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CHAPTER 1

COMMUTATIVE ALGEBRA

1.1. Recollections (Uptempo)

1.1.1. Basic algebraic structures. — �e concepts of groups, rings, �elds,mod-
ules are assumed to be known, as well as the notion of morphisms of groups,
rings, �elds, modules, etc.
In this course, rings are always commutative and possess a unit element,
generally denoted by 1. �e multiplicative group of invertible elements of a
ring A will be denoted by A∗ or A×.

1.1.2. Algebras. — Let k be a ring. A k-algebra is a ring A endowed with a
morphism of rings f ∶ k → A. When this morphism is injective, we will o�en
understate the morphism f and consider that A is an overring of k, or that k
is a subring of A... Let (A, f ∶ k → A) and (B, g∶ k → B) we two k-algebras; a
morphism of k-algebras is a ring morphism φ∶A→ B such that g = φ ○ f .

1.1.3. Polynomial algebras. — Let I be a set. One de�nes a k-algebra
k[(Xi)i∈I] of polynomials with coe�cients in k in a family (Xi)i∈I of indeter-
minates indexed by I. �is algebra satis�es the following universal property:
for every family (ai)i∈I of elements of A, there exists a unique morphism
φ∶ k[(Xi)i∈I] → A of k-algebras such that φ(Xi) = ai for every i ∈ I. In other
words, for every k-algebra A, the canonical map

Homk−Algebras(k[Xi], A) → HomEns(I, A), φ ↦ (i ↦ φ(Xi))
is a bijection.
When I has one, two, three,... elements, the indeterminates are o�en denoted
by individual letters, say X, Y, Z,...
Let J be a subset of I, and let K be its complementary subset. �e polynomial
algebra k[(Xi)i∈I] is isomorphic to the polynomial algebra k[(Xi)i∈J][(Xi)i∈K]
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in the indeterminates Xi (for i ∈ K) with coe�cients in the polynomial algebra
k[(Xi)i∈J] with coe�cients in k in the indeterminates Xi (for i ∈ J).
We do not detail the notion of degree in one of the indeterminates (of degree,
if I is a singleton).
�ere is a notion of euclidean division in polynomial rings. Let A be a ring,
let f , g ∈ A[X] be polynomials in one indeterminate X with coe�cients in A. If
the leading coe�cient of g is invertible in A, there exist a unique pair (q, r) of
polynomials in A[X] such that f = gq + r and deg(r) < deg(g).

1.1.4. Ideals. — An ideal of a ring A is a non-empty subset I which is stable
under addition, and such that ab ∈ I for every a ∈ A and every b ∈ I. In other
words, this is a A-submodule of A.
�e subsets {0} and A are ideals. �e intersection of a family of ideals of A
is an ideal. If S is a subset of A, the ideal generated by S is the smallest ideal
of A containing S (it is the intersection of all ideals of A which contain S). Let I
and J be ideals of A; the ideal I + J (resp. the ideal I ⋅ J, also denoted by IJ) is the
ideal generated by the set of sums a + b (resp. the set of products ab) for a ∈ I
and b ∈ J. �e ideal generated by a family of elements of A is o�en denoted by
((ai)i∈I); for example (a), (a, b), (a1, a2, a3)...
�e image φ(I) of an ideal I of A under a morphism of rings φ∶A → B is
generally not an ideal of B; the ideal it generates is o�en denoted by IB. However,
the inverse image of an ideal J of B by such a morphism of rings is always an
ideal of A. In particular, the kernel ker(φ) = φ−1(0) of a morphism of rings is
an ideal of A.
Let I be an ideal of A. �e relation x ∼ y de�ned by x − y ∈ I is an equivalence
relation. �e quotient set A/∼, denoted by A/I, admits a unique ring structure
such that the canonical surjection π∶A → A/∼ is a morphism of rings. �e
so-called quotient ring A/I possesses the following universal property: for every
ring B and every morphism of rings f ∶A→ B such that f (I) = {0}, there exists
a unique morphism of rings φ∶A/I→ B such that f = φ ○ π.
�e kernel of the canonical morphism π is the ideal I itself. More generally,
the map associating with an ideal J of A/I the ideal π−1(J) of A is a bijection
between the (partially ordered) set of ideals of A/I and the (partially ordered)
set of ideals of A which contain I.
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1.1.5. Domains. — Let A be a ring. One says that an element a ∈ A is a zero-
divisor if there exists b ∈ A, such that ab = 0 and b ≠ 0. One says that A is an
integral domain, or a domain, if A ≠ {0} and if 0 is its only zero-divisor. Fields
are integral domains.

1.1.6. Prime and maximal ideals. — One says that an ideal I of A is prime if
the quotient ring A/I is an integral domain. �is means that I ≠ A and that for
every a, b ∈ A such that ab ∈ I, either a ∈ I, or b ∈ I.
One says that an ideal I of A ismaximal if the quotient ring A/I is a �eld. �is
means that I is a maximal element of the partially ordered set of ideals of A
which are not equal to A. A maximal ideal is a prime ideal.
One deduces from Zorn’s theorem that every ideal of A which is distinct
from A is contained in some maximal ideal. (Indeed, if I is an ideal of A such
that I ≠ A, the set of ideals J of A such that I ⊂ J ⊊ A, ordered by inclusion, is
inductive—every totally ordered subset admits an upper-bound) In particular,
every non-zero ring contains maximal ideals.
Hilbert’s Nullstellensatz (theorem 1.7.1 below) gives a description of the maxi-
mal ideals of polynomials rings over algebraically closed �elds.

1.1.7. — If a ring admits exactly one maximal ideal, one says that it is a local
ring. A ring is local if and only if its set of non-invertible elements is an ideal
(exercise!).
Let A and B be local rings; letmA andmB be their maximal ideals; let κ(A) =
A/mA and κ(B) = B/mB be their residue �elds. A morphism f ∶A → B is said
to be local if f (mA) ⊂ mB or, equivalently, if f −1(mB) = mA. Observe that
a local morphism f ∶A → B passes to the quotient and induces a morphism
κ(A) → κ(B) between their residue �elds.

1.1.8. — �e intersection J of all maximal ideals of a ring A is called its Jacobson
radical. It admits the following characterization: one has a ∈ J if and only if
1 + ab is invertible in A for every b ∈ A (exercise!).

1.1.9. — Let A be an integral domain and let K be its �eld of fractions. One
says that A is a valuation ring if, for every non-zero element a of K, either a ∈ R,
or 1/a ∈ R (or both).
Assume that A is a valuation ring. Let a, b be element of A which are not
invertible. If a = 0, then a + b = b is not invertible; assume that a ≠ 0 and let
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x = b/a. If x ∈ R, then a + b = a(1 + x) is not invertible; otherwise, x ≠ 0, hence
1/x ∈ R and a + b = b(1 + 1/x) is not invertible as well. �is implies that the set
A A× of non-invertible elements of A is an ideal, hence a valuation ring is a
local ring.

1.1.10. — Let A be an integral domain. One says that an element a ∈ A is
irreducible if it is not invertible and if the equality a = bc for b, c ∈ A implies that
b or c is invertible. An element a is said to be prime if the principal ideal (a) is
prime; this implies that a is irreducible but the converse does not hold (exercise!;
show, for example, that the element 1+ i√5 of the ring Z[i√5] is irreducible but
not prime).
One says that the ring A is a unique factorization domain (ufd, in short) if the
following two properties hold:
(a) Every strictly increasing sequence of principal ideals of A is �nite;
(b) Every irreducible element of A generates a prime ideal.
Indeed, these two properties are equivalent to the fact that every non-zero
element of A can be written as the product of an invertible element and of
�nitely many prime elements of A, in a unique way up to the order of the factors
and to multiplication of the factors by units.
Condition (ii) is sometimes stated under the name of ‘‘Gauss’s lemma’’: If A
is a ufd, then every irreducible element a which divides a product bc must divide
one of the factors b or c. Condition (i) obviously holds when A is noetherian.
Consequently, a noetherian ring for which Gauss’s lemma holds is a ufd.
Principal ideal rings are unique factorization domains, as well as polynomial
rings over �elds. In fact, if A is a ufd, then so is A[X] (a theorem proved by
Gauss for A = Z).

1.2. Localization (Medium up)

Let A be a ring.

1.2.1. Nilpotent elements. — One says that an element a ∈ A is nilpotent if
there exists an integer n ⩾ 1 such that an = 0. �e set of nilpotent elements of A
is an ideal of A, called its nilradical. When 0 is the only nilpotent element of A,
one says that A is reduced. More generally, when I is an ideal of A, one de�nes
the radical of I, denoted by

√
I, as the set of all a ∈ I for which there exists an
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integer n ⩾ 1 such that an ∈ I; it is an ideal of A which contains I. An ideal which
is equal to its radical is called a radical ideal.

1.2.2. Multiplicative subsets. — Amultiplicative subset of A is a subset S ⊂ A
which contains 1 and such that ab ∈ S for every a, b ∈ S.

1.2.3. — Let M be an A-module. �e fraction module S−1M (sometimes also
denoted byMS) is the quotient of the set M×S by the equivalence relation ∼ such
that (m, s) ∼ (m′, s′) if and only if there exists t ∈ S such that t(sm′ − s′m) = 0.
Let us denote by m/s the class in S−1M of the pair (m, s) ∈M × S. �e addition
of the abelian group S−1M is given by the familiar formulas

(m/s) + (m′/s′) = (s′m + sm′)/ss′,

for m,m′ ∈M, s, s′ ∈ S; its zero is the element 0/1. Its structure of an A-module
is given by a ⋅ (m/s) = (am)/s, for a ∈ A, m ∈M and s ∈ S.
For every s ∈ S, the multiplication by s is an isomorphism on S−1M—one says
that S acts by automorphisms on S−1M. �e map θ∶M→ S−1M given by θ(m) =
m/1 is a morphism of A-modules; it satis�es the following universal property:
For every morphism of A-modules f ∶M→ N such that S acts by automorphisms
on N, there exists a unique morphism of A-modules φ∶S−1M → N such that
f = φ ○ θ (explicitly: f (m) = φ(m/1)) for every m ∈M).

1.2.4. — Let B be an A-algebra. �en the module of fractions S−1B has a natural
structure of an A-algebra for which the multiplication is given by the familiar
formulas

(b/s) ⋅ (b′/s′) = (bb′)/(ss′),
for b, b′ ∈ B and s, s′ ∈ S; its zero and unit are the elements 0/1 and 1/1. �e
canonical map θ∶B → S−1B is a morphism of A-algebras, and the images of
the elements of S are invertible in S−1B. In fact, this morphism satis�es the
following universal property: For every morphism of A-algebras f ∶B→ B′ such
that the images of elements of S are units of B′, there exists a unique morphism
of A-Algebras φ∶ S−1B→ B′ such that f = φ ○ θ.
In particular, S−1A itself is an A-algebra.. Moreover, for every A-module M,
the A-module S−1M has a natural structure of a S−1A-module.
�e ring S−1A is the zero ring if and only if 0 ∈ S.
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1.2.5. Examples. — Let us give examples of multiplicative subsets and let us
describe the corresponding ring of fractions.

a) Let a ∈ A; the set S = {1, a, a2, . . .} is a multiplicative subset which con-
tains 0 if and only if a is nilpotent. �e corresponding fraction ring is of-
ten denoted by Aa. Let φ1∶A[T] → Aa be the morphism of rings given by
φ1(P) = P(1/a); it is surjective and its kernel contains the polynomial 1 − aT.
Let φ∶A[T]/(1 − aT) → Aa be the morphism of rings which is deduced from φ1
by passing to the quotient; let us show that φ is an isomorphism by constructing
its inverse.
�e obvious morphismψ1∶A→ A[T]/(1−aT)maps a to an invertible element
of A[T]/(1 − aT); by the universel property of the localization, there exists a
unique morphism of rings ψ∶Aa → A[T]/(1 − aT) such that ψ(b) = b for every
b ∈ A; one has ψ(b/an) = b cl(T)n for every b ∈ A and every integer n ⩾ 0.
Moreover, φ ○ ψ(b/an) = b/an, so that φ ○ ψ = id. In the other direction,
ψ ○ φ(b) = b for every b ∈ A and ψ ○ φ1(T) = ψ(1/a) = cl(T); consequently,
ψ ○ φ1(P) = cl(P) for every polynomial P ∈ A[T], hence ψ ○ φ = id. �is shows
that φ is an isomorphism, with inverse ψ, as claimed.
b) Let I be an ideal of A. �e set S = 1+ I = {a ∈ I ; a− 1 ∈ I} is a multiplicative
subset of A.
c) Let f ∶A→ B be a morphism of rings, let T be a multiplicative subset of B
and let S = f −1(T). �en S is a multiplicative subset of A and there is a unique
morphism of rings φ∶ S−1A→ T−1B such that φ(a/1) = f (a)/1 for every a ∈ A.
d) If A is an integral domain, then S = A {0} is a multiplicative subset of A;
the fraction ring S−1A is a �eld, called the �eld of fractions of A.
e) Let p be an ideal of A and let S = A p. �en S is a multiplicative subset
of A if and only if p is a prime ideal of A; the fraction ring is denoted Ap.

1.2.6. — Let A be a ring, let S be a multiplicative subset of A. For every ideal I
of A, the ideal θ(I)(S−1A) generated by the image of I in S−1A is denoted by S−1I.
It is equal to S−1A if and only if S∩ I ≠ ∅. Moreover, every ideal of S−1A is of this
form.
Finally, the map p↦ S−1p is a bijection from the set of prime ideals of A which
do not meet S to the set of prime ideals of S−1A.
In particular, for every prime ideal p of A, the ring Ap is a local ring, called
the localization of A at p, and pAp is its maximal ideal.
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Lemma (1.2.7). — Let A be a ring, let S be a multiplicative subset of A and let I
be an ideal of A. If I does not meet S, then there exists a prime ideal p of A which
contains I and does not meet S.

Proof. — Since I∩ S = ∅, the ideal S−1I is distinct from S−1A, hence is contained
in some maximal ideal of S−1A, of the form S−1p, for some prime (but non
necessarily maximal) ideal p of A. One then checks that I ⊂ p. Let indeed a ∈ I.
Since one has a/1 ∈ S−1I ⊂ S−1p, there exists b ∈ p and s ∈ S such that a/1 = b/s.
By de�nition of the ring S−1A, there exists t ∈ S such that t(as − b) = 0. In
particular, sta = tb ∈ p. Since st ∈ S and S∩p = ∅, the de�nition of a prime ideal
implies that a ∈ p, as was to be shown.

Proposition (1.2.8). — �e radical of an ideal is the intersection of the prime ideals
which contain it. In particular, the nilradical of a ring is the intersection of its
prime ideals.

Proof. — Let A be a ring. Nilpotent elements are contained in every prime
ideal of A. Conversely, let a ∈ A be a non-nilpotent element. By de�nition, the
multiplicative subset S = {1, a, a2, . . .} is disjoint from the ideal {0}, hence there
exists a prime ideal p of A which does not meet S; in particular, a /∈ p.

Lemma (1.2.9). — Let A be a ring and let M be an A-module. �e following
properties are equivalent:
(i) One hasM = 0;
(ii) One hasMp for every prime ideal p of A;
(iii) One hasMm = 0 for every maximal idealm of A.

Proof. — �e implications (i)⇒(ii) and (ii)⇒(iii) are obvious. Let us assume
that (iii) holds and let us show that M = 0. Let x ∈M and let I be the set of all
elements a ∈ A such that ax = 0; then I is an ideal of A. By assumption, for every
m ∈ Spm(A), there exists an element a ∈ A m such that ax = 0; in other words,
I is not contained in any maximal ideal of A. �is implies that I = A, hence 1 ∈ A
and x = 0. Consequently, M = 0, as claimed.

1.3. Nakayama’s lemma

�eorem (1.3.1) (‘‘Cayley–Hamilton’’). — Let A be a ring and let J be an ideal
of A. LetM be an A-module which is generated by n elements and let u be an
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endomorphism of M such that u(M) ⊂ JM. �en there exists elements a1 ∈ J,
a2 ∈ J2, . . . , an ∈ Jn such that

un + a1un−1 + ⋅ ⋅ ⋅ + an−1u + anIdM = 0.

Proof. — Let (m1, . . . ,mn) be a �nite family which generates M. For every
i ∈ {1, . . . , n}, there exist elements ai j ∈ I such that u(mi) = ∑nj=1 ai jm j; let P
be the matrix (ai j). We consider M as an A[T]-module, where T acts by u;
we then let n × n matrices with coe�cients in A[T] act on Mn by the usual
formulas. Let In be the identity matrix; then the matrix TIn − P annihilates the
vector (m1, . . . ,mn) ∈ Mn. Let Q be the adjunct matrix of the matrix TIn − P;
one has Q ⋅ (TIn − P) = det(TIn − P)In. Consequently, the element det(TIn − P)
of A[T] annihilates the vector (m1, . . . ,mn) as well, that is, det(TIn −P) ⋅mi = 0
for every i. Since (m1, . . . ,mn) generates M as an A-module, it follows that
det(TIn − P) ⋅m = 0 for every m ∈M.
Expanding the determinant, there are elements a1, . . . , an ∈ A such that
det(TIn−P) = Tn+a1Tn−1+⋅ ⋅ ⋅+an; moreover, ai ∈ Ji for every i. By the de�nition
of the structure of A[T]-module onM, we conclude thatun+a1un−1+⋅ ⋅ ⋅+anIdM =
0.

Corollary (1.3.2) (Nakayama’s lemma). — Let A be a ring, let J be an ideal of A
and letM be a �nitely generated A-module such thatM = JM. �ere exists a ∈ J
such that (1 + a)M = 0.
In particular, if J is contained in the Jacobson radical of A (which happens, for

example, if A is local and J is its maximal ideal), thenM = 0.

Proof. — Let us apply theorem 1.3.1 to the endomorphism u = IdM of M. With
the notation of that theorem, there exist an integer n ⩾ 1 and elements a1, . . . , an ∈
J such that (1 + a1 + ⋅ ⋅ ⋅ + an)IdM = 0. It thus su�ces to set a = a1 + ⋅ ⋅ ⋅ + an.
If J is contained in the Jacobson radical of A, one has 1 + a ∈ A×; the relation

(1 + a)M = 0 then implies that M = 0.

Corollary (1.3.3). — Let A be a ring, let J be its Jacboson radical. Let P be an
A-module, letM and N be submodules of P such that JM +N =M +N. IfM is
�nitely generated, thenM ⊂ N.

Proof. — LetM′ = (M+N)/N =M/(M∩N); it is a �nitely generated A-module.
Moreover, one has JM′ = (JM +N)/N = (M +N)/N = M′. By corollary 1.3.2,
one has M′ = 0, hence M =M ∩N, that is, M ⊂ N.
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1.4. Integral and algebraic dependence relations

1.4.1. — Let f ∶A→ B be a morphism of rings. One says that an element x ∈ B
is integral over A if there exists an integer n ⩾ 1, and elements a1, . . . , . . . , an ∈ A
such that

xn + f (a1)xn−1 + ⋅ ⋅ ⋅ + f (an−1)x + f (an) = 0.

Such an equation is called an integral dependence relation. Very o�en, the mor-
phism f is understated and the previous relation is written simply xn + a1xn−1 +
⋅ ⋅ ⋅ + an = 0.

Proposition (1.4.2). — An element x ∈ B is integral over A if and only if there
exists a subring R of B which contains A[x] and which is �nitely generated as an
A-module.

Proof. — Let us assume that x possesses an integral dependence relation as
above; then, the A-subalgebra A[x] generated by x in B is generated as an
A-module by the elements 1, x , . . . , xn−1. It su�ces to set R = A[x].
Conversely, let R be anA-subalgebra of Bwhich contains x andwhich is �nitely
generated as anA-module. By theorem 1.3.1, applied to the endomorphism u of R
given by multiplication by x and to the ideal J = A, there exist an integer n and
elements a1, . . . , an ∈ A such that un + a1un−1 + ⋅ ⋅ ⋅ + an = 0 as an endomorphism
of R. Considering the image of 1, we obtain an integral dependence relation
for x, as required.

Corollary (1.4.3). — Let f ∶A → B be a morphism of rings. �e set of all ele-
ments x ∈ B which are integral over A is an A-subalgebra of B, called the integral
closure of A in B.

Proof. — Let Ã be this subset of B. Let x , y be elements of Ã. Let m and n be
the degrees of integral dependence relations for x and y respectively, and let R
be the A-submodule of B generated by the �nite family (x i y j), for 0 ⩽ i < m
and 0 ⩽ j < n; it is a subring of B. Since it contains x + y and xy, this shows that
these elements are integral over A, hence belong to Ã. Moreover, every element
of f (A) is integral over A; in particular, 0 and 1 are integral over A. �is shows
that Ã is a subring of B; since it contains f (A), it is an A-subalgebra of B.
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1.4.4. — One says that a morphism of rings f ∶A → B is integral, or that B is
integral over A, or also that B is an integral A-algebra, if every element of B is
integral over A.
If B is �nitely generated as an A-module, then B is integral over A. Conversely,
if B is �nitely generated as an A-algebra, and if it is integral over A, then it is
�nitely generated as an A-module. We say that B is a �nite A-algebra.

Lemma (1.4.5). — Let B be an integral domain and let A be a subring of B such
that B is integral over A. �en A is a �eld if and only if B is a �eld.

Proof. — Let us assume that A is a �eld. Let b ∈ B be a non-zero element and let
bn + a1bn−1 + ⋅ ⋅ ⋅ + an−1b + an = 0 be an integral dependence relation ofminimal
degree for b. Let c = bn−1 + a1bn−2 + ⋅ ⋅ ⋅ + an−1, so that bc + an = 0. If an = 0, one
would have bc = 0, hence, since b ≠ 0 and B is an integral domain, c = 0, which
is an integral dependence relation of degree n − 1 for b. �is contradicts the
de�nition of n, so that an ≠ 0. Since A is a �eld, an is invertible in A; let d ∈ A
be such that and = 1. �en bcd = −and = −1; consequently, b is invertible in B,
with inverse −cd. �is shows that B is a �eld.
Let us now assume that B is a �eld. Let a ∈ A be any non-zero element and let
b be its inverse in B. By assumption, b is integral over A; let bn + a1bn−1 + ⋅ ⋅ ⋅ +
an−1b + an = 0 be an integral dependence relation. Since ab = 1, one has

b = an−1bn = −an−1(a1bn−1 + ⋅ ⋅ ⋅ + an) = −(a1 + a2a + ⋅ ⋅ ⋅ + anan−1).

In particular, b ∈ A, so that a is invertible in A.

1.4.6. — It is crucial that the leading coe�cient of an integral dependence rela-
tion be equal to 1 (it could be a unit). When A and B are �elds, this becomes
pointless; in this setting, one usually replaces the adjective integral by the adjec-
tive algebraic. One thus speaks of algebraic dependence relation, of an algebraic
element, of the algebraic closure of A in B, etc.
Let f ∶K→ L be an extension of �elds. Elements of L which are not algebraic
over K are said to be transcendental. A �eld K is said to be algebraically closed if
it is algebraically closed in every extension L of K.
Every �eld K possesses an algebraic closure: this is an algebraic extension
K→ K which is algebraic and algebraically closed. Any two algebraic closures of
a �eld K are isomorphic (as K-algebras).
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1.4.7. — Let f ∶K → L be an extension of �elds. One says that a family (ai)i∈I
of elements of L is algebraically independent if there does not exist a non-zero
polynomial P ∈ K[(Xi)i∈I] such that P((ai)) = 0, in other words if the canonical
morphism of K-algebras K[(Xi)i∈I] → L which, for every i, maps Xi to ai is
injective.
A transcendence basis of L over K is an algebraically independent family (ai)
such that L be algebraic over the subextension of L generated by the ai .
Transcendence basis exist. More precisely, the following analogue of the incom-
plete basis theorem holds: Let A ⊂ C be two subsets of L, where A is algebraically
independent over K, and L is algebraic over the subextension generated by C; then
there exists a transcendence basis B such that A ⊂ B ⊂ C. Two transcendence
basis have the same cardinality, called the transcendence degree of L over K and
denoted tr. degK(L), or even tr. deg(L) if the �eld K is clear from the context.
Finally, let K→ L and L→M be two �eld extensions. One has the relation

tr. degK(L) + tr. degL(M) = tr. degK(M).

By abuse of language, we will sometimes make use of the words algebraic,
algebraically independent, transcendence degree, in the context of a K-algebra A
which is an integral domain, to speak of the corresponding notions of the �eld
of fractions of A.

1.5. �e spectrum of a ring

1.5.1. — Let A be a ring. �e set of all prime ideals of A is called the spectrum
(or the prime spectrum) of A and denoted by Spec(A); the subset Spm(A) of
all maximal ideals of A is called its maximal spectrum.
Every non-zero ring possesses maximal ideals. Consequently, the following
assertions are equivalent:
(i) A is the zero ring;
(ii) Its spectrum Spec(A) is empty;
(iii) Its maximal spectrum Spm(A) is empty.
For every subset E of A, let V(E) be the set of prime ideals p ∈ Spec(A) such
that E ⊂ p. One also writes V(a, b, . . . ) for V({a, b, . . .}).
�e following properties essentially follow from the de�nitions.

Lemma (1.5.2). — a) One has V(∅) = Spec(A) and V(1) = ∅;
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b) If E and E′ are subsets of A such that E ⊂ E′, one has V(E′) ⊂ V(E);
c) For every family (Eλ)λ∈L of subsets of A, one has V(⋃λ∈L Eλ) = ⋂λ∈LV(Eλ);
d) Let E, E′ be two subsets of A and let EE′ be the set of all products ab, for
a ∈ E and b ∈ E′; then one has V(EE′) = V(E) ∪V(E′);
e) Let E be a subset of A and let I be the ideal of A generated by E; then one has

V(E) = V(I).

Proof. — a) �e �rst property is obvious, and the second follows from the
fact that A is not a prime ideal of itself.
b) Let p ∈ V(E′); then p is a prime ideal of A such that E′ ⊂ p; it follows that
E ⊂ p, hence p ∈ V(E).
c) Let p be a prime ideal of A. One has p ∈ V(⋃Eλ) if and only if p contains Eλ
for every λ, which means that p belongs to V(Eλ) for every λ.
d) Let p ∈ V(E). Let a ∈ E and b ∈ E′; one has a ∈ p, hence ab ∈ p, so that

p ∈ V(EE′). �is shows that V(E) ⊂ V(EE′), and the inclusion V(E′) ⊂ V(EE′)
follows by symmetry. Conversely, let p ∈ V(EE′). Assume that p /∈ V(E′) and
let us show that p ∈ V(E); let b ∈ E′ be such that b /∈ p. For every a ∈ E, one
has ab ∈ EE′, hence ab ∈ p; Since p is a prime ideal, this implies that a ∈ p.
Consequently, p ∈ V(E), as was to be shown.

1.5.3. �e spectral topology. — Let us decree that a subset of Spec(A) is closed
if it is of the form V(E) for some subset E of A. By property d) of lemma 1.5.2,
we may even assume that E is an ideal.
By property a) of that lemma, the empty set and Spec(A) are closed subsets.

According to property c), the intersection of a family of closed subsets is closed;
by property d), the union of two closed subsets is closed.
�e sets V(E), where E runs among all subsets of A, are the closed subsets
of a topology on the spectrum Spec(A). We call it the spectral topology, or the
Zariski topology

1.5.4. — For every subset Z of Spec(A), let j(Z) be the set of a ∈ A such that
Z ⊂ V(a). One thus has j(Z) = ⋂p∈Z p; in particular, j(Z) is a radical ideal of A.

Lemma (1.5.5). — a) If Z and Z′ are subsets of Spec(A) such that Z ⊂ Z′, then
j(Z′) ⊂ j(Z);
b) If (Zλ)λ∈L is a family of subsets of Spec(A), then j(⋃λ∈LZλ) = ⋂λ∈L j(Zλ);
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c) For every subset Z of Spec(A), one has the inclusion Z ⊂ V(j(Z)), with
equality if and only if Z is of the form V(E) for some subset E of A.
d) For every subset E of A, one has the inclusion E ⊂ j(V(E)), with equality if

and only if E is of the form j(Z), for some subset Z of Spec(A).

Proof. — Only the cases of equality in assertions c) and d) do not follow directly
from the de�nitions.
For c), it su�ces to prove that V(E) = V(j(V(E))). We already know that
V(E) ⊂ V(j(V(E)); by the inclusion d), one has E ⊂ j(V(E)); applying the
map V, we conclude that V(j(V(E))) ⊂ V(E).
Similarly, we prove d) by establishing that j(Z) = j(V(j(Z)). We know the
inclusion j(Z) ⊂ j(V(j(Z)). According to the general inclusion c), we have
Z ⊂ V(j(Z)); applying the map j, we conclude that j(V(j(Z))) ⊂ j(Z).

Proposition (1.5.6). — a) For every ideal I of A, one has j(V(I)) =
√
I.

b) For every subset Z of Spec(A), one has V(j(Z)) = Z, the closure of Z for the
spectral topology.
c) �emaps E↦ V(E) and Z↦ j(Z) induce bijections, inverse one of the other,

between the set of radical ideals of A and the set of closed subsets of Spec(A).

Proof. — a) By de�nition, V(I) is the set of prime ideals containing I, so that
j(V(I)) is the intersection of all prime ideals containing I. By proposition 1.2.8,
one has j(V(I)) =

√
I.

b) Since V(j(Z)) is closed and contains Z, it contains its closure Z for the
spectral topology. Conversely, let Z′ be a closed subset of Spec(A) containing Z
and let us show that Z′ ⊃ V(j(Z)). Applying the map V ○ j to the inclusion
Z ⊂ Z′, we obtain V(j(Z)) ⊂ V(j(Z′)). Since Z′ is of the form V(E), one has
V(j(Z′)) = Z′, hence V(j(Z)) ⊂ Z′, as was to be shown.
c) �is follows directly from properties a) and b).

Exercise (1.5.7). — Let A be a ring and let X be the topological space Spec(A).
An idempotent element of A is an element e such that e2 = e. Show that the
map a ↦ V(a) de�nes a bijection between the set of idempotents of A and
the set of open and closed subsets of Spec(A). (If e is idempotent, observe
that X = V(e) ∪V(1 − e).) In particular, X is connected if and only if the only
idempotent elements of A are 0 and 1.
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1.5.8. Basic open sets. — For every a ∈ A, one de�nesD(a) = Spec(A) V(a).
It is an open subset of Spec(A). One has D(1) = Spec(A) and D(a) = ∅ if a is
nilpotent.
Let E be a subset of A. Since V(E) = ⋂a∈EV(a), we have Spec(A) V(E) =

⋃a∈ED(a). �is shows that the open sets of the form D(a), for a ∈ A, form a
basis of the topology of Spec(A).

Exercise (1.5.9). — a) Let x be a point of Spec(A) and let p = j({x}) be the
corresponding prime ideal of A. Prove that the point {x} is closed in Spec(A)
if and only if p is a maximal ideal.
b) Let x , y be two points of Spec(A) such that x ≠ y. Prove that x /∈ {y} or
y /∈ {x}. (�is says that Spec(A) is a Kolmogorov topological space, aka T0.)
c) Describe the topological space Spec(Z). Show in particular that it is not
Hausdor�.
d) Prove that every open cover of Spec(A) has a �nite subcover (one says that
it is quasi-compact).

Proposition (1.5.10). — a) Let φ∶A → B be a morphism of rings. For every
prime ideal q of B, the ideal φ−1(q) is a prime ideal of A. �e associated map
aφ∶ Spec(B) → Spec(A) given by aφ(q) = φ−1(q) is continuous.
b) Let I be an ideal of A and let φ∶A → A/I be the canonical morphism. �e
associated map aφ is a homeomorphism from Spec(A/I) to the subspace V(I)
of Spec(A).
c) Let S be a multiplicative subset of A and let θ∶A → S−1A be the canonical
morphism. �e associated map aθ is a homeomorphism from Spec(S−1A) to its
image in Spec(A), which is the set of prime ideals of A disjoint from S.
If S = {1, a, a2, . . .}, then aθ identi�es Spec(S−1A) with the open subset D(a)

of Spec(A).

Proof. — a) Since q ≠ B, one has 1 /∈ q, hence 1 = φ(1) /∈ φ−1(q); consequently,
φ−1(q) ≠ A. Moreover, let a, b ∈ A be such that ab ∈ φ−1(q); then φ(ab) =
φ(a)φ(b) ∈ q, hence φ(a) ∈ q or φ(b) ∈ q, by de�nition of a prime ideal. �is
implies that a or b belongs to φ−1(q), proving that φ−1(q) is a prime ideal of A.
To prove that the map aφ is continuous, we need to show that the inverse
image of a closed subset is closed. So let E be a subset of A. A prime ideal q of B
belongs to (aφ)−1(V(E)) if and only if aφ(q) = φ−1(q) belongs to V(E), which
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means that E ⊂ φ−1(q), and is equivalent to the inclusion φ(E) ⊂ q. In other
words, we have (aφ)−1(V(E)) = V(φ(E)); this is a closed subset of Spec(B).
b) We known that the map J ↦ φ−1(J) is a bijection from the set of ideals
of A/I to the set of ideals of A which contain J. Moreover, for every ideal J
of A/I, the morphism φ induces an isomorphism from A/φ−1(J) to (A/I)/J. In
particular, an ideal J of B is prime if and only if the associated ideal φ−1(J) is
prime, and the prime ideals of A of this form are exactly those containing I. �is
shows that the map aφ is a bijection from Spec(A/I) to the closed subset V(I)
of Spec(A).
Moreover, for every ideal J of A/I, one has aφ(V(J)) = V(φ−1(J)), so that aφ
is a closed map. Since it is a continuous bijection, it is a homeomorphism.
c) We know that the continous J↦ θ−1(J) induces a continous bijection from
the set Spec(S−1A) of prime ideals of S−1A to the subset X of Spec(A) consisting
of prime ideals of A which do not meet S.
Let us show that this bijection is closed. Let E be a subset of S−1A; let E′ be
the set of elements a ∈ A such that there exists s ∈ S with a/s ∈ E, and let us
show that aθ(V(E)) = V(E′). Let p be a prime ideal of A which does not meet S,
let q = S−1p, so that p = θ−1(q). �en p belongs to aφ(V(E)) if and only if
S−1p ∈ V(E), that is if and only if E ⊂ S−1p; on the other hand, p belongs to V(E′)
if and only if E′ ⊂ p. It thus remains to show that for a prime ideal p of A which
does not meet S, the conditions E ⊂ S−1p and E′ ⊂ p are equivalent. Let us assume
that E ⊂ S−1p; let a ∈ E′ and let s ∈ S be such that a/s ∈ E; then a/s ∈ S−1p, hence
θ(a) ∈ S−1p, hence a ∈ p; this shows that E′ ⊂ p. Conversely, let us assume that
E′ ⊂ p; let b ∈ E and let (a, s) ∈ A × S be such that b = a/s; then a ∈ E′, hence
a ∈ p; consequently, b = a/s ∈ S−1p; we have shown that E ⊂ S−1p.

Remark (1.5.11). — Let φ∶A → B be a morphism of rings. Classical algebraic
geometry is essentially concerned with �nitely generated algebras over a �eld.
In that context, corollary 1.6.3 shows that aφ maps Spm(B) into Spm(A), as the
simple example of the canonicalmorphism φ∶Z→ Q shows. �is is an indication
that the spectrum of a ring is a more natural object than its maximal spectrum.
Indeed, spectra of rings were the basic block of Grothendieck’s refoundation of
algebraic geometry in the 1960s.
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1.6. Finitely generated algebras over a �eld

�eorem (1.6.1) (Noether normalization lemma). — Let K be a �eld and let
A be a �nitely generated K-algebra; we assume that A ≠ 0. �en there exist an
integer n ⩾ 0, elements a1, . . . , an ∈ A such that the uniquemorphism ofK-algebras
φ∶K[X1, . . . , Xn] → A which maps Xi to ai is injective and integral.

Proof. — Let (x1, . . . , xm) be a family of elements of A such that A =
K[x1, . . . , xm]. Let us prove the result by induction on m. If m = 0, then
A = K and the result holds with n = 0. We thus assume that the result for any
K-algebra which is �nitely generated by at most m − 1 elements.
Let φ∶K[X1, . . . , Xm] → A be the unique morphism of K-algebras such that

φ(Xi) = xi . If φ is injective, the result holds, taking n = m and ai = xi for every i.
Let us assume that there is a non-zero polynomial P ∈ K[X1, . . . , Xm] such that
P(x1, . . . , xm) = 0. We are going to show that there exist strictly positive integers
r1, . . . , rm−1 such that A is integral over the subalgebra generated by y2, . . . , ym,
where yi = xi − xr i1 for i ∈ {2, . . . ,m}. Let B = K[y2, . . . , ym] be the subalgebra
of A generated by y2, . . . , ym.
Let (cn) be the coe�cients of P, so that

P = ∑
n∈Nm

cn
m
∏
i=1
Xn ii .

Let r be an integer strictly greater than the degree of P in each variable; in other
words, cn = 0 if there exists i such that ni ⩾ r; then set ri = r i−1 and yi = xi − xr i1
for i ∈ {2, . . . ,m}. We de�ne a polynomial Q ∈ B[T] by

Q(T) = P(T, y2 + Tr2 , . . . , ym + Trm)
= ∑

n∈Nm
cnTn1(y2 + Tr2)n2 . . . (ym + Trm)nm

= ∑
n∈Nm

n2
∑
j2=0
. . .

nm
∑
jm=0

(n2
j2
) . . . (nm

jm
)cnyn2− j22 . . . ynm− jmm Tn1+∑

m
i=2 j ir i

and observe that Q(x1) = P(x1, x2, . . . , xm) = 0.
OrderNm with the ‘‘reverse lexicographic order’’: (n′1, . . . , n′m) < (n1, . . . , nm)
if and only if n′m < nm, or n′m = nm and n′m−1 < nm−1, etc. Let n be the largest
multi-index inNm such that cn ≠ 0. For any other n′ ∈ Nm such that cn′ ≠ 0, one
has n′i < r for every i, so that for any j2 ∈ {0, . . . , n′2}, . . . , jm ∈ {0, . . . , nm},

n′1 + j2r2 + ⋅ ⋅ ⋅ + jmrm ⩽ n′1 + n′2r + ⋅ ⋅ ⋅ + n′mrm−1 < n1 + n2r + ⋅ ⋅ ⋅ + nmrm−1.
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�is implies that the degree of Q is equal to n1+n2r+⋅ ⋅ ⋅+nmrm−1 and that only the
term with jk = nk for k ∈ {2, . . . ,m} contributes the leading coe�cient, which
thus equals cn. In particular, Q is a polynomial in B[T]whose leading coe�cient
is a unit, so that x1 is integral over B. Consequently, B[x1] is integral over B. For
every i ∈ {2, . . . ,m}, one has xi = yi − xr i1 ∈ B[x1]. Since A = K[x1, . . . , xm], we
conclude that A = B[x1] and A is integral over B.
By induction, there exist an integer n ⩽ m − 1 and elements a1, . . . , an ∈ B
such that the unique morphism f ∶K[T1, . . . , Tn] → B of K-algebras such that
f (Ti) = ai for all i is injective and such B is integral over K[a1, . . . , an]. �en
A is integral over K[a1, . . . , an] as well, and this concludes the proof of the
theorem.

We now deduce from the Noether normalization lemma some important
algebraic properties of rings which are �nitely generated algebras over a �eld.
�e following result is the basis of everything that follows; due to Zariski, it is
sometimes considered as the ‘‘algebraic version’’ of Hilbert’s Nullstellensatz.

�eorem (1.6.2) (Zariski). — Let K be a �eld and let A be a �nitely generated
K-algebra. If A is a �eld, then A is a �nite algebraic extension of K.

Proof. — By the Noether normalization lemma (theorem 1.6.1), there exist
an integer n ⩾ 0 and an injective and integral morphism of K-algebras
f ∶K[X1, . . . , Xn] → A. Since A is a �eld, lemma 1.4.5 implies that K[X1, . . . , Xn]
is a �eld as well. For n ⩾ 1, the ring of polynomials in n indeterminates is not
a �eld (consider the degree with respect to X1, for example), so that n = 0.
Consequently, A is integral over K. Since A is �nitely generated as a K-algebra,
it is a �nite K-module, hence a �nite extension of K.

Corollary (1.6.3). — Let K be a �eld and let φ∶A→ B be a morphism of �nitely
generated K-algebras. For every maximal idealm of B, φ−1(m) is a maximal ideal
of A. In other words, the continuous map aφ∶ Spec(B) → Spec(A)maps Spm(B)
to Spm(A).

Proof. — Let n = φ−1(m); it is a prime ideal of A. Passing to the quotients, the
morphism φ induces an injective morphism φ′∶A/n→ B/m of �nitely generated
K-algebras. By assumption, B/m is a �eld; by corollary 1.6.2, it is a �nite extension
of K, that is a �nite dimensional K-vector space. A fortiori, A/n is a �nite
dimensional K-vector space. �is implies that A/n is integral over K; since K is
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a �eld and A/n is an integral domain, this implies that A/n is a �eld, hence n is
a maximal ideal of A.

Corollary (1.6.4). — Let K be a �eld and let A be a �nitely generated K-algebra.
a) �e nilradical of A coincides with its Jacobson radical;
b) For every ideal I of A, its radical

√
I is the intersection of all maximal ideals

of A which contain I.
c) For every closed subset Z of Spec(A), the intersection Z ∩ Spm(A) is dense

in Z.

Proof. — a) We need to prove that an element a ∈ A is nilpotent if and only if it
belongs to every maximal ideal of I. One direction is clear: if a is nilpotent, it
belongs to every prime ideal of I, hence to every maximal ideal of I. Conversely,
let us assume that a is not nilpotent and let us show that there exists a maximal
idealm of A such that a /∈ m. Let S be the multiplicative subset {1, a, a2, . . .} and
let B be the K-algebra given by B = S−1A; it is non-zero and �nitely generated.
By the preceding corollary, the inverse image in A of a maximal ideal of B is
a maximal ideal of A which does not contain a. �is concludes the proof of
assertion a).
b) Let B = A/I; it is a �nitely generated K-algebra and its maximal ideals are
of the formm/I, wherem is a maximal ideal of A containing I. By part a), the
nilradical of B is the intersection of the maximal ideals of B. Since the class of a
element a ∈ A is nilpotent in B if and only if a ∈

√
I, this implies that

√
I is the

intersection of all maximal ideals of A which contain I.
c) Let I be an ideal of A such that Z = V(I), let U be an open subset of Spec(A)
such that U∩Z is non-empty. We need to show that U∩Z∩Spm(A) is non-empty.
We may moreover assume that U is of the form D(a), for some a ∈ A; then the
image ā of a in A/I is not nilpotent (otherwise, D(ā) = ∅ in Spec(A/I), hence
V(I) ∩D(a) = ∅). Consequently, there exists a maximal idealm of A such that
I ⊂ m and a /∈ m. �is maximal ideal is an element of D(a)∩Z∩Spm(A), hence
D(a) ∩ Z ∩ Spm(A) is non-empty.

Exercise (1.6.5). — �is exercise revisits the main technical step of the Noether
normalization lemma in the case where K is an in�nite �eld. Let A be a (non-
zero) �nitely generated algebra; assume that A = K[x1, . . . , xm], and let P ∈
K[T1, . . . , Tm] be a non-zero polynomial such that P(x1, . . . , xm) = 0. Prove
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that there exist elements a2, . . . , am ∈ K such that, denoting yi = xi − aix1, x1 is
integral over the subring generated by y2, . . . , ym.

1.7. Hilbert’s Nullstellensatz

�eorem (1.7.1) (Nullstellensatz, 1). — Let K be an algebraically closed �eld and
let n be an integer such that n ⩾ 0. For every maximal idealm of the polynomial
ring K[X1, . . . , Xn], there exists a unique element (a1, . . . , an) ∈ Kn such that
m = (X1− a1, . . . , Xn − an). Conversely, every ideal of this form is a maximal ideal.

Proof. — Let (a1, . . . , an) ∈ Kn and let m be the ideal (X1 − a1, . . . , Xn − an)
of K[X1, . . . , Xn]. Let φ∶K[X1, . . . , Xn] → K be the morphism of rings given by
φ(P) = P(a1, . . . , an). It is surjective and its kernel containsm. Conversely, let
P ∈ Ker(φ). By euclidean divisions, we may write

P = (X1 − a1)Q1(X1, . . . , Xn) + (X2 − a2)Q2(X2, . . . , Xn)+
+ ⋅ ⋅ ⋅ + (Xn − an)Qn(Xn) + P(a1, . . . , an).

Since P ∈ Ker(φ), P(a1, . . . , an) = 0, so that P ∈ m.
Let now m be a maximal ideal of K[X1, . . . , Xn] and let A be the quotient
ring K[X1, . . . , Xn]/m. Since A is a �eld, corollary 1.6.2 implies that A is a �nite
extension of K. Since K is algebraically closed, the canonical morphism K→ A
is an isomorphism. In particular, for every i ∈ {1, . . . , n}, there exists a unique
ai ∈ K such that Xi − ai ∈ m. �en (X1 − a1, . . . , Xn − an) is contained in m.
Necessarily, one hasm = (X1 − a1, . . . , Xn − an). �is concludes the proof of the
theorem.

1.7.2. Algebraic sets. — Let K be a �eld and let n be an integer such that n ⩾ 0.
Let E be a subset of K[X1, . . . , Xn]. �e algebraic setde�ned by E is the subset

V (E) = {(a1, . . . , an) ∈ Kn ; ∀P ∈ E, P(a1, . . . , an) = 0}.

Lemma (1.7.3). — Let K be a �eld and let n ⩾ 0 be an integer.
a) One has V (∅) = Kn and V (1) = ∅;
b) IfE andE′ are subsets ofK[X1, . . . , Xn] such thatE ⊂ E′, thenV (E′) ⊂ V (E);
c) For every family (Eλ)λ∈L of subsets of K[X1, . . . , Xn], one has V (⋃λ∈L Eλ) =

⋂λ∈LV (Eλ);
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d) Let E, E′ be two subsets of K[X1, . . . , Xn] and let EE′ be the set of all prod-
ucts ab, for a ∈ E and b ∈ E′; then one has V (EE′) = V (E) ∪ V (E′);
e) Let E be a subset of K[X1, . . . , Xn] and let I be the ideal generated by E; then

V (E) = V (I) = V (
√
I).

Proof. — �is lemma is analogous to lemma 1.5.2 and one can prove it
in the same way. One can in fact deduce it from that lemma as fol-
lows. Let us consider the map φ∶Kn → Spec(K[X1, . . . , Xn]) given by
φ(a1, . . . , an) = (X1 − a1, . . . , Xn − an), whose image is contained in the
maximal spectrum Spm(K[X1, . . . , Xn]), and is even equal to the maximal
spectrum when K is algebraically closed. �en V (E) = φ−1(V(E)).

1.7.4. — Let Z be a subset of Kn; one de�nes a subsetI (Z) of K[X1, . . . , Xn]
by

I (Z) = {P ∈ K[X1, . . . , Xn] ; ∀(a1, . . . , an) ∈ Z, P(a1, . . . , an) = 0}.

It is an ideal of K[X1, . . . , Xn]; it is in fact the kernel of the morphism of rings
from K[X1, . . . , Xn] to the ring KZ given by P↦ (a ↦ P(a)).

Lemma (1.7.5). — Let K be a �eld and let n ⩾ 0 be an integer.
a) One hasI (∅) = K[X1, . . . , Xn] andI (Kn) = {0};
b) If Z and Z′ are subsets of Kn such that Z ⊂ Z′, thenI (Z′) ⊂ I (Z);
c) If (Zλ)λ∈L is a family of subsets of Kn, thenI (⋃λ∈LZλ) = ⋂λ∈LI (Zλ);
d) For every subset Z of Kn, one has the inclusion Z ⊂ V (I (Z)), with equality

if and only if Z is an algebraic set;
e) For every subset E of K[X1, . . . , Xn], one has the inclusion E ⊂ I (V (E)).

Proof. — Assertions a), b) and c) follow directly from the de�nitions, as well as
the inclusions d) and e).
Let us terminate the proof of d). If Z = V (I (Z)), then Z is an algebraic
set. Conversely, let us assume that Z is an algebraic set, let E be a subset
of K[X1, . . . , Xn] such that Z = V (E). By de�nition, one has E ⊂ I (Z), so
that V (I (Z)) ⊂ V (E) = Z, hence the desired equality.

�eorem (1.7.6) (Nullstellensatz, 2). — Let K be an algebraically closed �eld, let
n ⩾ 0 be an integer, let E be a subset of K[X1, . . . , Xn] and let I be the ideal it
generates. One hasI (V (E)) =

√
I. In particular, if V (E) = ∅, then I = (1).
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Proof. — We give two proofs of this result; both rely on theorem 1.7.1 which
describes the maximal spectrum of K[X1, . . . , Xn]. �e �rst one combines it
with properties of the operations V and j on the spectrum of a ring, as well as
with corollary 1.6.4 which is speci�c to �nitely generated algebras over a �eld.
�e second proof will be more elementary.
1) According to theorem 1.7.1, assigning the maximal ideal ma = (X1 −
a1, . . . , Xn − an) of K[X1, . . . , Xn] to the point a = (a1, . . . , an) of Kn de�nes a
one-to-one correspondence between Kn and Spm(K[X1, . . . , Xn]). For every
subset E of K[X1, . . . , Xn], this correspondence identi�es the subset V (E)
of Kn with the subset V(E) ∩ Spm(K[X1, . . . , Xn]) of Spec(K[X1, . . . , Xn]); for
every subset Z of Spm(K[X1, . . . , Xn]), identi�ed with a subset of Kn, one has
J (Z) = j(Z). In particular, for every subset E of K[X1, . . . , Xn], one has

J (V (E)) = j(V(E) ∩ Spm(K[X1, . . . , Xn])).

Let J be this ideal; it is a radical ideal of K[X1, . . . , Xn]; according to proposi-
tion 1.5.6, V(J) is the closure ofV(E)∩Spm(K[X1, . . . , Xn]) in Spec(K[X1, . . . , Xn]).
By part c) of corollary 1.6.4, one thus has V(J) = V(E). By proposition 1.5.6, a),
one thus has J = j(V(J)) = j(V(E)) = j(V(I)) =

√
I.

2) �e second proof of theorem 1.7.6 begins by showing the second assertion:
let us assume that I ≠ (1) and let us prove that V (E) ≠ ∅.
Since I ≠ (1), there exists a maximal idealm of K[X1, . . . , Xn] such that I ⊂ m;
in particular, E ⊂ m, hence V (m) ⊂ V (E). Let (a1, . . . , an) ∈ Kn be such that
m = (X1 − a1, . . . , Xn − an); one thus has V (m) = {(a1, . . . , an)}. We conclude
that (a1, . . . , an) ∈ V (E); it is in particular non-empty.
�e inclusion

√
I ⊂ I (V (E)) follows from the de�nitions. Let indeed P ∈

√
I

and let e be an integer such that e ⩾ 1 and Pe ∈ I. For every (a1, . . . , an) ∈ V (E),
one thus has Pe(a1, . . . , an) = 0, hence P(a1, . . . , an) = 0. �is shows that
P ∈ I (V (E)).
Conversely, let P ∈ I (V (E)); we need to show that P ∈

√
I. �e following

proof relies on the so-called ‘‘Rabinowitsch trick’’ (Rabinowitsch (1930)). Let
E′ be the subset of K[X1, . . . , Xn , T] given by E′ = E ∪ {1 − TP}. It follows from
its de�nition that V (E′) = ∅: indeed, a tuple (a1, . . . , an , b) belongs to V (E′)
if and only if Q(a1, . . . , an) = 0 for every Q ∈ E and 1 = bP(a1, . . . , an); the
�rst conditions imply that (a1, . . . , an) ∈ V (E), so that P(a1, . . . , an) = 0 since
P ∈ I (V (E)); the last condition 1 = bP(a1, . . . , an) is then impossible. By the
�rst case, the ideal ofK[X1, . . . , Xn , T] generated byE′ is equal to (1); in particular,
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there exist polynomials Q1, . . . , Qm ∈ E, R1, . . . , Rm , S ∈ K[X1, . . . , Xn , T] such
that

1 = Q1R1 + ⋅ ⋅ ⋅ +QmRm + (1 − PT)S.

Let us substitute T = 1/P(X1, . . . , Xn) in this relation; it follows an equality of
rational functions:

1 =
m
∑
j=1
Q j(X1, . . . , Xn)R j(X1, . . . , Xn , 1/P).

Let e be an integer greater than the degrees of the polynomials R1, . . . , Rm , S
with respect to the variable T; multiplying this relation by Pe , we obtain

Pe =
m
∑
j=1
Q j(X1, . . . , Xn)P(X1, . . . , Xn)eR j(X1, . . . , Xn , 1/P).

By the choice of the integer e, the rational function PeR j(X1, . . . , Xn , 1/P) is a
polynomial for every j ∈ {1, . . . ,m}, so that Pe belongs to the ideal (Q1, . . . , Qm).
In particular, Pe ∈ I, which shows that P ∈

√
I, as claimed.

Corollary (1.7.7). — Let K be an algebraically closed �eld and let n ⩾ 0 be an
integer. �e maps E↦ V (E) and Z↦I (Z) induce bijections, inverse one of the
other, from the set of radical ideals of K[X1, . . . , Xn] to the set of algebraic subsets
of Kn.

1.8. Tensor products (Medium up)

1.8.1. — Let k be a ring, letM andN be k-modules. �eir tensor productM⊗kN
is a k-module endowed with a k-bilinear map φ∶M×N→M⊗kNwhich satis�es
the following universal property: For every k-module P and every k-bilinear
map b∶M ×N→ P, there exists a unique k-linear map β∶M⊗k N→ P such that
b = β ○ φ.

1.8.2. — It may be constructed as follows. Let P1 = k(M×N) the free k-module
on M × N. Its elements are maps with �nite support from M × N to k. Let
δ∶M ×N → P1 be the map which associates with (m, n) ∈M ×N the function
which maps (m, n) to 1 and maps every other element of M ×N to 0. Let P2 be
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the submodule of P1 generated by elements of the form

δ(am, n) − aδ(m, n),
δ(m, an) − aδ(m, n),

δ(m +m′, n) − δ(m, n) − δ(m′, n),
δ(m, n + n′) − δ(m, n) − δ(m, n′),

withm,m′ ∈M, n, n′ ∈ N and a ∈ k. Let P = P1/P2, let π∶P1 → P be the canonical
surjective morphism and let φ = π ○ δ.
�e image φ(m, n) is denoted m ⊗ n and called a split tensor.

1.8.3. — Let u∶M→M′ and v∶N→ N′ be morphisms of k-modules. �e map
M ×N→M′ ⊗k N′ given by (m, n) ↦ u(m) ⊗ v(n) is k-bilinear. Consequently,
there exists a unique morphism of k-modules, w∶M⊗k N→M′⊗k N′, such that
w(m ⊗ n) = u(m) ⊗ v(n) for every m ∈M and every n ∈ N. �is morphism is
o�en denoted by u ⊗ v.
If u and v are surjective, then u ⊗ v is surjective.
If u and v are split injective, that is, if they admit retractions, then u ⊗ v is
split injective. Indeed, let u′∶M′ →M and v′∶N′ → N be morphisms such that
u′ ○ u = IdM and v′ ○ v = IdN; then (u′ ⊗ v′) ○ (u ⊗ v) = (u′ ○ u) ⊗ (v′ ○ v) =
IdM ⊗ IdN = IdM⊗N. An important case where this happens is when k is a �eld.

1.8.4. — Let (Mi)i∈I be a family of k-modules, let M = ⊕i∈IMi be their direct
sum; for every i ∈ I, let pi ∶M → Mi be the projection of index i. Let (N j) j∈J
be a family of k-modules and let N = ⊕ j∈JN j be their direct sum; for every
j ∈ J, let q j∶N → N j be the projection of index j. �e map from M × N to
⊕i , j(Mi⊗kN j) given by (m, n) ↦ ∑i , j pi(m)⊗q j(n) is k-bilinear; consequently,
there exists a unique k-linear morphism π∶M⊗k N→⊕i , j(Mi ⊗k N j) such that
π(m ⊗ n) = ∑i , j pi(m) ⊗ q j(n). �e morphism π is an isomorphism.
In particular, if M and N are free k-modules, their tensor product is a free
k-module. More precisely, let (mi)i∈I be a basis of M, let (n j) j∈J be a basis of N;
then the family (mi ⊗ n j)(i , j)∈I×J is a basis of M⊗k N.

1.8.5. Base change. — Let M be a k-module and let A be a k-algebra. �e
k-module M⊗k A is naturally an A-module: the external multiplication being
characterized by the relation b(m ⊗ a) = m ⊗ ab. It is called the A-module
deduced fromM by base change, and is sometimes denoted by MA.
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If f ∶M→M′ is a morphism of k-modules, the morphism fA = f ⊗ IdA∶MA →
M′
A is A-linear.

1.8.6. — Let A and B be k-algebras. �en the tensor product A ⊗k B has a
unique structure of k-algebra for which (a ⊗ b) ⋅ (a′ ⊗ b′) = (aa′) ⊗ (bb′) for
every a, a′ ∈ A and every b, b′ ∈ B.
�emap A→ A⊗k B given by a ↦ a⊗ 1 is a morphism of k-algebras; similarly,
the map from B to A⊗k B given by b ↦ 1⊗ b is morphism of k-algebras.

1.8.7. — For example, let A and B be polynomial algebras in families of inde-
terminates (Xi)i∈I and (Y j) j∈J respectively. �en the tensor product A⊗k B is
isomorphic to the polynomial algebra in the family of indeterminates obtained
by concatenation of the families (Xi) and (Y j). Such an isomorphism is induced
by the bilinear map from k[(Xi)] × k[(Y j)] to k[(Xi , Y j)] which maps a pair
(P(Xi), Q(Y j)) to its product P(Xi)Q(Y j).

Lemma (1.8.8). — Let I be an ideal of A, let J be an ideal of B; let (I, J) denote the
ideal of A⊗k B which they generate. �ere exists a unique morphism of k-algebras

(A⊗k B)/(I, J) → (A/I) ⊗k (B/J)

which maps the class of a ⊗ b to the tensor product ā ⊗ b̄ of the classes of a and b
in A/I and B/J respectively. �is morphism is an isomorphism of rings.

�eorem (1.8.9). — Let K be an algebraically closed �eld and let A, B be two
K-algebras. If A and B are integral domains, then A ⊗K B is also an integral
domain.

Proof. — �e tensor product of two non-zero K-vector spaces is a non-zero
K-vector space; consequently, A⊗KB ≠ 0 and it su�ces to show that the product
of two non-zero elements of A⊗K B is non-zero.
Let f and g be two element of A⊗K B such that f g = 0. We may decompose f
as a sum∑ri=1 ai ⊗ bi of split tensors, where b1, . . . , br are linearly independent
over K. Similarly, we write g = ∑sj=1 a′j ⊗ b′j, where b′1, . . . , b′s are linearly inde-
pendent over K.
Let A1 be the subalgebra of A generated by a1, . . . , ar , a′1, . . . , a′s, let B1 be the
subalgebra of B generated by b1, . . . , br , b′1, . . . , b′s. Let I and I′ be the ideals
(a1, . . . , ar) and (a′1, . . . , a′s) of A1. Since A1 and B1 have direct summands in A
and B as K-modules, the canonical morphism from A1 ⊗K B1 to A ⊗K B has
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a retraction, which allows to view A1 ⊗K B1 as a subalgebra of A ⊗K B. By
construction, f and g belong to A1⊗KB1, and f g = 0. Let us show that I∩I′ = {0}.
Letm be a maximal ideal of A1. �e quotient ring A1/m is a �nitely generated
K-algebra, and is a �eld; consequently, it is an algebraic extension of K, hence
is isomorphic to K since K is algebraically closed. Let clm∶A1 → K be the corre-
sponding morphism of K-algebras with kernelm. Let also θm∶A1 ⊗K B1 → B1 be
the morphism clm⊗ idB1 ; it is a morphism of K-algebras.
Since

θm( f )θm(g) = θm( f g) = 0
and B1 is an integral domain, either θm( f ) = 0 or θm(g) = 0. Moreover, one has

θm( f ) =
r
∑
i=1
clm(ai)bi and θm(g) =

s
∑
j=1
clm(a′j)b′j.

Assume that θm(g) = 0. Since b1, . . . , br are linearly independent over K, we
conclude that clm(ai) = 0 for every i ∈ {1, . . . , r}; in other words, the ideal
I = (a1, . . . , ar) is contained inm.
Similarly, if θm( f ) = 0, we obtain that the ideal I′ = (a′1, . . . , a′s) is contained
inm.
In any case, one has I ∩ I′ ⊂ m.
�is is valid for any maximal idealm of A1. By corollary 1.6.4, every element
of I ∩ I′ is nilpotent. Since A1 is an integral domain, one has I ∩ I′ = {0}.
Assume that f ≠ 0. �en I ≠ 0; let thus x be a non-zero element of I. For every
y ∈ I′, xy ∈ I ∩ I′, hence xy = 0. Since A1 is an integral domain, this implies
y = 0, hence I′ = 0, hence a′1 = ⋅ ⋅ ⋅ = a′s = 0 and g = 0. �is concludes the proof
that A⊗K B is an integral domain.

1.9. Noetherian rings

1.9.1. — Let k be a ring. One says that a k-module M is noetherian if one of the
following equivalent properties holds:
(i) Every strictly increasing sequence of submodules of M is �nite;
(ii) Every non-empty family of submodules of M has a maximal element;
(iii) Every submodule of M is �nitely generated.

�e equivalence of (i) and (ii) is elementary. Let us assume that they hold, let
P be a submodule of M and let us prove that P is �nitely generated. �e set
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of all �nitely generated submodules of P is non-empty, since {0} is �nitely
generated, hence it has a maximal element, say P′. For every m ∈ P, P′ + Am
is a �nitely generated submodule of P which contains P′; by maximality of P′,
one has P′ + Am = P′, hence m ∈ P′; consequently, P = P′ and P is �nitely
generated, as was to be shown. Conversely, let us assume that every submodule
of M is �nitely generated and let us prove by contradiction that every stricly
increasing sequence of submodules of M is �nite. Let thus (Pn) be a stricly
increasing in�nite sequence of submodules of M and let P be their union. By
assumption, P is �nitely generated, hence there are elements p1, . . . , ps ∈ P such
that P = Ap1 + ⋅ ⋅ ⋅ +Aps. By de�nition of P, for each integer i ∈ {1, . . . , s}, there
exists an integer ni such that pi ∈ Pn i . If n = max(n1, . . . , ns), one has pi ∈ Pn
for each i, hence P ⊂ Pn. Since Pn ⊂ Pm ⊂ P for every integer m ⩾ n, this shows
that Pm = Pn and contradicts the hypothesis that the sequence (Pn) is strictly
increasing.
One says that a ring A is noetherian if it is noetherian as a module over itself;
since a submodule of A is an ideal of A, this means that one of the following
equivalent properties holds:

(i) Every strictly increasing sequence of ideals of A is �nite;
(ii) Every non-empty family of ideals of A has a maximal element;
(iii) Every idel of A is �nitely generated.

In particular, principal ideal domains are noetherian.

1.9.2. — Let N be a submodule ofM. �enM is noetherian if and only if both N
andM/N are noetherian. In particular, �nite direct sums of noetherian modules
are noetherian.
If A is an noetherian ring, then an A-module is noetherian if and only if it is
�nitely generated.

�eorem (1.9.3) (Hilbert). — For every noetherian ringA, the ringA[X] is noethe-
rian. In particular, for every �eldK and every integer n ⩾ 0, the ringK[X1, . . . , Xn]
is noetherian.

Proof. — Let I be an ideal of A[X]. For every integer m, let Jm be the set of
leading coe�cients of elements of I whose degrees are equal to m (the leading
coe�cient of the zero polynomial being 0); one checks that is an ideal of A.
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For every integer m, the ideal Jm is �nitely generated. We may thus �x a �nite
set Qm of polynomials belonging to Im whose leading coe�cients generate Jm.
Moreover, the family (Jm)m⩾0 is increasing. Since A is noetherian, there exists
an integer n such that Jm = Jn for every integer m such that m ⩾ n.
Let Q be the �nite set Q = Q0 ∪ ⋅ ⋅ ⋅ ∪ Qn and let I′ be the ideal of A[X] it
generates. One has I′ ⊂ I; it su�ces to prove that I = I′. Let thus P ∈ I and let
us prove by induction on deg(P) that P ∈ I′. Let m = deg(P), and let a ∈ Jm be
the leading coe�cient of P. Let p = min(m, n); one has a ∈ Jp. By de�nition
of Qp, there exists a polynomial P′ of degree p which is a linear combination of
polynomials in Qp (hence an element of I′) whose leading coe�cient is equal
to a. �e polynomial P−Tm−pP′ belongs to I and its degree is < m; by induction,
it belongs to I′. Consequently, P belongs to I′, as was to be shown.

1.10. Irreducible components

De�nition (1.10.1). — Let X be a topological space. One says that X is irreducible
if it is not empty and if it is not the union of two closed subsets ofX, both non-empty
and distinct from X. One says that a subspace of X is irreducible if the induced
subspace is irreducible.

In other words, a subset Z of X is irreducible if and only if it is non-empty
and if for every two closed subsets Y1 and Y2 of X such that Z ⊂ Y1 ∪ Y2, one has
Z ⊂ Y1 or Z ⊂ Y2.
�is notion is very useful in the framework of algebraic geometry, where the
Zariski topology plays a prominent rôle. However, it has little interest for the
classical topological spaces; for example, the only irreducible subspaces of Rn
are singletons.

Proposition (1.10.2). — Let A be a ring.
a) �e topological space Spec(A) is irreducible if and only if the nilradical of A

is a prime ideal.
b) Let I be an ideal of A. �e closed subset V(I) of Spec(A) is irreducible if and

only if
√
I is a prime ideal.

Proof. — Assertion a) is the particular case of b) for I = {0}. Conversely, if
I is an ideal of A, V(I) is homeomorphic to Spec(A/I) by proposition 1.5.10;
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moreover, the nilradical of A/I is equal to
√
I/I, hence is prime if and only if

√
I

is a prime ideal of A.
It thus su�ces to treat part a). Since Spec(A/n) is homeomorphic to Spec(A),

we may even assume that A is reduced.
Let us assume that Spec(A) is reducible. Let Y1 and Y2 be closed subsets
of Spec(A), distinct from Spec(A), such that Spec(A) = Y1 ∪ Y2; let I1 and I2
be radical ideals such that Y1 = V(I1) and Y2 = V(I2). Since Y1 and Y2 are not
equal to Spec(A), one has I1 ≠ {0} and I2 ≠ {0}; let then a ∈ I1 and b ∈ I2 be any
two non-zero elements. Since Spec(A) = Y1 ∪Y2 = V(I1 ∩ I2) = V(0), one has
I1 ∩ I2 = {0}. In particular, ab = 0, which shows that A is not an integral domain.
Conversely, let a, b be non-zero elements of A such that ab = 0. �en,
Spec(A) = V(0) = V(ab) = V(a) ∪ V(b). Since a ≠ 0 and n = 0, there
exists a prime ideal p of A such that a /∈ p; in particular, V(a) ≠ Spec(A). �e
element a is not a unit (for, otherwise, b = 0, a contradiction); consequently,
V(a) ≠ ∅. Similarly, V(b) is neither empty, nor equal to Spec(A). �is implies
that Spec(A) is not irreducible.

Proposition (1.10.3). — Let X be an irreducible topological space and let U be a
non-empty open subset of X.
a) �e open subset U is dense in X, and is irreducible;
b) �e map Z↦ Z ∩U de�nes a bijection between the set of irreducible closed

subsets of X which meet U and the set of irreducible closed subsets of U. Its inverse
bijection is given by Z↦ Z.

Proof. — a) By de�nition of an irreducible topological space, the union of two
closed subsets distinct from X is distinct from X. Considering the complemen-
tary subsets, the intersection of two non-empty open subsets of an irreducible
topological space is non-empty. In particular, U meets every non-empty open
subset of X, which means that U is dense.
Let us now prove that U is irreducible. Let Z1 and Z2 be closed subsets of X
such that U ⊂ Z1 ∪ Z2. It then follows that X = U ⊂ Z1 ∪ Z2, so that X = Z1 or
X = Z2. In particular, U ⊂ Z1 or U ⊂ Z2.
b) Let Y be an irreducible closed subset of U and let Z be its closure in X; let
us observe that Y = Z ∩U. Indeed, since Y is closed in U, there exists a closed
subset Z′ of X such that Y = U ∩ Z′. By de�nition of the closure, we have Z ⊂ Z′.
�en, Y ⊂ Z ∩U ⊂ Z′ ∩U = Y, hence Y = Z ∩U.
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Since Y is irreducible, it is non-empty, hence the set Z is not empty. Let
Z1 and Z2 be closed subsets of X such that Z ⊂ Z1 ∪ Z2. �en Y = U ∩ Z ⊂
(U∩Z1) ∪ (U∩Z2). Since Y is irreducible, one has Y ⊂ U∩Z1 or Y ⊂ U∩Z2. In
the �rst case, Z1 is a closed subset of X containing Y, hence Z ⊂ Z1; in the other
case, Z ⊂ Z2. �is shows that Z is irreducible.
We may now conclude the proof of the proposition. By what precedes, setting

α(Y) = Y de�nes a map from the set of irreducible closed subsets of U to the set
of irreducible closed subsets of X.
Applied to an irreducible subset Z of X and to its open subspace Z∩U, part a)
implies that if Z ∩U ≠ ∅, then it is irreducible and Z ∩U = Z. Consequently,
one de�nes a map from the set of irreducible closed subsets of X which meet U
to the set of irreducible closed subsets of U by setting β(Z) = Z ∩U. Moreover,
if Z is a closed subset of X which meets U, then α ○ β(Z) = Z ∩U = Z; if Y is a
closed subset of U, then we had already proved that β ○ α(Y) = Y ∩U = Y. �is
shows that α and β are bijections, inverse one of the other.

De�nition (1.10.4). — An irreducible component of a topological space is a
maximal irreducible subset.

Lemma (1.10.5). — Let X be a topological space.
a) �e closure of an irreducible subset of X is irreducible. In particular, every

irreducible component of X is closed.
b) Every irreducible subset of X is contained in some irreducible component. In
particular, X is the union of its irreducible components.

Proof. — a) Let A be an irreducible subset of X and let Z1, Z2 be closed subsets
of X such that A ⊂ Z1 ∪ Z2. Consequently, A ⊂ Z1 ∪ Z2, hence A ⊂ Z1 or A ⊂ Z2.
Since Z1 and Z2 are closed, one thus has A ⊂ Z1 or A ⊂ Z2. �is proves that A is
irreducible.
b) Let C be the set of irreducible subsets of X which contain A. Let us show
that the set C , ordered by inclusion, is inductive. It is non-empty since A ∈ C .
Let (Yi)i∈I be a non-empty totally ordered family of irreducible subsets of X
containing A and let Y be its union. One has A ⊂ Y, because I ≠ ∅. Let us show
that Y is irreducible. First, Y ≠ ∅. Let then Z1 and Z2 be closed subsets of X such
that Y ⊂ Z1 ∪ Z2. Let us assume that Y /⊂ Z2, let y ∈ Y be such that y /∈ Z2 and let
j ∈ I be such that y ∈ Y j. Let i ∈ I and let us show that Yi ⊂ Z1. If Y j ⊂ Yi , one has
Yi ⊂ Y ⊂ Z1 ∪ Z2, and Yi /⊂ Z2 since Yi contains Y j; since Yi is irreducible, one
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thus has Yi ⊂ Z1. In particular, Y j ⊂ Z1. On the other hand, if Yi ⊂ Y j, we have
Yi ⊂ Y j ⊂ Z1. Consequently, Y = ⋃i∈IYi ⊂ Z1. �is shows that Y is irreducible,
hence that C is inductive. By Zorn’s lemma, C has a maximal element; this
is a maximal irreducible subset of X, hence an irreducible component of X; it
contains A by construction.
For every x ∈ X, {x} is irreducible. By what precedes, every point of X is
contained in an irreducible component. �is means exactly that X is the union
of its irreducible components, as claimed.

Example (1.10.6). — An irreducible component of Spec(A) is a closed subset
of the form V(p), where p is aminimal prime ideal of A.
As a consequence of lemma 1.10.5, every prime ideal of A contains a minimal
prime ideal of A.

De�nition (1.10.7). — One says that a topological space is noetherian if every
strictly decreasing sequence of closed subsets is �nite.

Equivalently, a topological space is noetherian if and only if every non-empty
family of closed subsets has a minimal element.

Example (1.10.8). — Indeed, the property for Spec(A) of being noetherian
means that every non-empty family of radical ideals of A has a maximal element.
In particular, we see that if A is a noetherian ring, then Spec(A) is a noetherian
topological space.

Proposition (1.10.9). — Let X be a noetherian topological space.

a) Every subspace of X is noetherian;
b) �e space X has �nitely many irreducible components, and X is their union.
c) Every irreducible component of X contains a non-empty open subset of X.

Proof. — a) Let A be a subspace of X and let (An) be a stricly decreasing
sequence of closed subsets of A. By de�nition of the induced topology, there
exists for each n a closed subset Yn of X such that An = A ∩ Yn. Set Zn =
Y0 ∩ Y1 ∩ ⋅ ⋅ ⋅ ∩ Yn; the sequence (Zn) is decreasing. Since one has An = A ∩ Zn
for each n, this sequence is in fact stricly decreasing, hence is �nite because X is
noetherian. �is implies that the sequence (An) is �nite, as was to be shown.
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b) Since every subspace of X is noetherian, the assertion should hold for
every subspace of X. We will thus prove the desired result by contradiction by
considering aminimal subspace of X which is a counterexample.
Precisely, let C be the set of closed subsets of X which cannot be written as a
�nite union of irreducible closed subspaces of X. Assume by contradiction that
C is non-empty. Since X is a noetherian topological space, the set C, ordered by
inclusion, admits a minimal element W. By construction, W is a closed subset
of X which is not a �nite union of irreducible closed subspaces of X, but every
closed subspace of W (distinct fromW) is such a �nite union.
�e spaceW is not irreducible. Since the empty space is the union of the empty
family, one hasW ≠ ∅. Consequently, there exist closed subsetsW1 andW2 ofW,
non-empty and distinct fromW, such that W =W1 ∪W2. By the minimality
of W, W1 andW2 can be written as a �nite union of irreducible closed subspaces
of W; consequently, W is also a �nite union of irreducible closed subspaces of W,
a contradiction!
In particular, there exists a �nite family (X1, . . . , Xn) of irreducible closed
subsets of X such that X = X1 ∪ ⋅ ⋅ ⋅ ∪Xn. Up to removing Xi from this family if
necessary, we may assume that for j ≠ i, Xi is not a subspace of X j.
Before we terminate the proof of b), let us prove that every irreducible subset Z
of X is contained in one of the Xi. Since Z = ⋃ni=1(Z ∩ Xi), there exists i ∈
{1, . . . , n} such that Z = Z ∩Xi , this means that Z ⊂ Xi .
�is implies in particular that everymaximal element of the family (X1, . . . , Xn)
is maximal among all closed irreducible subsets of X, so that X1, . . . , Xn are the
irreducible components of X.
c) Let Y be an irreducible component of X, let Y′ be the union of the other
irreducible components, and let U = Y (Y ∩ Y′). Since X has �nitely many
irreducible components, Y′ is closed, so that U is open. If, by contradiction,
U is empty, then Y ∩ Y′ = Y, hence Y ⊂ Y′. By the argument used at the end
of the proof of b), this implies that Y is contained in some other irreducible
component of X, contradicting the de�nition of an irreducible component. So
U is a non-empty open subset of X contained in Y.

Corollary (1.10.10). — Let A be a reduced noetherian ring. �en A has �nitely
many minimal prime ideals. �eir intersection is equal to {0} and their union is
the set of zero divisors of A.
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Proof. — Since A is noetherian, the topological space Spec(A) is noetherian.
Consequently, A has �nitely manyminimal prime ideal, say p1, . . . , pn, and every
prime ideal contains a minimal prime ideal. In particular, the nilradical of A,
which is the intersection of all prime ideals of A, is equal to the intersection of
all minimal prime ideals. Since A is reduced, this intersection is equal to {0}.
It remains to show that an element a ∈ A is a zero divisor if and only if it
belongs to one of the pi. One has V(⋂ j≠i p j) = ⋃ j≠iV(p j) ≠ Spec(A), hence
the ideal ⋂ j≠i p j contains a non-zero element, say x. �en ax belongs to the
intersection of all minimal prime ideals of A, hence ax = 0; this shows that a
is a zero divisor. Conversely, let a ∈ A be a zero divisor and let x ∈ A {0} be
such that ax = 0. Since x ≠ 0, there exists i ∈ {1, . . . , n} such that x /∈ pi. �e
equality ax = 0 then implies that a ∈ pi .

1.11. Dimension

1.11.1. — Let E be a partially ordered set.
A chain in E is a stricly increasing family x0 < x1 < ⋅ ⋅ ⋅ < xn. �e length of that
chain is equal to n, it starts at x0 and ends at xn.
�e dimension of E, denoted by dim(E), is the supremum of the lengths of
chains in E.
Let x ∈ E. �e height (resp. the coheight) of x is the supremum of the length
of chains ending (resp. starting) at x. �ey are denoted ht(x) and coht(x)
respectively.

De�nition (1.11.2). — Let X be a topological space.
�e Krull dimension of X, denoted dim(X), is the dimension of the set C(X) of

all irreducible closed subsets of X, ordered by inclusion.
Let Z be a closed irreducible subset of X. �e codimension of Z in X, denoted
codim(Z), is the coheight of Z in the partially ordered set C.

�e following facts follow directly from these de�nitions:
a) �e dimension of X is the supremum of the dimensions of its irreducible
components;
b) Each irreducible component of X has codimension 0;
c) For every closed irreducible subset Z of X, one has codim(Z) + dim(Z) ⩽
dim(X);
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d) If Y and Z are irreducible closed subsets of X such that Y ⊂ Z, then
dim(Y) ⩽ dim(Z) and codim(Z) ⩽ codim(Y).
In view of these facts, one may de�ne the codimension of an arbitrary closed
subset Z as the in�mum of the codimensions of its irreducible components.

1.11.3. — Let A be a ring and let X = Spec(A). Every closed irreducible subset Z
of X is of the form Z = V(p), for some unique prime ideal p of A; in fact,
p = j(Z) = j({p}), so that V(p) = {p}. Moreover, if p and q are prime ideals,
thenV(q) ⊂ V(p) if and only if p ⊂ q. Consequently, the three following partially
ordered sets are isomorphic:
– �e set C of closed irreducible subsets of X, ordered by inclusion;
– �e set of all prime ideals of A, ordered by containment;
– �e set Spec(A), ordered by the relation x ≺ y if and only if x ∈ {y}.
It follows that the dimension of X is equal to the supremum of the lengths of
chains of prime ideals of A, the Krull dimension dim(A) of the ring A.
For every prime ideal p of A, the codimension of V(p) in Spec(A) is equal
to the height ht(p) of p, de�ned as the supremum of the lengths of chains of
prime ideals of A ending at p. By the correspondence between prime ideals of
the localized ring Ap and prime ideals of A contained in p, one also has

ht(p) = dim(Ap).

Moreover, one has dim(V(p)) = dim(A/p), hence the inequality

ht(p) + dim(A/p) ⩽ dim(A).

�eorem (1.11.4) (First theorem of Cohen-Seidenberg)
Let B be a ring and let A be a subring of B. Assume that B is integral over A.
a) Let q be a prime ideal of B and let p = q ∩A. �en p is a maximal ideal of A

if and only if q is a maximal ideal of B.
b) Let q ⊂ q′ be prime ideals of B such that q ∩A = q′ ∩A. �en q = q′.
c) �e canonical map from Spec(B) to Spec(A) is surjective: for every prime

ideal p of A, there exists a prime ideal q of B such that q ∩A = p.

Proof. — a) Passing to the quotients, one gets an integral extension of integral
domains A/p ⊂ B/q. By lemma 1.4.5, A/p is a �eld if and only if B/q is a �eld; in
other words, p is maximal in A if and only if q is maximal in B.
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b) Let p = q ∩A and let us consider the integral extension of rings Ap ⊂ Bp
induced by localization by the multiplicative subset A p. (It is indeed injective:
if a fraction a/s in Ap maps to 0 in Bp, there exists t ∈ A p such that at = 0,
hence a = 0.) Observe the obvious inclusion pAp ⊂ qBp. On the other hand, the
ideal qBp does not contain 1, hence is contained in the maximal ideal pAp of the
local ring Ap. �is shows that qBp ∩Ap = pAp. Similarly, q′Bp ∩Ap = pAp.
Since pAp is maximal, qBp and q′Bp are maximal ideals of Bp. However, the
inclusion q ⊂ q′ implies qBq ⊂ q′Bq. Necessarily, these two maximal ideals of Bp
are equal.
Since localization induces a bijection from the set of prime ideals of B disjoint
from A p to the set of prime ideals of Bp, one gets q = q′.
c) Let p be a prime ideal of A and let us consider the extension Ap ⊂ Bp
obtained by localization with respect to the multiplicative subset A p. Since
Bp ≠ 0, wemay consider amaximal idealm of Bp. �ere exists a prime ideal q ⊂ B
disjoint from A p such that m = qBp. Considering the integral extension
Ap ⊂ Bp, part a) implies thatm∩Ap is a maximal ideal of Ap, hencem∩Ap = pAp.
Let us show that q ∩ A = p. Indeed, let b ∈ q ∩ A; then b/1 ∈ qBp ∩ Ap, so
that there exists a ∈ A p such that ab ∈ p. Since p is a prime ideal, b ∈ p.
Conversely, if a ∈ p, then a/1 ∈ pAp hence a/1 ∈ qBp. Consequently, there exists
a′ ∈ A p such that aa′ ∈ q. Observe that a′ /∈ q, for otherwise, one would have
a′ ∈ q ∩A = p, which does not hold. Since q is a prime ideal, a ∈ q.

Corollary (1.11.5). — Let B be a ring, letA be a subring of B. If B is integral overA,
then dim(A) = dim(B).

Proof. — Let q0 ⊊ ⋅ ⋅ ⋅ ⊊ qn be a chain of prime ideals of B. Let us intersect these
ideals with A; this gives an increasing family (q0 ∩A) ⊂ ⋅ ⋅ ⋅ ⊂ (qn ∩A) of prime
ideals of A. By part b) of theorem 1.11.4, this is even a chain of prime ideals, so
that dim(A) ⩾ dim(B).
Conversely, let p0 ⊊ ⋅ ⋅ ⋅ ⊊ pn be a chain of prime ideals of A. For each m ∈

{0, . . . , n}, let us construct by induction a prime ideal qm of B such that qm∩A =
pm and such that q0 ⊂ ⋅ ⋅ ⋅ ⊂ qn. �is will imply that dim(B) ⩾ dim(A), hence
the corollary.
By part c) of theorem 1.11.4, there exists a prime ideal q0 of B such that q0 ∩
A = q0. Assume q0, . . . , qm are de�ned. Let us consider the integral extension
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A/pm ⊂ B/qm of integral domains. By theorem 1.11.4, applied to the prime
ideal pm+1/pm of A/pm, there exists a prime ideal q of the ring B/qm such that
q∩ (A/pm) = pm+1/pm. �en, there exists a prime ideal qm+1 containing qm such
that q = qm+1/qm. Moreover, qm+1 ∩A = pm+1.
�is concludes the proof.

�e following theorem lies at the ground of dimension theory in algebraic
geometry.

�eorem (1.11.6). — Let K be a �eld and let A be a �nitely generated K-algebra.
Assume that A is an integral domain and let F be its �eld of fractions. One has
dim(A) = tr. degK(F).

Proof. — We prove the theorem by induction on the transcendence degree of F.
If tr. degK(F) = 0, then A is algebraic over K. Consequently, dim(A) =
dim(K) = 0.
Now assume that the theorem holds for �nitely generated K-algebras which
are integral domains and whose �eld of fractions has transcendence degree
strictly less than tr. degK(F).
By theNoether normalization lemma (theorem 1.6.1), there exist an integer n ⩾
0, elements a1, . . . , an of A such that the morphism f ∶K[X1, . . . , Xn] → A such
that f (Xi) = ai is injective, and such that A is integral over its subring B =
K[a1, . . . , an] = f (K[X1, . . . , Xn]). Moreover, n = tr. degK(F). By corollary 1.11.5,
it su�ces to prove that the dimension of the polynomial ring K[X1, . . . , Xn] is
equal to n.
Observe that

(0) ⊂ (X1) ⊂ ⋅ ⋅ ⋅ ⊂ (X1, . . . , Xn)

is a chain of prime ideals of K[X1, . . . , Xn]; since its length is equal to n, this
shows that dim(K[X1, . . . , Xn]) ⩾ n. Conversely, let

(0) ⊊ p1 ⊊ ⋅ ⋅ ⋅ ⊊ pm

be a chain of prime ideals of K[X1, . . . , Xn] and let us set A′ = K[X1, . . . , Xn]/p1.
�en A′ is a �nitely generated K-algebra and dim(A′) ⩾ m − 1. Since p1 is a
prime ideal, A′ is an integral domain; let F′ be its �eld of fractions. Any non-zero
polynomial P ∈ p1 furnishes gives a non-trivial algebraic dependence relation
between the classes x1, . . . , xn of X1, . . . , Xn in A′. Consequently, tr. degK(F′) ⩽
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n − 1. By induction, tr. degK(F′) = dim(A′), hence m − 1 ⩽ n − 1, and m ⩽ n.
�is concludes the proof.

In the course of the proof of theorem 1.11.6, we established the following
particular case.

Corollary (1.11.7). — For any �eld K, one has dim(K[X1, . . . , Xn]) = n.

Proposition (1.11.8). — LetK be a �eld and letA, B be �nitely generatedK-algebras.
One has dim(A⊗K B) = dim(A) + dim(B).

Proof. — By the Noether normalization lemma (theorem 1.6.1), there exist
integers m, n ⩾ 0 and injective integral morphisms f ∶K[X1, . . . , Xm] → A and
g∶K[Y1, . . . , Yn] → B. One has m = dim(A) and n = dim(B). Since A and B are
�nitely generated, these morphisms are even �nite. It follows that the natural
morphism

K[X1, . . . , Xm , Y1, . . . , Yn] ≃ K[X1, . . . , Xm] ⊗K K[Y1, . . . , Yn] → A⊗K B

is injective and �nite. Consequently, dim(A⊗K B) = m + n = dim(A) + dim(B).

Remark (1.11.9). — Dimension theory of rings has a lot of subtleties which do
not occur for �nitely generated algebras over a �eld.
a) �ere are rings of in�nite dimension, for example the ring A =
K[T1, T2, . . . ] of polynomials in in�nitely many indeterminates. Worse,
while all strictly increasing sequences of ideals in a noetherian ring are �nite,
their lengths may not be bounded. In fact, Nagata has given the following
example of a noetherian ring whose dimension is in�nite. Let (mn) be a stricly
increasing sequence of positive integers such that mn+1 − mn is unbounded;
for each n, let pn be the prime ideal of A generated by the elements Ti, for
mn ⩽ i < mn+1. Let S be the intersection of the multiplicative subsets Sn = A pn.
�en S−1A is noetherian, but dim(S−1A) = +∞.
We shall prove below that noetherian local rings are �nite dimensional.
b) �ere is a beautiful formula due to Grothendieck: let K be a �eld and let L
and M be extensions of K. �en

dim(L⊗KM) = inf(tr. degK(L), tr. degL(M)).

�is is proved in (Grothendieck, 1967, p. 349, remarque (4.2.1.4)).
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c) If A is a �nitely generated algebra over a �eld, proposition 1.11.8 asserts that
dim(A[X]) = dim(A) + 1; in fact, this holds under the weaker assumption that
A is noetherian, see (Serre, 1965, III, prop. 13). However, in the general case, it
lies between dim(A) + 1 and 2dim(A) + 1, and all possibilities appear!

1.12. Artinian rings

1.12.1. — Let k be a ring. One says that a k-module M is artinian if every
strictly decreasing sequence of submodules of M is �nite or, equivalently, if every
non-empty family of submodules of M has a minimal element.
One says that a ring A is artinian if it is artinian as a module over itself; this
means that every strictly decreasing sequence of ideals of A is �nite.
�is also implies that every strictly increasing sequence of closed subsets
of Spec(A) is �nite.

1.12.2. — Let P be a submodule of M. �en M is artinian if and only if both P
and M/P are artinian. In particular, �nite direct sums of artinian modules are
artinian.

1.12.3. — Let A be a ring. An A-module M is said to be simple if its only
submodules are {0} and M; this is equivalent to the existence of a maximal
idealm of A such that M ≃ A/m.
�e length of an A-module M is the dimension of the partially ordered set of
its submodules. It is denoted by lengthA(M), or even length(M) if the ring A is
clear from the context.

Proposition (1.12.4). — LetM be an A-module and letN be a submodule ofM. If
two of the modulesM, N andM/N have �nite length, then so does the third one,
and one has the equality

lengthA(M) = lengthA(N) + lengthA(M/N).

Proof. — Let N0 ⊊ N1 ⊊ ⋅ ⋅ ⋅ ⊊ Na and M0/N ⊊M1/N ⊊ ⋅ ⋅ ⋅ ⊊Mb/N be chains of
submodules of N and M/N, then�en,

N0 ⊊ N1 ⊊ ⋅ ⋅ ⋅ ⊊ Na ⊊M1 ⊊ ⋅ ⋅ ⋅ ⊊Mb
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is a chain of length a+b of submodules of M, hence the inequality lengthA(M) ⩾
lengthA(N) + lengthA(M/N). In particular, if M has �nite length, then so do N
and M/N.
Conversely, let us assume that N andM/N have �nite length; we want to prove
that M has �nite length and that lengthA(M) = lengthA(N) + lengthA(M/N).
Let thus M0 ⊊M1 ⊊ ⋅ ⋅ ⋅ ⊊Ma be a chain of submodules of M. One observes that
for every two submodules P′ and P′′ of M such that P′ ⊂ P′′, P′ ∩N = P′′ ∩N and
P′ +N = P′′ +N, then P′ = P′′. It follows that for every integer i ∈ {0, . . . , a − 1},
at least one of the two inclusions

Mi ∩N ⊂Mi+1 ∩N and Mi +N ⊂Mi+1 +N

is strict. �is implies that lengthA(N) + lengthA(M/N) ⩾ a. It follows that
lengthA(N) + lengthA(M/N) ⩾ lengthA(M), whence the proposition.

1.12.5. — An A-module has �nite length if and only if it is artinian and noethe-
rian. Moreover, every maximal chain of submodules of such an A-module M
has length lengthA(M).

Lemma (1.12.6). — Let A be an artinian ring.
a) If A is an integral domain, then A is a �eld;
b) Every prime ideal of A is maximal;
c) Spec(A) is �nite.

Proof. — a) Let us assume that A is an integral domain. Let x ∈ A {0}. �e
in�nite decreasing sequence of ideals A ⊃ (x) ⊃ (x2) ⊃ . . . cannot be strictly
decreasing, hence there exists an integer n ⩾ 0 such that (xn) = (xn+1). Let
a ∈ A be such that xn = axn+1. Since x ≠ 0 and A is an integral domain, we may
simplify by xn, hence ax = 1. �is shows that x is invertible.
b) Let p be a prime ideal of A. �en, A/p is an artinian ring which is an
integral domain. By part a), it is a �eld, hence p is a maximal ideal.
c) Since every prime ideal of A is maximal, every point of Spec(A) is closed.
If Spec(A) were in�nite, there would exist an in�nite sequence (xn) of pairwise
distinct points in Spec(A). �e in�nite sequence

∅ ⊂ {x1} ⊂ {x1, x2} ⊂ . . .

of closed subsets of Spec(A) is then strictly increasing, which contradicts the
hypothesis that A is an artinian ring.
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�eorem (1.12.7) (Akizuki). — Let A be a ring. �e following properties are
equivalent:
(i) �e ring A is artinian;
(ii) �e A-module A has �nite length;
(iii) �e ring A is noetherian and dim(A) = 0.

Proof. — Condition (ii) implies that every sequence of ideals of A which is
either strictly increasing or strictly decreasing is �nite, hence that A is artinian
(condition (i)) and noetherian (the �rst half of condition (iii)).
Moreover, if A is artinian, then we have seen in lemma 1.12.6 that every prime
ideal of A is maximal, hence dim(A) = 0.
Let us assume that A is noetherian and that dim(A) = 0. Let p1, . . . , pn be
the minimal prime ideals of A, so that V(p1), . . . , V(pn) are the irreducible
components of Spec(A). Since dim(A) = 0, pi is a maximal ideal and V(pi) =
{pi}; in particular, Spec(A) is a �nite and discrete topological space.
Let n be the nilradical of A. One has n = p1∩⋅ ⋅ ⋅∩pn, so that the A-module A/n
embeds into the �nite product of the A-modules A/pi , for 1 ⩽ i ⩽ n. In particular,
lengthA(A/n) ⩽ n. It follows from this that every A/n-module which is �nitely
generated has �nite length.
For every integer d ⩾ 0, the ideal nd is �nitely generated, because A is
noetherian. �is implies that nd/nd+1 is a �nitely generated A/n-module, hence
length(nd/nd+1) is �nite.
Every element of n is nilpotent. Since A is noetherian, the ideal n is �nitely
generated, hence there exists an integer e ⩾ 0 such that ne = 0. Consequently,

lengthA(A) ⩽
e−1
∑
d=0
length(nd/nd+1)

is �nite, which concludes the proof of implication (iii)⇒(ii).
It remains to show that an artinian ring has �nite length. By lemma 1.12.6,

we known that Spec(A) consists of �nitely many maximal ideals, say p1, . . . , pn.
Let J be their product; it is equal to the Jacobson radical of A. �e decreasing
in�nite sequence of ideals (A, J, J2, . . . ) cannot be strictly decreasing, so that
there exists an integer s ⩾ 0 such that Js = Js+1. Let us prove that Js = 0. Let thus
I = (0 ∶ Js) be the set of a ∈ A such that aJs = 0; we will prove that I = A.
Assume otherwise. Since A is artinian and A ≠ I, there exists an ideal I′ of A
such that I ⊊ I′ and which is minimal for this property. Let now a ∈ I′ I. By
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corollary 1.3.3 to Nakayama’s lemma, applied to the submodules aA and I of A,
we have I ⊂ aJ + I ⊊ aA + I ⊂ I′, hence I = aJ + I, that is, aJ ⊂ I. For every b ∈ J,
we thus have ab ∈ I, hence abJs = 0. �is shows that aJs+1 = 0. Since Js = Js+1, we
have aJs = 0, hence a ∈ I. �is contradiction proves that A = I. Consequently,
Js = 0, as claimed.
Now consider the decreasing sequence of ideals

A ⊃ p1 ⊃ ⋅ ⋅ ⋅ ⊃ p1 . . . pn = I ⊃ Ip1 ⊃ ⋅ ⋅ ⋅ ⊃ Ip1 . . . pn = I2 ⊃ I2p1 ⊃ ⋅ ⋅ ⋅ ⊃ Is = 0.

Each successive quotient is a noetherian A-module of the form M/mM, where
m is maximal ideal of A, hence a �nite dimensional A/m-vector space; its length
as an A-module is thus �nite. Consequently, the length of A is �nite, as was to
be shown.

1.13. Codimension

Lemma (1.13.1). — Let A be a ring, let n ⩾ 1 be an integer and let p1, . . . , pn be
prime ideals of A. If I is an ideal of A such that I ⊂ p1 ∪ ⋅ ⋅ ⋅ ∪ pn, there exists an
integer i such that I ⊂ pi.

Proof. — We prove the lemma by induction on n. �e result is obvious if n = 1.
Assume that I is contained in none of the ideals pi . By induction, for every i, one
has I /⊂ ⋃ j≠i p j, hence there exists xi ∈ I such that xi /∈ p j, if j ≠ i. �is implies
that xi ∈ pi for every i. Let a = x1 + x2 . . . xn. Since x1 ∈ p1 and x2, . . . , xn do not
belong to p1, one has a /∈ p1. Let i ⩾ 2; then x1 /∈ pi but x2 . . . xn ∈ pi , so that a /∈ pi .
Consequently, a does not belong to the union of the ideals pi , in contradiction
with the fact that it belongs to I.

Proposition (1.13.2). — Let K ⊂ F be a �nite normal extension of �elds. Let A be
a subring of K which is integrally closed in K and let B be the integral closure of A
in F. Let G be the group of automorphisms of F which restrict to identity on K.
a) For every σ ∈ G, one has σ(B) = B;
b) For every point x ∈ Spec(A), the group G acts transitively on the �ber

(aφ)−1(x) in Spec(B).

Proof. — a) Let b ∈ B. �en σ(b) belongs to F and is integral over A. One
thus has σ(b) ∈ B. �is shows that σ(B) ⊂ B. Similarly, one has σ−1(B) ⊂ B,
hence B ⊂ σ(B).
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b) By the �rst theorem of Cohen-Seidenberg (theorem 1.11.4), the map
aφ∶ Spec(B) → Spec(A) is surjective, so that the �ber (aφ)−1(x) is non-empty.
Let y, y′ be two elements of this �ber; let q, q′ be the corresponding prime ideals
of B. Let b ∈ q′. �e product a = ∏σ∈G σ(b) is an element of F which is �xed
by G. By Galois theory, it is radicial over K: there exists an integer q ⩾ 1 such
that aq ∈ K. (In fact, q = 1 if the extension F/K is separable, and otherwise q is a
power of the caracteristic of K.) Since b is integral over A, each σ(b) is integral
over A, and a is integral over A, as well as aq. Since A is integrally closed in K,
one has aq ∈ A. Moreover, aq ∈ q′∩A = p = q∩A; in particular, aq ∈ q. Since q is
a prime ideal, there exists σ ∈ G such that σ(b) ∈ q. �is shows that b ∈ σ−1(q),
hence q′ ⊂ ⋃σ∈G σ(q).
By lemma 1.13.1, there exists σ ∈ G such that q′ ⊂ σ(q). Since σ(q) ∩ A =

σ(q ∩A) = σ(p) = q′ ∩A, proposition 1.13.2 shows that q′ = σ(q). �is proves
the proposition.

�eorem (1.13.3) (Second theorem of Cohen-Seidenberg)
Let B be an integral domain and let A be a subring of B. Assume that A

is integrally closed in its �eld of fractions and that B is a �nite A-module. Let
p0 ⊂ ⋅ ⋅ ⋅ ⊂ pn be a chain of prime ideals of A and let qn be a prime ideal of B such
that qn ∩A = pn. �ere exists a chain of prime ideals q0 ⊂ ⋅ ⋅ ⋅ ⊂ qn−1 ⊂ qn such that
qi ∩A = pi for every i.

Proof. — Let K be the �eld of fractions of A and let F be that of B. Let F′ be a
�nite extension of F which is normal over K, let B′ be the integral closure of A
in F′. By the �rst Cohen-Seidenberg theorem (theorem 1.11.4), there exists a
chain q′0 ⊂ ⋅ ⋅ ⋅ ⊂ q′n of prime ideals of B′ such that pi = q′i ∩A for every i. Let q̃n
be a prime ideal of B′ such that q̃n ∩ B = qn.
By proposition 1.13.2, there exists an automorphism σ of F′ such that σ ∣K = id
and σ(q′n) = q̃n. For every integer i such that 0 ⩽ i ⩽ n − 1, let qi = σ(q′i) ∩ B.
�en q0 ⊂ ⋅ ⋅ ⋅ ⊂ qn is a chain of prime ideals of B. For every integer i, one has

qi ∩A = σ(q′i) ∩ B ∩A = σ(q′i ∩A) = σ(pi) = pi ,

hence the theorem.

Corollary (1.13.4). — Let B be an integral domain, letA be a subring of B such that
B is a �nite A-module. Assume that A is integrally closed in its �eld of fractions.
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�en, for every prime ideal q of B, one has

htB(q) = htA(q ∩A).

Lemma (1.13.5). — Let A be a unique factorization domain and let p be a prime
ideal of A. If ht(p) = 1, then there exists a prime element a ∈ A such that p = (a).

Proof. — Let a ∈ p be an arbitrary non-zero element. Since p is a prime ideal, a
is not a unit, hence it admits a decomposition a = b1 . . . bn be a decomposition as
a product of irreducible elements. Necessarily, p contains one of these factors, so
that we may assume that a is irreducible. Since A is a ufd, the ideal (a) is then a
prime ideal. Since ht(p) = 1, the inclusion 0 ⊊ (a) ⊂ p implies that p = (a).

�eorem (1.13.6). — Let K be a �eld. Let A be a �nitely generated K-algebra
which is an integral domain. For every prime ideal p of A, one has dim(A) =
dim(A/p) + ht(p).

In other words, for every irreducible closed subset Z of X = Spec(A), one
has the familiar relation dim(X) = dim(Z) + codim(Z). In spectra of �nitely
generated K-algebras, dimension and codimension behave as expected.

Proof. — We have already explained that dim(A) ⩾ dim(A/p) + ht(p). On the
other hand, by the Noether normalization lemma (theorem 1.6.1), there exists an
integer n ⩾ 0 and an injective and integral morphism f ∶K[X1, . . . , Xn] → A. Let
B be the image of f and let p = q∩B. One thus has dim(A) = n and dim(A/p) =
dim(B/q) (corollary 1.11.5), as well as htA(q) = htB(p) (corollary 1.13.4). It thus
su�ces to prove the result when A = k[X1, . . . , Xn]. By induction on dim(A), it
even su�ces to prove the case when htA(p) = 1.
In this case, lemma 1.13.5 asserts that there exists an irreducible polynomial
f ∈ A such that p = ( f ). �e transcendence degree of the �eld of fractions
of A/( f ) is then at least n − 1: if the indeterminate Xn appears in f , then
the images x1, . . . , xn−1 of X1, . . . , Xn−1 are algebraically independent in A/( f ),
since an algebraic dependence relation P(x1, . . . , xn−1) = 0 in A/( f )means that
P ∈ ( f ), and this implies P = 0 if degXn( f ) ≠ 0. By theorem 1.11.6, one has
dim(A/p) ⩾ n − 1, hence the inequality ht(p) + dim(A/p) ⩾ n, as was to be
shown.
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Corollary (1.13.7). — Let K be a �eld and let A be a �nitely generated K-algebra
which is an integral domain. Every maximal chain of prime ideals of A has
length dim(A).

Proof. — Let p0 ⊂ ⋅ ⋅ ⋅ ⊂ pn is a maximal chain of prime ideals of A. We argue
by induction on n. One has p0 = (0), because A is an integral domain. If
n = 0, then A is a �eld, hence dim(A) = 0. Let us assume that n ⩾ 1. �e
chain p0 ⊂ p1 of prime ideals is maximal among those ending at p1. Since every
maximal chain of prime ideals ending at p1 begins at (0) = p0, one has ht(p1) = 1.
Moreover, the quotient ring A/p1 is an integral domain and a �nitely generated
K-algebra. In this ring, the increasing sequence p1/p1 ⊂ ⋅ ⋅ ⋅ ⊂ pn/p1 is a maximal
chain of prime ideals. By induction, one has dim(A/p1) = n − 1. Consequently,
n = 1 + dim(A/p1) = 1 + dim(A) − ht(p1) = dim(A), as was to be shown.

1.14. Krull’s Hauptidealsatz and parameter systems

�eorem (1.14.1) (Krull’s Hauptidealsatz). — Let A be a noetherian ring and
let f be an element of A. �e prime ideals of A which are minimal among those
containing f have height at most 1.

If f is not a zero-divisor, then f does not belong to any minimal prime ideal
of A (see the proof of corollary 1.10.10, the hypothesis that A be reduced is not
used for this assertion), so that the prime ideals of A which are minimal among
those containing f have height exactly 1.

Proof. — Let p be a prime ideal of A, minimal among those containing f ; we
need to prove that ht(p) ⩽ 1, that is, that there does not exist a chain q′ ⊊ q ⊊ p

of prime ideals of A. Let us argue by contradiction, considering such a chain.
If we quotient by q′, we may moreover assume that q′ = {0}, i.e., that A is an
integral domain; we then have to prove that {0} and p are the only prime ideals
of A which are contained in p. �e ring of fractions Ap is noetherian too, and its
maximal ideal pAp is minimal among its prime ideals containing f /1. Replace
the ring A by its fraction ring Ap and f by its image in Ap, we may thus assume
that A is a local, noetherian, integral domain, and that p is its maximal ideal.
Let thus q be a prime ideal of A, distinct from p, and let us show that q = {0}.
Since p is minimal among the prime ideals of A which contain f , one has f /∈ q.
For every integer n ⩾ 0, let qn = A ∩ qnAq; this ideal is called the nth symbolic
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power of q. It consists in the elements a ∈ A for which there exists b /∈ b such that
ab ∈ qn. For every integer n such that n ⩾ 0, one has qn+1 ⊂ qn, hence qn+1 ⊂ qn.
By the correspondence between the prime ideals of the ring A/ fA and the
prime ideals of A which contain f , we see that (p + fA)/ fA is the only prime
ideal of A/ fA, so that dim(A/ fA) = 0. Since this ring A/ fA is noetherian, it is
then artinian, hence the sequence (qn+ fA/ fA)n of ideals of A/ fA is eventually
constant. Let then n be an integer such that

qn + fA = qn+1 + fA.

Let x ∈ qn. By this relation, there exists a ∈ A such that x + a f ∈ qn+1; it follows
in particular that a f ∈ qn, hence a ∈ qn since f /∈ q. Consequently, x ∈ qn+1+ f qn,
whence the equality

qn = qn+1 + f qn .
Since f ∈ p, this implies

qn = qn+1 + pqn .
It now follows from Nakayama’s lemma (corollary 1.3.3), that qn = qn+1. In
particular, one has

qnAq = qnAq = qn+1Aq = qn+1Aq = q ⋅ qnAq.

By Nakayama’s lemma again, one has qnAq = 0. Since q is a prime ideal, this
implies qAq = 0, hence q = 0, as was to be shown.

Corollary (1.14.2). — Let A be a noetherian ring, let n be an integer and let
f1, . . . , fn be elements of A. Let p be a prime ideal of A which is minimal among
those containing ( f1, . . . , fn); then ht(p) ⩽ n.

Geometrically: For every irreducible component Z of V( f1, . . . , fn), one has
codim(Z) ⩽ n.
Proof. — In the noetherian local ring Ap, the maximal ideal pAp is minimal
among those containing the images of f1, . . . , fn. Moreover, the height of pAp

in Ap is equal to the height of p in A. We may thus assume that A is local and
that p is its maximal ideal.
Let p′ be a prime ideal of A such that p′ ⊊ p; let us prove that ht(p′) ⩽ n − 1.
Since A is noetherian, there exists a prime ideal p′1 such that p′ ⊂ p′1 ⊊ p and
which is maximal among these ideals. Since one has ht(p′) ⩽ ht(p′1), it su�ces
to prove that ht(p′1). We may thus assume that p′ = p′1.
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Since p′ ≠ p, there exists i ∈ {1, . . . , n} such that fi /∈ p′. By simplicity of
notation, we assume that i = 1. �en p′ ⊊ p′ + ( f1) ⊂ p, so that p is the unique
prime ideal of A which contains p′ + ( f1). Consequently, every element of p is
nilpotent modulo p′ + ( f1); let m ∈ N, let g2, . . . , gn ∈ p′ and a2, . . . , an ∈ A be
such that f mi = gi + ai f1 for every i ∈ {2, . . . , n}.
One thus has p ⊃ ( f1, g2, . . . , gn); In fact, a prime ideal of A containing

( f1, g2, . . . , gn) contains f m2 , . . . , f mn , hence contains f2, . . . , fn, so that p is the
unique prime ideal of A containing ( f1, g2, . . . , gn). Let B = A/(g2, . . . , gn)
and let q be the image of p in B. �e prime ideal q is the unique prime ideal
which contains the image of f1, hence htB(q) ⩽ 1, by Krull’s Hauptidealsatz
(theorem 1.14.1). �e inclusions (g2, . . . , gn) ⊂ p′ ⊊ p then imply that the prime
ideal p′ is minimal among those containing (g2, . . . , gn).
By induction, one thus has ht(p′) ⩽ n − 1, as claimed. Since p′ is maximal
among the set of prime ideals of A distinct from p, one then has ht(p) ⩽ n, as
was to be shown.

Corollary (1.14.3). — Let A be a noetherian ring and let p be a prime ideal of A.
�e height of p is the smallest integer n such that there exist elements f1, . . . , fn ∈ A
such that V(p) is an irreducible component of V( f1, . . . , fn).

Proof. — Since A is noetherian, there exists an integer n and elements f1, . . . , fn
of A such that V(p) is an irreducible component of ( f1, . . . , fn); it su�ces, for
example, that p = ( f1, . . . , fn). By the preceding corollary, we then have ht(p) ⩽
n.
Conversely, let n = ht(p), and let p′ be a prime ideal of A such that p′ ⊊ p

and ht(p′) = n − 1. By induction, there exist elements g2, . . . , gn ∈ A such that
V(p′) is an irreducible component of V(g2, . . . , gn). Let (p′i) be the family of
minimal prime ideals of A containing (g2, . . . , gn). Since A is noetherian, it is
�nite. Moreover, one has p /⊂ p′i for every i, since the inclusion p ⊂ p′i would
imply that ht(p) ⩽ ht(p′i) ⩽ n − 1. By lemma 1.13.1, one has p /⊂ ⋃p′i, hence
there exists an element g1 ∈ p such that g1 /∈ p′i for every i. �en (g1, . . . , gn) ⊂ p;
moreover, any prime ideal q which satis�es this relation and which is contained
in p contains p′, but cannot be equal to p′, hence is equal to p. �is shows that
V(p) is an irreducible component of V(g1, . . . , gn).

Corollary (1.14.4). — �e dimension of a local noetherian ring is �nite.
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Proof. — If A is local, and m is its maximal ideal, one has dim(A) = ht(m).
Consequently, dim(A) is �nite if A is noetherian.



CHAPTER 2

CATEGORIES AND HOMOLOGICAL ALGEBRA

2.1. �e language of categories

2.1.1. — A categoryC consists in the following data:
– A collection ob(C ) of objects;
– For every two objects M,N, a setC (M,N) calledmorphisms from M to N;
– For every three objects M,N, P, a composition mapC (M,N) ×C (N, P),

( f , g) ↦ g ○ f ,
so that the following axioms are satis�ed:
(i) For every object M, there is a distinguished morphism idM ∈ C (M,M),
called the identity;
(ii) One has idN ○ f = f for every f ∈C (M,N);
(iii) One has g ○ idN = g for every g ∈C (N, P);
(iv) For every four objects M,N, P,Q, and every three morphisms
f ∈ C (M,N), g ∈ C (N, P), h ∈ C (P,Q), the two morphisms h ○ (g ○ f ) and
(h ○ g) ○ f inC (M,Q) are equal (associativity of composition).
A common notation for C (M,N) is also HomC (M,N). Finally, instead of
f ∈C (M,N), one o�en writes f ∶M→ N.

2.1.2. — Let f ∶M → N be a morphism in a category C . One says that f is
le�-invertible, resp. right-invertible, resp. invertible, if there exists a morphism
g∶N→Msuch that g○ f = idM, resp. f ○ g = idN, resp. g○ f = idM and f ○ g = idN.
One proves in the usual way that if f is both le�- and right-invertible, then it
is invertible. An invertible morphism is also called an isomorphism.

Example (2.1.3). — �e category Set of sets has for objects the sets, and for
morphisms the usual maps between sets.
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Example (2.1.4). — �e categoryGr of groups has for objects the groups and
for morphisms the morphisms of groups. �e categoryAb of abelian groups
has for objects the abelian groups and for morphisms the morphisms of groups.
Observe that objects of Ab are objects of Gr , and that morphisms in Ab

coincide with those inGr ; one says thatAb is a full subcategory ofGr .

Example (2.1.5). — �e categoryRing of rings has for objects the rings and
for morphisms the morphisms of rings.

Example (2.1.6). — Similarly, there is the category Field of �elds and, if k is
a �eld, the categoryVeck of k-vector spaces. More generally, for every ring A,
there is a categoryModA of right A-modules, and a category AMod of le�
A-modules.

Example (2.1.7). — LetC be a category; its opposite categoryC o has the same
objects thanC , but the morphisms ofC o are de�ned byC o(M,N) =C (N,M)
and composed in the opposite direction.
It resembles the de�nition of an opposite group. However, a category is usually
di�erent from its opposite category.

Example (2.1.8). — Let I be a partially ordered set. One attaches to I a category I
whose set of objects is I itself. Its morphisms are as follows: let i , j ∈ I; if i ⩽ j,
then I (i , j) has a single element, say the pair (i , j); otherwise, I (i , j) is empty.
�e composition of morphisms is the obvious one: ( j, k) ○ (i , j) = (i , k) if i , j, k
are elements of I such that i ⩽ j ⩽ k.

Remark (2.1.9). — While, in this course, categories are mostly a language to
state algebraic results of quite a formal nature, an adequate treatment of category
theory involves set theoretical issues. Indeed, there does not exist a set containing
all sets, nor a set containing all vector spaces, etc., so that the word collection in
the above de�nition cannot be replaced by the word set (in the sense of Zermelo-
Fraenkel’s theory of sets). However, the theory of sets only considers sets! �ere
are at least three ways to solve this issue:
a) �e easiest one is to treat object of category theory as formulas, in the
sense of �rst order logic. For exampleRing is a formula φRing with one free
variable A that expresses that A is a ring. �is requires to encode a ring A and
all its laws as a tuple: for example, one may consider a ring to be a tuple (A, S, P)
where A is the ring, S is the graph of the addition law and P is the graph of the
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multiplication law. �e formula φRing(x) then checks that x is a triplet of the
form (A, S, P), where S ⊂ A3 and P ⊂ A3, that S is the graph of a map A ×A→ A
which is associative, commutative, has a neutral element, and for which every
element has an opposite, etc.
Within such a framework, one can also consider functors (de�ned below), but
only those which can be de�ned by a formula.
�is treatment would be su�cient at the level of this course.
b) One can also use another theory of sets, such as the one of Bernays-Gödel-

von Neumann, which allows for two kinds of collections: sets and classes. Sets,
obey to the classical formalism of sets, but classes are more general, so that one
can consider the class of all sets (but not the class of all classes). Functors are
de�ned as classes.
�is is a very convenient possibility at the level of this course. However, at a
more advanced development of algebra, one is lead to consider the category of
categories, or categories of functors. �en, this approach becomes unsu�cient
as well.
c) Within the classical Zermelo-Fraenkel theory of sets (with choice),
Grothendieck introduced universes which are very large sets, so large than
every usual construction of sets does not leave a given universe. One also
needs to re�ne the axiom of choice, as well as to add the axiom that there is
an universe, or, more generally, that every set belongs to some universe. �is
axiom is equivalent to the existence of inaccessible cardinals, an axiom which is
well studied and o�en used in advanced set theory.

Remark (2.1.10). — LetC be a category. One says thatC is small if ob(C ) is a
set and ifC (M,N) is a set for every pair (M,N) of objects ofC .
A categoryC such that the collectionC (M,N) is a set for every pair (M,N)
of objects is said to be locally small. In practice most categories considered in
general mathematics, such as the categories of sets, of groups, abelian groups, of
modules over a �xed ring, of vector spaces, etc., are locally small, but not small.
A locally small categoryC is said to be essentially small if the isomorphism
classes of object ofC form a set, that is, if there exists a set such that every object
ofC is isomorphic to one and only one member of this set.
For example, the category of �nitely generated modules over a ring R is essen-
tially small: for every �nitely generated R-module M there is an integer n ⩾ 0
such that M is isomorphic to a quotient of Rn. �e pairs (n, N) where n ⩾ 0
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and N is a submodule of Rn form a set; if we take the quotient of this set by
the equivalence relation for which (n, N) ≃ (p, P) if Rn/N ≃ Rp/P, we get a set
representing all isomorphism classes of �nitely generated R-modules.

De�nition (2.1.11). — Let C be a category, let M,N be objects of C and let
f ∈C (M,N).
One says that f is a epimorphism if for every object P ofC and everymorphisms
g1, g2 ∈C (N, P) such that g1 ○ f = g2 ○ f , one has g1 = g2.
One says that f is an monomorphism if for every object L of C and every

morphisms g1, g2 ∈C (P,M) such that f ○ g1 = f ○ g2, one has g1 = g2.

Exercise (2.1.12). — a) Prove that monomorphisms and epimorphisms in
Set or in categories of modules are respectively injections and surjections.
b) Prove that in the category of rings, monomorphisms are the injective
morphisms. However, show that the canonical morphism f ∶Z → Q is an epi-
morphism of rings.

2.2. Functors

Functors are to categories what maps are to sets.

2.2.1. — LetC andD be two categories.
A functor F fromC toD consists in the following data:
– an object F(M) ofD for every object M ofC ;
– a morphism F( f ) ∈D(F(M), F(N)) for every objets M,N ofC and every
morphism f ∈C (M,N),
subject to the two following requirements:
(i) For every object M ofC , F(idM) = idF(M);
(ii) For every objects M,N, P ofC and every morphisms f ∈C (M,N) and
g ∈C (N, P), one has

F(g ○ f ) = F(g) ○ F( f ).
A contravariant functor F fromC toD is a functor fromC o toD . Explicitly,
it consists in the following data
– an object F(M) ofD for every object M ofC ;
– a morphism F( f ) ∈D(F(N), F(M)) for every objets M,N ofC and every
morphism f ∈C (M,N),
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subject to the two following requirements:
(i) For every object M ofC , F(idM) = idF(M);
(ii) For every objects M,N, P ofC and every morphisms f ∈C (M,N) and
g ∈C (N, P), one has

F(g ○ f ) = F( f ) ○ F(g).

2.2.2. — One says that such a functor F is faithful, resp. full, resp. fully faith-
ful if for every objects M,N of C , the map f ↦ F( f ) from C (M,N) to
C (F(M), F(N)) is injective, resp. surjective, resp. bijective. A similar de�-
nition applies for contravariant functors.
A functor F is essentially surjective if for every object P ofD , there exists an
object M ofC such that F(M) is isomorphic to P in the categoryD .

Example (2.2.3) (Forgetful functors). — Many algebraic structures are de�ned
by enriching other structures. O�en, forgetting this enrichment gives rise to a
functor, called a forgetful functor.
For example, a group is already a set, and a morphism of groups is a map.

�ere is thus a functor that associates to every group its underlying set, thus
forgetting the group structure. One gets a forgetful functor fromGr to Set .
It is faithful, because a group morphism is determined by the map between
the underlying sets. It is however not full because there are maps between two
(non-trivial) groups which are not morphism of groups.

Example (2.2.4). — �e construction of the spectrum of a ring de�nes a con-
travariant functor from the category Ring of rings to the category Top of
topological spaces.
In the other direction, set O(X) to be the ring of continuous complex-valued
functions on a topological space X. If f ∶X→ Y is a continuousmap of topological
spaces, let f ∗∶O(Y) → O(X) be the morphism of rings given by f ∗(u) = u ○ f .
�is de�nes a contravariant functor from the categoryTop to the category of
algebras over the �eld of complex numbers.

2.2.5. — Let F and G be two functors from a categoryC to a categoryD . A
morphism of functors α from F to G consists in the datum, for every object M
of C , of a morphism αM∶F(M) → G(M) such that the following condition
holds: For every morphism f ∶M→ N inC , one has αN ○ F( f ) = G( f ) ○ αM.
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Morphisms of functors can be composed; for every functor F, one has an
identity morphism from F to itself. Consequently, functors fromC toD form
themselves a category, denotes F(C ,D).

2.2.6. — LetC andD be categories, let F be a functor fromC toD and let
G be a functor fromD toC . One says that F and G are quasi-inverse functors
if the functors G ○ F and F ○G are isomorphic to the identity functors of the
categories respectivelyC andD .
One says that a functor F∶C →D is an equivalence of categories if there exists
a functor G∶D →C such that F and G are quasi-inverse functors.

Proposition (2.2.7). — For a functor F∶C →D to be an equivalence of categories,
it is necessary and su�cient that it be fully faithful and essentially surjective.

Proof. — Let G∶D → C be a functor such that F and G are quasi-inverse.
For every object P of D , F ○ G(P) is isomorphic to P, hence F is essentially
surjective. Moreover, for every objects M,N of C , the functor G ○ F, being
isomorphic to idC , induces a bijection fromC (M,N) to itself. �is bijection is
the composition of the map ΦF∶C (M,N) →D(M,N) induced by F and of the
map ΦG∶D(M,N) →C (M,N) induced by G. �is implies that ΦF is injective
and ΦG is surjective. By symmetry, ΦF is surjective too, so that it is bijection. In
other words, the functor F is fully faithful.
Let us now assume that F is fully faithful and essentially surjective. For every
object M ofD , let us choose an object G(M) ofC and an isomorphism αM∶M→
F ○ G(M). Let M,N be objects of D and let f ∈ D(M,N); since F is fully
faithful, there exists a uniquemorphism f ′ ∈C (G(M), G(N)) such that F( f ′) =
αN ○ f ○ α−1M ; set G( f ) = f ′. Since αM ○ idM ○α−1M = idF○G(M) = F(idG(M)), one has
G(idM) = idG(M). Similarly, if M,N, P are objects ofD and f ∈ D(M,N) and
g ∈D(N, P), one has

αP ○ g ○ f ○ α−1M = (αP ○ g ○ α−1N ) ○ (αN ○ f ○ α−1M)
= F(G(g)) ○ F(G( f ))
= F(G(g) ○G( f )),

hence G(g ○ f ) = G(g) ○G( f ). Consequently, the assignment M↦ G(M) and
f ↦ G( f ) is a functor fromD toC . Moreover, the maps αM∶M → F ○G(M)
de�ne an isomorphism of functors from the functor IdD to the functor F ○G.
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Let us now construct an isomorphism of functors from IdD to G ○ F. Let M
be an object ofC . Since F is fully faithful, there exists a unique morphism βM ∈
C (M,G ○ F(M)) such that F(βM) = αF(M). Since αF(M) is an isomorphism, βM
is an isomorphism as well. Moreover, if M,N are objects ofC and f ∶M→ N is
a morphism, then

F(G ○ F( f ) ○ βM) = αF(N) ○ F( f ) ○ α−1F(M) ○ F(βM)
= αF(N) ○ F( f )
= F(βN ○ f ).

Since F is fully faithful, one thus has βN ○ f = G ○ F( f ) ○ βM. In other words, the
isomorphisms βM, for M ∈ ob(C ), de�ne an isomorphism of functors from IdC
to G ○ F.
As a consequence, the functor G is a quasi-inverse of the functor F , hence F
is an equivalence of categories.

Example (2.2.8) (Linear algebra). — Let K be a �eld. Traditionally, undergradu-
ate linear algebra only considers as vector spaces the subspaces of varying vector
spaces Kn, and linear maps between them. �is gives rise to a small category,
because for every integer n, the subspaces of Kn form a set.
�e obvious functor from this category to the category of �nite dimensional
K-vector spaces is an equivalence of categories. It is fully faithful (knowing that
vector spaces lie in some Kn does not alter the linear maps between them). It
is also essentially surjective: since vector spaces have bases, every �nite dimen-
sional K-vector space V is isomorphic to Kn, with n = dim(V). Consequently,
the (small) ‘‘category of undergraduate linear algebra’’ is equivalent to the (large)
category of �nite dimensional vector spaces.

Example (2.2.9) (Covering theory). — Let X be a topological space, and let
x ∈ X. LetCovX be the category of coverings of X. For every covering p∶E→ X,
the fundamental group π1(X, x) acts on the �ber p−1(x). �is de�nes a functor
(‘‘�ber functor’’) F∶E↦ F(E) = p−1(x) from the categoryCovX to the category
of π1(X, x)-sets.
If X is connected and locally pathwise connected, then this functor is fully faith-
ful. If, moreover, X has a simply connected cover (one says that X is ‘‘délaçable’’;
for example, locally contractible topological spaces are délaçable), then it is an
equivalence of categories.
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Example (2.2.10) (Galois theory). — Let K be a perfect �eld and let Ω be an
algebraic closure of K; let GK be the group of K-automorphisms of Ω. For every
�nite extension L of K, let S(L) = HomK(L, Ω), the set of K-morphisms from L
to Ω. �is is a �nite set, of cardinality [L ∶ K], and the group GK acts on it by the
formula g ⋅ φ = g ○ φ, for every φ ∈ S(L) and every g ∈ GK; moreover, the action
of GK is transitive.
Every morphism of extensions f ∶L → L′ induces a map f ∗∶S(L′) → S(L)
which is compatible with the actions of GK. �e assignments L ↦ S(L) and
f ↦ f ∗ de�ne a contravariant functor from the category of �nite extensions of K
to the category of �nite sets endowed with a transitive action of GK.
Galois theory can be summaried by saying that this functor is an equivalence
of categories. An inverse functor F assigns to a set Φ endowed with an action
of GK the sub�eld F(Φ) of Ω which is �xed by the kernel of the action of GK
on Φ. Moreover, the automorphism group of the functor S is the group GK.
By analogy with covering theory, it may look preferable to have a category
equivalent to the full category of �nite GK-sets. To that aim, one just needs
to replace in the previous de�nitions the category of �nite extensions of K by
the category of �nitely dimensional reduced K-algebras (aka ‘‘�nite étale K-
algebras’’, which are nothing but �nite products of �nite extensions of K).

2.3. Limits and colimits

2.3.1. — A quiver Q is a tuple (V, E, s, t) where V and E are sets, and s, t are
maps from E to V. Elements of V are called vertices; elements of E are called
arrows; for an arrow e ∈ E, the vertices s(e) and t(e) are the source and the
target of e.
Every small categoryC has an underlying quiver, whose set of vertices is the
set of objects ofC , and whose set of arrows is the set of morphisms ofC .

2.3.2. Diagrams. — Let Q = (V, E, s, t) be a quiver and letC be a category. A
Q-diagramA inC consists in a family (Av)v∈V of objects ofC and in a family
( fe)e∈E of morphisms ofC such that for every arrow e ∈ E, fe ∈C (As(e), At(e)).

2.3.3. Limits. — A cone on a diagram A is the datum of an object A of C
and of morphisms fv ∶A → Av, for every v ∈ V, such that fe ○ fs(e) = ft(e) for
every e ∈ E. Such a cone is said to be a limit if for every cone (B, (gv)v∈V) of the



2.3. LIMITS AND COLIMITS 55

diagramA , there exists a unique morphism g∶B→ A inC such that gv = fv ○ g
for every v ∈ V.
Let (A, ( fv)) and (A′, ( f ′v)) be two limits of a diagramA . �en there exists a
unique morphism φ∶A′ → A such that f ′v = fv ○φ for every v ∈ V; this morphism
is an isomorphism. In other words, when they exist, limits of diagrams are
unique up to a unique isomorphism.
A limit of a diagramA is sometimes denoted by lim←Ð(A ).

2.3.4. — Let Q = (V, E, s, t) be a quiver, let Qo = (V, E, t, s) be the opposite
quiver in which the source and target maps are exchanged. Every Q-diagramA

in a categoryC is naturally a Qo-diagram in the opposite categoryC o, which
we denote byA o. A colimit of the diagramA is a limit of the diagramA o.
Explicitly, a colimit of the diagramA = ((Av), ( fe)) consists in an object A
of C , and in morphisms fv ∶Av → A, for v ∈ V such that ft(e) ○ fe = fs(e) for
every e ∈ E (such a family (A, ( fv)) can be called a cocone on the diagramA ),
which satis�es the universal property: for every object B ofC and every family
(gv ∶B→ Av) of morphisms such that gt(e) ○ fe = gs(e) for every e ∈ E, there exists
a unique morphism g∶A→ B inC such that gv = g ○ fv for every v ∈ V.
When they exists, colimits of a diagramA are unique up to a unique isomor-
phism. A colimit of a diagramA is sometimes denoted by limÐ→(A ).

Example (2.3.5). — a) Let Q be the empty quiver (no vertex, no arrow). Let
us consider the unique Q-diagram; it consists in nothing. By de�nition, a cone
on this diagram is just an object A of C , and A is a limit if and only if there
exists a unique morphism inC (B, A), for every object B ofC . Consequently, a
limit of this diagram in the categoryC is called an terminal object ofC .
Dually, if A is a colimit of this diagram, it is an object such that, for every
object B of C , there exists a unique morphism C (A, B); it is called a initial
object.
In the category of sets, the empty set is an initial object, while singletons are
terminal objects. In the category of groups, or in the category of A-modules, the
trivial group (with one element) is both an initial and a terminal object. In the
categoryRing of rings, the ring Z is an initial object (for any ring A, there is
exactly one morphism from Z to A), and the ring 0 is a terminal object.
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b) Let Q be the quiver ● ● (two vertices, no arrow). AQ-diagramA consists
in a pair (A,A′) of objects ofC . A colimit of this diagramA is called a coproduct
of this diagram, and a limit is called a product.
�is generalizes to quivers Q = (V,∅, s, t) whose set of arrows is empty: a
Q-diagram is a familyA = (Av)v∈V of objects indexed by V, a colimit ofA is a
coproduct, while a limit ofA is a product.
A coproduct A is endowed with maps fv ∶Av → A and satis�es the following
universal property: for every object B ofC and every family (gv ∶Av → B) of
morphisms, there exists a unique morphism φ∶A → B such that gv = φ ○ fv
for every v ∈ V. Dually, a product A is endowed with maps fv ∶A → Av and
satis�es the following universal property: for every object B of C and every
family (gv ∶B → Av) of morphisms, there exists a unique morphism φ∶B → A
such that gv = fv ○ φ for every v ∈ V.
c) Let Q be the quiver ● ●→→ . A Q-diagram A consists in two objects
M,N ofC and two morphisms f , g∶M→ N inC , hence can be represented as

A = ( M N→
f
→g ).

A limit of this diagramA is called an equalizer of the pair ( f , g). IfC is the
category of sets, or the category of groups, the subset E of M consisting ofm ∈M
such that f (m) = g(m) is an equalizer of the diagramA .
A colimit ofA is called a coequalizer of the pair ( f , g). IfC is the category
of sets, then the quotient of N by the smallest equivalence relation such that
f (m) ∼ g(m) for every m ∈M is a coequalizer of the diagramA . IfC is the
category of groups, then the quotient of N by the smallest normal subgroup
containing the elements f (m)g(m)−1, form ∈M, is a coequalizer of this diagram.
IfC is the category of abelian groups, or the category of modules over a ring,
then the cokernel of f − g is a coequalizer of this diagram.

Exercise (2.3.6). — Let A be a ring, let S be a multiplicative subset of A. Let Q be
the quiver whose vertex set is S and whose set of arrows is S × S, an arrow (s, t)
having source s and target st. Let M be an A-module and letM = ((Ms), fs,t)
be the Q-diagram such that Ms = M for every s, and fs,t is the multiplication
by t. Show that the module S−1M, endowed with the morphism fs∶Ms → S−1M
given by m ↦ m/s, is a colimit of the diagramM .
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Proposition (2.3.7). — In the category of sets, every diagram has a limit and a
colimit.

Proof. — Let Q = (V, E, s, t) be a quiver and let A = ((Av), ( fe)) be a Q-
diagram of sets.
a) Construction of a limit. Let A∗ = ∏v∈VAv and let A be the subset of A∗
consisting of families (av)v∈V such that fe(as(e)) = at(e) for every e ∈ E. For
every v ∈ V, let fv ∶A→ Av be the map deduced by restriction of the canonical
projection from A∗ to Av. By construction, one has fe ○ fs(e) = ft(e) for every
e ∈ E.
Let now B be a set and let (gv)v∈V be a family such that fe ○ gs(e) = gt(e) for
every e ∈ E. Let φ∗∶B → A∗ be the map given by φ∗(b) = (gv(b))v∈V. By
the de�nition of A, one has φ∗(b) ∈ A for every b ∈ B; the map φ∶B → A
deduced from φ∗ satis�es gv = fv ○ φ for every v ∈ V. Moreover, if ψ∶B → A
is a map such that gv = fv ○ ψ for all v ∈ V, then fv(ψ(b)) = gv(b), hence
ψ(b) = (gv(b))v∈V = φ(b). Consequently, (A, ( fv)) is a limit of the diagramA ,
as was to be shown.
b) Construction of a colimit. Let A∗ be the set of pairs (v , a), where v ∈ V and
a ∈ Av. Let ∼ be the smallest equivalence relation on A∗ such that (s(e), a) ∼
(t(e), fe(a)) for every e ∈ E and every a ∈ As(e); let A = A∗/ ∼ be the quotient
set; one writes [v , a] for the class in A of an element (v , a) ∈ A∗. For every v ∈ V,
let fv ∶Av → Abe themap given by a ↦ [v , a]. For every e ∈ E and every a ∈ As(e),
one has

ft(e)( fe(a)) = [t(e), fe(a)] = [s(e), a] = fs(e)(a),
so that ft(e)○ fe = fs(e); this shows that (A, ( fv)) is a cocone of the Q-diagramA .
Let (B, (gv)) be a cocone of this diagram. Let φ∶A → B be a map such that

φ ○ fv = gv for every v ∈ V. For v ∈ V and a ∈ Av, one thus has φ([v , a]) =
φ( fv(a)) = gv(a). Since the map from A∗ to A is surjective, thus shows that
there exists at most one map φ∶A→ B such that φ ○ fv = gv for every v ∈ V. Let
us prove its existence. Let φ∗∶A∗ → B be the map given by φ∗((v , a)) = gv(a),
whenever v ∈ V and a ∈ Av. For every e ∈ E and every a ∈ As(e), one has
φ∗((t(e), fe(a))) = gt(e)( fe(a)) = gs(e)(a) = φ∗((s(e), a)). Consequently, the
map φ∗ is compatible with the equivalence relation ∼ and there exists a map
φ∶A→ B such that φ([v , a]) = φ∗((v , a)) = gv(a) for every v ∈ V and every a ∈
Av. For every v ∈ V and every a ∈ Av, one has φ( fv(a)) = φ∗((v , a)) = gv(a),
hence φ ○ fv = gv .
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�is concludes the proof of the proposition.

Corollary (2.3.8). — LetC be a category among the following: groups, abelian
groups, rings, modules over a given ring, algebras. �en every diagram inC has a
limit.

Proof. — Let Q = (V, E, s, t) be a quiver and let ((Av), ( fe)) be a Q-diagram
inC . �e objects Av are sets endowed with additional laws. �e proof of the
corollary consists in �rst considering the limit of the corresponding Q-diagram
in the category of sets, and in observing that it is naturally an object of the
categoryC which is a limit of the diagram in that category. We keep the notation
introduced in the proof of proposition 2.3.7.
An arbitrary product of groups, rings, etc., has a canonical structure of a group,
a ring, etc., so that the set A∗ = ∏v∈VAv is really an object of the categoryC , and
the projections A∗ → Av are morphisms in that category. Moreover, since the
maps fe are morphisms in the categoryC , one checks readily that its subset A
consisting of families (av) ∈ A∗ such that fe(as(e)) = at(e) is a subobject, hence
an object ofC , and the maps fv ∶A→ Av are morphisms ofC . By inspection of
the proof, one checks that the map φ∶A→ B constructed there is a morphism in
the categoryC , so that (A, ( fv)) is a limit of the diagramA in the categoryC .

Remark (2.3.9). — Let C be a category of algebraic structures, such as sets,
groups, rings, modules, algebras,... It holds true that every diagram inC has
a colimit. However, the colimit of this diagram in C , which is a set with an
algebraic structure, does in general not coincide with the colimit of the corre-
sponding diagram of sets.
For example, the trivial group {e} with one element is an initial object of the
category of groups, while the initial object of the category of sets is the empty
set.
Similarly, the coproduct of a family of sets is its ‘‘disjoint union’’, while the
coproduct of a family of groups is its free product, and the coproduct of a family
of abelian groups is its direct sum.
Coequalizers give another examples of this phenomenon: the coequalizer of a

diagram of groups H G→
f
→g is the quotient of G by the smallest normal

subgroup containing the elements of the form f (x)g(x)−1, for x ∈ H. For
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example, if G is simple and f ≠ g, then Coequal( f , g) is the trivial group, while
the coequalizer of this diagram in the category of sets is generally larger.
We now describe a particular type of quivers (associated to so called �ltrant
partially ordered sets), for which the colimit of a diagram in a category of a given
algebraic structure is an algebraic structure on the set which is the colimit of the
same diagram, viewed as a diagram of sets.

2.3.10. — Let I be a partially ordered set. An I-diagram consists in a family
(Ai)i∈I of objects ofC , and ofmorphisms fi j∶Ai → A j whenever i , j are elements
of I such that i ⩽ j, subject to the conditions:
– One has fii = idAi for every i ∈ I;
– One has f jk ○ fi j = fik for every triple (i , j, k) of elements of I such that
i ⩽ j ⩽ k.
In other words, this is a functor from the category I associated with the partially
ordered set I (see example 2.1.8) to the categoryC . �e morphisms fi j are o�en
omitted from the notation.
Let E be the set of pairs (i , j) of elements of I such that i ⩽ j and let I be the
quiver (I, E, s, t), where s and t are given by s((i , j)) = i and t((i , j)) = j. An
I-diagram naturally gives rise to an I -diagram, whose eventual colimit (resp.
limit) is called its colimit (resp. its limit).
Explicitly, a colimit of an I-diagram ((Ai), ( fi j)) is an object A of the cate-
gory C endowed with morphisms fi ∶Ai → A satisfying f j ○ fi j = fi for all i , j
such that i ⩽ j, and such that object B ofC , and every family (gi ∶Ai → B) of
morphisms such that g j ○ fi j = gi , there exists a unique morphism φ∶A→ B such
that φ ○ fi = gi for every i ∈ I.
Similarly, a limit of an I-diagram ((Ai), ( fi j)) is an object A of the category C
endowed with morphisms fi ∶A→ Ai satisfying fi j ○ fi = f j for all i , j such that
i ⩽ j, and such that object B ofC , and every family (gi ∶B→ Ai) of morphisms
such that fi j ○ gi = g j, there exists a unique morphism φ∶A → B such that
gi = fi ○ φ for every i ∈ I.

2.3.11. — Let I be a partially ordered set. One says that I is �ltrant if every �nite
subset has an upper bound in I. �is means that I is non-empty and for every
two elements i , j ∈ I, there exists k ∈ I such that i ⩽ k and j ⩽ k.
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If I is a �ltrant partially ordered set, an I-diagram is also called a direct system,
or an inductive system. In this case, colimits are also called direct limits or
inductive limits, and limits are also called inverse limits or projective limits.

Proposition (2.3.12). — LetC be a category among the following: groups, abelian
groups, rings, modules, algebras. Every directed system inC has a colimit.

Proof. — Let I be a �ltrant partially ordered set and letA = ((Ai), ( fi j)) be a
directed system indexed by I. Let I be the quiver associated with I, so thatA is
an I -diagram. �e objects ofC are sets endowed with additional maps (binary
laws, operations,...) subject to algebraic conditions. �e proof consists in �rst
considering a colimit (A, ( fi ∶Ai → A) of the diagramA in the category of sets,
as given by proposition 2.3.7, and in observing that it is naturally a colimit in
the categoryC . For this, the hypothesis that the partially ordered set I is �ltrant
is essential. Let us keep the notation of the proof of proposition 2.3.7.
Let ⊺ be one of the binary laws of objects of the categoryC , for example the
group law ifC is the category of groups. While A∗ has not particular structure,
let us prove that there is a unique law ⊺ on A such that fi(a⊺b) = fi(a)⊺ fi(b)
if i ∈ I and a, b ∈ Ai. Indeed, we �rst de�ne a map from A∗ × A∗ to A by
((i , a), ( j, b)) ↦ [k, fik(a)⊺ f jk(b)], whenever k is an element of I such that
i ⩽ k and j ⩽ k. It is well de�ned; indeed, if i ⩽ k′ and j ⩽ k′, let k′′ ∈ I be such
that k ⩽ k′′ and k′ ⩽ k′′; since fkk′′ is compatible with the law ⊺, one has

[k′′, fik′′(a)⊺ f jk′′(b)] = [k′′, fkk′′( fik(a)⊺ f jk(b))] = [k, fik(a)⊺ f jk(b)],

and [k′′, fik′′(a)⊺ f jk′′(b)] = [k′, fik′(a)⊺ f jk′(b)] by symmetry.
We then observe that this map passes to the quotient by the equivalence
relation ∼ and de�nes a desired law ⊺ on A.
If the laws ⊺ on the Ai are commutative (resp. associative), one proves that
the obtained law ⊺ on A is commutative (resp. associative) as well. Assume that
for every i, the law ⊺ has a neutral element ei in Ai ; then, the classes [i , ei] (for
i ∈ I) are equal to a single element e of A which is a neutral element. Similarly, if
every element of Ai has an inverse for the law ⊺, then every element of A has an
inverse: the inverse of a class [i , a] is the class [i , b], where b is an inverse of a
in Ai .
�is treats the cases of groups and abelian groups. �e case of rings is analo-
gous: by what precedes, the colimit A is endowed with a natural addition and a
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natural multiplication compatibly with the maps fi ∶Ai → A; one then checks
that the multiplication distributes over the addition.
Similarly, whenC is the category of R-modules (for some ring R), one checks
that A has a unique structure of R-module such that x ⋅ [i , a] = [i , x ⋅a] for every
x ∈ R, every i ∈ I and every a ∈ Ai .
To conclude the proof of the corollary, it remains �rst to observe that the
maps fi are morphisms in the categoryC , and second to check that the map γ
constructed in the proof of proposition 2.3.7 is a morphism in the categoryC .

2.3.13. — LetC andD be categories, let F∶C →D be a functor.
Let Q be a quiver and let A = ((Av), (φe)) be a Q-diagram inC . Assume
that this diagram has a colimit (A, (φv)). �en F(A ) = ((F(Av)), (F(φe))) is
a Q-diagram inD and the object F(A), equiped with the family of morphisms
(F(φv)), is a cocone on that diagram.
One says that the functor F commutes with colimits if for every such situation,
the cocone (F(A), ((φv))) is a colimit of the diagram F(A ).
�e de�nition, for the functor F, of commuting with limits is analogous: this
means that for every diagramA as above which has a limit (A, (φv)), the cone
(F(A), (F(φv))) on the diagram F(A ) is a limit.

De�nition (2.3.14). — One says that a functor is right exact if it commutes with
every �nite colimit, and that it is le� exact if it commutes with every �nite limit.
One says that a functor is exact if it is both le� exact and right exact.

If F∶C →D is a contravariant functor, one considers it as a functor fromC o

toD , so that we also have a de�nition of right or le� exact contravariant functors.

Example (2.3.15). — Let A be a ring, let S be a multiplicative subset of A. Let us
consider the functor from the category of A-modules to that of S−1A-modules
which is given by (M ↦ S−1M, f ↦ S−1 f ). Let us show that it commute with
every colimit and with every �nite limit.
We begin with the case of colimits. Let Q = (V, E) be a quiver, let M =

((Mv), (φe)) be a Q-diagram of A-modules and let (M, (φv) be its colimit.
Let us then show that the cocone (S−1M, (S−1φv)) on the diagram S−1M =
((S−1Mv), (S−1φe)) satis�es the universal property of a colimit. Let (N, (ψv))
be a cocone on this diagram, where N is an S−1A-module. For every v ∈ V, ψv is
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a morphism from S−1Mv to N such that ψt(e) ○ (S−1φe) = ψs(e) for every e ∈ E.
For every v ∈ V, let ψ′

v ∶Mv → N be the morphism given by m ↦ ψv(m/1); then
(N, (ψ′

v)) is a cocone on the initial diagramM , so that there exists a unique
morphism ψ′∶M→ N such that ψ′ ○φv = ψ′

v for every v ∈ V. Since every element
of S acts by automorphism on N, there exists a unique morphism ψ∶ S−1M→ N
such that ψ(m/s) = (1/s)ψ′(m) for every m ∈ M and every s ∈ S. For every
v ∈ V, every m ∈M and every s ∈ S, one has ψv(m/1) = ψ′

v(m) = ψ′(φv(m)) =
ψ(S−1φv(m/1)), henceψv = ψ○S−1φv . Conversely, everymorphism ψ̃∶ S−1M→ N
such that ψ̃ ○ S−1φv = ψv for every v must satisfy ψ̃(φv(m)/1) = ψ(φv(m/1)) for
every v. Since M is a colimit of the diagramM , the compositions of ψ and ψ̃
with the canonical morphism from M to S−1M coincide with ψ′. �is implies
that ψ = ψ̃.
Let us now prove that the functor M↦ S−1M commutes with every �nite limit.
Let thus Q = (V, E) be a �nite quiver andM = ((Mv), (φe)) be a Q-diagram
of A-modules; let (M, (φv)) be a limit of this diagram. �en (S−1M, (S−1φv))
is a cone on the diagram S−1M , and we need show that it satis�es its universal
property. Let thus N be an S−1A-module and let (ψv)v∈V be a family, where
ψv ∶N → S−1Mv is a morphism of A-mdules such that S−1φe ○ ψs(e) = ψt(e) for
every e ∈ E.
Let n ∈ N. For every v ∈ V, let mv ∈M and sv ∈ S be such that ψv(n) = mv/sv ;
since V is �nite, we may replace sv by∏v∈V sv and assume that all elements sv are
equal to a single element s ∈ S. For every e ∈ E, one then has (S−1φe)(ms(e)/s) =
mt(e)/s, hence there exists s′e ∈ S such that seφe(ms(e)) = s′emt(e). Since E is
�nite, there exists an element s′ ∈ S such that s′φe(ms(e)) = s′mt′(e) for every
e ∈ E. It then follows from the universal property of a limit, applied to the
morphisms A→Mv , a ↦ as′mv , that there exists a unique element m ∈M such
that s′mv = φv(m) for every v ∈ V. One then has ss′ψv(n) = s′mv = φv(m).
De�ne ψ(n) = m/ss′; this is an element of S−1Mwhich does not depend on
the choices of the elements s and s′ such that ψv(n) = mv/s for every v ∈ V and
s′φe(ms(e)) = s′mt′(e) for every e ∈ E. �e map ψ∶N → S−1M is a morphism of
S−1A-modules and one has (S−1φv) ○ ψ = ψv for every v ∈ V.
It is moreover the unique such morphism. Let indeed ψ̃ be a morphism of

A-modules from N to S−1M such that (S−1φv)○ ψ̃ = ψv for every v ∈ V. Let n ∈ N,
let m ∈M and s ∈ S be such that ψ̃(n) = m/s. One then has ψv(n) = φv(m)/s
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for every v ∈ V, so that, in the de�nition of ψ, one can take for s, s′, (mv),m the
elements s, 1, (φv(m)),m, which shows that ψ(n) = m/s = ψ̃(n).

2.4. Representable functors. Adjunction

2.4.1. — LetC be a locally small category and let P be an object ofC .
One de�nes a contravariant functor hP from the category C to the cate-
gory Set of sets, sometimes denoted HomC (●, P), as follows:
– For every object M ofC , one sets hP(M) =C (M,P);
– For every morphism f ∶M → N in C , hP( f ) is the map u ↦ u ○ f from

C (N, P) toC (M,P).
One says that a contravariant functor G∶C o → Set is representable if it is
isomorphic to a functor of the form hP; one then says that P represents the
functor G.
Moreover, the assignment P ↦ hP is a functor from the category C to the
category (C o,Set) of contravariant functos fromC to Set .

2.4.2. — One can also de�ne a functor kP from the categoryC to the category
of sets as follows:
– For every object M ofC , one sets kP(M) =C (P,M);
– For every morphism f ∶M → N in C , kP( f ) is the map u ↦ f ○ u from

C (P,M) toC (P,N).
�is is functor is also denoted by HomC (P, ●). It is also the functor hP rep-
resented by the object P of the opposite categoryC o. Every functor which is
isomorphic to a functor of this form is called a corepresentable functor. If F is
isomorphic to kP, one also says that P corepresents the functor F.
In fact, one o�en writes ‘‘representable’’ instead of ‘‘corepresentable’’, for the
covariance of the functor immediately resolves the ambiguity.

2.4.3. — Algebra is full of universal properties: the free module on a given
basis, quotient ring, quotient module, direct sum and product of modules,
localization, algebra of polynomials on a given set of indeterminates. �ey are
all of the following form: “in such algebraic situation, there exists an object and
a morphism satisfying such property and such that every other morphism which
satis�es this property factors through it”.
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�e property for an object I to be an initial object can be rephrased as a
property of the corepresentable functor HomC (I, ●), namely that this functor
coincides with (or, rather, is isomorphic to) the functor F that sends every object
ofC to a �xed set with one element.
�is allows to rephrase the de�nition of an initial object as follows: an object
I is an initial object if it corepresents the functor F de�ned above.
Objects that represent a given contravariant functor (resp. corepresent a given
functor) are unique up to a unique isomorphism:

Proposition (2.4.4) (Yoneda’s lemma). — LetC be a category, let A and B be
two objects ofC .
a) For any morphism of functors φ from hA to hB, there is a unique morphism
f ∶A → B such that φM(u) = f ○ u for every objectM of C and any morphism
u ∈C (M,A). Moreover, φ is an isomorphism if and only if f is an isomorphism.
b) For any morphism of functors φ from kA to kB, there is a unique morphism
f ∶B → A such that φM(u) = u ○ f for every objectM of C and any morphism
u ∈C (A,M). Moreover, φ is an isomorphism if and only if f is an isomorphism.

Proof. — a) If there exists a morphism f such that φM(u) = f ○ u for every
u ∈ C (M,A), then one has f = f ○ idA = φA(idA), hence the uniqueness of
a morphism f as required. Conversely, let us show that the morphism f =
φA(idA) ∈C (A, B) satis�es the given requirement. To that aim, let us �rst recall
the de�nition of a morphism of contravariant functors: for every object M ofC ,
one has a map φM∶hA(M) → hB(M) such that hB(u) ○ φN = φM ○ hA(u) for
every two objects M and N ofC and every morphism u∶M→ N. In the present
case, this means that for every object M ofC , φM is a map fromC (M,A) to
C (M,B) and that

φN(v) ○ u = hB(u) ○ φN(v) = φM ○ (hA(u))(v) = φM(v ○ u),

for every v ∈C (N,A) and every u ∈ (M,N). Consequently, taking N = A and
v = idA in the above formula, one obtains

f ○ u = φA(idA) ○ u = φM(idA ○u) = φM(u),

for every object M and every morphism u ∈C (M,A).
Let us assume that f is an isomorphism and that g is its inverse. �en the
assignement γM(u) = g○u de�nes amorphism of functors γ fromhB to hA which
is an inverse of φ. Consequently, φ is an isomorphism. Conversely, assume that
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φ is an isomorphism and let ψ be its inverse. By what precedes, there is a unique
morphism g∶B→ A such that ψM(u) = g ○ u for every object M ∈C and every
u ∈C (M,B). �e morphism of functors ψ ○ φ is the identity of hA, and is given
by ψM ○ φM(u) = (g ○ f ) ○ u for every M ∈ C and every u ∈ C (M,A). By the
uniqueness property, one has g ○ f = idA. Similarly, f ○ g = idB. �is shows that
f is an isomorphism.
b) �is follows from a), applied in the opposite categoryC o.

2.4.5. Adjunction. — LetC andD be two categories, let F be a functor from
C toD and G be a functor fromD toC .
An adjunction for the pair (F,G) is the datum, for every object M ofC and
every object N ofD , of a bijection

ΦM,N∶C (M,G(N)) ∼Ð→D(F(M), N),

subject to the following relations: for every objects M,M′ ofC , every morphism
f ∈ C (M′,M), every objects N,N′ ofD , every morphism g ∈D(N,N′), and
every morphism u ∈C (M,G(N)), one has the relation

ΦM′ ,N′(G(g) ○ u ○ f ) = g ○ΦM,N(u) ○ F( f )

inD(F(M′), N′).
If there exists an adjunction for the pair (F,G), one says that it is an adjoint

pair of functors, or a pair of adjoint functors. One also says that F is a le� adjoint
of G, and that G is a right adjoint of F.

Proposition (2.4.6). — LetC andD be two categories, let G be a functor from
D toC . �e following properties are equivalent:
(i) �e functor G has a le� adjoint;
(ii) For every objectM ofC , the functorHomC (M,G(●)) fromD to Set is

representable.

Proof. — (i)⇒(ii). Let F be a functor fromC toD which is a le� adjoint of G
and let (ΦM,N) be an adjunction for the pair (F, G).
Let M be an object of C . �en, the bijections ΦM,N, for every object N
of D , de�ne an isomorphism of functors from the functor C (M,G(●)) to
the functorD(F(M), ●). Consequently, the object F(M) ofD represents the
functor HomC (M,G(●)) fromD to Set .
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(ii)⇒(i). Assume conversely that for every object M of C , the functor
HomC (M,G(●)) from D to Set is representable. For every such object M,
let us choose an object F(M) ofD as well as an isomorphism of functors ΦM,●
from C (M,G(●)) to D(F(M), ●). Let f ∶M′ → M be a morphism in C ,
let F( f ) be the unique morphism f ′∶F(M) → F(N) in D such that for
every u ∈ C (M,G(N)), one has ΦM′ ,N(u ○ f ) = ΦM,N(u) ○ f ′. Since
ΦM,N(u ○ idM) = ΦM,N(u) = ΦM,N(u) ○ idF(M), one has F(idM) = idF(M).
Moreover, if f ∶M′ →M and g∶M′′ →M′ are morphisms inC , then

ΦM′′ ,N(u ○ g ○ f ) = ΦM,N(u ○ g) ○ F( f ) = ΦM,N(u) ○ F(g) ○ F( f ),

so that F(g ○ f ) = F(g) ○ F( f ). Consequently, the assignement M↦ F(M) and
f ↦ F( f ) is a functor, and the morphisms ΦM,N form an adjunction for the pair
(F, G). In particular, G has a le� adjoint.

Example (2.4.7). — Many universal constructions of algebra are particular in-
stances of adjunctions when one of the functors is obvious.
a) Let G be the forgetful functor from the category of A-modules to the
category of sets. Let F be the functor that associates to every set S the free A-
module A(S) on S, with basis (εs)s∈S. For every A-module M, every set S and
and every function f ∶S → M, there exists a unique morphism of A-modules
φ∶A(S) →Mwhich maps εs to f (s) for every s ∈ S. More precisely, the maps

ΦS,M∶HomA(A(S),M) → Fun(S,M), φ ↦ (s ↦ φ(s))

de�ne an adjunction, so that (F, G) is an adjoint pair.
b) �e forgetful functor from the category of groups to the category of sets
has a le� adjoint which associates to every set S the free group on S.
c) Let A be a ring. �e forgetful functor from the category of A-algebras to
the category of sets has a le� adjoint. It associates with every set S the ring of
polynomials A[(Xs)s∈S] with coe�cients in A in the indeterminates (Xs)s∈S.

Example (2.4.8). — Let A and B be rings and let f ∶A → B be a morphism of
rings. Let G∶ModB →ModA be the forgetful functor, that associates with a
B-module M the associated A-module (the same underlying abelian group, with
the structure of an A-module given by a ⋅m = f (a)m, for a ∈ A and m ∈M). In
the other direction, the tensor product induces a functor F∶ModA →ModB:
one sets F(M) = M ⊗A B for every A-module M, and F( f ) = f ⊗ idB for
every morphism f ∶M → N of A-modules. For every A-module M and every
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B-module N, and every A-linear morphism u∶M → N, there exists a unique
B-linear morphism v∶M ⊗A B → N such that v(m ⊗ b) = bu(m) for every
m ∈M and every b ∈ B. (Indeed, the map (m, b) ↦ bu(m) fromM × B to N is
A-bilinear.) Set ΦM,N(u) = v. �e maps

ΦM,N∶HomA(M,N) → HomB(M⊗A B,N)

de�ne an adjunction for the pair (F, G).

Exercise (2.4.9). — Let F∶C →D and G∶D →C be functors such that the pair
(F, G) is adjoint.
Let Q = (V, E, s, t)) be a quiver, letA = ((Av), ( fe)) be a Q-diagram inC .
Let A = limÐ→A be a colimit ofA and let ( fv ∶Av → A) be the family of canonical
maps. Prove that the family F(A ) = ((F(Av)), (F( fe))) is a Q-diagram and that
(F(A), (F( fv))) is a colimit of the Q-diagram F(A ). One says that F respects
all colimits.
Similarly, prove that G respects all limits.

2.5. Exact sequences and complexes of modules

2.5.1. — An exact sequence of A-modules is a sequence ( fn∶Mn → Mn−1), in-
dexed by n ∈ Z, of morphisms of A-modules such that Im( fn+1) = Ker( fn)
for every integer n. One sometimes represents such an exact sequence by the
diagram

⋅ ⋅ ⋅ →Mn+1
fn+1ÐÐ→Mn

fnÐ→Mn−1 → . . .

If it is an eact sequence, one has in particular fn ○ fn+1 = 0 for every integer n.
An exact sequence is said to be short if Mn = 0 except for three consecutive
integers. One thus writes a short exact sequence as

0→ N iÐ→M pÐ→ P→ 0,

omitting the other null terms. �e conditions for this diagram to be a short exact
sequence are the following:
– �e morphism i is injective;
– �e image of i coincides with the kernel of p;
– �e morphism p is surjective.
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Consequently, the morphism i identi�es N with a submodule of M, the ker-
nel Ker(p) of p, and the morphism p identi�es P with the Cokernel Coker(i) =
M/ Im(i) of i.
It could be said that homological algebra is the science of creation andmanage-
ment of exact sequences. A �rst example is given by the following proposition.

Proposition (2.5.2) (Snake lemma). — Let us consider a diagram of morphisms
of A-modules:

0 N M P 0

0 N′ M′ P′ 0

→

→f
→i

→g
→p →

→ h

→ →i
′

→p
′

→

in which the two rows are exact sequences, and the two squares are commutative,
meaning that i′ ○ f = g ○ i and p′ ○ g = h ○ p.
By restriction, the morphisms i and p induce morphisms i∗∶Ker( f ) → Ker(g)
and p∗∶Ker(g) → Ker(h); by passing to the quotients, the morphisms i′ and p′
induce morphisms i′∗∶Coker( f ) → Coker(g) and p′∗∶Coker(g) → Coker(h).
�ere exists a unique morphism ∂∶Ker(h) → Coker( f ) of A-modules such that
∂(p(x)) = cl(y) for every (x , y) ∈M ×N′ such that g(x) = i′(y). Moreover, the
diagram

0→ Ker( f ) i∗Ð→ Ker(g) p∗Ð→ Ker(h) ∂Ð→
∂Ð→ Coker( f ) i′∗Ð→ Coker(g) p′∗Ð→ Coker(h) → 0

is an exact sequence.

Proof. — Let x ∈ Ker( f ); then g(i(x)) = i′( f (x)) = i′(0) = 0, so that i(x) ∈
Ker(g). Similarly, let y ∈ Ker(g); one has h(p(x)) = p′(g(x)) = p′(0)) = 0, so
that p(x) ∈ Ker(h). �is shows the existence of the morphisms i∗ and p∗.
Let x′ ∈ Im( f ) and let x ∈ N be such that x′ = f (x); then i′(x′) = i′ ○
f (x) = g(i(x)), i′(x′) ∈ Im(g). Consequently, the kernel of the composition
N′ i′Ð→ M′ → M′/ Im(g) = Coker(g) contains Im( f ). Passing to the quotient,
one obtains a morphism i′∗ from M′/im( f ) = Coker( f ) to Coker(g).
One constructs the morphism p′∗∶Coker(g) → Coker(h) in the same way.
�e morphism i∗ is injective: let x ∈ N be such that i∗(x) = 0; �en i(x) = 0,
hence x = 0.
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Moreover, for every x ∈ Ker( f ), one has p∗(i∗(x)) = p(i(x)) = 0, hence
i∗(x) ∈ Ker(p∗). On the other hand, let y ∈ Ker(p∗); then y ∈ Ker(g) and
p(y) = 0; since Ker(p) = Im(i), there exists x ∈ N such that y = i(x); one has
i( f (x)) = g(i(x)) = g(y) = 0, hence f (x) since i is injective; consequently,
y ∈ Im(i∗). �is shows that Im(i∗) = ker(p∗).
We write cl(x) to denote the class in Coker( f ) of an element x ∈ N′, and simi-
larly for the other two cokernels. Let x ∈ N′; then p′∗(i′∗(cl(x)) = cl(p(i(x))) =
0; consequently, Im(i′∗) ⊂ ker(p′∗). Let y ∈ M′ be such that cl(y) ∈ ker(p′∗);
one thus has cl(p′(y)) = p′∗(cl(y)) = 0 in Coker(h), so that p′(y) ∈ Im(h);
let then x1 ∈ P be such that p′(y) = h(x); since p is surjective, there exists
x ∈M such that x1 = p(x); one has p′(g(x)) = h(p(x)) = h(x1) = p′(y), hence
y − g(x) ∈ ker(p′); therefore, there exists z ∈ N′ such that y = g(x) + i′(z); this
implies that cl(y) = cl(i′(z)) = i′∗(cl(z)) ∈ Im(i′∗). We thus have shown that
ker(p′∗) = Im(i′∗).
Moreover, let y ∈ Coker(p′), let y′ ∈ P′ be such that y = cl(y′); since p′ is
surjective, there exists x′ ∈M′ such that y′ = p′(x′); one then has y = cl(y′) =
cl(p′(y′)) = p′∗(cl(y′)), which shows that p′∗ is surjective.
It remains to construct the homomorphism ∂ and to show that Im(p∗) =
ker(∂) and Im(∂) = ker(i′∗). Let Q be the submodule of M ×N′ consisting of
pairs (x , y) such that g(x) = i′(y). If (x , y) ∈ Q, then h(p(x)) = p′(g(x)) =
p′(i′(y)) = 0, hence p(x) ∈ ker(h). Let q∶Q → ker(h) be the morphism of
A-modules given by q(x , y) = p(x); it is surjective. Let indeed z ∈ ker(h); since
p is surjective, there exists x ∈Msuch that z = p(x); then p′(g(x)) = h(p(x)) =
h(z) = 0, hence there exists y ∈ N′ such that g(x) = i′(y), and z = q(x , y), as
was to be shown. Consequently, there exists at more one morphism ∂∶ker(h) →
Coker( f ) such that ∂(q(x , y)) = cl(y) for every (x , y) ∈ Q. To prove the
existence of the morphism ∂, it su�ces to show that if (x , y) ∈ Q satis�es
q(x , y) = 0, then cl(y) = 0; but then, p(x) = 0, hence x ∈ Im(i), so that there
exists z ∈ N such that x = i(z); it follows that i′( f (z)) = g(i(z)) = g(x) = i′(y),
hence y = f (z) since i′ is injective; consequently, y ∈ Im( f ) and cl(y) = 0.
Let x ∈ Ker(g); then (x , 0) ∈ Q, so that ∂(p∗(x)) = ∂(q(x , y)) = cl(0) = 0;
this shows that ∂ ○ p∗ = 0. Conversely, let z ∈ ker(∂); let (x , y) ∈ Q be such
that q(x , y) = z; one has ∂(z) = cl(y), hence y ∈ Im( f ); consequently, there
exists t ∈ N such that y = f (t) and g(x) = i′(y) = i′( f (t)) = g(i(t)), so that
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u = x − i(t) ∈ ker(g);; then z = p(x) = p(u + i(t)) = p(u) ∈ Im(p∗). We have
shown that ker(∂) = Im(p∗).
For every (x , y) ∈ Q, one has i′∗(cl(y)) = cl(i′(y)) = cl(g(x)) = 0
in Coker(g), so that i′∗ ○ ∂ = 0. Conversely, let y′ ∈ ker(i′∗); let y ∈ N′ be
such that y′ = cl(y); by de�nition, 0 = i′∗(y′) = cl(i′(y)) in Coker(g), so
that there exists x1 ∈ M such that i′(y) = g(x); one then has (x , y) ∈ Q and
y′ = cl(y) = ∂(p(x)); we thus have shown that Im(∂) = ker(i′∗) and this
concludes the proof of the snake lemma.

Corollary (2.5.3). — a) If f and h are injective, then g is injective. If f and h
are surjective, then g is surjective.
b) If f is surjective and g is injective, then h is injective.
c) If g is surjective and h is injective, then f is surjective.

Proof. — a) Assume that f and h are injective. �e exact sequence given by
the snake lemma begins with 0→ 0 i∗Ð→ ker(g) p∗Ð→ 0. Necessarily, ker(g) = 0.
If f and h are surjective, the exact sequence ends with 0

i′∗Ð→ Coker(g) p′∗Ð→ 0,
so that Coker(g) = 0 and f is surjective.
b) If f is surjective and g is injective, one has ker(g) = 0 and Coker( f ) = 0.

�e middle of the exact sequence can thus be rewritten as 0
p∗Ð→ ker(h) ∂Ð→ 0, so

that h est injective.
c) Finally, if g is surjective and h is injective, we have ker(h) = 0, Coker(g) =
0, hence an exact sequence 0 ∂Ð→ Coker( f ) i′∗Ð→ 0, which implies that Coker( f ) =
0 and f is surjective.

2.6. Di�erential modules and their homology

2.6.1. — To construct exact sequences, it appears important to consider dia-
grams as in the de�nition but where one relaxes the conditions Im( fn+1) =
Ker( fn) of an exact sequence and only assumes the inclusions Im( fn+1) ⊂
Ker( fn). Such diagrams are called complexes, but it will be technically con-
venient to de�ne them as graded di�erential modules.

De�nition (2.6.2). — Let A be a ring.
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A di�erential A-module is an A-moduleM endowed with an endomorphism dM
such that dM ○ dM = 0.
Let (M, dM) and (N, dN) be di�erential A-modules. A morphism f ∶M→ N is

a morphism of di�erential modules if dN ○ f = f ○ dM.

Let Ã = A[T]/(T2) and let ε be the class of T in Ã. With any di�erential
module (M, dM) one associates a Ã-module M̃ by setting M̃ =M, endowed with
the structure of module given by (a + εb) ⋅m = am + bdM(m). Conversely, any
Ã-module de�nes a di�erential A-module with the same underlying A-module,
and the di�erential being induced by the multiplication by ε.
A morphism of di�erential modules f ∶M→ N is nothing but a morphism of
the associated Ã-modules.
Let (M, d) and (N, d) be di�erential A-modules and let f ∶M→ N be a mor-
phism of di�erential modules. �en ker( f ) is a di�erential submodule ofM, and
Im( f ) is a di�erential submodule of N. Moreover, Coker( f ) has a unique struc-
ture of a di�erential module such that the canonical surjection N→ Coker( f )
is a morphism of di�erential modules.

2.6.3. — Let (M, d) be a di�erential A-module. One associates with M the
following A-modules:
– �e module of cycles, Z(M) = ker(d);
– �e module of boundaries, B(M) = Im(d);
– �e module H(M) = Z(M)/B(M) of homologies.
Observe that f (Z(M)) ⊂ Z(N), and f (B(M)) ⊂ B(N). Consequently, f
induces a morphism H( f )∶H(M) → H(N).
Let M,N, P be di�erential A-modules, let let f ∶M → N and g∶N → P be
morphisms of di�erential modules. �en g ○ f is a morphism of di�erential
modules and H(g ○ f ) = H(g) ○H( f ).

2.6.4. — Let A be a ring. A graded A-module is an A-module M together with
a family (Mn) of submodules, indexed by Z, of which M is the direct sum.
Elements of Mn are called homogeneous of degree n, the module Mn is called
the homogeneous component of degree n of M.
�e graduation is said to be bounded from below (resp. from above) if there
exists an integer m ∈ Z such that Mn = 0 for n ⩽ m (resp. for n ⩾ m); it is
bounded if it is bounded both from above and from below.
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A submodule N of M is said to be graded if N is the direct sum of the submod-
ules Nn = N ∩Mn. If this is the case, the quotient module P = M/N admits a
natural graduation such that Pn =MN/Nn for every integer n.
LetM,N be gradedA-modules and let f ∶M→ Nbe amorphism of A-modules.
One says that f is graded of degre r if f (Mn) ⊂ Nn+r for every n ∈ Z. One also
calls the induced morphism fn∶Mn → Nn+r the homogeneous component of
degree n of f . If f is a graded morphism of graded A-modules, then Ker( f ) is a
graded submodule of M and Im( f ) is a graded submodule of N, and Coker( f )
has a natural structure of a graded module such that the canonical projection
N→ Coker( f ) is graded of degree 0.

De�nition (2.6.5). — Let A be a ring. A graded di�erential A-module is a
di�erential A-module (M, dM) such that dM is homogeneous of some degree r.

Let (M, d) be a graded di�erential A-module, let r ∈ Z be such that d has
degree r. For every integer n, let Mn and dn∶Mn →Mn+r be the homogeneous
components of degree n of M and d. �en dn+r ○ dn = 0.
Conversely, let (Mn) is a family of A-modules, let r ∈ Z, and, for every n,
let dn∶Mn →Mn+r be a morphism of A-modules. If dn+r ○ dn for each n, then
one de�nes a complex (M, d) of A-modules by setting M = ⊕Mn and letting d
be the unique endomorphism of M such that d∣Mn = dn.
When r = −1, a graded di�erential A-module amounts to a diagram

⋅ ⋅ ⋅ →Mn+1
dn+1ÐÐ→Mn

dnÐ→Mn−1 → . . .

of morphisms of A-modules such that dn ○ dn+1 = 0 for all n. One speaks of a
homological complex, or simply a complex.
When r = 1, a graded di�erential A-module amounts to a diagram

⋅ ⋅ ⋅ →Mn−1
dn−1ÐÐ→Mn

dnÐ→Mn+1 → . . .

of morphisms of A-modules such that dn ○ dn−1 = 0 for all n. One speaks of a
cohomological complex. In this case, the custom is to indicate the grading as an
upper index, as in the diagram

⋅ ⋅ ⋅ →Mn−1 d
n−1
ÐÐ→Mn d

n

Ð→Mn+1 → . . .

Amorphism of graded di�erential modules is a morphism of di�erential mod-
ules which is a graded morphism of degree 0 of the underlying graded modules.
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Lemma (2.6.6). — Let (M, d) be a graded di�erential A-module of degree r.
a) �e modules Z(M) and B(M) are graded submodules of (M, d), and
Bn(M) = B(M) ∩Mn = d(Mn−r).
b) �e moduleH(M) is a graded A-module in a natural way, whose homoge-

neous component of degree n is given byHn(M) = Zn(M)/Bn(M).
c) Let (N, d) be a graded di�erential A-module of degree r and let f ∶M→ N
be a morphism of graded di�erential A-modules. �en the induced morphism
H( f )∶H(M) → H(N) is graded of degree 0.

Proof. — For every n, let Zn(M) = Z(M) ∩Mn and Bn(M) = B(M) ∩Mn.
Let x ∈ Z(M) and let (xn) be the homogenous components of x; one has
d(x) = ∑ d(xn); for every n, d(xn) ∈ Mn+r, hence d(xn) = 0 for all n. Conse-
quently, xn ∈ Zn(M) for each n. �is shows that Z(M) = ⊕Zn(M).
�e inclusion d(Mn−r) ⊂ Bn is obvious since d has degree r. Conversely, let
x ∈ Bn(M) and let y ∈M be such that x = d(y). Let (ym) be the homogeneous
components of y; one has d(y) = ∑ d(ym) = x. Since d(ym) ∈ Mm+r and
x ∈Mn, this implies that d(ym) = 0 for m ≠ n − r and d(yn−r) = x. �is shows
that x ∈ d(Mn−r), so that d(Mn−r) = Bn.
Consequently,⊕Bn = ⊕ d(Mn−r) = d(M) = B(M), so that B(M) is a graded
submodule of M.
Let f ∶M→ N be a morphism of graded di�erential modules. Since f (Mn) ⊂
Nn, one has f (Zn(M)) ⊂ Zn(N), hence H( f )(Hn(M)) ⊂ Hn(N), showing that
H( f ) is a graded morphism of degree 0.

2.6.7. — One says that f is injective (resp. surjective) if it is injective (resp.
surjective) as a morphism of A-modules.
Similarly, an exact sequence of complexes is a sequence of morphisms

( fn∶Mn →Mn−1) of complexes such that the associated sequence of A-modules
is an exact sequence.

�eorem (2.6.8). — Let (M, dM), (N, dN), (P, dP) be di�erentialA-modules lying
in an exact sequence

0→M iÐ→ N pÐ→ P→ 0
of di�erential modules. �en there is a unique morphism ∂∶H(P) → H(M) of A-
modules such that ∂(cl(p(y))) = cl(x) for every pair (x , y) ∈ Z(M)× p−1(Z(P))
such that dN(y) = i(x).
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One has ker(H(i)) = Im(∂), ker(H(p)) = Im(H(i)) and ker(∂) =
Im(H(p)).
Moreover, ifM,N, P are graded di�erential A-modules whose di�erential have

degree r, and if the morphisms i and p are graded of degree 0, then ∂ has degree r.

In other words, one has an ‘‘exact triangle’’

H(P)

H(M) H(N)

→∂

→H(i)

→H(p)

When M,N, P are homological complexes, one has r = −1 and this triangle
can be rewritten as the long exact sequence

⋅ ⋅ ⋅ → Hn+1(P)
∂Ð→ Hn(M) Hn(i)ÐÐÐ→ Hn(N) Hn(p)ÐÐÐ→ Hn(P)

∂Ð→ Hn−1(M) → . . .
When M,N, P are cohomological complexes, one has r = 1 and this triangle
can be rewritten as the long exact sequence

⋅ ⋅ ⋅ → Hn−1(P)
∂Ð→ Hn(M) Hn(i)ÐÐÐ→ Hn(N) Hn(p)ÐÐÐ→ Hn(P)

∂Ð→ Hn+1(M) → . . .
Proof. — Let Q be the submodule of M ×N consisting of pairs (x , y) such that
x ∈ Z(M), i(x) = dy and p(y) ∈ Z(P). Let ζ ∈ H(P) and let z ∈ Z(P) be such
that ζ = cl(z). Since p is surjective, there exists y ∈ N such that p(y) = z; then
p(d(y)) = d(p(y)) = d(z) = 0, so that d(y) ∈ ker(p). Consequently, there
exists x ∈ M such that d(y) = i(x); since i(d(x)) = d(i(x)) = d2(y) = 0
and i is injective, one has d(x) = 0, that is, x ∈ Z(M). �is shows that map
from Q→ Z(P) given by (x , y) ↦ p(y) is surjective.
As a consequence, there exists at most one morphism ∂∶H(P) → H(M)
such that ∂(cl(p(y))) = cl(x) for every (x , y) ∈ Q. Noreover, to prove that
such a morphism exists, it su�ces to show that for every (x , y) ∈ Q such that
p(y) ∈ B(P), one has x ∈ B(M). So let (x , y) be such a pair; let z′ ∈ P be such
that p(y) = d(z′) and let y′ ∈ N be such that z′ = p(y′); one has p(y) = d(z′) =
d(p(y′)) = p(d(y′)), hence there exists x′ ∈ M such that y = d(y′) + i(x′);
then i(x) = d(y) = d(i(x′)) = i(d(x′)), hence x = d(x′)) since i is injective;
consequently, x ∈ B(M) as was to be shown.
Let us show that ∂ is homogeneous of degree r. Let ζ ∈ Hn(P). Let us revisit
the argument showing that the map (x , y) ↦ cl(p(y)) from Q to H(P) is
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surjective. Let z ∈ Zn(P) be such that ζ = cl(z). Since p is surjective, there
exists y ∈ N such that z = p(y); let (ym) be the homogeneous components
of y; one has y = ∑ ym, hence z = p(y) = ∑ p(ym); since z is homogeneous
of degree n, and p(ym) is homogeneous of degree m, one has p(ym) = 0 for
m ≠ n; consequently, z = p(yn). Since p(d(yn)) = d(p(yn)) = 0, there exists
x ∈ M such that d(yn) = i(x); let (xm) be the homogeneous components
of M; one has d(yn) = ∑ i(xm). Since d(yn) is homogeneous of degree n + r
and i(xm) is homogeneous of degree m, one has d(yn) = i(xn+r). Moreover,
i(d(xn+r)) = d(i(xn+r)) = d2(yn) = 0, so that d(xn+r) = 0 because i is injective.
�en (xn+r , yn) ∈ Q, ζ = cl(p(yn)), hence ∂(ζ) = cl(xn+r) ∈ Hn+r(P), which
shows that ∂ is homogeneous of degree r, as claimed.
To shorten notation, we write i∗ = H(i) and p∗ = H(p); let us show that
Im(i∗) = ker(p∗). Since p○ i = 0, one has p∗○ i∗ = 0. Conversely, let η ∈ ker(p∗)
and let y ∈ H(N) be such that η = cl(y); one has p∗(η) = cl(p(y)), hence
p(y) ∈ B(P). Let z′ ∈ P be such that p(y) = d(z′) and let y′ ∈ N be such that
z′ = p(y′); one has p(y) = d(z′) = d(p(y′)) = p(d(y′)), so that there exists
x ∈M such that y − d(y′) = i(x). �en η = cl(y) = cl(i(x)) = i∗(cl(x)), hence
η ∈ Im(i∗).
Let us now show that Im(p∗) = ker(∂). Let ζ ∈ Im(p∗); let η ∈ H(N) be such
that ζ = p∗(η) and let y ∈ Z(N) be such that ζ = cl(y). �en d(y) = i(0), so
that (0, x) ∈ Q. One thus has ∂(ζ) = cl(0) = 0. Conversely, let ζ ∈ ker(∂). Let
(x , y) ∈ Q be such that cl(p(y)) = ζ . One has cl(x) = ∂(ζ) = 0 in H(M) so that
x ∈ B(M). Consequently, there exists x′ ∈ M such that x = d(x′); let y′ = y −
i(x′); one has p(y′) = p(y) and d(y′) = d(y)−d(i(x′)) = d(y)− i(d(x′)) = 0,
so that y′ ∈ Z(N). �is implies that ζ = cl(p(y′)) = p∗(cl(y′)) ∈ Im(p∗).
Let us �nally show that Im(∂) = ker(i∗). Let (x , y) ∈ Q; one has ∂(cl(p(y)) =
cl(x), hence i∗(∂(cl(p(y)))) = cl(i(x)) = cl(d(y)) = d(cl(y)) = 0.
Conversely, let ξ ∈ ker(i∗) and let x ∈ Z(N) be such that ξ = cl(x).
Since i∗(ξ) = cl(i(x)), there exists y ∈ N such that d(y) = i(x). �en
d(p(y)) = p(d(y)) = p(i(x)) = 0, so that p(y) ∈ N. �is implies that
(x , y) ∈ Q and that ∂(cl(p(y)) = ξ, so that ξ ∈ Im(∂).
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Remark (2.6.9). — Let M,M′, N, N′, P, P′ be di�erential modules and let

0 M N P 0

0 M′ N′ P′ 0

→ →i

→ f
→p

→ g
→

→ h

→ →i
′

→p
′

→

be a commutative diagram of di�erential modules whose two rows are exact
sequences. �en the morphism ∂∶H(P) → H(M) and ∂′∶H(P′) → H(M′)
satisfy

∂′ ○H(h) = H( f ) ○ ∂.

Let indeed (x , y) ∈ Z(M) × p−1(Z(P)) such that dN(y) = i(x). �e de�nition
of ∂ thus implies that

H( f ) ○ ∂(cl(p(y)) = H( f )(cl(x)) = cl( f (x)).

On the other hand, one has f (x) ∈ Z(M′), since dM′( f (x)) = f (dM(x)) = 0,
(p′)(g(y)) ∈ Z(P′), since dP′(p′(g(y)) = dP′(h(p(y)) = h(dP(p(y)) = h(0) =
0. Moreover, dN′(g(y)) = g(dN(y)) = g(i(x)) = i′( f (x)), and it follows from
the de�nition of ∂′ that

∂′ ○H(h)(cl(p(y)) = ∂′(cl(h(p(y)))) = ∂′(cl(p′(g(y)))) = cl( f (x)).

�is shows that ∂′ ○H(h) = H( f ) ○ ∂, as claimed.

De�nition (2.6.10). — Let (M, dM) and (N, dN) be di�erential modules. Let f , g
be morphisms of di�erential modules fromM to N. An homotopy from f to g is
an A-linear morphism u∶M→ N such that g − f = dN ○ u + u ○ dM. One says that
f and g are homotopic if there exists a homotopy from f to g.

Lemma (2.6.11). — Assume that f and g are homotopic. �enH( f ) = H(g).

Proof. — Let ξ ∈ H(M) and let x ∈ Z(M) be such that ξ = cl(x). �en f∗(ξ) =
cl( f (x)) and g∗(ξ) = cl(g(x)), hence

g∗(ξ) − f∗(ξ) = cl(g(x) − f (x)) = cl(d(u(x))) + cl(u(d(x)) = 0

since d(x) = 0 and d(u(x)) ∈ B(N).
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2.7. Projective modules and projective resolutions

De�nition (2.7.1). — Let A be a ring and let P be an A-module. One says thatM
is projective if every surjective homomorphism p∶M → P has a section, that is,
there exists a morphism s∶P→M such that p ○ s = idP.

Proposition (2.7.2). — Let A be a ring and let P be an A-module. �e following
properties are equivalent.
(i) �e A-module P is projective;
(ii) For every surjective morphism ofA-modules p∶M→ N and every morphism
f ∶P→ N, there exists a morphism φ∶P→M such that f = p ○ φ;
(iii) �e module P is a direct summand of a free A-module: there exists an

A-module Q such that P⊕Q is a free A-module.
Moreover, ifM is projective and �nitely generated, thenM is a direct summand of
a free �nitely generated A-module.
In particular, a free A-module is projective.

Proof. — (i)⇒(ii). Let us assume that P is projective. Let p∶M → N be a
surjective morphism of A-modules and let f ∶P→ N be a morphism. Let Q be
the submodule of P ×M consisting of pairs (x , y) such that f (x) = p(y) and
let q∶Q→ P be the morphism induced by the �rst projection. For every x ∈ P,
there exists y ∈M such that p(y) = f (x), because p is surjective; consequently,
(x , y) ∈ Q, q(x , y) = x and q is surjective. Since P is a projective A-module,
there exists an A-morphism s∶P → Q such that q ○ s = idP; for x ∈ P, write
s(x) = (x , φ(x)). �en φ is a morphism from P to M; for every x ∈ P, one has
(x , φ(x)) ∈ Q, hence p(φ(x)) = f (x).
(ii)⇒(i). Indeed, the property of the de�nition of a projective module is the
particular case of (ii) where N = P and f = idP.
(i)⇒(iii). Let F be a free A-module and let p∶F→ P be a surjective homomor-
phism; if P is �nitely generated, let us choose F to be �nitely generated too. Let
r∶P→ F be a section of p and let F1 = r(P). Since r is injective, P is isomorphic
to F2. Let F2 = ker(p); this is a submodule of F. Let us check that F = F1⊕F2. For
every x ∈ F, one has x = r(p(x)) + (x − r(p(x))); by de�nition, r(p(x)) ∈ F1,
while p(x − r(p(x))) = p(x) − (p ○ r)(p(x)) = p(x) − p(x) = 0, so that
x−r(p(x)) ∈ F2; consequently, F = F1+F2. Letmoreover x ∈ F1∩F2. �en there ex-
ists y ∈ P such that x = r(y) and p(x) = 0; one thus has y = p(r(y)) = p(x) = 0,
hence x = 0. �is shows that (i)⇒(iii), as well as the two additional assertions.
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(iii)⇒(i). Let p∶M → P be a surjective morphism of A-modules. Let Q
be a A-module such that P ⊕ Q is a free A-module. Let (ei)i∈I be a basis of
P⊕Q; for every i, write ei = (xi , yi). For every i ∈ I, let us choose an element
zi ∈M such that p(zi) = xi . Since (ei) is a basis of P⊕Q, there exists a unique
morphism f ∶P ⊕Q → M such that f (ei) = zi for every i. Let x ∈ P, let (ai)
be the coordinates of (x , 0) ∈ P⊕Q in the basis (ei). One has x = ∑ aixi and
0 = ∑ ai yi, hence f (x , 0) = ∑ aizi and p( f (x , 0)) = ∑ aixi = x. �is shows
that the map r∶ x ↦ f (x , 0) is a morphism from P to M such that p ○ r = idP.
Consequently, P is projective.

Corollary (2.7.3). — A direct sum of projective A-modules is projective.

�eorem (2.7.4) (Kaplansky). — Let A be a local ring. Every projective A-module
is free.

Proof. — Let M be a projective A-module. We only prove the proposition
under the additional assumption that M is �nitely generated. Let m be the
maximal ideal of A and let k = A/m be its residue �eld. �en M/mM is a �nitely
generated vector space over the �eld k; let (x1, . . . , xn) be a family of elements
of M whose classes modulomM form a basis of that vector space. Let us show
that (x1, . . . , xn) is a basis of M. Letting p∶An →M be the morphism given by
p(a1, . . . , an) = a1x1 + ⋅ ⋅ ⋅ + anxn, we need to prove that p is an isomorphism.
Let N be the image of p, that is, the submodule of M generated by (x1, . . . , xn).
By construction, one has M = N + mM, hence the quotient A-module M/N
satis�es M/N = m(M/N). By Nakayama’s lemma, one thus has M/N = 0, hence
N =M: the morphism p is surjective and the family (x1, . . . , xn) generates M.
Since M is projective, there exists a morphism r∶M→ An such that p ○ r = idM.
Let M′ = r(M) and N = ker(p); as shown in the proof of proposition 2.7.2, one
has An = M′ ⊕ N; in particular, N is isomorphic to a quotient of An, hence
is �nitely generated. One has kn ≃ An/mAn ≃ (M′/mM′) ⊕ (N/mN). By
construction, M′ is isomorphic to M, hence M′/mM′ is an n-dimensional vector
space over k. �is implies that N/mN = 0, hence N = mN; by Nakayama’s
lemma, one has N = 0 hence p is injective. �is concludes the proof.

De�nition (2.7.5). — LetA be a ring and letM be anA-module. A projective (resp.
free) resolution ofM is a homological complex (P, d) such that Pn is projective
(resp. free) for every n, Pn = 0 for n < 0, together with a morphism p∶P0 → M,
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such that the diagram

⋅ ⋅ ⋅ → P1
d1Ð→ P0

pÐ→M→ 0

is exact.

�eorem (2.7.6). — a) Every module has a free resolution;
b) If A is a noetherian ring andM is �nitely generated A-module, then there

exists a free resolution (P, d) ofM such that Pn is �nitely generated for every n;
c) Let (P, d , p) and (P′, d′, p′) be projective resolutions of modulesM andM′,

and let f ∶M→M′ be an A-morphism. �ere exists a morphism of graded di�er-
ential modules φ∶P→ P′ such that p′ ○ φ0 = f ○ p;
d) Two morphisms φ and ψ of graded di�erential modules from P to P′ such

that p′ ○ φ0 = p′ ○ ψ0 = f ○ p are homotopic.

Proof. — We prove a) and b) at the same time. Let P0 be a free A-module
together with a surjective homomorphism p∶P0 →M; if M is �nitely generated,
we choose P0 to be �nitely generated too. Let P′0 = ker(p); if M is �nitely
generated and A is noetherian, then P1 s �nitely generated. We then choose a
free A-module P1 together with a morphism d1∶P1 → P0 whose image is P′0; in
the ‘‘�nitely generated case’’, we choose P1 to be �nitely generated. By induction,
we construct the desired homological complex.
c) Since P0 is projective and p′∶P′0 →M′ is surjective; applying property (ii) of
proposition 2.7.2 to the morphism f ○ p∶P0 →M′, we conclude that there exists
a morphism φ0∶P0 → P′0 such that p′ ○ φ0 = f ○ p.
In particular, one has p′ ○ φ0 ○ d1 = f ○ p ○ d1 = 0 and Im(φ0 ○ d1) ⊂ ker(p′) =
Im(d′1). Applying property (ii) of proposition 2.7.2 to the projective module P1,
to the surjective morphism from P′1 to Im(d′1) deduced from d′1, and to the
morphism φ0 ○ d1∶P1 → Im(d′1), there exists a morphism φ1∶P1 → P′1 such that
d′1 ○ φ1 = φ0 ○ d1.
By induction on n, we construct φn∶Pn → P′n such that d′n ○ φn = φn−1 ○ dn−1
if n ⩾ 1. �en the morphism φ∶P → P′ which restricts to φn on Pn is a graded
morphism of di�erential modules, and one has f ○ p = p′ ○ φ0.
d) Let φ and ψ be morphisms of graded di�erential modules such that f ○ p =
p′ ○ φ0 = p′ ○ψ0. For every n, let αn = ψn − φn; this is a morphism of A-modules
from Pn to P′n. Set un = 0 for n < 0.
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One has p′ ○ α0 = p′ ○ ψ0 − p′ ○ φ0 = 0, hence Im(α0) ⊂ ker(p′) = Im(d′1).
Applying property (ii) of proposition 2.7.2, there exists a morphism u0∶P0 → P′1
of A-modules such that α0 = d′1 ○ u0.
One has

d′1 ○ u0 ○ d1 = α0 ○ d1 = d′1 ○ α1,
hence the image of the morphism α1 − u0 ○ d1∶P1 → P′1 is contained in ker(d′1) =
Im(d′2). Since P1 is projective, there exists a morphism u1∶P1 → P′2 such that
α1 − u0 ○ d1 = d′2 ○ u1.
Assume that there exists, for each integer m < n, a morphism um∶Pm → P′m+1
such that αm = d′m+1 ○um +um−1 ○ dm, In particular, αn−1 = d′n ○un−1 +un−2 ○ dn−1,
so that

d′n ○ un−1 ○ dn = (αn−1 − un−2 ○ dn−1) ○ dn = αn−1 ○ dn = d′n ○ αn .

As a consequence, the image of themorphism αn−un−1○dn∶Pn → P′n is contained
in ker(d′n) = Im(d′n+1). Since Pn is a projective module, there exists a morphism
un∶Pn → P′n+1 such that αn = un−1 ○ dn + d′n+1 ○ un.
By induction, this shows the existence of a graded morphism u∶P → P′ of
graded degree 1 such that α = u ○ d + d′ ○ u. �is is the required homotopy.

2.8. Injective modules and injective resolutions

De�nition (2.8.1). — Let A be a ring and let I be an A-module. One says that I is
injective if every injective homomorphism i∶ I→M has a retraction, that is, there
exists a morphism r∶M→ I such that r ○ i = idI.

Proposition (2.8.2). — Let A be a ring and let I be an A-module. �e following
properties are equivalent.
(i) �e A-module I is injective;
(ii) For every injective morphism of A-modules i∶M→ N and every morphism
f ∶M→ I, there exists a morphism φ∶N→ I such that f = φ ○ i;
(iii) For every ideal J of A and every morphism f ∶ J→ I, there exists an element
x ∈ I such that f (a) = ax for every a ∈ J.

Proof. — (i)⇒(ii). Let us assume that I is injective. Let i∶M→ N be an injective
morphism of A-modules and let f ∶M→ I be a morphism. Let Q be the submod-
ule of I ×N consisting of pairs of the form ( f (z),−i(z)), for z ∈M; let us write
[x , y] for the class in (I ×N)/Q of an element (x , y) ∈ I ×N. �e morphism
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x ↦ [x , 0] from I to (I×N)/Q is injective; indeed, if (x , 0) ∈ Q, then there exists
z ∈M such that x = f (z) and i(z) = 0; since i is injective, one has z = 0, hence
x = 0. Since I is an injective module, there exists a morphism g∶ (I ×N)/Q→ I
such that g([x , 0]) = x for every x ∈ I. Let φ∶N→ I be the morphism given by
φ(y) = g([0, y]). For every z ∈M, one has

φ(i(z)) = g([0, i(z)]) = g([ f (z), 0]) − g([ f (z),−i(z)]) = f (z),

hence f = φ ○ i.
(iii) is a particular case of (ii), where i∶M → N is the injection of the ideal J
into the ring A.
(iii)⇒(i). Let f ∶ I →M be an injective morphism and let us show that there
exists a morphism r∶M → I such that r ○ f = idI. Let F be the set of all
pairs (N, g), where N is a submodule of M containing f (I) and g∶N → I is
a morphism of A-modules such that g ○ f = idI. We order F by decreeing
that (N, g) ≺ (N′, g′) if N ⊂ N′ and g′∣N = g. Since f is injective, it induces
an isomorphism from I onto its image f (I); if g0∶ f (I) → I denotes the inverse
isomorphism, then ( f (I), g0) is the unique minimal element ofF .
Let us show that the partially ordered setF is inductive. Let indeed (Nα , gα)
be a totally ordered family of elements ofF . Let N′ = f (I) ∪ ⋃αNα; this is a
submodule of M. Moreover there exists a unique morphism g∶N′ → I such that
g∣Nα = gα for every α and g∣ f (I) = g0. �e pair (N, g) belongs toF and is an
upper bound of the family (Nα , gα).
By Zorn’s lemma, the setF has a maximal element (N, g). Let us prove by
contradiction that N = M. Otherwise, let m ∈ M N, let N′ = N + Am and
let J = {a ∈ A ; am ∈ N}. Let i∶ J → I be the morphism given by i(a) = g(am)
for a ∈ J; by assumption, there exists an element z ∈ I such that i(a) = az
for every a ∈ J. Let x ∈ N and a ∈ J be such that x + am = 0; one then has
g(x) = −g(am) = −i(a) = −az, so that g(x) + az = 0. It follows that there
exists a unique morphism g′∶N′ → I such that g′(x + am) = g(x) + az for every
x ∈ N and every a ∈ J. �e pair (N′, g′) is an element ofF which contradicts
the hypothesis that (N, g) is a maximal element. Consequently, N = M and
g∶M→ I is a morphism of A-modules such that g ○ f = idI. �is concludes the
proof of the proposition.

Corollary (2.8.3). — Products of injective A-modules are injective.
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Proof. — Let (Mi)i∈I be a family of injective A-modules; let M = ∏iMi; for
every i, let pi ∶M → Mi be the projection of index i. Let J be an ideal of A, let
f ∶ J→M be a morphism. �en pi ○ f is a morphism from J to Mi , hence there
exists an element xi ∈Mi such that pi( f (a)) = axi for every a ∈ J. Let x = (xi);
one has f (a) = (pi( f (a)) = (axi) = ax for every a ∈ J. �is proves that M is
an injective module.

Corollary (2.8.4). — IfA is a principal ideal domain, then anA-module is injective
if and only if it is divisible. In particular, Q/Z is an injective Z-module.

Proof. — Let M be an injective A-module, let m ∈M, let a ∈ A be any non-zero
element. Let f ∶ (a) → M be the morphism given by f (ab) = bm, for b ∈ B.
Since M is injective, there exists an element x ∈ M such that f (ab) = abx for
every b ∈ B; in particular, f (a) = m = ax. �is shows that M is divisible.
Conversely, let M be a divisible A-module and let us prove, assuming that A is
a principal ideal domain, that M is an injective module. Let J be an ideal of A,
let f ∶ J →M be a morphism of A-modules. Since A is a pid, there exists a ∈ A
such that J = (a). If a = 0, then one can set m = 0. Let m = f (a) and let x ∈M
be such that m = ax; for every b ∈ A, one has f (ab) = b f (a) = bm = abm. By
proposition 2.8.2, this shows that M is an injective A-module.
Since the Z-module Q is divisible, so is its quotient Q/Z. �e ring Z being
a pid, this implies thatQ/Z is an injective Z-module.

2.8.5. — For every A-module M, one writes M∗ = HomZ(M,Q/Z), with its
structure of A-module given by a ⋅ φ = (x ↦ φ(ax)) for every a ∈ A, φ ∈ M∗

and x ∈M.

Lemma (2.8.6). — LetM be an A-module.
a) For every non-zero x ∈M, there exists φ ∈M∗ such that φ(x) ≠ 0.
b) IfM is a free A-module, thenM∗ is an injective A-module.

Proof. — a) Let J = {a ∈ Z ; ax = 0} and let n be the positive generator of
this ideal, so that Zx ≃ Z/nZ; since x ≠ 0, one has n = 0 or n ⩾ 2. Let then
f ∶Zx → Q/Z given by f (ax) = 1

2a (mod Z) if n = 0, and by f (ax) = 1
na

(mod Z) if n ⩾ 2; one has f (x) ≠ 0 by construction. Since Q/Z is an injective
Z-module, there exists a morphism of abelian groups φ∶M → Q/Z such that
φ∣Zx = f . One has φ ∈M∗ and φ(x) = f (x) ≠ 0.
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b) We �rst show that A∗ is an injective A-module. Let J be an ideal of A and
let f ∶ J → A∗ be a morphism. For every x ∈ J, f (x) is an additive map from A
to Q/Z; let f̃ (x) = f (x)(1). �is de�nes a morphism f̃ ∶ J → Q/Z of abelian
groups. SinceQ/Z is an injectiveZ-module, there exists amorphism g̃∶A→ Q/Z
such that g̃∣J = f̃ . For every x ∈ A, let g(x) be the element y ↦ g̃(xy) of A∗;
the map g∶A → A∗ is additive. It is in fact A-linear since for every a, x , y ∈ A,
one has g(ax)(y) = g̃(axy) and (a ⋅ g)(x)(y) = g(x)(ay) = g̃(axy). Let us
show that g∣J = f : let x ∈ J and y ∈ A; one has g(x)(y) = g̃(xy) = f̃ (xy) since
xy ∈ J; consequently, g(x)(y) = f (xy)(1) = f (x)(y) because f is A-linear; this
shows that g(x) = f (x). By proposition 2.8.2, we thus have proved that A∗ is an
injective A-module.
Let now M be a free A-module. It is isomorphic to a direct sum A(I) of copies
of A, hence M∗ ≃ (A∗)I is a product of copies of A∗. By corollary 2.8.3, M∗ is an
injective module.

Proposition (2.8.7). — Let M be an A-module. �ere exists an injective
A-module I and an injective morphism i∶M→ I.

Proof. — Let F be a free A-module and let p∶F→M∗ be a surjective morphism
of A-modules. �en F∗ is an injective A-module. Let p∗∶ (M∗)∗ → F∗ be the
map given by φ ↦ φ ○ p; it is an injective morphism of A-modules, because p is
surjective.
For every x ∈ M, let j(x) ∈ (M∗)∗ be the map from M∗ to Q/Z given by

φ ↦ φ(x); this de�nes a morphism of A-modules j∶M→ (M∗)∗. Let x ∈ ker( j);
this means that φ(x) = 0 for every φ ∈ M∗. It thus follows from lemma 2.8.6
that x = 0. Consequently, j is injective.
�e composition p ○ j∶M → F∗ is an injective morphism from M into an
injective A-module, hence the proposition.

De�nition (2.8.8). — Let A be a ring and letM be an A-module. An injective
resolution of M is a cohomological complex (I, d) such that In is injective for
every n, In = 0 for n < 0, together with an injective morphism i∶M→ I0, such that
the diagram

0→M iÐ→ I0
d0Ð→ I1

d1Ð→ I2 → . . .
is exact.
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�eorem (2.8.9). — a) Every module has an injective resolution;
b) Let (I, d , i) and (I′, d′, i′) be injective resolutions of modulesM andM′, and

let f ∶M→M′ be an A-morphism. �ere exists a morphism of graded di�erential
modules φ∶ I→ I′ such that φ0 ○ i′ = i ○ f .
c) Two morphisms φ and ψ of graded di�erential modules from P to P′ such

that φ0 ○ i′ = ψ0 ○ i′ = i ○ f are homotopic.

Proof. — �e proof is absolutely analogous to the proof of properties a), c),
and d) of theorem 2.7.6.

2.9. Abelian categories

�e theory of abelian categories abstracts the main properties of modules over
a ring within the framework of category theory.

2.9.1. Preadditive categories. — Let C be a category. One says that C is a
preadditive category if for every objects M,N ofC , the setC (M,N) is endowed
with the structure of an abelian group such that for every three objects M,N, P
ofC , the composition mapC (M,N) ×C (N, P) →C (M,P) is bilinear.

Lemma (2.9.2). — If (M, (pi)) and (M′, (p′i)) are products of the family (Mi),
there exists a unique isomorphism f ∶M′ →M such that p′i = pi ○ f for every i.

Proof. — Since M is a product, there exists a unique morphism f ∶M′ → M
such that p′i = pi ○ f for every i. Since M′ is a product, there exists a morphism
g∶M → M′ such that pi = p′i ○ g for every i. �en f ○ g ∈ C (M,M) and
pi ○ f ○ g = p′i ○ g = pi = pi ○ idM for every i; since M is a product, one thus has
f ○ g = idM. Reversing the rôles of M and M′, one proves that g ○ f = idM′ . �is
shows that f is an isomorphism.

2.9.3. — Let (Mi)i∈I be a family of objects of the categoryC . If it exists, one
denotes by∏i∈IMi (resp. by⊕i∈IMi) the product (resp. the coproduct) of the
family (Mi).
One says that the categoryC admits products (resp. �nite products) if every
family (resp. every �nite family) of objects ofC has a product.
One says that the categoryC admits coproducts (resp. �nite coproducts) if
every family (resp. every �nite family) of objects ofC has a coproduct.
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Lemma (2.9.4). — LetC be a preadditive category. Let (Mi)i∈I be a �nite family
of objects ofC and let (M, (pi)) be a product of this family. �ere exists a family
(qi), where qi ∈C (Mi ,M), such that (M, (qi)) is a coproduct of the family (Mi).

Proof. — Let j ∈ I. Since M is a product, there exists a unique morphism
q j ∈C (M j,M) such that pi ○ q j = 0 if i ≠ j and p j ○ q j = idM j .
For i ∈ I, let ui = qi ○ pi ; one has ui ∈C (M,M); let u = ∑i∈I ui . For j ∈ I, one
has

p j ○ u = p j ○ (∑
i∈I
qi ○ pi) = ∑

i∈I
p j ○ qi ○ pi = p j = p j ○ idM .

Since M is a product, this implies that u = idM.
Let now Q be an object ofC and let ( fi)i∈I be a family, where fi ∈C (Mi , Q);
let us show that there exists a uniquemorphism f ∈C (M,Q) such that f ○qi = fi
for every i. Let f = ∑i∈I fi ○ pi; this is an element ofC (M,Q). For every j ∈ I,
one has

f ○ q j = (∑
i∈I
fi ○ pi) ○ q j = ∑

i∈I
fi ○ pi ○ q j = fi ○ idMi = fi .

Conversely, let g ∈C (M,Q) be such that g ○ qi = fi for every i. One has

g = g ○ (∑
i∈I
qi ○ pi) = ∑

i∈I
q ○ qi ○ pi = ∑

i∈I
fi ○ pi = f .

�is concludes the proof.

Corollary (2.9.5). — Let C be a preadditive category. Let (Mi)i∈I be a �nite
family of objects ofC and let (M, (qi)) be a coproduct of this family. �ere exists
a family (pi), where pi ∈ C (M,Mi), such that (M, (pi)) is a product of the
family (Mi).

Proof. — �is follows from lemma 2.9.4 by passing the opposite category, which
is also a preadditive category.

2.9.6. Additive categories. — LetC be a preadditive category. One says that
it is an additive category if every �nite family of objects ofC has a product and
a coproduct.
A functor F∶C →D between additive categories is said to be additive if for
all objects M,N ofC , the mapC (M,N) →D(M,N) induced by F is additive.

Exercise (2.9.7). — LetC be an additive category.
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a) Show that the product of an empty family inC is both a terminal object
and an initial object. It is denoted by 0.
b) Let M,N be objects ofC and let f , g ∈C (M,N). Construct a canonical
commutative square

M N

M⊕M N⊕N

→f+g

→ ∆M
→

f⊕g

→∆′N

inC , where ∆M, ∆′N and f ⊕ g are de�ned solely in terms of the structure of
category ofC. Conclude that the group laws on the morphism sets of an additive
category is intrinsic.

2.9.8. Kernels. — LetC be an additive category and let u∶M→ N be a mor-
phism inC .
For u to be amonomorphism, it is necessary and su�cient that for every object
P ofC , v = 0 is the only element ofC (P,M) such that u ○ v = 0. �e necessity
of this condition is obvious; conversely, if it holds and if f , g ∈C (P,M) satisfy
u ○ f = u ○ g, then u ○ ( f − g) = 0, so that f − g = 0 and f = g.
A kernel of u an equalizer of the pair (u, 0); this is an object P together with a
morphism i∶P→M such that u○ i = 0 and such that for every object Q ofC and
every morphism f ∶Q→M such that u ○ f = 0, there exists a unique morphism
φ∶Q→ P such that i ○ φ = f . One sometimes says that i is a kernel of u. If (P, i)
and (P′, i′) are kernels of u, there exists a unique morphism φ∶P→ P′ such that
i ○ φ = i′, and φ is an isomorphism.
Let (P, i) be a kernel of u. �en i is a monomorphism. Let indeed f ∶Q→ P
be a morphism such that i ○ f = 0. Applying the de�nition of a kernel to the
morphism 0 = i ○ f ∶Q→M, we observe φ = 0 is the only element ofC (Q, P)
such that i ○ φ = 0; consequently, f = 0. Let us also observe that P represents
the functor Q↦ Ker(u∗∶C (Q,M) →C (Q,N)).

2.9.9. Cokernels. — Let C be an additive category and let u∶M → N be a
morphism in C . �e de�nition and the basic properties of a cokernel are
obtained by passing to the opposite category.
For u to be an epimorphism, it is necessary and su�cient that for every object P
ofC and every v ∈C (N, P) such that v ○ u = 0, one has v = 0.



2.9. ABELIAN CATEGORIES 87

A cokernel of u is a coequalizer of the pair (u, 0); this is an object P together
with a morphism p∶N→ P such that p ○ u = 0 and such that for every object Q
ofC and every morphism f ∶N→ Q such that f ○ u = 0, there exists a unique
morphism φ∶P → Q such that φ ○ p = f . It is a kernel of u in the opposite
categoryC o.
If (P, p) and (P′, p′) are cokernels of u, then there exists a unique morphism

φ∶P→ P′ such that φ ○ p = p′, and φ is an isomorphism.
If (P, p) is a cokernel of u, then p is an epimorphism.

2.9.10. — LetC be an additive category. One says thatC is an abelian category
if the following properties hold:

– Every morphism inC has a kernel and a cokernel;
– Every monomorphism is the kernel of some morphism;
– Every epimorphism is the cokernel of some morphism.

Exercise (2.9.11). — LetC be an abelian category and let u∶M → N be a mor-
phism inC . Show the following properties:

a) �e morphism u is a monomorphism if and only if its kernel is 0;
b) �e morphism u is an epimorphism if and only if its cokernel is 0;
c) �emorphism u is an isomorphism if and only if it is both an epimorphism
and a monomorphism.

Example (2.9.12). — Let A be a ring, possibly noncommutative. �e category
ModA of (le�) A-modules is an abelian category.
�is is indeed a preadditive category. Moreover, in this category, all products
exist and are given by the usual products of A-modules, all coproducts exist and
are given by the direct sums of A-modules. Monomorphisms are the injective
morphisms, epimorphisms are the surjective morphisms. Kernels and cokernels
exist, and correspond to the usual notions. Moreover, an injective morphism
i∶M→ N is the kernel of its cokernel, the morphism p∶N→ Coker(i). Similarly,
a surjective morphism p∶N → P is the cokernel of its kernel i∶ker(p) → N,
hence the assertion.
One proves in a similar way that if A is (le�) noetherian, then the category of
�nitely generated (le�) A-modules is an abelian category.
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Exercise (2.9.13). — LetC be an abelian category. Show that every monomor-
phism is the kernel of its cokernel, and that every epimorphism is the cokernel
of its kernel.

2.10. Exact sequences in abelian categories

LetC be an abelian category.

Lemma (2.10.1). — LetM,N be objects of C and let f ∶M → N be a morphism
ofC . Let p∶N→ Coker( f ) be a cokernel of f and let j∶Ker(p) → N be a kernel
of p.
a) �ere exists a unique morphism f1∶M→ Ker(p) such that f = j ○ f1.
b) For every object P′ ofC , every monomorphism j′∶P′ → N and every mor-

phism f ′1 ∶M→ P′ such that f = j′○ f ′1 , there exists a uniquemorphism g∶Ker(p) →
P′ such that f ′1 = g ○ f1 and j = j′ ○ g; moreover, g is a monomorphism.
c) �e morphism f1 is an epimorphism.

Proof. — a) One has p○ f = 0 by the de�nition of a cokernel; by the de�nition
of the kernel Ker(p), there exists a unique morphism f1 such that f = j ○ f1.
b) Since j′ is amonomorphism, there exists an object N1 ofC and amorphism
p′∶N → Q′ such that (P′, j′) is a kernel of p′. �en p′ ○ f = p′ ○ j′ ○ f ′1 = 0;
consequently, there exists a unique morphism v∶Coker( f ) → Q′ such that
p′ = v ○ p. �en one has p′ ○ j = v ○ p ○ j = 0; since (P′, j′) is a kernel of p′, there
exists a unique morphism u∶Ker(p) → P′ such that j = j′ ○ u. One then has
j′ ○ f ′1 = f = j ○ f1 = j′ ○ u ○ f1. Since j′ is a monomorphism, this implies that
f ′1 = u ○ f1.

Q′

M Ker(p) N Coker(p)

P′

→

f

→f1

→f ′1

→ g
↪ →j

→p′

→p

→v

→
j′

Conversely, let u′∶Ker(p) → P′ be a morphism such that j = j′ ○ u′. One thus
has j′ ○ u′ = j = j′ ○ u, hence u = u′ because j′ is a monomorphism.
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Finally, since j = j′ ○ u and j is a monomorphism, the morphism u is a
monomorphism as well.
c) Let (Q1, p1) be a cokernel of f1 and let (Ker(p1), j1) be a kernel of p1. Since
p1 ○ f1 = 0, there exists a unique morphism f ′1 ∶M→ Ker(p1) such that f1 = j1 ○ f ′1 .
One then has f = ( j○ j1)○ f ′1 , and j○ j1 is amonomorphism. By part b), there exists
a monomorphism g∶Ker(p) → Ker(p1) such that f ′1 = g ○ f1 and j ○ j1 ○ g = j.

M N Coker( f )

Ker(p)

Ker(p1) Coker( f1)

→f

→f1

→

f ′1

→p

→

j

→
p1

→ g

→j1

Since j is a monomorphism, this implies that j1 ○ g = idKer(p). Consequently,
p1 = p1 ○ j1 ○ g = 0, hence f1 is an epimorphism.

Lemma (2.10.2). — LetM,N be objects of C and let f ∶M → N be a morphism
ofC . Let i∶Ker( f ) →M be a kernel of f and let q∶M→ Coker(i) be a cokernel
of i.
a) �ere exists a unique morphism f1∶Coker(i) → N such that f = f1 ○ q.
b) For every objectQ′ ofC , every epimorphism q′∶M→ Q′ and everymorphism
f ′1 ∶Q′ → N such that f = f ′1 ○q′, there exists a unique morphism g∶Q′ → Coker(i)
such that f ′1 = f1 ○ g and q = g ○ q′; moreover, g is an epimorphism.
c) �e morphism f1 is a monomorphism.

Proof. — It follows from lemma 2.10.1 by passing to the opposite categoryC o.

Proposition (2.10.3). — Let M,N be objects of C and let f ∶M → N be a mor-
phism. Let (Ker( f ), i) be a kernel of f , let (Coker( f ), q) be a cokernel of f , let
(Ker(q), j) be a kernel of q and let (Coker(i), p) be a cokernel of i. �ere exists
a unique morphism φ∶Coker(i) → Ker(q) such that f = j ○ φ ○ p, and it is an
isomorphism.

Proof. — First observe that there exists at most one such morphism φ. Indeed,
if f = j○φ′ ○ p, then j○φ○ p = j○φ′ ○ p; since j is a monomorphism, this implies
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φ ○ p = φ′ ○ p; since p is an epimorphism, this implies φ = φ′.

Ker( f ) M N Coker( f )

Coker(i) Ker(q)

→i →f

→ p
→q

→φ ↪
→

j

To construct such a morphism φ, let f1∶Coker(i) → N be the unique mor-
phism such that f = f1 ○ p; it is a monomorphism (lemma 2.10.2). �en
q ○ f1 ○ p = q ○ f = 0. Since p is an epimorphism, q ○ f1 = 0 and there ex-
ists a unique morphism φ∶Coker(i) → Ker(q) such that f1 = j ○ φ. Since f1 is a
monomorphism, φ is a monomorphism as well. One has f = f1 ○ p = j ○ φ ○ p.
Let f2∶M→ Ker(q) be the unique morphism such that f = j ○ f2; it is an epi-
morphism (lemma 2.10.1). �en j○ f2 ○ i = f ○ i = 0. Since j is a monomorphism,
one has f2 ○ i = 0, hence there exists a unique morphism ψ∶Coker(i) → Ker(q)
such that f2 = ψ ○ p. Since f2 is an epimorphism, ψ is an epimorphism as well.
One has f = j ○ f2 = j ○ ψ ○ p.
Consequently, φ = ψ. It is both a monomorphism and an epimorphism, hence
it is an isomorphism.

Remark (2.10.4). — �e objects Coker(i) and Ker(q) of the proposition are
called the image of f and the coimage of f respectively, are are denoted Im( f )
andCoim( f ). To justify this terminology, observe that whenC is the abelian cat-
egoryModA of A-modules over some ring A, one has Coker(i) =M/Ker(i) ≃
Im( f ).
In some books, the statement of the proposition is taken as a de�nition of an
abelian category.

2.10.5. — Let C be an abelian category, let M,N, P be objects of C and let
f ∶M→ N and g∶N→ P be morphisms ofC such that g ○ f = 0.
Let i∶Ker(g) → N be a kernel of g; since g ○ f = 0, there exists a unique
morphism f ′∶M→ Ker(g) such that f = i ○ f ′.
Let p∶N→ Coker( f ) be a cokernel of f ; since g ○ f = 0, there exists a unique
morphism g′∶Q→ P such that g = g′ ○ p.
Let (H1, q) be a cokernel of f ′ and let (H2, j) be a kernel of g′. �e morphism

u = p ○ i∶K→ Q satis�es
g′ ○ u ○ f ′ = (g′ ○ p) ○ (i ○ f ′) = g ○ f = 0,
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hence there exists a unique morphism v∶H1 → H2 such that u = p ○ i = j ○ v ○ q.
We shall prove that the morphism v is an isomorphism by identifying it with the
canonical isomorphism from Coim(u) to Im(u). In the case of a category of
modules, observe that H1 = Ker(g)/ Im( f ), while H2 = ker(g′∶N/ Im( f ) → P),
and the morphism v is the obvious isomorphism between this modules. �e
proof for abelian categories is unfortunately more involved.
Let k∶ Im( f ) → N and f = k ○ f1 be the factorization of f given by
lemma 2.10.1; the morphism f1 is an epimorphism and there exists a unique
morphism φ∶ Im( f ) → Ker(g) such that f ′ = φ ○ f1 and k = i ○ φ; one then has
f = i ○ f ′ = i ○ φ ○ f1.
Let ℓ∶Ker(u) → Ker(g) be a kernel of u. One has u ○ φ ○ f1 = p ○ i ○ φ ○ f1 =
p ○ f = 0, hence u ○ φ = 0 since f1 is an epimorphism. Consequently, there
exists a unique morphism φ′∶ Im( f ) → Ker(u) such that φ = ℓ ○ φ′; since φ is
a monomorphism, φ′ is a monomorphism as well. �en p ○ i ○ ℓ = u ○ ℓ = 0,
hence i ○ ℓ factors through the kernel of p, which, by de�nition, is the coimage
of f . By proposition 2.10.3, (Im( f ), k) represents the kernel of p, hence there
exists a unique morphism i′∶Ker(u) → Im( f ) such that k ○ i′ = i ○ ℓ; since i ○ ℓ
is a monomorphism, i′ is a monomorphism too. Now, k = i ○ φ = k ○ i′ ○ φ′;
since k is a monomorphism, one has i′ ○ φ′ = idIm( f ). �is implies that i′ is an
epimorphism; moreover, i′ ○ φ′ ○ i′ = i′, hence φ′ ○ i′ = idKer(u). We have shown
that φ′ is an isomorphism from Im( f ) to Ker(u).
One has f ′ = φ○ f1 = ℓ○φ′○ f1. By de�nition, the pair (H1, q) is a cokernel of f ′,
but since φ′ ○ f1 is an epimorphism, (H1, q) is also a cokernel of ℓ∶Ker(u) →
Ker(g). In other words, we have identi�ed H1 with the coimage of u.
We can now apply the previous argument in the opposite category, or rework it
patiently by reversing all arrows, and exchanging kernels and cokernels, images
and coimages. �is identi�es (H2, j) with the image of u.
�e morphism v is then the unique morphism Coim(u) → Im(u) such that

u = q ○ v ○ j. By proposition 2.10.3, it is an isomorphism.
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Ker(u)

Im( f ) Ker(g) H1 = Coim(u)

M N P

Im(u) = H2 Coker( f ) Im(g)

Coker(u)

→ ℓ

→φ

→
k → i

→q

→f
→ f1

→g

→q →
g1

→m

→
→ψ

→

k

De�nition (2.10.6). — �e homology of a sequenceM
fÐ→ N PÐ→ such that g ○ f = 0

is the objectH1 de�ned above.

One says that this sequence is exact at N if H1. With the above notation, the
following properties are equivalent:

(i) �e sequence M
fÐ→ N PÐ→ is exact at N;

(ii) One has H1 = 0;
(iii) �e morphism f ′∶M→ Ker(g) deduced from f is an epimorphism;
(iv) One has H2 = 0;
(v) �e morphism g′∶Coker( f ) → P deduced from g is a monomorphism.

2.10.7. — �e notion of complex in an abelian categoryC can be developed
in analogy with the corresponding concept for modules over a ring, However,
some abelian categories do not always admit in�nite coproducts, it is better
to have a naïve de�nition of a graded di�erential object inC which avoids to
considering a coproduct. So we shall just consider families (Mn)n∈Z of objects
ofC related by morphisms dn∶Mn →Mn+r such that dn+r ○dn = 0 for all n. One
speaks of a cohomological complex if r = 1, and of a homological complex if
r = −1.
�e de�nition of a morphism of complexes can be copied verbatim, as can
that of a homotopy between two morphisms of complexes.
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2.10.8. — Let M = (Mn) be a homological complex inC . Its homologies are
de�ned by Hn(M) = H(Mn−1 →Mn →Mn+1). A complex is an exact sequence
if and only if is exact at each term, that is if and only if its homologies are 0.
A morphism of homological complexes f = ( fn∶Mn → Nn) induces mor-
phisms Hn( f )∶Hn(M) → Hn(N). Two homotopic morphisms induce the same
morphism.

Example (2.10.9). — Let 0 → M fÐ→ N gÐ→→ 0 be a complex. �e following
properties are equivalent:
(i) �is complex is an exact sequence;
(ii) �e morphism f is a monomorphism and p is a cokernel of f ;
(iii) �e morphism g is an epimorphism and f is a kernel of g.

De�nition (2.10.10). — Let C andD be abelian categories and let F∶C → D

be an additive functor. One says that F is le� exact if for every exact sequence
0 → M fÐ→ N gÐ→ P → 0, the complex 0 → F(M) F( f )ÐÐ→ F(N) F(g)ÐÐ→ F(P) is exact.
One says that the functor F is right exact if for every such short exact sequence, the
complex F(M) F( f )ÐÐ→ F(N) F(g)ÐÐ→ F(P) → 0 is exact. One says that the functor F is
exact if it is both le� and right exact.

If F is a contravariant additive functor fromC toD , it is viewed as a functor
from C to the opposite categoryDo, and this leads to analogous de�nitions.
For example, such a contravariant functor F is le� exact if for every short exact
sequence as above, the complex 0→ F(P) F(g)ÐÐ→ F(N) F( f )ÐÐ→ F(M) is exact.

Example (2.10.11). — LetC be an abelian category and let M be an object ofC .
a) �e functorC (M, ●) given byN↦C (M,N) is a covariant le� exact functor

fromC to the categoryAb of abelian groups.
Let 0 → N1

fÐ→ N2
gÐ→ N3 → 0 be a short exact sequence in C and let us

consider the complex

0→C (M,N1)
f ′Ð→C (M,N2)

g′Ð→C (M,N3)

deduced by application of the functor C (M, ●). Let u ∈ C (M,N2) be a mor-
phism such that g′(u) = 0, that is, g ○ u = 0. Since f is a kernel of g, there exists
a unique morphism v ∈C (M,N1) such that u = f ○ v = f ′(v). �is shows that
f ′ is injective and that Im( f ′) = Ker(g′), as required.
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b) �e functorC (●,M)∶N ↦ C (N,M) is a contravariant le� exact functor
fromC toAb .
�is is deduced from the preceding case by considering the opposite cate-
goryC o.

Remark (2.10.12). — Let F be an additive functor between abelian categories.
Assume that F has a right adjoint. �en F respects all colimits. Since a cokernel

of a morphism f ∶M→ N is a colimit of the diagram M N→
f
→0 , the functor

F respects cokernels. Consequently, it is right exact.
By symmetry, if F has a le� adjoint, it respects all limits, hence it respects
kernels, so that it is le� exact.

Exercise (2.10.13). — Let F be an additive functor between abelian categories. If
F is le� (resp. right) exact, prove that F respects all �nite limits (resp. colimits).
�at is, for every �nite quiver Q and every Q-diagramA which has a limit (resp.
a colimit) A, then F(A) is a limit (resp. a colimit) of F(A ).

Remark (2.10.14). — As the �rst propositions of this section have shown, the
manipulation of diagrams in abelian categories leads to much more involved
arguments than what we are used to in the abelian category of modules over a
ring. Indeed, in a category such asModA, to prove that a kernel is 0, it su�ces
to prove that each element of this kernel is 0. To that aim, we may do some
‘‘diagram chasing’’, pushing the element along morphisms, and li�ing it along
epimorphisms. �is kind of argument is forbidden in general abelian categories
whose objects have no elements to work with.
However, a theorem of Freyd–Mitchell shows that every (small) abelian cate-
goryC possesses a fully faithful and exact functor F to a category of modules
over some ring R. �e properties of many canonical diagrams can then be
established a�er applying the functor F, where classical proofs are possible.

2.11. Projective and injective objects in abelian categories

2.12. Derived functors



CHAPTER 3

SHEAVES AND THEIR COHOMOLOGY

3.1. Presheaves and sheaves

De�nition (3.1.1). — LetX be a topological space. A presheafF onX is the datum
of a setF (U) for every open subset U of X, and of maps ρUV∶F (U) →F (V)
for every pair (U,V) of open subsets of X such that V ⊂ U subject to the following
conditions:
– If U,V,W are open subsets of X such that W ⊂ V ⊂ U, one has ρUW =

ρVW ○ ρUV;
– For every open subset U of X, one has ρUU = idF (U).

Let U be an open subset of X. �e set F (U) is also denoted by Γ(U,F );
its elements are called the sections of F on U. �e maps ρUV are called the
restriction maps.; when s ∈ F (U), one also writes s∣V for ρUV(s).
Indeed, the basic intuition for presheaves is that of ‘‘generalized functions’’.
Namely elements of F (U) have to be thought as of functions on U, and for
s ∈ F (U), the element ρUV(s) ofF (V) is a kind of restriction of s to V.
To avoid some possible confusions, the restriction maps of the presheafF
are sometimes denoted by ρF

UV.

De�nition (3.1.2). — LetF ,G be presheaves on the topological space X. A mor-
phism of presheaves f ∶F → G is the datum, for every open subset U of X, of a
map f (U)∶F (U) → G (U) such that f (V) ○ ρF

UV = ρG
UV ○ f (U) for every pair

(U,V) of open subsets of X such that V ⊂ U.

When the mapsF (U) is a subset of G (U) for every U, and the maps f (U)
are the inclusion maps, one says thatF is a sub-presheaf of G .
Morphisms of presheaves can be composed, etc., so that presheaves on the
topological space X form a categoryPreShX.
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3.1.3. — Let X be a topological space and letF be a presheaf onX. One says that
F is a presheaf in abelian groups if the setsF (U) are endowed with structures
of abelian groups and if the maps ρUV are morphism of abelian groups. A
morphism of presheaves in abelian groups is a morphism of presheaves f such
that the maps f (U) are morphisms of abelian groups, for all open subsets U
of X.
Similar de�nitions can be given for more general algebraic structures, such as
modules, or rings, and even for general categories. A presheafF with values
in a categoryC is the datum of objectsF (U) ofC and of morphisms ρUV ∈
C (F (U),F (V)) satisfying the previous relations. A morphism of presheaves
f ∶F → G with values in the categoryC is the datum of morphisms f (U) inC
satisfying the previous composition relations.
One can in fact give a compact de�nition of a presheafwith value in an arbitrary
category C . To this aim, de�ne the categoryOpenX of open subsets of X as
follows: its objects are the open subsets of X, and its maps are the inclusions
between open subsets. Explicitly, OpenX(V,U) is empty if V /⊂ U, and has
exactly one element if V ⊂ U. A presheaf with values in a category C is a
contravariant functor from the categoryOpenX to the categoryC ; a morphism
of presheaves is a natural transformation of functors.

De�nition (3.1.4). — LetF be a presheaf on the topological space X. Let A be
a subspace of X and letUA be the set of open neighborhoods of A in X, endowed
with the partial ordered opposite to inclusion. �e colimit of the directed sytem
of sets (F (U))U∈UA is called the set of germs of sections of the sheafF on A; it
is denoted byFA. If U is an open neighborhood of A in X and s ∈ F (U), the
canonical image sA of s inFA is called the germ of s on A.

When A is reduced to a single point {x}, the setFA is called the stalk ofF at
the point x, and is denoted byFx .
IfF is a presheaf in abelian groups thenFA is an abelian group, and the maps
s ↦ sA fromF (U) toFA are morphisms of abelian groups.
Let f ∶F → G be a morphism of presheaves on the topological space X. By
the universal property of the limit, there exists a unique map fA∶FA → GA
between the sets of germs of sections at A such that fA(sA) = f (s)A for every
open neighborhood U of A and every section s ∈ F (U). If f is a morphism of
presheaves of abelian groups, then fA is a morphism of abelian groups.
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Similar results hold for presheaves in algebraic structures, such as rings or
modules, for which the notion of (�ltrant) colimit makes sense.

De�nition (3.1.5). — Let X be a topological space and letF be a presheaf on X.
One says thatF is a sheaf if the following property holds: For every open subsetU
of X, every family (Ui)i∈I of open subsets of X such that U = ⋃i∈IUi, every family
(si)i∈I, where si ∈ F (Ui) for every i, such that si ∣Ui∩U j = s j∣Ui∩U j , there exists a
unique element s ∈ F (U) such that s∣Ui = si for every i ∈ I.

In words, a presheafF is a sheaf provided every family (si) of sections ofF
on open subsets Ui of X which coincide on the intersections Ui ∩ U j can be
‘‘glued’’ uniquely to a section s ofF on the union of the sets Ui .
�is de�nition needs to be adapted for presheaves with values in a general
category. �us letF be a presheaf on X with values in a categoryC . One says
that F is a sheaf if for every open subset U of X and every family (Ui)i∈I of
open subsets of X such that U = ⋃i∈IUi , every object M ofC and every family
( fi ∶M→F (Ui))i∈I of morphisms inC such that ρUi ,Ui∩U j ○ fi = ρU j ,Ui∩U j ○ f j
for every i , j ∈ I, there exists a unique morphism f ∶M→F (U) inC such that
ρU,Ui ○ f = fi for every i ∈ I.
Let Q be the quiver whose vertex set V is I × I, whose set of arrows E is
I × I × {0, 1}, and whose source and target maps are given by

s((i , j, 0)) = (i , i), s((i , j, 1)) = ( j, j), t((i , j, 0)) = t((i , j, 1)) = (i , j).

�e presheafF gives rise to a Q-diagram in the categoryC whose value at the
vertex (i , j) isF (Ui ∩U j), whose value at an arrow (i , j, 0) is the restriction
morphism ρUi ,Ui∩U j . and whose value at an arrow (i , j, 1) is the restriction
morphism ρU j ,Ui∩U j . �e above sheaf condition means that the objectF (U)
ofC , endowed with the morphisms ρUUi for i ∈ I, represents the colimit of this
Q-diagram.

3.1.6. — A morphism of sheaves is just a morphism of the underlying
presheaves. In other words, sheaves of X form a full subcategory ShX of the
category of presheaves on X.

Example (3.1.7). — Let X be an open subset of Rn, or a di�erentiable manifold
of class C p for some p ⩾ 1.
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a) Functions of class C p on X give rise to a sheaf C p
X on X. Precisely, for every

open subset U of X, let C p
X (U) be the set of all functions φ∶U→ R of class C p;

for V ⊂ U, let ρUV∶C p
X (U) → C

p
X (V) be the restriction map. �is de�nes a

presheaf C p
X in R-algebras on X; this presheaf is a sheaf.

Indeed, let U be an open subset of X, let (Ui)i∈I be a family of open subsets of X
whose union is U, and let (si) be a family of sections of C p

X , where si ∈ C
p
X (Ui),

such that si ∣Ui∩U j = s j∣Ui∩U j . �ere exist a unique function s∶U → R such that
s(x) = si(x) for x ∈ Ui. �is function s satis�es s∣Ui = si for every i, and is of
classC p. Indeed, if x ∈ U and i ∈ I is such that x ∈ Ui , then Ui is a neighborhood
of x in U on which the restriction of s is of class C p.
b) Bounded functions on X give rise to a presheafBX on X, whereBX(U) is
the set of all functions s∶U→ R which are bounded. However, this presheaf is
generally not a sheaf, unless X is �nite (hence 0-dimensional). Let indeed a ∈ X
be a point which is not isolated, let U = X {a}, and let s∶U→ R be the function
x ↦ 1/d(a, x), where d is a distance on X compatible with its topology. For
every integer m ⩾ 1, let Um be the set of points x ∈ U such that d(a, x) ⩾ 1/m.
�e union of the open sets Um is equal to U, the restriction of s to Um is bounded
for every m, but s is not bounded.
c) Vector �elds, distributions, etc. furnish other natural examples of sheaves
on X. Tempered distributions form a sub-presheaf of the sheaf of distributions,
but do not form a sheaf themselves.

Example (3.1.8). — Let X be a topological space and letF be a presheaf on X.
Let Y be an open subspace of X. One de�nes a presheaf F ∣Y on Y by set-
ting F ∣Y(U) = F (U) for every open subset U of Y, and by keeping the
same restriction maps. If f ∶F → G is a morphism of presheaves, the maps
f (U)∶F (U) → G (U), for every open subset U of Y, de�ne a morphism of
presheaves f ∣Y∶F ∣Y → G ∣Y.
IfF is a presheaf of abelian groups, then so isF ∣Y.
IfF is a sheaf, then so isF ∣Y.

Example (3.1.9). — Let X be a topological space and letF ,G be presheaves
of abelian groups on X. One de�nes a presheaf of abelian groupsH on X by
setting, for every open subset U of X,H (U) = Hom(F ∣U,G ∣U). (Note that
H (U) is a set of morphism of sheaves fromF ∣U to G ∣U, and should not be
confused with the morphisms of abelian groups from F (U) to G (U).) �e



3.1. PRESHEAVES AND SHEAVES 99

restriction maps ρUV are de�ned as follows: let U and V be open subsets of X
such that V ⊂ U and let f ∈ H (U); one sets ρUV( f ) = fV. �is is the presheaf of
morphisms fromF to G ; it is denoted byH om(F ,G ).
Assume that G is a sheaf; thenH om(F ,G ) is a sheaf . Let indeed U be an
open subset of X, let (Ui)i∈I be a family of open subsets of X such that U = ⋃i∈IUi ,
let (φi) be a family, where φi ∈ H (Ui), such that φi ∣Ui∩U j = φ j∣Ui∩U j . Let us
show that there exists a unique morphism of presheaves φ∶F ∣U → G ∣U such
that φ∣Ui = φi for every i.
Let V be an open subset of U and let s ∈ F (U); for every i, set Vi = V ∩Ui
and ti = φi(s∣Vi) ∈ G (Vi). For i , j ∈ I, one has

ti ∣Vi∩V j = φi(s∣Vi)∣Vi∩V jφi(s∣Vi∩V j) = φ j(s∣Vi∩V j) = t j∣Vi∩V j ;
since G is a sheaf, there exists a unique section t ∈ G (V) such that t∣Vi = ti for
every i ∈ I. Set φ(V)(s) = t. �is de�nes a map φ(V)∶F (V) → G (V). For
s, s′ ∈ F (V) and i ∈ I, one has

φ(V)(s + s′)∣Vi = φi(s∣Vi + s′∣Vi)
= φi(s∣Vi) + φi(s∣Vi)
= (φ(V)(s) + φ(V)(s′))∣Vi ;

consequently, φ(V)(s + s′) = φ(V)(s) + φ(V)(s′), hence φ(V) is a morphism
of abelian groups. Moreover, if V and W are open subsets of U such that W ⊂ V,
then

φ(W)(s∣W)∣W∩Ui = φi(s∣W∩Ui)
= φi(s∣V∩Ui)∣W∩Ui
= φ(s)∣W∩Ui
= (φ(s)∣W)∣W∩Ui

for every i. Consequently, φ(W)(s∣W) = φ(W)(s)∣W. �is shows that the family
φ = (φ(V)) is a morphism of presheaves of abelian groups fromF ∣U to G ∣U.
Conversely, a morphism φ′∶F ∣U → G ∣U such that φ′∣Ui = φ is equal to φ.
Indeed, for V ⊂ U and s ∈ F (V), one has

φ′(V)(s)∣V∩Ui = φ′(V)(s∣V∩Ui) = φi(s∣V∩Ui = φ(v)(s)∣V∩Ui ,
so that φ′(V)(s) = φ(V)(s); this shows that φ′ = φ, as claimed.

Lemma (3.1.10). — Let X be a topological space and let U be an open subset of X.
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a) LetF be a sheaf on X and let s, t ∈ F (U) be two sections such that sx = tx
for every x ∈ U. �en s = t.
b) LetF ,G be presheaves onX and let f , g∶F → G bemorphisms of presheaves

on X such that fx = gx for every x ∈ X. If G is a sheaf, then f = g.

Proof. — a) Let x ∈ U; since sx = tx , there exists an open subset Ux of U
containing x such that s∣Ux = t∣Ux . By the de�nition of a sheaf, applied to the
family (Ux)x∈U of open subsets of X and to the family (s∣Ux), the section t is the
unique element ofF (U) whose restriction to Ux is equal to s∣Ux . One thus has
s = t.
b) Let U be an open subset of X and let s ∈ F (U). We need to prove that
s has the same image under the maps f (U) and g(U); let t = f (U)(s) and
t′ = g(U)(s). For every x ∈ U, one has tx = fx(sx) = gx(sx) = t′x . Since G is a
sheaf, it follows from a) that t = t′, as claimed.

Lemma (3.1.11) (Glueing sheaves and morphisms of sheaves)
Let X be a topological space, let (Ui)i∈I be a family of open subsets of X such

that X = ⋃i∈IUi.
a) LetF and G be presheaves on X; assume that G is a sheaf. For every i ∈ I, let

φi ∶F ∣Ui → G ∣Ui be a morphism of presheaves. Assume that for every i , j ∈ I, the
morphisms φi and φ j coincide on Ui ∩U j. �en there exists a unique morphism
of presheaves φ∶F → G such that φi = φ∣Ui for every i ∈ I.
If bothF and G are sheaves and φi is an isomorphism for every i ∈ I, then φ is

an isomorphism.
b) For every i ∈ I, letFi be a sheaf on Ui; for every pair (i , j) of elements of I,

let φi j∶Fi ∣Ui∩U j →F j∣Ui∩U j be an isomorphism of sheaves. Assume that following
properties hold:

(i) For i ∈ I, one has φii = IdFi ;
(ii) For i , j ∈ I, one has φi j = φ−1

ji ;
(iii) For i , j, k ∈ I, the morphisms φ jk ○ φi j∣Ui∩U j∩Uk and φik∣Ui∩U j∩Uk coin-

cide.
�en there exists a sheafF on X, and for every i ∈ I, an isomorphism φi ∶F ∣Ui →
Fi , such that φi j○φi ∣Ui∩U j = φ j∣Ui∩U j for every pair (i , j) of elements of I. Moreover,
if G is a sheaf on x and (ψi) a family of isomorphisms from GUi toFi satisfying



3.1. PRESHEAVES AND SHEAVES 101

these requirements, there exists a unique morphism of sheaves ψ fromF to G

such that ψ∣Ui = ψ−1
i ○ φi, and it is an isomorphism.

Analogous results are valid for presheaves of abelian groups, rings, modules, etc.

Proof. — a) Let U be an open subset of X, let s ∈ F (U). For every i ∈ I, one
has φi(U ∩Ui)(s) ∈ F (U ∩Ui) and for i , j ∈ I, one has

φi(U ∩Ui)(s)∣U∩Ui∩U j = φi(U ∩Ui ∩U j)(s∣U∩Ui∩U j)
= φ j(U ∩Ui ∩U j)(s∣U∩Ui∩U j)
= φ j(U ∩U j)(s)∣U∩Ui∩U j .

Since G is a sheaf, there exists a unique section φ(U)(s) ∈ G (U) such that
φ(U)(s)∣Ui = φi(U ∩Ui)(s) for every i ∈ I. �is de�nes a map φ(U)∶F (U) →
G (U). �e family φ = (φ(U)) is a morphism of presheaves such that φ∣Ui = φi .
It is the unique such morphism.
Assume that bothF and G are sheaves, and that φi is an isomorphism for
every i. �en there exists a unique morphism of sheaves φ′∶G →F such that
φ′∣Ui = φ−1

i for every i. One has φ′ ○ φ = IdF , because it is the unique morphism
of sheaves fromF to itself whose restriction to Ui is the identity, for every i ∈ I.
Similarly, φ ○ φ′ = IdF . �is shows that φ is an isomorphism and concludes the
proof of a).
b) Let U be an open subset of X; let F (U) be the set of all families (si) ∈

∏i∈IFi(U ∩Ui) such that
s j∣U∩Ui∩U j = φi j(U ∩Ui ∩U j)(si ∣U∩Ui∩U j)

for every i , j ∈ I. If U and V are open subsets of X such that V ⊂ U, let
ρUV∶F (U) →F (V) be the map de�ned by ρUV((si)) = (si ∣V∩Ui). �enF is a
presheaf on X.
Let us show thatF is a sheaf. Let (Vλ)λ∈L be a family of open subsets of X,
let V = ⋃λ∈LVλ; for every λ ∈ L, let sλ ∈ F (Uλ); assume that sλ∣Uλ∩Uµ = sµ∣Uλ∩Uµ
for every λ, µ ∈ L. One has sλ = (sλ,i)i∈I. Fix i ∈ I; for every λ ∈ L, one has
sλ,i ∈ Fi(Vλ ∩Ui); for every λ, µ ∈ L, one has

sλ,i ∣Vλ∩Vµ∩Ui = sµ,i ∣Vλ∩Vµ∩Ui .

Consequently, there exists a unique element si ∈ Fi(V∩Ui) such that si ∣Vλ∩Ui =
sλ,i for every λ ∈ L. �en

s j∣V∩Ui∩U j = φi j(V ∩Ui ∩U j)(si ∣V∩Ui∩U j),
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since for every λ ∈ L, one has

s j∣Vλ∩Ui∩U j = φi j(Vλ ∩Ui ∩U j)(si ∣Vλ∩Ui∩U j).

�is implies that s = (si)i∈I is an element ofF (V). Moreover, for every λ ∈ L,
one has

s∣Vλ = (si ∣Vλ∩Ui) = (sλ,i) = sλ .

�e section s is the only section ofF on V such that s∣Vλ = sλ for every λ ∈ L.
�is concludes the proof thatF is a sheaf on X.
Let k ∈ I. For every open subset of X such that U ⊂ Uk, let φk(U)∶F (U) →

Fk(U) be the map given by (si)i∈I ↦ sk. �e family (φk(U)) is a morphism
of sheaves fromF ∣Uk toFk. By de�nition, for s = (si) ∈ F (U), and i ∈ I, the
section si ∈ Fi(U ∩Ui) satis�es (recall that U ⊂ Uk)

si = φki(U ∩Ui)(sk∣U∩Ui).

Conversely, let s ∈ F (Uk); for every i ∈ I de�ne si = φki(U ∩Ui)(s∣U∩Ui). Since
φkk = Id, one has sk = s. Moreover, for every i , j ∈ I, one has

φi j(U ∩Ui ∩U j)(si ∣U∩Ui∩U j)
= φi j(U ∩Ui ∩U j)(φki(U ∩Ui)(sk∣U∩Ui)∣U∩Ui∩U j)
= φk j(U ∩Ui ∩U j)(sk∣U∩Ui∩U j)
= s j∣U∩Ui∩U j .

Consequently, the family (si) belongs toF (U) and is the unique element preim-
age ofF (U) such that φk(U)((si)) = s. �is implies that φk is an isomorphism
of sheaves.
For j, k ∈ I, every open subset U of U j ∩Uk, and every family (si) ∈ F (U)
one also has

φ jk(U) ○ φk(U)((si)) = φ jk(U)(sk) = s j = φ j(U)((si)),

hence φ jk ○ φk∣U j∩Uk = φ j∣U j∩Uk .
�is concludes the proof of the �rst part of assertion b). �e rest of the
assertion follows from a). Let indeed G be a sheaf on X and let (ψi) be a family,
where ψi ∶G ∣Ui → Fi such that φi j ○ ψi ∣Ui∩U j = ψ j∣Ui∩U j for every i , j ∈ I. For
every i ∈ I, θ i = φ−1

i ○ψi is a morphism of sheaves from G ∣Ui toF ∣Ui ; For i , j ∈ I,
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one has

θ i ∣Ui∩U j = φ−1
i ○ ψi ∣Ui∩U j = φ−1

j ∣Ui∩U j ○ φi j ○ φ ji ○ ψ j∣Ui∩U j
= θ j∣Ui∩U j .

By a), there exists a unique morphism of sheaves θ∶G →F such that θ∣Ui = θ i
for every i, and it is an isomorphism.

3.2. Some constructions of sheaves

3.2.1. Limits. — Let Q = (V, E, s, t) be a quiver and letFQ = ((Fv), (φe)) be
a diagram of presheaves on a topological space X.
For every open subset U of X, this diagram induces a diagram FQ(U) =

((Fv(U)), (φe(U))) of sets. We denote its limit by F (U); for v ∈ V, let
φv(U)∶F (U) →Fv(U) be the canonical map.
Let U and V be open subsets of X such that V ⊂ U. �e family of maps

(ρFv
UV ○ φv(U)) is a cone on the diagramFQ(V). Consequently, there exists a

unique map ρF
UV∶F (U) → F (V) such that φv(V) ○ ρF

UV = ρFv
UV ○ φv(U) for

every v.
�e family of sets (F (U)) and the family of maps (ρF

UV) form a presheafF
on X.

Proposition (3.2.2). — a) �e presheafF is a limit of the diagramFQ in the
category of presheaves on X.
b) If theFv are sheaves, thenF is a sheaf, and is a limit of the diagramFQ in

the category of sheaves on X.
c) �e analogous results hold whenFQ is a diagram of presheaves in abelian
groups, in rings, in A-modules, etc.

Proof. — a) Let (G , (ψv)) be a cone on the diagramFQ of presheaves. For
every open subset U of X, the set G (U), with the maps ψv(U), is a cone on the
diagramFQ(U) of sets. Consequently, there exists a uniquemap θ(U)∶G (U) →
F (U) such that φv(U) ○ θ(U) = ψv(U) for every v.
Let U and V be open subsets of X such that V ⊂ U. Since ψv is a morphism of
presheaves, one has

φv(V) ○ θ(V) ○ ρG
UV = ψv(V) ○ ρG

UV = ρFv
UV ○ ψv(U) = ρFv

UV ○ φv(U) ○ θ(U)

for every v. Consequently, θ(V) ○ ρG
UV = ρF

UV ○ θ(U).
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�is shows that the family (θ(U)) is the unique morphism of presheaves from
G toF such that ψv = φv ○ θ for every v.
b) Let (Ui)i∈I be a family of open subsets of X and let U be its union. For
every i ∈ I, let si ∈ F (Ui); assume that si ∣Ui∩U j = s j∣Ui∩U j for every i , j and let
us show that there exists a unique element s ∈ F (U) such that s∣Ui = si for
every i ∈ I.
For every v, one has φv(si) ∈ Fv(Ui) and φv(si)∣Ui∩U j = φv(s j)∣Ui∩U j . Since

Fv is a sheaf, there exists a unique element sv ∈ Fv(U) such that sv ∣Ui = φv(si)
for every i ∈ I.
For every arrow e of Q, with source v and target v′ one has φe(sv) = sv′,
because these two sections ofFv′ have the same restriction on Ui , for every i ∈ I.
Consequently, there exists a unique element s ∈ F (U) such that φv(s) = sv for
every v.
Let i ∈ I. One has s∣Ui = si , because both sections ofF (Ui)map to φv(si), for
every v. Conversely, if s′ is a section ofF over U such that s′∣Ui = si for every i.
One then has φv(s′)∣Ui = φv(s′∣Ui) = φv(si) = φv(s)∣Ui , hence φv(s′) = φv(s),
becauseFv is a sheaf. By de�nition of the presheafF , one then has s′ = s.
c) Assume that the (pre)sheavesFv are (pre)sheaves in abelian groups and the
morphisms φe are morphisms of presheaves in abelian groups. For every open
subset U of X, the setF (U) has a natural structure of an abelian group such
that the morphisms φv(U)∶F (U) →Fv(U) are morphisms of abelian groups.
Moreover, the maps ρF

UV are morphisms of abelian groups, so thatF is really a
presheaf in abelian groups. In the proof of a), one checks that if morphisms ψv
are morphisms of presheaves of abelian groups, then so is the morphism θ that
we constructed.
�e cases of (pre)sheaves of rings, etc. are analogous.

Example (3.2.3). — Let G be a presheaf on X and let (Fi)i∈I be a family of sub-
presheaves of G . �eir intersectionF = ⋂iFi is de�ned byF (U) = ⋂iFi(U)
for every open subset U of X; it is a sub-presheaf of G . �is presheaf is the
colimit of the diagram of presheaves whose arrows are the inclusion morphisms
Fi ↪ G .
If theFi are sheaves, then so isF .

3.2.4. — If G is a sheaf andF is a sub-presheaf of G , there exists a smallest
subsheafF ′ of G which containsF , called the subsheaf of G generated byF .
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It is the intersection of all sub-sheaves of G which containF . For every open
subset U of X,F ′(U) is the set of sections s ∈ G (U) such that every point x ∈ U
has an open neighborhood V contained in x such that s∣V ∈ F (V).
Let indeedF ′

0(U) be this subset. �e familyF ′
0 = (F ′

0(U)) is a sub-presheaf
of G which contains F . It also contains every sheaf that contains F , hence
containsF ′. It thus su�ces to show thatF ′

0 is a subsheaf of G . Let then U be an
open subset of X, let (Ui)i∈I be a family of open subsets of X such that U = ⋃i∈IUi ,
let (si) be a family, where si ∈ F ′

0(Ui) for every i, such that si ∣Ui∩U j = s j∣Ui∩U j ,
for every i , j ∈ I. Since G is a sheaf, there exists a unique section s ∈ G (U) such
that s∣Ui = si , for every i ∈ I. Moreover, s ∈ F ′

0(U); let indeed x ∈ U, let i ∈ I be
such that x ∈ Ui , and let V be an open neighborhood of x contained in Ui such
that si ∣V ∈ F (V); then s∣V = si ∣V ∈ F (V); consequently, s ∈ F ′

0(U), as claimed.

3.2.5. Image of a morphism of sheaves. — Let φ∶F → G be a morphism of
presheaves on X. For every open subset U of X, let Ipre(U) = φ(U)(F (U)).
�enIpre is a sub-presheaf of G .
Assume that G is a sheaf; one de�nes the subsheaf image of φ as the smallest
subsheaf of G which contains the presheafIpre. It is denoted by Im(φ).
If F and G are (pre)sheaves in abelian groups and φ is a morphism of
presheaves in abelian groups, then Im(φ) is subsheaf in abelian groups. Similar
results hold for (pre)sheaves in rings, modules, etc.

Remark (3.2.6). — When G is a sheaf, the presheaf Ipre is generally not a
subsheaf of G , even ifF itself is a sheaf. For example, letF and G be both
equal to the sheaf CX of complex valued continuous functions on X, and let
φ∶CX → CX be given by φ(U)( f ) = exp( f ), for f ∈ C (U;C). If X = C∗, there
does not exist a continuous function f ∶X → C such that x = exp( f (x)), for
every x ∈ C∗. However, for every open subset U of X, small enough to be
contained in a contractible subset of C∗, there exists a function fU∶U→ C such
that x = exp( fU(x)) for every x ∈ U. In other words, the identity function g
(given by g(x) = x) does not belong toIpre(X), although every point of C∗ has
a neighborhood U such that g∣U belongs toIpre(U).

�eorem (3.2.7). — Let X be a topological space. LetF be a presheaf on X. �ere
exists a sheafF + on X and a morphism of presheaves j∶F →F + which satis�es
the following universal property: for every sheaf G on X and every morphism
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f ∶F → G of presheaves, there exists a unique morphism of sheaves φ∶F + → G

such that f = φ ○ j.
Moreover, for every x ∈ X, the map jx ∶Fx →F +

x is a bijection.

If (F +, j) and (F ○, j′) are two morphisms satisfying this universal property,
there exists a unique morphism φ∶F + → F ○ such that j′ = φ ○ j, and this
morphism is an isomorphism. �is can be proved by the usual kind of arguments.
One can also observe that the above universal property says that the sheafF +

represents the functor G ↦ Hom(F ,G ) on the category of sheaves on X.
�e sheafF + is called the sheaf associated withF .

Proof. — One �rst de�nes a presheaf E on X such that E (U) = ∏x∈UFx , for
every open subset U on X, the restriction morphisms being the obvious ones:
if V ⊂ U and s = (sx)x∈U ∈ E (U), then s∣V = (sx)x∈V. �ere is a morphism of
presheaves j∶F → E , given by s ↦ (sx)x∈U, whenever U is an open subset of X
and s ∈ F (U).
�is presheaf E is in fact a sheaf. Let indeed U be an open subset of X, (Ui)i∈I
a family of open subsets of X such that U = ⋃i∈IUi, and (si)i∈I a family, where
si ∈ E (Ui), such that si ∣Ui∩U j = s j∣Ui∩U j for every i , j ∈ I. For i ∈ I, write
si = (si ,x)x∈Ui . Let x ∈ U; if i , j ∈ I are such that x ∈ Ui ∩U j, then si ,x = s j,x ; let sx
be this common value and let s = (sx)x∈U. �en s is an element of E (U) such
that s∣Ui = (sx)x∈Ui = (si ,x)x∈Ui = si , and it is the unique such element.
Let nowF + be the image of the morphism j; it is the smallest subsheaf of E
such thatF +(U) contains j(F (U)) for every open subset U of X. Moreover,
a section s ∈ E (U) belongs toF +(U) if and only if U can be covered by open
subsets V for which there exists t ∈ F (V) such that s∣V = j(t).
By construction the morphism of presheaves j∶F → E factors through a
morphism fromF toF +, which we still denote by j. It remains to show that
for every x ∈ X, the map jx ∶Fx →F +

x is a bijection and that the pair (F +, j)
satis�es the desired universal property.
Let x ∈ X. For every open subset U that contains X, let pU∶F +(U) →Fx be
the canonical projection, given by s ↦ sx . If U and V are open neighborhoods
of x such that V ⊂ U, one has pV(s∣V) = pU(s). By de�nition of the limit
lim←ÐF +(U), there exists a unique map p∶F +

x →Fx which maps the germ at x
of a section s = (sy)y∈U ∈ F +(U) to sx for every open neighborhood U of x. By
construction, p ○ jx is the identity. In particular, jx is injective. Let us show that
jx is surjective. Let s ∈ F +

x be the germ of a section t ∈ F +(U), for some open
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neighborhood U of x. By de�nition ofF +, there exists an open neighborhood V
of x such that V ⊂ U and a section t′ ∈ F (V) such that ty = j(t′)y for every
y ∈ V. By de�nition of the sheaf E , one thus has t∣V = j(t′). Moreover, t and t∣V
have the same germ at x, so that s = jx(t′). �is concludes the proof that the
map jx ∶Fx →F +

x is an isomorphism.
Let us now prove that the pair (F +, j) satis�es the universal property of the
theorem. Let G be a sheaf on X and let f ∶F → G be a morphism of presheaves.
Let U be an open subset of X and let t ∈ F +(U). Let I be the set of pairs (V, s),
where V is an open subset of U and s ∈ F (V) is such that sx = tx for every x ∈ V.
Let i = (V, s) and j = (V′, s′) ∈ I and let W = V ∩V′. For every x ∈W, one has

f (s)x = fx(sx) = fx(tx) = fx(s′x) = f (s′)x .

Since G is a sheaf, lemma 3.1.10 implies that f (s)∣W = f (s′)∣W.
For i = (V, s) ∈ I, let Ui = V and ui = f (s) ∈ G (V). By the de�nition of a
sheaf, applied to the family (Ui)i∈I of open subsets of X and to the family (ui)
of sections G , there exists a unique section u ∈ G (U) such that u∣V = f (V)(s)
for every pair (V, s) ∈ I. Set φ(U)(t) = u. �is de�nes a map φ(U)∶F +(U) →
G (U).
�emorphism jmaps a section s ∈ F (U) to the section t = j(U)(s) = (sx)x∈U
of F +. By construction, one thus has φ(U)( j(U)(s)) = f (U)(s) for every
s ∈ F (U).
If U′ is an open subset of U, the de�nitions of φ(U′) and φ(U) imply at once
that φ(U′)(s∣U′) = φ(U)(s)∣U′ . We thus have de�ned a morphism of sheaves φ
fromF + to G , and φ ○ j = f .
Finally, let φ,ψ be two morphisms of sheaves fromF + to G such that f =

φ ○ j = ψ ○ j, and let us show that φ = ψ. For every point x ∈ X, one has
fx = φx ○ jx = ψx ○ jx , hence φx = ψx since jx is bijective. It follows from
lemma 3.1.10 that φ = ψ.

3.2.8. Colimits. — Let Q be a quiver and let FQ = ((Fv), (φe)) be a Q-
diagram of presheaves on X. For every open subset U of X, let Fpre(U) =
limÐ→(FQ(U)) be the colimit of the diagram of sets ((Fv(U)), (φe(U))); let
φv(U)∶Fv(U) → F (U) be the canonical map. For every open subsets U,V
of X such that V ⊂ U, there exists a unique map ρFpre

UV ∶Fpre(U) → Fpre(V)
such that ρFpre

UV ○ φv(U) = φv(V) ○ ρFpre
UV . �e familyFpre = ((Fpre(U)), (ρF

UV))
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is a presheaf; by construction, the maps φv(U)∶Fv(U) → Fpre(U) form a
morphism of presheaves φv ∶Fv →Fpre.
Endowed with the family of morphisms (φv), the presheafFpre is a colimit of
the diagramFQ. Let indeed (G , (ψv)) be a cocone on this diagram. For every
open subset U of X, the setG (U) is a cocone on the diagramFQ(U), hence there
exists a unique map θ(U)∶Fpre(U) → G (U) such that θ(U) ○ ψv(U) = φv(U)
for every v. Let V and U be open subsets of X such that V ⊂ U. For every v, one
has

ρG
UV ○ θ(U) ○ φv(U) = ρG

UV ○ ψv(U)
= ψv(V) ○ ρFv

UV

= θ(V) ○ φv(V) ○ ρFv
UV

= θ(V) ○ ρFpre
UV ○ φv(U).

It follows that ρG
UV ○ θ(U) = θ(V) ○ ρFpre

UV , which proves that the family of maps
θ = (θ(U)) is a morphism of presheaves. It satis�es ψv = θ ○ φv for every v, and
it is the unique such morphism of presheaves.

3.2.9. — LetFQ be a Q-diagram of sheaves. Generally, the presheafFpre which
is the colimit of this diagram in the category of presheaves is not a sheaf. One
thus de�nes the sheaf limÐ→(FQ) to be the sheaf associated to this presheafFpre.
It is indeed a colimit of the diagramFQ in the category of sheaves on X.

3.2.10. — Similarly, every diagramFQ of sheaves of abelian groups has a colimit
which is computed as follows. One begins by de�ning a presheaf Fpre on X
such thatFpre(U) is the limit of the diagramFQ(U) of abelian groups deduced
fromFQ. �en one shows that the sheafF associated with this presheafFpre
is a colimit of the initial diagram.
An analogous result for sheaves of rings, of modules, etc.

3.2.11. — Let Q be a quiver, letFQ = ((Fv), (φe)) be a diagram of sheaves.
Let x ∈ X. Taking the stalks at x, one obtains a natural diagram FQ,x =
((Fv ,x), (φe ,x)) of sets.
If (F , (φv)) is a colimit of the diagramFQ, then (Fx , (φv ,x)) is a colimit of

the diagramFQ,x .
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Let indeed jx ∶ {x} → X be the inclusion of the point x. Sheaves of sets (resp.
modules,...) on a topological space reduced to one point x can be identify with
the set (resp. module,...) of its global sections. Consequently, the stalkFx of
a sheafF at x identi�es with the sheaf j−1Fx . Since the functor j−1x associated
with the continuous map jx has a right adjoint (namely, the functor jx ,∗), it
commutes with arbitrary colimits.
If (F , (φv)) is a limit of the diagram FQ and if the quiver Q is �nite, then

(Fx , (φv ,x)) is a limit of the diagramFQ,x .
Let (G, (ψv)) be a cone on the diagramFQ,x ; let us show that there exists a
unique map ψ∶G→Fx such that ψv = φv ,x ○ψ for every vertex v of Q, Let g ∈ G.
For every vertex v, let Uv be an open neighborhood of x and sv ∈ Fv(Uv) be
such that ψv(g) is the germ of sv at x; since Q has �nitely many vertices, we
may replace each Uv be the intersection U of the family (Uv)v and sv by sv ∣U;
we thus assume that sv ∈ Fv(U) for every v. For every arrow e of Q, one has
the equality φe ,x(so(e),x) = st(e),x of germs at x; consequently, there exists an
open neighborhood Ue of x contained in U such that φe(Ue)(so(e)∣Ue) = st(e)∣Ue .
Since Q has �nitely many arrows, we may replace U by the intersection ⋂eUe .
Since F is a limit of the diagram FQ, there exists a unique section ψ0(g) ∈
F (U) such that φv(U)(ψ0(g)) = s for every vertex v. Let ψ(g) be the germ
of ψ0(g) at x. It does not depend of the choice of the open neighborhood U
of x and of the sections sv ∈ Fv(U) such that ψv(g) = sv ,x for every vertex v and
φe(U)(so(e)) = st(e) for every arrow e of Q. By construction, themapψ∶G→Fx
satis�es φv ,x ○ ψ = ψv , and it is the unique such map.

3.3. Direct and inverse images of sheaves

Let f ∶X→ Y be a continuous map of topological spaces.

3.3.1. — LetF be a presheaf on X. For every open subset V of Y, the set f −1(V)
is open in X, because f is continuous. One thus de�nes a presheaf f∗F on Y
be setting ( f∗F )(V) = F ( f −1(V)) for every open subset V of Y. If U and V
are open subsets of Y such that V ⊂ U, the restriction map ρ f∗FUV from f∗F (U)
to f∗F (V) is the map ρF

f −1(U), f −1(V) fromF ( f −1(U)) toF ( f −1(V)).

Lemma (3.3.2). — IfF is a sheaf, then f∗F is also a sheaf.
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Proof. — Let indeed V be an open subset of Y, let (Vi)i∈I be a family of open
subsets of Y such that V = ⋃i∈IVi and let (si) be a family of sections of f∗F ,
where si ∈ ( f∗F )(Vi), such that the restrictions of si and s j to Vi ∩V j coincide.
Set U = f −1(V) and Ui = f −1(Vi). By de�nition of the presheaf f∗F , si is an
element ofF (Ui) which we denote by ti . One has f −1(Vi ∩V j) = Ui ∩V j, and
the restriction of ti to Ui ∩U j corresponds with the restriction of si to Vi ∩V j.
Consequently, one has ti ∣Ui∩U j = t j∣Ui∩U j for every pair (i , j) of elements of I.
SinceF is a sheaf, there is a unique element t ∈ F (U) such that t∣Ui = ti for
every i. �is element t corresponds to a section s ∈ ( f∗F )(V) and one has
s∣Ui = si for every i; moreover, s is the only section possessing that property. �is
concludes the proof that the presheafF is a sheaf.

3.3.3. — LetF and G be presheaves on X and let u∶F → G be a morphism
of presheaves. For every open subset V of Y, denote by ( f∗u)(V) the map
u( f −1(V)) from ( f∗F )(V) = F ( f −1(V)) to ( f∗G )(V) = G ( f −1(V)). �is is a
morphism of presheaves.
One has f∗ idF = id f∗F . If v∶G → H is another morphism of presheaves,
then f∗(v ○ u) = ( f∗v) ○ ( f∗u).
Consequently, the assignmentsF → f∗F and u ↦ f∗u de�ne a functor from
the categoryPreShX of presheaves on X to the categoryPreShY of presheaves
on Y, and a functor from the category ShX of sheaves on X to the category ShY
of sheaves on Y.

3.3.4. — IfF is a (pre)sheaf in abelian groups on X, then f∗F has a natural
structure of a (pre)sheaf in abelian groups. If u∶F → G is a morphism of
(pre)sheaves in abelian groups on X, then f∗u is a morphism of (pre)sheaves in
abelian groups on Y. In other words, one also has a functor (still denoted by f∗)
from the categoryAbX of sheaves of abelian groups on X to the categoryAbY
of sheaves of abelian groups on Y.
A similar result holds more generally for (pre)sheaves with values in a category.

3.3.5. — Let G be a presheaf on Y. Let U and V be open subsets of X such that
U ⊂ V. �en f (U) ⊂ f (V); consequently, there exists a unique map ρUV from
the set G f (V) of germs of sections of G at f (V) to the set G f (U) of sets of germs
of sections of G at f (U) which associates with the germ at f (V) of a section s
of G on a neighborhood of f (V) the germ of this section at f (U).



3.3. DIRECT AND INVERSE IMAGES OF SHEAVES 111

�e family (G f (U)) together with the maps ρUV is a presheaf on X, which we
denote (temporarily) by f −1pre(G ).

De�nition (3.3.6). — If G is a sheaf on Y, one de�nes the sheaf f −1G on X as the
sheaf associated with this presheaf f −1preG .

In other words, for every sheafF on X and every morphism v∶ f −1preG →F

of presheaves of X, there exists a unique morphism v′∶ f −1G → F such that
v = v′ ○ j, where j∶ f −1preG → f −1G is the canonical morphism of presheaves.

3.3.7. — Let u∶F → G be amorphismof presheaves onY. �ere exists a unique
morphism of presheaves from f −1pre(F ) to f −1pre(G )which, for every open subset U
of X, every open subset V of Y containing f (U) and every section s ∈ F (U),
associates with the germ of the section s at f (U) the germ of the section u(U)(s).
We (temporarily) denote this morphism by f −1pre(u).
Denote by j and k the canonical morphisms from f −1preF to f −1F and f −1preG
to f −1G respectively. By the universal property of the associated sheaf, there
exists a unique morphism of sheaves f −1u∶ f −1F → f −1G such that ( f −1u ○ j) =
k ○ ( f −1preu).
One has f −1 idF = id f −1F . If v∶G → H is a morphism of sheaves, one has
f −1(v ○ u) = ( f −1v) ○ ( f −1u).
In other words, the assignmentsF ↦ f −1F and u ↦ f −1u de�ne a functor
from the category of sheaves on Y to the category of sheaves on X.

3.3.8. — IfG is a sheaf in abelian groups on Y, then f −1G has a natural structure
of a sheaf in abelian groups. If u∶F → G is a morphism of sheaves in abelian
groups, then f −1u is also a morphism of sheaves in abelian groups. �is gives a
functor, still denoted by f −1, from the categoryAbY of sheaves of abelian groups
on Y to the categoryAbX.
An analogous result holds for sheaves in rings, modules, etc., forwhich colimits
of direct systems is compatible with the colimit of the underlying direct system
of sets.
A similar construction can also be made for sheaves with coe�cients in a
categoryC , provided that colimits of direct systems exist in the categoryC .

3.3.9. — LetF be sheaf on X. Let U be an open subset of X and let s ∈ F (U).
Let V be an open subset of Y which contains f (U); then f −1(V) contains U, so
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that there the restriction morphism ρF
f −1(V),U de�nes a map from ( f∗F )(V) =

F ( f −1(V)) toF (U). When V runs along the family of open neighborhoods
of f (U) in Y, these maps give rise to a map from the set ( f∗F ) f (U) of germs of
sections of f∗F at f (U) toF (U), hence to a map αpre(U) from f −1pre( f∗F )(U)
to F (U). �e family of maps (αpre(U)) is a morphism of presheaves from
the presheaf from f −1pre( f∗F ) to the sheaf F . Consequently, there exists a
unique morphism of sheaves αF ∶ f −1( f∗F ) → F such that αpre = αF ○ j,
where j∶ f −1pre( f∗F ) → f −1( f∗F ) is the canonical morphism.

3.3.10. — Let G be a sheaf on Y. Let V be an open subset of Y, let s ∈ G (V) and
let U = f −1(V). Since f (U) ⊂ V, one may consider the germ of s at f (U) which
is an element of f −1preG (U); let β(V)(s) be its image in f −1G (U) = f∗( f −1G )(V).
�e maps β(V) de�ne a morphism of sheaves βG from G to f∗( f −1G ).

�eorem (3.3.11). — Let F be a sheaf on X, let G be sheaf on Y, and let
u∶G → f∗F be a morphism of sheaves. �ere exists a unique morphism of
sheaves v∶ f −1(G ) →F such that u = f∗(v) ○ βG .
If u is a morphism of sheaves of abelian groups (resp. of rings, etc.), then so is v.

In other words, the map

Hom( f −1G ,F ) → Hom(G , f∗F ), u ↦ f∗(u) ○ βG

is a bijection, so that the pair ( f −1, f∗) of functors between the categories of
sheaves on X and on Y is adjoint.

Proof. — Let v∶G → f∗F be a morphism of sheaves on Y and let u∶ −1G →F

be the morphism given by u = αF ○ ( f −1v).
Let U be an open subset of X, let V be an open subset of Y such that f (U) ⊂ V;
one has U ⊂ f −1( f (U)) ⊂ f −1(V). Let us consider the commutative diagram of
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maps

G (V) ( f∗F )(V) F ( f −1(V))

G f (U) ( f∗F ) f (U)

f −1preG (U) f −1pre( f∗F )(U) F (U),

f −1G (U) f −1 f∗F (U)

→ germ
→v(V)

→ germ

→
restr.→

v f (U)

→
v f (U)

→ can.

→restr.

→ can.

→( f −1v)(U)

→

u(U)

→
αF (U)

where the arrows indicated ‘‘germ’’ map a section on V to its germ at f (U),
the vertical arrow indicated ‘‘restr.’’ maps a section of F on f −1(V) to its
restriction on U, the horizontal arrow indicated ‘‘restr.’’ is the morphism in-
duced by the natural restriction maps from the members of the directed system
( f∗F )(W))W⊃ f (U) = (F ( f −1(W)))W⊃ f (U) toF (U), and the arrows indicated
‘‘can.’’ are the canonical morphisms from a presheaf to the associated sheaf.
Let us assume that U = f −1(V) and let s ∈ G (V). Since f (U) = V is open in Y,
the maps ‘‘germ’’ in the diagram are bijections, as well as the vertical restric-
tion map. �e de�nition of βG shows that βG (s) is the image of s in f −1G (U)
under the composition of arrows of the le� hand column of the above dia-
gram. Consequently, u(U)(βG (s)) is the section v(s) ∈ F (U) = f∗F (V).
Since f∗u(V) = u(U), it follows that v(s) = ( f∗u)(V)(βG (s)). �is shows that
v = ( f∗u) ○ βG .
Conversely, letu1, u2 bemorphisms from f −1G toF such that v = ( f∗u1)○βG =

( f∗u2) ○ βG . Let W be an open subset of X, let t be a section of f −1G on W; let
us prove that u1(t) = u2(t) inF (W). SinceF is a sheaf, it su�ces to prove
that every point x of W has a neighborhood U such that u1(t)∣U = u2(t)∣U. By
de�nition of the sheaf f −1G , there exists an open neighborhood U of x in X, an
open subset V of Y such that f (U) ⊂ V and a section s ∈ G (V) such that t∣U is
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the image of s under the composition:

G (V) germÐÐ→ G f (U) = f −1preG (U) canÐ→ f −1G (U).

Observe that βG (s) is an element of f∗ f −1G (V) = f −1G ( f −1(V)); by the de�ni-
tion of βG , its restriction to U is thus equal to t∣U. Consequently,

u1(t)∣U = u1(t∣U) = u1(βG (s)) = v(s) = u2(βG (s)) = u2(t∣U) = u2(t)∣U.

�is implies that u1(t) = u2(t) and concludes the proof that u1 = u2.

3.4. �e abelian category of abelian sheaves

In this section, we show that the category of abelian sheaves is an abelian
category. In fact, we treat a more general case.

3.4.1. — Let X be a topological space and letA be a sheaf of rings on X. AnA -
(pre)module is a (pre)sheafF in abelian groups such that for every open subset
U of X,F (U) is endowed with a structure of an A (U)-module, compatibly
with the restriction maps: for every pair (U,V) of open subsets of X such that
V ⊂ U, every a ∈ A (U) and every s ∈ F (U), one has a∣V ⋅ s∣V = (a ⋅ s)∣V.
Equivalently,F is an abelian (pre)sheaf endowed with the datum of a mor-
phism of (pre)sheaves in (possibly non-commutative) rings: A → End(F ).

3.4.2. — LetF ,G beA -modules. AmorphismofA -(pre)modules φ∶F → G

is a morphism of (pre)sheaves in abelian groups such that φ(U)(a ⋅ s) = a ⋅
φ(U)(s) for every open subset U of X, every a ∈ A (U) and every s ∈ F (U).
�e identity is a morphism; the composition of two morphisms of A -

(pre)modules is a morphism ofA -(pre)modules. Consequently,A -premodules
andA -modules form categories which we denote byPreModA andModA .
�ey are additive category.
IfF is anA -premodule, then the associated sheafF + has a unique structure
of anA -module such that the canonical morphism j∶F →F + isA -linear.

3.4.3. — LetF be anA -module on X. Let x ∈ X. �e stalkFx has a unique
structure of Ax-module for which ax ⋅ sx = (a ⋅ s)x , for every open neighbor-
hood U of x, every a ∈ A (U) and every s ∈ F (U).
Let φ∶F → G be a morphism of A -modules. For every x ∈ X, the map

φx ∶Fx → Gx is a morphism ofAx-modules.
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3.4.4. — Let A be a ring and let AX be the constant sheaf with value A. Every
AX-module is naturally a sheaf in A-modules. �is gives rise to an equivalence
of categories from the category of AX-modules to the category of sheaves in
A-modules.

3.4.5. — Every diagram of sheaves ofA -modules has a limit and a colimit. In
particular, the category ofA -modules admits �nite products and coproducts.
�e limit is computed on each open set.
To compute the colimit, one �rst computes a presheaf of abelian groups and
then takes the associated sheaf, which has a natural structure of anA -module.
Let x ∈ X. �e functor ‘‘stalk at x ’’ fromModA toModAx commutes with
all colimits, and with all �nite limits.

3.4.6. Images, kernels and cokernels. — Let φ∶F → G be a morphism of
A -modules.
Its image Im(φ) is the subsheaf of G generated by the sub-presheaf given by
U↦ φ(U)(F (U)). It is a sub-A -module of G .
�e kernel of φ is the A -submodule Ker(φ) of F whose sections over an
open subset U of X are the elements of Ker(φ(U)).
To justify the terminology, let j be the inclusion of Ker(φ) inF , and let us
show that (Ker(φ), j) is an equalizer of the pair (φ, 0) of morphisms fromF

toG . �emorphism j is amonomorphism and one has φ○ j = 0 = 0○ j. Let more-
over k∶H →F be amorphismofA -modules such that φ○k = 0; for every open
subset U of X and every section s ∈ H (U), one has φ(U)(k(U)(s)) = 0, hence
k(U)(s) = 0; this shows that k(U)(s) ∈ Ker(φ)(U), so that the morphism k
factors, necessarily uniquely, through Ker(φ).
A coequalizer Coker(φ) of the pair (φ, 0)) is called a cokernel of φ. �e
canonical morphism from G to Coker(φ) is an epimorphism.

Proposition (3.4.7). — Let X be a topological space, letA be a sheaf of rings on X,
letF and G beA -modules and let φ∶F → G be a morphism ofA -modules. Let
j∶Ker(φ) →F and p∶G → Coker(φ) be the canonical morphisms.
a) �e following properties are equivalent:
(a) �e morphism φ is a monomorphism;
(b) One has Ker(φ) = 0;
(c) For every x ∈ X, the morphism φx is injective;
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(d) �e pair (F , φ) is a kernel of p.
b) �e following properties are equivalent:
(a) �e morphism φ is an epimorphism;
(b) One has Coker(φ) = 0;
(c) For every x ∈ X, the morphism φx is surjective;
(d) One has Im(φ) = G ;
(e) �e pair (G , φ) is a cokernel of the morphism j.

c) �emorphism φ is an isomorphism if and only if it is both a monomorphism
and an epimorphism.

Proof. — Recall that j is a monomorphism and p is an epimorphism.

a) (i)⇔(ii). One has φ ○ j = 0; consequently, if φ is a monomorphism, then
j = 0 and Ker(φ) = 0. Conversely, assume that Ker(φ) = 0 and let ψ∶H →F

be a morphism ofA -modules such that φ○ψ = 0; then ψ factor through Ker(φ),
so that ψ = 0.
(ii)⇔(iii). Since passing to stalks commute with �nite limits, one has iso-
morphism Ker(φ)x ≃ Ker(φx) for every x ∈ X. If Ker(φ) = 0, this implies that
Ker(φx) = 0, hence φx is injective; conversely, if φx is injective for every x ∈ X,
then all stalks of the sheaf Ker(φ) are 0, hence Ker(φ) = 0.
�e implication (iv)⇒(i) is obvious, because kernels are monomorphisms.
b) (i)⇒(ii). One has p ○ φ = 0; if φ is an epimorphism, then p = 0 and
Coker(φ) = 0.
(ii)⇔(iii)⇔(iv). Let x ∈ X. Passing to stalks commute with colimits, hence
Coker(φ)x ≃ Coker(φx); moreover, the stalk of the subsheaf Im(φ) of G at x is
equal to Im(φx). If Coker(φ) = 0, then for every x ∈ X, one has Coker(φx) = 0,
so that φx is surjective. If φx is surjective for every x, then the subsheaf Im(φ)
then has the same stalks as G , so that one has Im(φ) = G . Finally, if Im(φ) = G ,
then their stalks coincide, so that φx is surjective for every x; this implies that
every stalk ot the sheaf Coker(φ) is zero, hence Coker(φ) = 0.
(iii)⇒(i). Let us assume that φx is surjective for every x and let ψ∶G →H

be a morphism ofA -modules such that ψ ○ φ = 0; let us prove that ψ = 0. For
every x ∈ X, one has ψx ○ φx = 0, hence ψx = 0 because φx is surjective. �is
implies that ψ = 0, as claimed.
�e implication (v)⇒(i) is obvious, because cokernels are epimorphisms.
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c) In any category, every epimorphism is a monomorphism and an epimor-
phism. Conversely, if φ is both a monomorphism and an epimorphism, then φx
is bijective for every x ∈ X, so that φ is an isomorphism.
It remains to prove the implications (i)⇒(iv) in a) and (i)⇒(v) in b).
Since p ○ φ = 0, one has Im(φ) ⊂ Ker(p). Moreover, one has Ker(p)x =
Im(φ)x = for every x. �is implies that Im(φ) = Ker(p). �e morphism
φ′∶F → Ker(p) induced by φ is thus an epimorphism. If φ is a monomorphism,
then φ′ is a monomorphism as well, hence an isomorphism.
Let k∶F → Coker( j) be a cokernel of j. Since one has φ ○ j = 0, there exists
a unique morphism φ′∶Coker( j) → G such that φ = φ′ ○ k. Moreover, one has
Ker(kx) = Im( jx), so that Ker(φ′

x) = 0 for every x ∈ X; this implies that φ′ is
a monomorphism. If φ is an epimorphism, then φ′ is an epimorphism as well,
hence it is an isomorphism.

�eorem (3.4.8). — Let X be a topological space and let A be a sheaf of rings
on X. �e category ofA -modules is an abelian category.

Proof. — �e category ofA -modules is additive. We constructed kernels and
cokernels, and proved that every monomorphism is a kernel, and that every
epimorphism is a cokernel. �e axioms de�ning an abelian category are satis�ed,
hence the theorem.

3.4.9. — LetF and G beA -modules.
Recall that the presheafH omA (F ,G ) of homomorphisms is de�ned by

H omA (F ,G )(U) = HomA ∣U(F ∣U,G ∣U).
It is in fact an abelian sheaf. If, moreover,A is commutative, then it is a sheaf of
A -modules.
Observe that for every U, there is a canonical morphism

H omA (F ,G )(U) → HomA (U)(F (U),G (U)).
�is morphism is neither surjective, nor injective in general.

3.4.10. — Let us assume thatA is commutative. �e tensor product sheafF⊗A

G is anA -module endowed with an universal bilinear morphism fromF × G .
To prove its existence, we �rst de�ne a presheaf Tpre of A (U)-modules by
the formula

Tpre(U) = F (U) ⊗A (U) G (U),
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for every open subset U of X, and the restriction morphism ρTpre
UV is de�ned as

ρF
UV ⊗ ρG

UV whenever U and V are open subsets of X such that V ⊂ U. Let T
be the sheaf associated with this presheaf and let j∶Tpre → T be the canonical
morphism. �en T is an A -module. Moreover, the family (b(U)) of maps
given by b(U)( f , g) = j(U)( f ⊗ g), for every open subset U of X, every f ∈
F (U) and every g ∈ G (U) is a morphism of sheaves b∶F × G → T . �is
morphism isA -bilinear.
Let us prove that the pair (T , b) satis�es the following universal property:
for everyA -module, everyA -bilinear morphism c∶F × G →P , there exists
a uniqueA -linear morphism γ∶T → G such that c = γ ○ b. Let U be an open
subset of X. �e morphism c(U)∶F (U) × G (U) →P(U) isA (U)-bilinear;
consequently, there exists a unique morphism γpre(U)∶F (U) ⊗A (U) G (U) →
P(U) such that γpre(U)( f ⊗ g) = c(U)( f , g) for every f ∈ F (U) and every
g ∈ G (U). �e family (γpre(U)) is a morphism of presheaves in A -modules
from Tpre toP . Consequently, there exists unique morphism γ∶T → P of
A -modules such that γpre = γ ○ j. One has

γ(U) ○ b(U)( f , g) = γ(U) ○ j(U)( f ⊗ g) = γpre(U)( f ⊗ g) = c(U)( f , g)

for every open subset U of X, every f ∈ F (U) and every g ∈ G (U); this shows
that γ ○ b = c. Conversely, this property implies that γ ○ j = γpre, so that γ is the
unique morphisms ofA -modules which enjoys it.

3.4.11. — Let φ∶Y→ X be a continuous map of topological spaces, letA be a
sheaf of rings on X and letB be sheaf of rings on Y.
Observe that φ∗B is a sheaf of rings on X, and that φ−1A is a sheaf of rings
on Y. Let moreover φ♯∶A → φ∗B be a morphism of sheaves of rings; it would
be equivalent to give oneself the morphism φ♭∶φ−1(A ) →B associated with φ♯

by adjunction.
LetF be anA -module and let G be anB-module.
�e sheaf φ∗G has a canonical structure of a φ∗B-module. Using the mor-
phism φ, we view it as anA -module.
Similarly, the sheaf φ−1F on Y has a canonical structure of a φ−1(A )-module.
De�ne aB-module by the formula

φ∗F = B ⊗φ−1(A φ−1F .
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�e assignments G ↦ φ∗G and φ∗∶F → φ∗F give rise to functors between
the category ofA -modules and that ofB-modules.
Let u∶F → φ∗G be a morphism of A -modules; let u♭∶φ−1F → G be the
morphism of sheaves which is deduced from u by the adjunction property of the
pair (φ−1, φ∗). �en u♭ is a morphism of φ−1A -modules. Consequently, there
exists a unique morphism φ∗u∶φ∗F → G ofB-modules such that φ∗u(V)(b⊗
f ) = b ⋅ u♭( f ) for every open subset V of Y, every b ∈ B(V) and every f ∈
φ−1F (V).
�e map u ↦ φ∗u is a bijection from HomA (F , φ∗G ) to HomB(φ∗F ,G ).
When F and G vary, these maps de�ne an adjunction for the pair of func-
tors (φ∗, φ∗).





CHAPTER 4

SCHEMES

4.1. Sheaves associated to modules on spectra of rings

4.1.1. — Let A be a ring and let X = Spec(A) be its spectrum. Recall that it is
the set of prime ideals of A, endowed with the spectral (or Zariski) topology
whose closed subsets are those of the form

V(E) = {p ∈ Spec(A) ; E ⊂ p},

for some subset E of A. For every subset Z of Spec(A), we also de�ned

j(Z) = ⋂
p∈Z

p = {a ∈ A ; a ∈ p, ∀p ∈ Z},

and that the operations V and j de�ne bijections, inverse one from the other,
from the set of radical ideals of A to the set of closed subsets of Spec(A).
�e algebraic geometry of schemes considers these topological spaces Spec(A)
as its building blocks. In some sense, the prime spectrum of a ring is seen as a
more fundamental object than the ring itself. �is suggests an adjustment of the
notation.
As in any topological space, elements of X are called points; a point of X is
thus denoted by a letter, such as x, and the corresponding prime ideal of A will
be denoted px . With this notation, one thus has

j(Z) = ⋂
x∈Z

px .

�en, the quotient ring A/px is an integral domain, and its �eld of fractions will
be denoted κ(x); it is called the residue �eld of X at x. One has morphisms of
rings:

A→ A/px → κ(x).
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For f ∈ A and x ∈ Spec(A), one writes f (x) for the image of f in the residue
�eld κ(x); with this notation, the condition f ∈ px is then equivalent to the
condition f (x) = 0. For E ⊂ A and Z ⊂ Spec(A), one thus has

V(E) = {x ∈ X ; f (x) = 0∀ f ∈ E} and j(Z) = { f ∈ A ; f (x) = 0∀x ∈ Z}.

For f ∈ A, one also has

V( f ) = {x ∈ X ; f (x) = 0} and D( f ) = {x ∈ X ; f (x) ≠ 0}.

�e subsets D( f ), for f ∈ A, form a basis of open subsets of Spec(A). For
f , g ∈ A, the conditions (i) g ∈

√
( f ), (ii) V(g) ⊃ V( f ), and (iii) D(g) ⊂ D( f ),

are equivalent.

4.1.2. — Let A be a ring and let M be an A-module. Let us de�ne a presheaf of
A-modules M̃pre on X.
Let U be an open subset of Spec(A) and let S(U) be the set of all f ∈ A such
that f (x) ≠ 0 for every x ∈ U. �e set S(U) is a multiplicative subset of A. It
contains 1. Moreover, if f , g ∈ S(U) and x ∈ U, then ( f g)(x) = f (x)g(x) in the
residue �eld κ(x), hence ( f g)(x) ≠ 0. Let jU∶M→ S(U)−1M be the canonical
morphism of A-modules, given by m ↦ m/1.
Let U and V be open subsets of Spec(A) such that V ⊂ U. By de�nition, one
has S(U) ⊂ S(V). Let ρMUV∶ S(U)−1M → S(V)−1M be the unique morphism of
A-modules such that jV = ρMUV ○ jU.
Consequently, the modules M̃pre(U) = S(U)−1M and the morphisms ρMUV
de�ne de�ne a presheaf of A-modules on X.
Let u∶M → N be a morphism of A-modules. �e morphisms S(U)−1M →
S(U)−1N deduced from u form a morphism of presheaves upre∗ ∶ M̃pre → Ñpre.
One has (IdM)pre∗ = Id and (v ○ u)pre∗ = vpre∗ ○ upre∗ .

4.1.3. — If B is an A-algebra, then B̃pre is even a presheaf of A-algebras. Indeed,
the A-modules of fractions S(U)−1B are A-algebras, and the morphisms ρBUV are
morphisms of A-algebras.
If u∶B → C is a morphism of A-algebras, then the associated morphism

upre∗ ∶ B̃pre → C̃pre of presheaves of A-modules is a morphism of presheaves of
A-algebras.

Remark (4.1.4). — Let A be a ring and let M be an A-module. Let f ∈ A and
let U = D( f ). By assumption, an element g belongs to S(U) if and only if
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V(g) ⊂ V( f ), that is if and only if f ∈
√

(g). In particular, the multiplicative
subset S f = {1, f , f 2, . . .} is contained in S(U). Let us observe that the canonical
morphism φ from S−1f M to S(U)−1M is an isomorphism.
Letm ∈M and n ⩾ 0 be such that φ(m/ f n) = 0 in S(U)−1M. �en there exists
g ∈ S(U) such that gm = 0. Since f ∈

√
(g), there exists p ⩾ 0 and h ∈ A such

that f p = gh; then f pm = 0, hence m/ f n = 0 in S−1f M.
Conversely, let m ∈M and let g ∈ S(U). By the same argument, there exists
p ⩾ 0 and h ∈ A such that f p = gh. One has f , g , h ∈ S(U) and m/g = mh/gh =
mh/ f p in S(U)−1M. Consequently, m/g = φ(mh/ f p) belongs to the image of φ.

De�nition (4.1.5). — Let A be a ring and letM be an A-module. One de�nes the
sheaf M̃ to be the sheaf of A-modules associated with this presheaf M̃pre.

If u∶M→ N is a morphism of A-modules, the morphism of sheaves M̃→ Ñ
associated with the morphism upre∗ of presheaves is denoted u∗, or ũ.
If B is an A-algebra, then the sheaf B̃ is a sheaf of A-algebras. If u∶B→ C is a
morphism of A-algebras, then the associated morphism u∗ is a morphism of
sheaves of A-algebras.
If B is an A-algebra and M is a B-module, then M̃ is a B̃-module.

Lemma (4.1.6). — Let x ∈ X and let Sx be the multiplicative subset A px of A.
Let M be an A-module. �e canonical morphism from M to M̃x induces an
isomorphism of Apx -modules from the stalk M̃x of the sheaf M̃ with the module of
fractionsMpx = S−1x M deduced fromM and the multiplicative subset Sx . IfM is an
A-algebra, then this isomorphism is an isomorphism of Apx -algebras.

Proof. — Since the canonical morphism from M̃pre,x to M̃x is an isomorphism,
it su�ces to prove that the canonical morphism from M to M̃pre,x is itself an
isomorphism. By de�nition, M̃pre,x is the colimit limÐ→ S(U)

−1M, where U ranges
over all open subsets of X which contain x. For every such U, one has S(U) ⊂
A px ; let φ∶ M̃pre,x → Mpx be the canonical morphism. It is surjective: for
f ∈ A px and m ∈ M, the element m/ f of Mpx is the image by φ of the
class of the element m/ f of S(D( f ))−1M. It is also injective: if, for an open
neighborhood U of x, f ∈ S(U), and m ∈M, one has φ([m/ f ]) = 0, there exists
g ∈ A px such that gm = 0; this implies that m/ f = 0 in S(D(g))−1M, hence
[m/ f ] = 0 in M̃pre,x .
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Remark (4.1.7). — Let A be a ring, let X = Spec(A) be its spectrum; let f ∈ A;
let M be an A-module. Recall (proposition 1.5.10) that the canonical morphism
of rings A → A f induces a homeomorphism from Spec(A f ) to the open sub-
set D( f ) of Spec(A). Under this homeomorphism, the sheaf M̃ f on Spec(A f )
identi�es with the restriction M̃∣D( f ) to D( f ) of the sheaf M̃ on X.
Indeed, for every g ∈ A, one has D( f g) ⊂ D( f ), M̃pre(D( f g)) =M f g , while
M̃ f pre(D(g)) = (M f )g , so that both presheaves M̃pre∣D( f ) and M̃ f pre on D( f )
are canonically identi�ed.

�eorem (4.1.8). — Let A be a ring, let X = Spec(A) be its spectrum; letM be
an A-module and let M̃ be the associated sheaf of OX-modules. For every open
subset U of X, let θU∶ S(U)−1M→ M̃(U) be the canonical morphism.
For every f ∈ A, the morphism θD( f ) is an isomorphism. In particular, the

canonical morphism fromM to M̃(X) is an isomorphism.

Proof. — Let f ∈ A and let U = D( f ).
We �rst show that θU is injective. Let m ∈ M and let g ∈ S(U) be such that

θU(m/g) = 0. In particular, for every x ∈ U, its germ θU(m/g)x at x vanishes,
hence m/g = 0 in Mpx . Let I be the set of elements a ∈ A such that am = 0; it
is an ideal of A. By assumption, for every x ∈ U, there exists a ∈ A px such
that am = 0, that is, V(I) ∩U = ∅. In other words, one has V(I) ⊂ V( f ), hence
f ∈

√
I. Consequently, there exists an integer n ⩾ 0 such that f n ∈ I. One has

f nm = 0, hence m/g = 0 in M f , and m/g = 0 in S(U)−1M since f ∈ S(U).
Let us now show that θX is surjective. Let µ ∈ M̃(X) and let us show that
there exists m ∈ M such that µ = θX(m). Let x ∈ X; by the construction of
the sheaf associated to a presheaf, there exists an open neighborhood Ux of x,
elements fx ∈ S(Ux) and mx ∈M such that µ∣Ux = θUx(mx/ fx).
Since the open sets of the form D(h) form a basis of open subsets of X, there
exists hx ∈ A such that D(hx) ⊂ Ux ∩D( fx) and x ∈ D(hx). �en hx /∈ px and
one has µ∣D(hx) = θD(hx)(mx/ fx). Moreover, since D(hx) ⊂ D( fx), there exists
gx ∈ A such that fx gx = hnxx . �en mx/ fx = gxmx/hnxx . We may then replace fx
and hx by hnxx , and replace mx by gxmx ; this simpli�es the notation in so that
Ux = D( fx) and µ∣Ux = θUx(mx/ fx).
Let x , y ∈ X. One has µ∣Ux∩Uy = θUx∩Uy(mx/ fx) = θUx∩Uy(my/ fy). Conse-
quently, themorphism θUx∩Uy maps the elementmx/ fx−my/ fy of S(Ux∩Uy)−1M
to 0. Since Ux ∩Uy = D( fx fy), the injectivity part implies that mx/ fx = my/ fy
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in S(Ux ∩ Uy)−1M; by the remark 4.1.4, one even has mx/ fx = my/ fy in the
module M fx fy . By the de�nition of modules of fractions, this means that there
exists an integer nxy ⩾ 0 such that ( fx fy)nx y fymx = ( fx fy)nx y fxmy.
Since x ∈ D( fx), the open sets D( fx) cover Spec(A), hence the intersection of
the sets V( fx) is empty. �is implies that the family ( fx)x∈X generates the unit
ideal of A; as a consequence, there exist a �nite subset Σ of X which generates
the unit ideal. Let n = supx ,y∈Σ(nxy); for every x , y ∈ Σ, one has f n+1x f ny my =
f nx f n+1y mx . Since the family ( f n+1x )x∈Σ generates the unit ideal, there exists a
family (hx)x∈Σ such that∑x∈Σ f n+1x hx = 1. Let then

m = ∑
x∈Σ
hx f nx mx .

For every x ∈ Σ, one has

f n+1x m = ∑
y∈Σ
f n+1x f ny hymy = ∑

y∈Σ
f nx f n+1y hymx = f nx mx∑

y∈Σ
f n+1y hy = f nx mx .

Consequently, m/1 = mx/ fx in M fx and θUx(m/1) = θUx(mx/ fx) = θUx(µ) in
M̃(Ux). Since the open sets (Ux)x∈Σ cover X and M̃ is a sheaf, this shows that
µ = θX(m) and concludes the proof that the map θX is surjective.
It remains to show that the map θD( f ) is surjective for every element f ∈ A.
Given remark 4.1.7, this can be deduced from the preceding part by replacing A
by the ring of fractions A f and M with the module of fractions M f . One can
also redo explicitly the proof. In both cases, details are le� to the reader.

Corollary (4.1.9). — Let A be a ring and let X = Spec(A). LetM be an A-module
and letN be a Ã-module. For every morphism φ∶M → N (X) of A-modules,
there exists a unique morphism φ̃∶ M̃→N of Ã-modules such that φ̃(X) = φ.

�is corollary has two important consequences.
Firstly, it can be reformulated as saying that the pair of functors (M ↦
M̃,N ↦ N (X)) from the category ModA of A-modules to the cate-
goryMod Ã of Ã-modules on X is adjoint. In particular, the functor M ↦ M̃
respects all colimits, and the functor N ↦ N (X) respects all limits (exer-
cise 2.4.9).
Secondly, implied to Ã-modules of the form N = Ñ, it implies that the
functor given byF ↦F (Spec(A)) from the full subcategory of the category of
Ã-modules on X whose objects are of the form M̃, to the category of A-modules
is an equivalence of categories. Indeed, the functor M↦ M̃ is a quasi-inverse.
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Proof. — Let φ∶M → N (X) be a morphism of A-modules. For every open
subset U of X, let φ̃pre(U)∶ S(U)−1M→N (U) be the morphism of A-modules
given by φ̃pre(m/s) = (1/s)φ(m), where, for s ∈ S(U), 1/s is considered as an
element of Ã(U). �e family (φ̃pre(U)) is a morphism of presheaves on X.
Let j∶ M̃pre → M̃ be the canonical morphism from the presheaf M̃pre to the
associated sheaf. �ere exists a unique morphism of sheaves φ̃∶ M̃ →N such
that φ̃(U)( j(U)(m/s)) = φ̃pre(U)(m/s) = (1/s)φ(m) for every m ∈ M, every
open subset U of X and every s ∈ S(U). �is is a morphism of Ã-modules,
and one has φ̃(X) = φ. Conversely, let ψ∶ M̃ → N be any morphism of Ã-
modules such that ψ(X) = φ. For every open subset U of X, every m ∈M and
every s ∈ S(U), one necessarily has

ψ(U)( j(U)(m/s)) = (1/s) ⋅ ψ(U) ○ j(U)(m/1)
= (1/s) ⋅ φ(X)(m)∣U = φ̃(U)( j(U)(m/s)),

hence ψ ○ j = φ̃ ○ j. Consequently, ψ = φ̃, as claimed.

Corollary (4.1.10). — Let A be a ring. �e assignmentM ↦ M̃ and φ ↦ φ̃ is a
functor from the category of A-module to the category of Ã-modules. �is functor
commutes with all colimits, with all �nite limits, and is fully faithful.

Proof. — We have already noted that this functor is fully faithful. Since it has a
right adjoint, it commutes with every colimit, �nite or not (see exercise 2.4.9).
Let us now show that it commutes with every �nite limit.
Let Q = (V, E) be a �nite quiver and letM = (Mv) be a Q-diagram of A-
modules, let (M, (φv)) be its limit. Let (N , (ψv)) be a cone on the diagram M̃

of Ã-modules which is associated withM .
By de�nition, for every v, ψv ∶ Ñ → M̃v is a morphism of Ã-modules such
that ψt(e) ○ ψ̃e = φs(e) for every e ∈ E. �en (N (X), (ψv(X))) is a cone on the
diagramM of A-modules, hence there exists a unique morphism of A-modules
θ∶N (X) →M such that ψv(X) = φv ○ θ for every v ∈ V.
Let a ∈ A and let Sa be the multiplicative subset Sa = {1, a, a2, . . .} of A. Since
the functorM↦ S−1a Mcommutes with �nite limits (it is exact, see example 2.3.15),
the cone (S−1a M, (S−1a φv)) is a limit of the diagram (S−1a Mv). Since the canonical
morphism fromS−1a Mv to M̃(D(a)) is an isomorphism, the cone (S−1a M, (S−1a φv))
is a limit of the diagram (M̃(D(a)). Since (N (D(a)), (ψv(D(a)))) is also
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a cone on this diagram, there exists a unique morphism of S−1a A-modules
θa∶N (D(a)) → S−1a M such that ψv(D(a)) = φv(D(a)) ○ θa for every v ∈ V.
Let now U be an open subset of X. �ere exists a unique morphism ofOX(U)-
modules θ(U)∶N (U) → M̃(U) such that θ(U)(s)∣D(a) = θa(s∣D(a)) for ev-
ery a ∈ A such that D(a) ⊂ U. Moreover, the family (θ(U)) is a morphism
of OX-modules fromN to M̃ such that ψv = φv ○ θ, and it is the unique such
morphism.

Example (4.1.11). — Here are two particularly important examples:
a) Let φ∶M → N be a morphism of A-modules, and let φ̃∶ M̃ → Ñ be the
associated morphism between the corresponding Ã-modules on Spec(A). �en
the Ã-modules associated with Ker(φ) and Coker(φ) are respectively a kernel
and a cokernel of φ̃.
b) Let (Mi) be a family of A-modules, and let M = ⊕i∈IMi be its direct sum

(coproduct). �en M̃ is a direct sum of the family (M̃i) of Ã-modules.

4.2. Locally ringed spaces

De�nition (4.2.1). — A ringed space is a topological space X endowed with a
sheaf of rings OX, which is called its structure sheaf.

When we talk of a ringed space, we o�en omit the sheaf of rings from the
notation.

De�nition (4.2.2). — Let (X,OX) and (Y,OY) be ringed spaces. Amorphism
of ringed spaces from X to Y is a pair (φ, φ♯) consisting of a continuous map
φ∶X→ Y and morphism of sheaves of rings φ♯∶OY → φ∗OX.

Concretely, given a continuous map φ of topological space, the morphism φ♯

amounts to the datum, for every open subset U of Y, of a morphism of rings
φ♯(U)∶OY(U) → OX(φ−1(U)), subject to the following compatibility with re-
strictions: if U and V are open subsets of Y such that V ⊂ U, then φ♯(V)(s∣V) =
φ♯(U)(s)∣V for every s ∈ OY(U).
Instead of φ♯∶OY → φ∗OX, it is equivalent to give oneself the morphism

φ♭∶φ−1OY → OX deduced by the adjunction property of the pair of functors
(φ−1, φ∗) (theorem 3.3.11).
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4.2.3. — Let (φ, φ♯) be a morphism of ringed spaces from (X,OX) to (Y,OY).
Let x ∈ X and let y = φ(x). �ere is a unique morphism of rings φ♯

x ∶OY,y → OX,x
such that φ♯

x( fy) = φ♯(U)( f )x for every open neighborhood U of y and every
section f ∈ OY(U).

De�nition (4.2.4). — A locally ringed space is a ringed space such that the stalks
of its structure sheaf are local rings.
Amorphism from a locally ringed space (X,OX) to a locally ringed space (Y,OY)
is a morphism (φ, φ♯) of ringed spaces such that for every x ∈ X, the associated
morphism φ♯

x ∶OY,φ(x) → OX,x is a local morphism of local rings.

Recall from §1.1.7 that a morphism of local rings is said to be local if the image
of every non-invertible element is not invertible.
We keep the notation of the previous de�nition. Let (X,OX) be a locally ringed
space. For every point x ∈ X, the residue �eld of the local ring OX,x is usually
denoted by κ(x). �e image in κ(x) of a germ f ∈ OX,x is denoted by f (x); for
every open neighborhood U of x and every section f ∈ OX(U), the image of the
germ fx in κ(x) is denoted by f (x).
Let (φ, φ♯) be a morphism of locally ringed spaces. Let x ∈ X. Since the mor-
phism φ♯

x is local, it induces, by passing to the residue �elds, a morphism of �elds
from κ(φ(x)) to κ(x). If U is an open neighborhood of φ(x) and f ∈ OY(U),
then the element φ♯(U)( f )(x) of κ(x) is the image of the element f (φ(x))
of κ(φ(x)).

4.2.5. — Let φ∶X → Y and ψ∶Y → Z be morphisms of locally ringed spaces.
�eir composition ψ ○ φ is de�ned as follows: the underlying continuous map is
the usual composition, and the morphism of sheaves (ψ ○φ)♯∶OZ → (ψ ○φ)∗OX
is given by ψ∗(φ♯) ○ ψ♯. For every x ∈ X, the morphism

(ψ ○ φ)♯x ∶OX,x → OZ,ψ(φ(x))

is the composition of φx ∶OX,x → OY,φ(x) and of ψφ(x)∶OY,φ(x) → OZ,ψ(φ(x)); it is
thus a morphism of local rings.
Locally ringed spaces form a category.

Example (4.2.6). — a) Let X be an open subset of Rn or, more generally, a
C∞-manifold. LetC∞

X be the sheaf ofC∞-functions on X. For every point x ∈ X,
the ring C∞

X,x is the ring of germs of C∞-functions in a neighborhood of x; this
is a local ring whose maximal idealmx is the ideal of germs of functions which
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vanish at x. In particular, the residue �eld κ(x) is equal to R, and for every open
neighborhood U of x, the ‘‘value’’ φ(x) ∈ κ(x) of a section φ ∈ C∞

X (U) is the
actual value of φ at x.
Let X and Y be C∞-manifolds. �e de�nition of a morphism f ∶X→ Y says
that f is a continuous map such that for every open subset V of Y and every C∞-
function φ on V, the composition φ ○ f is C∞ on f −1(V). �en the assignment
φ ↦ φ ○ f induces a morphism of sheaves f ♯∶C∞

Y → f∗C∞
X , so that the pair

( f , f ♯) is a morphism of locally ringed spaces.
Conversely, let ( f , f ♯)∶ (X,C∞

X ) → (Y,C∞
Y ) be a morphism of locally ringed

spaces. �is �rst implies that f is continuous. Moreover, we have explained
that for every open subset V of Y and every function f ∈ C∞

Y (V), one has
f ♯(V)(φ)(x) = φ( f (x)). Consequently, the morphism of sheaves f ♯ is given
by composition of functions.
In conclusion, morphisms of C∞-manifolds coincide with the morphisms of
the associated locally ringed spaces.
b) Let (X,OX) be a locally ringed space and let U be an open subset of X. �e
pair (U,OX∣U) is a locally ringed space.
Let j∶U → X be the inclusion. For every open subset V of X, one has

( j∗(OX∣U))(V) = OX(U ∩ V); let j♯(V) be the restriction morphism. �is
de�nes a morphism of sheaves j♯∶OX → j∗OX∣U. For every x ∈ U, the morphism
j♯x ∶OX,x → (OX∣U)x induced by j♯ is an isomorphism. Consequently, ( j, j♯) is a
morphism of locally ringed spaces.
Let moreover f ∶Y→ X be a morphism of locally ringed spaces. If f (Y) ⊂ U,
there exists a unique morphism of locally ringed spaces g∶Y → U such that
f = j ○ g.
c) Let A be a ring. Endowed with the sheaf of rings Ã, the topological
space Spec(A) is a locally ringed space. (Such locally ringed spaces are the
fundamental bricks of algebraic geometry, and are called a�ne schemes.) Recall
indeed from lemma 4.1.6 that the stalk of the sheaf Ã at a point x ∈ Spec(A)
identi�es with the local ring Apx .
d) Let A be a ring. For every f ∈ A, the canonical homeomorphism of D( f )
to Spec(A f ) identi�es the restriction to D( f ) of the structure sheaf Ã with the
structure sheaf Ã f of Spec(A f ). As a consequence, D( f ) is an a�ne scheme.
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Lemma (4.2.7). — Let X be locally ringed space, let OX be its structure sheaf. Let
U be an open subset of X, let f ∈ OX(U) and letD( f ) = {x ∈ U ; f (x) ≠ 0}. �en
D( f ) is the largest open subset of U the restriction to which f is invertible.

Proof. — Let V be an open subset of U such that f ∣V is invertible and let g ∈
OX(V) be such that f ∣Vg = 1. �en, for every x ∈ V, one has f (x)g(x) = 1,
hence x ∈ D( f ); consequently, V ⊂ D( f ).
Let x ∈ D( f ). Since f (x) ≠ 0, the germ fx of f at x is invertible, because it
does not belong to the maximal ideal of the local ring OX,x . Consequently, fx
is invertible, hence there exists an open neighborhood V of x contained in U
and an element g ∈ OX(V) such fx gx = 1. �is implies that there exists an open
neighborhood W of x contained in V such that f ∣Wg∣W = 1: this shows that f ∣W
is invertible. In particular, W ⊂ D( f ), so that D( f ) is open in U.
For every x ∈ D( f ), let Wx be an open neighborhood of x contained in D( f )
and let gx ∈ OX(Wx) be an inverse of f ∣Wx . For every pair (x , y) of elements
of D( f ), the restrictions of gx and gy to Wx ∩Wy are both equal to the inverse
of f ∣Wx∩Wy . By the sheaf condition, there exists a unique element g ∈ OX(D( f ))
such that g∣Wx = gx for every x ∈ D( f ). One then has ( f g)∣Wx = f ∣Wx gx = 1
for every x, hence f ∣D( f )g = 1 since the union of the open subsets Wx is equal
to D( f ).

�eorem (4.2.8). — Let (X,OX) be a locally ringed space; letA be a ring. For every
morphism of rings u∶A→ OX(X), there exists a unique morphism φ = (φ, φ♯) of
locally ringed spaces from X to Spec(A) such that u = φ♯(Spec(A)).

Proof. — We �rst establish the uniqueness of such a morphism (φ, φ♯) by
analysing properties which follow from the condition φ♯(Spec(A)) = u.
For every point x ∈ X, let px be the kernel of the canonicalmorphism f ↦ f (x)
fromOX(X) to κ(x); it is a prime ideal ofOX(X), because κ(x) is a �eld, hence an
integral domain. For f ∈ A, one has f (φ(x)) = φ♯(Spec(A))( f )(x) = u( f )(x),
so that the conditions f ∈ pφ(x) and u( f ) ∈ px are equivalent. In other
words, one has the equality pφ(x) = u−1(px). �is shows that the point φ(x)
of Spec(Spec(A)) is the prime ideal u−1(px) of A. �is also shows that
φ−1(D( f )) = D(u( f )). Since u( f ) is invertible on D(u( f )), there ex-
ists a unique morphism of rings from u f ∶A f → OX(D(u( f ))) such that
u f (a/1) = u(a)∣D(u( f )) for every a ∈ A. Since OSpec(A)(D( f )) = A f , this also
implies the equality φ♯(D( f )) = u f . Since the open subsets of Spec(A) of the
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form D( f ) constitute a basis of open subsets, we conclude from this analysis
that there exists at most one morphism (φ, φ♯) of locally ringed spaces such
that φ♯(Spec(A)) = u.
Let us now show its existence.
For x ∈ X, de�ne px as above. We �rst construct a map φ∶X → Spec(A) by
de�ning φ(x) ∈ Spec(A) as the prime ideal u−1(px) of A.
By construction, a point x ∈ X belongs to φ−1(D( f )) if and only if
f /∈ u−1(px), that is, if and only if u( f )(x) ≠ 0; in other words, we have
φ−1(D( f )) = D(u( f )); it is thus open in X. Since the open subsets of Spec(A)
of the form D( f ) constitute a basis of open subsets of Spec(A), this implies that
the map φ is continuous.
Let us now show that there exists a morphism of sheaves φ♯∶OSpec(A) → φ∗OX
such that φ♯(Spec(A)) = u. For every f ∈ A, the restriction to D(u( f ))
of the element u( f ) ∈ OX(X) is invertible and we de�ne φ♯(D( f )) to be
the unique morphism of rings from OSpec(A)(D( f )) = A f which maps a/1
to u( f )∣D(u( f )). If f and g are elements of A such that D(g) ⊂ D( f ), one has
φ♯(D( f ))(a)∣D(g) = φ♯(D(g))(a∣D(g)), for every a ∈ A f , because both sides
coincide on the image of A in A f . Let U be an open subset of Spec(A); let
( fi)i∈I be a family of elements of A such that U = ⋃i∈ID( fi); one then has
φ−1(U) = ⋃i∈ID(u( fi)). Let a ∈ OSpec(A)(U); for i ∈ I, let ai = a∣D( f i). For
i , j ∈ I, one has D( fi)∩D( f j) = D( fi f j), andD(u( fi))∩D(u( f j)) = D(u( fi f j));
moreover, φ♯(D( fi))(ai) ∈ OX(D(u( fi)) and φ♯(D( f j))(a j) ∈ OX(D(u( f j)))
coincide with φ♯(D( fi f j))(a∣D( f i f j)) on D(u( fi f j)). Consequently, there exists
a unique element φ♯(U)(a) ∈ OX(φ−1(U)) whose restriction to D(u( fi)) is
equal to φ♯(D( fi))(ai). �e map φ♯(U) is a morphism of rings. �e family
(φ♯(U)) of morphisms is a morphism of rings of sheaves fromOSpec(A) to φ∗OX.
By construction, one has φ♯(Spec(A)) = u. �is concludes the proof.

Lemma (4.2.9) (Glueing locally ringed spaces). — Let (Xi)i∈I be a family of
locally ringed spaces. For every pair (i , j) of elements of I, let Xi j be an open subset
of Xi and let φi j∶Xi j → X ji be an isomorphism of locally ringed space. Assume that
the following properties hold:
(i) For every i, one has Xii = Xi and φii = Id;
(ii) For every i and j, one has φi j = φ−1

ji ;
(iii) For every i, j, k, one has φi j(Xi j ∩ Xik) = X ji ∩ X jk and the restriction

of φik to the open subset Xi j ∩Xik of Xi coincides with the restriction of φ jk ○ φi j.
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�en there exists a locally ringed space X, a family (Ui)i∈I of open subsets of X,
and a family (φi)i∈I such that for every i , j ∈ I, the following properties hold:
(i) �e morphism φi is an isomorphism of locally ringed space from Ui to Xi;
(ii) One has Xi j = φi(Ui ∩U j);
(iii) �e morphisms φi j ○ φi and φ j coincide on Ui ∩U j.

Proof. — Let us �rst de�ne the topological space X∗ to be the union of the
family (Xi)i∈I: a point of X∗ is a pair (i , x) such that x ∈ Xi. One then de�nes
a relation on X∗ by setting (i , x) ∼ ( j, y) if x ∈ Xi j and y = φi j(x). �is is an
equivalence relation. Let X be the quotient topological space X∗/ ∼: this is the set
of equivalence classes of points of X∗ endowed with the quotient topology, for
which a subset Ω of X is open if and only if its preimage in X∗ by the canonical
map π∶X∗ → X is itself open. �e map π is continuous.
Let i ∈ I and let U be an open subset of Xi ; one has

π−1(π({i} ×U)) = ⋃
j∈I
{ j} × φi j(Xi j ∩U),

so that π−1(π(U)) is open in X∗. By de�nition of the quotient topology, π(U) is
open in X. Since every open subset of X∗ is a union of open subsets of the form
{i} ×Ui , where Ui is an open subset of Xi , this shows that π is an open map.
For every i ∈ I, let Ui = π({i} ×Xi); it is an open subset of X and the family

(Ui)i∈I is an open covering of X. Moreover, the map π induces a continuous and
open bijection πi from Xi to Ui ; as a consequence, πi is a homeomorphism.
For i ∈ I, let OUi be the sheaf of rings πi ,∗OXi on Ui; equivalently, one has

OXi = π−1i OUi . For i , j ∈ I, the isomorphism φi j of locally ringed spaces induces
an isomorphism of sheaves of rings

θ i j∶OUi ∣Ui∩U j = (πi ,∗OXi)∣Ui∩U j = (πi ∣Xi j)∗(OXi ∣Xi j)
φ♯i jÐ→ φi j(π j∣X ji)∗(OX j ∣X ji) = OU j ∣Ui∩U j .

Assumptions (i), (ii), (iii) imply that these isomorphisms satisfy the relations of
lemma 3.1.11. Consequently, there exists a sheaf of rings OX on X and isomor-
phisms θ i ∶OX∣Ui ≃ OUi such that θ i j ○ θ i ∣Ui∩U j = θ j∣Ui∩U j .
Let x ∈ X, let i ∈ I be such that x ∈ Ui; let y ∈ Xi be such that πi(y) = x. �e
isomorphism θ i induces an isomorphism of the stalk OX,x with the stalk OUi ,x
which is itself isomorphic to OXi ,y; in particular, it is a local ring. �is shows
that (X,OX) is a locally ringed space.
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Remark (4.2.10). — �e locally ringed space X de�ned by the lemma is called
the locally ringed space de�ned by glueing the family (Xi)i∈I along the open sub-
spaces Xi j by means of the isomorphisms φi j. It satis�es the following universal
property: For every locally ringed space Y, every family of morphisms (ψi)i∈I,
whereψi ∶Xi → Y is amorphism of locally ringed spaces such thatψ j○φi j = ψi ∣Xi j ,
there exists a unique morphism ψ∶X→ Y such that ψ ○ φi = ψi .

4.3. Schemes

De�nition (4.3.1). — Let (X,OX) be a locally ringed space.
a) One says that X is an a�ne scheme if it is isomorphic to (Spec(A), Ã).
b) One says that X is a scheme if every point of X has an open neighborhood U

such that the locally ringed space (U,OX∣U) is an a�ne scheme.
c) Amorphism of schemes is a morphism of the underlying locally ringed spaces.

Example (4.3.2). — a) Every a�ne scheme is a scheme. If a schemeX is a�ne,
then it is isomorphic to Spec(OX(X)).
b) �e locally ringed space induced on every open subset of an a�ne scheme
is a scheme. Indeed, if X = Spec(A) and U is an open subset of X, then every
point of x has a neighborhood in U of the form D( f ), for some f ∈ A. By
remark 4.1.7, the locally ringed spaced induced on D( f ) is an a�ne scheme,
isomorphic to Spec(A f ).
In particular, the set of open subsets U of X such that (U,OX∣U) is an a�ne
scheme is a basis of the topology of X.
c) �e coproduct (disjoint union) of a a family of schemes is a scheme.
d) Let (X,OX) be a scheme and let U be an open subset of X. �en (U,OX∣U)
is a scheme; one says that it is an open subscheme of X. If, moreover, U is a�ne,
then one says that it is an a�ne open subscheme of X.

Example (4.3.3). — Let X and Y be schemes; assume that Y is an a�ne scheme,
say Y = Spec(A). By theorem 4.2.8, for every morphism of rings u∶A→ OX(X),
there exists a unique morphism of schemes f ∶X→ Y such that f ♯(Y) = u.
In particular, there exists a uniquemorphism of schemes f ∶X→ Spec(OX(X))
such that f ♯ = Id. Moreover, X is an a�ne scheme if and only if f is an isomor-
phism.
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Exercise (4.3.4). — Let k be a �eld, let A = k[x , y] and let X = Spec(A). Let
U = X V(x , y). �en, (U,OX∣U) is a locally ringed space which is not an a�ne
scheme.

De�nition (4.3.5). — Let S be a scheme. An S-scheme is a scheme X equipped
with a morphism of schemes f ∶X → S. If (X, f ) and (Y, g) are S-schemes, a
morphism of S-schemes φ∶X→ Y is a morphism of schemes such that g ○ φ = f .

If (X, f ) is an S-scheme, the morphism f is called the structural morphism
of X. In practice, the morphism f is omitted from the notation; for example,
one thus may write: ‘‘Let X be an S-scheme; let f be its structural morphism.’’
Assume that k is a ring and that S = Spec(k). An S-scheme is also called
a k-scheme, and a morphism of S-schemes is also called a k-morphism. By
de�nition, a k-scheme is just a scheme X equipped with a morphism of rings
from k to OX(X), so that the structure sheaf of X is a sheaf in k-algebras. In
particular, an a�ne k-scheme is the spectrum of a k-algebra. Moreover, a
morphism of schemes φ∶X→ Y is a morphism of k-schemes if the morphism of
sheaves φ♯∶OY → φ∗OX is a morphism of sheaves in k-algebras.

Example (4.3.6). — �e category of locally ringed spaces admits coproducts
(disjoint unions), and the coproduct of any family of schemes is a scheme.
Let us moreover remark that the coproduct of a �nite family of a�ne schemes
is a�ne. So let (Ai)i∈I be a �nite family of rings; for every i, let Xi = Spec(Ai).
Let A = ∏i∈IAi and let X = Spec(A); for every i, the projection of index i,
pi ∶A→ Ai , induces a morphism ji from Xi to X.
For every i, let εi be the element of A all of whose components are 0, except for
the component of index i which is equal to 1. Let m ∈ I. One has j−1m(D(εm)) =
D(pm(εm)) = D(1) = Xm. Moreover, the morphism pm extends to a surjective
morphism from Aεm to Am; this morphism is in fact an isomorphism, so that jm
induces an isomorphism from Xm to D(εm).
Finally, εmεn = 0 for every pair (m, n) of distinct elements of I, so that D(εm)∩
D(εn) = ∅.
�is proves that the a�ne scheme X = Spec(∏i∈IAi) is the coproduct of the

(�nite) family (Spec(Ai)) in the category of locally ringed spaces.

Proposition (4.3.7) (Glueing schemes). — Let (Xi)i∈I be a family of schemes. For
every i ∈ I, let Xi j be an open subschemes of Xi ; for every pair (i , j) of elements of I,
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let φi j∶Xi j → X ji be an isomorphism of schemes. Assume that these isomorphisms
satisfy the conditions of lemma 4.2.9. �en the locally ringed space X obtained by
glueing the schemesXi along the open subschemesXi j bymeans of the isomorphisms
φi j is a scheme.

Proof. — Indeed, X is the union of open subsets which are isomorphic, as locally
ringed spaces, to the schemes Xi . Consequently, every point of X has an open
neighborhood which is an a�ne scheme, hence X is a scheme.

Example (4.3.8) (A�ne spaces). — Let k be a ring. �e a�ne space of dimen-
sion n over k is de�ned by Ank = Spec(k[T1, . . . , Tn]). Since k[T1, . . . , Tn] is a
k-algebra, this is k-scheme.
For every k-scheme X, one has Homk(X,Ank) = OX(X)n. In particular, for
every k-algebra A, one has Homk(Spec(A),Ank) = An.

Example (4.3.9) (Projective spaces). — Let k be a ring. �e projective space
of dimension n over k is de�ned by glueing n + 1 a�ne schemes U0, . . . , Un
isomorphic to Ank . Precisely, let U = An+1k = Spec(k[T0, . . . , Tn]) and, for ev-
ery i ∈ {0, . . . , n}, let Ui = Spec(k[T0, . . . , Tn]/(Ti − 1)) = V(Ti − 1).
For every pair (i , j), let Ui j be the open subscheme D(T j) of Ui ; it is a�ne, iso-
morphic to Spec(k[T0, . . . , Tn]/(Ti−1)[1/T j]). �ere exists a uniquemorphism
of schemes φi j∶Ui j → U ji such that

φ♯
i j∶ k[T0, . . . , Tn]/(T j − 1)[1/Ti] → k[T0, . . . , Tn]/(Ti − 1)[1/T j]

maps Tm to TiTm/T j for every m. Indeed, the morphism from k[T0, . . . , Tn]
to k[T0, . . . , Tn]/(Ti − 1)[1/T j]which maps Tm to TiTm/T j for everymmaps T j
to Ti = 1, hence it passes to the quotient by (T j − 1), and it maps Ti to 1/T j which
is invertible, hence it extends to k[T0, . . . , Tn]/(T j − 1)[1/Ti].
One can check that the glueing conditions of proposition 4.3.7 are satis�ed.

�e scheme obtained is called the projective space of dimension n over k; it is
denoted byPnk . Since the schemesUi are k-schemes, and are glued viamorphisms
of k-schemes, this is a k-scheme.
We shall prove later that Pnk is not an a�ne scheme when n ⩾ 1.

Example (4.3.10). — Let X be a scheme. Let x be a point of X and let κ(x) be
its residue �eld. Let us de�ne a canonical morphism φ from Spec(κ(x)) to X.
�e space Spec(κ(x)) has exactly one point, and the underlying continuous
map of topological spaces is just the one with image x. Let us now describe
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the morphism φ♯∶OX → φ∗OSpec(κ(x)). For every open subset U of X which
contains x, one has φ∗(OSpec(κ(x)))(U) = κ(x), and φ♯(U) is the canonical
‘‘evaluation morphism’’ OX(U) → κ(x). On the other hand, if U is an open
subset of X such that x /∈ U, then φ∗(OSpec(κ(x)))(U) = 0, and φ♯(U) is the zero
morphism.
Let us give an alternate description. �e morphism φ factors through every
open subscheme of X which contains x. Let thus U be an a�ne open subscheme
of X such that x ∈ U and let A be a ring such that U = Spec(A). �e point x
corresponds to a prime ideal px of A, and the morphism φ∶ Spec(κ(x)) →
Spec(A) is nothing but the morphism deduced from the ring morphism A→
A/px → κ(x).

4.4. Some properties of schemes

De�nition (4.4.1). — One says that a scheme X is reduced if for every x ∈ X,
the local ring OX,x is reduced. One says that it is integral if it is irreducible and
reduced.

Recall that a ring is said to be reduced if no-nonzero element is nilpotent.
Since the fraction rings of a reduced ring are reduced, the spectrum of a ring A
is a reduced ring if and only if the a�ne scheme Spec(A) is reduced. Moreover,
the a�ne scheme Spec(A) is integral if and only if the ideal (0) is its (necessarily
unique) minimal prime ideal, that is, if and only if A is an integral domain.
An open subscheme of a reduced scheme is reduced.
Since a non-empty open subset of an irreducible topological space is irre-
ducible (prop. 1.10.3), a non-empty open subscheme of an integral scheme is
integral.

Proposition (4.4.2). — Let X be a scheme.
a) Let f ∈ OX(X) be such that V( f ) = X. If X is reduced, then f = 0.
b) If X is reduced, then the ring OX(U) is reduced for every open subscheme U

of X.
c) Conversely, if every point of X has an a�ne open neighborhood U such that

OX(U) is reduced, then X is reduced.

Proof. — a) Let U = Spec(A) be an a�ne open subscheme of X and let
a = f ∣U. One has V(a) = Spec(A), hence a is nilpotent in A. �is implies that
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fx is nilpotent in OX,x for every x ∈ U, hence fx = 0. Consequently, the germ
of f at every point of X vanishes, hence f = 0.
b) Let us assume that X is reduced and let us prove thatOX(U) is reduced for
every open subset U of X. Let f ∈ OX(U) and let n be a positive integer such
that f n = 0. One then has V( f ) = V( f n) = X, hence f = 0 by a).
c) Let U be an a�ne open subscheme of X and let A = OX(U). Under the
canonical isomorphism from U with Spec(A), a point x ∈ U corresponds to a
prime ideal p of A, and the local ring OX,x corresponds to the ring of fractions
Ap. Let f ∈ Ap be a nilpotent element; let a ∈ A and s ∈ A p be such that
f = a/s and let n ∈ N be such that f n = 0. �en an/sn = 0, hence an/1 = 0 in Ap,
so that there exists t ∈ A p such that tan = 0; one then has (ta)n = 0. If A is
reduced, then ta = 0, hence a/s = 0; this proves that Ap is reduced.

Proposition (4.4.3). — Let X be a non-empty scheme. �e following conditions
are equivalent:
(i) �e scheme X is integral;
(ii) For every non-empty open subset U of X, the ring OX(U) is an integral

domain;
(iii) For every non-empty a�ne open subscheme U of X, the ring OX(U) is an

integral domain.
(iv) �e scheme X is connected, and every point of X has an a�ne open neigh-

borhood U such that OX(U) is an integral domain.

Proof. — (i)⇒(ii). Let us assume that X is an integral scheme and let us prove
that the ringOX(U) is an integral domain for every non-empty open subset of X;
we may assume that U = X. Since 1 is invertible in OX(X), one has D(1) = X
(see lemma 4.2.7), hence 1 ≠ 0; this shows that OX(X) ≠ 0. Let then f and g be
elements of OX(X) such that f g = 0. �en X = V( f g) = V( f ) ∪V(g). Since X
is irreducible, this implies that X = V( f ) or X = V(g). Since X is reduced, one
has f = 0 or g = 0.
(ii)⇒(iii) is obvious.
(iii)⇒(iv). Let us assume that OX(U) is an integral domain for every non-
empty a�ne open subset U of X, and let us prove that X is irreducible; this will
imply that X is connected and non-empty. First of all, it is non-empty: indeed,
the empty scheme is, and its ring of functions, being equal to 0, is not an integral
domain. By contradiction, let us consider two distinct irreducible components Y
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and Z of X; by de�nition of an irreducible component, one has Y ∩ Z ≠ Y and
Y ∩ Z ≠ Z, for these equalities mean that one of Y or Z is contained in the other.
Let then y ∈ Y and z ∈ Z be points such that y /∈ Z and z /∈ Y. Let U be an a�ne
open neighborhood of y which is contained in Y (Y∩Z) and let V be an a�ne
open neighborhood of z which is contained in Z (Y ∩ Z). �en U and V are
disjoint open subsets of X and U ∪V is isomorphic to Spec(OX(U) ×OX(V))
(see example 4.3.6), hence is a�ne. Since the ring OX(U) × OX(V) is not an
integral domain (one has (1, 0) ⋅ (0, 1) = (0, 0) = 0), we obtain a contradiction.
�is proves that X is irreducible.
(iv)⇒(i). �e conditions imply that X is reduced, so that we need to prove
that it is irreducible. It is non-empty by hypothesis.
To prove that it irreducible, we prove that every non-empty open subset U
of X is dense. Let x ∈ U and let V be an a�ne open neighborhood of x such that
OX(V) is an integral domain. �en V is irreducible, hence its open subset U∩V
is dense. Since U ∩V is a closed subset of V which contains U ∩V, we deduce
that V ⊂ U. We have proved that U is open in X. Since U is non-empty and X is
connected, this implies that U = X, hence U is dense in X. Consequently, X is
irreducible.

Example (4.4.4). — Let k be an integral domain.
a) �e a�ne space Ank is the spectrum of the integral domain k[T1, . . . , Tn],
hence it is an integral scheme.
b) �e projective space Pnk is an integral scheme.
Indeed, by its very construction, Pnk is the union of (n + 1) open a�ne sub-
schemesU0, . . . , Un, and each of them is isomorphic to the a�ne spaceAnk , hence
is integral. Moreover, for every pair (i , j) of integers such that 0 ⩽ i < j ⩽ n,
Ui ∩U j is isomorphic to Spec(k[T1, . . . , Tn , 1/Tn]), hence is non-empty. �is
implies that Pnk is connected. It thus follows from the previous proposition that
Pnk is an integral scheme.

Proposition (4.4.5). — Let X be a scheme. For every closed irreducible subset Z
of X, there exists a unique point z ∈ X such that Z = {z}.

�is point is called the generic point of Z.

Proof. — Let x be a point of Z and let U be an a�ne open subscheme of X such
that x ∈ U. Let A be a ring such that U = Spec(A). By proposition 1.10.3, Z ∩U
is an irreducible closed subset of U, and one has Z = Z ∩U. It then follows from
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proposition 1.10.2 that there exists a prime ideal p of A such that Z ∩U = V(p).
Let z be the point of Z corresponding to the prime ideal p ∈ Spec(A) = U. One
has V(p) = {p} in Spec(A), so that {z} contains Z ∩U; since it is closed in X, it
also contains Z ∩U = Z. Conversely, z ∈ Z and Z is closed, hence {z} ⊂ Z.
Conversely, let z′ be a point of Z such that {z′} = Z. Since X U is a closed
subset of X which does not contain Z, it does not contain z′, hence z′ ∈ U.
Consequently, z′ corresponds to a prime ideal p′ of A, and

Z ∩U = {z′} ∩U = V(p′) = V(p)

in Spec(A). �is implies that p′ = p, hence z′ = z.

Proposition (4.4.6). — An a�ne scheme is quasi-compact. More generally, a
scheme is quasi-compact if and only if it is the union of �nitely many a�ne open
subschemes.

Recall that a topological space X is said to be quasi-compact if every open cover
of X admits a �nite sub-cover, namely if for every family (Ui)i∈I of open subsets
of X such that X = ⋃i∈IUi , there exists a �nite subset J of I such that X = ⋃i∈JUi .
�is is the French terminology, where ‘‘compact’’ means ‘‘quasi-compact and
Hausdor�’’, hence ‘‘compact’’ in the American terminology for which compact
spaces are called ‘‘compact Hausdor�’’.
A subset of a topological space is said to be quasi-compact if it is so with the
induced topology. It follows readily from the de�nition that a �nite union of
quasi-compact subsets of a topological space is quasi-compact.

Proof. — LetA be a ring and let X = Spec(A). Let (Ui)i∈I be a family of open sub-
sets of X such that X = ⋃i∈IUi . For every i ∈ I, let ( fi , j)Ji be a family of elements
of A such that Ui = ⋃ j∈Ji D( fi , j). Let J be the union of the family (Ji); an element
of J is just a pair (i , j) where i ∈ I and j ∈ Ji. One thus has X = ⋃(i , j)∈JD( fi , j),
hence ∅ = ⋂(i , j)∈JV( fi , j). Consequently, the ideal of A generated by the fi , j con-
tains 1, and there exists a �nite subset J0 of J and a family (ai , j)(i , j)∈J0 of elements
of A such that 1 = ∑(i , j)∈J0 ai , j fi , j. �is implies Spec(A) = ⋃(i , j)∈J0D( fi , j). If I0
is the image of J0 by the projection (i , j) ↦ i, one then has Spec(A) = ⋃i∈I0 Ui .
�is shows that a�ne schemes are quasi-compact.
Conversely, let X be a scheme and let (Ui)i∈I be a covering of X by open a�ne
subschemes. If X is quasi-compact, there exists a �nite subfamily of (Ui) which
covers X; if I is �nite, then X is quasi-compact since Ui is quasi-compact for
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every i, and every �nite union of quasi-compact subsets of a topological space
is quasi-compact.

Lemma (4.4.7). — Let f ∶X→ S be a morphism of schemes. �e following proper-
ties are equivalent:
(i) For every quasi-compact open subset U of S, f −1(U) is quasi-compact;
(ii) For every a�ne open subset U of S, f −1(U) is quasi-compact;
(iii) Every point of S has an a�ne open neighborhood U such that f −1(U) is

quasi-compact.

If these properties hold, one says that the morphism f is quasi-compact.
Observe that a morphism of a�ne schemes is quasi-compact. Let indeed

φ∶A → B be a morphism of rings. For every a ∈ A, the equality aφ−1(D(a)) =
D(φ(a)) proves that aφ−1(D(a)) is a�ne. Since every quasi-compact open sub-
set U of Spec(A) is the union of a �nite family of open subsets of the form D(a),
this implies that aφ−1(U) is quasi-compact.
Moreover, if a morphism f ∶Y → X is quasi-compact, then for every open
subset U of X, the induced morphism fU∶ f −1(U) → U is quasi-compact as well.

Proof. — �e implication (i)⇒(ii) follows from the fact that a�ne schemes are
quasi-compact, and the implication (ii)⇒(iii) holds true because every point
of S has an a�ne open neighborhood.
Let us now assume that (iii) holds true.
Let U be an a�ne open subset of S such that f −1(U) is quasi-compact. Let A be
a ring such that U = Spec(A). Since f −1(U) is quasi-compact, it can be written as
a �nite union of a�ne open subsets V1, . . . , Vn of f −1(U). For every i, let Bi be a
ring such thatVi = Spec(Bi); themorphism f ∣Vi corresponds to a ringmorphism
ui ∶A→ Bi . For every a ∈ A, one has ( f ∣Vi)−1(D(a)) = D(ui(a)) = Spec(Au i(a)),
so that ( f ∣Vi)−1(D(a)) is a�ne; consequently, f −1(D(a)) = ⋃ni=1( f ∣Vi)−1(D(a))
is quasi-compact.
Let nowW be a quasi-compact open subset of S. Let s ∈ S; let U = Spec(A) be
an a�ne open neighborhood of s such that f −1(U) is quasi-compact and let Ws
be an open subset of U of the form D(a), for a ∈ A, such that Ws ⊂ U ∩W. By
what precedes, f −1(Ws) is quasi-compact. Since W is the union of the family
(Ws)s∈W of open sets and is quasi-compact, there exists a �nite subset Σ of S
such that W = ⋃s∈ΣWs. �en f −1(W) = ⋃s∈Σ f −1(Ws) is quasi-compact, as was
to be shown.
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De�nition (4.4.8). — Let f ∶X → S be a morphism of schemes. One says that
f is quasi-separated if for every a�ne open subscheme U of S and every pair
(V,V′) of a�ne open subsets of X contained in f −1(U), the intersection V ∩V′ is
quasi-compact.
One says that a scheme X is quasi-separated if the canonical morphism from X

to Spec(Z) is quasi-separated.

In other words, a scheme X is quasi-separated if and only if the intersection of
any two quasi-compact open subsets of X is quasi-compact.

De�nition (4.4.9). — One says that a scheme is locally noetherian if every point
has a neighborhood isomorphic to the spectrum of a noetherian ring. One says
that it is noetherian if it is locally noetherian and quasi-compact.

Proposition (4.4.10). — a) �e underlying topological space of a noetherian
scheme is noetherian.
b) Every open subscheme of a locally noetherian scheme is locally noetherian.
c) Every open subscheme of a noetherian scheme is noetherian.
d) Let X be an a�ne scheme. If X is noetherian, then OX(X) is a noetherian

ring.

Proof. — a) If X is a noetherian scheme, it is the union of �nitely many
open subschemes which are spectra of noetherian rings. Each of them being a
noetherian topological space, X is a noetherian topological space.
b) Let X be a locally noetherian scheme and let U be an open subscheme of X.
Let x ∈ U and let W = Spec(A) be an a�ne open neighborhood of x, where A is
a noetherian ring. Let a ∈ A be such that x ∈ D(a) and D(a) ⊂ U ∩W. �en
D(a) ≃ Spec(Aa) is an a�ne open neighborhood of x contained in U; moreover,
the ring Aa is generated by 1/a over A, hence is a noetherian ring. �is shows
that U is locally noetherian.
c) With the same notation, U is both quasi-compact (because it is a noetherian
topological space) and locally noetherian, hence is noetherian.
d) Let A be a ring, let X = Spec(A). Let (In) be an increasing sequence of
ideals of A. Every point x ∈ X has an a�ne open neighborhood Ux in X such
that O(Ux) is a noetherian ring. Let then ax ∈ A be such that x ∈ DX(ax) ⊂ Ux ;
one thus has DX(ax) = DUx(ax), hence O(DX(ax)) = O(Ux)ax = Aax . Since
O(Ux)ax is generated by 1/ax over O(Ux), it is a noetherian ring. Consequently,
Aax is a noetherian ring. Since X is quasi-compact, there exists a �nite family
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(ai) of elements of A such that X = ⋃iD(ai) and Aa i is a noetherian ring for
every i.
Let us now show that A is noetherian. Let (In) be a strictly increasing sequence
of ideals of A, and let I be its union. For every i, there exists an integer ni such
that In = I for n ⩾ ni . Let n ⩾ sup(ni) and let us show that In = I. Let thus u ∈ I
and let J be the set of elements v ∈ A such that uv ⊂ In; this is an ideal of A.
Moreover, for every i, one has v/1 ∈ In ⋅ Aak , hence there exists an integer ki
such that ak ii ∈ J. Let k = sup(ki). Since X = ⋃iD(ai), the ideal of A generated
by the family (ai) contains 1, as does the ideal generated by the family (aki ).
Consequently, 1 ∈ J and u ∈ In.

4.4.11. — Let X be a scheme and let Z be a subset of X; let x ∈ Z. We introduced
in de�nition 1.11.2 the dimension of Z and its dimension at x, respectively de-
noted by dim(Z) and dimx(Z), as well as its codimension, denoted by codim(Z).
Recall that dim(Z) is the supremum of the lengths of chains of closed irreducible
subsets of Z, while dimx(Z) is the supremum of the lengths of chains of closed
irreducible subsets of Z containing x. On the other hand, if Z is a closed irre-
ducible subset of X, then codim(Z) is the supremum of the lengths of chains
of closed irreducible subsets of X containing Z. in particular, if x is the generic
point of Z, then codim(Z) = dimx(X). In general, one de�nes codim(Z) as the
in�mum of the codimensions of the closed irreducible subsets of X contained
in Z.
Recall also the following properties, for an arbitrary closed subset Z of X:
a) �e dimension of Z is the supremum of the dimensions of its irreducible
components;
b) Each irreducible component of X has codimension 0 in X;
c) For every closed irreducible subset Z of X, one has codim(Z) + dim(Z) ⩽
dim(X);
d) If Y and Z are irreducible closed subsets of X such that Y ⊂ Z, then
dim(Y) ⩽ dim(Z) and codim(Z) ⩽ codim(Y).
e) If X = Spec(A) is a�ne and Z = V(p), then codim(V(p)) = dim(Ap).
f) For every open subset U of X such that Z ∩U ≠ ∅, one has codim(Z) =
codimU(Z ∩U) and dimx(Z) = dimx(Z ∩U) for every x ∈ Z ∩U. In particular,
for every point x ∈ U, one has dimx(U) = dimx(X). �is follows from the fact
that the map Z ↦ Z ∩U induces a bijection from the set of closed irreducible
subsets of X which meet U to the set of closed irreducible subsets of U.
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Example (4.4.12). — Let k be a �eld and let X be an integral k-scheme of �nite
type. By this, we mean that X is irreducible and that every point of X has an
a�ne open neighborhood U such that OX(U) is an integral domain which is
�nitely generated as a k-algebra.
Let x be the generic point of X. Let U be an a�ne open neighborhood of x such
that A = OX(U) is a �nitely generated k-algebra and an integral domain. �e
point x of X corresponds to the prime ideal (0) of A, hence the local ring OX,x ,
isomorphic to the ring of fractions A(0) = Frac(A), is a �nitely generated �eld
extension of k. It is called the �eld of rational functions on X and is denoted
by R(X). By theorem 1.11.6, one has dim(U) = tr. degk(R(X)). It then follows
from the de�nition of the dimension that dim(X) = tr. degk(R(X)).
Let Z be an irreducible closed subset of X, let z be its generic point and let
U = Spec(A) be an a�ne open neighborhood as above such that z ∈ U. Let p be
the prime ideal of A corresponding to Z. One thus has

dimz(X) = dimz(U) = codim(Z) = dim(Ap)
and

dim(Z) = dim(Z ∩U) = dim(A/p).
It then follows from theorem 1.13.6 that

dim(Z) + codim(Z) = dim(X).
Moreover, all maximal chains of closed irreducible subsets of X have
lengths dim(X). One says that X is catenary.

Example (4.4.13). — Let K be a �eld. It follows from corollary 1.11.7 that for
every integer n ⩾ 0, one has dim(AnK) = n. By the preceding example, one also
has dim(PnK) = n.

4.5. Products of schemes

4.5.1. — LetC be a category. Let S be an object ofC , and let (Xi)i∈I be objects
ofC endowed with morphisms fi ∶Xi → S inC . Let Q be the quiver whose set
of vertices is the disjoint union of I and a point s, and with exactly one arrow
from every point i ∈ I to s, and none other. �e morphisms fi give rise to a
Q-diagram inC . By de�nition, a limit of this diagram is called a �ber product
of the family (Xi , fi). Explicitly, a �ber product is an object P ofC , equipped
with morphisms pi ∶P → Xi for every i, and p∶P → S, such that p = fi ○ pi for
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every i, and such that for every object T ofC , and every family (gi)i∈I, where
gi ∶T→ Xi is a morphism inC , every morphism g∶T→ S such that fi ○ gi = g
for every i ∈ I, there exists a unique morphism ψ∶T→ P such that gi = pi ○ψ for
every i and g = p ○ ψ.
When I has two elements, the above diagram takes the form

Y

X S
→ g

→f

and a �ber product is usually denoted X ×S Y. One also says that the (commuta-
tive) square

X ×S Y Y

X S

→p
→ q → g

→f

is cartesian. �en, for every object T of C , the maps p and q induce maps
pT∶C (T, X ×S Y) →C (T, X) and qT∶C (T, X ×S Y) →C (T, Y). �e resulting
map

(pT, qT)∶C (T, X ×S Y) →C (T, X) ×C (T, Y)
is a bijection fromC (T, X×SY) to the subsetC (T, X)×C (T,S)C (T, Y) of pairs
(φ,ψ) inC (T, X) ×C (T, Y) such that f ○ ψ = g ○ φ.
�is can also be rephrased by introducing the category CS of objects of C

‘‘over S’’, whose objects are pairs (X, f ), where f ∶X → S is a morphism, and
whose morphisms from (X, f ) to (Y, g) is a morphism φ∶X→ Y inC such that
g ○ φ = f . Rephrasing the previous de�nition, a �ber product of a family (Xi) of
objects over S is nothing but a product of this family in the categoryCS.

Lemma (4.5.2). — Let k be a ring, let S = Spec(k). Let I be a �nite set; for every
i ∈ I, let Ai be a k-algebra and let Xi = Spec(Ai). Let A = ⊗i Ai be the tensor
product of these k-algebras; for every i ∈ I, it is an Ai-algebra. �en the a�ne
scheme Spec(A) is a product of the family (Xi) of S-schemes.

Proof. — For every i ∈ I, let fi ∶Xi → S be the morphism induced by the mor-
phism k → Ai (i.e., by the structure of k-algebra of Ai). Let T be a scheme, let
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g∶T→ S be a morphism of schemes, and let (gi)i∈I be a family, where gi ∶T→ Xi
is a morphism of S-schemes; we thus have fi ○ gi = g for every i ∈ I.
Let γ∶ k → OT(T) be the morphism g♯(Spec(k)). For every i, let γi ∶Ai →

OT(T) be themorphism g♯i(Spec(Ai)); this is amorphismof k-algebras, because
fi ○ gi = g. �e map

(ai)i∈I ↦∏
i∈I

γi(ai)

is k-multilinear. Consequently, there exists a unique morphism of k-algebras

u∶⊗
i∈I
Ai → OT(T)

such that u(⊗i∈Iai) = ∏i∈I γi(ai). By theorem 4.2.8, there exists a unique mor-
phism φ∶T → Spec(A) such that u = φ♯(Spec(A)). It is a morphism of S-
schemes, because u is a morphism of k-algebras.
Let i ∈ I. �e morphism g♯i(Spec(Ai))∶Ai → OT(T) is the composition of
f ♯i (Spec(Ai))∶Ai → A and of u = φ♯(Spec(A)); by theorem 4.2.8, one has
fi ○ φ = gi .
Conversely, every morphism ψ∶T → Spec(A) of k-schemes such that fi ○

ψ = gi for every i induces a morphism ψ♯(Spec(A))∶A → OT(T) such that
ψ♯(Spec(A)) ○ f ♯i (Spec(k)) = g♯i(Spec(k)). Since A is generated by the images
of the algebras Ai , one has ψ♯(Spec(A)) = u. By theorem 4.2.8, this implies that
ψ = φ.

Lemma (4.5.3). — Let S be a scheme, let S1 be an open subscheme of S, let (Xi)i∈I be
a �nite family of S1-schemes; for every i, let fi ∶Xi → S1 be the structural morphism.
Assume that this family of S1-schemes admits a product P; for every i, let pi ∶P→ Xi
be the canonical morphism.
Let V be an open subscheme of S; for every i ∈ I, let Ui be an open subscheme

of Xi such that fi(Ui) ⊂ V. Let Q = ⋂i∈I p−1i (Ui). It is an open subset of P and the
induced scheme (Q,OP∣Q) is a �ber product of the family (Ui , fi ∣Ui) of V-schemes.

Proof. — Since pi is continuous and Ui is open, Q is an open subset of P. Let
(T, g) be a V-scheme; for every i, let gi ∶T→ Ui be a morphism of V-schemes.
Composing g with the inclusion from V to S, and, for every i, the morphism gi
with the inclusion from Ui to Xi, we can view T as an S-scheme endowed for
every i with an S-morphism to Xi .
Since g = fi ○ g, one has in fact g(T) ⊂ S1, which allows us to view T as an
S1-schemes, and the morphisms gi as morphisms of S1-schemes. Consequently,
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there exists a unique morphism ψ1∶T → P of S-schemes such that pi ○ ψ1 = gi
for every i. Since the image of gi is contained in Ui , one has ψ(T) ⊂ p−1i (Ui) for
every i, hence ψ1(T) ⊂ Q. Consequently, the morphism ψ1 induces a morphism
ψ∶T→ Q of S1-schemes such that pi ∣Q ○ ψ = gi for every i. It is also a morphism
of S-schemes.
�is is in fact the unique such morphism. Let indeed ψ̃∶T→ Q be a morphism
of S-schemes such that pi ∣Q ○ ψ̃ = gi for every i. �en ψ̃ can be considered as
a morphism of S1-schemes from T to P and one has pi ○ ψ̃ = gi = pi ○ ψ for
every i. Since P is a product of the family (Xi) of S1-schemes, this implies that
ψ̃ = ψ.

�eorem (4.5.4). — �e category of schemes admits all �nite �ber products.

Proof. — Let I be a �nite set, let S be scheme, let (Xi)i∈I be a family of S-schemes;
for every i, let fi ∶Xi → S be the structural morphism. We need to show that
the family (Xi) of S-schemes has a product. By lemma 4.5.2, this family has a
product if S and all the schemes Xi are a�ne. In general, the construction of the
desired product will consist in glueing the �ber products of families (Ui → V)i∈I,
where V is an open a�ne subscheme of S and, for every i, Ui is an open a�ne
subscheme of Xi such that fi(Ui) ⊂ V.
Let (Sλ)λ∈L be an covering of S by open a�ne subschemes. For every λ ∈ L and
every i ∈ I, let (Ui ,m)m∈Mi ,λ be a covering of f −1i (Sλ) by open a�ne subschemes.
Let M be the union of the family Mi ,λ: an element of M is a pair (λ, (mi)) where
λ ∈ L and mi ∈Mi ,λ for every i ∈ I.
For every m = (λ, (mi)) ∈ M, let Pm be the product of the family (Ui ,m i)i∈I
of a�ne Sλ-schemes; by lemma 4.5.3, it is also a product of this family in the
category of S-schemes. For every i, let pm,i ∶Pm → Xi be the canonical morphism
(its image is contained in Ui ,m i ). Let also gm∶Pm → S be the morphism fi ○ pm,i ,
for every i ∈ I; one has gm(Pm) ⊂ Sλ.
Let m = (λ, (mi)) and m′ = (λ′, (m′

i)) be elements of M. For every i ∈ I, let
Vi = Ui ,m i ∩U′

i ,m i , and let Pmm′ = ⋂i∈I(pm,i)−1(Vi); by lemma 4.5.3, the open
subscheme Pmm′ of Pm is a product of the family (Vi). By symmetry, Pm′m is
also a product of this family. Consequently, there exists a unique morphism of
S-schemes φmm′ ∶Pmm′ → Pm′m such that pm′ ,i ○ φmm′ = pm,i for every i ∈ I, and
it is an isomorphism.
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Let P be the scheme obtained by glueing the family of schemes (Pm)m∈M
along their open subschemes Pmm′ via the isomorphisms φmm′. For every m ∈
M, let φm∶Pm → P be the canonical morphism; by de�nition, it induces an
isomorphism of Pm onto an open subschemeWm of P, and one has φm′ ○φmm′ =
φm for every pair (m,m′) of elements of M. For every i ∈ I, there exists a
unique morphism of schemes pi ∶P → Xi such that pi ○ φm = pm,i for every
m ∈ P. Similarly, there exists a unique morphism of schemes g∶P→ S such that
g ○ φm = gm for every m ∈M; one has g = fi ○ pi for every i ∈ I. Consequently, P
is an S-scheme (via g) and the morphisms pi are morphisms of S-schemes.
Let m ∈ M and let Um = ⋂i∈I p−1i (Ui ,m i). Let us show that Um = Wm. �e
inclusion Wm ⊂ Um follows from the equality pi ○ φm = pi ,m i , for every i ∈ I.
Conversely, let m′ ∈ M. By lemma 4.5.3 the isomorphism φm′ ∶Pm′ → Wm′

induces an isomorphism from Pm′m with Um ∩Wm′ . Since φm′ = φm ○ φmm′ , it
follows that Um ∩Wm′ = φm(Pmm′) ⊂Wm. Consequently,

Um = Um ∩ ( ⋃
m′∈M

Wm′) = ⋃
m′∈M

(Um ∩Wm′) ⊂Wm .

�is shows that Um =Wm, as claimed.
Let us now show that the S-scheme P, equipped with the family of morphisms

(pi)i∈I is a product of the family (Xi)i∈I of S-schemes. We need to check the
universal property: Let T be an S-scheme; for every i ∈ I, let hi ∶T → Xi be an
S-morphism; let us show that there exists a unique morphism of S-schemes
ψ∶T→ P such that pi ○ ψ = hi for every i.
For every m ∈ M, let Tm = ⋂i∈I h−1i (Ui ,m i). Since Pm is a product of the
family (Ui ,m i)i of S-schemes, there exists a unique morphism of S-schemes
ψ′
m∶Tm → Pm such that pm,i ○ ψ′

m = hi ∣Tm for every i ∈ I. Let ψm = φm ○ φ′
m.

Let m,m′ ∈ M and let V = Tm ∩ Tm′, so that the morphism ψ′
m∣V factors

through Pmm′ , �en, the morphism φmm′ ○ ψ′
m∣V from V to Pm′ satis�es

pm′ ,i ○ φmm′ ○ ψ′
m∣V = pm,i ○ ψ′

m∣V = hi ∣V = pm′ ,i ○ ψ′
m′ ∣V.

Since Pm′ is a product of the family (Ui ,m′
i
)i of S-schemes, one thus has ψ′

m′ ∣V =
φmm′ ○ ψ′

m∣V. In particular, the morphisms ψm = φm ○ ψm and ψm′ = φm′ ○ ψ′
m′

coincide on V. As a consequence, there exists a unique morphism of S-schemes
ψ∶T→ P such that ψ∣Tm = ψm for every m ∈M. Moreover, for every such m and
every i ∈ I, one has

pi ○ ψ∣Tm = pi ○ φm ○ ψ′
m = pm,i ○ ψ′

m = hi ∣Tm .
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�is implies that pi ○ ψ = hi for every i ∈ I.
Conversely, let ψ̃∶T → P be a morphism such that pi ○ ψ̃ = hi for every i ∈ I.
Let us show that ψ̃ = ψ. Let m ∈ M. Observe that one has Tm = ψ−1(Um) =
ψ̃−1(Um) = ⋂i∈I(pi ○ ψ̃)−1(Ui ,m i) = ⋂i∈I h1i(Ui ,m i) = ψ−1(Um) = Tm. Moreover,
pi ○ ψ̃∣Tm = hi ∣Tm = pi ○ ψ∣Tm . Since Um is a product of the family (Ui ,m i)i of
S-schemes, the two morphisms from Tm to Um induced by ψ and ψ̃ are equal.
In other words, ψ∣Tm = ψ̃∣Tm . Since the family (Tm)m∈M of open subschemes
cover P, this implies that ψ̃ = ψ.

Corollary (4.5.5). — Let S be a scheme, let X and Y be S-schemes. Every non-
empty �nite family ( fi)i∈I of S-morphisms from X to Y has an equalizer in the
category of S-schemes.

Recall that an equalizer (Z, g) of the family ( fi) is a scheme Z endowed with
a morphism g∶Z→ X such that all morphisms fi ○ g are equal, and such that for
every scheme T and every morphism h∶T→ X such that all morphisms fi ○ h
are equal, there exists a unique morphism k∶T→ Z such that h = g ○ k.
Proof. — Let YI be the product of I copies of X over S; for every i ∈ I, let
pi ∶YI → Y be the projection of index i. Let f ∶X→ YI be the unique S-morphism
such that pi ○ f = fi for every i ∈ I. Let also δ∶Y→ YI be the diagonal morphism,
namely, the unique morphism such that pi ○ δ = idY for every i ∈ I; it is an
S-morphism. Let Z be the �ber product of the morphisms f and g; let p∶Z→ X
and q∶Z→ Y be the canonical projections. Let us show that (Z, p) is an equalizer
of the family ( fi).
By de�nition, for every i ∈ I, one has fi ○ p = pi ○ f ○ p = pi ○ g ○ q = q, so that
all morphisms fi ○ p are equal. Let T be a scheme, let h∶T→ X be a morphism
of schemes such that all morphisms fi ○ h are equal to a common morphism
j∶T → Y. �en pi ○ f ○ h = fi ○ h = j = pi ○ g ○ j, so that there exists a unique
morphism k∶T→ Z such that h = p ○ k and j = q ○ k. Conversely, if k′∶T→ Z is
a morphism such that h = p ○ k′, then g ○ q ○ k′ = f ○ p ○ k′ = f ○ h. For every
element i of I, one then has q ○ k′ = pi ○ g ○ q ○ k′ = pi ○ f ○ h = fi ○ h = j; Since I
is non-empty, this proves that q ○ k′ = j. By the de�nition of the �ber product Z,
one then has k′ = k.

Remark (4.5.6). — If the morphisms fi ∶Xi → S are quasi-compact, then the
morphism g∶P → S from the �ber product of the family (Xi) to S is quasi-
compact as well.
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Indeed, the construction of P shows that for every λ ∈ L, the open sub-
set f −1i (Sλ) of Xi is the union of a �nite family of a�ne open subschemes, so
that one can assume that the sets Mi ,λ are �nite, for every i ∈ I and every λ. For
every λ, g−1(Sλ) is the union of the a�ne schemes P(λ,(m i)), for (mi) ∈ ∏iMi ,λ.
Consequently, g−1(Sλ) is quasi-compact. �is concludes the proof.

4.5.7. — Let f ∶X → S be a morphism of schemes. Let T be a scheme and let
u∶T → S be a morphism of schemes. Let XT be the �ber product X ×S T, and
let fT∶XT → T be the second projection. �e T-scheme (XT, fT) is called the
T-scheme deduced from X by base change to T.
Let Y be an S-scheme and let g∶Y → S be its structural morphism. and
let φ∶X → Y be a morphism of S-schemes. �ere exists a unique morphism
φT∶XT → YT of T-schemes such that q ○ φT = φ ○ p, where p∶XT → X and
q∶YT → Y are the �rst projections. �is morphism φT is called themorphism
deduced from φ by base change to T.
�e assignments X↦ XT and φ ↦ φT de�ne a functor u∗ from the category

SchS of S-schemes to the category SchT of T-schemes.
Let s be a point of S and let js∶ Spec(κ(s)) → S be the associated morphism.

�eSpec(κ(s))-schemeX×SSpec(κ(s)) → Spec(κ(s)) is called the�ber of f at s;
it is denoted by Xs. �is terminology is justi�ed by the fact that the underlying
continousmap to the �rst projection Xs → X induces a homeomorphism fromXs
to the closed subset f −1(s) of X with the induced topology.

4.6. Group schemes

4.6.1. — Let C be a category which admits �nite products and a terminal
object p.
By Yoneda’s lemma (proposition 2.4.4), the datum of a morphism m∶G ×
G→ G is equivalent to the data of functorial maps mA∶C (A,G) ×C (A,G) →
C (A,G), that is, such thatmB( f , g) ○φ = mA( f ○φ, g ○φ) for every pair (A, B)
of objects ofC , every morphism φ ∈C (A, B) and every pair ( f , g) inC (B,G).
A group object in the categoryC is an object G ofC endowedwith amorphism
m∶G ×G→ G such that for every object A ofC , the map mA is a group law on
the setC (A,G). Let m be such a morphism.
�e associativity of the group laws mA means that mA ○ (mA × idC (A,G)) =
mA ○ (idC (A,G) ×mA) for every object A ofC . Applying again Yoneda’s lemma,
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it thus translates into the equality

(4.6.1.1) m ○ (m × idG) = m ○ (idG ×m)
of morphisms from G ×G ×G to G.
Let eA ∈ C (A,G) be the unit element of the group law mA and let
iA∶C (A,G) → C (A,G) be its inversion. For every morphism φ∶A → B,
the map C (B,G) → C (A,G) deduced from φ is a morphism of groups. In
particular, it maps eB to eA; in other words, eB ○ φ = eA. Similarly, for every
f ∈C (B,G), one has iB( f ) ○ φ = iA( f ○ φ). Consequently, the family of maps
(iA) is a morphism of functors from hG to itself. By Yoneda’s lemma, there
exists a unique morphism i∶G → G such that iA( f ) = i ○ f for every object A
ofC and every f ∈C (A,G). Concretely, one has i = iG(idG).
�e fact that for every object A, the map iA is the inversion of C (A,G) is
equivalent to the relation

(4.6.1.2) m ○ (i × idG) = m ○ (idG ×i) = eG = e ○ tG
inC (G,G).
Similarly, the formula eB ○ f = eA means that the assignment A ↦ eA is a
morphism of functors from the functor hp (such that hp(A) is a set with one
element, for every object A) to the functor hG. Consequently, there exists a
unique morphism e∶ p → G such that eA = e ○ tA for every object A ofC , where
tA∶A→ p is the unique morphism to the terminal object p. Similarly, the fact
that eA is the neutral element ofC (A,G), for every object A, translates into the
formula

(4.6.1.3) m ○ (idG ×e) = m ○ (e × idG) = idG .
Conversely, if G is an object ofC , endowed with three morphismsm∶G×G→
G, e∶ p → G and i∶G→ G satisfying the relations (4.6.1.1), (4.6.1.3) and (4.6.1.2),
then it is a group object inC .
Furthermore, the group laws mA are commutative if and only if one has

(4.6.1.4) m ○ s = m,
where s∶G × G → G × G is the unique morphism such that p1 ○ s = p2 and
p2 ○ s = p1. One then says that this group object is commutative.

De�nition (4.6.2). — Let S be a scheme. A (commutative) S-group scheme is a
(commutative) group object in the category SchS of S-schemes.
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4.6.3. �e additive group. — Let Ga = Spec(Z[T]). For every scheme A, one
has

Hom(A,Ga) = Hom(Z[T],OA(A)) = OA(A),

and this set is naturally an additive group, functorially in A. It thus de�nes a com-
mutative group scheme (Ga,m)�emorphism m∶Ga ×S Ga → Ga corresponds
to the morphism of rings Z[T] → Z[T] ⊗Z Z[T] given by T↦ 1⊗ T + T⊗ 1.

4.6.4. �e multiplicative group. — Let Gm = Spec(Z[T, 1/T]) be the open
subscheme D(T) of Ga. For every scheme A, one has

Hom(A,Gm) = Hom(Z[T, 1/T],OA(A)) = OA(A)×.

Again, this set is naturally a group for multiplication, functorially in A, so that
Gm is a commutative group scheme. Its multiplication m∶Gm ×Spec(Z) Gm →
Gm corresponds to the unique morphism of rings Z[T, 1/T] → Z[T, 1/T] ⊗Z

Z[T, 1/T] given by T↦ T⊗ T.

4.6.5. �e general linear group. — Let n be an integer and let ∆ ∈
Z[(Ti , j)1⩽i , j⩽n] be the determinant polynomial; let G be the open subset
D(∆) in Spec(Z[(Ti , j)1⩽i , j⩽n]). In particular, G is a�ne, and one has

OG(G) = Z[(Ti , j), 1/∆].

For every scheme A, Hom(A,G) is the set of matrices M with coe�cients in
the ring OA(A) such that det(M) is invertible. It thus identi�es with the group
GL(n,OA(A)). When A varies, the group laws on these groups endows the
scheme G with a structure of an S-group scheme (non-commutative if n ⩾ 2).
�e morphism m∶G ×G→ G corresponds to the morphism

Z[(Ti , j), 1/∆] → Z[(Ti , j), 1/∆] ⊗ Z[(Ti , j), 1/∆]

given by

Ti , j ↦
n
∑
k=1
Ti ,k ⊗ Tk, j.
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4.6.6. — Let G and H be two group schemes over S. A morphism of group
schemes φ∶G→ H is a morphism of S-schemes such that for every S-scheme T,
the map φT∶G(T) → H(T) is a morphism of groups. Note that by the Yoneda
lemma, a functorial family (φT) of morphism of groups comes from a unique
morphism of S-schemes, hence from a unique morphism of group schemes.
Equivalently, a morphism of schemes φ∶G → H is a morphism of group
schemes if one hasmH○(φ, φ) = φ○mG, wheremG∶G×SG→ GandmH∶H×SH→
H are the group laws.
For example, there is a unique morphism of group schemes det∶GL(n) → Gm
such that detT is the determinant morphism from GL(n,OT(T)) to Gm(T) =
OT(T)×.

4.6.7. — Let G and H be two group S-schemes. �en the product G ×S H
has a unique structure of group scheme such that the canonical projections
from G ×SH to G and H are morphisms of group schemes.

4.7. Coherent and quasi-coherent modules on schemes

De�nition (4.7.1). — Let (X,OX) be a locally ringed space and letM be an OX-
module. One says thatM is quasi-coherent if every point x ∈ X has an open
neighborhood U such thatM ∣U is isomorphic to the cokernel of a morphism of
OX∣U-modules of the form

O(J)
U → O(I)

U .

�eorem (4.7.2). — Let A be a ring, let X be the a�ne scheme Spec(A) and let
M be an OX-module on X. �e following properties are equivalent:
(i) �e OX-moduleM is quasi-coherent;
(ii) For every f ∈ A, the canonical morphism M (X) f → M (D( f )) is an

isomorphism of A f -modules.
(iii) �ere exists an A-moduleM such thatM is isomorphic to M̃;

Observe that property (ii) is the conjonction of two properties:
(ii′) For every f ∈ A and every section s ∈ M (D( f )), there exists a section
s′ ∈ M (X) and an integer n ⩾ 0 such that sn f = s′∣D( f );
(ii′′) For every f ∈ A and every section s ∈ M (X) such that s∣D( f ) = 0, there
exists an integer n ⩾ 0 such that sn f = 0.
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Proof. — Let us assume that (ii) holds and let M = M (X). Let us consider the
canonical morphism of sheaves θ∶ M̃→M . By the de�nition of the OX-module
M̃, θ(U) is an isomorphismwhenever U is an open subset of X of the formD( f ).
Since these subsets form a basis of open subsets of X, this implies that θ is an
isomorphism. We thus have shown the implication (ii)⇒(iii).
Assume thatM = M̃ and let us show that it is a quasi-coherent Ã-module.
Let p∶A(I) →M be a surjective morphism of A-modules, and let φ∶A(J) → A(I)

be a morphism of A-modules such that Im(φ) = Ker(p), so that M ≃ Coker(p).
Since the functor M↦ M̃ commutes with all colimits and with all �nite limits
(corollary 4.1.10, see also example 4.1.11), the Ã-module M̃ is a cokernel of the
morphism φ̃∶O(J)

X → O(I)
X of OX-modules. �is proves that (iii)⇒(i).

Finally, letM be a quasi-coherent OX-module on X. Let (Uλ) be a family
of open subsets of X such that X = ⋃λ∈LUλ and suchM ∣Uλ is isomorphic to
a cokernel of a morphism of OUλ-modules, say φλ∶O(Iλ)

Uλ
→ O(Jλ)

Uλ
. We may

assume that Uλ is a distinguished open subset of the form D( fλ), for some
fλ ∈ A. By corollary 4.1.10, there exists an A fλ-module Mλ and an isomorphism
M̃λ ≃ M ∣D( fλ) of OD( fλ)-modules.
Since Spec(A) is quasi-compact, there exists a �nite subset L′ of L such that

⋃λ∈L′D( fλ) = X; we may thus assume that the set L is �nite.
Let f ∈ A and let s ∈ M (X) be such that s∣D( f ) = 0. For every λ ∈ L, consider
the section sλ = s∣D( fλ). Since sλ∣D( f ) = 0, there exists an integer nλ ⩾ 0 such that
f nλs∣D( fλ) = 0. Let n = supλ∈L(nλ). One has f ns∣D( fλ) = 0 for every λ ∈ L, hence
f ns = 0.
Let f ∈ A and let s ∈ M (D( f )). For every λ ∈ L, consider the section
s∣D( f fλ) of the sheafM ∣D( fλ) on its distinguished open subset D( fλ f ) = D( f ) ∩
D( fλ). �ere exists a section s′λ ∈ M (D( fλ)) and an integer nλ ⩾ 0 such that
f nλs∣D( f fλ) = s′λ∣D( f fλ). Let n = supλ∈L(nλ); let us replace nλ by n and s′λ by
f n−nλs′λ, we assume that f ns and sλ coincide on D( f fλ). As a consequence, for
λ, µ ∈ L, the sections sλ and sµ coincide on D( f fλ fµ). �is implies that there
exists an integer m(λ, µ) such that f m(λ,µ)(sλ − sµ) = 0. Let m = sup(m(λ, µ));
replace n by n + m and sλ by f msλ. �en has f ns and sλ coincide on D( f fλ);
sλ and sµ coincide on D( fλ fµ). Consequently, there exists a unique section
s′ ∈ M (X) such that s′∣D( fλ) = sλ for every λ ∈ L. Since s′∣D( f fλ) = f ns∣D( fλ) for
every λ, this implies that s′∣D( f ) = f ns. We thus have proved the implication
(i)⇒(ii).
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Corollary (4.7.3). — Let X be a scheme. A colimit of a diagram of quasi-coherent
OX-modules is quasi-coherent, a limit of a �nite diagram of quasi-coherent OX-
modules is quasi-coherent. In particular, for every morphism φ∶M → N of
quasi-coherent OX-modules, the OX-modules Ker(φ), Im(φ) and Coker(φ) are
quasi-coherent.

Proof. — Let U be an a�ne open subscheme of X, say U = Spec(A) for some
ring A. Let D be a diagram of quasi-coherent OX-modules and letM be its
colimit. By passing to the A-modules of sections onU, the diagramD furnishes a
diagramD(U) of A-modules. Moreover, if M is the colimit of this diagram, then
M̃ is the colimit of the diagramD ∣U of OU-modules. �is implies thatM ∣U is
isomorphic to M̃, hence is quasi-coherent. Consequently,M is quasi-coherent.
In particular, the cokernel of a morphism of quasi-coherent OX-modules is
quasi-coherent.
If D is �nite, the same argument shows that a limit of D is quasi-coherent.

�is implies that the kernel of a morphism φ∶M →N of quasi-coherent OX-
modules is quasi-coherent. Since the image of φ is isomorphic to the kernel of
the canonicalmorphism fromN to Coker(φ), it is a quasi-coherentOX-module
as well.

Corollary (4.7.4). — a) Let A be a ring and let X = Spec(A); let M and N
be A-modules. �ere exists a unique isomorphism of OX-modules φ∶ M̃ ⊗OX

Ñ→ M̃⊗A N such that φ(X) induces the canonical homomorphism M̃(X) ⊗Ã(X)
Ñ(X) →M⊗A N.
b) �e tensor product of two quasi-coherent OX-modules on a scheme is quasi-

coherent.

Proof. — a) Recall that the sheaf M̃ ⊗Ã Ñ is the sheaf associated with the
presheaf on Spec(A) given by

U↦ M̃(U) ⊗Ã(U) Ñ(U).

�e canonical morphism S(U)−1M → M̃(U) In particular, For every open
subset U of X, let φU∶M⊗A N→ M̃⊗Ã Ñ(U) be the morphism of A-modules
induced by the bilinear map (m, n) ↦ m∣U ⊗ n∣U. It induces a morphism
b) Let X be a scheme, letF and G be quasi-coherent OX-modules. Let U be
an open subset of X such that (U,OX∣U) is an a�ne scheme, isomorphic to the
spectrum of a ring A. �en the restriction to U of the sheafF ⊗OX G is the sheaf
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F ∣U ⊗OX∣U G ∣U. Let M and N be A-modules such thatF ∣U and G ∣U are equal
with M̃ and Ñ respectively. By part a), the sheafF ∣U ⊗OX∣U G ∣U is associated
with the A-module M⊗AN. It is thus quasi-coherent. By de�nition of a scheme,
every point of X has a neighborhood U which is an a�ne scheme. �is proves
thatF ⊗OX G is a quasi-coherent OX-module.

Corollary (4.7.5). — Let A and B be rings, let X = Spec(A), let Y = Spec(B); let
φ∶A→ B be a morphism of rings and let f ∶ Spec(B) → Spec(A) be the associated
morphism of schemes. For every quasi-coherent OY-moduleM , f∗M is a quasi-
coherent OX-module.

Note that if a priori, f∗M is a f∗OY-module, we can use the canonical mor-
phism f ♯∶OX → f∗OY to view it as an OX-module.

Proof. — Let M be the B-moduleM (Y); sinceM is quasi-coherent, we may
assume thatM = M̃. One has f∗M (X) = M ( f −1(X)) =M, where we view M
as an A-module via the morphism φ.
Let then a ∈ A. By de�nition, one has

f∗M (D(a)) = M ( f −1(D(a))) = M (D(φ(a))) =Mφ(a),

so that the canonical morphism ( f∗M )(X)a → ( f∗M )(D(φ(a))) identi�es
with the tautological isomorphism from Ma to Mφ(a). �is implies that f∗M is
a quasi-coherent OX-module.

Corollary (4.7.6). — Let f ∶Y → X be a morphism of schemes and letM be a
quasi-coherent OX-module. �en the OY-module f ∗M is quasi-coherent.
Moreover, for every a�ne open subscheme V of Y and every a�ne open sub-

scheme U of X such that f (V) ⊂ U, the canonical homomorphism OY(V) ⊗OX(U)
M (U) → f ∗M (V) is an isomorphism.

Proof. — Let y ∈ Y and let x = f (y), let U be an open neighborhood of x
such thatM ∣U is isomorphic to the cokernel of a morphism φ∶OX∣(J)U → OX∣(I)U .
Let V = f −1(U). Since the functor f ∗ is right exact and commutes with direct
sums, the OY∣V-module f ∗M ∣V is isomorphic to the cokernel of the morphism
f ∗φ∶OY∣(J)V → OY∣(I)V deduced from φ. �is proves that f ∗M ∣V is quasi-coherent.
Let now U and V be a�ne open subschemes of X and Y respectively such that
f (V) ⊂ U. Let A = OX(U) and B = OY(V); let M = M (U), so that one can
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identifyM ∣Uwith M̃. Moreover, one has ( f ∗M )∣V = g∗(M ∣U), where g∶V→ U
is the morphism of schemes deduced from f by restriction. Let φ∶A(J) → A(I) be
a morphism of A-modules such that M = Coker(φ). By what precedes, the OV-
moduleN ∣V = g∗M ∣U is the cokernel of the morphism g∗φ∶O(J)

V → O(I)
V . Since

V is a�ne,N (V) is the cokernel of the morphism g∗φ(V)∶B(J) → B(I) deduced
from φ by base-change to B. It is thus isomorphic to B⊗AM, as claimed.

4.7.7. — Let X be a ringed space. LetM be an OX-module. Let (si)i∈I be a
family of global sections ofM .
Let O(I)

X be the direct sum of copies of OX, indexed by I; for i ∈ I, denote
by ji ∶OX → O(I)

X the canonical injection with index i. For every i ∈ I, there
exists a unique morphism ofOX-modules, φi ∶OX →M , such that φi(X)(1) = si .
Consequently, there exists a unique morphism of OX-modules φ∶O(I)

X → M

such that φ ○ ji = φi for every i ∈ I. It is in fact the unique morphism of
OX-modules such that φ(X) ○ ji(X)(1) = si .
By construction, theOX-moduleO(I)

X can be identi�ed with the submodule of
O IX whose sections over an open subset U consist of families ( fi)i∈I of elements
of OX(U) such that for every point x ∈ U, there exists an open neighborhood V
of x in U such that fi ∣V = 0 for all but �nitely many i ∈ I. Consequently, the
morphism φ is given by φ(U)(( fi)) = ∑i∈I fisi ∣U for every open subset U of X
and every section ( fi)i∈I ∈ O(I)

X (U); the sum looks in�nite but is locally �nite.
One says that the family (si)i∈I generatesM (resp. is a frame ofM ) if this
morphism φ is an epimorphism (resp. an isomorphism). If such a family exists,
then one says thatM is globally generated (resp. is free).

De�nition (4.7.8). — Let X be a ringed space and letM be an OX-module.

a) One says thatM is locally free (resp. invertible) if every point x ∈ X has a
neighborhood U such thatM ∣U is a free OU-module (resp. is isomorphic to OU).
b) One says thatM is of �nitely generated (or of �nite type) if every point

of X has a neighborhood U such thatM ∣U is generated by a �nite family of global
sections.
c) One says thatM is of �nitely presented (or of �nite presentation) if every

point of X has a neighborhood U such thatM ∣U is isomorphic to the cokernel of a
morphism p∶O JU → O IU, where I and J are �nite sets.
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We notice that if U is an open neighborhood of x satisfying each of the given
conditions, then any open subset contained in V satis�es them as well.
�e de�nition of a �nitely presented OX-module is the same as that of a quasi-
coherent OX-module, the only di�erence being on the requirement that I and J
be �nite sets. In particular, a �nitely presented OX-module is quasi-coherent.
Moreover, condition c) can also be rephrased by saying thatM ∣U is globally
generated by some �nite family (si) of sections ofM (U), and that the kernel
of the associated morphism φ∶O IX →M is itself generated by a �nite family of
global sections.

Proposition (4.7.9). — Let X be a ringed space and let 0→M
kÐ→N

pÐ→P → 0
be an exact sequence of OX-modules.
a) IfN is �nitely generated, thenP is �nitely generated.
b) IfM andP are �nitely generated, thenN is �nitely generated.
c) IfP is �nitely presented and N is �nitely generated, thenM is �nitely
generated.

Proof. — a) Let x ∈ X. Let U be an open neighborhood of x and let (si)i∈I be a
�nite family of sections ofN (U) such that themorphism φ∶OX∣IU →N ∣U given
by ( fi) ↦ ∑ fisi is an epimorphism. �en the morphism p ○ φ∶OX∣IU →PU is
an epimorphism as well, which implies thatP is �nitely generated.
b) Let x ∈ X, let U be an open neighborhood of x, small enough so that
there exists a �nite family (si)i∈I of sections ofP(U) which generatesP ∣U,
and a �nite family (t j) j∈J of sections ofM (U) which generatesM ∣U. Since the
morphism p is surjective, there exists for each i ∈ I an open neighborhood Ui
of x in U and a section s′i ∈ N (Ui) such that p(Ui)(s′i) = si ∣Ui . Replacing U by
the open neighborhood⋂i∈IUi of x, the sections s′i and t j by their restrictions, we
assume that si = p(U)(s′i) for every i. Let us then prove thatN ∣U is generated
by the union of the families (k(t j)) j∈J and (s′i)i∈I. Let indeed V be an open
subset of U and let s ∈ N (V). Let y ∈ V. By assumption, there exists an open
neighborhoodV′ of y in V and elements ( fi)i∈I ofOX(V′) such that p(V)(s)∣V′ =
∑ fisi ∣V′ . Let t = s∣V′ −∑ fisi ∣V′ ; by construction, p(V′)(t) = 0, so that t belongs
to ker(p)(V′). Consequently, there exists an open neighborhood V′′ of y in V′
and elements (g j) j∈J of OX(V′′) such that t∣V′′ = ∑ g jk(t j)∣V′′. �en s∣V′′ =
∑ g jk(t j)∣V′′ +∑ fi ∣V′′s′i ∣V′′ , which concludes the proof that the the union of the
families (k(t j)) j∈J and (s′i)i∈I generatesN ∣U.
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c) Let x ∈ X. Let us choose an open neighborhood U of x and a presentation
Om
U

ψÐ→ On
U

φÐ→P ∣U. �ere exists an open neighborhood U of x and a morphism
u∶On

U → N ∣U such that p ○ u = φ. �en p ○ u ○ ψ = φ ○ ψ = 0; it follows that
there exists a unique morphism v∶Om

U →M ∣U such that u ○ ψ = k ○ v.
Let us now observe that the canonical morphism k∶Coker(v) → Coker(u)
deduced from k is an isomorphism. While this can be proved by a variant of
the snake lemma in the category of abelian sheaves, let us do it by hand. Since
the stalk of the cokernel is the cokernel of the morphism induced between
stalks, (Coker(v)y = Coker(vy), and similarly for u), it su�ces to prove that
for every point y ∈ U, the induced morphism ky∶Coker(vy) → Coker(uy) is
an isomorphism. Let thus m ∈ My be such that ky(m) = 0, where m is the
image of m in Coker(vy); let then s ∈ On

X,y by such that ky(m) = uy(s); one
has φy(s) = py ○ uy(s) = py ○ ky(m) = 0, hence there exists t ∈ Om

X,y such that
s = ψ(t); this implies that ky(m) = uy ○ ψy(t) = ky ○ vy(t); since ky is injective,
one thus has m = vy(t), hence m = 0; this shows that ky is injective. Let then
n ∈ Ny; since φy is surjective, there exists s ∈ On

X,y such that py(n) = φy(s); then
py(n − uy(s)) = 0, so that there exists m ∈ My such that n = uy(s) + ky(m);
one then has n = ky(m) in Coker(uy), which shows that ky is surjective.
SinceN ∣U is �nitely generated, so is Coker(u), which proves that Coker(v)
is �nitely generated. Applying assertion a) to the exact sequence 0 → Om

U
vÐ→

M ∣U → Coker(v) → 0, we conclude thatM ∣U is �nitely generated, as claimed.

Proposition (4.7.10). — Let A be a ring, let X = Spec(A), letM be an A-module.
�e OX-module M̃ is �nitely generated (resp. �nitely presented) if and only if the
A-moduleM is �nitely generated (resp. �nitely presented).

Proof. — Let us assume that the A-module M is �nitely generated, let (si)i∈I
be a �nite generating family of elements of M, and let φ∶O IX → M̃ be the asso-
ciated morphism. For every f ∈ A, the morphism φ(D( f )) identi�es with the
morphism from AIf to M f deduced from the morphism φ(X) by passing to the
modules of fractions; it is thus surjective. Since the open subsets of X of the
form D( f ) constitute a basis of open subsets of X, this implies that Im(φ) = M̃,
hence φ is an epimorphism. Consequently, M̃ is a �nitely generatedOX-module.
Assume now that M is a �nitely presented A-module. If (si) is as above, then
the kernel K of the canonical morphism from AI to M is �nitely generated. By
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what precedes, K̃ is a �nitely generated OX-module. Since M̃ is the cokernel of
the morphism K̃→ O IX, we conclude that M̃ is �nitely presented.
Conversely, let us assume that M̃ is a �nitely generatedOX-module. Let (Ui)i∈I
be a family of open subsets of X such thatM ∣Ui is generated by �nitely many
sections and such that X = ⋃i∈IUi . We may assume that there exists fi ∈ A such
that Ui = D( fi). Since Spec(A) is quasi-compact, there exists a �nite subset I′
of I such that X = ⋃i∈I′Ui . We thus may assume that I is a �nite set.
For every i, let (si , j) j∈Ji be a �nite family of elements ofM (Ui) =M f i which
generatesM ∣Ui . For every i ∈ I and every j ∈ J, there exists an integer ni , j such
that f n i , ji si , j belongs to the image of M in M f i , say f

n i , j
i si , j = mi , j/1, for some

mi , j ∈M. Let M′ be the submodule of M generated by the family (mi , j) i∈I
j∈Ji
. For

every i ∈ I, one has M′
f i = M f i , so that (M/M′) f i = 0. Every global section of

the quasi-coherent OX-module associated with the A-module M/M′ is locally 0,
hence is 0; consequently, M/M′ = 0 and M′ =M. �is shows that M is �nitely
generated.
Assume now that M̃ is �nitely presented. It is thus �nitely generated, so that
the A-module M is �nitely generated. Let (si)i∈I be �nite generating family
of elements of M and let φ∶AI →M be the associated surjective morphism of
A-modules and let K = Ker(φ). Let then φ̃∶O IX → M̃ be the corresponding
morphism of OX-modules; it is surjective and its kernel is K̃. By prop. 4.7.9, its
kernel K̃ is a �nitely generated OX-module. By what precedes, K is a �nitely
generated A-module; this shows that M is �nitely presented, as claimed.

Proposition (4.7.11). — Let X be a scheme and letM andN be quasi-coherent
OX-modules. IfM is �nitely presented, then the OX-moduleH omOX(M ,N ) is
quasi-coherent.

Proof. — It su�ces to treat the case where X is a�ne; let then A = OX(X),
M = M (X) and N = N (X). Let us de�ne a morphism of A-modules
φ∶HomA(M,N) →H omÃ(M̃, Ñ). Let thus f ∈ HomA(M,N); since Ñ(X) = N,
there exists a unique morphism of sheaves f̃ ∶ M̃→ Ñ such that f̃ (X) = f . �e
map f ↦ f̃ is a morphism of A-modules from HomA(M,N) to HomÃ(M̃, Ñ).
�e latter module being the set of global section of the sheafH omÃ(M̃, Ñ),
there exists a unique morphism of sheaves of A-modules

Φ∶ ̃HomA(M,N) →H omÃ(M̃, Ñ)
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such that Φ(X)( f ) = f̃ for every f ∈ HomA(M,N).
For every a ∈ A, the morphism Φ(D(a)) is the canonical morphism
from HomA(M,N)a to HomAa(Ma , Na); by lemma 4.7.12 below, it is an
isomorphism.
Since the subsets of Spec(A) of the form D(a) are a basis of open subsets, this
implies that the morphism Φ is an isomorphism of sheaves.

Lemma (4.7.12). — Let A be a ring, let S be a multiplicative subset of A, letM
and N be A-modules. �ere exists a unique morphism of A-modules,

θ∶ S−1HomA(M,N) → HomS−1A(S−1M, S−1N),

which, for u ∈ HomA(M,N), maps u/1 to the morphism given by m/s ↦ u(m)/s.
IfM is �nitely generated, then θ is injective; ifM is �nitely presented, then θ is an
isomorphism.

Proof. — Let θ1∶HomA(M,N) → HomS−1A(S−1M, S−1N) being the map under-
lying the functor S ↦ S−1M; by de�nition, θ1(u)(m/s) = u(m)/s, for u ∈
HomA(M,N),m ∈M, and s ∈ S. Since the target of θ1 consists of an S−1A-module,
there exists a unique morphism θ∶ S−1HomA(M,N) → HomS−1A(S−1M, S−1N)
such that θ(u/s) = s−1θ1(u).
Let us now assume that M is �nitely generated and let us show that the
morphism θ is injective. Let (m1, . . . ,mr) be a �nite generating family; let
ψ∶Ar → M be the morphism given by (a1, . . . , ar) ↦ ∑ aimi. Consider an el-
ement of Ker(θ); let us write it as u/s, where s ∈ S and u ∈ HomA(M,N). By
assumption, for every i ∈ {1, . . . , r}, one has u(mi/1) = 0 hence there exists an
element si ∈ S such that siu(mi) = 0. Let t = s1 . . . sr; one has tu(mi) = 0 for
every i, hence tu(m) = 0 for every m ∈M. In other words, tu = 0; this implies
that u/s = 0.
Let us now assume that M is �nitely presented. Let P = Ker(ψ); it is a
�nitely generated A-module. Let v∶ S−1M → S−1N be a morphism of S−1A-
modules. �ere exists an element s ∈ S and a family (n1, . . . , nr) of elements
of N such that v(mi/1) = ni/s, for every i. Let u1∶Ar → N be the morphism
given by u1(a1, . . . , ar) = ∑ aini. For every p = (a1, . . . , ar) ∈ P, one has
u1(p) = v(ψ(p) = v(0) = 0 in S−1N; since P is �nitely generated, there ex-
ists an element t ∈ S such that tu1(p) for every p ∈ P. Passing to the quotient
by P, there exists a morphism u∶M → N such that u ○ ψ = tu1. It follows
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that u(m)/1 = (t/s)v(m/1), for every m ∈ M, hence θ(u) = (t/s)v. Finally,
v = θ(ts−1u), which shows that θ is surjective.

Exercise (4.7.13). — Give examples of a ring A, of a multiplicative subset S of A
and of A-modules M and N such that the canonical morphism θ of lemma 4.7.12
is not injective (resp. is injective but not bijective).

De�nition (4.7.14). — Let X be a ringed space and letM be an OX-module. One
says thatM is coherent if it is of �nite type and if, for every open subset U of X,
and every �nite family (si)i∈I of elements ofM (U), the kernel of the associated
morphism φ∶O IX →M is of �nite type.

It follows from the de�nition that a coherent OX-module is �nitely presented;
in particular, it is quasi-coherent. Similarly, any �nitely generated submodule of
a coherent OX-module is coherent.

Exercise (4.7.15). — Let X be a ringed space. Let φ∶F → G be a morphism of
OX-modules.
a) Assume that F is �nitely generated and G is coherent. �en Im(φ) is
coherent and Ker(φ) is �nitely generated.
b) IfF and G are coherent, then Ker(φ) and Coker(φ) are coherent.
c) If, out of Ker(φ),F , and Im(φ), two OX-modules are coherent, then so is
the third one.

Lemma (4.7.16). — Let A be a ring and let X = Spec(A). Assume that the
scheme X is noetherian. �en the following properties hold:
a) �e ring A is noetherian;
b) �e sheaf of rings OX is coherent.
c) For every A-moduleM, the quasi-coherent module M̃ is coherent if and only

ifM is �nitely generated.

Proof. — a) Let J be an ideal of A; let us prove that J is �nitely generated.
let us prove that the associated sheaf of ideals J̃ ⊂ OX is a �nitely generated
OX-module. Let thus x ∈ X and let U be an a�ne open neighborhood of x of the
form Spec(B), where B is a noetherian ring. �en J̃(U) is an ideal ofOX(B) = B;
since B is noetherian, it is �nitely generated, so that J̃∣U is a �nitely generatedOU-
module. �is implies that the OX-module J̃ is �nitely generated and it follows
from proposition 4.7.10 that the ideal J is �nitely generated.
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b) �e sheafOX is generated by its global section 1, hence it is �nitely generated.
Let U be an open subset of X, let (si)i∈I be a �nite family of elements of OX(U)
and let φ∶O IU → OX be the associated morphism. We need to show that Ker(φ)
is �nitely generated.
Let x ∈ U and let f ∈ A be an element such that x ∈ D( f ) ⊂ U. �en
Ker(φ)∣D( f ) is a quasi-coherent OX-module associated to the kernel K f of the
morphism φ(D( f )) of A f -modules given by (ai) ↦ ∑i aisi ∣D( f ). Observe that
for every f ∈ A, the ring of fractions A f is noetherian, because it is generated
by 1/ f as an A-algebra. Consequently, the A f -module K f , being a submodule of
the �nitely generated A f -module AIf , is �nitely generated as well. �is implies
that Ker(φ)∣D( f ) is �nitely generated, and concludes the proof that Ker(φ) is
�nitely generated.
c) If M̃ is coherent, it is �nitely generated; by prop. 4.7.10, the A-module M is
�nitely generated. Conversely, let us assume that M is �nitely generated, so that
there exists an integer n ⩾ 0, a submodule P of An such that M is isomorphic
to the quotient An/P. �is implies that the OX-module M̃ is isomorphic to the
quotient of On

X by the �nitely generated submodule P̃. Since OX is coherent,
assertion c) of exercise 4.7.15 implies that On

X is coherent; it then follows from
assertion b) of that exercise that M̃ is coherent.

�eorem (4.7.17). — Let X be a locally noetherian scheme and letM is a quasi-
coherent OX-module. �e following properties are equivalent:

(i) �e OX-moduleM is coherent;
(ii) �e OX-moduleM is �nitely presented;
(iii) �e OX-moduleM is �nitely generated.

Proof. — �e implications (i)⇒(ii) and (ii)⇒(iii) have already been discussed.
Assuming thatM is �nitely generated, it remains to prove that it is coherent.
Let x ∈ X and let U be an a�ne open neighborhood of X. Since X is locally
noetherian, U is isomorphic to the spectrum of a noetherian ring A (one has
A = OX(U)). Since M is �nitely generated, proposition 4.7.10 implies that
the A-moduleM (U) is �nitely generated. Consequently,M ∣U is a coherent
OU-module. �is concludes the proof thatM is coherent.
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4.8. Schemes associated with graded algebras

4.8.1. — Let A be a graded algebra. By de�nition, there exists a family (An)n∈N
of additive subgroups of A such that A = ⊕An and such that An ⋅Am ⊂ An+m
for every n,m ∈ N. Elements of An are said to be homogeneous of degree n.
For a ∈ A, one can write a = ∑n∈N an, where an ∈ An for every integer n. �e
element an is called the homogeneous component of degree n of a.
An A-moduleM is said to be graded if there exists a family (Mn)n∈Z of additive
subgroups of M such that M = ⊕Mn and An ⋅Mm ⊂Mn+m for every n ∈ N and
every m ∈ Z. �e homogeneous components of an element of M are de�ned
similarly as those of an element of A.
A submodule N of a graded module M is called to be graded if is equal to the
direct sum⊕n∈Z(N ∩Mn).

4.8.2. — An ideal I of A is said to be homogeneous if it satis�es the equivalent
conditions:
(i) �e ideal I is generated by homogeneous elements;
(ii) �e homogeneous components of every element of I belong to I;
(iii) �e ideal I is a graded submodule of A.
�e subgroup A+ = ⊕n>0An of A is a homogeneous ideal of A, called the

irrelevant ideal.

Lemma (4.8.3). — �e radical of a homogeneous ideal of A is a homogeneous
ideal.

Proof. — Let I be a homogeneous ideal of A. Let f ∈
√
I and let ( fn) be the

family of its homogenous components; we need to show that fn ∈
√
I for every

integer n ⩾ 0. Otherwise, there exists a largest integer d such that fd /∈
√
I. Let

f ′ = ∑n⩽d fn; by assumption, one has f − f ′ ∈
√
I, hence f ′ ∈

√
I. Let e ⩾ 0 be an

integer such that ( f ′)e ∈ I. �e homogeneous component of degree de of f ′ is
equal to ( fd)e ; since I is a homogeneous ideal, one has ( fd)e ∈ I, hence fd ∈

√
I.

�is contradicts the de�nition of d.

Lemma (4.8.4). — Let A be a graded ring and let I be a homogeneous ideal of A
which does not contain A+. Assume that for every pair (a, b) of homogeneous
elements of A such that a /∈ I and b /∈ I, one has ab /∈ I. �en I is a prime ideal.
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Proof. — One has I ≠ A. Let a, b be elements of A I and let us show that
ab /∈ I. Let (an) and (bn) be their homogeneous components; there exists a
largest integer d such that ad /∈ I and a largest integer e such that ae /∈ I. Let
a′ = ∑n⩽d an and b′ = ∑n⩽e bn; one has a − a′ ∈ I and b − b′ ∈ I, so that

c = a′b′ = a′(b′ − b) + a′b = a′(b′ − b) + (a′ − a)b + ab ∈ I

On the other hand, the homogeneous components (cn) of c are given by

cn = ∑
p⩽d
n−p⩽e

apbn−p;

in particular, cd+e = adbe /∈ I. Since I is a homogenous ideal, this implies that
c /∈ I, as was to be shown.

4.8.5. — Let Proj(A) be the set of homogeneous prime ideals of A which do
not contain the irrelevant ideal A+.
For every subset E of A consisting of homogeneous elements, one de�nes

V+(E) as the set of p ∈ Proj(A) such that E ⊂ p, and D+(E) = Proj(A) V+(E).
�e subsets of Proj(A) of the form V+(E) are the closed subsets of a topology
on Proj(A), called the Zariski topology. In fact, one has Proj(A) ⊂ Spec(A),
and it is the topology induced by the Zariski topology of Spec(A).
�e topological space Proj(A) is called the projective spectrum of A.
For every subset Z of Proj(A), let j+(Z) be the set of all f ∈ A+ such that
Z ⊂ V+( f ). �is is a homogeneous ideal of A, contained in A+, which is equal
to its radical.

4.8.6. — Let A be a graded ring, let f be a homogeneous element of A of strictly
positive degree, say d. �e natural diagram of rings

A A f A( f )→ →↩

gives rise to a commutative diagram of topological spaces

Proj(A) D+( f )

Spec(A) D( f ) Spec(A f ) Spec(A( f )),

↪
→

→ ↩

→

ψ f

↪
→

→ ↩ →∼ →a j
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in which the dashed arrow represents a continuous map ψ f ∶D+( f ) →
Spec(A( f )); we will prove that the map ψ f is a homeomorphism.
Concretely, the map ψ f is de�ned as follows. Let p be a homogeneous prime
ideal of A which does not contain f . �en the ideal ψ f (p) is the set of elements
of A( f ) of the form a/ f n, where a ∈ p ∩And and n ∈ N.
It follows from its de�nition that map ψ f is continuous. More precisely, let
n ∈ N and let g ∈ And , let us show the two relations

ψ−1
f (D(g/ f n)) = D+( f g) and ψ f (D+( f g)) = ψ f (D+( f )) ∩D(g/ f n).

If g ∈ p, then g/ f n ∈ ψ f (p) by de�nition of this prime ideal. Conversely, if
g/ f n ∈ ψ f (p), there exists an integer m ⩾ 0 and a ∈ p ∩Adm such that g/ f n =
a/ f m; this implies that there exists p ⩾ 0 such that f m+pg = f n+pa; in particular,
f m+pg ∈ p, hence g ∈ p since p is a prime ideal which does not contain f . Since
D+( f g) = D+( f )∩D+(g), this concludes the proof of the two indicated relations.
�e �rst one implies that ψ f is continuous, and the second one that it induces
an open map onto its image.
Let us now show that ψ f is injective. Let q, q′ ∈ D+( f ) be such that ψ f (q) =

ψ f (q′); let us show that q = q′. Let a be a homogeneous element of q and let
n be its degree; then ad is an element of degree nd of q, so that ad/ f n ∈ A( f );
the de�nition of ψ f (p) shows that ad/ f n ∈ ψ f (p), hence ad/ f n ∈ ψ f (q′), hence
ad ∈ q′. Since q′ is a prime ideal of A, one then has a ∈ q′. �is implies
the inclusion q ⊂ q′, and the other follows by symmetry. Consequently, ψ f is
injective.
Let q be a prime ideal of A( f ). For every integer n ⩾ 0, let pn be the set of
elements x ∈ An such that xd/ f n ∈ q. Observe that pn is an additive subgroup
of An. Let indeed x , y ∈ An; it follows from Newton’s binomial formula that
(x − y)2d/ f 2n ∈ q; since q is a prime ideal, we thus have (x − y)d/ f n ∈ q, hence
x − y ∈ pn. Let then p = ⊕n⩾0 pn. If a ∈ Am and x ∈ pn, then (ax)d/ f n+m =
(ad/ f m)(xd/ f n) ∈ q, hence ax ∈ p; this implies that p is a homogeneous ideal
of A. Since 1 /∈ q, one has f /∈ p. Let a ∈ Am and b ∈ An be such that ab ∈ p; then
(ab)d/ f n+m = (ad/ f m)(bd/ f n) ∈ q; since q is prime, at least one of ad/ f m and
bd/ f n belongs to q, which means that a ∈ p or b ∈ p. Consequently, p is a prime
ideal, hence a member of D+( f ).
Let us show that ψ f (p) = q. Let indeed n be an integer and x ∈ pnd ; by
assumption, xd/ f nd ∈ q, hence x/ f n ∈ q because q is a prime ideal; consequently,
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ψ f (p) ⊂ q. Conversely, an element of q has the form x/ f n, with n ∈ N and x ∈
And ; then xd/ f nd ∈ q, hence x ∈ p by de�nition of p; consequently, x/ f n ∈ ψ f (p).
We have shown that ψ f is a continuous, bijective, and open map from D+( f )
to Spec(A( f )). �erefore, it is a homeomorphism.

Proposition (4.8.7). — Let A be a graded ring.
a) Let E be a set of homogeneous elements of A+, let f ∈ A+. �e following
propositions are equivalent:

(i) One has D+( f ) ⊂ D+(E);
(ii) One has V+( f ) ⊃ V+(E);
(iii) �ere exists an integer n ⩾ 0 such that f n belongs to the homogeneous

ideal of A generated by E.
b) �e maps E ↦ V+(E) and Z ↦ j+(Z) induce bijections, inverse one of the
other, between the set of closed subsets of Proj(A) and the set of homogeneous
radical ideals of A which are contained in A+.

Proof. — a) �e equivalence (i)⇔(ii) is obvious, and it follows from the
de�nitions of V+( f ) and V+(E) that (iii) implies (i). Let us now show that (i)
implies (iii).
Let E be a set of homogeneous elements of A contained in A+, let I be the
homogeneous ideal of A generated by E, and let f ∈ A+ be a homogeneous
elements of A. Let d be the degree of f . For every homogeneous element g ∈ A, of
degree n, set g′ = gd/ f n ∈ A( f ). Let E′ be the set of elements g′, for g ∈ E. We have
proved that ψ f (D+( f ) ∩D+(g)) = V(g′); consequently, ψ f (D+( f ) ∩V+(E)) =
V(E′).
Assume now that D+( f ) ⊂ D+(E) or, equivalently, such that D+( f )∩V+(E) =

∅. It follows that V(E′) = ∅, hence the ideal I′ of A( f ) generated by E′ contains 1.
�ere thus exists an almost null family (bg)g∈E of elements of A( f ) such that
1 = ∑ bg g′. Each element bg is of the form c/ f m, for some homogeneous ele-
ment c of degree md; consequently, there exists an almost null family (cg)g∈E
of homogeneous elements of A and an integer m ⩾ 0 such that f m = ∑ cg gd . In
particular, f m ∈ I and f ∈

√
I.

b) Let I be a homogeneous ideal of A and let I+ = I ∩ A+; let us show that
V+(I) = V+(I+). �e inclusion V+(I) ⊂ V+(I+) follows from the de�nition, since
I+ ⊂ I. Conversely, let p ∈ V+(I+). One thus has I+ ⊂ p but p /⊃ A+. Let f ∈ A+ be
such that f /∈ p. For every a ∈ I0, one has a f ∈ I+, hence a f ∈ p; since p is prime,
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this implies that a ∈ p; consequently, I0 ⊂ p. Since p is a homogeneous ideal of A,
one has I ⊂ p, hence p ∈ V+(I). We thus have shown that V+(I) = V+(I+), as
claimed.
Let E be a family of homogeneous elements of A and let Z = V+(E). Let I be
the ideal generated by E; one has Z = V+(I). Moreover, Z = V+(

√
I) since, for a

prime ideal p, the conditions I ⊂ p and
√
I ⊂ p are equivalent.

Moreover,
√
I is a homogeneous ideal of A, and one has Z = V+(

√
I). One has√

I∩A+ ⊂ j+(Z). Moreover, it follows from a) that every element f of j+(Z)∩A+
belongs to

√
I. �is shows that j+(Z) =

√
I ∩A+.

Consequently, for a homogeneous radical ideal I ⊂ A+, one has j+(V+(I)) = I.
Let Z be a closed subset of Proj(E). By what precedes, there exists a radical
and homogeneous ideal I of A, contained in A+ such that V+(I) = Z. One then
has j+(Z) = I, hence V+(j+(Z)) = V+(I) = Z.

4.8.8. — Let A be a graded algebra and let M be a graded A-module. Let S be
a multiplicative subset of A consisting of homogeneous elements. Let M(S) be
the subset of S−1M consisting of elements of the form m/s, where m ∈ M and
s ∈ S are homogeneous of the same degree. It is a submodule of S−1M. Moreover,
M(S) is an A(S)-module.
Let U be an open subset of Proj(A) and let S(U) be the set of homogeneous
elements s ∈ A such that s /∈ p, for every homogeneous prime ideal p ∈ U. If
V ⊂ U, one has S(U) ⊂ S(V). One de�nes the sheaf M̃ on Proj(A) as the sheaf
associated with the presheaf given by U↦M(S(U)).
For every integer p ∈ Z, the twist of order p of M is the graded A-module
M(p) whose underlying A-module is M, but whose grading is shi�ed by p:
M(p)n =Mp+n for every integer n.

Lemma (4.8.9). — Let A be a graded algebra, let f be a homogeneous element
of A of degree d > 0 and let U = D+( f ). �e element f belongs to S(U). For
every graded A-moduleM, the canonical morphism of graded modules fromM f
toMS(U) is an isomorphism. In particular, it induces an isomorphism fromM( f )
toM(S(U)).

Proof. — One has f ∈ S(U) by the very de�nition of D+( f ). Let φ∶M f →MS(U)
be the canonical morphism.
Let x ∈ M f ; there exists m ∈ M and an integer n ⩾ 0 such that x = m/ f n. If
x ∈ Ker(φ), there exists s ∈ S(U) such that sm = 0. Since s ∈ S(U), D+( f ) is
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contained in D+(s), so that there exists an integer p ⩾ 0 and t ∈ A such that
f p = st. Consequently, f pm = 0, hence x = 0. �is shows that φ is injective.
Let x be an element of MS(U); let m ∈M and s ∈ S(U) be such that x = m/s.
By the preceding argument, there exists an integer p ⩾ 0 and t ∈ A such that
f p = st. �en x = (tm)/ f p, so that x ∈ Im(φ).
Since φ is compatible with the natural gradings of M f and MS(U), it induces
an isomorphism fromM( f ) to M(S(U)).

Proposition (4.8.10). — Let A be a graded ring, let f be a homogeneous element
of A of strictly positive degree and letM be a graded A-module.
a) Under the homeomorphism ψ f , the sheaf M̃∣D+( f ) is transformed to the quasi-

coherent sheaf on Spec(A( f )) associated to the A( f )-moduleM( f ).
b) �e ringed space (Proj(A), Ã) is a scheme.
c) For every graded A-module M, the Ã-module M̃ on Proj(A) is quasi-

coherent.

Proof. — a) Let d be the degree of f . For every homogeneous element g ∈ A
of strictly positive degree n, denote by Ug the open subset D+( f ) ∩D+(g) =
D+( f g) of D+( f ). By the previous lemma, the module of fractions M(S(Ug))
identi�es with M( f g). Observe also that the natural morphism from M( f )
to M( f g) induces an isomorphism from (M( f ))gd/ f n to M( f g). On the other
hand, we have proved that ψ f (Ug) = D(gd/ f n). Consequently, the presheaf
given by U↦M(S(U)) on D+( f ) identi�es, via ψ f , with the sheaf M̃( f ), at least
on distinguished open subsets. �is identi�es the associated sheaf M̃∣D+( f ) with
the sheaf M̃( f ).
b) By a), the restriction of the ringed space (Proj(A), Ã) to the open sub-
set D+( f ) is an a�ne scheme. By de�nition of a projective spectrum, the open
subsets of this form cover Proj(A), since for every p ∈ Proj(A), there exists
f ∈ A+ such that f /∈ p. Consequently, the ringed space (Proj(A), Ã) is a
scheme.
c) Let M be a graded A-module. �e restriction to D+( f ) of the Ã-module
M̃ is quasi-coherent, since it identi�es with the quasi-coherent OD+( f )-module
associated to the A( f )-module M( f ). Consequently, it is quasi-coherent.

Example (4.8.11). — Let k be a ring and let A = k[T0, . . . , Tn] be the ring of
polynomials in (n + 1) indeterminates with coe�cients in k. Let us endow the
ring A with the graduation by degree.
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For every i ∈ {0, . . . , n}, let Ui be the open subset D+(Ti) of Proj(A)
and let ψi be the k-isomorphism from D+(Ti) to the a�ne scheme Xi =
Spec(k[U0, . . . , Un]/(Ui − 1)) such that ψ♯

i(U j) = T j/Ti for every j. For
every pair (i , j), let Xi j be the open subscheme D(U j) of Xi. One has
ψi(D+(TiT j)) = D(U j) = Xi j = Spec(k[U0, . . . , Un]/(Ui − 1)[1/U j]) and the
isomorphism ψi j = ψ j ○ ψ−1

i from the open subscheme Xi j = D(U j) of Xi to the
open subscheme X ji = D(Ui) of X j is given by
ψ♯
i j(Um) = (ψ−1

i )♯ ○ ψ♯
j(Um) = (ψ−1

i )♯(Tm/T j) = Um(ψ−1
i )♯(Ti/T j) = UmUi/U j.

By de�nition, the scheme Pnk is de�ned by gluing the family (Xi) along the open
subschemes (Xi j) by means of the isomorphisms ψi j. For every i, let φi ∶Xi → X
be the canonical open immersion and let Ui be its image. By what precedes,
there exists a unique morphism φ∶Proj(A) → Pnk such that φ∣D+(Ti) = φi ○ ψi
and it is an isomorphism.

Remark (4.8.12). — Let A be a graded ring. �e assignment M↦ M̃ is a functor
from the category of graded A-module to the category of quasi-coherent Ã-
modules on the homogeneous spectrum Proj(A). �is functor has less good
properties than the analogous functor on spectra (which is an equivalence of
categories). In particular, it is neither fully faithful, nor essentially surjective in
general.
If A = A0 (the graduation of A is concentrated in degree 0), then Proj(A) =

∅, since A+ = 0 and every ideal of A (prime, homogeneous, or not) must
contains A+.
More generally, let M be a graded A-module and letm ∈ N be such thatMn = 0
for n ⩾ m. �en, for every homogeneous element f ∈ Aof strictly positive degree,
say d, one has M( f ) = 0. Indeed, an element of M( f ) is of the form m/ f k, where
m ∈Mdk and k ∈ N; for every integer p ⩾ 0, one then has m/ f k = f pm/ f k+p = 0.
Since D+( f ) is an a�ne scheme, this implies that M̃∣D+( f ) = 0. Since these a�ne
schemes cover Proj(A), one has M̃ = 0.
We shall prove however that if the algebra A is generated by �nitely many
elements of A1, then every quasi-coherent Ã-module on Proj(A) is of the form M̃;
for the moment, we refer to (Grothendieck, 1961, théorème 2.7.5).

Proposition (4.8.13). — Assume that A0 is a noetherian ring and that A is a
�nitely generated A0-algebra.
a) For every strictly positive integer d, the ring⊕d∣nAd is noetherian;
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b) �e schemeProj(A) is noetherian (ie, quasi-compact and locally noetherian);
c) For every �nitely generated gradedA-moduleM, the Ã-module M̃ onProj(A)

is coherent.

Proof. — a) Let f1, . . . , fm be homogeneous elements of A such that A =
A0[ f1, . . . , fm]. By hypothesis, themorphismofA0-algebrasφ∶A0[T1, . . . , Tm] →
A such that φ(Ti) = fi for every i is surjective. Since the ring A0[T1, . . . , Tm] is
noetherian (theorem 1.9.3), so is A. �is also implies that for every integer n,
the A0-module An is generated by the elements of the form f n11 . . . f nmm such that
n1d1 + ⋅ ⋅ ⋅ + nmdm = n, hence is �nitely generated.
Let d be a strictly positive integer and let us consider the graded ring A′ =

⊕d∣nAn. Writing ni = qid + ri , with 0 ⩽ ri < d, we have

f n11 . . . f
nm
m = ( f d1 )q1 . . . ( f dm)qm( f r11 . . . f rmm ),

so that the A0-algebra A′ is generated by f d1 , . . . , f dm and by the �nite set of
elements of the form f r11 . . . f rmm such that d divides∑ diri .
b) Let f be a homogeneous element of strictly positive degree and let us show
that the ring A( f ) is noetherian. �e isomorphism A[T]/( fT − 1) ≃ A f implies
that A f is noetherian. If f has degree 1, then every element of A f of degree
divisible by d can be written uniquely under the form a f n, where a ∈ A( f ) and
n ∈ Z, so that the ring A( f ) is isomorphic to the quotient of the ring A f by its
(non-homogeneous) ideal ( f − 1). �is implies that A( f ) is a noetherian ring. In
fact, note that

A( f ) ≃ A f /( f − 1) ≃ A[T]/( fT − 1, f − 1) ≃ A[T]/(T − 1, f − 1) ≃ A/( f − 1).

Let us now treat the general case; let d be the degree of f . Similarly, every
element of A f of degree divisible by d can be written uniquely under the form
a f n, where a ∈ A( f ) and n ∈ Z, so that the ring A( f ) is isomorphic to the quotient
of the graded ring A′f = ⊕d∣n(A f )n by the (non-homogeneous) ideal ( f − 1). By
a), A′ is a noetherian ring, hence so are A′f and A( f ) ≃ A′f /( f − 1).
�is shows that the a�ne open subscheme D+( f ) of Proj(A) is the spec-
trum of a noetherian ring. It �rst follows that Proj(A) is a locally noetherian
scheme. Since the ring A is noetherian, its ideal A+ is �nitely generated, say
A+ = ( f1, . . . , fm). Consequently, one has Proj(A) = ⋃mi=1D+( fi), which shows
that it is quasi-compact.
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c) Let M be a �nitely generated graded A-module. For every homogeneous
element f of strictly positive degree, say d, the restriction M̃∣D+( f ) identi�es
with the quasi-coherent module on Spec(A( f )) associated with the A( f )-module
M( f ).
First assume that d = 1. In that case, M f is �nitely generated as an A f -module.
Moreover, every element of M f can be written uniquely under the form f nm,
where m ∈M( f ) and n ∈ Z. Consequently, M f /( f − 1)M f is isomorphic to M( f ).
�is implies that M( f ) is a �nitely generated A( f )-module.
In the general case, one proves as above that M′ = ⊕d∣nMd is �nitely generated
as anA′-module, whereA′ = ⊕d∣nAd . �enM′

f is a �nitely generatedA
′
f -module,

and M( f ) =M′
( f ) ≃M′

f /( f − 1) is a �nitely generated A( f )-module.
�is proves that M̃ is a coherent Ã-module on Proj(A).

4.9. Locally free modules

4.9.1. — Let X be a scheme and letM be an OX-module. For every x ∈ X, let
dM (x) = dimκ(x)(Mx ⊗OX,x κ(x)).

Proposition (4.9.2). — Let X be a scheme and letM be a �nitely generated quasi-
coherent OX-module. �e function dM is upper semi-continuous: for every n ∈ N,
the set of points x ∈ X such that dM (x) ⩾ n is closed inX, and the set of points x ∈ X
such that dM (x) ⩽ n is open in X.

�e result does not hold without the hypothesis thatM �nitely generated,
and quasi-coherent.

Proof. — We may assume that X is a�ne, say X = Spec(A); let M be the A-
moduleM (X). Let n ∈ N and let x ∈ X be such that dM (x) ⩽ n; let p be the
corresponding prime ideal of A. Let thus m1, . . . ,mn be elements of M which
generate M⊗A κ(p); let N be the submodule of M generated bym1, . . . ,mn. One
has κ(p) = Ap/pAp; moreover, M⊗A κ(p) =Mp ⊗Ap

κ(p), and similarly for N.
Consequently, we have

Mp = Np + pMp.
By Nakayama’s lemma (corollary 1.3.3), this implies the equality Mp = Np.
Let (xi) be a �nite generating family for M; for every i, there exists si ∈ A p

such that sixi ∈ N. Let s be the product of the si ; one has sxi ∈ N for every i, hence
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sM ⊂ N. Consequently, Ms is generated by the family (m1/1, . . . ,mn/1). �ere-
fore, for every y ∈ D(s), M⊗A κ(py) is generated by the images of m1, . . . ,mn,
so that dM (y) ⩽ n.

4.9.3. — If M is free, i.e., if there exists a set I such that M ≃ O(I)
X , then

dM (x) = Card(I) for every x ∈ X: the function dM is constant on X.
Recall that one says thatM is locally free if, for every x ∈ X, there exists
an open neighborhood U of x such thatM ∣U is a free OX∣U-module. In that
case, the function dM is locally constant on X. If, moreover, dM (x) is �nite for
every x ∈ X, thenM is �nitely generated and one says thatM is locally free of
�nite rank. One says thatM is locally free of rank n if it is locally free and if
dM (x) = n for every point x ∈ X.
When X = Spec(A) is a�ne and M is an A-module, one says that M is locally
free (resp. locally free of rank n) if theOX-moduleM is locally free (resp. locally
free of rank n).

Proposition (4.9.4). — Let A be a ring, let X = Spec(A), and let M be an A-
module. �e following properties are equivalent:
(i) �e OX-module M̃ is locally free of �nite rank;
(ii) �e A-moduleM is �nitely generated and projective.
(iii) �ere exists an integer n and an A-module N such thatM⊕N ≃ An.
(iv) �e A-module M is �nitely presented, and for every p ∈ Spec(A), the

Ap-moduleMp is free;
(v) For every p ∈ Spec(A), there exists an element f ∈ A p such thatM f is a

�nitely generated free A f -module;

Proof. — (i)⇒(ii). Let p∶N→ N′ be a surjective morphism of A-modules and
let f ∶M→ N′ be a morphism of A-modules. We need to show that there exists a
morphism g∶M→ N such that f = p○ g. To that aim, let us set P = HomA(M,N),
P′ = HomA(M,N′), and let p∗∶P→ P′ be the morphism of A-modules induced
by p. It su�ces to prove that p∗ is surjective and, to that aim, that the morphism
of sheaves p̃∗∶ P̃→ P̃′ is surjective. Since M is �nitely generated, the canonical
morphism from P̃ to HomOX(M̃, Ñ) is an isomorphism, as is the canonical
morphism from P̃′ to HomOX(M̃, Ñ′) Let f is an element of A such that M̃∣D( f )
is free; then p̃∗∣D( f ) is surjective. �is implies that p̃∗∶ P̃ → P̃′ is a surjective
morphism of quasi-coherent OX-modules. In particular, the morphism p∗ =
p̃∗(X)∶P→ P′ is surjective, as was to be shown.
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(ii)⇒(iii). �is follows from proposition 2.7.2, (ii)⇒(iii).
(iii)⇒(iv). Since they are isomorphic to a quotient module of An, both A-
modules M and N are �nitely generated; consequently, M is �nitely presented.
For every p ∈ Spec(A), one has an isomorphism Mp ⊕Np ≃ Anp . In particular,
Mp is a �nitely generated projective Ap-module, hence is free (theorem 2.7.4).
(iv)⇒(v). Let p ∈ Spec(A), let n ∈ N and let m1, . . . ,mn be elements
of M such that (m1/1, . . . ,mn/1) is a basis of Mp. Let φ∶An → M be the
morphism of A-modules de�ned by φ(a1, . . . , an) = ∑ aimi. One has
Coker(φ)p = Coker(φp) = 0. Since M is �nitely generated, Coker(φ) is �nitely
generated too, hence there exists an element f ∈ A p such that Coker(φ) f = 0.
�is implies that φ f is surjective. �en, M f being �nitely presented, the kernel
of φ f is �nitely generated. Moreover, one has Ker(φ f )p = 0. Consequently, there
exists g ∈ A p such that Ker(φ f g) = Ker(φ f )g = 0. �is implies that φ f g is an
isomorphism. Consequently, M f g is free and �nitely generated.
(v)⇔(i). �e quasi-coherent sheaf M̃ on X associated to a free A-module
M = A(I) is isomorphic to Ã(I), so that M̃ is free if and only if M is free. Moreover,
M̃ is �nitely generated if and only if M is �nitely generated. Let now f ∈ A.
Applying this remark to the A f -module M f , we see that the OX∣D( f )-module
M̃∣D( f ) is free of �nite rank if and only if M f is free and �nitely generated. �is
shows that (i) and (v) are equivalent.

Corollary (4.9.5). — Let A be a principal ideal domain and let X = Spec(A).
Every locally free OX-module of rank n is trivial, i.e., is isomorphic to On

X.

Proof. — If A is a principal ideal domain and m is an integer, then every sub-
module of Am is free.

Corollary (4.9.6). — Let X be a scheme, letM and N be locally free �nitely
generated OX-modules and let φ∶M →N be a surjective homomorphism. �en
Ker(φ) is locally free; moreover, if X is a�ne, then φ has a section.

Proof. — Let us �rst assume that X is a�ne. Let A = OX(X), let M = M (X)
and N = N (X), and let f ∶M→ N be the morphism φ(X). �e A-modules M
and N are �nitely generated and projective, and the morphism f is surjective.
In particular, there exists a morphism g∶N → M such that f ○ g = idN, hence
M is isomorphic to N ⊕ Ker( f ). Since M is projective and �nitely generated,
there exists an integer m and an A-module M′ such that M ⊕M′ ≃ Am; then
(M′ ⊕N) ⊕ Ker( f ) ≃ Am, which shows that Ker( f ) is projective and �nitely
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generated. In this case, this shows that Ker(φ) is a �nitely generated locally free
OX-module, and that φ has a section.
In general, this implies that for every a�ne open subscheme U of X, Ker(φ)∣U
is a �nitely generated locally free OX∣U-module. Consequently, Ker(φ) is a
�nitely generated locally free OX-module, as claimed.

Proposition (4.9.7). — Let X be a scheme and letM be a quasi-coherent OX-
module of �nite presentation.
a) IfM is locally free, then the function x ↦ dM (x) on X is locally constant.
b) Conversely, if X is reduced and the function dM is locally constant, thenM

is locally free.

Proof. — IfM is free, then dM is constant. It thus su�ces to prove thatM is
locally free if dM is constant and X is reduced. We may even assume that X is
an a�ne scheme. Let then A = OX(X) and M = M (X); the ring A is reduced,
the A-module M is �nitely presented and we need to prove that it is locally free
of rang n, assuming that for every ∈ Spec(A), one has dimκ(p)(M⊗A κ(p) = n.
By proposition 4.9.4, we need to prove that for every prime ideal p of A, the
Ap-module Mp is free of rank n. Replacing A by Ap and M by Mp, we may thus
assume that A is a local ring; letm be its maximal ideal.
Let (m1, . . . ,mn) be elements of M whose images in M ⊗A κ(m) constitute
a basis of that vector space. Let f ∶An → M be the morphism of A-modules
given by f (a1, . . . , an)∑ aimi. One has M = Im( f ) +mM, by assumption; it
thus follows from Nakayama’s lemma (corollary 1.3.3) that f is surjective. Let
N be its kernel. Let p be a prime ideal of A. Let f (p)∶ κ(p)n → M ⊗A κ(p) be
the morphism deduced from f ; it is surjective by right exactness of the tensor
product; since, M ⊗A κ(p) has dimension n, by assumption, this implies that
f (p) is an isomorphism. Now, the injection j from N to An induces a mor-
phism j(p)∶N→ κ(p)n whose image is zero, since it is contained in Ker( f (p)).
Necessarily, N ⊂ pn. �is holds for every prime ideal p ∈ Spec(A), and the
intersection of them is {0}, because A is reduced. Consequently, N = 0 and f is
an isomorphism.

4.9.8. — All standard constructions from linear algebra (direct sums of mod-
ules over some ring, tensor products, symmetric and exterior powers, sheaves of
homomorphisms, duals,. . . ) associate free modules with free modules. �anks
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to the above proposition, they translate from the context of free modules over a
ring to that of locally free sheaves of �nite rank over a scheme.
Assume thatM andN are locally free sheaves of ranks m and n on X. �en

M ⊕N is locally free of rank m + n; Hom(M ,N ) andM ⊗N are locally
free of rankmn. In particular,M ∨ = H omOX(M ,OX) is locally free of rankm;
moreover, the canonical morphism fromM ∨ ⊗OX N toH omOX(M ,N ) is
an isomorphism. For every integer p ⩾ 0, the exterior power ⋀pM is locally
free of rank (mp), and the symmetric power SpM is locally free of rank (m+p−1p ).
In particular, the ‘‘maximal’’ exterior power ofM is locally free of rank 1;
it is called the determinant of M and is denoted by det(M ). One has an
isomorphism det(M ⊕N ) ≃ det(M ) ⊗ det(N ).

Proposition (4.9.9). — Let X be a scheme and letM be a quasi-coherent OX-
module. �e following properties are equivalent:

(i) �e OX-moduleM is locally free of rank 1;
(ii) �e canonical morphismM ∨ ⊗OX M → OX is an isomorphism;
(iii) �ere exists a quasi-coherent OX-moduleN such thatM ⊗OX N is iso-

morphic to OX.

Proof. — (i)⇒(ii). We may assume thatM is free, hence possesses a frame (ε);
thenM ∨ is free as well, and possesses a frame (φ), characterized by the relation
φ(ε) = 1. �e indicated canonicalmorphismmaps (aφ)⊗(bε) to ab; it identi�es
with the isomorphism of OX⊗OX with OX.
(ii)⇒(iii). Indeed, one may takeN = M ∨.
(iii)⇒(i). We may assume that X is a�ne, say X = Spec(A); then M = M (X)
and N = N (X) are two A-modules such that there exists an isomorphism
φ∶M⊗A N ≃ A.
Let us assume for the moment that there exists a split tensor m ⊗ n such that

φ(m ⊗ n) = 1. Let us consider the unique morphism ψ from M ⊗A N ⊗AM
to M such that ψ(x , y, z) = φ(z ⊗ y)x for every x ∈M, y ∈ N and z ∈M. Now,
if x ∈ M is such that x ⊗ n = 0, one has x = ψ(x ⊗ n ⊗m) = ψ(0) = 0. �en,
for every x ∈ M, the element x′ = x − φ(x ⊗ n)m of M satis�es φ(x′ ⊗ n) =
φ(x ⊗ n) − φ(x ⊗ n)φ(m ⊗ n) = 0; since φ is an isomorphism, one has x′ ⊗ n,
hence x′ = 0. �is shows that the map fromM to A given by x ↦ φ(x ⊗ n) is an
isomorphism, with inverse given by a ↦ am. Consequently, m is a basis of M.
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In general, since φ is an isomorphism, there exist families (mi) and (ni) of
elements of M and N respectively such that φ(∑mi ⊗ ni) = 1. For every i, let us
set ai = φ(mi⊗ni). By localization, φ induces an isomorphism φa i ∶Ma i⊗Aai Na i ,
which maps the split tensor a−1i mi ⊗ ni in Ma i ⊗Aai Na i to 1. Consequently, Ma i
is a free Aa i-module of rank 1.
Since 1 = ∑ ai, the open subsets D(ai) cover Spec(A). Consequently, M is
locally free of rank 1.

4.9.10. — Let X be a scheme. In view of the preceding proposition, a locally
free OX-module of rank 1 is also called an invertible sheaf. Let Pic(X) be the set
of isomorphism classes of invertible sheaves. �e tensor product ofOX-modules
endowes Pic(X) with the structure of a group. �e neutral element is the class
of the sheaf OX. IfM is an invertible sheaf, the inverse of the class ofM is the
class of its dualM ∨.

4.9.11. Locally free sheaves and cohomology. — Let X be a scheme, let n be
an integer and letM be a locally free OX-module of rank n on X.
LetU be an covering of X by open subschemes of X. We say thatM isU -free
on U if for every open subscheme U ∈ U , the restrictionM ∣U is free, i.e., is
isomorphic to OX∣nU.
Let us assume that this is the case. For every U ∈ U , let us choose an isomor-
phism sU∶On

U →M ∣U.
Let U,V ∈ U . Since sU∣U∩V and sV∣U∩V are two isomorphism from On

U∩V
toM ∣U∩V, there exists a unique isomorphism AUV ∈ GL(n,O(U ∩ V)) such
that sU∣U∩V ○AUV = sV∣U∩V. Let U, V,W ∈ U ; on U ∩V ∩W, one has

sU ○AUW = sW = sV ○AVW = sU ○AUV ○AVW;

consequently, the family z1(s) = (AUV)U,V∈U satis�es the following cocycle rela-
tion:

AUW = AUVAVW in GL(n,O(U ∩V ∩W)).
In particular, one has AUU = In and AUV = A−1VU. Let Z1(U , GL(n)) be the set of
all families (AUV) satisfying this cocycle relation. An element of Z1(U , GL(n))
is called a Čech 1-cocycle with values in GL(n) on X, and the element z1(s) is
called the Čech 1-cocycle associated to the family s = (sU)U∈U of trivializations.
Let (tU)U∈U be another family, where tU is an isomorphism fromOn

U toM ∣U.
For every U ∈ U , there exists a unique matrix BU ∈ GL(n,O(U)) such that
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tU = sU ○ BU. Let then (U,V) be a pair of elements ofU ; on U ∩V, one has
tV = sV ○ BV = sU ○AUV ○ BV = tU ○ B−1U ○AUV ○ BV.

Consequently, the Čech 1-cocycle z1(t) associated to the family t = (tU)U∈U is
given by

z1(t) = (B−1UAUVBV)U,V∈U .
Let B1(U , GL(n)) be the set of families (BU)U∈U , where BU ∈ GL(n,O(U)).

�is is a group, and this group acts on Z1(U , GL(n)) by the above formula:
(BU) ⋅ (AUV) = (B−1UAUVBV). �e set of equivalence classes is denoted by
H1(U , GL(n)) and is called the �rst set of Čech cohomology ofU with values
in GL(n).
�e set Z1(U , GL(n)) admits a privileged element, namely the 1-cocycle given
by AUV = In for every pair (U,V). Its class in H1(U , GL(n)) is called the trivial
class.
When n = 1, the set Z1(U , GL(n)) has a natural structure of an abelian groups,
and the abelian group B1(U , GL(n)) acts on Z1(U , GL(n)) via a morphism of
groups. Consequently, the set H1(U , GL(n)) has a natural of an abelian group;
the trivial class is its neutral element.

�eorem (4.9.12). — Let X be a scheme and letU be an open covering of X. �e
previous construction furnishes a bijection cU from the set of isomorphism classes
of U -free sheaves of rank n on X to the set H1(U , GL(n)). When n = 1, this
bijection is an isomorphism of abelian groups.

4.9.13. — Let us de�ne a category whose objects are open coverings of X. Let
U and V be open coverings of X; call any map j∶U → V such that U ⊂ j(U)
for every U ∈ U . amorphism fromU to V . Such a map j exists if and only the
open coveringU is �ner than the open overing V .
Moreover, the map j allows to de�ne maps

j∗∶Z1(V , GL(n)) → Z1(U , GL(n)),(4.9.13.1)
j∗∶B1(V , GL(n)) → B1(U , GL(n)),(4.9.13.2)

and
j∗∶H1(V , GL(n)) → H1(U , GL(n)).(4.9.13.3)

In fact, associating to a given open coveringU the set of Čech cocycles and the
�rst Čech cohomology group is a contravariant functor from the category to
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open coverings to the category of (pointed) sets, and to the category of groups
when n = 1.
Finally, we de�ne the �rst Čech cohomology set of X with values in GL(n) by
the colimit

H1(X,GL(n)) = limÐ→
j∗
H1(U , GL(n)),

indexed by the category of open coverings ofU .

Corollary (4.9.14). — �ere exists a unique mapM ↦ c(M ) from the set of
locally free sheaves of rank n on X toH1(X,GL(n)) such that c(M ) is the class of
the Čech cohomology class c(U ,M ), for every open coveringU of X and every
U -trivial sheaf of rank n,M . It is bijective, and an isomorphism of abelian groups
if n = 1.

Proof. — Weobserve that if j∶U → V is amorphismof open coverings of X and
M is a locally free sheaf of rank n on X which is V -trivial, then j∗(cV (M )) =
cU (M ). �is implies the existence of the map M ↦ c(M ). Its bijective
character follows from the fact that the maps cU are bijective, and that for every
locally free sheaf of rank n,M , on X, there exists an open coveringU such that
M isU -trivial.

Remark (4.9.15). — �e constructions from linear algebra described in §4.9.8
associate free modules with free modules. on locally free sheaves of �nite rank
have a re�ection on cohomology classes. For example, ifM andN are locally
free sheaves of ranks m and n on X, andU is an open covering of X such that
M andN areU -trivial, thenM ⊕N ,H omOX ,M ⊗N ,. . . areU -trivial as
well.
For example, assume thatM andN are represented by cocycles zU (N ) ∈
Z1(U , GL(m)) and zU (N ) ∈ Z1(U , GL(n)), associated with given trivial-
izations. �e proof that M ⊕ N , etc., are U -trivial furnishes explicit U -
trivializations of these OX-modules, hence a particular cocycle. More precisely,
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the following formulas hold:

zU (M ⊕N ) = (zU (M )
zU (N )) ,(4.9.15.1)

zU (M ∨) = (zU (M ∨)t)−1(4.9.15.2)
zU (M ⊗N ) = zU (M ) ⊗ zU (N ) (Kronecker product),(4.9.15.3)
zU (det(M )) = det(zU (M )), . . .(4.9.15.4)

Remark (4.9.16) (Comparison with di�erential geometry)
Let M be a C k-manifold; denote its sheaf of C k-functions by C k

X . Let n be
an integer. A vector bundle of rank n on M is a manifold E endowed with a
morphism p∶E→M, structures of real vector spaces on the �bers Ex = p−1(x),
for x ∈ M, satisfying the following local triviality property: for every point x
of M, there exists an open neighborhood U of x, an isomorphism of manifolds
φU∶ p−1(U) → Rn ×U such that pr2 ○φU = pU and such that for every y ∈ U, the
map pr1 ○φU induces a linear bijection from p−1(y) to Rn.
Given an open coveringU of M and such a trivialization φU, for every open
subset U ∈ U , one de�nes a C k-map fUV∶U ∩ V → GL(n,R), for every pair
(U,V) of elements of U . Equivalently, one can view fUV as an element of
GL(n,C k(U ∩ V)). �e family ( fUV) satis�es the cocycle relation: on U ∩
V ∩W, one has fUV fVW = fUW. �e cohomology classes of this cocycle in
H1(U , GL(n)) and in H1(X,GL(n)) do not depend on the choice of the local
trivializations φU and on the chosen open coveringU .
Let then E be the sheaf of C k-sections of E: for every open subset U of X,

E (U) is the set of all C k-morphisms s∶U→ E such that p ○ s = idU. �e vector
space laws on the �bers p−1(m) endow this sheaf with the structure of a sheaf in
R-vector spaces. In fact, it is naturally a C k

M-module, and this module is locally
free of rank n.
�e sheaf of sections of a projection pr2∶Rn ×U→ U identi�es with the sheaf

(C k
U)n. Consequently, the trivialization φU of E on an open set U ∈ U gives rise

to an isomorphism of E ∣U with C k
U. In particular, E isU -trivial; moreover its

cohomology class coincides with that of E.
Conversely, given a locally free sheafF of rank n onM, one can de�ne a vector
bundle of rank n on M whose sheaf of sections is equal toF . For that, it su�ces
to choose an open covering U of M such thatF is U -trivial, trivialisations
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sU, for U ∈ U , and to use the associated cocycle zU (F ) to glue trivial vector
bundles Rn ×U.
�is more geometric point of view on locally free sheaves given by the notion
of vector bundle has an analogue in algebraic geometry.
Namely, if X is a scheme, a vector bundle of rank n on X is a scheme E endowed
with an a�ne morphism p∶E → X, a locally free sheaf of rank n, E , and an
isomorphism Sym∗ E

∼Ð→ p∗OE of quasi-coherent OX-algebras. �en the sheaf
of sections of p is isomorphic to the dual sheaf E ∨ of E , and the X-scheme E is
isomorphic to the spectrum Spec(Sym∗ E ∨) of the quasi-coherent OX-algebra
Sym∗ E ∨.
�e reason for this duality can be explained as follows. Observe that if k is a
ring, thenAnk ≃ Spec(k[T1, . . . , Tn]), and k[T1, . . . , Tn] is the symmetric algebra
on a free k-module V of rank n, and then, T1, . . . , Tn are linear forms on V.

Lemma (4.9.17). — Let k be a ring and let A be a graded k-algebra; let X =
Proj(A). LetM be a graded A-module, let d be an integer such that d ⩾ 0.
a) �ere exists a uniquemorphism of quasi-coherent sheaves, θ∶ M̃⊗OXOX(d) →
M̃(d), such that θ((m/ f p) ⊗ (g/ f q)) = gm/ f p+q for every homogeneous ele-
ment f ∈ A+, every homogeneous element g ∈ A such that deg(g) = q deg( f ) + d,
and every homogeneous element m ∈M such that deg(m) = pdeg( f ).
b) For every m ∈Md , there exists a unique section sm ∈ Γ(X, M̃(d)) such that
sm∣D+( f ) = m/1, for every f ∈ A+. �e map m ↦ sm is a k-morphism fromMd
to Γ(X, M̃(d)).
c) Let f ∈ Ad . �e section s f ∣D+( f ) is a basis of OX(d)∣D+( f ), and the restriction

to D+( f ) of the morphism θ is an isomorphism.

Proof. — a) �e given formula describes the restriction of θ to an arbitrary
a�ne open subset D+( f ). It thus su�ces to check that these requirements are
compatible, a veri�cation le� to the reader.(1)
b) �is is straightforward.
c) Let us �rst prove that for every open subscheme U of D+( f ), and every
section s ∈ Γ(U, M̃(d)), there exists a unique element t ∈ Γ(U, M̃) such that
s = θ(t ⊗ s f ). We may assume that there exists g ∈ A+ such that U = D+( f g);
then there exists an homogeneous element m ∈M such that s = m/( f g)p, and
d = deg(m)− pdeg( f )− pdeg(g). �e formula s = f (gm)/( f g)p+1 expresses s
(1)...!
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as θ(t⊗s f ), where t ∈ Γ(U, M̃) is represented by (gm)/( f g)p+1, a homogeneous
fraction of degree 0. Since A( f ) is a subring of A f in which the element f is
invertible, this is the unique such expression.
Applied to M = A, this shows that s f is a basis of OX(d)∣D+( f ).

Proposition (4.9.18). — Let k be a ring and let A be a graded k-algebra which is
generated by A1 as an A0-algebra; let X = Proj(A).
a) For every integer d ∈ Z, the quasi-coherent sheaf OX(1) is invertible.
b) For every graded A-moduleM and every integer d, the canonical morphism

θ∶ M̃⊗OX(d) → M̃(d) is an isomorphism.
c) In particular, for every pair (d , e) of integers, one has an isomorphism

OX(d) ⊗OX(e) ≃ OX(d + e).

Proof. — Let d ∈ N. For every f ∈ A1, the restriction of OX(d) to the open
subscheme D+( f ) = D+( f d) of X is locally free of rank 1. Since A is generated
by elements of A1, these a�ne open subschemes consistute an open covering
of X, so that OX(d) is locally free of rank 1. For the same reason, the morphism
θM∶ M̃⊗OX(d) → M̃(d) is an isomorphism. In particular, for every integer e ∈ Z,
themorphism θA(e) is an isomorphism fromOX(e)⊗OX(d) toOX(d+e). Taking
e = −d, this implies thatOX(−d) is isomorphic to the dual ofOX, hence is locally
free of rank 1 as well.
�is establishes the proposition, except for the isomorphism of part c) when
d < 0. To prove this remaining case, we can start from the isomorphismOX(e) ≃
OX(−d)⊗OX(d+ e); tensoring both sides byOX(d), we obtain an isomorphism

OX(d) ⊗OX(e) ≃ OX(d) ⊗OX(−d) ⊗OX(d + e),

hence the required isomorphism if we use the fact that OX(d) ⊗ OX(−d) is
isomorphic to OX.

Example (4.9.19). — Let k be a ring; the case of X = Pnk = Proj(k[T0, . . . , Tn])
is extremly important for algebraic geometry. �e graded k-algebra
A = k[T0, . . . , Tn] being generated by elements of degree 1, namely, T0, . . . , Tn,
the quasi-coherent sheaf OX(1) is locally free of rank 1.
Moreover, let us show that for every integer d, the k-linear morphism P↦ sP
from Ad to Γ(Pnk ,OX(d)) is an isomorphism; in particular, Γ(Pnk ,OX(d)) = 0
for d < 0. Let thus σ ∈ Γ(Pnk ,OX(d)). For every i ∈ {0, . . . , d}, there is a unique
polynomial Pi ∈ k[T0/Ti , . . . , Tn/Ti] such that σ ∣D+(Ti) = Pis⊗dTi . On D+(TiT j),
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one thus has sTi = (Ti/T j)sT j , leading to the equality PiTdi = P jTdj of rational
functions. Let P be this common rational function; looking at the formula
P = PiTdi , we see that its denominator is a power of Ti; but switching to j ≠ i
shows that its denominator is a power of T j. Consequently, P is a polynomial.
Since Pi is homogeneous of degree 0, P is homogeneous of degree d; in particular,
one has P = 0 if d < 0, and σ = 0. Finally, viewed as an element of A(d)(Ti), one
has sTi ∣D+(Ti) = Ti/1, hence σ ∣D+(Ti) = PiTdi /1 = P/1, so that σ ∣D+(Ti) = sP∣D+(Ti);
consequently, σ = sP, and the polynomial P is the unique one such that this
relation holds.

4.10. Invertible sheaves and divisors

Let X be a scheme. For simplicity, we assume that X is noetherian and integral.
Let κ(X) be its �eld of fractions; this is the local ring of X at its generic point.
Let alsoMX be the constant sheaf on X with value κ(X): for every non-empty
open subset U of X, one hasMX(U) = κ(X). If U is a�ne, say U = Spec(A),
then κ(X) = Frac(A) is an A-algebra, andMX∣U = κ̃(X); in particular,MX is a
quasi-coherent OX-module.

�eorem (4.10.1). — LetA be a unique factorization domain and letX = Spec(A).
�en Pic(X) = 0: every invertible sheaf on X is free.

Proof. — LetL be an invertible OX-module. LetU be an open covering of X
such thatL isU -trivial; since X is quasi-compact, we may also assume thatU
is �nite and that every open subset U ∈ U is of the form D(a), for some a ∈ A.
Let us show the following result: let a1, a2 ∈ A be non-zero elements and
let a be their gcd; ifL ∣D(a1) andL ∣D(a2), thenL ∣D(a) is trivial. For i ∈ {1, 2},
let indeed si be an isomorphism from OX∣D(a i) toL ∣D(a i); let f be the unique
element of OX(D(a1) ∩D(a2)) such that s1∣D(a1)∩D(a2) = f s2∣D(a1)∩D(a2).
(Un�nished)



CHAPTER 5

MORPHISMS OF SCHEMES

5.1. Morphisms of �nite type, morphisms of �nite presentation

De�nition (5.1.1). — Let A be a ring and let B be an A-algebra. One says that B
is a �nitely presented A-algebra if there exists a family (b1, . . . , bn) of elements
of B such that the unique morphism of A-algebras φ∶A[T1, . . . , Tn] → B such that
φ(Ti) = bi for every i is surjective and its kernel is a �nitely generated ideal.

Recall that one says that B is a �nitely generated A-algebra if there exists a �nite
family (b1, . . . , bn) of elements of B such that the morphism φ∶A[T1, . . . , Tn] of
A-algebras such that φ(Ti) = bi for every i is surjective.
If the ring A is noetherian, then the ring A[T1, . . . , Tn] is noetherian as well,
so that every �nitely generated A-algebra is �nitely presented.
If f ∶A→ B is a ringmorphism, it endowes B with the structure of an A-algebra
and we also say that f is of �nite type (resp. is of �nite presentation) to mean
that the A-algebra B is of �nite type (resp. of �nite presentation).

Example (5.1.2). — We have seen in example a) of §1.2.5 that for every element a
of A, the morphism φ∶A[T] → Aa of A-algebras such that φ(T) = 1/a is surjec-
tive and its kernel is generated by (1 − aT). Consequently, the A-algebra Aa is
�nitely presented.

Lemma (5.1.3). — Let A be a ring and let B be a �nitely presented A-algebra. For
every integer m, the kernel of every surjective morphism φ∶A[X1, . . . , Xm] → B of
A-algebras is �nitely generated.

Proof. — Let φ∶A[X1, . . . , Xm] → B be a surjective morphism of A-algebras. Let
n be an integer and let ψ∶A[Y1, . . . , Yn] → B be a surjective morphism whose
kernel is �nitely generated.
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For every i ∈ {1, . . . ,m}, let Pi ∈ A[Y1, . . . , Yn] be a polynomial such that
ψ(Pi) = φ(Xi); let α∶A[X] → A[Y] be the unique morphism of A-algebras such
that α(Xi) = Pi , for every i; one has ψ ○ α = φ. For every j ∈ {1, . . . , n}, let Q j ∈
A[X1, . . . , Xm] be a polynomial such that φ(Q j) = ψ(Yi); let β∶A[Y] → A[X]
be the unique morphism of A-algebras such that β(Y j) = Q j, for every j; one
has φ ○ β = ψ.
Let (Nk) be a �nite family of polynomials in A[Y] which generates Ker(ψ)
and let I be the ideal of A[X] generated by the polynomials Xi − β ○ α(Xi) and
the polynomials β(Nk). It is is �nitely generated, by construction; to conclude
the proof of the lemma, it su�ces to prove that it equals Ker(φ).
Observe that for every polynomial P ∈ A[X], one has P − β ○ α(P)) ∈ Ker(φ),
since φ ○ β ○ α(P) = ψ ○ α(P) = φ(P). Moreover, β(Nk) ∈ Ker(φ), for every k,
since φ ○ β(Nk) = ψ(Nk) = 0. In particular, the ideal I is contained in Ker(φ).
Let us then observe that for every polynomial P ∈ A[X], one has P − β ○

α(P) ∈ I. Indeed, if p∶A[X] → A[X]/I is the canonical surjection, then p
and p ○ α ○ β are two morphisms of A-algebras from A[X] to A[X]/I which
coincides on X1, . . . , Xm; �eir equalizer is a sub-algebra of A[X]which contains
the indeterminates X1, . . . , Xn, hence is equal to the whole of A[X]. Let �nally
P ∈ Ker(φ). �en α(P) ∈ Ker(ψ), since ψ ○ α(P) = φ(P) = 0. Since the ideal I
contains the image by β of a generating family of Ker(ψ), one has β(α(P)) ∈ I.
Finally, the relation P = (P−β○α(P))+β○α(P) shows that P ∈ I. �is concludes
the proof.

Lemma (5.1.4). — Let A be a ring, let B be an A-algebra and let C be a B-algebra.
a) If B is �nitely generated over A and C is �nitely generated over B, then C is

�nitely generated over A.
b) If C is �nitely generated over A, then it is �nitely generated over B.
c) If B is �nitely presented over A and C is �nitely presented over B, then C is

�nitely presented over A.

Proof. — We write f ∶A→ B and g∶B→ C for the canonical ring morphisms.
a) Let b1, . . . , bm ∈ B such that B = A[b1, . . . , bm]; let c1, . . . , cn ∈ C such that
C = B[c1, . . . , cn]. �en, the subring A[g(b1), . . . , g(bm), c1, . . . , cn] of C is a
�nitely generated A-algebra which contains the image of B under g, as well
as c1, . . . , cn; it is thus equal to C, which shows that C is a �nitely generated
A-algebra.
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b) Let c1, . . . , cn be elements of C such that C = A[c1, . . . , cn]. �en one
has C = B[c1, . . . , cn], since this subring of C contains the image of A and the
elements c1, . . . , cn. Consequently, C is a �nitely generated B-algebra.
c) Let b1, . . . , bm ∈ B such that B = A[b1, . . . , bm]; let φ∶A[X1, . . . , Xm] → B
be the unique morphism of A-algebras such that φ(Xi) = bi for every i; by
lemma 5.1.3, Ker(φ) is �nitely generated. Similarly, let c1, . . . , cn ∈ C such that
C = B[c1, . . . , cn] and let ψ∶B[Y1, . . . , Yn] → C be the unique morphism of B-
algebras such that ψ(Y j) = c j for every j; then Ker(ψ) is �nitely generated. Let
θ∶A[X1, . . . , Xm , Y1, . . . , Yn] → C be the unique morphism of A-algebras such
that θ(Xi) = g(bi) for every i and θ(Y j) = c j for every j.
To shorten the notation, we write A[X] for A[X1, . . . , Xm], etc. Let (P1, . . . , Pr)
be polynomials in A[X] generating Ker(φ). Let (Q1, . . . , Qs) be polynomi-
als in B[Y] generating Ker(ψ). Let us extend φ to a morphism φ′ from
A[X1, . . . , Xm , Y1, . . . , Yn] to B[Y1, . . . , Yn] such that φ(Xi) = φ′(Xi) for ev-
ery i, and φ′(Y j) = Y j for every j; it is surjective. Consequently, there exist
polynomials (Q′

1, . . . , Q′
s) in A[X, Y] such that φ′(Q′

j) = Q j for every j.
One has P1, . . . , Pr , Q′

1, . . . , Q′
s ∈ Ker(θ). Conversely, let R ∈ Ker(θ). Since

θ = ψ○φ′, one hasψ(φ′(R)) = 0. Consequently, there are polynomials R j ∈ B[Y]
such that φ′(R) = ∑R jQ j. Since φ′ is surjective, there are polynomials R′j ∈
A[X, Y] such that R j = φ(R′j) for every j. �en R − ∑R′jQ′

j ∈ Ker(ψ), so that
there are polynomials Si in A[X] such that R = ∑ SiPi + ∑R′jQ′

j. �is shows
that Ker(θ) ⊂ (P1, . . . , Pr , Q′

1, . . . , Q′
s), hence the equality. �is proves that C is

a �nitely presented A-algebra, as claimed.

Lemma (5.1.5). — Let A be a ring, let B and C be A-algebras.

a) If B is �nitely generated (resp. �nitely presented), then B ⊗A C is a �nitely
generated (resp. �nitely presented) C-algebra;
b) If B and C are �nitely generated (resp. �nitely presented), then so is B⊗A C.

Proof. — a) Let n be an integer and let φ∶A[X1, . . . , Xn] → B be a surjec-
tive morphism of A-algebras. �en the morphism φ ⊗A idC∶A[X1, . . . , Xn] ⊗A
C → B is surjective. Since the natural morphism from A[X1, . . . , Xn] ⊗A C to
C[X1, . . . , Xn] is an isomorphism, this implies that B⊗A C is a �nitely generated
C-algebra.
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Assume that B is �nitely presented and let N = ker(φ); it is a �nitely generated
ideal of A[X1, . . . , Xn]. Since the kernel of φ⊗A idC is generated by N, it is �nitely
generated as well, and B⊗A C is a �nitely presented C-algebra.
b) Assertion b) then follows from a) and from lemma 5.1.4.

De�nition (5.1.6). — Let f ∶Y→ X be a morphism of schemes.
One says that f is locally of �nite type (resp. is locally of �nite presentation) if

for every point y of Y, there exists an a�ne open neighborhood V of y in Y and an
a�ne open neighborhood U of f (y) in X such that OY(V) is a �nitely generated
OX(U)-algebra (resp. a �nitely presented OX(U)-algebra).
One says that f is of �nite type (resp. is of �nite presentation) if it is locally of

�nite type (resp. locally of �nite presentation) and quasi-compact.(1)

Remark (5.1.7). — If f is locally of �nite type and X is locally noetherian, then
f is locally of �nite presentation.
Let indeed y ∈ Y and let x = f (y). Let U be an a�ne open neighborhood
of x and let V be an a�ne open neighborhood of y contained in f −1(U) such
that OY(V) is a �nitely generated OX(U)-algebra. Since U is locally noetherian,
OX(U) is a noetherian ring. Consequently,OY(V) is a �nitely presentedOX(U)-
algebra.

Lemma (5.1.8). — Let f ∶Y → X be a morphism of schemes. Assume that f is
locally of �nite type (resp. locally of �nite presentation). Let y ∈ Y, let x = f (y),
let U be an a�ne open neighborhood of x and let V be an open neighborhood of y.
�ere exists an a�ne open neighborhood V′ of y which is contained in f −1(U) ∩V
such thatOY(V′) is a �nitely generated (resp. a �nitely presented)OX(U)-algebra.

Proof. — By assumption, there exists an a�ne open neighborhood V1 of y in Y,
and an a�ne open neighborhood U1 of x in X such that OY(V1) is a �nitely
generated OX(U1)-algebra (resp. a �nitely presented OX(U1)-algebra).
Let a ∈ OX(U1) be such that x ∈ D(a) and D(a) ⊂ U ∩U1; let U2 = D(a) and
let V2 = f −1(U2)∩V1. �en U2 and V2 are a�ne open neighborhoods of x and y
respectively such that f (U2) ⊂ V2. One has OX(U2) = OX(U1)a, OY(V2) =
OY(V1)a ≃ OY(V1) ⊗OX(U1) OX(U2), so that the morphism OX(U2) → OY(V2)

(1)�e standard de�nition of a morphism of �nite presentation imposes that it be quasi-separated. I need
to correct this at some point.
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is deduced from the morphism OX(U1) → OY(V1) by base change; it is thus
�nitely generated (resp. �nitely presented).
Let then a′ ∈ OX(U) be such that x ∈ D(a′) and D(a′) ⊂ U2; let U3 =
D(a′) and let V3 = f −1(U3) ∩V2. By the same argument, U3 and V3 are a�ne
open neighborhoods of x and y respectively, one has f (U3) ⊂ V3 and the
corresponding morphism OX(U3) → OY(V3) is �nitely generated (resp. �nitely
presented).
Let now b ∈ OY(V3) be such that y ∈ D(b) and D(b) ⊂ V ∩V3; let V′ = D(b).

�en V′ is an a�ne open neighborhood of y contained in V. By example 5.1.2,
the morphism OY(V3) → OY(V′) = OY(V3)b is �nitely presented, as well as the
morphism OX(U) → OX(U3) = OX(U)a′ . Consequently, the composition

OX(U) → OX(U3) → OY(V3) → OY(V′)

is �nitely generated (resp. is �nitely presented). �is concludes the proof of the
lemma.

Corollary (5.1.9). — Let f ∶Y→ X be a morphism of schemes. Let U be an open
subscheme of X and let V be an open subscheme of f −1(U). If f is locally of �nite
type (resp. locally of �nite presentation), then the morphism f ∣V∶V→ U deduced
from f by restriction is locally of �nite type (resp. locally of �nite presentation) as
well.

Corollary (5.1.10). — If f is of �nite type (resp. of �nite presentation), then for
every open subscheme U of X, the morphism fU∶ f −1(U) → U deduced from f is
of �nite type (resp. of �nite presentation).

Proof. — By corollary 5.1.9, the morphism fU is locally of �nite type (resp. of
�nite presentation). Since it is also quasi-compact, this implies the corollary.

Proposition (5.1.11). — Let A be a ring, let B be an A-algebra, let X = Spec(A),
let Y = Spec(B) and let f ∶Y→ X be the associated morphism of schemes. If f is
of �nite type (resp. of �nite presentation), then B is a �nitely generated (resp. a
�nitely presented) A-algebra.

Proof. — By lemma 5.1.8, every point y of Y has an a�ne open neighborhoodV′y
such thatOY(V′y) is a �nitely generated (resp. a �nitely presented) A-algebra. Let
then by ∈ B be an element such that y ∈ D(by) and D(by) ⊂ V′y; let Vy = D(by).
One has OY(Vy) = OY(V′y)b′y , where b′y = by∣Vy . Consequently, OY(Vy) is a
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�nitely generated (resp. �nitely presented) A-algebra; observe moreover that
OY(Vy) = Bby .
Since Y is a�ne, it is quasi-compact and there exists a �nite subset Σ of Y
such that Y = ⋃y∈ΣVy. �e ideal of B generated by the family (by)y∈Σ contains 1,
hence there exists a family (cy)y∈Σ of elements of B such that 1 = ∑y∈Σ bycy.
Let us now prove that the A-algebra B is �nitely generated. For every y ∈ Σ, let
Sy be a �nite subset of B such that the A-algebra Bby is generated by Sy and 1/by.
Let S be a �nite subset of B containing the sets Sy, the elements by, as well as the
elements cy, for y ∈ Σ. Let then φ∶A[(Xs)s∈S] → B be the unique morphism of
A-algebras such that φ(Xs) = s for every s ∈ S.
Let B′ = Im(φ) and let us show that B′ = B. Let M = B/B′; this is a B′-module
such that Mby = 0 for every y ∈ Σ. Since B′ contains the elements cy, the ideal
of B′ generated by the elements by contains 1; therefore, one has M = 0, hence
B′ = B.
Let us now assume that for every y ∈ Σ, the A-algebra Bby is �nitely presented.
Let us then prove that the kernel N of φ is a �nitely generated A[X]-module; for
this, it su�ces to prove that the quasi-coherent sheaf Ñ on Spec(A[X]) is �nitely
generated.
Let y ∈ Σ and let Py ∈ A[X] be such that φ(P) = by (for example, one may take
P = Xby). �en D(Py) = Spec(A[X, T]/(1 − TPy)); moreover, the morphism φy
from A[X, T] to Bby that coincides with φ on A[X] and such that φ(T) = 1/by is
surjective, and its kernel Ny is �nitely generated since Bby is a �nitely presented
A-module. Since Ñ(D(Py)) is the image of Ny in A[X, T]/(1−TPy), it is �nitely
generated as well.
Let V = ⋃y∈ΣD(Py). Let us show that V is an open subset of Spec(A[X])

which contains V(N). Let indeed p be a prime ideal of A[X] which contains N.
Its image φ(p) in B is a prime ideal of B, because φ is surjective. Consequently,
there exists y ∈ Σ such that by /∈ φ(p), because these elements by generate the
unit ideal of B, hence p ∈ D(Py).
Let then U = Spec(A[X]) V(N) be the complementary open subset to V(N).
One has Ñ∣U = OSpec(A[X])∣U, hence Ñ∣U is �nitely generated.
We thus have shown that the quasi-coherent sheaf Ñ on Spec(A[X]) is �nitely
generated. By proposition 4.7.10, the A[X]-module N is �nitely generated. In
other words, N is a �nitely generated ideal, and B is a �nitely presented A-
algebra.
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Corollary (5.1.12). — Let f ∶Y→ X be a morphism of schemes. Assume that f is of
�nite type (resp. of �nitely presentation). For every a�ne open subsetU of X, there
exists a �nite family (Vi) of a�ne open subschemes of Y such that f −1(U) = ⋃i Vi
and OY(Vi) is a �nitely generated (resp. a �nitely presented) OX(U)-algebra for
every i.

Proof. — Since the open subscheme f −1(U) is quasi-compact, it is the union of
a �nite family (Vi) of a�ne open subschemes. For each i, themorphism fromVi
to U induced by f is locally �nitely generated (resp. locally �nitely presented); by
the preceding proposition, the OX(U)-algebraOY(Vi) is then �nitely generated
(resp. �nitely presented). �is concludes the proof of the corollary.

Proposition (5.1.13). — Let S be a scheme, let X, Y be S-schemes, let f , g be their
structural morphisms.
a) Let h∶X → Y be a morphism of S-schemes. If f is locally �nitely generated,

then h is locally �nitely generated.
b) If h and g are locally �nitely generated (resp. locally �nitely presented), then
f is locally �nitely generated (resp. locally �nitely presented).
c) If f is locally �nitely generated (resp. locally �nitely presented), then so is
f ×S idY∶X ×S Y→ Y.
d) If both f and g are locally �nitely generated (resp. locally �nitely presented),

then so is f ×S g∶X ×S Y→ S.

5.2. Subschemes and immersions

De�nition (5.2.1). — Let φ∶Y→ X be a morphism of schemes.
a) One says that it is an open immersion if it is a homeomorphism from Y to an

open subset of X and if for every y ∈ Y, the morphism of local rings φ♯
y is bijective.

b) One says that φ is an immersion if it induces a homeomorphism from Y to
a locally closed subspace of X and if for every y ∈ Y, the morphism of local rings
φ♯
y∶OX,φ(y) → OY,y is surjective.
c) One says that it is an closed immersion if it is an immersion and if φ(Y) is

closed in X.

Let X be a topological space. Recall that a subspace Z of X is said to be locally
closed if it can be written as the intersection of an open and of a closed subspace.
�is means that for every point x ∈ Z, there exists an open neighborhood U of x
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in X such that Z ∩U is closed in U. �e union of all such open sets is the largest
open subset U of X such that T ∩U is closed in U.
Consequently, if φ∶Z→ X is an immersion and if U is the largest open subset
of X such that φ(Z) is closed in U, then φ induces a closed immersion from Z
to U.
If φ∶Z→ X is an immersion of schemes whose underlying map of topological
spaces is an inclusion, we also say that Z is a subscheme of X.

Remark (5.2.2). — An immersion is a monomorphism in the category of
schemes.

Example (5.2.3). — a) Let X be a scheme and let U be an open subset of X.
�en (U,OX∣U) is a scheme and the canonical morphism φ∶U → X of locally
ringed spaces is an open immersion.
b) Let A be a ring, let X = Spec(A); let I be an ideal of A, let Y = Spec(A/I)
and let φ∶Y → X be the morphism of schemes deduced from the canonical
surjection from A to A/I. Let us prove that φ is a closed immersion.
By proposition 1.5.10, we already know that φ induces a homeomorphism
from Y to the closed subset V(I) of X. Let y ∈ Y and let x = φ(y); then px is
a prime ideal of A containing I and py is the corresponding ideal of A/I. �e
morphism of local rings φ♯

y∶OX,x → OY,y identi�es with the canonical morphism
from Apx to (A/I)py , which is indeed surjective.
By construction the ring morphism φ♯(X)∶OX(X) → φ∗OY(X) identi�es with
the canonical surjection from A to A/I. Since X is a�ne and the OX-modules
OX and φ∗OY are quasi-coherent, the morphism of sheaves φ♯ is surjective.
c) Let φ∶Y→ X be an immersion of schemes. For every open subscheme U
of X, the morphism φU∶φ−1(U) → U deduced from φ by restriction is an immer-
sion. If, moreover, φ(Y) ∩U is closed in U, then it is a closed immersion.
Conversely, let φ∶Y→ X be a morphism of schemes. Let us assume that every
point of Y has an open neighborhoodU such that themorphism φU∶φ−1(U) → U
is an immersion. �en φ is an immersion.
Indeed, φ is injective and induces an open map from Y to φ(Y); consequently,
it de�nes a homeomorphism from Y to its image, which is locally closed in X.
Moreover, for every point y ∈ Y, the morphism φ♯

y∶OX, f (y) → OY,y induced by φ
coincides with the morphism φ♯

U,y whenever U is an open subset of X such that



5.2. SUBSCHEMES AND IMMERSIONS 191

φ(y) ∈ U. If φU is an immersion, then φ♯
U,y is surjective, hence φ♯

y is surjective
as well.

We shall see that these examples are archetypal immersions.

Lemma (5.2.4). — Let φ∶Y → X be an open immersion. �en φ(Y) is an open
subset of X and φ induces an isomorphism from Y to the scheme (φ(Y),OX∣φ(Y)).

Proof. — By de�nition of an open immersion, φ induces a homeomorphism
from Y to an open subset V of X. Moreover, for every y ∈ Y, the morphism
φ♯
y∶OX,φ(y) → OY,y is an isomorphism of local rings. Let ψ∶Y → V be the
induced morphism of locally ringed spaces; it is a homeomorphism. If we use ψ
to identify Y and V, then φ♯ is a morphism of sheaves on Y which induces an
isomorphism on stalks; it is thus an isomorphism.

Lemma (5.2.5). — Let φ∶Y → X be a morphism of schemes which induces a
homeomorphism from Y to a locally closed subset of X. Let y ∈ Y and let x = φ(y),
letV be an open neighborhood of y inY. �ere exists an a�ne open neighborhoodU
of x such that φ−1(U) is an a�ne open neighborhood of y contained in V.

Proof. — By the de�nition of a locally closed subset, there exists an open sub-
set Ω of X such that φ(Y) is a closed subset of Ω, and the morphism from Y
to Ω deduced from φ is closed.
Let U1 be an a�ne open neighborhood of x which is contained in Ω and let V1
be an a�ne open neighborhood of y contained in φ−1(U1) ∩V. Let φ1∶V1 → U1
be the morphism of schemes deduced from φ by restriction; let A1 = OX(U1),
B1 = OY(V1) and let u = φ♯

1 ∶A1 → B1 be the morphism of rings associated with φ1.
�en Z1 = φ(Y) ∩U is closed in U, and φ(V1) is an open subset of Z1; conse-
quently, there exists an open subset U2 of U1 such that φ(V1) = φ(Y) ∩U2. Let
a ∈ A1 be any element such that x ∈ D(a) and D(a) ⊂ U2. �en U = D(a) is an
a�ne open neighborhood of x in U1, and φ−1(U) is an open neighborhood of y
contained in V1. Moreover, φ−1(U) is a�ne since it is equal to D(u1(a)); �nally,
the relation φ(φ−1(U)) = φ(Y) ∩U shows that it is closed in U.

Proposition (5.2.6). — Let φ∶Y → X be a morphism of schemes. �e following
properties are equivalent:
(i) For every a�ne open subscheme U = Spec(A) of X, there exists an ideal I

of A and an isomorphism of A-schemes ψU∶φ−1(U) → Spec(A/I);
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(ii) Every point of X has an a�ne open neighborhood U = Spec(A) such that
there exists an ideal I of A and an isomorphism of A-schemes ψU∶φ−1(U) →
Spec(A/I);
(iii) �e morphism φ induces a homeomorphism from Y to a closed subset of X,

and the morphism of sheaves φ♯∶OX → φ∗OY is surjective;
(iv) �e morphism φ is a closed immersion.

If they hold, then the OX-algebra φ∗OY is quasi-coherent.

Proof. — In each of these situations, every point of X has an a�ne open neigh-
borhood U such that φ−1(U) is a�ne; this is obvious in cases (i) and (ii), and
follows from lemma 5.2.5 in cases (iii) and (iv). �en the restriction to U of the
OX-module φ∗OY is isomorphic to the sheaf (φU)∗(Oφ−1(U)). By corollary 4.7.5,
the latter sheaf is a quasi-coherent OU-module. Consequently, φ∗OY is a quasi-
coherent OX-module.
�e implication (i)⇒(ii) follows from the fact that every point of a scheme
has an a�ne open neighborhood.
Assume that (ii) holds. Let U = Spec(A) be an open a�ne subscheme of X
and let I be an ideal of A such that there exists an A-isomorphism ψU∶φ−1(U) →
Spec(A/I). By example 5.2.3, b), we see that the morphism φ induces a homeo-
morphism from φ−1(U) to the closed subset V(I) of U, and the morphism of
local rings φ♯

y∶OX,φ(y) → OY,y is surjective for every y ∈ φ−1(U). It also follows
from that example that the morphism of local rings φ♯

y∶OX,φ(y) → OY,y is surjec-
tive for every y ∈ φ−1(U). Since X is covered by such a�ne open subsets, this
implies that φ induces a homeomorphism from Y to a closed subset of X, that
φ♯ is surjective, and that φ♯

y is surjective for every y ∈ Y. We thus have proved
the implications (ii)⇒(iii) and (ii)⇒(iv).
We now assume (iii). To prove that φ is a closed immersion, it su�ces to prove
that the morphism φ♯

y∶OX,φ(y) → OY,y is surjective for every y ∈ Y. Let U be
an a�ne open subset of X such that φ−1(U) is an a�ne open subset of X. Let
A = OX(U), let B = OY(φ−1(U)) and let u = φ♯(U). Since φ♯ is surjective and
the sheaves OX and φ∗OY are quasi-coherent, the ring morphism u is surjective.
Let then y ∈ φ−1(U); it corresponds to a prime ideal q of B, the point φ(y)
corresponds to the prime ideal p = u−1(q), and the morphism φ♯

y identi�es with
the morphism Ap → Bq; it is thus surjective.
Let us �nally assume that φ is a closed immersion and let us prove (i). To
simplify the notation, we may replace X by U and assume that X = Spec(A).
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Let B = OY(Y) and let u∶A → B be the morphism of rings corresponding to
the morphism of schemes φ∶Y → Spec(A); let I = Ker(u), so that u factors
through the quotient A/I. Let ψ∶Y→ Spec(A/I) be the morphism of schemes
associated with the ring morphism A/I→ B, and let j∶ Spec(A/I) → Spec(A) be
the closed immersion de�ned by the ideal I; one has φ = j ○ ψ. It follows from
the de�nitions that ψ is a closed immersion as well. We may thus assume that
I = (0), in other words, that the morphism u is injective. We then need to prove
that φ, or, equivalently, u, is an isomorphism.
Let us �rst show that φ is surjective. Let x ∈ X φ(Y). Since φ(Y) is closed,
there exists an a�ne open neighborhood U of x such that φ(Y) ∩U = ∅, or,
equivalently, that φ−1(U) = ∅. Let a ∈ A be such that x ∈ D(a) and D(a) ⊂ U.
�en φ(Y) ⊂ V(a); in other words, one has φ(a) ∈ q for every prime ideal q
of B. Consequently, φ(a) is nilpotent. Since φ is injective, a is nilpotent as well,
which contradicts the hypothesis that x ∈ D(a).
Since φ is a closed continuous bijection, it is a homeomorphism from Y
to X. In particular, for every y ∈ Y, the canonical morphism from (φ∗OY)φ(y)
to OY,y is an isomorphism. �e morphisms φ♯

y being surjective, for every y ∈ Y,
the morphism of sheaves φ♯ is surjective. Since X is a�ne and the sheaves
OX and φ∗OY are quasi-coherent OX-modules, this implies that u is surjective;
therefore, u is an isomorphism. �is concludes the proof of the proposition.

Corollary (5.2.7). — Let f ∶Y → X and g∶Z → Y be immersions (resp. closed
immersions, resp. open immersions) of schemes. �en f ○ g∶Z→ X is an immersion
(resp. a closed immersion, resp. an open immersion).

Proof. — Let z ∈ Z, let y = g(z) and x = f (y). Let V be an open neighbhorood
of y in Y such that the map gV∶ g−1(V) → V is closed. Let then U be an open
neighborhood of x in X such that the map fU∶ f −1(U) → U is closed and such
that f −1(U) ⊂ V. �emap from g−1( f −1(U)) to f −1(U) deduced from gV is then
closed, hence the map from g−1( f −1(U)) to U deduced from f ○ g by restriction
is closed. Consequently, f ○ g induces a homeomorphism from Z to a locally
closed subset of X.
If f and g are closed immersions, then f ○ g is closed, and f ○ g induces a
homeomorphism from Z to a closed subset of X.
Moreover, the morphism ( f ○ g)♯z∶OX,x → OZ,z is the composition of the
morphisms f ♯y and g♯z; it is thus surjective.
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�is shows that f ○ g is an immersion, and a closed immersion if f and g are
closed immersions.
If f and g are open immersions, they induce isomorphisms from Y to an open
subscheme of X, and from Z to an open subscheme of Y. �eir composition
induces an isomorphism from Z to an open subscheme of X, hence is an open
immersion.

Corollary (5.2.8). — Let f ∶Y→ X and g∶Z→ X be morphisms of schemes. Let us
prove that if f is an immersion (resp. a closed immersion, resp. an open immersion),
then so is the morphism fZ deduced from f by base change to Z.

Proof. — a) We �rst assume that f is an open immersion. �en U = f (Y)
is an open subset of X and f induces an isomorphism from Y to U, so that the
morphism fZ identi�es with the open immersion from g−1(U) to U.
b) Assume that f is closed immersion. Let U = Spec(A) be an a�ne open
subset of X, let I be an ideal of A such that V = f −1(U) is X-isomorphic to
Spec(A/I). Let W = Spec(B) be an a�ne open subset of Z such that g(V) ⊂ U,
in particular, B is anA-algebra. Since the natural ringmorphism from (A/I)⊗AB
to B/IB is an isomorphism, we see that V×UW is an a�ne open subset of Y×ZX,
isomorphic to Spec(B/IB); by restriction, the morphism fZ induces a morphism
from V ×UW toW which identi�es with the closed immersion of Spec(B/IB)
to Spec(B). Since every point of Z has an a�ne open neighborhood W whose
image is contained in an a�ne open subset of X, this proves that fZ is a closed
immersion.
c) In the general case, let U be the largest open subset of X such that f induces
a closed immersion from Y to U. �en fZ is the composition of the closed
immersion fromY×U g−1(U) to g−1(U), and of the open immersion from g−1(U)
to Z. It is thus an immersion.

5.2.9. — Let X be a scheme and let Z be a closed subset; let j∶Z → X be the
inclusion.
Let OZ be a sheaf of rings on Z such that (Z,OZ) is a scheme and let j♯∶OX →
j∗OZ be a morphism of sheaves such that ( j, j♯) is an immersion. �en j♯
is surjective, and its kernel I is a quasi-coherent ideal of OX. Moreover, if
U is an a�ne open subscheme U = Spec(A) of X, then I = I (U) is an
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ideal of A, and j induces a homeomorphism from Z ∩ U to the closed sub-
set V(I (U)) of Spec(A), and ( j, j♯) induces an isomorphism of schemes
from ( j−1(U),OZ∣ j−1(U)) to Spec(A/I).
Conversely, letI be a quasi-coherent ideal of OX such that for every a�ne
open subscheme U = Spec(A) of X, denoting by I the ideal I (U) of A, one
has V(I) = Z ∩U. �en OZ = j−1(OX/I ) is a sheaf of rings on Z. Let j♯∶OX →
j∗OZ be the morphism of sheaves deduced from the canonical surjection of OX
to OX/I . �en ( j, j♯) is a closed immersion, andI = Ker( j♯).
One says that Z is the closed subscheme of X de�ned by the quasi-coherent
idealI , and one denotes it by Z = V(I ).
�e inclusion of quasi-coherent ideals gives rise to a natural order relation on
closed subschemes: the larger the ideal, the smaller the subscheme. We will say
that V(I ) is supported by Z to mean that the closed subspace of X underlying
the subscheme V(I ) is equal to Z.

Proposition (5.2.10). — Let X be a scheme and let Z be a closed subset of X. �ere
is a unique structure of closed subscheme on Z such that for every x ∈ Z, the
local ring OZ,z has no non-zero nilpotent element. It is de�ned by the largest
quasi-coherent idealI such that Z = V(I ).

Proof. — For every open subset U of X, letI (U) be the set of f ∈ OX(U) such
that f (x) = 0 for every x ∈ Z. �is de�nes a a sheaf of idealsI ⊂ OX.
To prove thatI is quasi-coherent, it su�ces to prove that its restriction to
every a�ne open subscheme of X is quasi-coherent. Let thus U = Spec(A) be
an a�ne open subscheme of X and let I = I (U) = j(Z ∩U). �en I is a radical
ideal of A and is the largest ideal of A such that V(I) = Z∩U. Let a ∈ A. One has
Aa = OU(D(a)), and the inclusion Ia ⊂ I (D(a)) follows from the de�nition.
Conversely, let f ∈ I (D(a)); let g ∈ A and n ∈ N be such that f = g/an; by
assumption, one has g ∈ p for every prime ideal p containing I such that a /∈ p; it
follows that ag ∈ I, hence f = ag/an+1 ∈ Ia. �is proves thatI is quasi-coherent.
�e underlying topological space to the subscheme V(I ) is equal to Z. One
has Z ∩U ≃ Spec(A/I). For every x ∈ Z ∩U, 0 is the only nilpotent element of
OZ,z, because the ideal I is radical.
Moreover, ifJ is a quasi-coherent ideal such that V(J ) has support Z, then

J (U) = j(Z ∩U) = I (U) for every a�ne open subscheme U of X.
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5.3. A�ne morphisms, �nite morphisms

De�nition (5.3.1). — Let f ∶Y→ X be a morphism of schemes. One says that f is
a�ne if for every open a�ne subscheme U of X, f −1(U) is an a�ne scheme.

5.3.2. — Here is a general way to construct a�ne morphisms. Let A be a
quasi-coherent OX-algebra.
For every a�ne open subset U of X, let YU = Spec(A (U)); this is an a�ne
scheme equiped with a morphism fU to Spec(OX(U)) = U.
For every pair (U,W) of a�ne open subschemes of X such that W ⊂ U,
the restriction morphism A (U) → A (W) induces a morphism φ′

UW∶YW →
YU such that fW ○ φ′

UW = fU. Since A is a quasi-coherent OX-algebra, the
restriction morphism induces an isomorphismA (W) ≃ A (U)⊗OX(U) OX(W).
Consequently, the morphism φ′

UW induces an isomorphism φUW from YW to
the open subscheme f −1U (W) of YU.
Let U and V be a�ne open subschemes of X. �ere exists a unique isomor-
phism of schemes ψUV from the open subscheme f −1U (U ∩V) of YU to the open
subscheme f −1V (U∩V) of YV whose restriction to f −1U (W) is equal to φVW ○φ−1

UW,
for every a�ne open subscheme W of U ∩V.
We can now glue the schemes (YU) along the open subschemes YUV by means
of these isomorphisms ψUV. �is de�nes a scheme Y, as well as a morphism
of schemes ψ∶Y → X, and isomorphisms ψU∶ψ−1(U) → YU for every a�ne
open subscheme U of X, such that ψ∣U = fU ○ ψU and such that the morphisms
ψUV ○ ψU and ψV coincide on ∣ψ−1(U∩V). �is X-scheme is called the spectrum of
the quasi-coherent OX-algebra, and is denoted by Spec(A ).
By construction, for every a�ne open subscheme U of X, U is isomor-
phic to Spec(OX(U)), ψ−1(U) is isomorphic to Spec(A (U)), and the mor-
phism ψU∶ψ−1(U) → U identi�es with the morphism of a�ne schemes deduces
with the ring morphism OX(U) → A (U).

Example (5.3.3). — It follows from proposition 5.2.6 that a morphism f ∶Y→ X
is a closed immersion if and only if it is a�ne and the morphism f ♯OX → f∗OY
is surjective.
Let, moreover, I be the kernel of the morphism f ♯∶OX → f∗OY. It is a
quasi-coherent OX-module and the quotient sheaf OX/I is a quasi-coherent
OX-algebra. �en f induces an isomorphism from Y to the closed subscheme
V(I ) = Spec(OX/I ).
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5.3.4. — �e spectrum of a quasi-coherent sheaf of algebras satis�es a universal
property.
Let f ∶Y→ X be amorphism of schemes, letA be a quasi-coherentOX-algebra
and let u∶A → f∗OY be a morphism of OX-algebras. Let g∶ Spec(A ) → X be
the canonical morphism.
Let U be an a�ne open subscheme of X and let fU∶ f −1(U) → U be the mor-
phism deduced from f by restriction. �e identi�cation ( fU)∗O f −1(U) = f∗OY∣U
and themorphism g(U)∶A (U) → f∗OY(U) give rise to a morphism of schemes
φU∶ f −1(U) → Spec(A (U)) = g−1(U). �ese morphisms glue together and de-
�ne a morphism of X-schemes φ∶Y→ Spec(A ).

Proposition (5.3.5). — Let f ∶Y→ X be a morphism of schemes. Assume that every
point of X has an a�ne open neighborhood U such that f −1(U) is a�ne. �en the
OX-algebra f∗OY is quasi-coherent, and there exists an X-isomorphism from Y
to Spec( f∗OY). In particular, the morphism f is a�ne.

Proof. — Let us �rst prove that f∗OY is quasi-coherent. Let x ∈ X and let U be an
a�ne open neighborhood of x such that f −1(U) is a�ne; let fU∶ f −1(U) → U be
themorphismof schemes deduced by restriction. By de�nition, f∗OY∣U is isomor-
phic to ( fU)∗O f −1(U). It thus follows from corollary 4.7.5 that the sheaf f∗OY∣U is a
quasi-coherent OU-algebra. Consequently, f∗OY is a quasi-coherent OX-algebra.
We consider the spectrum Z = Spec( f∗OY) of this algebra, and its canonical
morphism g∶Z→ X to X. Let φ∶Y→ Z be the canonical morphism of X-schemes
associated with f∗OY; let us prove that it is an isomorphism.
Let U be an a�ne open subscheme of X such that f −1(U) is a�ne, say Spec(B).

�en one has f∗OY(U) = B, and the morphism φ identi�es with the identical
morphism from f −1(U) = Spec(B) to g−1(U) = Spec(B). Consequently, φ is an
isomorphism.

Corollary (5.3.6). — Let f ∶Y→ X be an a�ne morphism of schemes and let Z be
an X-scheme. �e morphism fZ∶YZ → Z deduced from f by base-change to Z is
a�ne.

Proof. — Let g∶Z → X be the structural morphism. Every point of Z has an
a�ne open neighborhood U such that g(U) is contained in an a�ne open
subset V of X. �en f −1Z (U) identi�es with to the �ber product f −1(V) ×V U of
a�ne schemes, hence is a�ne.
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De�nition (5.3.7). — Let f ∶Y→ X be a morphism of schemes. One says that f is
�nite if it is a�ne and if f∗OY is a �nitely generated OX-module.

Lemma (5.3.8). — Let f ∶Y → X be a morphism of schemes. Assume that every
point x ∈ X has an a�ne open neighborhood U such that f −1(U) is an a�ne open
subscheme of Y and such that OY( f −1(U)) is a �nitely generated OX(U)-module.
�en f is a �nite morphism.

Proof. — By proposition 5.3.5, f is an a�ne morphism. Let A = f∗OY. It
is a quasi-coherent OX-module; let us prove that it is �nitely generated. By
hypothesis, every point of X has an a�ne open neihborhood U such thatA (U)
is a �nitely generatedOX(U)-module. By proposition 4.7.10,A ∣U is then a �nitely
generated OX∣U-module. Consequently,A is a �nitely generated OX-module,
as was to be shown.

Remark (5.3.9). — a) Let A be a ring and let B be an A-algebra. Let X =
Spec(A), let Y = Spec(B) and let f ∶Y → X be the associated morphism. �e
following properties are equivalent:

(a) �e morphism f is �nite;
(b) �e A-module B is �nitely generated;
(c) �e A-algebra B is �nitely generated and integral.

Assume that they hold, and let I = ker(A → B). �e �rst theorem of Cohen-
Seidenberg (theorem 1.11.4) then implies that f (Y) = V(I).
b) Let k be a �eld and let A be a non-zero �nitely generated k-algebra. Let
n be a nonnegative integer and f ∶ k[T1, . . . , Tn] → A be an integral injective
morphism of k-algebras. �e associated morphism of schemes a f ∶ Spec(A) →
Ank is then �nite and surjective. �is is the geometric formulation of Noether’s
normalization lemma (theorem 1.6.1).
c) Assume that k is in�nite and let X be a non-empty closed subscheme ofAmk .
It follows from exercise 1.6.5 that there exists an integer n such that 0 ⩽ n ⩽ m and
a linear morphism p∶Amk → Ank which induces a �nite and surjective morphism
pX∶X→ Ank .
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5.4. Separated and proper morphisms

De�nition (5.4.1). — LetX be an S-scheme and let p1 and p2 be the two projections
from X×SX to X. �e diagonal morphism δ is the unique morphism of S-schemes
from X to X ×S X such that p1 ○ δ = p2 ○ δ = idX.

Lemma (5.4.2). — Let f ∶X→ S be a morphism of schemes.
a) �e diagonal morphism δ∶X→ X ×S X is an immersion.
b) If f is a�ne, then δ is a closed immersion.
c) If f is a monomorphism, then δ is an isomorphism.

Proof. — a) Let x ∈ X and let s = f (x). Let U = Spec(A) be an a�ne open
neighborhood of x in X whose image is contained in an a�ne open neighbor-
hood V = Spec(R) of s in S. �en W = p−11 (U) ∩ p−12 (U) is an a�ne open
subscheme of X ×S X which contains δ(x), isomorphic to Spec(A ×R A). More-
over, δ−1(W) = U and the induced morphism δW∶U →W corresponds to the
morphism of R-algebras γ∶A ×R A → A such that γ(a ⊗ b) = ab. Since it
is surjective, the morphism δW is a closed immersion. Consequently, δ is an
immersion.
b) If f is a�ne, then we may take U = f −1(V), and the open subschemes
of X ×S X of the form W = p−11 (U) ∩ p−12 (U) cover X ×S X. For each such W,
the morphism δW∶ δ−1(W) → W is a closed immersion, so that δ is a closed
immersion.
c) Let T be an S-scheme and let u, v be two S-morphisms from T to X. �is
means that f ○ u = f ○ v. Since f is a monomorphism, one then has u =
v. Consequently, for every S-scheme T, the morphism δ induces a bijection
from HomS(T, X) to HomS(T, X) × HomS(T, X) = HomS(X ×S X). In other
words, the morphism δ induces an isomorphism of functors from hX to hX×SX;
by Yoneda’s lemma, δ is an isomorphism.

Corollary (5.4.3). — Let S be a scheme, letX andY be schemes, and let f , g∶Y→ X
be two S-morphisms. Let (Z, j) be an equalizer of the pair ( f , g). �en j∶T→ Y is
an immersion of S-schemes; if X is separated over S, then j is a closed immersion.

Proof. — Recall the construction of an equalizer done in corollary 4.5.5. Let
p and q be the two projections from X ×S X to X; let δ∶X → X ×S X be the
diagonal immersion. Let h∶Y → X ×S X be the unique S-morphism such that
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p ○ h = f and q ○ h = g. Let T = Y ×X×SX X be the �ber product of the pair
(h, δ) of morphisms to X ×S X and let φ∶T→ Y be the �rst projection. �en φ
is an S-morphism and it is shown in the proof of corollary 4.5.5 that (T, φ) is an
equalizer of the pair ( f , g). We thus observe that φ is the morphism of schemes
deduced from δ by base change to Y. �is shows that φ is an immersion, and
is a closed immersion if δ is itself a closed immersion, that is, if X is separated
over S.

Lemma (5.4.4). — A morphism of schemes f ∶X → S is quasi-separated if and
only if its diagonal immersion is quasi-compact.

Proof. —

De�nition (5.4.5). — One says that a morphism of schemes f ∶X→ S is separated
if the diagonal immersion is a closed immersion.
One says that a scheme X is separated if the canonical morphism from X

to Spec(Z) is separated.

Since a closed immersion is quasi-compact, a separated morphism is quasi-
separated, and a separated scheme is quasi-separated.

Proposition (5.4.6). — Let f ∶X → S be a morphism of schemes. �e following
assertions are equivalent:
(i) �e morphism f is separated;
(ii) �e image of the diagonal immersion is a closed subset of X ×S X;
(iii) For every S-scheme T and every pair (u, v) of S-morphisms from T to X,

the equalizer of u and v is a closed subscheme of T.

Proof. — (i)⇔(ii). If f is separated, then the diagonal immersion is a closed
immersion by de�nition, so that its image is a closed subset of X×SX. Conversely,
an immersion is a closed immersion if and only if its image is closed, hence the
converse implication.
(iii)⇒(ii). Let us apply the hypothesis to T = X×SX and to the two projections
to X. �eir equalizer being the diagonal subscheme, it follows that f is separated.
�e implication (i)⇒(iii) follows from corollary 5.4.3.

Proposition (5.4.7). — a) Let f ∶X→ S be a morphism of schemes. Assume that
every point of S has an open neighborhood U such that the induced morphism
fU∶ f −1(U) → U is separated. �en f is separated.
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b) An a�ne morphism, an immersion of schemes is a separated morphism.
c) Let f ∶X→ S be a separated morphism of schemes and let T be an S-scheme.

�en the morphism fT deduced from f by base-change to T is separated.
d) Let f ∶Z→ Y and g∶Y→ X bemorphisms of schemes. If f and g are separated,

then g ○ f is separated; if g ○ f is separated, then f is separated.
e) Let S be a scheme, let f ∶Y→ X and f ′∶Y′ → X′ be morphisms of S-schemes. If
f and f ′ are separated, then the morphism ( f , f ′)∶Y×S Y′ → X×S X′ is separated.

Proof. — a) Let g∶X → X ×S X be the diagonal immersion. To prove that g
is a closed immersion, it su�ces to establish that every point of X ×S X has an
open neighborhood V such that gV∶ g−1(V) → V is a closed immersion. Let z be
point of X ×S X and let s be its image in S; let U be an open neighborhood of s
such that fU is separated. �en V = f −1(U) ×U f −1(U) is an open neighborhood
of z, and the immersion gV identi�es with the diagonal immersion associated
with the morphism fU∶ f −1(U) → U. By hypothesis, gV is a closed immersion.
�is proves that g is a closed immersion, as claimed.
b) If f ∶X→ S is an immersion, then it is a monomorphism hence the diagonal
morphism g∶X→ X ×S X is an isomorphism. Consequently, f is separated.
We have already explained that a�ne morphisms are separated. In fact, by a),
it would su�ce to prove that a morphism of a�ne schemes is separated, which
is at the heart of the proof that the diagonal morphism is an immersion.
c) �e diagonal morphism gT∶XT → XT ×T XT associated with fT is obtained
from the diagonal morphism g∶X → X ×S X by base change to T. If the mor-
phism f is separated, then the diagonal g is a closed immersion, hence so is gT,
so that the morphism fT is separated.
d) Let us assume that f and g are separated and let us show that g ○ f is
separated. We make use of the criterion 5.4.6. Let T be a Z-scheme and let (u, v)
be a pair of Z-morphisms fromT to X. Since g is separated, the equalizer (T1, h1)
of the pair ( f ○ u, f ○ v) is a closed subscheme of T. Since f is separated, the
equalizer (T2, h2) of the pair (u ○ h1, v ○ h2) is a closed subscheme of T2. Let
h = h1 ○ h2∶T2 → T; it is the composition of two closed immersions, hence is a
closed immersion. Let us observe that (T2, h) is the equalizer of the pair (u, v).
One has u ○ h = u ○ h1 ○ h2 = v ○ h1 ○ h2 = v ○ h. Let moreover k∶U → T be
a morphism such that u ○ k = v ○ k and let us show that there exists a unique
morphism k′∶U → T2 such that k = h ○ k′. Since h is a monomorphism, there
exists at most one such morphism, hence we just need to prove its existence.
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One has f ○u ○ k = f ○v ○ k, so that there exists a morphism k1∶U→ T1 such that
k = h1 ○ k1. Consequently, u ○ h1 ○ k1 = v ○ h1 ○ k1, so that there exists a morphism
k2∶U→ T2 such that k1 = h2 ○ k2. It follows that k = h1 ○ h2 ○ k2 = h ○ k2, and the
morphism k2 satis�es the given requirement.
Let us now assume that g ○ f is separated. Let T be a Y-scheme and let

(u, v)∶T→ Z be a pair of morphisms of Y-schemes. Composing its structural
morphism with g, we may view T as an X-scheme; then u and v are morphisms
of X-schemes. Since g ○ f is separated, the equalizer E of the pair (u, v) is then
a closed subscheme of T. �is proves that f is separated.
e) Let g∶Y→ Y×X Y and g′∶Y′ → Y′ ×X′ Y′ be the diagonal immersions. Since
f and f ′ are assumed to be separated, they are closed immersions. Let p and
p′ be the projections from X ×S X′ to X and X′ respectively; let q and q′ be the
projections from Y×SY′ to Y and Y′ respectively. Let φ∶Y×SY′ → X×SX′ be the
morphism ( f , f ′): it is characterized by the relations p○φ = f ○q and p′○φ = f ′○
q′. �e �ber product (Y×SY′)X×SX′(Y×SY′) identi�es with (Y×XY)×S(Y′×X′Y′)
and the diagonal morphism γ∶ (Y ×S Y′) → (Y ×S Y′)X×SX′(Y ×S Y′) associated
with the morphism (g , g′). It is thus a closed immersion.

Corollary (5.4.8). — Let X and S be schemes and let f ∶X→ S be a morphism of
schemes. �e following conditions are equivalent:

(i) �e morphism f is separated;
(ii) �e inverse image f −1(U) of every a�ne open subset U of S is a separated

scheme;
(iii) Every point of S has an open neighborhood U such that f −1(U) is a sepa-

rated scheme.

Proof. — Let g∶ S→ Spec(Z) be the canonical morphism.
(i)⇒(ii). Let U be an a�ne open subset of S, let fU∶ f −1(U) → U be the mor-
phism deduced from f by restriction, so that the unique morphism from f −1(U)
to Spec(Z) is equal to g∣U ○ fU. If f is separated, then fU is separated; since U
is a�ne, g∣U is separated; it follows from assertion d) of proposition 5.4.7 that
f −1(U) is a separated scheme.
(ii)⇒(iii) because every point of U has an a�ne open neighborhood.
(iii)⇒(i). By proposition 5.4.7, a), it su�ces to prove that every point of S has
an open neighborhood U such that the morphism fU∶ f −1(U) → U is separated.
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Choose U so that f −1(U) is a separated scheme. �en g∣U ○ fU is separated by
de�nition, and the above proposition, d), implies that fU is separated.

Proposition (5.4.9). — Let f ∶X → S be a morphism of schemes and let (Ui)i∈I
be a family of open subschemes of X such that X = ⋃i∈IUi. For every pair (i , j)
of elements of I, let pi and p j be the two projections from Ui ×S U j to Ui and U j
respectively, and let gi j∶Ui ∩U j → Ui ×S U j be the unique morphism such that
pi○gi j and p j○gi j are the canonical inclusions ofUi∩U j intoUi andU j respectively.
�en f is separated if and only if the morphism gi j is a closed immersion for every
pair (i , j).

Proof. — Let g∶X→ X ×S X be the diagonal immersion. For every pair (i , j) of
elements of I, one has g−1(Ui ×SU j) = Ui ∩U j, and the morphism gi j is deduced
from g by restriction to these open sets. Since the open subsets of X ×S X of the
formUi×SU j cover X×SX, themorphism g is a closed immersion if and only if gi j
is a closed immersion for every pair (i , j). �is establishes the proposition.

�is statement is helpful to decide the separatedness of schemes which are
constructed by glueing.

Corollary (5.4.10). — Let X be the S-scheme obtained by glueing a family (Xi)i∈I
of S-schemes along open subschemes Xi j by means of isomorphisms φi j. For every
pair (i , j) of elements of I, let γi j∶Xi j → Xi ×S X j be the morphism whose �rst
component if the injection of Xi j into Xi, and whose second component is the
morphism φi j. �en X is separated if and only if the morphism γi j is a closed
immersion for every pair (i , j).

Proof. — For i ∈ I, let φi ∶Xi → X be the canonical inclusion, and let Ui = φi(Xi),
so that φi induces an isomorphism from Xi to Ui . Under these isomorphisms,
the morphisms gi j of the proposition identify with the morphisms γi j of the
corollary. �is concludes the proof.

Corollary (5.4.11). — Let A be a ring and let S = Spec(A). Let X be an A-scheme.
�e following properties are equivalent:
(i) �e scheme X is separated;
(ii) For every pair (U,V) of a�ne open subschemes of X, the intersectionU∩V

is a�ne, and OX(U ∩V) is generated by the images of OX(U) and OX(V) by the
restriction morphisms;



204 CHAPTER 5. MORPHISMS OF SCHEMES

(iii) �ere exists an open cover (Ui)i∈I of X by a�ne open subschemes such
that for every pair (i , j) of elements of I, the scheme Ui ∩U j is a�ne, and its ring
OX(Ui ∩U j) is generated by the images of OX(Ui) and OX(U j) by the restriction
morphisms.

Proof. — Let δ∶X→ X ×S X be the diagonal immersion.
(i)⇒(ii). Let us assume that X is separated and let U,V be a�ne open sub-
schemes of X. �enU×SV is an a�ne open subscheme of X×SX, and δ−1(U×V)
is equal to U ∩V. Since δ is a closed immersion, by assumption, it follows that
U ∩V is a�ne. Moreover, OX(U ∩V) is a quotient of OX(U) ⊗A OX(V); conse-
quently, it is generated by the images of OX(U) and OX(V).
�e implication (ii)⇒(iii) follows from the de�nition of a scheme, namely,
that every point of X has an a�ne open neighborhood.
(iii)⇒(ii). By restriction, the diagonal immersion δ induces a morphism
from δ−1(Ui ×S U j) = Ui ∩U j to Ui ×S U j. Under the conditions of (iii) imply,
this is a morphism of a�ne schemes which is a closed immersion, since the
associated morphism of rings is surjective. Since the family (Ui ×S U j)i , j∈I
covers X ×S X, this implies that δ is a closed immersion. Consequently, X is
separated.

Corollary (5.4.12). — For every ring k, the projective space of dimension n over k,
Pnk , is separated.

Proof. — Let X = Pnk ; let us recall that it is the k-scheme obtained by glueing
a family (Xi)0⩽i⩽n of a�ne schemes, each of them isomorphic to Ank . Let (i , j)
be a pair of elements of {0, . . . , n}. To check the criterion of the previous
corollary, we may assume that i ≠ j and, up to a permutation of indices, that
i = 0 and j = n. �en X0 = Spec(k[S1, . . . , Sn]), Xn = Spec(k[T0, . . . , Tn−1]),
one has X0n = D(Sn) = Spec(k[S1, . . . , Sn , 1/Sn]), Xn0 = D(T0) = Spec(k[T0,→
, Tn−1, 1/T0]) and φ0n∶X0n → Xn0 is the unique morphism of k-schemes such
that φ♯

0n(Si) = Ti/T0, for every i ∈ {1, . . . , n − 1} and φ♯
0n(Sn) = 1/T0. We

observe that Xn0 is a�ne and that OX(Xn0) = k[T1, . . . , Tn , 1/Tn] is generated
by OX(Xn) = k[T1, . . . , Tn] and by 1/T0 which belongs to OX(X0) by φ♯

0n. �is
concludes the proof that Pnk is separated.

De�nition (5.4.13). — Let f ∶X→ S be a morphism of schemes. One says that f is
proper if it is of �nite type, separated, and universally closed.
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Let us precise that f is universally closed if and only if for every S-scheme T,
the morphism fT∶XT → T deduced from f by base change to T is closed.

Proposition (5.4.14). — a) Let f ∶X → S be a morphism of schemes. Assume
that every point of S has an open neighborhoodU such that the induced morphism
fU∶ f −1(U) → U is proper. �en f is proper.
b) A closed immersion of schemes is a proper morphism.
c) Let f ∶X → S be a proper morphism of schemes and let T be an S-scheme.

�en the morphism fT deduced from f by base-change to T is proper.
d) Let f ∶Z→ Y and g∶Y→ X be morphisms of schemes. If f and g are proper,

then g ○ f is proper.
e) Let S be a scheme, let f ∶Y→ X and f ′∶Y′ → X′ be morphisms of S-schemes.

If f and f ′ are proper, then the morphism ( f , f ′)∶Y ×S Y′ → X ×S X′ is proper.

Proof. — a) Assume that every point of S has an open neighborhood U such
that fU∶ f −1(U) → U is proper. �en f is of �nite type and separated. For every
closed subset Z of X, one has f (Z) ∩U = fU(Z ∩ f −1(U)), so that f (Z) ∩U is
closed in U for every open subset U of S such that fU is closed. �is implies
that f (Z) is closed, so that f is a closed map. More generally, let (T, g) be an
S-scheme and let W = g−1(U); one has ( fT)−1(W) = f −1(U) ×SW, and the
( fT)W∶ ( fT)−1(W) →Wdeduced from fT identi�es with the morphism ( fU)W
deduced from fU by base change to W. If fU is closed, then ( fU)W is closed.
Since T is covered by such open subsets W, this implies that fT is closed.
b) Let f be a closed immersion. It is of �nite type and separated, and closed.
For every S-scheme T, fT is again a closed immersion, hence is closed. �is
proves that f is a proper morphism.
c) Let f ∶X→ S be a proper morphism and let T be an S-scheme. �en fT is of
�nite type, and is separated; it is also closed, and in fact universally closed since
for every T-scheme U, the morphism ( fT)U identi�es with the morphism fU
deduced from f by base change to U. Consequently, fT is a proper morphism.
d) �emorphism g○ f is of �nite type, and is separated. For every S-scheme T,
one has (g ○ f )T = gT ○ fT; since the composition of closed maps is a closed
map, this implies that g ○ f is universally closed. Consequently, g ○ f is a proper
morphism.
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e) �e morphism ( f , f ′) is the composition of the morphism fY′ ∶Y ×S Y′ →
X×S Y′ deduced from f by base change to Y′ and of the morphism f ′X∶X×S Y′ →
X ×S X′ deduced from f ′ by base change to X. It is thus proper.

Proposition (5.4.15). — A �nite morphism is proper and has �nite �bers.

A di�cult theorem of Chevalley asserts the converse: a proper morphism with
�nite �bers is �nite.

Proof. — Let f ∶Y→ X be a �nite morphism. �en f is a�ne, hence it is sepa-
rated. Let us prove that f is closed. Let Z be a closed subset of Y; to prove that
f (Z) is closed in X, it su�ces to prove that for every a�ne open subscheme U
of X, f (Z)∩U = f ( f −1(U)∩Z) is closed in U. Wemay thus assume that X and Y
are a�ne, say X = Spec(A) and Y = Spec(B), where B is an A-algebra which
is �nitely generated as a B-module. Let J be an ideal of B such that Z = V(J).
Let φ be the composition A → B → B/J and let I be its kernel. �e associated
ring morphism A/I→ B/J is injective and integral, since B/J is an �nitely gener-
ated A/I-module. By the �rst theorem of Cohen-Seidenberg (theorem 1.11.4),
the associated morphism from Spec(B/J) to Spec(A/I) is surjective. Since the
canonical surjection from A to A/I induces a homeomorphism from Spec(A/I)
to the closed subset V(I) of Spec(A), this implies that f (Z) = V(I). In particular,
f (Z) is closed in X.
For every X-scheme Z, the morphism of schemes fT∶YZ → Z deduced from f
by base change is �nite; by what precedes, it is closed as well. �is proves that
the morphism f is proper.
Let us now prove that its �bers are �nite. As above, we may assume that
X = Spec(A) and Y = Spec(B). Let x ∈ X; then its �ber f −1(x) identi�es with
Spec(B ⊗A κ(x)), where κ(x) is the residue �eld of X at x. �e κ(x)-algebra
B⊗A κ(x) is �nitely generated as a κ(x)-vector space, hence it has �nite length.
In particular, it is an artinian ring and it follows from lemma 1.12.6 that its
spectrum is �nite.

�eorem (5.4.16). — �e canonical morphism f ∶PnZ → Spec(Z) is proper.

Proof. — �is morphism is separated and of �nite type, so we just need to
prove that it is universally closed. Let T be a scheme and let fT∶PnT → T be the
morphism deduced from f by base-change to T; let us prove that fT is closed.
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It is enough to treat the case where T is an a�ne scheme, which brings us to
proving that the canonical morphism fk∶Pnk → Spec(k) is closed for every ring k.
Recall that the scheme Pnk is isomorphic to the projective spectrum of the
graded ring A = k[T0, . . . , Tn]; let A+ be the ideal (T0, . . . , Tn). Let Z ⊂ Pnk be a
closed subset and let J = j+(Z) be its homogeneous ideal. For every integer d ⩾ 0,
let Ad ⊂ R[T0, . . . , Tn] be the k-submodule of homogeneous polynomials of
degree d and let Jd = J ∩Ad .
By assumption y /∈ f (Z), hence V+(pR[T0, . . . , Tn]) ∩ Z = ∅. Consequently,
the homogeneous ideal

V+(j+(Z) + pR[T0, . . . , Tn]) = Z ∩V+(pR[T0, . . . , Tn]) = ∅.

Consequently, the smallest radical ideal of A which contains j+(Z) +
pR[T0, . . . , Tn] is equal to A+. In particular, for every i, there exists an
integer di such that di ⩾ 0, a homogeneous polynomial Pi ∈ j+(Z) and a
homogeneous polynomial Qi ∈ pR[T0, . . . , Tn] such that Td ii = Pi +Qi .
Let d = ∑ni=0 di. By construction, every monomial of degree m belongs to

j+(Z)+pR[T0, . . . , Tn], hence the equality Ad = Jd+pAd . By Nakayama’s lemma
(corollary 1.3.2) applied to the �nitely generated k-module Ad/Jd and the ideal p
of k, there exists an element a ∈ k such that a − 1 ∈ p and such that aAd ⊂ Jd . In
particular, aTdi ∈ Jd for every integer i ∈ {0, . . . , n}.
�is implies that the ideal J contains the ideal a(Td0 , . . . , Tdn), so that Z =

V+(J) ⊂ V((a)). Consequently, f (Z) ⊂ V(a); moreover, a /∈ p. In other words,
the set Spec(k) f (Z) contains the neighborhood D(a) of p. �is shows that
f (Z) is closed and concludes the proof that the morphism f ∶PnZ → Spec(Z) is
proper.

De�nition (5.4.17). — Let f ∶X→ S be a morphism. One says that f is projective
if there exists an integer n ⩾ 0 and a closed immersion of S-schemes, g∶X →
Pn ×Spec(Z) S.

By theorem 5.4.16, the projection from Pn × S to S is proper. It thus follows
from proposition 5.4.14 that a projective morphism is proper.
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5.5. Flat morphisms

De�nition (5.5.1). — Let A be a ring and letM be an A-module. one says that
M is �at (over A) if for every injective morphism u∶N → N′ of A-modules, the
morphism idM⊗u∶M⊗A N→M⊗A N′ is injective.
One says thatM is faithfully �at (over A) if it is �at and ifM⊗AN ≠ 0 for every

non-zero A-module N.

�is de�nition can be reformulated as follows.

Lemma (5.5.2). — LetA be a ring, and letTM be the ‘‘tensorization byM’’ functor,
from the category of A-modules to itself.
a) �e A-moduleM is �at if and only if the functor TM is exact.
b) �e following assertions are equivalent: (i) �e A-moduleM is faithfully �at;

(ii) For any morphism u∶N→ N′ of A-modules, then u is injective if and only if
idM⊗u is injective; (iii) �e functor TM is exact and conservative.

An functor T is called conservative if every morphism u such that T(u) is an
isomorphism is itself an isomorphism.

Proof. — a) By de�nition, the functor TM is given by TM(N) =M⊗A N and
TM(u) = idM⊗u for every A-module N and every morphism u of A-modules.
Recall that this functor is right exact; indeed, the universal property of the tensor
product expresses the functor TM as a le�-adjoint of some functor. In particular,
for every exact sequence N′′ → N → N′ → 0 of A-modules, the associated
sequence M⊗A N′′ →M⊗A N→M⊗A N′ → 0 is exact. �e de�nition of a �at
module thus says that M is �at if and only if this functor TM is exact: for every
exact sequence 0→ N′′ → N→ N′ → 0 of A-modules, the associated sequence
0→M⊗A N′′ →M⊗A N→M⊗A N′ → 0 is exact.
b) Assume that M is �at. Let u∶N → N′ be morphism of A-modules. �en
Coker(idM⊗u) = M ⊗A Coker(u), and Ker(idM⊗u) = M ⊗A Ker(u). Con-
sequently, idM⊗u is surjective (resp. injective) if and only if u is surjective
(resp. injective). It follows that idM⊗u is an isomorphism if and only if u is an
isomorphism, that is, if the functor TM is conservative.
Conversely, let us assume that M is �at and that the functor TM is conservative.
Let then N be an A-module such that M⊗A N = 0 and let u∶0→ N be the zero
morphism; then TM(u) = 0 is the isomorphism from 0 to 0 =M⊗AN, so that u
is an isomorphism: this shows that N = 0.
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�e same argument shows thatM is faithfully �at over A if and only if, for every
morphism u of A-modules such that TM(u) is injective, then u is injective.

Proposition (5.5.3). — Let A be a ring.
a) �e A-module A is faithfully �at.
b) A �ltrant colimit of �at A-modules is �at.
c) A direct sum⊕iMi of a family (Mi) of A-modules is �at if and only ifMi is

�at for every i.
d) Every projective A-module is �at; conversely, ifM is a �nitely presented �at

A-module, thenM is projective. Every non-zero free A-module is faithfully �at.
e) For every multiplicative subset S of A, the A-module S−1A is �at.
f) LetM and N be �at (resp. faithfully �at) A-modules. �enM⊗A N is �at

(resp. faithfully �at).

Proof. — a) Under the canonical isomorphism A⊗AN ≃ N given by a⊗n ↦
an, a morphism idA⊗u identi�es with u. In other words, the functor TA is
isomorphic with the identical functor. It is thus exact and conservative.
b) Let ((Mi)i∈I, (φi j) be a diagram of �at A-modules indexed by a �ltrant
partially ordered set, and M = limÐ→iMi ; for i ∈ I, let φi ∶Mi →M be the canonical
morphism. Let then u∶N→ N′ be an injective morphism of A-modules and let
us show that idM⊗u is injective. Let x be any element of its kernel; there exists
an element i ∈ I and xi ∈Mi ⊗N such that x = (φi ⊗ idN)(xi). Consequently,
one has

(φi ⊗ idN)(TMi(xi)) = (φi ⊗ idN) ○ (idMi ⊗u)(xi)
= φi ⊗ u(xi)
= (idM⊗u) ○ (φi ⊗ idN)(xi)
= TM(u)(x) = 0.

Since the tensor product is a right exact functor, the canonical morphism from
limÐ→(Mi ⊗N) to M⊗N is an isomorphism. �is implies that there exists j ∈ I
such that j ⩾ i and such (φi j ⊗ idN)(TMi(xi)) = 0. Let then x j = φi j(xi); one
has TM j(x j) = 0. Since M j is a �at A-module, this implies that x j = 0. Finally,
x = φi(xi) = φ j(φi j(xi)) = φ j(x j) = 0. �is shows that the morphism TM(u) is
injective and concludes the proof that M is a �at A-module.
c) Let M be the direct sum of the family (Mi); for every i, let pi ∶M → Mi
be the projection of index i. Under the isomorphism M⊗A N ≃ ⊕i∈IMi ⊗A N
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associated with the family (pi ⊗ idN), a morphism idM⊗u identi�es with the
morphism⊕ idMi ⊗u. Consequently, idM⊗u is injective if and only if idMi ⊗u
is injective for every i.
d) If follows from b) that a free A-module is �at; it is moreover faithfully �at
if it is non-zero. If M is a projective A-module, there exists an A-module N such
that M⊕N is free; then M⊕N is �at; by b), M is �at as well.
Let �nallyMbe a �nitely presented �atA-module. To prove thatM is projective,
it su�ces to establish that Mp is a free Ap-module for every prime ideal p of A.
By e), this module is �at. We may thus assume that A is a local ring; let us denote
by m its maximal ideal. Let (m1, . . . ,mn) be a �nite family of elements of M
which induces a basis of M/mM over κ(m) and let f ∶An →M be the morphism
given by (a1, . . . , an) ↦ ∑ aimi. Since its image N satis�es M = N + mM,
Nakayama’s lemma implies that f is surjective (corollary 1.3.3). Let P be the
kernel of f . Since M is �at, P⊗A κ(m) is a kernel of the morphism f ∶ κ(m)n →
M⊗A κ(m) induced by f , hence P⊗A κ(m) = 0. Since M is �nitely presented, P
is �nitely generated, and Nakayama’s lemma implies that P = 0.
e) �is follows from example 2.3.15.
f) Given the associativity isomorphisms (M⊗AN) ⊗A P ≃M⊗A (N⊗A P) of
the tensor product, the functor TM⊗AN is the composition TM ○ TN of the exact
functors TM and TN, hence is exact.

Proposition (5.5.4). — Let A be a ring and let B be an A-algebra.

a) For every �at (resp. faithfully �at) A-moduleM, the B-moduleM⊗A B is �at
(resp. faithfully �at).
b) Assume thatB is �at overA. �en for every �atB-moduleM, theA-moduleM

is �at.
c) Assume that B is faithfully �at over A. �en, for every A-module M, the
B-moduleM⊗AB is �at (resp. faithfully �at) if and only ifM is �at (resp. faithfully
�at) over A.

Proof. — a) For every B-module N, there is an isomorphism from (M ⊗A
B) ⊗B N with M ⊗A N, given by (m ⊗ b) ⊗ n ↦ m ⊗ (bn), for m ∈ M, b ∈ B
and n ∈ N. �anks to these isomorphisms, the functor TM⊗AB identi�es with
the composition of the functor TM with the forgetful functor from the category
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of B-modules to the category of A-modules. Since the latter functor is exact, this
implies that TM⊗AB is exact is TM is.
Assume moreover that M is faithfully �at and let N be a B-module such that

(M⊗A B) ⊗B N = 0. �en M⊗A N = 0, hence N = 0. �is shows that M⊗A B is
a faithfully �at B-module.
b) Let us denote by MA the A-module associated with M. Since B is an A-
algebra, every module of the form B ⊗A N, for an A-module N is naturally a
B-module, and the functor TB can be viewed as a functor from the category of A-
modules to the category of B-modules. Since B is �at over A, this functor is exact.
Under the isomorphisms MA⊗AN ≃M⊗B (B⊗AN), the functor TMA identi�es
with the composition of the functor TM and the functor TB. Consequently, it is
exact as well, and MA is a �at A-module.
c) Let us assume that M⊗A B is a �at B-module. Let u∶N→ N′ be an injective
morphism of A-modules; since B is faithfully �at over A, the morphism uB =
u ⊗ idB∶N⊗A B → N′ ⊗A B is injective. Consequently, the morphism idM⊗uB
from M⊗A N⊗A B to M⊗A N′ ⊗A B is injective. Since B is faithfully �at over A,
this implies that the morphism idM⊗u is injective as well. Consequently, M is a
�at A-module.

Proposition (5.5.5). — Let A be a ring and letM be an A-module. �e following
properties are equivalent:
(i) �e A-moduleM is �at (resp. faithfully �at);
(ii) For every p ∈ Spec(A), the Ap-moduleMp is �at (resp. faithfully �at);
(iii) For everym ∈ Spm(A), the Am-moduleMm is �at (resp. faithfully �at).

Proof. — (i)⇒(ii) follows from the fact that �atness is preserved by base change,
and (ii)⇒(iii) is obvious.
Let us assume that Mm is �at over Am for every m, and let u∶N → N′ be an
injective morphism of A-modules, let v = idM⊗u and let us prove that v is
injective. Let m ∈ Spm(A); the morphism um is injective, hence Mm is a �at
Am-module. Since the morphism vm identi�es with idMm

⊗um, we conclude
that vm is injective. By exactness of localization, the canonical morphism from
Ker(v)m Ker(vm) is an isomorphism, hence Ker(v)m = 0. �is this holds for
every maximal ideal m of A, one has Ker(v) = 0 (lemma 1.2.9), hence v is
injective.
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�is shows that the three statements concerning �atness are equivalent. Let
us check thee equivelence of their counterparts for faithfull �atness. Let N be
a A-module such that M ⊗A N = 0. For every prime ideal p of A, one has an
isomorphism of Ap-modules, Mp⊗Ap

Np, so that the implication (i′)⇒(ii′′) holds,
and the implication (ii′)⇒(iii′) is again obvious. Finally, if (iii′) holds and if
M⊗AN = 0, thenMm⊗Am

Nm = 0 for every maximal idealm of A, hence Nm = 0;
by lemma 1.2.9, one has N = 0.

Exercise (5.5.6). — Let A be a ring and let M be an A-module.
a) Prove that M is �at if and only if, for every ideal I of A, the canonical
morphism from I⊗AM to IM is an isomorphism.
b) Assume that A is a principal ideal domain. Prove that M �at if and only if it
is torsion free. Prove thatQ is a �at Z-module which is not projective.

Exercise (5.5.7). — Let A be a ring and let M be an A-module. A relation in M
is an expression of the form ∑ni=1 aixi = 0, where (ai) is a family of elements
of A, and (xi) is a family of elements of M. A relation is said to be trivial if there
exists a family (bi j) of elements of A and a family (y j) of elements of M such
that xi = ∑mj=1 bi jy j for all i, and∑ni=1 aibi j = 0 for all j.
Prove that M is �at if and only if every relation in M is trivial.

Proposition (5.5.8). — LetA be a ring and letM be a �atA-module. �e following
properties are equivalent:
(i) �e A-moduleM is faithfully �at;
(ii) For every prime ideal p of A, one hasM⊗A κ(p) ≠ 0;
(iii) For every maximal idealm of A, one hasM⊗A κ(m) ≠ 0.

Proof. — (i)⇒(ii) follows from the de�nition, since κ(p) ≠ 0.
(ii)⇒(iii) is obvious.
(iii)⇒(i). Let N be an A-module such that M ⊗A N = 0. Let x ∈ N and let
I = {a ∈ A ; ax = 0} be its annihilator. Let g∶A/I→ N be the unique morphism
which maps the class of an element a ∈ A to ax; it is injective. Since M is �at, the
morphism idM⊗g is injective as well, hence M⊗A (A/I) = 0, that is, M = IM. If
I = A, then 1 ∈ I and x = 0. Otherwise, there exists a maximal idealm of A such
that I ⊂ m; one then has M = IM = mM, which contradicts the assumption that
M⊗A κ(m) ≠ 0.
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Corollary (5.5.9). — Let f ∶A → B be a �at ring morphism. �en f is faithfully
�at if and only if the map a f ∶ Spec(B) → Spec(A) is surjective.

Proof. — Let p be a prime ideal of A. �eprime ideals q of B such that f −1(q) = p

are in bijection with the prime ideals of Bp which contain pBp. Consequently,
p belongs to the image of a f if and only if Bp/pBp ≠ 0. Since the latter ring
is isomorphic to B ⊗A κ(p), this shows that a f is surjective if and only if f is
faithfully �at.

Corollary (5.5.10). — A local morphism of local rings which is �at is faithfully
�at.

Proof. — Let f ∶A → B be a �at local morphism of local rings. Let p be the
maximal ideal of A and let q be the maximal ideal of B. By assumption, one
has a f (q) = p, hence B/pB ≠ 0. Consequently, f satis�es the assumption (iii) of
proposition 5.5.8, hence f is faithfully �at.

De�nition (5.5.11). — Let X be a scheme and letM be an OX-module. One says
thatM is �at if, for every x ∈ X, the OX,x-moduleMx is �at.

IfM is �at, thenM ∣U is a �at OU-module. Conversely, if every point x of X
has an open neighborhood U such thatM ∣U is a �at OU-module, thenM is
�at.
Together with proposition 5.5.5, these remarks imply the following proposition.

Proposition (5.5.12). — Let X be a scheme and letM be a quasi-coherent OX-
module. �e following properties are equivalent:
(i) �e OX-moduleM is �at;
(ii) For every a�ne open subset U of X, the OX(U)-moduleM (U) is �at;
(iii) Every point of X has an a�ne open neighborhood U such that the OX(U)-

moduleM (U) is �at.

Example (5.5.13). — Let X be a scheme. �e following properties of �at OX-
modules follow directly from the de�nition and from proposition 5.5.3.
a) �e OX-module OX is �at.
b) A direct sum⊕Mi of a family (Mi) of OX-modules is �at if and only if

Mi is �at for every i.
c) A �nitely presented OX-module is �at if and only if it is locally free.
d) LetM andN be �at OX-modules; thenM ⊗OX N is �at.
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De�nition (5.5.14). — Let f ∶Y→ X be a morphism of schemes. One says that f
is �at if OY,y is a �at OX, f (y)-module, for every y ∈ Y.
One says that f is faithfully �at if it is �at and surjective.

If Y is an X-scheme, then one also says that Y is �at (resp. faithfully �at) over X
to mean that its structural morphism is �at.
�ere is a more general de�nition that is o�en useful in more advanced topics
of algebraic geometry. LetM be a quasi-coherent OY-module. One says that
M is f -�at at a point y ∈ Y ifMy is �at over OX, f (y). One says that it is f -�at if
it is f -�at at every point of Y.
Given this de�nition, saying that f is �at is equivalent to saying that OY is
f -�at.

Lemma (5.5.15). — Let f ∶Y → X be a morphism of schemes. �e following
properties are equivalent:
(i) �e morphism f is �at;
(ii) For every open a�ne subscheme U of X and every a�ne subscheme V of
f −1(U), the ring OY(V) is a �at OX(U)-module;
(iii) For every point y ∈ Y, there exists an a�ne open neighborhood V of y in Y,
and an a�ne open neighborhood U of f (y) in X such that f (V) ⊂ U and such
that the ring OY(V) is a �at OX(U)-module.

In particular, a morphism of a�ne schemes f ∶ Spec(B) → Spec(A) is �at if
and only if B is a �at A-module. By corollary 5.5.9, it is then faithfully �at if and
only if B is a faithfully �at A-module.

Proposition (5.5.16). — a) Let f ∶Y→ X and g∶Z→ Y be �at morphisms, then
f ○ g is �at.
b) Let f ∶Y → X and g∶Z → X be morphisms of schemes. If f is �at, then the

morphism fZ∶YZ → Z deduced from f by base change to Z is �at. If fZ is �at and
g is faithfully �at, then f is �at.
c) Let f ∶Y → X and g∶Z → X be morphisms of schemes. If f and g are �at,

then the canonical morphism h∶Y ×X Z→ X is �at.

Proposition (5.5.17) (Going down for �at morphisms). — Let f ∶A→ B be a �at
morphism of rings. Let (p0, . . . , pn) be a chain of prime ideals of A and let qn be a
prime ideal of B such that a f (qn) = pn. �ere exists a chain (q0, . . . , qn) of prime
ideals of B such that a f (qm) = pm for every m ∈ {0, . . . , n}.
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Proof. — By induction, we may assume that n = 1. Let us then consider the
�at morphism of local rings g∶Ap1 → Bq1 deduced from f by localization. It
is surjective, hence there exists a prime ideal q0 of B contained in q1 such that
p0Ap1 = g−1(q0Bq1). Necessarily, p0 = f −1(q0), and this concludes the proof of
the proposition.

Proposition (5.5.18). — Let A and B be noetherian local rings, let mA and mB
denote their maximal ideals and let φ∶A→ B be a local morphism. �en

dim(B) ⩽ dim(A) + dim(B/mAB).

If φ is �at, then equality holds:

dim(B) = dim(A) + dim(B/mAB).

Proof. — Let d = dim(A) and let (a1, . . . , ad) be a family of elements
of mAA such that mA =

√
(a1, . . . , ad). Let e = dim(B/mAB), and let

(b1, . . . , be) be elements of mB such that mB =
√

(b1, . . . , be) +mAB. �en
(φ(a1), . . . , φ(ad), b1, . . . , be) is an ideal of B, contained inmAB. Moreover, the
radical of this ideal contains mAB and (b1, . . . , be), hence it is equal to mAB.
�is implies that

dim(B) ⩽ d + e = dim(A) + dim(B/mAB).

Let us now assume that φ is �at. Let (p0, . . . , pd) be a chain of prime ideals
of A and let (qd , . . . , qd+e) be a chain of prime ideals of B containing mAB.
By the going-down proposition for �at morphisms (proposition 5.5.17), there
exist prime ideals q0, . . . , qd−1 of B such that aφ(qi) = pi for every i, and such
q0 ⊂ ⋅ ⋅ ⋅ ⊂ qd . �en (q0, . . . , qd , . . . , qd+e) is a chain of prime ideals of B, hence
dim(B) ⩾ d + e.

�eorem (5.5.19). — Let K be a �eld, let X and Y be K-schemes of �nite type;
Assume that X is irreducible and that Y is equidimensional. Let f ∶Y→ X be a �at
K-morphism. For every x ∈ X, the �ber Yx is equidimensional and

dim(Yx) = dim(Y) − dim(X).

Geometrically, this theorem says that given a �at morphism f ∶Y → X as in
the statement of the theorem, all �bers of f have the same dimension which is
the di�erence of the dimensions of Y and X. Flatness is thus seen as a property
that the �bers of a morphism behave in a reasonable way.
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Proof. — Let y be a closed point of Yx . Let Z be an irreducible component of Y
containing y. Since Y is equidimensional, one has dim(Z) = dim(Y), hence

dim(OZ,y) = dim(Z) − dim({y}) = dim(Y) − dim({y}).

Consequently,

dim(OX,y) = dim(Y) − dim({y}).

On the other hand, y is the generic point of {y}, which is a closed subscheme of Y,
hence is a K-scheme of �nite type; we thus have dim({y}) = tr. degK(κ(y)).
Similarly, dim({x}) = tr. degK(κ(x)). Moreover, κ(y) is a �nite extension
of κ(x), because y is a closed point of Yx . Consequently,

dim({y}) = tr. degK(κ(y)) = tr. degK(κ(x)) = dim({x}) = dim(X)−dim(OX,x).

�is implies the relation

dim(OY,y) − dim(OX,x) = dim(Y) − dim(X).

On the other hand, since y is a closed point of Yx , one has

dimy(Yx) = dim(OYx ,y) = dim(OY,y/mxOY,y),

since

OYx ,y = OY,y ⊗ κ(x) = OY,y/mxOY,y .

Proposition 5.5.18 then shows that dimy(Yx) ⩾ dim(Y) − dim(X), with equality
if f is �at at y. In particular, dim(Yx) ⩾ dim(Y) − dim(X). If f is �at, then
dimy(Yx) = dim(Y) − dim(X) for every closed point y ∈ Yx . It �rst follows that
dim(Yx) = dim(Y) − dim(X). If Yx were not equidimensional, it would possess
an irreducible component T of dimension < dim(Y) − dim(X); let then y be a
closed point of T which does not belong to the union of the other components;
one has dimy(Yx) = dim(T), a contradiction.

Exercise (5.5.20). — Let f ∶A2K → A2K be the morphism given by f (x , y) =
(xy, y). Let U = A2K V(x , y). Prove that fU∶ f −1(U) → U is an isomorphism.
Let P = V(x , y). Prove that f −1(P) ≃ A1K. It thus follows from theorem 5.5.19
that f is not �at; prove this fact directly.
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5.6. �e module of relative di�erential forms

De�nition (5.6.1). — Let k be a ring, let A be a k-algebra and let M be an A-
module. A map d∶A → M is called a k-derivation if it is k-linear and if one
has

d(ab) = ad(b) + bd(a)

for every pair (a, b) of elements of A.

For every integer n such that n ⩾ 1 and every a ∈ A, one proves by induction
that

d(an) = nan−1d(a)

Let a, b ∈ A; if b is invertible, then d(b ⋅ (a/b)) = (a/b)d(b) + bd(a/b), so that

d(a/b) = b−2(bd(a) − ad(b)).

In particular, d(1) = d(1/1) = 0; consequently, d(a) = ad(1) = 0 for every
element a in the image of k.
�e set Derk(A,M) of k-derivations from A to M is an A-submodule of the

A-module MA. When k = Z, one simply says that d is a derivation; the module
DerZ(A,M) is simply denoted by Der(A,M).
If f ∶M → N is a morphism of A-modules and d∶A → M is a k-derivation,
then f ○ f is a k-derivation. �is de�nes a map f∗∶Derk(A,M) → Derk(A,N);
it is a morphism of A-modules.

Example (5.6.2). — Let k be a ring, let I be a set and let A = k[(Ti)i∈I] be the
ring of polynomials with coe�cients in k in the family of indeterminates (Ti)i∈I.
a) For every i ∈ I, the map P↦ ∂

P/∂Ti is a k-derivation from A to A.
b) Let M be an A-module. �e map Derk(A,M) → MI which associates,
with every k-derivation d∶A→M, the family (d(Ti))i∈I is an isomorphism of
A-modules.
Let us denote this map by φ. It is A-linear. Moreover, for every multi-index

(ni) ∈ N(I) and every k-derivation d∶A→M, one has

d(∏
i
Tn ii ) = ∑

i∈I
niTn i−1i ∏

j∈I
j≠i

Tn jj d(Ti);
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this sum is �nite since ni = 0 for all but �nitely many elements i ∈ I. Conse-
quently,

d(P) = ∑
i∈I

∂P
∂Ti
d(Ti),

where, again, this sum is in fact �nite because a polynomial P depends on �nitely
many indeterminates, hence ∂P/∂Ti = 0 for all but �nitelymany i ∈ I. �is shows
that the morphism φ is injective. Moreover, if (mi)i∈I is a family of elements
of M, then the map

P↦∑
i∈I

∂P
∂Ti
mi

is a k-derivation; consequently, φ is surjective.

Exercise (5.6.3). — Let k be a ring, let A be a k-algebra and letMbe anA-module.
Let Mε be the abelian group Mε = A⊕M, endowed with the multiplication law
given by (a,m) ⋅(a′,m′) = (aa′, am′+a′m). Show that Mε is a ring and that the
map fromMε to A given by (a,m) ↦ a is a morphism of rings. Let d∶A→M
be a map. prove that the map from A to Mε given by a ↦ (a, d(a)) is a ring
morphism if and only if d is a derivation.

Proposition (5.6.4). — Let k be a ring and let A be a k-algebra.
a) �ere exists anA-moduleΩ1A/k and a k-derivation dA/k∶A→ Ω1A/k satisfying
the following universal property: for every A-module M and every derivation
d∶A → M, there exists a unique A-linear morphism φ∶Ω1A/k → M such that
φ ○ dA/k = d.
b) If A is a �nitely generated k-algebra, then Ω1A/k is a �nitely generated A-

module.
c) If A is a �nitely presented k-algebra, then Ω1A/k is a �nitely presented A-

module.

Any A-module Ω1A/k such in the proposition is called themodule of di�erential
forms of A over k. Since it satis�es a universal property, the pair (Ω1A/k , dA/k) is
well de�ned up to isomorphism.
In fact, the assignment M ↦ Derk(A,M) is a functor from the category of

A-modules to itself; the functorial isomorphisms

HomA(Ω1A/k ,M) → Derk(A,M), f ↦ f ○ dA/k
show that this functor is corepresentable.
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Lemma (5.6.5). — Let k be a ring, let B be a k-algebra; Assume that there exists a
pair (Ω1B/k , dB/k) satisfying the universal property of a module of di�erentials of B.
Let I be an ideal of B and let A = B/I; let Ω1A/k be the A-module Ω1B/k/(IΩ1B/k +
BdB/k(I)); let p∶B→ A and q∶Ω1B/k → Ω1A/k be the canonical surjections.

a) �ere exists a unique map dA/k∶A → Ω1A/k such that dA/k(p(a)) =
q(dB/k(a)) for every a ∈ B; it is a k-derivation.
b) �e pair (Ω1A/k , dA/k) satis�es the universal property of a module of di�eren-

tials of A.
c) If Ω1B/k is a �nitely generated B-module, then Ω

1
A/k is a �nitely generated

A-module.
d) If Ω1B/k is a �nitely presented B-module and I is a �nitely generated ideal,

then Ω1A/k is a �nitely presented A-module.

Proof. — a) A priori, Ω1A/k is de�ned as a B-module; since the elements of I
act by 0 in Ω1A/k, it is a A-module. Moreover, the map q ○ dB/k is k-linear and
its kernel contains I; consequently, there exists a unique k-linear morphism
dA/k∶A→ Ω1A/k such that dA/k ○ p = q ○ dB/k.
b) Let now M be a A-module and let d∶A → M be a k-derivation. �e
surjective morphism p∶B→ A endowesMwith the structure of a B-module, and
the map a ↦ d(p(a)) is a k-derivation from B to M; consequently, there exists
a B-linear morphism f ∶Ω1B/k →M such that d ○ p = f ○dB/k. For every a ∈ I, one
has f (dB/k(a)) = d(p(a)) = 0, hence dB/k(I) ⊂ Ker( f ). Moreover, for every
ω ∈ Ω1B/k and every a ∈ I, one has f (aω) = a f (ω) = 0, since M is an A-module;
consequently, IΩ1B/k ⊂ Ker( f ). Consequently, there exists a B-linear morphism
g∶Ω1A/k →M such that f = g ○ q; this is an A-linear morphism. Finally, one has

d ○ p = f ○ dB/k = g ○ q ○ dB/k = g ○ q ○ dB/k = g ○ dA/k ○ p.

Since p is surjective, this implies that d = g ○ dA/k. Finally, if g′∶Ω1A/k →M is an
A-linearmorphism such that d = g′○dA/k, one has d○p = g′○q○dB/k = g○q○dB/k,
hence g′ ○ q = g ○ q; by the universal property of dB/k. Since q is surjective, this
implies g = g′.
c) Let us assume that Ω1B/k is �nitely generated as a B-module. Since Ω

1
A/k is

a quotient of Ω1B/k, it is �nitely generated as a B-module, hence as an A-module
since the morphism from B to A is surjective.
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d) Let us �nitely assume that Ω1B/k is �nitely presented as a B-module and
that I is a �nitely generated ideal. �en Ω1B/k/IΩ1B/k is �nitely presented as well,
and Ω1A/k is the quotient of that module by the A-submodule generated by the
images elements of the form dB/k(a), for a ∈ I. Let (b1, . . . , bn) be a �nite family
generating I. For every family a ∈ I and every family (a1, . . . , an) of elements
of B such that a = a1b1 + ⋅ ⋅ ⋅ + anbn, one has

dB/k(a) =
n
∑
i=1
aidB/k(bi) +

n
∑
i=1
bidB/k(ai).

Consequently, Ω1A/k is isomorphic to the quotient of Ω
1
B/k/IΩ1B/k by the �nitely

generated submodule generated by the images of the elements dB/k(bi), for
1 ⩽ i ⩽ n. It is thus �nitely presented.

Proof of proposition 5.6.4. — Like every k-algebra, A is isomorphic to the quo-
tient of a polynomial algebra B = k[(Tλ)λ∈L] by an ideal J. For example, the
unique morphism from k[(Ta)a∈A] to A such that Ta ↦ a is surjective. If A is
�nitely generated, we may even assume that the set L is �nite; if, moreover, A
is �nitely presented, then the ideal J is �nitely generated. By example 5.6.2, the
k-algebra B admits a module of di�erentials, namely the module Ω1B/k = BL. By
lemma 5.6.5, the k-algebra A admits the quotient Ω1A/k = BL/(IBL +BdB/k(I)) as
a module of di�erentials. It also follows from this lemma that Ω1A/k is a �nitely
generated (resp. �nitely presented) A-module if A is a �nitely generated (resp.
�nitely presented) k-algebra.

Remark (5.6.6). — Given the above explicit construction of the A-module Ω1A/k,
we observe that it is generated by the elements of the form dA/k(a), for a ∈ T, for
every subset T of A which generates A as a k-algebra. �is can also be proved by
showing that the submodule generated by these elements satis�es the universal
property of a module of di�erentials.

5.6.7. — Let k be a ring, let A and B be k-algebras and let f ∶A → B be a
morphism of k-algebras. �e map dB/k ○ f ∶A → Ω1B/k is a k-derivation on A;
consequently, there exists a unique A-linear morphism φ∶Ω1A/k → Ω1B/k such
that dB/k ○ f = φ ○ dA/k. Let φ∶B⊗A Ω1A/k → Ω1B/k be the associated morphism
of B-modules.



5.6. THE MODULE OF RELATIVE DIFFERENTIAL FORMS 221

Lemma (5.6.8). — Let S be a multiplicative subset of A, let B = S−1A and let
f ∶A→ B be the canonical morphism. �en the associated morphism φ∶ S−1A⊗A
Ω1A/k → Ω1B/k is an isomorphism.

Proof. — Let d′1∶ S ×A→ S−1A⊗A Ω1A/k given by

d′1(s, a) = s−1 ⊗ dA/k(a) − s−2adA/k(s),

for a ∈ A and s ∈ S. For a ∈ A, s, t ∈ S, one has

d′1(st, at) = (st)−1 ⊗ dA/k(at) − (st)−2atdA/k(st)
= (st)−1tdA/k(a) + (st)−1adA/k(t)

− (st)−2at2dA/k(s) − (st)−2astdA/k(t)
= s−1dA/k(a) − s−2adA/k(s)
= d′1(s, a).

Consequently, if a, b ∈ A and s, t ∈ S are such that a/s = b/t, let u ∈ S such that
uta = sub; then

d′1(s, a) = d′1(stu, uta) = d′1(stu, sub) = d′1(t, b).

�is shows that there exists a unique map d′∶S−1A → S−1A ⊗A Ω1A/k such that
d′(a/s) = d′1(s, a) for every a ∈ A and every s ∈ S. �is map d′ is a k-derivation
(exercise...) Consequently, there exists a unique S−1A-linearmorphismψ∶Ω1B/k →
B⊗A Ω1A/k such that d′ = ψ ○ dB/k.
For a ∈ A and s ∈ S, one has

φ ○ ψ(dB/k(a/s)) = φ(d′(a/s))
= φ(s−1 ⊗ dA/k(a) − s−2adA/k(s))
= s−1dB/k(a/1) − s−2adB/k(s/1)
= dB/k(a/s),

so that φ○ψ○dB/k = dB/k; by the universal property of the module of di�erentials,
one has φ ○ ψ = id. Moreover, for every a ∈ A, one has

ψ ○ φ(1⊗ dA/k(a)) = ψ(dB/k(a/1)) = 1⊗ dA/k(a).

Since the elements of B⊗AΩ1A/k of the form 1⊗ dA/k(a) generate this B-module,
this implies that ψ ○ φ = id.
We thus have proved that φ is an isomorphism.
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5.6.9. — Let k be a ring, let A and B be k-algebras and let f ∶A → B be a
morphism of k-algebras. �e map dB/A∶B→ Ω1B/A is a k-derivation on B; con-
sequently, there exists a unique morphism ψ∶Ω1B/k → Ω1B/A of B-modules such
that dB/A = ψ ○ dB/k.

Proposition (5.6.10). — Let k be a ring, letA and B be k-algebras and let f ∶A→ B
be a morphism of k-algebras. �e diagram

B⊗A Ω1A/k
φÐ→ Ω1B/k

ψÐ→ Ω1B/A → 0

is an exact sequence.

Proof. — For every b ∈ B, one has dB/A(b) = ψ(dB/k(b)). Since Ω1B/A is gener-
ated, as a B-module, by elements of the form dB/A(b), for b ∈ B, the morphism ψ
is surjective. Let M be the image of φ; it is the B-submodule of Ω1B/k generated
by elements of the form dB/k( f (a)), for a ∈ A. Let us show that M = Ker(ψ).
For every a ∈ A, one has

ψ(dB/k( f (a))) = dB/A( f (a)) = dB/A(a ⋅ 1) = 0

since dB/A is an A-derivation. �is shows that M ⊂ Ker(ψ). Let ψ1∶Ω1B/k/M →
Ω1B/A be the induced homomorphism. Let d∶B→ Ω1B/k/M be the map given by
b ↦ [dB/k(b)]. It is a k-linear derivation; in fact, one has d( f (a)) = 0 for every
a ∈ A, by de�nition of M, so that d is an A-derivation. Consequently, there
exists a unique B-linear morphism θ1∶Ω1B/A → Ω1B/k/M such that θ1 ○ dB/A = d.
For every b ∈ B, one has

θ1 ○ ψ1(d(b)) = θ1 ○ ψ1([dB/k(b)]) = θ1(dB/A(b)) = d(b);

since the elements of the form dB/k(b) generate the B-module Ω1B/k, this implies
that θ1 ○ψ1 = id. In particular, ψ1 is injective, hence M = Ker(ψ). �is concludes
the proof of the proposition.

5.6.11. — One can extend to schemes the de�nition of the module of di�eren-
tials. Let f ∶Y → X be a morphism of schemes. Recall that the canonical mor-
phism f ♯∶OX → f∗OY induces, by adjunction, a ring morphism f ♭∶ f −1(OX) →
OY. In particular, every OY-module can be considered, via f ♭, as an f −1(OX)-
module. An OY-derivation from OY to a quasi-coherent OY-moduleM is a
f −1(OX)-linear morphism d∶OY →M such that for every open subscheme U
of Y, every element a, b ∈ OY(U), one has d(ab) = ad(b) + bd(a).
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Proposition (5.6.12). — Let f ∶Y→ X be a morphism of schemes.
�ere exists a quasi-coherent OY-module Ω1Y/X on Y and an f −1(OX)-linear

derivation dY/X∶OY/X → Ω1Y/X which satis�es the universal property: for every OY-
moduleM and every OX-derivation d∶OY →M , there exists a unique OY-linear
morphism φ∶Ω1Y/X →M such that d = φ ○ dY/X.
If f is locally �nitely generated, then Ω1Y/X is a �nitely generated OY-module. If
f is locally �nitely presented, then Ω1Y/X is a �nitely presented OY-module.

Proof. —

Exercise (5.6.13). — Let k be a ring and let A be a k-algebra. Letm∶A⊗k A→ A
be the unique morphism of k-algebras such that m(a ⊗ b) = ab for every pair
(a, b) of elements of A. Let I be its kernel. Let j1 and j2 be the maps from A
to A ⊗k A given by j1(a) = a ⊗ 1 and j2(a) = 1 ⊗ a; they are morphisms of
k-algebras. Prove that the stuctures of an A-module on I/I2 induced by j1 and j2
coincide. Prove that for every a ∈ A, one has j2(a)− j1(a) ∈ I. Let d∶A→ I/I2 be
the map given by d(a) = ( j2(a)− j1(a)) (mod I2). Prove that the pair (I/I2, d)
satis�es the universal property of a module of di�erentials.
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