µ is a continuous linear form on the space

C 0
c (X) of continuous functions with compact support on X. It de�nes naturally a current
of degree d.�e mapM (X)→ Dd(X) so de�ned is injective.
2.3. Let T ∈ D p(X) be a current of degree p on X and let ω be a di�erential form of degree q.
One de�nes a current T ∧ ω on X of degree p + q by the formula:

(2.3.1) T ∧ ω(α) = T(ω ∧ α), α ∈ A d−p−q
c (X).

In particular, the map α ↦ [α] = [X]∧ α associates to every di�erential form of degree q
a current of degree q.�is map is injective.

2.4. Let U be an open subset of X. Any form α ∈ A d−p
c (U) can be viewed as a form with

compact support on X (whose support is actually contained inU).�erefore, any current T
of degree p on X de�nes a current T ∣U of degree p on X, obtained by evaluating T on forms
with compact support on U .
As shown be the following lemma, the restriction mapsD p(X)→ D p(U) de�ne a sheaf

of vector spaces on X.

Lemma (2.5). — Let (Ui)i∈I be an open cover of X; for every i ∈ I, let Ti ∈ D(Ui) be a current
of degree p on Ui . Assume that for every i , j ∈ I, the currents Ti ∣U i∩U j and Tj∣U i∩U j on Ui ∩U j
coincide.�en, there exists a unique current T ∈ D p(X) such that Ti = T ∣U i for every i ∈ I.

Proof. — Manifolds are assumed to be paracompact, and possess smooth partitions of
unity. In other words, there is a family (λ j) j∈J of nonnegative C∞-functions on X, and a
map i∶ J → I such that for every j ∈ J, supp(λ j) ⊂ Ui( j) and such that ∑ j∈J λ j(x) = 1, the
sum being locally �nite.
Let α ∈ A d−p

c (X). For every j ∈ J, the form λ jα on X is supported by Ui( j) and one has
α = ∑ j∈J λ jα; the sum is locally �nite but since α has compact support, only �nitely many
terms are nonzero. De�ne

T(α) =∑
j∈J

Ti( j)(λ jα).

I claim that this is the unique current on X which statis�es the required conditions.
Let us �rst check uniqueness: if S is any current such that Ti = S∣U i for every i ∈ I,

then S(λ jα) = Ti( j)(α), since supp(λ jα) ⊂ Ti( j). Consequently, S(α) = S(∑ λ jα) =
∑Ti( j)(λ jα).
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One leaves to the reader to check that T is continuous, hence really is a current. Let i ∈ I
and assume that supp(α) ⊂ Ui .�en, for every j ∈ J, supp(λ jα) ⊂ Ui ∩Ui( j), so that

Ti( j)(λ jα) = Ti(λ jα).
Consequently,

T(α) =∑
j∈J

Ti( j)(λ jα) =∑
j∈J

Ti(λ jα) = Ti(∑
j∈J

λ jα) = Ti(α).

In other words, T ∣U i = Ti .

2.6. Although the exterior product of di�erential forms is well de�ned, there is no exterior
product of currents in general.
Let T be a current of degree p on X.�ere is a largest open subsetU of X such that T ∣U is

of the form [αU], for some form αU ∈ A p(U).�e complement ofU is the singular support
of T ; it is closed subset of X, and is denoted sing supp(T).
Let S and T be two currents of degrees p and q on X such that sing supp(S) ∩

sing supp(T) = ∅. �en, one can de�ne the current S ∧ T as follows: let α be a form on
U = X ∖ sing supp(S) such that S∣U = [α], let β be a form on V = X ∖ sing supp(T) such
that T ∣U = [β]; then S ∧ T is the unique current on X such that

(S ∧ T)∣U = [α] ∧ T , (S ∧ T)∣V = S ∧ [β].
To see that it exists, observe that U ∪V = X, and that, denotingW = U ∩V , ([α] ∧ T)∣W =
[α∣W] ∧ [β∣W] = (S ∧ [β])∣W .
2.7. Functoriality f∗, f ∗, projection formula.
2.8. Di�erential calculus for currents. — Let T be a current of degree p on X; one de�nes a
current dT of degree p + 1 by the formula
(2.8.1) dT(β) = (−1)p+1T(dβ), β ∈ A d−p−1

c (X).
�is de�nition is compatible with the injection of A p(X) in D p(X). Indeed, for any
α ∈ A p(X) and any β ∈ A d−p−1

c (X), Stokes’s formula implies that

∫
X
d(α ∧ β) = 0.

Since
d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ,

it comes:
d[α](β) = (−1)p+1[α](dβ)

= (−1)p+1∫
X

α ∧ dβ

= −∫
X
(d(α ∧ β) − dα ∧ β)

= ∫
X
dα ∧ β

= [dα](β).
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�e following formulae follow from the de�nition and their counterparts for di�erential
forms: for any current T , and any di�erential form α,

(2.8.2) d ○ dT = 0
and

(2.8.3) d(S ∧ α) = dS ∧ α + (−1)deg(S)S ∧ dα.

Indeed, for any form β ∈ A d−p
c (X),

(d ○ dT)(β) = (−1)deg(T)dT(β) = −T(d ○ dβ) = 0,
while

d(S ∧ α)(β) = (−1)deg(S)+deg(α)+1S ∧ α(dβ)
= (−1)deg(S)+deg(α)+1S(α ∧ dβ)
= (−1)deg(S)+deg(α)+1S((−1)deg(α)d(α ∧ β) − (−1)deg(α)dα ∧ β)
= (−1)deg(S)+1(d(α ∧ β)) + (−1)deg(S)S(dα ∧ β)
= dS(α ∧ β) + (−1)deg(S)S(∧dα)(β)
= (dS ∧ α + (−1)deg(S)S ∧ dα)(β).

�is formula extends to the product of two currents whose singular supports do not meet,

(2.8.4) d(S ∧ T) = dS ∧ T + (−1)deg(S)S ∧ dT .
Indeed, the latter formula needs only to be shown a�er restricting to an open subset of X
whese S (resp. T) is given by a di�erential form, in which case it reduces to Equation (2.8.3).

2.9.On complex manifolds, bigraduation of currents, operators ∂, ∂, dc.

§ 3. THE POINCARÉ-LELONG FORMULA (IN DIMENSION 1)

3.1. Let X be a connected Riemann surface. A divisor on X is a function from X to Z
whose support is discrete — this means that for any compact subset K of X, there are
only �nitely many points of K which are mapped to a nonzero value. In fact, whatever
the technical de�nition, one does not consider a divisor D∶ p ↦ np as a function but as a
linear combination D = ∑ npp of points.�e support ∣D∣ of this divisor is then the set of all
points p ∈ X such that np ≠ 0.

�e set Div(X) of divisors on X is an Abelian group.
3.2. Let D = ∑ npp be a divisor on X; the current δD = ∑ npδp is de�ned by the formula

(3.2.1) δD( f ) =∑
p
np f (p), for f ∈ A 0

c (X).

�is is a �nite sum.
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3.3. Let φ ∈ M (X)∗ be a meromorphic function on X. We shall say that φ is “regular” (1) if
it does not vanish identically on any non-empty open subset of X.
If φ is “regular”, its divisor div(φ) is de�ned by:

(3.3.1) div(φ) =∑
p∈X

vp(φ)p.

It is a divisor; indeed, the set of zeroes and poles of any “regular” meromorphic function
on X is discrete, and its order of vanishing is well-de�ned.

Proposition (3.4) (Poincaré–Lelong). — Let φ be a “regular” meromorphic function on X.
�e function log ∣φ∣ on X is locally integrable and
(3.4.1) ddc[log ∣φ∣] = δdiv(φ).

Proof. — Let p ∈ X; there exists a neighborhoodU of P and an isomorphism z∶U → D(0, 1)
such that z(P) = 0. One can choose U small enough so that, besides possibly p, φ has no
zero and no pole on U . One can then write φ = (z − z(P))vp(φ)φ̃, where φ̃ is a holomorphic
function on U , without zero nor pole.�en,

log ∣φ∣ = −vp(φ) log ∣z − z(P)∣−1 + log ∣φ̃∣ .
�e �rst term, log ∣z − z(P)∣−1, is integrable on U since it is nonnegative and

∫
U
log ∣z − z(P)∣−1 i

2
dz ∧ dz = ∫

D(0,1)
log ∣z∣−1 i

2
dz ∧ dz = ∫

1

0
∫

2π

0
log(1/r) r dr dθ

and the integral ∫
1
0 r log(1/r)dr converges absolutely.�e second term is continuous, hence

is locally integrable. �is shows that log ∣φ∣ is locally integrable on X, hence de�nes a
current.
Let us show the given equality of currents. Let u ∈ A 0

c (X) be a smooth function with
compact support on X. Let I be the set of points p ∈ supp(u) such that vp(φ) ≠ 0; since
supp(u) is compact, it is a �nite set. Any point p ∈ I has an open neighborhood U that is
isomorphic to a unit disk via an isomorphism zp∶Up → D(0, 1) such that zp(p) = 0. We
may moreover assume that the closures of the open sets Up, for p ∈ I, are pairwise disjoint.
For r ∈ (0, 1) and any p ∈ I, let D(p, r) be the set of points q ∈ Up such that ∣zp(p)∣ < r.

Let Xr be the complement of ∣div(φ)∣ ∪⋃p∈I D(p, r) in X; this is a Riemann surface with
boundary.�e function φ is holomorphic on Xr and has neither zeroes, nor poles, so that
log ∣φ∣ is a C∞-function on Xr; the function u has compact support on Xr. One has

[ddc log ∣φ∣](u) = ∫
X
log ∣φ∣ ddcu = lim

r→1 ∫Xr
log ∣φ∣ ddcu.

Moreover, for any r ∈ (0, 1), the Green formula asserts that

∫
Xr
log ∣φ∣ddcu = ∫

Xr
uddc log ∣φ∣ + ∫

∂Xr
(log ∣φ∣ dcu − udc log ∣φ∣) .

(1) �e terminology, borrowed from Grothendieck’s Éléments de géométrie algébrique, refers to the
fact that regular elements, e.g., non-zero-divisors, of the ring of meromorphic functions are precisely such
meromorphic functions which are not identically zero on any non-empty open subsets; the quotes are there
to prevent any confusion: regular meromorphic functions may have poles!
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Since φ is holomorphic on Xr and has no zeroes and no poles, ddc log ∣φ∣ = 0 on X̊r.
Moreover, the boundary of Xr is the union, for p ∈ I, of the boundaries of the disks Dp(r)
with the clockwise orientation. First of all, for any p ∈ I, log ∣φ∣ = O(log r−1) on ∂Dp(r),
and the length of ∂Dp(r) = O(r). Consequently,

∫
∂Dp(r)

log ∣φ∣ dcu = O(r log(r−1))

converges to 0 when r → 0.�en we analyse the terms ∫∂Dp(r) ud
c log ∣φ∣. On Up, we can

write φ = znp
p φ̃, where np = vp(φ) and φ̃ is a holomorphic function without zeroes nor poles.

�en,
dc log ∣φ∣ = dc log ∣φ̃∣ + npdc log ∣zp∣ .

�e integrals ∫∂Dp(r) ud
c log ∣φ̃∣ converge to 0 when r → 0. Passing in polar coordinates and

writing z = re iθ , we have (see §1.7)

dc log ∣z∣ = 1
2π
dθ

(we could also have used dc log ∣z∣ = dcR(log z) = 1
2πI(dz/z)), so that

∫
∂Dp(r)

u dc log ∣zp∣ = ∫
2π

0
u(z−1p (re iθ)) 1

2π
dθ

converges to u(z−1p (0)) = u(p) when r → 0. Finally,

∫
X
u log ∣φ∣ = lim

r→0
sup
p∈I
∫
∂Dp(r)

udc log ∣φ∣ =∑
p∈I

np limr→0 ∫∂Dp(r)
udc log ∣zp∣ =∑

p∈I
npu(p).

�is concludes the proof of the proposition.

Corollary (3.5). — Let X be a Riemann surface and let S , T be currents of order 0 on X. LetΩ
be a relatively compact open subset of X whose boundary ∂Ω isC 1. Assume that sing supp(S),
sing supp(T) and ∂Ω are pairwise disjoint.�en,

(3.5.1) ∫
Ω
(SddcT − TddcS) = ∫

∂Ω
(SdcT − TdcS).

Proof. — First observe that every term of this formula is well de�ned. Since the singular
supports of the currents S and T do not meet, the products SddcT and TddcS are de�ned
as in §2.6. Moreover, S and T are given by smooth forms in a neighborhood of ∂Ω.
Let a, b, c be C∞-functions on X such that a + b + c = 1, a ≡ 0 in a neighborhood

of sing supp(T) ∪ ∂Ω, b ≡ 0 in a neighborhood of sing supp(S) ∪ ∂Ω and c ≡ 0 in a
neighborhood of sing supp(S) ∪ sing supp(T).
A�er multiplying everything by a, the formula reduces to Green formula in the case

where T is a di�erential form with compact support contained in Ω.�en the right hand
side vanishes and the asserted formula is the de�nition of the current ddcS.
A�er multiplying everything by b, one gets the analogous situation where the roles of S

and T are exchanged.
A�er multiplying by c, one is reduced to the case where S and T are smooth di�erential

forms. �e formula is then nothing but Green formula for the Riemann surface with
boundary Ω.
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Since a + b + c = 1, the result follows.

Let us now derive a few consequences.

Proposition (3.6) (Jensen’s formula). — Let r be a positive real number, let f be ameromorphic
function on a neighborhood of D(0, r) such that f (0) ∈ C∗.�en,

(3.6.1) log ∣ f (0)∣ = ∑
z∈D(0,r)

vp( f ) log
∣z∣
r
+ 1
2π ∫

2π

0
log ∣ f (re iθ)∣ dθ .

Proof. — We de�ne currents S = log ∣ f ∣ and T = log ∣z/r∣ on a neighborhood of D(0, r).
�eir singular supports are ∣div( f )∣ and {0}. First assume that ∣div( f )∣ does not meet
the boundary ∂D(0, r). �en we can apply the Green formula for currents on the open
set D(0, r). Since ddcS = δdiv( f ) and ddcT = δ0,

∫
D(0,r)

(SddcT − TddcS) = log ∣ f (0)∣ − ∑
z∈D(0,r)

log ∣z/r∣ .

Moreover, in a neighborhood of ∂D(0, r) which does not contain any zero or pole of f , nor
the origin,

SdcT = log ∣ f (z)∣2 1
2π
dθ ,

and TdcS vanishes on ∂D(0, r). Consequently,

∫
∂D(0,r)

(SdcT − TdcS) = 1
2π ∫

2π

0
log ∣ f (re iθ)∣2 dθ ,

and Jensen’s formula follows from Green’s one.
In the general case, f may have zeroes or poles on the boundary ∂D(0, r), and we apply

Jensen’s formula for s < r, and let s converge to r. It thus su�ces to show that

∫
2π

0
log ∣ f (se iθ)∣ dθ → ∫

2π

0
log ∣ f (re iθ)∣ dθ .

�e convergence is pointwise, and is locally uniform around any θ such that re iθ is neither a
zero nor a pole of f . We shall prove that the convergence is dominated in a neighborhood of
these points. Assume indeed that f has a zero of order n at re iφ; then we can estimate f (z)
for z close to re iφ by

c1 ∣re iφ − z∣n ≤ ∣ f (z)∣ ≤ c2,

where c1 and c2 are positive real numbers. If f has a pole of order n, then a similar inequality
holds for ∣ f (z)∣−1. Since ∣re iφ − se iθ ∣ ≥ s ∣1 − e i(θ−φ)∣, we get in both cases that

∣log ∣ f (se iθ)∣∣ ≤ O(log ∣1 − e i(θ−φ)∣−1) ≤ O(log ∣θ − φ∣−1)

Since the function t ↦ log ∣t∣−1, is integrable in a neighborhood of the origin, the convergence
is dominated, whence the result by Lebesgue’s theorem.
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3.7.One of the ideas behind value distribution theory is that there is a relation between the
zeroes of a meromorphic function and its growth. In the case of entire functions, Jensen’s
formula allows to turn this idea into a precise estimate.
Let thus f ∈ O(C) be a holomorphic function on C. Assume for simplicity that f (0) ≠ 0.

For any positive real number r, Jensen’s formula asserts that

∑
z∈D(0,r)

vz( f ) log
r
∣z∣ =

1
2π
log ∣ f (re iθ)∣ − log ∣ f (0)∣ .

Let ε > 0. Applying Jensen’s formula again on the disk of radius r(1 + ε) and neglecting
zeroes of f in the annulus C(r, r(1 + ε)), we obtain

∑
z∈D(0,r)

vz( f ) log
r(1 + ε)

∣z∣ = 1
2π
log ∣ f (r(1 + ε)e iθ)∣ − log ∣ f (0)∣ ,

so that

∑
z∈D(0,r)

vz( f ) ≤ c(ε) log ∥ f ∥L∞(D(0,r(1+ε))) .

Proposition (3.8) (Formula of “Poisson-Jensen”). — Let r be a positive real number, let f be
a meromorphic function on a neighborhood of D(0, r). Let w ∈ D(0, r) be any point such
that w /∈ ∣div( f )∣, write w = ρe iφ.�en

(3.8.1) log ∣ f (w)∣ = ∑
z∈D(0,r)

vz( f ) log ∣
r2 − zw
r(z −w)∣

+ 1
2π ∫

2π

0
log ∣ f (re iθ)∣ r2 − ρ2

r2 − 2rρ cos(θ − φ) + ρ2
dθ .

Proof. — We applyGreen’s formula to the currents S = [log ∣ f ∣] and T(z) = [log ∣ r2−zw
r(z−w) ∣] on

Ω = D(0, r). One has ddcS = δdiv( f ) and ddcT = −δw . We assume that f has no zeroes and
no poles on the boundary ∂D(0, r), the general case can be treated by a similar argument
as in the proof of Jensen’s formula.�en, Green’s formula implies

− log ∣ f (w)∣ − ∑
z∈D(0,r)

vz( f ) log ∣
r2 − zw
r(z −w)∣ = ∫∂D(0,r)

(log ∣ f ∣dcT − Tdc log ∣ f ∣) .

In a neighborhood of ∂D(0, r), the current T is given by a C∞-function which vanishes
identically on ∂D(0, r), so that ∫∂D(0,r) Tdc log ∣ f ∣

2 = 0. On the other hand,

dcT = 1
2π

I(d(r
2 − zw)

r2 − zw
− d(z −w)

z −w ).
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We express the integral on ∂D(0, r) in polar coordinates and set z = re iθ and w = ρe iφ;
then dz = izdθ and dz = −izdθ. Moreover, z = r2/r, so that, on ∂D(0, r),

dcT = − 1
2π

R( zw
r2 − zw

+ z
z −w)dθ

= − 1
2π

R(z +w
z −w)dθ

= − 1
2π

R( r
2 − 2irρ sin(φ − θ) − ρ2
r2 − 2rρ cos(φ − θ) + ρ2

)dθ

= − 1
4π

r2 − ρ2
r2 − 2rρ cos(φ − θ) + ρ2

dθ .

�erefore,

∫
∂D(0,r)

log ∣ f ∣ dcT = − 1
2π ∫

2π

0
log ∣ f (re iθ)∣ r2 − ρ2

r2 − 2rρ cos(θ − φ) + ρ2
dθ .

Combining these equalities, we get the asserted formula.

Proposition (3.9) (Weil). — Let X be a compact connected Riemann surface, let f , g be
nonzero meromorphic functions on X such that ∣div( f )∣ ∩ ∣div(g)∣ = ∅.�en,

∏
z∈X

∣g(z)∣vz( f ) =∏
z∈X

∣ f (z)∣vz(g) .

Proof. — It follows directly from Green’s formula, as applied to the currents S = [log ∣ f ∣],
T = [log ∣g∣] on X.

Exercise (3.10). — Prove that the formula holds without the absolute values, namely

∏
z∈X

g(z)vz( f ) =∏
z∈X

f (z)vz(g).

(First treat the case where X = P1(C), identifying f and g with rational functions. In the
general case, view f as a morphism from X to P1(C).)

3.11. Let Ω be as in Green’s formula. For any point w ∈ Ω, there exists a unique function
gw ,Ω on Ω ∖ {w} satisfying the following properties:

– it is harmonic on Ω ∖ {w};
– it has a logarithmic singularity at w: if z is a local holomorphic coordinate in a
neighborhood ofw, then gw ,Ω − log ∣z − z(w)∣2 extends to a harmonic function near w;
– it extends to a harmonic function in a neighborhood of ∂Ω, vanishing identically
on ∂Ω.

Such a function can be de�ned as follows. First glue two copies of the compact set Ω along
the boundary via the complex conjugation; this furnishes a compact Riemann surfaceY with
an antiholomorphic automorphism c.�ere exists a harmonic function u on Y ∖{w , c(w)}
with the prescribed holomorphic singularity atw, the opposite one at c(w)which is changed
into its opposite by c. It remains to identify a neighborhood of Ω in X to a neighborhood
of Ω in Y , and to consider the restriction of u. Since c(z) = z for any z ∈ ∂Ω, u ≡ 0 on ∂Ω.
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�en gw ,Ω is locally integrable, hence de�nes a current on a neighborhood of Ω and

(3.11.1) ddc[gw ,Ω] = δw on a neighborhood of Ω.

Moreover, for any continuous function on Ω which is harmonic function on Ω, one has

(3.11.2) h(w) = ∫
∂Ω

hdcgw ,Ω .

§ 4. GEOMETRY OF THE RIEMANN SPHERE

4.1.�e projective line P1(C) is the set of lines of C2 passing through the origin. For
(x0, x1) ∈ C2 ∖ {0}, write [x0 ∶ x1] for the line l = C(x0, x1). One says that x0 and x1 are
the homogeneous coordinates of l ; they are well-de�ned up to a common multiplicative
constant. Let p∶C2 ∖ {0}→ P1(C) be the natural projection.

�e map z ↦ [1 ∶ z] from C to P1(C) identi�es the complex line with the complement of
the point at in�nity∞ = [0 ∶ 1] of P1(C).
4.2. Let S2 be the unit sphere in R3.�e stereographic projection is the map

(4.2.1) s∶S2 → P1(C), (x , y, z)↦ [1 − z ∶ x + iy].

In other words, s(x , y, z) = x+iy
1−z if z ≠ 1, while the north pole N = (0, 0, 1) is mapped to∞.

It is a bijection, the inverse of w ∈ C is given by the formulae

(4.2.2) x =R( 2w
1 + ∣w∣2) , y = I( 2w

1 + ∣w∣2) , z = ∣w∣2 − 1
∣w∣2 + 1 .

�e groups SO(3) and SU(2)/{±1} act transitively on the sphere S2 and on P1(C)
respectively; �ere is a unique group isomorphism ρ∶ SO(3) → SU(2)/{±1} such that
s(g ⋅ p) = ρ(g) ⋅ s(p) for any p ∈ S2 and any g ∈ SO(3).
4.3. Let v0, v1 ∈ C2 ∖ {0}; write [v0] = p(v0) and [v1] = p(v1) in P1(C). One de�nes the
chordal distance between [v0] and [v1] by the formula

(4.3.1) ∥[v0], [v1]∥ =
∥v0 ∧ v1∥
∥v0∥ ∥v1∥

.

Observe that for α and β ∈ C∗,
∥αv0 ∧ βv1∥
∥αv0∥ ∥βv1∥

= ∥v0 ∧ v1∥
∥v0∥ ∥v1∥

,

so that the chordal distance between two points p0 and p1 of P1(C) is well-de�ned, inde-
pendently of the choice of homogeneous coordinates needed for its computation.
Moreover, ∥[v0], [v1]∥ is an element of [0, 1], and it vanishes if and only if v0 and v1 are

collinear, i.e., if [v0] = [v1]. It is also symmetric in [v0] and [v1].
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Let w1 and w2 ∈ C, write v1 = (1,w1) and v2 = (1,w2) so that p(v1) = w1 and p(v2) = w2.
�en,

(4.3.2) ∥w1,w2∥2 =
∣w1 −w2∣2

(1 + ∣w1∣2)(1 + ∣w2∣2)
.

Moreover,

(4.3.3) ∥w1,∞∥2 = 1
1 + ∣w1∣2

.

Let also p1 = (x1, y1, z1) and p2 = (x2, y2, z2) be two points of the sphere S2.�en,

(4.3.4) ∥s(p1), s(p2)∥ =
1
2
∥p1 − p2∥ ,

where the norm in R3 is the Euclidean one.�is formula explains the terminology chosen:
up to the normalization factor 12 , the chordal distance between two points of P1(C) is the
length of the chord that joins the corresponding points of the unit sphere.
Indeed, in the case where p2 is the North pole and p1 ≠ p2, one has s(p1) = [1−z1 ∶ x1+ iy1]

and s(p2) = [0 ∶ 1], so that

∥s(p1), s(p2)∥2 =
(1 − z1)2

(1 − z1)2 + x21 + y21
= 4(1 − z1)2
1 − 2z1 + x21 + y21 + z21

= 2(1 − z1)

using that p1 ∈ S2 hence x21 + y21 + z21 = 1. On the other hand,

∥p1 − p2∥ = x21 + y21 + (z1 − 1)2 = 2(1 − z1).

�is implies the given formula in this particular case.�e general case follows from the
particular one and the fact that both sides of the formula are unchanged under the actions
of SO(3) and SU(2).
Anyway, we can also make the computation. In the remaining case where p1 and p2 are

both distinct from the North pole, one has s(p1) = w1 = (x1 + iy1)/(1− z1) and s(p2) = w2 =
(x2 + iy2)/(1 − z2), so that

∥s(p1), s(p2)∥2 =
(x1(1 − z2) − x2(1 − z1))2 + (y1(1 − z2) − y2(1 − z1))2

((1 − z1)2 + x21 + y21)((1 − z2)2 + x22 + y22)

= (x21 + y21)(1 − z2)2 + (x22 + y22)(1 − z1)2 − 2(x1x2 + y1y2)(1 − z1)(1 − z2)
(1 − 2z1 + x21 + y21 + z21)(1 − 2z2 + x22 + y22 + z22)

.

Since p1 and p2 belong to S2, it comes

x21 + y21 + z21 = x22 + y22 + z22 = 1,
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hence

∥s(p1), s(p2)∥2 =
(1 − z21)(1 − z2)2 + (1 − z22)(1 − z1)2 − 2(1 − z1)(1 − z2)(x1x2 + y1y2)

4(1 − z1)(1 − z2)
= 1
2
((1 + z1)(1 − z2) + (1 + z2)(1 − z1) − 2(x1x2 + y1y2))

= 1
2
(1 − 2p1 ⋅ p2)

= 1
2
∥p1 − p2∥2 .

Proposition (4.4). — �ere exists a unique di�erential form ω on P1(C) such that

(4.4.1) p∗ω = 1
2
ddc log ( ∣x0∣2 + ∣x1∣2 ) on C2 ∖ {0}.

Proof. — Write ω̃ = ddc log ( ∣x0∣2+ ∣x1∣2 ). Since the map p is a holomorphic submersion, it
induces an injection on di�erential forms, so that there exists at most one such ω. Moreover,
since ω̃ is of type (1, 1), so will be ω.
To prove the existence ofω, we show that for any open setU ⊂ P1(C) and any holomorphic

section s of p, ω̃ = p∗s∗ω̃ on p−1(U). By de�nition, s○ p(x0, x1) is a nonzero point of the line
C(x0 ∶ x1), for any (x0, x1) ∈ p−1(U). Consequently, there exists an holomorphic function
λ∶ p−1(U)→ C∗ such that

s ○ p(x0, x1) = λ(x0, x1) (x0, x1).
�en,

p∗s∗ω̃ = 1
2
ddc log ∥s ○ p∥2

= 1
2
ddc log ( ∣λ(x0, x1)∣2 (∣x0∣2 + ∣x1∣2))

= ddc log ∣λ∣ + ω̃
= ω̃,

since λ is holomorphic and invertible.
�e projective line P1(C) can be covered by open sets over which the map p admits

holomorphic sections, e.g., the section s0∶ [1 ∶ w] ↦ (1,w) on U0 = P1(C) ∖ {∞} and
the section s1∶ [z ∶ 1] ↦ (z, 1) on U1 = P1(C) ∖ {[1 ∶ 0]}. �e restrictions to U0 ∩ U1 of
the forms ω0 = s∗0 ω̃ on U0 and ω1 = s∗1 ω̃ on U1 coincide, since they both pull-back to ω̃
on p−1(U0∩U1) by the submersion p. Consequently, they glue to a global di�erential form ω
on U0 ∪U1 = P1(C).

Lemma (4.5). — Let a ∈ P1(C). One has the following equality of currents on P1(C):
(4.5.1) ω = −ddc log ∥a, ⋅∥ + δa .

Proof. — First assume that a ≠∞.�en, for z ∈ P1(C) ∖ {∞},

∥a, z∥2 = ∣a − z∣2

(1 + ∣a∣2)(1 + ∣z∣2) ,
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so that, as currents on P1(C) ∖ {∞},

ddc log ∥a, z∥ = ddc log ∣a − z∣ − 1
2
ddc log (1 + ∣z∣2 ) = δa − ω.

Since the function log ∥a, ⋅∥ is C∞ on P1(C) ∖ {a}, the singular support of the current
ddc log ∥a, ⋅∥−δa is contained in {a}. Since it equals the restriction of the smooth di�erential
form ω on this open set, one must have ddc log ∥a, ⋅∥ − δa = ω on P1(C), hence the lemma
when a ≠∞.
When a =∞ = [0 ∶ 1], one identi�esU1 = P1(C)∖{[1 ∶ 0]}withC via themapw ↦ [w ∶ 1]

and one writes
∥∞, [w ∶ 1]∥2 = ∣w∣2

1 + ∣w∣2

so that
ddc log ∥∞, [w ∶ 1]∥ = ddc log ∣w∣ − ω = δ∞ − ω.

4.6. Let us compute explicitly the form ω on the open set C = P1(C) ∖ {∞}. We have

ω = 1
2
ddc log (1 + ∣z∣2 )

= i
2π
∂∂ log (1 + zz)

= i
2π
∂ z
1 + zz

dz

= i
2π

( 1
1 + zz

− i
2π

zz
(1 + zz)2) dz ∧ dz

= i
2π
dz ∧ dz
(1 + ∣z∣2)2 .(4.6.1)

In particular,

∫
P1(C)

ω = ∫
C

ω = 1
π ∫R2

dxdy
(1 + x2 + y2)2

= 2∫
∞

0

rdr
(1 + r2)2 = ∫

∞

0

dr2
(1 + r2)2 = 1,(4.6.2)

a formula which justi�es various normalizations. On the other hand, we could have also
used the equations of currents given by lemma 4.5 and written, for some a ∈ P1(C),

∫
P1(C)

ω = ∫
P1(C)

(ddc log ∥a, ⋅∥ + δa) = 1,

since, for any current T of degree 0,

∫
P1(C)

ddcT = ddcT(1) = T(ddc1) = 0.

4.7.�e action of SU(2) on P1(C) is transitive, and lets invariant the form ω. Consequently,
the normalization condition ∫P1(C) ω = 1 characterizes the form ω among invariant forms.
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§ 5. LINE BUNDLES

5.1. Let X be a complex manifold. From the point of view of di�erential geometry, a holo-
morphic line bundle on X is a complex manifold L together with a holomorphic map
p∶ L → X which is a locally trivial �bration with �ber C and structure group C∗. In other
words, the space X is covered by open subsets Ui on which there is an isomorphism
fi = (p∣U i , gi)∶ p−1(Ui) ≃ Ui ×C such that for any i and j, there is a holomorphic function
fi j∶Ui ∩U j → C∗ such that gi(y) = fi j(p(x))g j(y) for any y ∈ p−1(Ui ∩U j).�e maps fi
are called the trivializations of L, and the fi j the transition maps.

�ese data furnish a structure of C-vector space (of dimension 1) on the �bers of p, given
by

(x , gi(y + y′)) = (x , gi(y) + gi(y′)), λ ⋅ (x , gi(y)) = (x , λgi(y)),
for x ∈ Ui , y, y′ ∈ p−1(x) and λ ∈ C, because this structure is independent on the choice of i
such that x ∈ Ui .
IfM is a second line bundle on X, a morphism of line bundles φ∶ L → M is a holomorphic

map which is C-linear on each �ber of p.
5.2. A holomorphic section of p on an open setU of X is a holomorphic map s∶U → p−1(U)
such that p ○ s = idU .�e addition on the �bers of p varies “varies holomorphically”with
the point x, in the following sense: if s and s′ are holomorphic sections of p over an open
subset U of X, then x ↦ s(x) + s′(x) is again holomorphic. Indeed, on U ∩Ui , one can
write

s(x) + s′(x) = f −1i (x , gi(s(x)) + gi(s′(x))).
Similarly, if λ∶U → C is holomorphic and s is a holomorphic section of p, then x ↦
λ(x) ⋅ s(x) is a holomorphic section of p.
Let s be a section of p on an open setU of X. OnU∩Ui , this section induces a holomorphic

map gi ○ s∶U ∩Ui → C. Conversely, if hi ∶U ∩Ui → C is holomorphic, there exists a unique
section s on U ∩Ui such that gi ○ s = hi ; it is given by s(x) = f −1i (x , hi(x)) for x ∈ U ∩Ui .
Moreover, for x ∈ U ∩Ui ∩U j, one has the relation

hi(x) = fi j(x)h j(x).
Conversely, for any family (gi), where gi is a holomorphic function U ∩Ui → C, satisfying
these relations, there exists a unique section s on U such that hi ○ s = hi for every i.
For each open subset U of X, letL (U) be the set of holomorphic sections of p on U . It

is naturally a module over the ring OX(U) of holomorphic functions on U . Moreover,L
andOX satisfy the axioms of sheaves, so thatL is a sheaf ofOX-modules. Moreover, on any
open set U ⊂ Ui , we have described a bijection s ↦ h = gi ○ s between sections s ∈ L (U)
and holomorphic functions h ∈ OX(U). �is bijection is compatible with restriction to
open subsets and to the module structure. Consequently, it de�nes an isomorphism of
sheaves from the restriction to U of the sheafL to the restriction to U of the sheaf OX . In
particular, the sheafL is locally isomorphic toOX ; we shall sum up this property by saying
thatL is a line sheaf.
LetM is a second line bundle on X and letM be its sheaf of sections. Let φ∶ L → M be a

morphism. For each open set U ⊂ X and each section s ∈ L (U), x ↦ φ(s(x)) is a section
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of M on U , so is an element ofM (U). �is de�nes a map φU ∶L (U) → M (U); it is a
morphism of OX(U)-modules. Moreover, when U varies, these maps de�ne a morphism
of sheaves Φ fromL toM .
5.3. By associating to a holomorphic line bundle its sheaf of sections, we thus have de�ned a
functor from the category of holomorphic line bundles on X to the category of line sheaves,
that is, the category of sheaves of OX-modules which are locally isomorphic to OX . Let us
show that this functor is an equivalence of categories.
We �rst prove that it is fully faithful, namely: if L and M are holomorphic line bundles

on X and Φ is a morphism of sheaves from L to M , there exists a unique morphism of
holomorphic line bundles φ∶ L → M giving rise to Φ.
It is necessarily given by the formula Φ(s)(x) = φ(s(x)) for any open set U ⊂ X, any

section sL (U) and any point x ∈ U . Conversely, it su�ces to check that this formula
actually de�nes a morphism of holomorphic line bundles.

�en, we show that this functor is essentially surjective: any line sheaf L is associated to
a holomorphic line bundle on X.
Let (Ui) an open cover of X and, for every i, let φi be an isomorphism of OU i toL ∣U i ;

let si ∈ L (Ui) be the section φi(1). Let φi j = φi ∣U i∩U j ○ (φ j∣U i∩U j)−1; it is an automorphism
of the sheaf OU i∩U j (as a sheaf of modules over itself); let fi j = φi j(1). By the sheaf property,
one has φi j(h) = fi j∣Uh for any open set U ⊂ Ui ∩ U j and any section h ∈ OX(U). �e
function fi j is invertible because φi j is an automorphism. Moreover, on Ui ∩U j ∩Uk, we
have the cocycle relation:

φi j ○ φ jk = φik .

We can now de�ne a holomorphic line bundle L on X as follows. On the disjoint union of
the spaces Ui ×C, we de�ne a binary relation ∼ by

(x , t)i ∼ (x , fi j(x)t) j, for x ∈ Ui ∩U j, t ∈ C.

�e cocycle relation shows indeed that it is an equivalence relation.�e quotient space is
the desired holomorphic line bundle.
If L is a line sheaf on X, a basis of L over an open subset U is a section s ∈ L (U)

such that s∣V is a basis ofL (V) as a OX(V)-module for any open subset V of U—in other
words, the morphism of sheaves from OU toL ∣U given by f ↦ f s is an isomorphism.
5.4. Divisors and line bundles on Riemann surfaces. — Let X be a Riemann surface and
let D be a divisor on X. Let OX(D) be the subsheaf of the sheaf of meromorphic functions
on X de�ned as follows: a section of OX(D) on an open subset U of X is a meromorphic
function f on U such that div( f ) + D∣U ≥ 0. Let us detail this condition. Recall that a
divisor on U is a function from X to Z whose support is locally �nite.�e divisor D∣U is
the restriction to U of the divisor D; it is a divisor on U .�e inequality div( f ) + D∣U ≥ 0
means that the divisor div( f ) + DU takes only nonnegative values; it is rephrased by saying
that this divisor is e�ective.
Let us show that OX(D) is line sheaf on X. First of all, for any open subset U of X, any

meromorphic function f onU such that div( f )+D∣U ≥ 0 and any holomorphic function g
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on U , one has div(g) ≥ 0, hence
div(g f ) + D∣U = div(g) + div( f ) + D∣U ≥ 0.

�is endowes OX(D)(U) with a structure of a OX(U)-module, and this structure is com-
patible with restriction to open subsets of U , so that OX(D) is a sheaf of OX-modules.
Let p ∈ X, let U be an open neighborhood of p in X which is isomorphic to the unit disk;

�x such an isomorphism z∶U ≃ D(0, 1). We may also assume thatU ∖{p} does not contain
any point of the support ∣D∣ of D. Let np be the coe�cient of p in D, so that D∣U = npp.
Since div(z− z(p)) = p, a meromorphic function f onU belongs toOX(D)(U) if and only
if div((z − z(p)np f )) ≥ 0, that is, if and only if (z − z(p))np f is holomorphic on U . Since
z − z(p) is invertible as a meromorphic function,OX(D)(U) is a freeOX(U)-module with
basis z − z(p).�is implies the result.
5.5. Let L be a line sheaf on a Riemann surface X. Let U be an open subset of X. A
meromorphic section ofL on U is the datum of a discrete subset A of U and of a section
s ∈ L (U ∖ A) satisfying the following condition: for any point p ∈ U , there exists an open
neighborhood V of p, a basis s0 ofL on V , such that the unique holomorphic function
f V ∖ (A ∩ V) such that s = f s0 is meromorphic on V . We identify two meromorphic
sections s ∈ L (U ∖ A) and s ∈ L (U ∖ A′) if they coincide on U ∖ (A∪ A′).
Let s be a meromorphic section ofL on X, holomorphic on X ∖ A. In analogy with the

corresponding de�nition formeromorphic functions, we shall say that s is “regular” if it does
not vanish identically on any non-empty open subset of X∖A. If this holds, there is a unique
divisor D on X such that, for any open subsetU of X, any basis s0 ofL onU , D∣U = div( f ),
where f is the unique meromorphic function on U such that s = f s0 on U ∖ (A ∩ U).
�is divisor is denoted div(s), and referred to as the divisor of the meromorphic section s.
Observe that div(s) is e�ective if and only s extends to a holomorphic section ofL on X.
For example, ameromorphic section of OX(D) on an open set U of X is nothing but a

meromorphic function f on U . If moreover f is “regular”, then its divisor (as a section
of OX(D)) is given by div( f ) + D.

Lemma (5.6). — Let X be a Riemann surface. �e map that associates to a pair (L , s)
consisting of a line sheaf L on X and of a regular meromorphic section s of L its divisor
div(s) induces a bijection from the set of isomorphism classes of such pairs to the set of divisors
on X.

Proof. — Let (L , s) and (L ′, s′) be such pairs, and let φ∶L ∼Ð→L ′ be an isomorphism
of line sheaves such that φ(s) = s′. By the very de�nition of these divisors, div(s) = div(s′).
Conversely, let D = div(s); let us show that there is an isomorphism ofOX(D) toL that

maps the meromorphic section 1 to the meromorphic section s. It su�ces to observe that
for any meromorphic function f ∈ OX(D)(U) on an open subsetU of X, the meromorphic
section f s ofL ∣U is in fact a holomorphic section. Moreover, if f is a basis of OX(D)∣U ,
namely, if div( f ) + D∣U = 0, then divL ( f s) = 0 and f s is a basis ofL ∣U .
Corollary (5.7). — Let (L , s) and (M , t) be line sheaves on a Riemann surface X both
equipped with a “regular” meromorphic section. One has canonical isomorphisms

Hom(L ,M ) ≃ OX(div(t) − div(s))(X).
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Similarly, if D1 and D2 are divisors on X, then

Hom(OX(D1),OX(D2)) ≃ OX(D2 − D1)(X).

Proof. — By the preceding lemma, it su�ces to show the second assertion. A morphism
from OX(D1) to OX(D2) is characterized by the image f of the meromorphic section 1
of OX(D2); and there is such a morphism if and only if f g is a holomorphic section
of OX(D2) whenever g is a holomorphic section of OX(D1). �is condition means that
div( f g)+D2 ≥ 0whenever div1 ≥ 0. It certainly su�ces that div( f )+D2−D1 ≠ 0. Conversely,
any point of X has a neighborhood U on which there is a meromorphic function g with
div(g) + D1∣U = 0; then div( f g) + D2∣U = div( f )∣U + D2 − D1∣U , so that the condition
div( f ) + D2 − D1 ≥ 0 is necessary.�is concludes the proof of the corollary.

5.8. Operations on line bundles and line sheaves
(5.8.1) Tensor product. — Let L1 and L2 be line bundles on a complex space X, let L1
andL2 be the corresponding line sheaves. �ere is a unique line bundle L on X whose
�ber over a point x ∈ X is the tensor product L1,x ⊗ L2,x such that, whenever s1 and s2 are
nonvanishing sections of L1 and L2 on an open subsetU of X, the section x ↦ s1(x)⊗ s2(x)
is a nonvanishing section of L on U .
Let (Ui) be an open cover of X such that L1 is de�ned by a cocycle ( fi j) and L2 is de�ned

by a cocycle (gi j).�en L can be de�ned by the cocycle (hi j) = ( fi jgi j).
�is line bundle L is called the tensor product of L1 and L2 and denotes L1⊗L2. Its sheaf of

sections is called the tensor product of the line sheavesL1 andL2 and denotesL1 ⊗L2. In
fact,L is the sheaf of OX-modules associated to the presheaf U ↦L1(U)⊗OX(U) L2(U).
When X is a Riemann surface and D1, D2 are divisors on X, OX(D1) ⊗OX(D2) is iso-

morphic to OX(D1 + D2).
(5.8.2) Dual. — Let L be a line bundle on a complex space X, letL be its sheaf of sections.
�ere is a unique line bundle L∨ on X such that the �ber of L∨ at any point x ∈ X is the dual
(Lx)∨ of Lx , and such that for any local nonvanishing section s of L, the map x ↦ φs(x) is
a local nonvanishing section of L∨, where, for any x ∈ U , φs(x) is the unique linear form
on Lx that maps s to 1. Its sheaf of sections is the sheafL ∨ associated to the the presheaf
U ↦ HomOX(U)(L (U);C).
Let (Ui) be an open cover of X such that L is de�ned by a cocycle ( fi j); then L∨ can be

de�ned by the cocycle ( f −1i j ).
When X is a Riemann surface and D is a divisor on X,OX(D)∨ is isomorphic toOX(−D).
�ere are isomorphisms

L ⊗ L∨ ≃ C × X , s ⊗ φ ↦ (φ(s), x),

whenever x ∈ X, s ∈ Lx and φ ∈ L∨x = Hom(Lx ;C), and

(L1 ⊗ L2)∨simeqL∨1 ⊗ L∨2 ,

where L1 and L2 are line bundles on X.
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(5.8.3) Inverse image. — Let f ∶X → Y be a holomorphic map of complex spaces, let L be a
line bundle on Y .�en, the space f ∗L = L ×Y X consisting of pairs (v , x) ∈ L × X such that
v ∈ L f (x), together with the natural projection to X, is a line bundle on X.�e �ber f ∗Lx
of f ∗L over a point x ∈ X is identi�ed with the �ber L f (x) of L over f (x), by the map
(v , x)↦ v, and the structure of a complex line on f ∗Lx is deduced from this identi�cation.
Let s be a nonvanishing section of L over an open subset U of Y . �en, f ∗s∶ x ↦

(s( f (x)), x) is a nonvanishing section of f ∗L over f −1(U).
Assume that X and Y are Riemann surfaces. Let s be a meromorphic section of L on Y ,

holomorphic on the complement U = Y ∖ B to a discrete subset B of Y . If no connected
component of X is sent identically to a point, then f −1(B) is discrete in X and the section f ∗s
of f ∗L over f −1(U) is actually a meromorphic section of f ∗L on X. Its divisor div f ∗L( f ∗s)
and the divisor divL(s) of s satisfy the following relation:

div f ∗L( f ∗s) = f ∗(divL(s)).
In the right hand side, f ∗∶Div(X) → Div(Y) is the linear map that sends a divisor p
(namely, the divisor sending p to 1 and any other point to 0) to the divisor∑q∈ f −1(p) m f ,qq,
for adequate multiplicities m f ,q de�ned as follows. Let q ∈ X and p = f (x) ∈ Y ; let U
be an open neighborhood of p which admits an isomorphism z∶U → D(0, 1) such that
z(p) = 0; let V be an open neighborhood of q such that f (V) ⊂ U and which admits an
isomorphism w∶V → D(0, 1) such that w(q) = 0. Let φ∶D(0, 1)→ D(0, 1) be the unique
holomorphic map such that z ○ f = φ ○w on V . It satis�es φ(0) = 0 and is not constant;
one has m f ,p = v0(φ).
One has the following compatibilities between tensor products, duals and inverse image:

f ∗L1 ⊗ f ∗L2 ≃ f ∗(L1 ⊗ L2),(5.8.1)
( f ∗L)∨ ≃ f ∗(L∨),(5.8.2)

both de�ned in the obvious way �berwise.
5.9. �e tautological line bundle on the Riemann sphere. — We now discuss a fundamental
example. We consider the product P1(C) ×C2 over the Riemann sphere P1(C), which we
view as a family of two-dimensional vector spaces C2 (the trivial vector bundle of rank two).
LetO(−1) be the subspace of P1(C)×C2 consisting of pairs (x , v) such that v belongs to the
line Lx corresponding to x—we call it the tautological line bundle. It is indeed a line bundle.
On the complement U0 to the point at in�nity [0 ∶ 1] of P1(C), we have the isomorphism
(5.9.1) φ0∶U0 ×C ≃ O(−1)∣U0 , ([1 ∶ z], t)↦ ([1 ∶ z], (t, tz)),
while on the complement U1 to the point [1 ∶ 0], we have an isomorphism
(5.9.2) φ1∶U1 ×C ≃ O(−1)∣U1 , ([z ∶ 1], u)↦ ([z ∶ 1], (uz, u)).
On the intersection U0 ∩U1, any point can be written as [1 ∶ z] or as [1/z ∶ 1] and these two
isomorphisms di�er by the composition by the automorphism
(5.9.3) (U0 ∩U1) ×C ≃ (U0 ∩U1) ×C, ([1 ∶ z], t)↦ ([1/z ∶ 1], tz),
so that O(−1) is the line bundle on P1(C) associated to the cocycle ( f01∶ z ↦ z) relative to
the open covering (U0,U1).
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In other words, the line bundle O(−1) has trivializing sections s0 on U0 and s1 on U1
given by
(5.9.4) s0([1 ∶ z]) = (1, z), s1([z ∶ 1]) = (z, 1).
�e line bundle O(1) is de�ned as the dual of the line bundle O(−1). Its �ber over a

point x ∈ P1(C) is the complex space of linear forms on the line Lx . In particular, the linear
forms on C2 induce global sections of O(1), hence a morphism of complex vector spaces

(C2)∨ → Γ(P1(C),O(1)), φ ↦ (x ↦ φ∣Lx).
Let X0 and X1 be the images in Γ(P1(C),O(1)) of the two coordinates on C2.
Let us compute their divisors. By de�nition, divO(1)(X0) is the divisor on P1(C) which

coincides with the divisor div(X0(s0)) on U0 and with the divisor div(X0(s1)) on U1.
Returning to the de�nitions, X0(s0) is the holomorphic function on U0 given by [1 ∶ z]↦ 1,
and X0(s1) is the holomorphic function on U1 given by [z ∶ 1]↦ z. Consequently,
(5.9.5) divO(1)(X0) = [0 ∶ 1].
Similarly,
(5.9.6) divO(1)(X1) = [1 ∶ 0].
and, more generally, for any (a, b) ∈ C2 ∖ {(0, 0)},
(5.9.7) divO(1)(aX0 + bX1) = [−b ∶ a].

§ 6. HERMITIAN LINE BUNDLES

De�nition (6.1). — Let L → X be a holomorphic line bundle on a complex space X. A
hermitian metric on L is the data of a map ∥⋅∥L ∶ L → R+ such that:

– For any x ∈ X, the restriction of ∥⋅∥L to the complex line Lx is a hermitian norm;
– For any non-vanishing section s of L on an open subset U of X, the map U → R∗+ given
by x ↦ ∥s(x)∥L is C∞.

�e last condition amounts to saying that the restriction of ∥⋅∥L to the complement of the
zero section in L is C∞.�ere is an analogous notion of a continuous metric, where this
map is only assumed to be continuous.
A hermitian line bundle (L, ∥⋅∥L) is a holomorphic line bundle equiped with a hermitian

metric. We will o�en write L to indicate that we are talking of a hermitian line bundle L.
6.2. Let X be a complex space which is paracompact (this assumption is automatic if X is a
Riemann surface) and let L be a holomorphic line bundle on X.�en, L admits hermitian
metrics.
Indeed, let (Ui)i∈I be an open cover of X and, for every i, let si be a non-vanishing section

of L on Ui . Since X is paracompact, we may consider a partition of unity relative to the
open cover (Ui) : this is a family (λ j) j∈J of nonnegative C∞-functions on X satisfying the
following properties:



CHAPTER 2. PRELIMINARIES FROM COMPLEX GEOMETRY 51

– It is locally �nite (every p ∈ X has a neighborhood U such that the set of indices j
such that supp(λ j)meets U is �nite);
– For every j, there exists an index i = i( j) such that supp(λ j) ⊂ Ui ;
– One has∑ j λ j = 1.

Let x ∈ X and let v ∈ Lx . Let Jx be the set of indices j such that x ∈ supp(λ j); for any
such j, x ∈ Ui( j) by assumption, so that si( j)(x) ≠ 0. In particular, there is a complex
number a j such that v = a jsi( j) and we set

∥v∥2 =∑
j∈Jx

λ j(x) ∣a j∣
2 .

I claim that this de�nes a hermitian metric on the line bundle L.
On each complex line Lx , the right hand side is a sumof hermitian formswith nonnegative

coe�cients, so it is a nonnegative hermitian form. If v ≠ 0, then a j ≠ 0 for any j ∈ Jx ; since
∑ λ j = 1, one has ∥v∥ ≠ 0, hence this hermitian form is positive de�nite.
Let us show that for any non-vanishing section s of L on an open setU of X, the function

x ↦ ∥s(x)∥ on U is C∞.
Let x ∈ U ; since the family (λ j) is locally �nite, there exists a neighborhood V of x

contained inU and a �nite subset J0 of J such that Jy ⊂ J0 for any point y ∈ V . Moreover, we
may replaceV by its intersection with the �nitelymany open setsUi( j), for j ∈ J0.�is allows
us to assume that V ⊂ Ui( j) for any j ∈ J0.�en, for any j ∈ J0, there exists aC∞-function a j
on V such that s∣V = a jsi( j)∣V . Consequently, for any y ∈ V ,

∥s(y)∥2 =∑
j∈Jy

λ j(y) ∣a j(y)∣
2 =∑

j∈J0
λ j(y) ∣a j(y)∣

2 .

�e right hand side is a �nite sum of C∞-functions on V , hence it de�nes a C∞-function
on V .
6.3. Operations on hermitian line bundles. — Tensor product, duals, inverse images of line
bundles have a counterpart for hermitian metrics.�e formulae are as follows.
Let L1 and L2 be hermitian line bundles on X; let s1 and s2 be sections of L1 and L2 on an

open subset U of X.�e hermitian metric on the tensor product L1 ⊗ L2 is given by

(6.3.1) ∥s1 ⊗ s2(x)∥L1⊗L2 = ∥s1(x)∥L1 ∥s2(x)∥L2
for any x ∈ U .
Let L be a hermitian line bundle on X, let s be a non-vanishing section of L on an open

subset U of X; let φ be the section of the dual line bundle L∨ which maps s to 1; then, for
any x ∈ U ,
(6.3.2) ∥φs(x)∥L∨ = ∥s(x)∥−1L .

Finally, let L be a hermitian line bundle on a complex spaceY , let f ∶X → Y be amorphism
of complex spaces; the hermitian metric ∥⋅∥ f ∗L ∶ f ∗L → R+ on the inverse image f ∗L is just
the composition of the projection f ∗L → L with the hermitian metric ∥⋅∥L on L. For any
section s of L on an open subset U of Y , one has

(6.3.3) ∥ f ∗s(x)∥ f ∗L = ∥s( f (x))∥L
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for any x ∈ f −1(U).
Observe that with these de�nitions, all canonical isomorphisms described earlier become

isometries.

Proposition (6.4). — Let L be a hermitian line bundle on a complex space X.�ere exists a
unique real di�erential form α ∈ A 1,1(X) such that, for any non-vanishing section s of L on
an open subset U of X,

(6.4.1) α∣U = −ddc log ∥s∥ = i
π
∂∂ log ∥s∥ .

�is form is denoted c1(L) and is called the curvature form of the hermitian line bundle L.

Proof. — We �rst prove that whenever s and t are non-vanishing sections of L on an open
subset U of X, one has the following equality

ddc log ∥s∥ = ddc log ∥t∥
of di�erential forms of degree 2 on U . Indeed, there exists a holomorphic function f on U
such that t = f s, and f is invertible. By the de�nition of a hermitian metric

∥t(x)∥ = ∥ f (x)s(x)∥ = ∣ f (x)∣ ∥s(x)∥ ,
hence

log ∥s(x)∥ = log ∣ f (x)∣ + log ∥s(x)∥ .
By Proposition 1.4, the image of log ∣ f ∣ under the operator ddc vanishes, hence the desired
formula.
Let us cover X by open subsetsUi such that for each i L admits a non-vanishing section si

on Ui . Let αi be the di�erential form −ddc log ∥si∥ on Ui . Applying our �rst observation to
the restrictions toUi ∩U j of the sections si and s j, we see that αi and α j coincide onUi ∩U j.
Consequently, there exists a unique di�erential form α on X such that α∣U i = αi .
LetU be any open subset of X and s be a non-vanishing section of L onU . We apply the ob-

servation to the restrictions toUi ∩U of s and si ; this says that the restriction of ddc log ∥s∥−1
to U ∩Ui coincides with the form αi ∣U∩U i = α∣U∩U i . Consequently, −ddc log ∥s∥ = α∣U .
�e proposition now follows from the fact that the operator ddc maps real functions to

real di�erential forms of bidegree (1, 1).

6.5. Examples. — �e trivial line bundle C × X on X has a hermitian metric such that
∥(a, x)∥ = ∣a∣ for any (a, x) ∈ C × X.�is line bundle admits a global section 1, given by
x ↦ (1, x), and log ∥1∥ = 0. Consequently, its curvature form vanishes.
Let L and M be hermitian line bundles on X. �en, when the line bundle L ⊗ M is

equiped with the tensor product of the hermitian metrics on L andM, we have

(6.5.1) c1(L ⊗M) = c1(L) + c1(M).
Indeed, this follows from the de�nition applied to sections s of L, t ofM and s⊗ t of L⊗M.
Similarly, the curvature form of the dual hermitial line bundle L∨ satis�es

(6.5.2) c1(L∨) = −c1(L).
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Finally, let f ∶X → Y be a morphism of complex spaces and let L be a hermitian line
bundle on Y .�en,
(6.5.3) c1( f ∗L) = f ∗c1(L).

Proposition (6.6) (Formula of Poincaré–Lelong). — Let X be a Riemann surface, let L be a
hermitian line bundle on X, and let s be a “regular” meromorphic section of L on X.
�en, the function log ∥s∥L on X is locally integrable and the current it de�nes satis�es the

equation:

(6.6.1) ddc[log ∥s∥L] = δdivL(s) − c1(L).

Proof. — �is proposition can be proved locally, hence we may assume that the line bun-
dle L admits a non-vanishing section s0.�en, there exists a meromorphic function f on X
such that s = f s0. By de�nition,

log ∥s∥L = log ∣ f ∣ + log ∥s0∥L .
Moreover, log ∥s0∥L is C∞ on X, hence locally integrable. As we saw earlier (Proposi-
tion 3.4), log ∣ f ∣ is locally integrable and ddc[log ∣ f ∣] = δdiv( f ); moreover, divL(s) = div( f ).
Finally, −ddc log ∥s0∥L = c1(L), by de�nition of the curvature of a hermitian line bundle.
Consequently,

ddc[log ∥s∥L] = ddc[log ∣ f ∣] + ddc log ∥s0∥L = δdivL(s) − c1(L),
as was to be shown.

6.7. Let X be a compact Riemann surface and let D be a divisor on X. Write D = ∑ npp.
Since D is locally �nite and X is compact, there are only �nitely many points p ∈ X such
that np ≠ 0.�e sum∑p∈X np is called the degreeof D and denoted deg(D).
If D1 and D2 are divisors on X, one has deg(D1 + D2) = deg(D1) + deg(D2).

Corollary (6.8). — Let L be a holomorphic line bundle on a compact Riemann surface X.
For any hermitian metric ∥⋅∥L on L and any “regular” meromorphic section s of L, one has

deg(divL(s)) = ∫
X
c1(L).

Proof. — Since X is compact, we may integrate the Poincaré–Lelong equation on X; the
right hand side gives deg(divL(s)) − ∫X c1(L). By the de�nition of the operator ddc for
currents, the le� hand side is equal to

∫
X
[ddc log ∥s∥L]1 = ∫X

[log ∥s∥L]ddc(1) = 0.

6.9. In particular, the degree of the divisor of a regular meromorphic section of L is in-
dependent on the choice of that section. It is called the degree of the line bundle L. Two
isomorphic line bundles have the same degree. Moreover, for any two line bundles L1 and L2
on X, one has

deg(L1 ⊗ L2) = deg(L1) + deg(L2).
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6.10. Let X be a compact connected (non-empty) Riemann surface. One has the following
exact sequence of complex vector spaces:

(6.10.1) 0→ C→ A 0(X) ddcÐ→ A 1,1(X) ∫XÐ→ C→ 0.

�e map C → A 0(X) associates to any complex number a the constant function with
value a; it is injective.�e image by ddc of a constant function is zero, so that the composition
of the �rst two maps is zero.
Conversely, let α ∈ A 0(X) be any function such that ddc(α) = 0. Since X is compact,

there exists a point p ∈ X such that α(p) = supX α. We will prove that α is constant, with
value α(p).�e set α−1(α(p)) is closed in X. Let U be an open neighborhood of p which
is isomorphic to the unit disk and let z∶U → D(0, 1) be such an isomorphism; let f be
the C∞-function on D(0, 1) such that α(q) = f (z(q)) for any q ∈ U . One has ddc f = 0,
hence ∆( f ) = 0. By the maximum principle for harmonic functions, f is constant, equal
to α(p), so that α is constant in a neighborhood of p. Applying this argument to any
point of α−1(α(p)) implies that this set is open. Since X is connected, this implies that
α−1(α(p)) = X, hence α is constant.
Let again α ∈ A 0(X). By the Green formula, One has ∫X ddcα = 0.�e converse holds:

if ω ∈ A 1,1(X) is a di�erential form of bidegree (1, 1) such that ∫X ω = 0, then there exists
α ∈ A 0(X) such that ω = ddcα.�is follows from the analysis of the Laplace operator on
compact Riemann surfaces, but we shall not prove it here.
6.11. Let X be a compact connected (non-empty) Riemann surface and let L be a holomor-
phic line bundle on X. Let α be a real form of bidegree (1, 1) such that ∫X α = deg(L).�en,
there exists a hermitian metric ∥⋅∥L on L such that α = c1(L). Two such metrics are pro-
portional: if ∥⋅∥1 and ∥⋅∥2 are hermitian metrics on L such that α = c1(L, ∥⋅∥1) = c1(L, ∥⋅∥2),
there exists a real number c such that ∥⋅∥2 = e−c ∥⋅∥1.
Indeed, let us choose an arbitrary hermitian metric ∥⋅∥0 on L. If ∥⋅∥L is any other metric

on L, there exists a (unique) real valued C∞-function φ on X such that ∥v∥L = e−φ(x) ∥v∥0
for any x ∈ X and any v ∈ Lx . Conversely, any real-valued C∞-function φ gives rise to a
metric on L.�en, the de�nition of the curvature form gives

c1(L) = c1(L, ∥⋅∥0) + ddcφ,

so that the equation α = c1(L) is equivalent to the condition

ddcφ = α − c1(L, ∥⋅∥0).

Since ∫X α = deg(L) = ∫X c1(L, ∥⋅∥0), the integral of the right hand side is zero. By the
preceding paragraph, there exists a C∞-function φ on X satisfying this equation. Since α is
real, its real part is again a solution and the associated hermitian metric is a solution to our
problem.
If ∥⋅∥1 and ∥⋅∥2 are two hermitian metrics on L with curvature form α, the corresponding

functions φ1 and φ2 satisfy ddc(φ1) = ddc(φ2), hence ddc(φ1 − φ2) = 0. By the results of the
preceding paragraph, φ1 − φ2 is constant (and real) on X, hence the claim.
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6.12. �e tautological line bundle on the Riemann sphere. — We now discuss a hermitian
metric on the tautological line bundlesO(1) andO(−1) onP1(C) that we had de�ned in §5.9.
Recall that O(−1) had been de�ned as a subspace (a sub-bundle, in fact) of P1(C) × C2.
On this larger space, we can consider the function induced by the hermitian norm on the
factor C2. It induces an hermitian metric on O(−1). In fact, for any x ∈ P1(C), and any
vector v = (v0, v1) in the line Lx , ∥v∥ = (∣v0∣2 + ∣v1∣2)1/2.
On the dual line bundle O(−1), this gives a dual hermitian metric: if x ∈ P1(C) and φ is

a linear form on the line Lx , then

(6.12.1) ∥φ∥ = ∣φ(v)∣
∥v∥ for any vector v ∈ Lx .

Explicitly,

(6.12.2) ∥aX0 + bX1∥ ([x0 ∶ x1]) =
∣ax0 + bx1∣

(∣x0∣2 + ∣x1∣2)1/2
.

Proposition (6.13). — With this metric, the curvature of O(1) is equal to the form ω.

Proof. — �e section X0 of O(1) does not vanish on the open set U0 of P1(C) consisting
of points of the form [1 ∶ z], with z ∈ C and

∥X0∥ ([1 ∶ z]) =
1

(1 + ∣z∣2)1/2 .

Consequently,

c1(O(1))∣U0 = ddc log ∥X0∥
−1 ∣U0 =

1
2
ddc log(1 + ∣z∣2) = ω∣U0 .

�e computation on the open set U1 (consisting of points of the form [z ∶ 1], with z ∈ C) is
similar. Anyway, the di�erential forms c1(O(1)) and ω agree on the dense open subset U0,
so must be equal.

§ 7. RIEMANNIAN METRICS AND CURVATURE ON RIEMANN SURFACES

7.1. Let X be a Riemann surface. Let TX denote its holomorphic tangent bundle. For any
point p ∈ X, TX ,p is the tangent space to X at p, endowed with its natural structure of a
complex vector space.
When X is an open subset of C, TX is a trivial line bundle. Indeed, let p ∈ X. A basis

of TX ,p as a real vector space is ( ∂
∂x ,

∂
∂y). Its complex structure is de�ned by the relation

i ∂
∂x = − ∂

∂y , so that
∂
∂x is a basis of TX ,p as a complex vector space.�is gives an identi�cation

of TX with X ×C.
As a complex vector space of dimension 2, TX ,p ⊗R C admits the basis ( ∂

∂z ,
∂
∂z) and the

natural injection TX ,p → TX ,p ⊗R C maps ∂
∂x to

∂
∂z and

∂
∂y to i

∂
∂z . �erefore, we can view

TX ,p as a complex line in the complex vector space TX ,p ⊗ C (of dimension 2). In this
identi�cation, TX is a subbundle of a trivial vector bundle of rank 2.
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Let us return to the case of a general Riemann surface X. Let U be an open subset of X
together with a holomorphic bijection φ∶U → Ω to an open subset Ω of C. �en the
di�erential operator ∂ = φ−1( ∂

∂z) is a non-vanishing section of the restriction to U of TX , so
that we identify TU with U ×C.
7.2.�e dual line bundle Ω1X = T∨

X is the holomorphic cotangent bundle.
7.3.�e data of a hermitian metric on TX is equivalent to various other data.
Let U be an open subset of X together with a holomorphic local chart z∶U → C.�is

furnishes a non-vanishing section ∂
∂z on U . Consequently, there exists a positive C∞-

function λ on U such that

(7.3.1) ∥ ∂
∂z

∥
TX

= λ.

By duality, the cotangent bundle Ω1X admits a non-vanishing section dz on U , and its
norm satis�es the equation

(7.3.2) ∥dz∥ = λ−1.

For any point p ∈ X, we have identi�ed the (complex) tangent line of X at p with the
(real) tangent plane of X at p. Consequently, the hermitian metric on TX also furnishes a
Riemannian metric on X, given by the length element

(7.3.3) ds2 = ∥ ∂
∂z

∥
2

= λ2(dx2 + dy2.

Observe that this Riemannian metric is a multiple of the euclidean metric dx2 + dy2; we
say that it is conformal. In the coordinates (x , y), angles are the same whether they are
computed with the Riemannian metric or with the euclidean metric.
Finally, we also get a positive area form on X, given locally by

(7.3.4) dA = λ2dx ∧ dy = 1
2 ∥α∥2 α ∧ α

for any local non-vanishing section α of Ω1X .
We see from the formulae that any of these data allows to recover the function λ, so that

they are all equivalent.
7.4. Let us endow TX with a Hermitian metric. �e Gauß curvature R of the associated
Riemannian metric is related to the curvature form of the hermitian line bundle TX by the
following equation

(7.4.1) c1(TX) =
1
2π

R dA.

Assuming that X is connected, compact and non-empty, and integrating over X, we deduce
the Gauß–Bonnet theorem:

(7.4.2) χ(X) = deg(TX) = ∫
X
c1(TX) =

1
2π ∫X

R dA.
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In this formula, χ(X) is the Euler characteristic of the Riemann surface X.�e equality
between χ(X) and deg(TX) re�ects the computation of χ(X) via indices of vector �elds.
�e rest of the equation is a consequence of the Poincaré–Lelong equation.
7.5. Let f ∶X → Y be a nowhere locally constant morphism between two Riemann surfaces.
For each point x of X, the derivative of f at x is a C-linear map D f (x)∶TX ,x → TY , f (x),

hence an element of T∨
X ,x ⊗ TY , f (x). Consequently, the derivative of f is a section D f of the

line bundle T∨
X ⊗ f ∗TY .�is section is holomorphic, and nowhere locally zero. Its divisor

div(D f ) is called the rami�cation divisor of f , and denoted Ram( f ).�is is an e�ective
divisor (each point of X comes with a nonnegative coe�cient) and its support is the set of
points of X at which f is not a local di�eomorphism.
Endow the line bundles TX and TY with hermitianmetrics.�en, T∨

X ⊗ f ∗TY has a natural
hermitian metric too and

(7.5.1) ddc log ∥D f ∥ = δRam( f ) − c1(TX
∨ ⊗ f ∗TY) = δRam( f ) + c1(TX) − f ∗c1(TY).

In the case where both X and Y are connected, we may integrate this relation on X. Since

∫
X
f ∗c1(TY) = ∫

Y
f∗1 c1(TY) = deg( f )χ(Y),

we obtain the Riemann–Hurwitz formula:

(7.5.2) deg(Ram( f )) + χ(X) = deg( f )χ(Y).
7.6. �e sphere. — Let s∶ §2 → P1(C) be the stereographic projection and let us de�ne a
hermitian metric on TP1(C) by the formula

(7.6.1) ∥Ds(v)∥TP1(C) =
1
2
∥v∥

for any vector v ∈ R3.�e stereographic projection maps the complement to the North pole
to the complement of the point at in�nity in P1(C), which is identi�ed to C; the formula is

s(x , y, z) = x + iy
1 − z

, for (x , y, z) ∈ §2 ∖ {N}.

Its inverse is given by

s−1(w) = 1
1 + ∣w∣2 (R(2w),I(2w), 1 − ∣w∣2) = ( 2u

1 + u2 + v2 ,
2v

1 + u2 + v2 , 1 −
2

1 + u2 + v2 ),

where w = u + iv, so that the vector �eld ∂
∂u is the image of the vector �eld

( 2
1 + u2 + v2 −

4u2
(1 + u2 + v2)2 ,−

4uv
(1 + u2 + v2)2 ,−

4u
(1 + u2 + v2)2 )

= 2
(1 + u2 + v2)2 (1 − u2 + v2,−2uv ,−2u).
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Consequently,

∥∂
∂
u∥ = 1

(1 + ∣w∣2)4 (1 + u4 + v4 − 2u2 + 2v2 − 2u2v2 + 4u2v2 + 4u2)

= 1
(1 + ∣w∣2)4 (1 + u4 + v4 + 2u2 + 2v2 + 2u2v2)

= 1
(1 + ∣w∣2)2 .

Moreover, the identi�cation of the holomorphic tangent space to a Riemann surface at a
point (a complex line) with its real tangent space at that point (a real plane) maps ∂

∂w to
∂
∂u ,

where w is a local holomorphic coordinate and (u, v) are its real and imaginary parts. It
follows that on TP1(C),

(7.6.2) ∥ ∂
∂w

∥ = ∥ ∂
∂u

∥ = ∥ ∂
∂u

∥ = 1
(1 + ∣w∣2)2 .

§ 8. JENSEN’S INEQUALITY

�eorem (8.1). — Let φ∶ (a, b)→ R be a convex function. Let (X , µ) be a probability space
and let f ∶X → (a, b) be a µ-integrable function.�e following properties hold:
a) One has ∫X f dµ ∈ (a, b);
b) �e function φ ○ f is µ-measurable, and is bounded from below by some µ-integrable

function. In particular, ∫X(φ ○ f )dµ is a well de�ned element of R ∪ {+∞};
c) One has

(8.1.1) φ(∫
X
f dµ) ≤ ∫

X
(φ ○ f )dµ.

Proof. — Since φ is convex on the open interval (a, b) of R, it is continuous, and admits
le� and right derivatives, φ′

l(t) and φ′
r(t) at any point t ∈ (a, b). Moreover, φ′

l(t) ≤ φ′
r(t)

and for any real number λ such that φ′
l(t) ≤ λ ≤ φ′

r(t), and any s, t ∈ (a, b), one has
φ(s) ≥ φ(t) + λ(s − t).

Consequently, for any x ∈ X,
φ( f (x)) ≥ φ(t) + λ( f (x) − t).

�is shows that φ ○ f is bounded from below by a µ-integrable function. Let us integrate
this inequality on X; we get

∫
X
(φ ○ f )dµ ≥ φ(t) + λ (∫

X
f dµ − t) .

Set t = ∫X f dµ; one has t ∈ (a, b). Taking any λ ∈ [φ′
l(t), φ′

r(t)], we obtain the desired
inequality.



CHAPTER 3

NEVANLINNA THEORY FOR MEROMORPHIC
FUNCTIONS IN ONE VARIABLE

Let r0 be a positive real number. Let Ω be an open subset ofC containing the complement
C(r0,∞) of the diskD(0, r0) in C and let f be a non constant meromorphic function on Ω.
Since the inversion z ↦ 1/z identi�es C(r0,∞) with the complement Ḋ(0, r0) of the origin
in the diskD(0, r0), we really are in the situation of the Great Picard�eorem.
�e point of Nevanlinna theory is to consider f as a holomorphic function from Ω

with values in the Riemann sphere P1(C), without (almost) any reference to holomorphic
functions on Ω. Let ω be the canonical di�erential form of degree 2 on P1(C).

§ 1. THE CHARACTERISTIC FUNCTION

1.1. Let r ∈ [r0,+∞). One de�nes

(1.1.1) A( f , r0; r) = ∫
C(r0 ,r)

f ∗ω = 1
π ∫C(r0 ,r)

∣ f ′(z)∣2

(1 + ∣ f (z)∣2)2 dxdy.

�is is the area of f (C(r0, r)) on the sphere with respect to the measure ω, taking multi-
plicities into account.

De�nition (1.2). — �e characteristic function is de�ned by

(1.2.1) T( f , r0; r) = ∫
r

r0
A( f , r0; t)

dt
t
= ∫

C(r0 ,∞)
log+ r

∣z∣ f
∗ω.

As for the function A( f , r0; ⋅), the characteristic function measures the “growth” of f ,
that is, the growth of the area of the Riemann sphere it covers.
�e equality of the two formulae in the de�nition is a consequence of the following

lemma.

Lemma (1.3). — Let α be a positive Borel measure on Ω. For any real number r ∈ [r0,∞),
one has

∫
C(r0 ,r)

log+ r
∣z∣ dα(z) = ∫

r

r0
α(C(r0, t))

dt
t
,
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an equality of elements of [0,+∞].

Proof. — Indeed,

∫
r

r0
α(C(r0, t))

dt
t
= ∫

r

r0
(∫

C(r0 ,t)
dα(z)) dt

t

= ∫
∞

r0
(∫

Ω
1[r0 ,t](∣z∣)dα(z)) 1t<r

dt
t

= ∫
Ω
(∫

∞

r0
1t<r1r0≤∣z∣≤t

dt
t
)dα(z)

by Fubini’s theorem. Moreover, the expression within parentheses is an integral on the
interval given by ∣z∣ ≤ t < r; it vanishes if r ≥ ∣z∣ and equals

∫
r

∣z∣

dt
t
= log r

∣z∣

if ∣z∣ ≥ r.�is implies the lemma.

Proposition (1.4). — �e function T( f , r0; ⋅) is continuous on [r0,+∞) with values in R+,
vanishing at r0. It is a strictly convex function of log(r).

Proof. — �e function r ↦ log+ r
∣z∣ = max(0, log(r) − log ∣z∣) is a convex, continuous,

nondecreasing function of log(r). Since ω is a positive measure, this implies that T( f , r0; r)
is a continuous nondecreasing, and convex function of log(r) as well, while it is obvious
that it vanishes at r0. In fact, one has

d
d log(r)T( f , r0; r) = rT ′( f , r0; r) = A( f , r0; r),

a strictly increasing and positive function of log(r), so that T( f , r0; r) is a strictly convex
function of log(r).

Corollary (1.5). — When r → +∞, T( f , r0; r) converges to +∞; more precisely,

(1.5.1) lim
r→+∞

T( f , r0; r)
log(r) > 0.

Proof. — �is is a general fact: for any convex, strictly increasing function φ∶ [u0,+∞)→ R,
φ(u)/u has a positive limit when u → ∞. Indeed, for any u > u0, one has the following
equality

φ(u) − φ(u0 + 0)
u − u0

= ∫
u

u0
φ′
r(u0 + t(u − u0)).

Since φ′
r is increasing, this shows that (φ(u)−φ(u0+0))/(u−u0) is increasing and positive

for u > u0, hence has a positive limit when u →∞.�e claim follows.
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1.6. Let Ω′ be an open neighborhood of C(r0, r) on which f ∶Ω → P1(C) li�s to a map
f̃ ∶Ω → C2 ∖ {0}. For example, f has �nitely many poles on C(r0, r), so that there exists a
nonzero polynomial P ∈ C[z] such that P(z) f (z) is holomorphic in a neighborhood Ω′

of this compact set; we can then set f̃ (z) = (P(z), P(z) f (z)).�en, one has the following
equality

f ∗ω = 1
2
f̃ ∗ddc log ( ∣x0∣2 + ∣x1∣2 ) = ddc log ∥ f̃ ∥

of di�erential forms on Ω′. By Green’s formula,

T( f , r0; r) =
1
2π ∫∂D(0,r)−∂D(0,r0)

log ∥ f̃ ∥ dθ − log r
r0 ∫∂D(0,r0)

dc log ∥ f̃ ∥ .

In the particular case where f is holomorphic, we may take f̃ (z) = (1, f (z)). It follows
that there exist real numbers A and B such that

(1.6.1) T( f , r0; r) =
1
4π ∫∂D(0,r)

log (1 + ∣ f (re iθ)∣2 )dθ + A log(r) + B.

Moreover, using the inequality

(1.6.2) max(1, ∣u∣)2 ≤ 1 + ∣u∣2 ≤ 2max(1, ∣u∣2)
we deduce that

(1.6.3) T( f , r0; r) =
1
2π ∫

2π

0
logmax(1, ∣ f (re iθ)∣)dθ + A log(r) +O(1).

Consequently, the characteristic function T( f , r0; ⋅) is a measure of the growth of f .

§ 2. THE COUNTING FUNCTION

2.1. Let a ∈ P1(C). Let f ∗(a) be the divisor on Ω, inverse image by f of the divisor a. One
has

f ∗(a) = div+( f − a) =∑
z∈Ω
max(0, vz( f − a))z, if a ≠∞;(2.1.1)

f ∗(∞) = div+(1/ f ) =∑
z∈Ω
max(0,−vz( f ))z.(2.1.2)

For any r ∈ [r0,+∞), let n( f , r0; r) be the number of solutions of f (z) = a in C(r0, r),
counted with multiplicities.�us,

(2.1.3) n( f , r0; r, a) = ∫
C(r0 ,r)

δ f ∗(a).

De�nition (2.2). — �e counting function is de�ned by

(2.2.1) N( f , r0; r) = ∫
r

r0
n( f , r0; t, a)

dt
t
= ∫

C(r0 ,∞)
log+ r

∣z∣δ f ∗(a).
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It measures the incidence of f on a, i.e., how many times f takes the value a, with a
logarithmic weight.

�e second equality follows from Lemma 1.3.

Proposition (2.3). — �e function r ↦ N( f , r0; r, a) is continuous, nondecreasing, and
vanishes at r0; it is a convex function of log(r).

Proof. — It is similar to that of Proposition 1.4, up to replacing f ∗ω by δ f ∗(a).

Proposition (2.4). — (1) �e function a ↦ N( f , r0; r, a) is upper semicontinuous, locally
uniformly in r.

§ 3. THE PROXIMITY FUNCTION

De�nition (3.1). — Let a ∈ P1(C).�e proximity function is de�ned, for r ∈ [r0,∞), by

(3.1.1) m( f ; r, a) = 1
2π ∫

2π

0
log ∥ f (re iθ), a∥−1 dθ .

�e proximity function measures how much f is close to a on a circle of radius r. When
a =∞, this is a measure of the size of f on the circle of radius r; other de�nitions can be
found in the litterature. For example, since ∥u,∞∥ = 1/

√
1 + ∣u∣2 for any u ∈ C, it follows

from Equation 1.6.2 that

(3.1.2) m( f ; r,∞) = 1
2π
log+ ∣ f (re iθ)∣ dθ +O(1).

Proposition (3.2). — �e proximity function is continuous and takes nonnegative values.

Proof. — Since the chordal distance ∥a, b∥ of any two points on P1(C) belongs to [0, 1], we
havem( f ; r, a) ≥ 0 for any r. Let us show the continuity assertion. By Lebesgue’s dominated
convergence theorem, it su�ces to show that for any φ ∈ [0, 2π], there exists a neighbor-
hood U of φ in [0, 2π] and a neighborhood V of r such that supt∈V log ∥ f (te iθ), a∥

−1 is
integrable on U . �is is clear if f (re iφ) ≠ a, for then the function z ↦ log ∥ f (z, a)∥ is
uniformly continuous in a neighborhood of re iφ. In general, letting n be the coe�cient
of re iφ in f ∗(a), there exists a positive real number c and an open neighborhood B of re iφ
such that

∥ f (z); a∥ ≥ c ∣z − re iφ∣n , for any z ∈ B.

(1) Véri�er si c’est vrai, et si c’est utile. En fait, oui : c’est l’endroit pour discuter la propriété de semicontinuité
de n( f , r0 , r) en lien avec le théorème de Rouché.
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By continuity of the exponential function, there are open neighborhoods U of φ and V of r
such that te iθ ∈ B for any θ ∈ U . and any t ∈ V .�en, for any θ ∈ U ,

sup
t∈V
log ∥ f (te iθ); a∥−1 ≤ log c−1 + n log ∣te iθ − re iφ∣−1

≤ log c−1 + n log ((t − r cos(θ − φ))2 + r2 sin2(θ − φ))−1

≤ O(log(θ − φ)−1).
�e result follows, since the function u ↦ log ∣u∣−1 is locally integrable on R.
3.3. For later reference, we observe the following estimate

(3.3.1) m( f ; r,∞) = 1
2π
logmax(1, ∣ f (re iθ)∣)dθ +O(1),

which follows from Equation 1.6.2.

§ 4. NEVANLINNA’S FIRST THEOREM

�eorem (4.1) (Nevanlinna’s �rst theorem). — Let a ∈ P1(C) and any r ∈ [r0,+∞). If
a /∈ f (∂D(0, r0)), then
(4.1.1)

T( f , r0; r) = N( f , r0; r, a) +m( f ; r, a) −m( f ; r0, a) + log
r
r0 ∫∂D(0,r0)

dc log ∥ f , a∥−1 .

Moreover, for r → +∞,
(4.1.2) T( f , r0; r) = N( f , r0; r, a) +m( f ; r, a) +O(log(r)),
where the constant underlying the O is independent of a ∈ P1(C).

Lemma (4.2). — For any a ∈ P1(C), one has the following equality of currents on Ω:
(4.2.1) f ∗ω = δ f ∗(a) − ddc[log ∥a, f ∥].

Proof. — We know the equality
(4.2.2) ω = δa − ddc[log ∥a, ⋅∥]
in D 2(Ω) and, in principle, we would want to pull back this relation by f . However, the
inverse image of a current is not de�ned in general, so we need a computation.
First of all, it su�ces to prove the equality locally, in the neighborhood of any point b of Ω.

�ere exists an open neighborhood V of f (b) in P1(C) and a section s of the projection
p∶C2 ∖ {0} → P1(C) de�ned over V . Let U be an open neighborhood of b such that
f (U) ⊂ V and set f̃ = s ○ f .�e map f̃ ∶U → C2∖{0} is holomorphic and satis�es p○ f̃ = f .
Fix a point ã in p−1(a).�en one has, for any z ∈ U ,

log ∥a, f (z)∥ =
∣ã ∧ f̃ (z)∣
∥ã∥ ∥ f̃ (z)∥

.
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�e function φ = ã∧ f̃ onU is holomorphic and the construction of the divisor f ∗(a) gives
( f ∣U)∗(a) =∑

z∈U
vz(φ)z.

Moreover, by the de�nition of the form ω, we have

( f ∣U)∗ω = ( f ∣U)s∗ddc[log ∥⋅∥] = ddc[log ∥ f̃ ∥].
Consequently, one gets the following equality of currents on U ,

ddc[log ∥a, f ∥] = ddc[log ∣φ∣] − ddc[log ∥ f̃ ∥] = δ f ∗(a) − ω∣U .
�is implies the lemma.

4.3. Proof of Nevanlinna’s �rst theorem. — Among the three currents in the equality of
the previous lemma, two of them are measures on Ω, hence so is the third. In particular,
we may multiply this relation by the function log(r/ ∣z∣) and integrate it on the annulus
C(r0, r).�is gives

T( f , r0; r) = ∫
C(r0 ,r)

log r
∣z∣ f

∗ω

= ∫
C(r0 ,r)

log r
∣z∣δ f ∗(a) − ∫

C(r0 ,r)
ddc log ∥a, f ∥

= N( f , r0; r, a) − ∫
C(r0 ,r)

ddc log ∥a, f ∥ .

Let us apply Green’s formula to the currents S = [log r
∣z∣] and T = [log ∥a, f ∥] on the closed

annulus C(r0, r). It follows that if f (z) does not take the value a for ∣z∣ = r0 or ∣z∣ = r,

∫
C(r0 ,r)

ddc log ∥a, f ∥ = −∫
∂D(0,r)

(log r
∣z∣d

c log ∥a, f ∥ − log ∥a, f ∥dc log r
∣z∣)

+ ∫
∂D(0,r0)

(log r
∣z∣d

c log ∥a, f ∥ − log ∥a, f ∥dc log r
∣z∣) .

Observe that log(r/ ∣z∣) is identically 0 on ∂D(0, r), dc log ∣z∣ = 1
2πdθ; similarly, log(r/ ∣z∣)

is identically log(r/r0) on ∂D(0, r), dc log ∣z∣ = 1
2πdθ. Since log ∥a, f ∥ is C∞ in a neighbor-

hood of these circles, the de�nition of the proximity function implies that

∫
C(r0 ,r)

ddc log ∥a, f ∥ = −m( f ; r, a) +m( f ; r0, a) + log
r
r0 ∫∂D(0,r0)

dc log ∥a, f ∥ .

�is gives the �rst asserted formula, namely

T( f , r0; r) = N( f , r0; r, a) +m( f ; r, a) −m( f ; r0, a) − log
r
r0 ∫∂D(0,r0)

dc log ∥a, f ∥ ,

under the stronger assumption that f does not take the value a on ∂D(0, r) or on ∂D(0, r0).
In fact, all terms of this equation de�ne continuous functions of r, so that we only need that
a does not belong to f (∂D(0, r0)).
Turning our interest to order of growth, the relation obviously implies that for r →∞,

T( f , r0; r) = N( f , r0; r, a) +m( f ; r, a) +O(log(r)),
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uniformly for a in any compact subset of P1(C) ∖ f (∂D(0, r0)). However, considering
another radius r1, we have

T( f , r0; r) = T( f , r1; r) +O(log(r)), N( f , r0; r, a) = N( f , r1; r, a) +O(log(r)),
so that the desired asymptotic behavior also holds if a does not belong to f (∂D(0, r1)).
Since

f (∂D(0, r1)) ∩ f (∂D(0, r2))
is �nite, for any pair (r1, r2) of distinct real numbers such that C(r2, r2) ⊂ Ω, we may �nd
tow real numbers r0 < r1 < r2 such that

f (∂D(0, r0)) ∩ f (∂D(0, r1)) ∩ f (∂D(0, r2)) = ∅,
and three compact subsets U0,U1,U2 covering P1(C) such that U j does not meet
f (∂D(0, r j)) for any j ∈ {0, 1, 2}.�e theorem follows from that.

�eorem (4.4) (Mean theorem). — For any r ∈ [r0,+∞), a ↦ N( f , r0; r, a) is a nonnegative
bounded Borel function of a ∈ P1(C) and

(4.4.1) T( f , r0; r) = ∫
P1(C)

N( f , r0; r, a)ω(a).

Lemma (4.5). — Let X and Y be Riemann surfaces and let f ∶X → Y be a holomorphic map.
Let φ∶X → C be a Borel function on X; assume that φ either takes nonnegative real values, or
has compact support. For any y ∈ Y, de�ne

f∗(φ)(y) = ∫
X

φδφ∗(y) =∑
x∈X

nxφ(x),

with f ∗(y) = ∑x∈X nxx.
Assume that φ is continuous and compactly supported (resp. that φ is Borel and takes

nonnegative values).�en so is f∗φ and

∫
Y
f∗(φ) α = ∫

X
φ f ∗α

for any di�erential form (resp. for any positive di�erential form) of degree 2 on Y.

Proof. — We shall use the�eorem of Rouché in the following form: for any x ∈ X, there
exists a neighborhood U of x and a neighborhood V of f (x) such that, for any y ∈ V ∖
{ f (x)}, the equation f = f (y) admits exactly nx distinct roots in U , all with multiplicity 1.
Moreover, U and V can be chosen to be contained in any prescribed neighborhoods of x
and f (x) respectively.
Assume that φ is continuous and that its support K, is compact. �en, the function

f∗(φ) vanishes outside of the compact subset f (K) of Y . It su�ces to show its continuity
at every point of f (K). Let b ∈ f (K), let (a1, . . . , am) be the family of preimages of y in K,
write ni for the multiplicity of ai as a root of f (x) = f (b). For each i, let Ui be an open
neighborhood of ai as above, and let Vi = f (Ui). We may assume that ∣φ(x) − φ(ai)∣ ≤ ε
for any x ∈ Ui . Replacing Vi by the intersection V = V1 ∩ ⋅ ⋅ ⋅ ∩ Vm and Ui by Ui ∩ f −1(V),
we may also assume that all Vi are equal to a common neighborhood V .



66 CHAPTER 3. NEVANLINNA THEORY FOR MEROMORPHIC FUNCTIONS IN ONE VARIABLE

I claim that there exists a neighborhood W of b, contained in V , such that for any
y ∈ W and any x ∈ f −1(y), either x belongs to U1 ∪ ⋅ ⋅ ⋅ ∪ Um, or φ(x) = 0. Otherwise,
there would exist a sequence (yn) of elements ofW converging to b, and for each n, an
element xn ∈ K ∩ f −1(yn) which does not belong to U1 ∪ ⋅ ⋅ ⋅ ∪Um. By compactness of K,
we may replace the sequence (xn) by a subsequence and assume that the sequence (xn)
converges to some point x ∈ K. �en, f (x) = b so that x ∈ f −1(b) ∩ K. It follows that
x ∈ {a1, . . . , am}. If x = ai , then xn ∈ Ui for n large enough, contradiction.
For any y ∈W ∖ {b}, we thus have

( f∗φ)(y) − ( f∗φ)(b) =
m
∑
i=1

⎛
⎝ ∑
x∈U i∩ f −1(y)

φ(x)
⎞
⎠
−

m
∑
i=1

niφ(ai)

=
m
∑
i=1

∑
x∈U i∩ f −1(y)

(φ(x) − φ(ai)),

so that

∣( f∗φ)(y) − ( f∗φ)(b)∣ ≤ (
m
∑
i=1

ni) ε.

�is shows that f∗φ is continuous at b.
When φ is lower semi-continuous and nonnegative, the same argument shows that f∗φ is

lower semi-continuous and nonnegative at each point where it is �nite. Indeed, if f∗φ(b) <
∞, we �rst choose �nitely many elements ai ∈ f −1(b) such that ( f∗φ)(b) ≤ ∑m

i=1 niφ(ai)+ ε,
where ni is the multiplicity of ai as a root of f (x) = f (b). For each i, choose also an open
neighborhood Ui of ai such that φ(x) ≥ φ(ai) − ε for any x ∈ Ui . Since φ is nonnegative,
we then have

f∗φ(y) ≥
m
∑
i=1

miφ(ai) − (
m
∑
i=1

ni)ε ≥ ( f∗φ)(b) − (1 +
m
∑
i=1

ni)ε.

If φ is measurable and nonnegative, then so is f∗φ. (2)
We now show that the two indicated integrals coincide. �is is exactly the change of

variables formula in the case where f is a di�eomorphism of X onto its image. Let us explain
how to reduce to this case.
Let Z ⊂ Y be the set of critical values of f .�is is a countable subset of Y and f is a local

di�eomorphism at any point of X ∖ f −1(Z). Let (λi) be a partition of unity in X ∖ f −1(Z)
subordinate to an open covering (Ui) of X ∖ f −1(Z) such that f induces a di�eomorphism

(2) Prouver la mesurabilité...
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of Ui onto its image f (Ui) in Y .�en,

∫
X

φ f ∗α = ∫
X∖ f −1(Z)

φ f ∗α

=∑
i
∫
U i

λiφ f ∗α

=∑
i
∫

f (U i)
f∗(λiφ)α

=∑
i
∫
Y
f∗(λiφ)α,

since f∗(λiφ) vanishes outside of f (Ui). Now, for any y ∈ Y ∖ Z,

∑
i
f∗(λiφi)(y) =∑

i
∑

x∈ f −1(y)
λi(x)φ(x) = ∑

x∈ f −1(y)
φ(x) = f∗φ(y),

so that ∫X φ f ∗α = ∫Y( f∗φ)α, as claimed.

4.6. Proof of the Mean theorem. — Let φ = 1C(r0 ,r) log r
∣z∣ ; For any a ∈ P1(C), one has

N( f , r0; r, a) = ∫
Ω

φδ f ∗(a) = f∗φ(a).

By Lemma 4.5,

∫
P1(C)

N( f , r0; r, a) = ∫
P1(C)

φ f ∗ω = ∫
C(r0 ,r)

log r
∣z∣ f

∗ω = T( f , r0; r).

Corollary (4.7). — For any a ∈ P1(C) and any r ∈ [r0,+∞),
(4.7.1) N( f , r0; r, a) ≤ T( f , r0; r) +O(log(r)).

Proof. — Indeed, m( f ; r, a) ≥ 0.

Corollary (4.8). — �e function f is meromorphic at in�nity (equivalently, f (1/z) does not
have en essential singularity at 0) if and only if

lim
r→∞

T( f , r0; r)
log(r) <∞.

(Recall that, according to Corollary 1.5, the limit exists.)

Proof. — If f is meromorphic at in�nity, it extends to a holomorphic function f̃
from P1(C) ∖D(0, r0) to P1(C).�en, f̃ ∗ω is a C∞ di�erential form on P1(C) ∖D(0, r0).
Since ω is positive on P1(C), there exists a C∞ function φ on P1(C) ∖D(0, r0) such that
f ∗ω = φω.�en φ is bounded, because P1(C) ∖D(0, r0) is compact, so that

T( f , r0; r) = ∫
r

r0
log r

∣z∣ f
∗ω ≪ ∫

r

r0
log r

∣z∣ω ≪ log r
r0
.

Conversely, if T( f , r0; r) = O(log(r)), then
N( f , r0; r, a) ≤ T( f , r0; r) +O(log(r)) ≤ O(log(r)),
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as well. However, if m = n( f , r0; r1), one has, for r ≥ r1,

N( f , r0; r, a) = ∫
r

r0
n( f , r0; t)

dt
t
≥ n( f , r0; r1, a)∫

r

r1

dt
t
= n( f , r0; r1, a) log

r
r1
.

Consequently, n( f , r0; r1, a) is uniformly bounded from above, when r1 ≥ r0 and a ∈ P1(C).
In other words, f takes each value at most �nitely many times.
For any n ∈ N, let Fn ⊂ P1(C) be the set of points a such that f takes the value a at most n

times, counted with multiplicities. Rouché’s theorem asserts that if f takes the value a
at w ∈ Ω, with multiplicity m, there exists an open neighborhood V of a in P1(C) and an
open neighborhood U of w in Ω such that for any b ∈ V , the function f takes m times the
value b on V , again counted with multiplicities.�is implies that the complement to Fn
in P1(C), the set of values taken at least n + 1 times, is open, so that Fn is closed in P1(C).
Moreover,⋃n≥1 Fn = P1(C). By Baire’s theorem, one of these sets, say Fn, has a non-empty

interior. For any element in F̊n, the number of solutions of the equation f (z) = a, counted
with multiplicities, is at most n. Let a be such an element where this number is maximal,
saym, so that a ∈ F̊m; let ra be the largest absolute value of an element in f −1(a). By Rouché’s
theorem again, there is an open neighborhood U of a in P1(C), contained in Fm, such that
for any b ∈ U , the equation f (z) = w has at least m roots in C(r0, ra + 1), counted with
multiplicities.
Necessarily f omits every value in U on C(ra + 1,∞): indeed, such a value is taken at

most m times on C(r0,∞), and at least m times on C(r0, ra + 1). It then follows from the
theorem of Casorati-Weierstrass (see §1.4) that f is meromorphic at in�nity.

4.9. Assume that f has an essential singularity at in�nity. By the preceding corollary,

lim
r→+∞

T( f , r0; r)
log(r) = +∞.

For a ∈ P1(C), the defect of f at a is de�ned by

(4.9.1) δ( f , a) = lim
r→∞

m( f ; r, a)
T( f , r0; r)

.

Since
T( f , r0; r) = N( f , r0; r, a) +m( f ; r, a) +O(log(r)),

we also have

(4.9.2) δ( f , a) = 1 − lim
r→∞

N( f , r0; r, a)
T( f , r0; r)

.

From these two formulae, we see in particular that
(4.9.3) δ( f , a) ∈ [0, 1] for every a ∈ P1(C).
One has δ( f , a) = 1 if f omits the value a. In general, the defect δ( f , a)measures in what
respect the function f does not take the value a as much as is allowed by its growth.
By the Mean theorem,

∫
P1(C)

(1 − N( f , r0; r, a)
T( f , r0; r)

)ω(a) = 0.
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When r → +∞, the in�mum limit of the term within the parentheses is precisely δ( f , a). It
then follows from Fatou’s lemma that

∫
P1(C)

δ( f , a)ω(a) ≤ lim
r→∞

∫
P1(C)

(1 − N( f , r0; r, a)
T( f , r0; r)

)ω(a) = 0.

Since ω is a positive di�erential form, this implies that

(4.9.4) δ( f , a) = 0 for almost every a ∈ P1(C).
In other words, the set of points a such that δ( f , a) > 0 is Lebesgue negligible in P1(C).
In particular, the set of omitted values (at which the defect equals 1) is negligible, a much
stronger property than the one asserted by theorem of Casorati-Weierstraß.
We shall prove later, this is the content of Nevanlinna’s Second theorem, that

∑
a∈P1(C)

δ( f , a) ≤ 2.

In particular, the set of points a such that δ( f , a) > 0 is at most countable, and the set of
omitted values has cardinality at most 2 — we will thus recover the Great Picard theorem!

Example (4.10). — Let us assume that f (z) = ez.�en, ∣ f (re iθ)∣ = er cos(θ) so that

logmax(1, ∣ f (re iθ)∣) =max(0, r cos(θ)).
One has

1
2π ∫

2π

0
logmax(1, ∣ f (re iθ)∣)dθ = 1

π ∫0 π/2r cos(θ)dθ = r
π
.

Given Equation (1.6.3), this implies

(4.10.1) T( f , r0; r) =
1
π
r +O(log(r)).

Since f is holomorphic,

(4.10.2) N( f , r0; r,∞) = n( f , r0; r,∞) = 0
and δ( f ,∞) = 1. Similarly,
(4.10.3) N( f , r0; r,∞) = n( f , r0; r,∞) = 0, δ( f , 0) = 1.
Let now a ∈ C∗.�e roots of the equation f (z) = a are z = log(∣a∣) + i(arg(a) + 2kπ),

for k ∈ Z, and all have multiplicity 1. Consequently,

(4.10.4) n( f , r0; r, a) =
1
π
r +O(1),

so that

(4.10.5) N( f , r0; r, a) =
1
π
r +O(log(r))

and δ( f , a) = 0. By Nevanlinna’s �rst theorem, it follows that
(4.10.6) m( f ; r, a) = o(log(r)) for any a ∈ C∗.
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Example (4.11). — Let λ be a real number such that 0 < λ < 1 and let g(z) = ez + eλz. In
this case, we have ∣g(z)∣ ≤ 2 ifR(z) ≤ 0 while, for θ ∈ [−π/2, π/2],

∣g(re iθ)∣ = er cos θ ∣1 + e−(1−λ)re iθ ∣ = er cos θ(1 +O(e−(1−λ)r cos θ)).

Consequently,

(4.11.1) T(g , r0; r) =
1
π
r +O(log(r)).

Since g is holomorphic, one has δ(g ,∞) = 0. �e equation g(z) = 0 is equivalent to
e(1−λ)z = −1 and is roots are (2k + 1)iπ/(1− λ), for k ∈ Z, each with multiplicity 1.�erefore,

n(g , r0; r, 0) =
1 − λ

π
r +O(1),N(g , r0; r, 0) =

1 − λ
π

r +O(log(r)), δ(g , 0) = λ.(4.11.2)

Moreover, one can prove that (3)

(4.11.3) δ(g , a) = 0 for any a ∈ C∗.

§ 5. A VARIANT OF NEVANLINNA’S FIRST THEOREM

5.1. Let µ be a Borel probability measure on P1(C). We de�ne analogues of the counting,
and proximity functions by averaging their values with respect to µ. Namely, we let, for any
r > r0,

(5.1.1) N( f , r0; r, µ) = ∫
P1(C)

N( f , r0; r, a)dµ(a)

and

(5.1.2) m( f ; r, µ) = ∫
P1(C)

m( f ; r, a)dµ(a).

By Nevanlinna’s �rst theorem, especially its uniformity in a ∈ P1(C), one has
(5.1.3) T( f , r0; r) = N( f , r0; r, µ) +m( f ; r, µ) +O(log(r)).

�e function N( f , r0; ⋅, µ) is an increasing, convex function of log(r).
�e function m( f ; ⋅, µ) is nonnegative and continuous. (4)

Lemma (5.2). — Let gµ be the function on P1(C) given by

(5.2.1) gµ(x) = ∫
P1(C)

log ∥x , a∥−1 dµ(a).

a) �e function gµ is lower semi-continuous: for any real number t, the set of all x such
that gµ(x) > t is open in P1(C).

(3) Comment?
(4) Ça mérite une preuve...
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b) �e function gµ is integrable on P1(C) and

(5.2.2) ∫
P1(C)

gµ(x)ω(x) = 1
2
.

c) One has
(5.2.3) ddc[gµ] = ω − µ.

Proof. — a) For any positive integer n and any x ∈ P1(C), de�ne

gµ,n(x) = ∫
P1(C)

min(n, log ∥x , a∥−1)dµ(a).

By Lebesgue’s dominated convergence theorem, gµ,n is a continuous function on P1(C).
Since the sequence (gµ,n) is nondecreasing, the monotone convergence theorem implies

gµ(x) = limn→∞∫P1(C)min(n, log ∥x , a∥
−1)dµ(a)

for any x ∈ P1(C). In particular, gµ is a non-decreasing limit of continuous functions.�is
implies the claim. Indeed, let t ∈ R and let x ∈ P1(C) such that gµ(x) > t. Let n be an integer
such that gµ,n(x) > t. Since gµ,n is continuous, the point x has an open neighborhood U
such that gµ,n(y) > t for any y ∈ U . In particular, gµ(y) > t for any y ∈ U . We have shown
that g−1µ ((t,∞)) is open.
b) Let us apply the theorem of Fubini for the nonnegative function log ∥x , a∥−1 on P1(C)×

P1(C) endowed with the measure dµ(a)⊗ dω(x).�is implies

∫
P1(C)

gµ(x)dω(x) = ∫
P1(C)×P1(C)

log ∥x , a∥−1 dµ(a)dω(x)

= ∫
P1(C)

(∫
P1(C)

log ∥x , a∥−1 dω(x))dµ(a).

Since the chordal distance and the measure dω(x) on P1(C) are invariant under the action
of the group SU(2),

λ(a) = ∫
P1(C)

log ∥x , a∥−1 dω(x)

is independent of a. Let us compute it when a = ∞. For z ∈ C, we know that ∥z,∞∥ =
(1 + ∣z∣2)−1/2 and ω = 1

π(1 + ∣z∣2)−2 dxdy, hence

λ(∞) = 1
2π ∫C

log(1 + ∣z∣2)
(1 + ∣z∣2)2 dxdy

= 1
2π ∫

∞

0
∫

2π

0

log(1 + r2)
(1 + r2)2 rdrdθ

= 1
2 ∫

∞

0

log(1 + s)
(1 + s)2 ds

by the change of variables s = r2. Integrating by parts, we have

λ(∞) = 1
2
[− log(1 + s)

1 + s
]
∞

0
+ 1
2 ∫

∞

0

1
(1 + s)2 ds =

1
2
.
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Since λ(∞) <∞, we conclude that gµ is integrable on P1(C) for the measure dω, and that
∫P1(C) gµ(x)dω(x) = 1/2, as claimed.
c) Let φ ∈ A 0(P1(C)). By de�nition of the current ddc[gµ] and Fubini’s theorem, we

have

ddc[gµ](φ) = ∫
P1(C)

gµ(x)ddcφ(x)

= ∫
P1(C)

∫
P1(C)

log ∥x , a∥−1 dµ(a)ddcφ(x)

= ∫
P1(C)

(∫
P1(C)

log ∥x , a∥−1 ddcφ(x)) dµ(a).

By Lemma 4.5,

∫
P1(C)

log ∥x , a∥−1 ddcφ(x) = −ddc[log ∥x , a∥](φ) = (ω − δa)(φ)

= ∫
P1(C)

φ(x)ω(x) − φ(a).

Consequently,

ddc[gµ](φ) = ∫
P1(C)

∫
P1(C)

φ(x)ω(x)dµ(a) − ∫
P1(C)

φ(a)dµ(a)

= ∫
P1(C)

φ(x)ω(x) − ∫
P1(C)

φ(a)dµ(a)

= (ω − µ)(φ),
as was to be shown.

Proposition (5.3). — For any real number r > r0,

(5.3.1) m( f ; r, µ) = 1
2π ∫

2π

0
gµ( f (re iθ))dθ .

Proof. — �is is a simple application of the theorem of Fubini for nonnegative functions.
Indeed,

m( f ; r, µ) = ∫
P1(C)

m( f ; r, a)dµ(a)

= ∫
P1(C)

1
2π ∫

2π

0
log ∥ f (re iθ), a∥−1 dθdµ(a)

= 1
2π ∫P1(C) log ∥ f (re

iθ), a∥−1 dµ(a)dθ

= 1
2π

gµ( f (re iθ))dθ .

5.4. Let us assume that µ = ω.�e computation done in Part b) of the proof of the preceding
lemma shows that gω is the constant function 1/2.�en m( f ; r,ω) = 1/2. We recover the
Mean�eorem. (5)

(5) Ah bon...
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Proposition (5.5). — Let us assume that gµ is bounded on P1(C). If f has an essential
singularity at in�nity, then δ( f , a) = 0 for µ-almost every a ∈ P1(C).

Proof. — By Proposition 5.3, m( f ; r, µ) is a bounded function of r.�en, Equation (5.1.3)
implies that for r →∞,

T( f , r0; r) = N( f , r0; r, µ) +O(log(r)) = ∫
P1(C)

N( f , r0; r, a)dµ(a) +O(log(r)).

�en we write

∫
P1(C)

(1 − N( f , r0; r, a)
T( f , r0; r)

)dµ(a) = O( log(r)
T( f , r0; r)

) = o(1).

Arguing as in §4.9, it follows from Fatou’s lemma that

∫
P1(C)

δ( f , a)dµ(a) = 0,

hence the proposition.

Remark (5.6). — �is is a remarkable strengthening of the property that the defects δ( f , a)
vanish for almost every a ∈ P1(C). Indeed, it is possible to construct measures µ for which
gµ is bounded and whose supports have ω-measure zero in P1(C).
For example, let γ∶ [0, 1]→ P1(C) be a parameterized C 1-curve with nonzero derivative.

Let µ = γ∗dt be the image of Lebesgue measure on [0, 1].�en, for any x ∈ P1(C), one has

gµ(x) = ∫
1

0
log ∥x , γ(t)∥−1 dt.

By Jensen’s formula, for any α > 0, one has

gµ(x) =
1
α ∫

1

0
log ∥x , γ(t)∥−α dt ≤ 1

α
log∫

1

0
∥x , γ(t)∥−α dt.

Up to decomposing the curve γ in �nitely many part, small enough so as to be contained in
open charts, we may assume that the image of γ is contained in the domain U of a chart
φ∶U → C. Up to a di�eomorphism, we may assume that the image of φ is the disk D(0, 2)
and that γ(t) = t for t ∈ [0, 1]. It su�ces to prove that gµ is bounded on some neighborhood
of γ([0, 1]).

m = (x , y); d((x , y), (0, t)) = ∣x∣ + ∣y − t∣;

∫
1

0
log ∣y − t∣−1 dt ≤ 2∫

1

0
log ∣u∣−1 dt = 2.

§ 6. NEVANLINNA’S SECOND THEOREM

6.1. If we view f as a holomorphic map from Ω to P1(C), its derivative is a holomorphic
map from the tangent bundle TΩ of Ω to the tangent bundle of P1(C). We can view it as
a section on Ω of the line bundle T∨

Ω ⊗ f ∗TP1(C). For any z ∈ Ω, the order of vanishing
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vz(D f ) at z of D f is given in terms of f , now viewed as a meromorphic function to C, by
the formulae:

(6.1.1) vz(D f ) = {vz( f
′) if f (z) ≠∞;

vz( f ′/ f 2) if f (z) =∞.
�e rami�cation divisor of f , Ram( f ), is the divisor on Ω given by
(6.1.2) Ram( f ) =∑

z∈Ω
vz(D f )z.

Its support is the set of points at which the holomorphic map f ∶Ω → P1(C) is not a local
biholomorphism. For any a ∈ P1(C), one de�nes Ram( f , a) as
(6.1.3) Ram( f , a) = ∑

z∈ f −1(a)
vz(D f )z.

For any divisor D, one can de�ne the corresponding reduced divisor Dred by

Dred(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if D(z) > 0;
0 if D(z) = 0;
−1 if D(z) < 0.

with this notation,
(6.1.4) Ram( f , a) = f ∗(a) − f ∗(a)red,
and
(6.1.5) Ram( f ) = ∑

a∈P1(C)
Ram( f , a).

For any e�ective divisor D, one de�nes naturally the counting function with respect to D
by the formula

(6.1.6) N(D, r0; r) = ∫
C(r0 ,+∞)

log+ r
∣z∣δD .

For a ∈ P1(C), the rami�cation excess of f at the point a is then de�ned by

(6.1.7) ε( f , a) = lim inf
r→∞

N(Ram( f , a), r0; r)
T( f , r0; r)

.

Since Ram( f , a) ≤ f ∗(a), it follows from Nevanlinna’s First�eorem that ε( f , a) is a
nonnegative real number.

�eorem (6.2) (Nevanlinna’s Defects Relation). — Assume that f has an essential singularity
at in�nity.�en,
(6.2.1) ∑

a∈P1(C)
δ( f , a) + ε( f , a) ≤ 2.

Corollary (6.3). — �e set of points a ∈ P1(C) such that δ( f , a) ≠ 0 or ε( f , a) ≠ 0 is
countable.

Corollary (6.4) (Picard’s Great �eorem). — If f omits at least three values, then f is
meromorphic at in�nity.
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Proof. — Assume that f has an essential singularity at in�nity. If f omits the value a, then
the defect δ( f , a) = 1. All other terms in Nevanlinna’s Second�eorem being nonnegative,
we obtain that f omits at most two values.

We now prove Nevanlinna’s Defects Relation, beginning with a technical proposition
whose interest will appear later.

Lemma (6.5) (Émile Borel). — Let u0 be a real number, let I be an interval in R let
φ∶ [u0,+∞)→ I be an increasing C 1-function.

a) For any Borel function α∶ I → R∗+ there exists a Borel subset E of [u0,+∞) of measure at
most ∫I dt/α(t) such that φ′(u) < α(φ(u)) for every u ∈ [u0,+∞) such that u /∈ E.
b) Assume that inf(I) > 0. For any c > 1, there exists a Borel subset E of [u0,+∞) of �nite

Lebesgue measure such that φ′(u) < φ(u)c for every u ∈ [u0,+∞) such that u /∈ E.

Proof. — a) Let E be the set of real numbers t ∈ [u0,+∞) such that φ′(u) ≥ α(φ(u)).
�en, the measure of E can be estimated as follows:

∫
E
du ≤ ∫

E

φ′(u)
α(φ(u))du ≤ ∫

φ(E)

dt
α(t) ≤ ∫

I

dt
α(t) .

b) Since inf(I) > 0 and c > 1, the function α∶ t ↦ t−c is integrable on I. �e �rst part
of the lemma shows that there exists a Borel subset of �nite Lebesgue measure such that
φ′(u) < φ(u)c for any u ∈ [u0,+∞) such that u /∈ E.

Corollary (6.6). — Let u0 be a real number, let Λ∶ [u0,+∞)→ R+ be a nonnegative continu-
ous function. For any u ∈ [u0,+∞),

Θ(u) = ∫
+∞

u0
max(u − t, 0)Λ(t)dt.

�e function Θ is C 2 and satis�es Θ(u0) = Θ′(u0) = 0, and Θ′′ = Λ. Moreover, for
any c > 1, there exists an open subset E ofR of �nite Lebesguemeasure surch thatΛ(u) ≤ Θ(u)c
for every u ∈ [u0,+∞) such that u /∈ E.

Proof. — For every u ∈ [u0,+∞), one has

Θ(u) = ∫
u

u0
(u − t)Λ(t)dt = u∫

u

u0
Λ(t)dt − ∫

u

u0
tΛ(t)dt

so that Θ is C 1 and

Θ′(u) = uΛ(u) + ∫
u

u0
Λ(t)dt − uΛ(u) = ∫

u

u0
Λ(t)dt

for every u ∈ [u0,+∞). It follows that Θ′ is C 1 and that Θ′′ = Λ. In particular, Θ is convex
and increasing.
�ere is nothing to show if Λ ≡ 0. Otherwise, there exists u1 > 0 such that Λ(u1) > 0,

so that Θ(u1) > 0 and Θ′(u1) > 0. Let b =
√
c. By the preceding lemma, applied to the

function Θ′, the interval I = [Θ′(u1),+∞) and the real number b, there exists a subset E′ ⊂
[u1,+∞) of �nite Lebesgue measure such that Θ′′(u) ≤ Θ′(u)b for every u ∈ [u1,+∞) ∖ E′.
Applying the lemma once again, to the function Θ, the interval [Θ(u1,+∞) and the real
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number b, there exists a subset E ⊂ [u1,+∞) of �nite Lebesgue measure such that Θ′(u) ≤
Θ(u)b for every u ∈ [u1,+∞) ∖ E.
Consequently, for every u ∈ [u0,+∞) such that u /∈ [u0, u1] ∪ E ∪ E′, one has

Λ(u) = Θ′′(u) ≤ Θ′(u)b ≤ Θ(u)b2 = Θ(u)c ,

whence the corollary.

6.7. Let q be a nonnegative integer and let a1, . . . , aq be distinct elements of P1(C). To prove
�eorem 6.2, it su�ces to show the inequality

(6.7.1)
q

∑
n=1

δ( f , an) + ε( f , an) ≤ 2.

For the proof, we shall consider the section D f of the line bundle T∨
X ⊗ f ∗TY , and its

norm ∥D f ∥ for suitable hermitian metrics on TX and TY .
�e chosen metric on TX is the one for which

(6.7.2) ∥z ∂
∂z

∥ = 1.

�e metric on TY takes the points an into account, and is given by

(6.7.3) ∥⋅∥φ = ∥⋅∥FS eφ ,

where the function φ is de�ned by

(6.7.4) φ(x) =
q

∑
n=1
log 1

∥an , x∥ log(e ∥an , x∥−1)
+ c,

for some real number c. We then get a new measure

(6.7.5) ωφ = e2φω

on P1(C).

Lemma (6.8). — For any a ∈ P1(C), let φa be the function x ↦ log ( ∥a, x∥ log(e/ ∥a, x∥))
−1

on P1(C).

a) �e function φa is smooth outside of a, the function e2φa is integrable on P1(C) with
respect to the measure given by the canonical 2-form ω.

b) �ere is a unique real number c such that ωφ is a probability measure on P1(C).

Proof. — a) For x ∈ P1(C), e/ ∥a, x∥ ≥ e, hence log(e/ ∥a, x∥) ≥ 1, so that the function φa
is well-de�ned and nonnegative. By its de�nition, we see that it is smooth outside of a. It
remains to show that ∫ e2φa ω is �nite. Since the form ω is invariant under the (transitive)
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action of the group SU(2,C), it su�ces to treat the case a =∞.�en, for z ∈ C,

e2φ∞(z)ω(z) = 1
∥∞, z∥2 ( log(e ∥∞, z∥−1))2

ω(z)

= 1
2π

1 + ∣z∣2

( log(e
√
1 + ∣z∣2))2

i dzdz
(1 + ∣z∣2)2

= 1
π

rdrdθ
(1 + r2)(1 + 1

2 log(1 + r2))2 ,

using polar coordinates. Since 1/r(log(r))2 is integrable around∞, we obtain the required
integrability.
b) Since the points an are pairwise distinct, it follows frompart a) that eφ is smooth outside

of {a1, . . . , aq} and that it is bounded by a constant multiple of eφan in a neighborhood of an,
for any n ∈ {1, . . . , q}. Consequently, e2φ is integrable on P1(C) with respect to ω. It is then
clear that there exists a unique real number c such that e2φω is a probability measure.

6.9. Since D f sends the tangent vector ∂/∂z at z ∈ Ω to the tangent vector f ′(z)∂/∂w at
w = f (z), one has

∥D f ∥φ ∥ ∂
∂z

∥ = ∣ f ′(z)∣ ∥ ∂
∂w

∥
φ
,

so that

(6.9.1) ∥D f (z)∥φ = ∣z∣ eφ( f (z)) ∣ f ′(z)∣
1 + ∣ f (z)∣2

Consequently,

(6.9.2) f ∗ωφ = e2φ(z) ∣ f ′(z)∣2

(1 + ∣ f (z)∣2)2
idzdz
2π

= ∥D f (z)∥2φ
idzdz
2π ∣z∣2 .

We then consider the counting function with respect to the probability measure ωφ. As
in the proof of the Mean theorem (�eorem 4.4), one deduces from Lemma 4.5 that

(6.9.3) N( f , r0; r,ωφ) = ∫
C(r0 ,+∞)

log+ r
∣z∣ f

∗ωφ .

Replacing f ∗ωφ by its expression (6.9.2) in terms of ∥D f (z)∥ and passing in polar coordi-
nates, we obtain

(6.9.4) N( f , r0; r,ωφ) =
1
π ∫C(r0 ,+∞)

max(log(r) − log(∣z∣), 0) ∥D f (z)∥2φ
dr
r
dθ .

We make the change of variables u = log(r), and u0 = log(r0). For any r > r0, set

(6.9.5) Λ(r) = 1
π ∫

2π

0
∥D f (re iθ)∥2φ dθ .

�is gives

(6.9.6) N( f , r0; r,ωφ) = ∫
∞

u0
max(log(r) − log(t), 0)Λ(t) dt

t
.
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Let b > 1. By Corollary 6.6, there exists a set E of �nite Lebesgue measure in [u0,+∞) such
that

1
2π ∫

2π

0
∥D f (re iθ)∥2φ dθ ≤ 1

2
N( f , r0; r,ωφ)b

for any real number r > r0 such that log(r) /∈ E. By Equation (5.1.3), we also have

N( f , r0; r,ωφ) = T( f , r0; r) −m( f ; r,ωφ) +O(log(r)),

and m( f ; r,ωφ) is nonnegative.�erefore,

(6.9.7) log( 1
2π ∫

2π

0
∥D f (re iθ)∥φ dθ) ≤ O(log(T( f , r0; r))) +O(log(r)),

for any real number r > r0 such that log(r) /∈ E.
Applying Jensen’s inequality, it follows that

(6.9.8)
1
2π ∫

2π

0
log ∥D f (re iθ)∥2φ dθ ≤ O(log(T( f , r0; r))) +O(log(r))

for any r > r0 such that log(r) /∈ E.
On the other hand, we have the following estimate:

Proposition (6.10). — For any r > r0, one has

(6.10.1)
1
2π ∫

2π

0
log ∥D f (re iθ)∥φ dθ

= N(Ram( f ), r0; r) − 2T( f , r0; r) +
q

∑
n=1

m( f ; r, an)

+O(log(r)) +O(logT( f ; r0, r)).

Proof. — Recall that ∥D f (z)∥φ = eφ(z) ∥D f (z)∥, so that
(6.10.2)
1
2π ∫

2π

0
log ∥D f (re iθ)∥φ dθ = 1

2π ∫
2π

0
log ∥D f (re iθ)∥ dθ + 1

2π ∫
2π

0
φ( f (re iθ))dθ

�e proposition obviously follows from the two following lemmas.

Lemma (6.11). — For any r > r0, one has

(6.11.1)
1
2π ∫

2π

0
log ∥D f (re iθ)∥ dθ = N(Ram( f ), r0; r) − 2T( f , r0; r) +O(log(r)).

Proof. — Observe that c1(TX) = 0 and c1(TY) = 2ω. Consequently,

ddc log ∥D f ∥ = δRam( f ) − 2 f ∗ω.

�is also follows from the formula:

∥D f ∥ = ∣z∣ ∣ f ′(z)∣
1 + ∣ f (z)∣2 .
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Indeed, this expression, together with the de�nition of the form ω, implies the desired
relation in a neighrborhood of any point z ∈ Ω such that f (z) ≠∞, since vz(D f ) = vz( f ′)
in that case. On the other hand, if f (z) =∞, we write

∥D f ∥ = ∣z∣ ∣ f
′(z)∣
f 2(z)

1
1 + ∣1/ f (z)∣2 ,

and we get the desired formula, since vz(D f ) = vz( f ′/ f 2). Since dc log ∣z∣ = dθ/2π, Green’s
formula implies that

N(Ram( f ), r0; r) − 2T( f , r0; r)

= ∫
C(r0 ;r)

log r
∣z∣ (δRam( f ) − 2 f ∗ω)

= ∫
C(r0 ;r)

log r
∣z∣dd

c log ∥D f ∥

= 1
2π ∫

2π

0
log ∥D f (re iθ)∥dθ − 1

2π
log r

r0 ∫
2π

0
log ∥D f (r0e iθ)∥dθ

= 1
2π ∫

2π

0
log ∥D f (re iθ)∥dθ +O(log(r)).

Lemma (6.12). — Let a ∈ P1(C) and let φa(x) = log (∥a, x∥ log (e ∥a, x∥−1 ))−1. For any
r > r0, one has

(6.12.1)
1
2π ∫

2π

0
φa( f (re iθ))dθ = m( f ; r, a) +O(log(T( f , r0; r))).

Proof. — By de�nition of the proximity function,

1
2π ∫

2π

0
φa( f (re iθ))dθ = 1

2π ∫
2π

0
log ( ∥a, f (re iθ)∥−1 )

+ 1
2π ∫

2π

0
log ( log(e ∥a, x∥−1)−1)dθ

= m( f ; r, a) − 1
2π ∫

2π

0
log ( log e ∥a, x∥−1 )dθ .

By Jensen’s formula, the second term satis�es

1
2π ∫

2π

0
log ( log(e ∥a, x∥−1))dθ ≤ log( 1

2π ∫
2π

0
log(e ∥a, x∥−1)dθ) = log (1 +m( f ; r, a)).

By Nevanlinna’s First�eorem,

1 +m( f ; r, a) ≤ T( f , r0; r) +O(log(r)) = O(T( f , r0; r)).

�is concludes the proof of the lemma.

At this point, we have proved the following theorem.
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�eorem (6.13) (Nevanlinna’s Second�eorem). — �ere exists a set E of �nite Lebesgue
measure such that, for any r > r0 such that log(r) /∈ E,
(6.13.1)

q

∑
n=1

m( f ; r, an) + N(Ram( f ), r0; r) − 2T( f , r0; r) ≤ O(log(r)) +O(log(T( f , r0; r))).

6.14.We may now complete (at last!) the proof of Nevanlinna’s Defect Relation. Since
Ram( f ) is the sum of the e�ective divisors Ram( f , a), for a ∈ P1(C), we also have

q

∑
n=1

N(Ram( f , an), r0; r) ≤ N(Ram( f ), r0; r)

for any r > r0. Consequently, if log(r) /∈ E,
(6.14.1)

q

∑
n=1

m( f ; r, an)
T( f , r0; r)

+ N(Ram( f , an), r0; r)
T( f , r0; r)

≤ 2 +O( log(r)
T( f , r0; r)

) +O( log(T( f , r0; r))
T( f , r0; r)

).

Assume that f has an essential singularity at in�nity. By Corollary 4.8

lim
r→+∞

T( f , r0; r)
log(r) = +∞.

If we let r converge to in�nity within the set of real numbers such that log(r) /∈ E, we thus
obtain the inequality

q

∑
n=1
lim m( f ; r, an)

T( f , r0; r)
+ lim N(Ram( f , an), r0; r)

T( f , r0; r)
≤ 2.

In other words,

(6.14.2)
q

∑
n=1

δ( f , an) + ε( f , an) ≤ 2.

�is concludes the proof of Nevanlinna’s Defects Relation. Considering the particular case
where we have only two points, a similar analysis will show the following theorem.

�eorem (6.15) (�eorem of the logarithmic derivative). — �ere exists a subset E of �nite
Lebesgue measure in R such that

(6.15.1) m( f ′/ f ; r,∞) ≤ O(log(T( f , r0; r))).
for any real number r > r0 such that log(r) /∈ E.

Proof. — Let us consider the particular case where we have only two points, taken to 0
and∞ (in other words, q = 2, a1 = 0, a2 =∞).�en,

∥D f (z)∥φ =
∣ f ′(z)∣
1 + ∣ f (z)∣2 ∣z∣ e

φ0(z)eφ∞(z)

= ∣ f
′

f
(z)∣ ∣z∣ 1

log(e ∥ f (z), 0∥−1)
1

log(e ∥ f (z),∞∥−1)
.
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�is will allow to estimate m( f ′/ f ; r,∞) in terms of ∥D f ∥φ. Indeed, for ∣z∣ ≥ 1, we have

log ∣ f
′

f
(z)∣ = log ∥D f (z)∥φ − log ∣z∣ + log log(e ∥ f (z), 0∥

−1) + log log(e ∥ f (z),∞∥−1)

≤ 1
2
log(1 + ∥D f (z)∥2φ)

+ log log(e ∥ f (z), 0∥−1) + log log(e ∥ f (z),∞∥−1).
Since the right hand side is nonnegative, it follows that for ∣z∣ ≥ 1,

logmax(∣ f ′/ f (z)∣ , 0) ≤ 1
2
log(1 + ∥D f (z)∥2φ)

+ log log(e ∥ f (z), 0∥−1) + log log(e ∥ f (z),∞∥−1).
Let us integrate this relation on ∂D(r), for r ≥ 1. Recalling Equation 3.1.2 and applying
Jensen’s inequality, this gives

m( f ′/ f ; r,∞) ≤ 1
2
log( 1

2π ∫
2π

0
(1 + ∥D f (re iθ)∥2φ)dθ)

+ log( 1
2π ∫

2π

0
log(e ∥ f (re iθ), 0∥−1)dθ)

+ log( 1
2π ∫

2π

0
log(e ∥ f (re iθ),∞∥−1)dθ)

≤ 1
2
log(1 + 1

2π ∫
2π

0
∥D f (re iθ)∥2φ dθ)

+ log (1 +m( f ; r, 0)) + log (1 +m( f ; r,∞)) .
For any a ∈ P1(C), we have

m( f ; r, a) = T( f , r0; r) − N( f , r0; r, a) +O(log(r)) ≤ O(T( f , r0; r))
since N( f , r0; r, a) ≥ 0 and log(r) = O(T( f , r0; r)). By Equation (6.9.7), there exists a set
E ⊂ R of �nite Lebesgue measure such that

log( 1
2π ∫

2π

0
∥D f (re iθ)∥2φ dθ) ≤ O( log(T( f , r0; r))),

for any real number r > r0 such that log(r) /∈ E.�is concludes the proof of the theorem of
the logarithmic derivative.





CHAPTER 4

ANALYTIC CURVES IN PROJECTIVE VARIETIES

§ 1. GEOMETRY OF THE PROJECTIVE SPACE

1.1. �e projective space. — We will consider holomorphic functions with values into the
projective space Pn(C). Recall that it is the space of lines in Cn+1, written as the quotient of
Cn+1 ∖ {0} by the action of C∗ acting by multiplication coordinatewise. For (z0, . . . , zn) ∈
Cn+1 ∖ {0}, the line C(z0, . . . , zn) will be written [z0 ∶ . . . ∶ zn]; the complex numbers
(z0, . . . , zn) will be called the homogeneous coordinates of [z0 ∶ . . . ∶ zn].
�e projective space has a natural structure of a complex manifold. Let j ∈ {0, . . . , n}

and let U j be the open subset of Pn(C) consisting of points [z0 ∶ . . . ∶ zn] with z j ≠ 0.
On U j, one may choose homogeneous coordinates so that the one with index j is equal to 1;
this identi�es U j with the a�ne hyperplane of Cn+1 with equation z j = 1 or, forgetting this
coordinate the coordinate with index j, with the a�ne space Cn.
1.2. �e tautological line bundle on Pn(C). — Let O(−1) be the subspace of Pn(C) ×Cn+1

consisting of pairs (p, z) such that z ∈ p. Together with the �rst projection π∶O(−1) →
Pn(C), it is a line bundle, the structure of a vector space on the �bers is induced by the
corresponding structure of Cn+1.

�e restriction to U j of the line bundle O(−1) is trivial, for O(−1)∣U j possesses a nonvan-
ishing section ε j, associating to a point p ∈ U j the unique pair (p, z) such that z ∈ p and
z j = 1. For p = [z0 ∶ . . . ∶ zn] ∈ Ui ∩U j, one has

ziεi(p) = (z0, . . . , zn) = z jε j(p).

�e line bundle O(1) is de�ned as the dual of O(−1). Any linear form ξ on Cn+1 gives
rise to a section sξ of O(1). In this way, we get a morphism of vector spaces (Cn+1)∨ →
Γ(Pn(C),O(1)). �is morphism is an isomorphism. First of all, it is injective: for ξ =
(ξ0, . . . , ξn) ∈ (Cn+1)∨, p = [z0 ∶ . . . ∶ zn] ∈ U j, we have

z jε j(p) = (z0, . . . , zn), z jsξ(ε j(p)) = ξ0z0 + ⋅ ⋅ ⋅ + ξnzn .

If sξ = 0, then ξ0z0 + ⋅ ⋅ ⋅ + ξnzn = 0 for any (z0, . . . , zn) ∈ Cn+1 ∖ {0}, hence ξ = 0. It is also
surjective.
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1.3. Endow Cn+1 with its natural structure of a hermitian space, given by ∥(z0, . . . , zn)∥2 =
∑n

j=0 ∣z j∣
2. �is induces a hermitian metric on the line bundle O(−1), as well as on its

dualO(1). Let p ∈ Pn(C) be a point of the projective space, let Lp ⊂ Cn+1 be the correspond-
ing line, let z = (z0, . . . , zn) ∈ Lp and let ξ be a linear form on Lp. So

∥z∥2 = ∣z0∣2 + ⋅ ⋅ ⋅ + ∣zn∣2 , ∥ξ∥ = ξ(z)
∥z∥ .

In particular, let (ξ0, . . . , ξn) ∈ Cn+1 considered as the linear form ξ on Cn+1 such that
ξ(z0, . . . , zn) = ∑ ξ jzJ .�en,

∥sξ(p)∥ =
∣ξ0z0 + ⋅ ⋅ ⋅ + ξnzn∣

(∣z0∣2 + ⋅ ⋅ ⋅ + ∣zn∣2)
1/2 .

We will write O(1) to denote the line bundle O(1) together with this hermitian metric.
1.4. �e canonical Fubiny-Study form on the projective space. — �e Fubini-Study form ω
on Pn(C) is de�ned as the curvature of the metrized line bundle O(1). It is also the unique
di�erential form on Pn(C) such that

π∗ω = 1
2
ddc log

⎛
⎝

n
∑
j=0

∣z j∣
2⎞
⎠
,

where π∶Cn+1 ∖ {0}→ Pn(C) is the natural projection.
1.5. A (projective) hyperplane of Pn(C) is the image by the projection π∶Cn+1 ∖ {0} of a
hyperplane of Cn+1. In other words, a hyperplane H of Pn(C) is the set of points p = [z0 ∶
. . . ∶ zn] whose homogeneous coordinates satisfy some linear equation ξ0z0 + ⋅ ⋅ ⋅ + ξnzn.
For p = [z0 ∶ . . . ∶ zn] ∈ Pn(C), one de�nes

d(p,H) = ∣ξ0z0 + ⋅ ⋅ ⋅ + ξnzn∣
(∣ξ0∣2 + ⋅ ⋅ ⋅ + ∣ξn∣2)

1/2 .

�is is the distance of p to the hyperplane H. It vanishes if and only if p ∈ H. If one writes
ξ = (ξ0, . . . , ξn), it follows that

d(p,H) = ∥sξ(p)∥ ∥ξ∥.

§ 2. CHARACTERISTIC, COUNTING AND PROXIMITY FUNCTIONS

De�nition (2.1). — �e characteristic function of f is de�ned by

T( f , r0, r) = ∫
C(r0 ,+∞)

log+ ∣ r
z
∣ f ∗ω.

Proposition (2.2). — �e function T( f , r0; r) is increasing, and a convex function in log(r).
In particular, T( f , r0; r)/ log(r) has a limit when r → +∞.
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De�nition (2.3). — Let H be a hyperplane of Pn(C), with equation ξ0z0 + ⋅ ⋅ ⋅ + ξnzn = 0; let
ξ = (ξ0, . . . , ξn).
If f (Ω) /⊂ H, then, the proximity function is de�ned by

m( f ; r,H) = ∫
C(r)
log d( f ,H)−1 = ∫

2π

0
log d( f (re iθ),H)−1 dθ

2π
.

Proposition (2.4). — �e proximity function is a continuous and nonnegative function of r.

2.5. Let H be a hyperplane of Pn(C), with equation ξ0z0 + ⋅ ⋅ ⋅ + ξnzn = 0; let ξ = (ξ0, . . . , ξn).
�en, f ∗sξ is a section of f ∗O(1) on Ω which vanishes at points z ∈ Ω such that f (z) ∈ H.
In particular, it is not identically 0 if f (Ω) /⊂ H; in this case, we will write f ∗H for its divisor.

Lemma (2.6). — Assume that f (Ω) /⊂ H.�en, f ∗ log ∥sξ∥ is locally integrable on Ω and
f ∗ω = δ f ∗H − ddc[ f ∗ log sξ].

De�nition (2.7). — �e counting function of f with respect to H is de�ned by

N( f , r0; r,H) = ∫
C(r0 ,∞)

log+ ∣ r
z
∣ δ f ∗H .

�eorem (2.8) (First main theorem). — For any hyperplane H such that f (Ω) /⊂ H, one has
T( f , r0; r) = N( f , r0; r,H) +m( f ; r,H) +O(log(r)).

Proposition (2.9). — Embed Pn(C) into Pn+1(C) by the map i∶ [z0 ∶ . . . ∶ zn] ↦ [z0 ∶ . . . ∶
zn ∶ 0].�en T( f , r0; r) = T(i ○ f , r0; r) for any r > r0.

Corollary (2.10). — When r → +∞, T( f , r0; r)/ log(r) has a �nite limit if and only if f is
holomorphic at in�nity, i.e., extends to a holomorphic function from Ω ∪ {∞} to Pn(C).

§ 3. WRONSKIAN

De�nition (3.1). — Let U be an open subset of C and let F = ( f0, . . . , fn) be a holomorphic
function from U to Cn+1.�eWronskian of F is the holomorphic function on U given by

W(F) = det
⎛
⎜⎜⎜⎜
⎝

f0 f ′0 . . . f (n)0

f1 f ′1 . . . f (n)1
⋮ ⋮ ⋮
fn f ′n . . . f (n)n

⎞
⎟⎟⎟⎟
⎠
.

Lemma (3.2). — Let U be an open subset of C, let F ∶U → Cn+1 be a holomorphic function
from U to Cn+1.

a) For any matrix A ∈Mn+1(C), one has
W(A ⋅ F) = det(A)W(F).

b) For any holomorphic function φ on U, one hasW(φF) = φn+1W(F).
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Proof. — a) Write A = (ai j), F = ( f0, . . . , fn) and G = A ⋅ F = (g0, . . . , gn). For any i
and j ∈ {0, . . . , n},

gi =
n
∑
k=0

aik fk ,

hence
g( j)i =

n
∑
k=0

aik f ( j)k .

�is implies the following equality of matrices

(g( j)i ) = A ⋅ ( f ( j)i ) ,

hence W(G) = det(A)W(F).
b) Set gi = φ fi . By the Leibniz rule for derivation of products, one has

g( j)i =
j

∑
k=0

( j
k
)φ( j−k) f (k)i ,

for any i and j ∈ {0, . . . , n}. Let Φ = (φk j) be the matrix with (k, j)-entry given by

φk j = {(
j
k)φ( j−k) if j ≥ k;
0 otherwise.

One has the equality of matrices

(g( j)i ) = ( f ( j)i ) ⋅Φ.

�e matrix Φ is upper-triangular, and all diagonal entries are equal to φ, so that det(Φ) =
φn+1. Consequently, W(φF) = φn+1W(F), as was to be shown.
Proposition (3.3). — Let U be a connected open subset ofC, let F ∶U → Cn+1 be a holomorphic
function from U to Cn+1.�en the following properties are equivalent:
a) �e WronskianW(F) vanishes identically on U;
b) �ere exists an hyperplane of Cn+1 which contains the image of F;
c) �ere exists a nonzero linear form φ on Cn+1 such that ⟨φ, F(z)⟩ = 0 for every z ∈ U.

Proof. — �e last two properties are obviously equivalent; assume they hold and let
(a0, . . . , an) be a nonzero vector in Cn+1 such that a0 f0 + ⋅ ⋅ ⋅ + an fn vanishes identically
on U . Consequently,

a0 f ( j)0 + ⋅ ⋅ ⋅ + an f ( j)n ≡ 0
for each j ∈ {0, . . . , n}, so that the columns of the Wronskian matrix of F are linearly
dependent.�is implies W(F) = 0.
Let us prove the result in the other direction. For n = 0, F = f0 = W(F), hence the

result in that case. We prove the result by induction on n, assuming that n ≥ 1 and that the
result holds for n − 1. Let F ∶U → Cn+1 be a holomorphic map such that W(F) = 0. If f0
is identically 0, then the image of F is contained in the hyperplane with equation x0 = 0.
Otherwise, there exists a non-empty connected open subset V ofU such that f0 is invertible
on V . Set gi = fi/ f0 for i ∈ {0, . . . , n} and let G∶V → Cn+1 be the holomorphic map given
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by (g0, . . . , gn). One has G = f −10 F, hence W(G) = f −n−10 W(F) = 0. On the other hand,
since g0 ≡ 1, one has

W(G) = det
⎛
⎜⎜⎜⎜
⎝

1 0 . . . 0
g1 g′1 . . . g(n)1
⋮ ⋮ ⋮
gn g′n . . . g(n)n

⎞
⎟⎟⎟⎟
⎠
= det

⎛
⎜
⎝

g′1 . . . g(n)1
⋮ ⋮
g′n . . . g(n)n

⎞
⎟
⎠
.

By induction, g′1 , . . . , g′n are linearly dependent and there exist a nonzero family (a1, . . . , an)
of complex numbers such that a1g′1 + ⋅ ⋅ ⋅ + ang′n vanishes identically on V . Since V is
connected, a1g1+⋅ ⋅ ⋅+angn takes a constant value on V , say −a0, so that a0+a1g1+⋅ ⋅ ⋅+angn
vanishes identically on V . Multiplying by f0, we see that a0 f0 + a1 f1 + ⋅ ⋅ ⋅ + an fn vanishes
identically on V . Since U is connected, the principle of analytic extension implies that this
identity holds on the whole of U , as was to be shown.

§ 4. THE THEOREM OF CARTAN

4.1. Let Ω be a connected open neighborhood of ∞ in C; let r0 > 0 be such that Ω ⊃
C(r0,+∞). Let f ∶Ω → Pn(C) be a holomorphic map. One says that f is nondegenerate if its
image f (Ω) is not contained in a hyperplane of Pn(C). As we have see, this is equivalent to
the fact that theWronskian w( f ) ∈ Γ(Ω, f ∗O(n+ 1)) of f is nonzero. Its divisor div(w( f ))
is called the rami�cation divisor.
4.2. Let H1, . . . ,Hq be hyperplanes of Pn(C). For every j ∈ {1, . . . , q}, let ξ j be a nonzero
linear form on Cn+1 de�ning H j. One says that (H1, . . . ,Hq) are in general position if
(ξ j1 , . . . , ξ jp) is free, for any integer p ∈ {1, . . . , n + 1} and any sequence ( j1, . . . , jp) of
distinct integers in {1, . . . , q}.
�eorem (4.3) (Cartan). — Let f ∶Ω → Pn(C) be a nondegenerate holomorphic map. Let
(H1, . . . ,Hq) be a family of hyperplanes in general position.�en, there exists a subset E of R
such that log(E) has �nite measure and such that

(q−n−1)T( f , r0; r) ≤
q

∑
j=1

N( f , r0; r,H j)−N(r0; r, Ram( f ))+O(log(T( f , r0; r)))+O(log(r)),

for any r ∈ (r0,+∞) ∖ E.

Remark (4.4). — �e case where n = 1 is exactly Nevanlinna’s second theorem.
Corollary (4.5). — Let f ∶Ω → Pn be a non degenerate holomorphic map. Let q ≥ n + 2 and
let H1, . . . ,Hq be hyperplanes in general positition. Assume that f (Ω) ⊂ ∁⋃q

j=1H j. �en f is
holomorphic at in�nity.

Proof. — Indeed, N( f , r0; r,H j) = 0 for every j and every r > r0. Since q ≥ n + 2 and
N(r0; r, Ram( f )) ≥ 0, we get

T( f , r0; r) ≤ O(log(T( f , r0; r))) +O(log(r)),
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for every r > r0 such that r /∈ E. As a consequence, T( f , r0; r) ≤ O(log(r)), hence f is
holomorphic at in�nity.

Corollary (4.6). — Let f ∶C→ Pn be a holomorphic map, let q ≥ n + 2 and let H1, . . . ,Hq be
hyperplanes in general position. If f (C) ⊂ ∁⋃H j, then f is degenerate.

Proof. — By the preceding corollary, f extends to a holomorphic map from P1 to Pn. Since
q ≥ n + 2 ≥ 2, there exists j ∈ {1, . . . , n + 2} such that f (∞) /∈ H j, so that f is a holomorphic
map from P1(C) to Pn(C) ∖ H j. However, Pn(C) ∖ H j is biholomorphically isomorphic
to Cn.�is identi�es f with a holomorphic map from P1(C) to Cn. It must be bounded,
hence constant.

Corollary (4.7) (Borel). — Let f0, . . . , fn be holomorphic nonvanishing functions on C such
that f0 + ⋅ ⋅ ⋅ + fn = 1.�en there exists a �nite family (gm)m∈M of holomorphic nonvanishing
functions on C, a surjective map φ∶{0, . . . , n} → M, as well as complex numbers (ai)0≤i≤n
such that

– for m ≠ m′, gm and gm′ are not proportional;
– for any i ∈ {0, . . . , n}, fi = ai gφ(i);
– for any m ∈ M such that gm is nonconstant, then∑i∈φ−1(m) ai = 0.

Say two functions are equivalent if their quotient is constant. In the sum f0 + ⋅ ⋅ ⋅ + fn, we
can trivially combine all terms from a given equivalence class; we get either the function 0,
or an invertible function of the same class.�e meaning of the corollary is the following:
the sum of all functions f j in a given equivalence class is equal to 0, unless this is the class
of the constant function.

Proof. — We may also assume that the relation f0 + ⋅ ⋅ ⋅ + fn is minimal, in the sense that
no two functions f0, . . . , fn are proportional; we then need to prove that n = 0. We shall
therefore prove by induction on n the following statement: there is no minimal relation if
n ≥ 1.
Argue by contradiction, and let us consider a minimal relation f0+⋅ ⋅ ⋅+ fn. Let us consider

the map f ∶C→ Pn(C) given by f (z) = [ f0(z) ∶ . . . ∶ fn(z)]. For j ∈ {0, . . . , n}, letH j be the
hyperplane with equation z j = 0; let Hn+1 be the hyperplane with equation z0 + ⋅ ⋅ ⋅ + zn = 0.
By assumption, f (C) ⊂ ∁⋃H j. By the preceding corollary, the map f is degenerate, hence
there exist complex numbers a0, . . . , an, not all 0, such that a0 f0 + ⋅ ⋅ ⋅ + an fn = 0. In other
words, ( f0, . . . , fn) are linearly dependent.
To �x the ideas, suppose that an ≠ 0.�en, by subtraction, we get a relation

(1 − a0
an

) f0 + ⋅ ⋅ ⋅ + (1 − an−1
an

) fn−1 = 1.

Eliminating the terms with a j = an, we obtain a relation of the same form, but with ≤ n
terms. By induction and the assumption that no two f j are proportional, this relation must
be trivial. In particular, up to renumbering the indices, we have a1 = ⋅ ⋅ ⋅ = an−1 = an, a0 ≠ an,
and f0 is constant. It follows that

f1 + ⋅ ⋅ ⋅ + fn =
1
an

(a0 f0 + ⋅ ⋅ ⋅ + an fn) −
a0
a n

f0 = −
a0
an

f0.
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If a0 ≠ 0, the right hand side is a nonzero constant; dividing by −a0 f0/an, we obtain a
minimal relation with n terms.�is implies that n = 1 and that f1 is constant, contradicting
the minimality of the original relation f0 + ⋅ ⋅ ⋅ + fn = 1.

�erefore, a0 = 0 and f1 + ⋅ ⋅ ⋅ + fn = 0. We now write the latter relation as
(− f2/ f1) + ⋅ ⋅ ⋅ + (− fn/ f1) = 1.

�is is a minimal relation of the same form with n − 1 terms.�erefore, n = 2 and − f2/ f1 =
1, so that f1 and f2 are proportional, contradicting again the minimality of the original
relation.
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