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CHAPTER 1

COMMUTATIVE ALGEBRA

1.1. Recollections (Uptempo)

1.1.1. Basic algebraic structures. — The concepts of groups, rings, fields, mod-
ules are assumed to be known, as well as the notion of morphisms of groups,
rings, fields, modules, etc.

In this course, rings are always commutative and possess a unit element,
generally denoted by 1. The multiplicative group of invertible elements of a
ring A will be denoted by A* or A*.

1.1.2. Algebras. — Let k be a ring. A k-algebra is a ring A endowed with a
morphism of rings f:k — A. When this morphism is injective, we will often
understate the morphism f and consider that A is an overring of k, or that k
is a subring of A... Let (A, f:k — A) and (B, g:k — B) we two k-algebras; a
morphism of k-algebras is a ring morphism ¢: A — B such that g = ¢ o f.

1.1.3. Polynomial algebras. — Let I be a set. One defines a k-algebra
k[(X;)a] of polynomials with coefficients in k in a family (X;);q of indeter-
minates indexed by I. This algebra satisfies the following universal property:
for every family (a;);q of elements of A, there exists a unique morphism
@:k[(X;)ia] = A of k-algebras such that ¢(X;) = a; for every i € L. In other
words, for every k-algebra A, the canonical map

Homy_ igebras (k[Xi], A) = Hompgps (I, A), ¢+~ (i~ 9o(X;))

is a bijection.

When I has one, two, three,... elements, the indeterminates are often denoted
by individual letters, say X, Y, Z,...

Let ] be a subset of I, and let K be its complementary subset. The polynomial
algebra k[ (X;)er] is isomorphic to the polynomial algebra k[(X;) e ][ (Xi)iex]
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in the indeterminates X; (for i € K) with coeflicients in the polynomial algebra
k[(X;)i¢] with coefficients in k in the indeterminates X; (for i € J).

We do not detail the notion of degree in one of the indeterminates (of degree,
it I is a singleton).

There is a notion of euclidean division in polynomial rings. Let A be a ring,
let f, g € A[X] be polynomials in one indeterminate X with coefficients in A. If
the leading coeflicient of g is invertible in A, there exist a unique pair (g, r) of
polynomials in A[X] such that f = gg + r and deg(r) < deg(g).

1.1.4. Ideals. — An ideal of a ring A is a non-empty subset I which is stable
under addition, and such that ab € I for every a € A and every b € I. In other
words, this is a A-submodule of A.

The subsets {0} and A are ideals. The intersection of a family of ideals of A
is an ideal. If S is a subset of A, the ideal generated by S is the smallest ideal
of A containing S (it is the intersection of all ideals of A which contain S). Let I
and ] be ideals of A; the ideal I + ] (resp. the ideal I - ], also denoted by IJ) is the
ideal generated by the set of sums a + b (resp. the set of products ab) for a € I
and b € J. The ideal generated by a family of elements of A is often denoted by
((a;)ia); for example (a), (a,b), (a,, a,, a)...

The image ¢(I) of an ideal I of A under a morphism of rings ¢: A — B is
generally not an ideal of B; the ideal it generates is often denoted by IB. However,
the inverse image of an ideal ] of B by such a morphism of rings is always an
ideal of A. In particular, the kernel ker(¢) = ¢7*(0) of a morphism of rings is
an ideal of A.

Let I be an ideal of A. The relation x ~ y defined by x — y € I is an equivalence
relation. The quotient set A/~, denoted by A/I, admits a unique ring structure
such that the canonical surjection 7: A - A/~ is a morphism of rings. The
so-called quotient ring A/ possesses the following universal property: for every
ring B and every morphism of rings f: A — B such that f(I) = {0}, there exists
a unique morphism of rings ¢: A/I - B such that f = g o 7.

The kernel of the canonical morphism 7 is the ideal I itself. More generally,
the map associating with an ideal ] of A/I the ideal 77*(]J) of A is a bijection
between the (partially ordered) set of ideals of A/I and the (partially ordered)
set of ideals of A which contain I.
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1.1.5. Domains. — Let A be a ring. One says that an element a € A is a zero-
divisor if there exists b € A, such that ab = o and b # o. One says that A is an
integral domain, or a domain, if A #+ {0} and if o is its only zero-divisor. Fields
are integral domains.

1.1.6. Prime and maximal ideals. — One says that an ideal I of A is prime if
the quotient ring A/I is an integral domain. This means that I # A and that for
every a,b € A such thatab e, eitheracl,orbel

One says that an ideal I of A is maximal if the quotient ring A/I is a field. This
means that I is a maximal element of the partially ordered set of ideals of A
which are not equal to A. A maximal ideal is a prime ideal.

One deduces from Zorn’s theorem that every ideal of A which is distinct
from A is contained in some maximal ideal. (Indeed, if I is an ideal of A such
that I # A, the set of ideals ] of A such thatI c J ¢ A, ordered by inclusion, is
inductive—every totally ordered subset admits an upper-bound) In particular,
every non-zero ring contains maximal ideals.

Hilbert’s Nullstellensatz (theorem 1.7.1 below) gives a description of the maxi-
mal ideals of polynomials rings over algebraically closed fields.

1.1.7. — If a ring admits exactly one maximal ideal, one says that it is a local
ring. A ring is local if and only if its set of non-invertible elements is an ideal
(exercise!).

Let A and B be local rings; let my and mp be their maximal ideals; let k(A) =
A/my and x(B) = B/mg be their residue fields. A morphism f: A — B is said
to be local if f(my) c mg or, equivalently, if f~*(mp) = m,. Observe that
a local morphism f: A — B passes to the quotient and induces a morphism
x(A) - x(B) between their residue fields.

1.1.8. — The intersection J of all maximal ideals of a ring A is called its Jacobson
radical. It admits the following characterization: one has a € J if and only if
1+ ab is invertible in A for every b € A (exercise!).

1.1.9. — Let A be an integral domain and let K be its field of fractions. One
says that A is a valuation ring if, for every non-zero element a of K, either a € R,
or1/a € R (or both).

Assume that A is a valuation ring. Let a, b be element of A which are not
invertible. If a = o, then a + b = b is not invertible; assume that a # o and let
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x =b/a.If x € R, then a + b = a(1 + x) is not invertible; otherwise, x # o, hence
1/x e Rand a + b = b(1 + 1/x) is not invertible as well. This implies that the set
A — A* of non-invertible elements of A is an ideal, hence a valuation ring is a
local ring.

1.1.10. — Let A be an integral domain. One says that an element a € A is
irreducible if it is not invertible and if the equality a = bc for b, ¢ € A implies that
b or c is invertible. An element a is said to be prime if the principal ideal (a) is
prime; this implies that a is irreducible but the converse does not hold (exercise!;
show, for example, that the element 1+ i,/5 of the ring Z[i, /5] is irreducible but
not prime).

One says that the ring A is a unique factorization domain (UFD, in short) if the
following two properties hold:

(a) Every strictly increasing sequence of principal ideals of A is finite;
(b) Every irreducible element of A generates a prime ideal.

Indeed, these two properties are equivalent to the fact that every non-zero
element of A can be written as the product of an invertible element and of
finitely many prime elements of A, in a unique way up to the order of the factors
and to multiplication of the factors by units.

Condition (ii) is sometimes stated under the name of “Gauss’s lemma’’: If A
is a UFD, then every irreducible element a which divides a product bc must divide
one of the factors b or c. Condition (i) obviously holds when A is noetherian.
Consequently, a noetherian ring for which Gauss’s lemma holds is a UFD.

Principal ideal rings are unique factorization domains, as well as polynomial
rings over fields. In fact, if A is a UFD, then so is A[X] (a theorem proved by
Gauss for A = 7).

1.2. Localization (Medium up)

Let A be a ring.

1.2.1. Nilpotent elements. — One says that an element a € A is nilpotent if
there exists an integer n > 1 such that a” = o. The set of nilpotent elements of A
is an ideal of A, called its nilradical. When o is the only nilpotent element of A,
one says that A is reduced. More generally, when I is an ideal of A, one defines
the radical of 1, denoted by /1, as the set of all a € I for which there exists an
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integer n > 1 such that a” € I; it is an ideal of A which contains I. An ideal which
is equal to its radical is called a radical ideal.

1.2.2. Multiplicative subsets. — A multiplicative subset of A is a subset S c A
which contains 1 and such that ab € S for every a, b € S.

1.2.3. — Let M be an A-module. The fraction module S*M (sometimes also
denoted by M) is the quotient of the set M x S by the equivalence relation ~ such
that (m,s) ~ (m',s") if and only if there exists ¢ € S such that t(sm’ — s'm) = o.
Let us denote by m/s the class in S™'M of the pair (m,s) € M x S. The addition
of the abelian group S'M is given by the familiar formulas

(m/s) +(m'[s") = (s'm +sm")[ss',

for m,m’ € M, s, s' € S; its zero is the element o/1. Its structure of an A-module
is given by a - (m/s) = (am)/s,fora e A,m e Mands € S.

For every s € S, the multiplication by s is an isomorphism on S™"M—one says
that S acts by automorphisms on S™M. The map 0: M — SM given by 6(m) =
m/1is a morphism of A-modules; it satisfies the following universal property:
For every morphism of A-modules f: M — N such that S acts by automorphisms
on N, there exists a unique morphism of A-modules ¢:S'M — N such that
f = ¢ o0 (explicitly: f(m) = ¢(m/1)) for every m € M).

1.2.4. — Let Bbean A-algebra. Then the module of fractions S™'B has a natural
structure of an A-algebra for which the multiplication is given by the familiar
formulas
(bfs) - (b'/s") = (bb")[(s5"),

for b,b’ € B and s, s’ € S; its zero and unit are the elements o/1 and 1/1. The
canonical map 0:B — S7'B is a morphism of A-algebras, and the images of
the elements of S are invertible in S™'B. In fact, this morphism satisfies the
following universal property: For every morphism of A-algebras f: B — B’ such
that the images of elements of S are units of B/, there exists a unique morphism
of A-Algebras ¢:S7'B — B’ such that f = ¢ 0 0.

In particular, SA itself is an A-algebra.. Moreover, for every A-module M,
the A-module S™'M has a natural structure of a S A-module.

The ring S™A is the zero ring if and only if o € S.
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1.2.5. Examples. — Let us give examples of multiplicative subsets and let us
describe the corresponding ring of fractions.

a) Leta € A; thesetS = {1,a,a?,...} is a multiplicative subset which con-
tains o if and only if a is nilpotent. The corresponding fraction ring is of-
ten denoted by A,. Let ¢,: A[T] — A, be the morphism of rings given by
¢,(P) = P(1/a); it is surjective and its kernel contains the polynomial 1 — aT.
Let ¢: A[T]/(1—aT) — A, be the morphism of rings which is deduced from ¢,
by passing to the quotient; let us show that ¢ is an isomorphism by constructing
its inverse.

The obvious morphism y,: A - A[T]/(1—aT) maps a to an invertible element
of A[T]/(1 - aT); by the universel property of the localization, there exists a
unique morphism of rings y: A, - A[T]/(1 - aT) such that w(b) = b for every
b € A; one has w(b/a") = bcl(T)” for every b € A and every integer n > o.
Moreover, ¢ o w(b/a™) = b/a", so that ¢ o ¢ = id. In the other direction,
voo(b)=Dbforeveryb e Aand yo ¢,(T) = w(1/a) = cl(T); consequently,
v o ¢,(P) = cl(P) for every polynomial P € A[T], hence y o ¢ = id. This shows
that ¢ is an isomorphism, with inverse v, as claimed.

b) LetIbe anideal of A. ThesetS=1+1= {a €I; a—1 €I} is a multiplicative
subset of A.

c) Let f: A — B be a morphism of rings, let T be a multiplicative subset of B
and let S = f71(T). Then S is a multiplicative subset of A and there is a unique
morphism of rings ¢:S'A — T7'B such that ¢(a/1) = f(a)/1 for every a € A.

d) If A is an integral domain, then S = A — {0} is a multiplicative subset of A;
the fraction ring S7'A is a field, called the field of fractions of A.

e) Letp be an ideal of A and let S = A = p. Then S is a multiplicative subset
of A if and only if p is a prime ideal of A; the fraction ring is denoted A,

1.2.6. — Let A be aring, let S be a multiplicative subset of A. For every ideal I
of A, the ideal 8(I)(S™*A) generated by the image of I in S™A is denoted by S
It is equal to S™*A if and only if SN I # @. Moreover, every ideal of SA is of this

form.
Finally, the map p — S7'p is a bijection from the set of prime ideals of A which

do not meet S to the set of prime ideals of SA.
In particular, for every prime ideal p of A, the ring A,, is a local ring, called
the localization of A at p, and pA, is its maximal ideal.
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Lemma (1.2.7). — Let A be a ring, let S be a multiplicative subset of A and let 1
be an ideal of A. If I does not meet S, then there exists a prime ideal p of A which
contains 1 and does not meet S.

Proof. — SinceInS = @, the ideal S7I is distinct from S™'A, hence is contained
in some maximal ideal of S*A, of the form S™'p, for some prime (but non
necessarily maximal) ideal p of A. One then checks that I c p. Let indeed a € I.
Since one has a/1 € S7'I c S7'p, there exists b € p and s € S such that a/1 = b/s.
By definition of the ring S™'A, there exists ¢ € S such that t(as - b) = 0. In
particular, sta = tb € p. Since st € Sand Snp = &, the definition of a prime ideal
implies that a € p, as was to be shown. [

Proposition (1.2.8). — The radical of an ideal is the intersection of the prime ideals
which contain it. In particular, the nilradical of a ring is the intersection of its
prime ideals.

Proof. — Let A be a ring. Nilpotent elements are contained in every prime
ideal of A. Conversely, let a € A be a non-nilpotent element. By definition, the
multiplicative subset S = {1, a, a?, ...} is disjoint from the ideal {0}, hence there
exists a prime ideal p of A which does not meet S; in particular, a ¢ p. ]

Lemma (1.2.9). — Let A be a ring and let M be an A-module. The following
properties are equivalent:

(i) One has M = o;

(ii) One has My, for every prime ideal p of A;

(iii) One has My, = o for every maximal ideal m of A.

Proof. — The implications (i)=(ii) and (ii)=(iii) are obvious. Let us assume
that (iii) holds and let us show that M = o. Let x € M and let I be the set of all
elements a € A such that ax = o; then I is an ideal of A. By assumption, for every
m € Spm(A), there exists an element a € A—m such that ax = o; in other words,
I is not contained in any maximal ideal of A. This implies that I = A, hence1€¢ A
and x = o. Consequently, M = o, as claimed. ]

1.3. Nakayama’s lemma

Theorem (1.3.1) (“‘Cayley—Hamilton’’). — Let A be a ring and let ] be an ideal
of A. Let M be an A-module which is generated by n elements and let u be an
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endomorphism of M such that u(M) c JM. Then there exists elements a, € J,
a, €J? ..., a, €J" such that

1

u"+au" ' +---+a,_,u+a,ldy = o.

Proof. — Let (m,,...,m,) be a finite family which generates M. For every
i € {1,...,n}, there exist elements a;; € I such that u(m;) = Y7, a;jmj; let P
be the matrix (a;;). We consider M as an A[T]-module, where T acts by u;
we then let #n x n matrices with coeflicients in A[T] act on M" by the usual
formulas. Let I,, be the identity matrix; then the matrix TI,, — P annihilates the
vector (my, ..., m,) € M". Let Q be the adjunct matrix of the matrix TI,, — P;
one has Q- (TI, — P) = det(TI, — P)I,.. Consequently, the element det(TI, — P)
of A[T] annihilates the vector (m,, ..., m,) as well, that is, det(TI,, - P) -m; = o
for every i. Since (m,, ..., m,) generates M as an A-module, it follows that
det(TI, — P) - m = o for every m € M.

Expanding the determinant, there are elements a,,...,a, € A such that
det(TL,-P) = T"+a,T"'+---+a,; moreover, a; € ]’ for every i. By the definition
of the structure of A[T]-module on M, we conclude that u”+a,u"'+---+a,Idy =
0. ]

Corollary (1.3.2) (Nakayama’s lemma). — Let A be a ring, let ] be an ideal of A
and let M be a finitely generated A-module such that M = JM. There exists a € ]
such that (1+ a)M = o.

In particular, if ] is contained in the Jacobson radical of A (which happens, for
example, if A is local and ] is its maximal ideal), then M = o.

Proof. — Let us apply theorem 1.3.1 to the endomorphism u = Idy; of M. With
the notation of that theorem, there exist an integer n > 1and elements a,, ..., a, €
J such that (1+ a, +--- + a,)Idy = o. It thus suffices to set a = a, +--- + a,.

If J is contained in the Jacobson radical of A, one has 1+ a € A*; the relation
(1+ a)M = o then implies that M = o. O]

Corollary (1.3.3). — Let A be a ring, let ] be its Jacboson radical. Let P be an

A-module, let M and N be submodules of P such that JM + N = M + N. If M is
finitely generated, then M c N.

Proof. — LetM' = (M+N)/N = M/(MnN); itis a finitely generated A-module.
Moreover, one has JM’ = (JM + N)/N = (M + N)/N = M'. By corollary 1.3.2,
one has M’ = o0, hence M = M n N, that is, M c N. []
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1.4. Integral and algebraic dependence relations

1.4.1. — Let f: A — B be a morphism of rings. One says that an element x € B
is integral over A if there exists an integer n > 1, and elements a,,...,...,a, € A
such that

x"+ f(a)x" "+ + f(ay_)x + f(ay) =o.

Such an equation is called an integral dependence relation. Very often, the mor-
phism f is understated and the previous relation is written simply x” + a,x"* +
-+ a,=o0.

Proposition (1.4.2). — An element x € B is integral over A if and only if there
exists a subring R of B which contains A[x] and which is finitely generated as an
A-module.

Proof. — Let us assume that x possesses an integral dependence relation as
above; then, the A-subalgebra A[x] generated by x in B is generated as an
A-module by the elements 1, x, ..., x" . It suffices to set R = A[x].
Conversely, let R be an A-subalgebra of B which contains x and which is finitely
generated as an A-module. By theorem 1.3.1, applied to the endomorphism u of R
given by multiplication by x and to the ideal ] = A, there exist an integer n and
elements a,, ..., a, € A such that u” + a,u” ' +---+ a, = 0 as an endomorphism
of R. Considering the image of 1, we obtain an integral dependence relation
for x, as required. []

Corollary (1.4.3). — Let f:A — B be a morphism of rings. The set of all ele-
ments x € B which are integral over A is an A-subalgebra of B, called the integral
closure of A in B.

Proof. — Let A be this subset of B. Let x, y be elements of A. Let m and n be
the degrees of integral dependence relations for x and y respectively, and let R
be the A-submodule of B generated by the finite family (x'y/), foro < i < m
and o < j < m; it is a subring of B. Since it contains x + y and x y, this shows that
these elements are integral over A, hence belong to A. Moreover, every element
of f(A) is integral over A; in particular, o and 1 are integral over A. This shows
that A is a subring of B; since it contains f(A), it is an A-subalgebra of B. [
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1.4.4. — One says that a morphism of rings f: A — B is integral, or that B is
integral over A, or also that B is an integral A-algebra, if every element of B is
integral over A.

If B is finitely generated as an A-module, then B is integral over A. Conversely,
if B is finitely generated as an A-algebra, and if it is integral over A, then it is
finitely generated as an A-module. We say that B is a finite A-algebra.

Lemma (1.4.5). — Let B be an integral domain and let A be a subring of B such
that B is integral over A. Then A is a field if and only if B is a field.

Proof. — Let us assume that A is a field. Let b € B be a non-zero element and let
b"+a,b" ' +---+a,_,b+ a, = obean integral dependence relation of minimal
degree for b. Let c = b" ' + a,b" 2 +--- + a,_,, so that bc + a, = 0. If a, = 0, one
would have bc = o, hence, since b # o and B is an integral domain, ¢ = o, which
is an integral dependence relation of degree n — 1 for b. This contradicts the
definition of n, so that a,, # o. Since A is a field, a,, is invertible in A;letd € A
be such that a,,d = 1. Then bcd = —a,d = —1; consequently, b is invertible in B,
with inverse —cd. This shows that B is a field.

Let us now assume that B is a field. Let a € A be any non-zero element and let
b be its inverse in B. By assumption, b is integral over A;let b" + a,b" ™ +--- +
an,—,b + a, = o be an integral dependence relation. Since ab = 1, one has

b=a""b"=-a""(a,b""+---+a,)=—(a,+aa+---+aa").

In particular, b € A, so that a is invertible in A. []

1.4.6. — It is crucial that the leading coefficient of an integral dependence rela-
tion be equal to 1 (it could be a unit). When A and B are fields, this becomes
pointless; in this setting, one usually replaces the adjective integral by the adjec-
tive algebraic. One thus speaks of algebraic dependence relation, of an algebraic
element, of the algebraic closure of A in B, etc.

Let f:K — L be an extension of fields. Elements of L which are not algebraic
over K are said to be transcendental. A field K is said to be algebraically closed if
it is algebraically closed in every extension L of K.

Every field K possesses an algebraic closure: this is an algebraic extension
K — K which is algebraic and algebraically closed. Any two algebraic closures of
a field K are isomorphic (as K-algebras).
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1.4.7. — Let f:K — L be an extension of fields. One says that a family (a;) ;e
of elements of L is algebraically independent if there does not exist a non-zero
polynomial P € K[(X;);«] such that P((a;)) = o, in other words if the canonical
morphism of K-algebras K[(X;);q] — L which, for every i, maps X; to a; is
injective.

A transcendence basis of L over K is an algebraically independent family (a;)
such that L be algebraic over the subextension of L generated by the a;.

Transcendence basis exist. More precisely, the following analogue of the incom-
plete basis theorem holds: Let A c C be two subsets of L, where A is algebraically
independent over K, and L is algebraic over the subextension generated by C; then
there exists a transcendence basis B such that A c B c C. Two transcendence
basis have the same cardinality, called the transcendence degree of L over K and
denoted tr. deg, (L), or even tr. deg(L) if the field K is clear from the context.
Finally, let K — L and L — M be two field extensions. One has the relation

tr.deg, (L) + tr. deg; (M) = tr. deg,(M).

By abuse of language, we will sometimes make use of the words algebraic,
algebraically independent, transcendence degree, in the context of a K-algebra A
which is an integral domain, to speak of the corresponding notions of the field
of fractions of A.

1.5. The spectrum of a ring

1.5.1. — Let A be a ring. The set of all prime ideals of A is called the spectrum
(or the prime spectrum) of A and denoted by Spec(A); the subset Spm(A) of
all maximal ideals of A is called its maximal spectrum.

Every non-zero ring possesses maximal ideals. Consequently, the following
assertions are equivalent:

(i) A is the zero ring;

(ii) Its spectrum Spec(A) is empty;

(iii) Its maximal spectrum Spm(A) is empty.

For every subset E of A, let V(E) be the set of prime ideals p € Spec(A) such
that E c p. One also writes V(a, b,...) for V({a,b,...}).

The following properties essentially follow from the definitions.

Lemma (1.5.2). — a) One has V(&) = Spec(A) and V(1) = &;
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b) IfE and E' are subsets of A such that E c ¥/, one has V(E’) c V(E);

c) For every family (E)) L of subsets of A, one has V(U Er) = Naer V(Ey);

d) Let E,E’ be two subsets of A and let EE’ be the set of all products ab, for
a € Eand b € E'; then one has V(EE') = V(E) u V(E');

e) Let E be a subset of A and let | be the ideal of A generated by E; then one has
V(E) = V(I).

Proof. — a) The first property is obvious, and the second follows from the
fact that A is not a prime ideal of itself.

b) Letp € V(E’); then p is a prime ideal of A such that E’ c p; it follows that
E c p, hence p € V(E).

c) Letpbeaprimeideal of A. One hasp € V(UE,) ifand only if p contains E,
for every A, which means that p belongs to V(E, ) for every A.

d) Letp € V(E). Leta € Eand b € E’; one has a € p, hence ab € p, so that
p € V(EE’). This shows that V(E) c V(EE’), and the inclusion V(E’) c V(EE’)
follows by symmetry. Conversely, let p € V(EE’). Assume that p ¢ V(E’) and
let us show that p € V(E); let b € E’ be such that b ¢ p. For every a € E, one
has ab € EF/, hence ab ¢ p; Since p is a prime ideal, this implies that a € p.
Consequently, p € V(E), as was to be shown. O

1.5.3. Thespectraltopology. — Let us decree that a subset of Spec(A) is closed
if it is of the form V(E) for some subset E of A. By property d) of lemma 1.5.2,
we may even assume that E is an ideal.

By property a) of that lemma, the empty set and Spec(A) are closed subsets.
According to property c), the intersection of a family of closed subsets is closed;
by property d), the union of two closed subsets is closed.

The sets V(E), where E runs among all subsets of A, are the closed subsets
of a topology on the spectrum Spec(A). We call it the spectral topology, or the
Zariski topology

1.5.4. — For every subset Z of Spec(A), let j(Z) be the set of a € A such that
Z c V(a). One thus has j(Z) = Npez p; in particular, j(Z) is a radical ideal of A.

Lemma (1.5.5). — a) IfZ and Z' are subsets of Spec(A) such that Z c Z/, then
i(2') ci(2);
b) If (Zy) L is a family of subsets of Spec(A), then i(Uxe Za) = M i(Z));
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c) For every subset Z of Spec(A), one has the inclusion Z c V(j(Z)), with
equality if and only if Z is of the form V(E) for some subset E of A.

d) For every subset E of A, one has the inclusion E c j(V(E)), with equality if
and only if E is of the form j(Z), for some subset Z of Spec(A).

Proof. — Only the cases of equality in assertions c¢) and d) do not follow directly
from the definitions.

For ¢), it suffices to prove that V(E) = V(j(V(E))). We already know that
V(E) ¢ V(3J(V(E)); by the inclusion d), one has E c j(V(E)); applying the
map V, we conclude that V(j(V(E))) c V(E).

Similarly, we prove d) by establishing that j(Z) = j(V(j(Z)). We know the
inclusion j(Z) c j(V(j(Z)). According to the general inclusion c), we have

Z c V(j(Z)); applying the map j, we conclude that j(V(j(Z))) ci(Z). O
Proposition (1.5.6). — a) For every ideal 1 of A, one has i(V(1)) = /1

b) For every subset Z of Spec(A), one has V(i(Z)) = Z, the closure of Z for the
spectral topology.

c) The maps E — V(E) and Z — j(Z) induce bijections, inverse one of the other,
between the set of radical ideals of A and the set of closed subsets of Spec(A).

Proof. — a) By definition, V(I) is the set of prime ideals containing I, so that
j(V(I)) is the intersection of all prime ideals containing I. By proposition 1.2.8,
one has j(V(I)) = V1.

b) Since V(i(Z)) is closed and contains Z, it contains its closure Z for the
spectral topology. Conversely, let Z' be a closed subset of Spec(A) containing Z
and let us show that Z' > V(j(Z)). Applying the map V o j to the inclusion
Z c 7!, we obtain V(j(Z)) c V(j(Z')). Since Z' is of the form V(E), one has
V(i(Z')) =Z',hence V(j(Z)) c Z’, as was to be shown.

c) This follows directly from properties a) and b). ]

Exercise (1.5.7). — Let A be a ring and let X be the topological space Spec(A).
An idempotent element of A is an element e such that e = e. Show that the
map a — V(a) defines a bijection between the set of idempotents of A and
the set of open and closed subsets of Spec(A). (If e is idempotent, observe
that X = V(e) u V(1 - e).) In particular, X is connected if and only if the only
idempotent elements of A are o and 1.
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1.5.8. Basicopensets. — Foreverya € A, onedefines D(a) = Spec(A)=V(a).
It is an open subset of Spec(A). One has D(1) = Spec(A) and D(a) = g if a is
nilpotent.

Let E be a subset of A. Since V(E) = N g V(a), we have Spec(A) =V(E) =
Uaee D(a). This shows that the open sets of the form D(a), for a € A, form a
basis of the topology of Spec(A).

Exercise (1.5.9). — a) Let x be a point of Spec(A) and let p = j({x}) be the
corresponding prime ideal of A. Prove that the point {x} is closed in Spec(A)
if and only if p is a maximal ideal.

b) Let x, y be two points of Spec(A) such that x # y. Prove that x ¢ {y} or
y ¢ {x}. (This says that Spec(A) is a Kolmogorov topological space, aka Tj,.)

c) Describe the topological space Spec(Z). Show in particular that it is not
Hausdorft.

d) Prove that every open cover of Spec(A) has a finite subcover (one says that
it is quasi-compact).

Proposition (1.5.10). — a) Let ¢: A — B be a morphism of rings. For every
prime ideal q of B, the ideal ¢7(q) is a prime ideal of A. The associated map
4p:Spec(B) — Spec(A) given by “p(q) = ¢*(q) is continuous.

b) Let I be an ideal of A and let ¢: A — A/I be the canonical morphism. The
associated map *¢ is a homeomorphism from Spec(A/I) to the subspace V(1)
of Spec(A).

c) Let S be a multiplicative subset of A and let 0: A — S A be the canonical
morphism. The associated map °0 is a homeomorphism from Spec(S™A) to its
image in Spec(A), which is the set of prime ideals of A disjoint from S.

IfS={1,a,a?...}, then “0 identifies Spec(S™A) with the open subset D(a)
of Spec(A).

Proof. — a) Since q + B,onehas1¢ q, hence1=¢(1) ¢ ¢7'(q); consequently,
»7(q) # A. Moreover, let a,b € A be such that ab € ¢7*(q); then ¢(ab) =
¢(a)e(b) € q, hence p(a) € q or p(b) € g, by definition of a prime ideal. This
implies that a or b belongs to ¢(q), proving that ¢*(q) is a prime ideal of A.

To prove that the map %¢ is continuous, we need to show that the inverse
image of a closed subset is closed. So let E be a subset of A. A prime ideal q of B
belongs to (“¢)*(V(E)) if and only if “¢@(q) = ¢*(q) belongs to V(E), which
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means that E ¢ ¢7'(q), and is equivalent to the inclusion ¢(E) c g. In other
words, we have (“¢9)™(V(E)) = V(¢(E)); this is a closed subset of Spec(B).

b) We known that the map J — ¢7%(]) is a bijection from the set of ideals
of A/I to the set of ideals of A which contain J. Moreover, for every ideal |
of A/I, the morphism ¢ induces an isomorphism from A/¢7(]) to (A/I)/]. In
particular, an ideal J of B is prime if and only if the associated ideal ¢~*(]) is
prime, and the prime ideals of A of this form are exactly those containing I. This
shows that the map ?¢ is a bijection from Spec(A/I) to the closed subset V(I)
of Spec(A).

Moreover, for every ideal J of A/I, one has %@ (V(]J)) = V(¢7*(J)), so that %p
is a closed map. Since it is a continuous bijection, it is a homeomorphism.

c) We know that the continous J — 67*(]) induces a continous bijection from
the set Spec(S™A) of prime ideals of S™A to the subset X of Spec(A) consisting
of prime ideals of A which do not meet S.

Let us show that this bijection is closed. Let E be a subset of S7*A; let E’ be
the set of elements a € A such that there exists s € S with a/s € E, and let us
show that “0(V(E)) = V(E’). Let p be a prime ideal of A which does not meet S,
let g = S7'p, so that p = 67*(q). Then p belongs to “@(V(E)) if and only if
S7'p € V(E), that is if and only if E c S7'p; on the other hand, p belongs to V(E’)
if and only if E’ c p. It thus remains to show that for a prime ideal p of A which
does not meet S, the conditions E c S7'p and E’ c p are equivalent. Let us assume
that E c S7'p; let a € E’ and let s € S be such that a/s € E; then a/s € S7'p, hence
6(a) € S7'p, hence a € p; this shows that E’ c p. Conversely, let us assume that
E' c p;let b € E and let (a,s) € A x S be such that b = a/s; then a € E’, hence
a € p; consequently, b = a/s € S7'p; we have shown that E c S7p.

O

Remark (1.5.11). — Let ¢: A — B be a morphism of rings. Classical algebraic
geometry is essentially concerned with finitely generated algebras over a field.
In that context, corollary 1.6.3 shows that % maps Spm(B) into Spm(A), as the
simple example of the canonical morphism ¢: Z — Q shows. This is an indication
that the spectrum of a ring is a more natural object than its maximal spectrum.
Indeed, spectra of rings were the basic block of Grothendieck’s refoundation of
algebraic geometry in the 1960s.
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1.6. Finitely generated algebras over a field

Theorem (1.6.1) (Noether normalization lemma). — Let K be a field and let
A be a finitely generated K-algebra; we assume that A # o. Then there exist an
integer n > o, elements a,, . . ., a, € A such that the unique morphism of K-algebras
¢:K[X,,..., X, ] = A which maps X; to a; is injective and integral.

Proof. — Let (xy,...,x,) be a family of elements of A such that A =
K[x,,...,%x,]. Let us prove the result by induction on m. If m = o, then
A = K and the result holds with n = 0. We thus assume that the result for any
K-algebra which is finitely generated by at most m — 1 elements.

Let :K[X,,...,X,;] = A be the unique morphism of K-algebras such that
¢(X;) = x;. If ¢ is injective, the result holds, taking #n = m and a; = x; for every i.

Let us assume that there is a non-zero polynomial P € K[X,, ..., X,,] such that
P(xy,...,Xn) = 0. We are going to show that there exist strictly positive integers
11, ...,Tm— such that A is integral over the subalgebra generated by y,,..., ym,
where y; = x; —x;' fori e {2,...,m}. Let B=K[y,,..., ¥ ] be the subalgebra
of A generated by y,,..., ym.

Let (cy,) be the coefficients of P, so that

m
P= Z e [[ X
neN™ i=1
Let r be an integer strictly greater than the degree of P in each variable; in other
words, ¢, = o if there exists i such that n; > r; then set r; = ' and y; = x; — x;’'

forie{2,...,m}. We define a polynomial Q € B[T] by
Q(T)=P(T,y,+T", ...,y +T)
= > T (yo+ )" o (Y + T

neN™
e Im (n n _i _; —
= 3 X () (et e
neN™ j,=o Jjm=0 J2 Jm
and observe that Q(x,) = P(x;, X5, ..., X;) = O.
Order N™ with the “reverse lexicographicorder’: (n!,...,nl,) < (n,,...,ny)

it and only if n), < n,,, or n!, = n,, and n),_, < n,_,, etc. Let n be the largest
multi-index in N™ such that ¢, # o. For any other n’ € N such that ¢, # o0, one
has n! < r for every i, so that for any j, € {o,...,n,}, ..., jm € {0,..., iy},

I m-—1

m-1
R A T A R T LA

N+ jolat o+ jmrm SO+ Hr+-- 41
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This implies that the degree of Q is equal to n,+n,r+---+n,,r™* and that only the
term with jx = ny for k € {2,..., m} contributes the leading coefficient, which
thus equals ¢,,. In particular, Q is a polynomial in B[ T] whose leading coefficient
is a unit, so that x, is integral over B. Consequently, B[ x, ] is integral over B. For
everyiec {2,...,m},onehas x; = y; — x;" € B[x,]. Since A = K[x,,...,x,,], we
conclude that A = B[x,] and A is integral over B.

By induction, there exist an integer n < m — 1 and elements a,,...,a, € B
such that the unique morphism f:K[T,,...,T,] - B of K-algebras such that
f(T;) = a, for all i is injective and such B is integral over K[a,, ..., a,]. Then
A is integral over K[a,,...,a,] as well, and this concludes the proof of the
theorem. []

We now deduce from the Noether normalization lemma some important
algebraic properties of rings which are finitely generated algebras over a field.
The following result is the basis of everything that follows; due to Zariski, it is
sometimes considered as the “‘algebraic version’ of Hilbert’s Nullstellensatz.

Theorem (1.6.2) (Zariski). — Let K be a field and let A be a finitely generated
K-algebra. If A is a field, then A is a finite algebraic extension of K.

Proof. — By the Noether normalization lemma (theorem 1.6.1), there exist
an integer n > o and an injective and integral morphism of K-algebras
f:K[X,,...,X,] = A. Since A is a field, lemma 1.4.5 implies that K[X,, ..., X, ]
is a field as well. For n > 1, the ring of polynomials in n indeterminates is not
a field (consider the degree with respect to X, for example), so that n = o.
Consequently, A is integral over K. Since A is finitely generated as a K-algebra,
it is a finite K-module, hence a finite extension of K. O

Corollary (1.6.3). — Let K be a field and let ¢: A — B be a morphism of finitely
generated K-algebras. For every maximal ideal m of B, 97*(m) is a maximal ideal
of A. In other words, the continuous map *@:Spec(B) — Spec(A) maps Spm(B)
to Spm(A).

Proof. — Letn = ¢7*(m); it is a prime ideal of A. Passing to the quotients, the
morphism ¢ induces an injective morphism ¢’: A/n — B/m of finitely generated
K-algebras. By assumption, B/m is a field; by corollary 1.6.2, it is a finite extension
of K, that is a finite dimensional K-vector space. A fortiori, A/n is a finite
dimensional K-vector space. This implies that A/n is integral over K; since K is
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a field and A/n is an integral domain, this implies that A/n is a field, hence n is
a maximal ideal of A. O]

Corollary (1.6.4). — Let K be a field and let A be a finitely generated K-algebra.

a) The nilradical of A coincides with its Jacobson radical;

b) For every ideal I of A, its radical \/1 is the intersection of all maximal ideals
of A which contain 1.

c) For every closed subset Z of Spec(A), the intersection Z n Spm(A) is dense
in Z.

Proof. — a) We need to prove that an element a € A is nilpotent if and only if it
belongs to every maximal ideal of I. One direction is clear: if a is nilpotent, it
belongs to every prime ideal of I, hence to every maximal ideal of I. Conversely,
let us assume that a is not nilpotent and let us show that there exists a maximal
ideal m of A such that a ¢ m. Let S be the multiplicative subset {1, a, a?,...} and
let B be the K-algebra given by B = S'A; it is non-zero and finitely generated.
By the preceding corollary, the inverse image in A of a maximal ideal of B is
a maximal ideal of A which does not contain a. This concludes the proof of
assertion a).

b) Let B = A/I; it is a finitely generated K-algebra and its maximal ideals are
of the form m/I, where m is a maximal ideal of A containing I. By part a), the
nilradical of B is the intersection of the maximal ideals of B. Since the class of a
element a € A is nilpotent in B ifand only if a € V1, this implies that V1is the
intersection of all maximal ideals of A which contain I.

¢) Let I be an ideal of A such that Z = V(I), let U be an open subset of Spec(A)
such that UnZ is non-empty. We need to show that UnZnSpm(A) is non-empty.
We may moreover assume that U is of the form D(a), for some a € A; then the
image a of a in A/I is not nilpotent (otherwise, D(a) = & in Spec(A/I), hence
V(I) nD(a) = @). Consequently, there exists a maximal ideal m of A such that
[ c mand a ¢ m. This maximal ideal is an element of D(a) nZnSpm(A), hence
D(a) nZn Spm(A) is non-empty. O

Exercise (1.6.5). — This exercise revisits the main technical step of the Noether
normalization lemma in the case where K is an infinite field. Let A be a (non-
zero) finitely generated algebra; assume that A = K[x,,...,x,,], and let P €
K[T,,..., T, ] be a non-zero polynomial such that P(x,,...,x,) = o. Prove
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that there exist elements a,, ..., a,, € Ksuch that, denoting y; = x; — a;x,, x, is
integral over the subring generated by y,, ..., y,.

1.7. Hilbert’s Nullstellensatz

Theorem (1.7.1) (Nullstellensatz, 1). — Let K be an algebraically closed field and
let n be an integer such that n > o. For every maximal ideal m of the polynomial
ring K[X,, ..., X,], there exists a unique element (a,...,a,) € K" such that
m=(X,—ay,..., X, —a,). Conversely, every ideal of this form is a maximal ideal.

Proof. — Let (ay,...,a,) € K" and let m be the ideal (X, — a,,...,X, — a,)
of K[X,,...,X,]. Let 9:K[X,, ..., X, ] = K be the morphism of rings given by
¢(P) =P(a,,...,a,). Itis surjective and its kernel contains m. Conversely, let
P € Ker(¢). By euclidean divisions, we may write

P=(X,-a,)Q(X,....X,) +(X; — a,)Qu(Xs, ..., Xy )+
+o+ (X —a,)Qu(Xy) +P(ay, ..., a,).

Since P € Ker(¢), P(a,,...,a,) = 0, so that P e m.

Let now m be a maximal ideal of K[X,,...,X,] and let A be the quotient
ring K[X,, ..., X,]/m. Since A is a field, corollary 1.6.2 implies that A is a finite
extension of K. Since K is algebraically closed, the canonical morphism K - A
is an isomorphism. In particular, for every i € {1,..., n}, there exists a unique

a; € K such that X; — a; € m. Then (X, - a,,...,X,, — a,) is contained in m.
Necessarily, one has m = (X, — a,, ..., X, — a,). This concludes the proof of the
theorem. ]

1.7.2. Algebraic sets. — Let K be a field and let n be an integer such that n > o.
Let E be a subset of K[X,, ..., X, ]. The algebraic setdefined by E is the subset

VY (E)={(ay,...,a,) €K"; VPeE, P(a,...,a,)=0}.

Lemma (1.7.3). — Let K be a field and let n > o be an integer.
a) One has ¥ (2) =K" and ¥ (1) = &;
b) IfE and E’ are subsets of K[X,, ..., X, ]| suchthatE c E/, then ¥ (E') c ¥ (E);
c) For every family (E) )L of subsets of K[X,, ..., X, ], one has ¥ (U).LEy) =
Mrer %(EA);
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d) Let E,E’ be two subsets of K[X,, ..., X, ]| and let EE’ be the set of all prod-
ucts ab, for a € E and b € ¥/; then one has ¥ (EE') = ¥ (E) u ¥ (E');
e) Let E be a subset of K[X,, ..., X, ] and let 1 be the ideal generated by E; then

Y (E) =¥ (1) = ¥ (V).

Proof. — 'This lemma is analogous to lemma 1.5.2 and one can prove it
in the same way. One can in fact deduce it from that lemma as fol-
lows. Let us consider the map ¢:K” — Spec(K[X,,...,X,]) given by
¢(ay,....,a,) = (X, - a,,...,X, — a,), whose image is contained in the
maximal spectrum Spm(K[X,,...,X,]), and is even equal to the maximal
spectrum when K is algebraically closed. Then 7 (E) = ¢ (V(E)). O

1.7.4. — Let Z be a subset of K”; one defines a subset .# (Z) of K[X,, ..., X,]
by

FI(Z)={PeK[X,,....X,]; Y(a,,...,a,)€Z, P(a,...,a,)=o0}.

It is an ideal of K[X,, ..., X, ]; it is in fact the kernel of the morphism of rings
from K[X,, ..., X,] to the ring K given by P —~ (a — P(a)).

Lemma (1.7.5). — Let K be a field and let n > o be an integer.
a) One has () =K[X,,...,X,] and Z(K") = {o};
b) IfZ and Z' are subsets of K" such that Z.c 7/, then ¥ (Z') c I (Z);
) If (Z)) e is a family of subsets of K", then .% (Uye Za) = Maer Z (Z));
d) For every subset Z of K", one has the inclusion Z c V' (7 (Z)), with equality

if and only if Z is an algebraic set;
e) For every subset E of K[X,, ..., X, ], one has the inclusion E c .Z (¥ (E)).

Proof. — Assertions a), b) and ¢) follow directly from the definitions, as well as
the inclusions d) and e).

Let us terminate the proof of d). If Z = ¥/(.#(Z)), then Z is an algebraic
set. Conversely, let us assume that Z is an algebraic set, let E be a subset
of K[X,,...,X,] such that Z = ¥/(E). By definition, one has E c .#(Z), so
that 7' (.#(Z)) c 7 (E) = Z, hence the desired equality. O

Theorem (1.7.6) (Nullstellensatz, 2). — Let K be an algebraically closed field, let
n > o be an integer, let E be a subset of K[X,,...,X,] and let 1 be the ideal it
generates. One has .9 (¥ (E)) = /1. In particular, if ¥ (E) = @, then I = (1).
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Proof. — We give two proofs of this result; both rely on theorem 1.7.1 which
describes the maximal spectrum of K[X,,...,X,]. The first one combines it
with properties of the operations V and j on the spectrum of a ring, as well as
with corollary 1.6.4 which is specific to finitely generated algebras over a field.
The second proof will be more elementary.

1) According to theorem 1.7.1, assigning the maximal ideal m, = (X, -
ay, ..., Xy —ay) of K[X,,...,X,] to the point a = (a,, ..., a,) of K" defines a
one-to-one correspondence between K" and Spm(K[X,,...,X,]). For every
subset E of K[X,,...,X,], this correspondence identifies the subset ¥ (E)
of K" with the subset V(E) n Spm(K[X,,...,X,]) of Spec(K[X,,...,X,]); for
every subset Z of Spm(K[X,, ..., X,]), identified with a subset of K", one has
7 (Z) =j(Z). In particular, for every subset E of K[X,, ..., X,], one has

S (V(E)) =j(V(E) n Spm(K[X,, ..., X,])).

Let ] be this ideal; it is a radical ideal of K[X,, ..., X,]; according to proposi-
tion 1.5.6, V(J) is the closure of V(E)nSpm(K[X,, . .., X, ]) in Spec(K[X,, . . ., X,,])-
By part ¢) of corollary 1.6.4, one thus has V(J) = V(E). By proposition 1.5.6, a),
one thus has J =j(V(J)) =j(V(E)) =j(V(I)) = VL

2) The second proof of theorem 1.7.6 begins by showing the second assertion:
let us assume that I # (1) and let us prove that ¥'(E) # @.

Since I # (1), there exists a maximal ideal m of K[X,,...,X,] such that I c m;
in particular, E c m, hence ¥ (m) c ¥ (E). Let (a,,...,a,) € K" be such that
m=(X,-4a,...,X, —a,); one thus has ¥ (m) = {(a,,...,a,)}. We conclude
that (a,,...,a,) € ¥ (E); it is in particular non-empty.

The inclusion /I ¢ .# (¥ (E)) follows from the definitions. Let indeed P € \/I
and let e be an integer such that e > 1 and P¢ € L. For every (a,,...,a,) € ¥ (E),
one thus has P¢(a,,...,a,) = o, hence P(a,,...,a,) = o. This shows that
Pe 7 (¥ (E)).

Conversely, let P € .# (7 (E)); we need to show that P € \/I. The following
proof relies on the so-called ““Rabinowitsch trick™ ( ( ). Let
E’ be the subset of K[X,, ..., X,, T] given by E’ = Eu {1 — TP}. It follows from
its definition that ¥'(E’) = @: indeed, a tuple (a,, ..., a,, b) belongs to 7 (E’)
if and only if Q(a,,...,a,) = o for every Q € E and 1 = bP(a,,...,a,); the
first conditions imply that (a,,...,a,) € ¥ (E), so that P(a,,...,a,) = o since
P e .# (¥ (E)); the last condition 1 = bP(a,, ..., a,) is then impossible. By the
first case, theideal of K[ X, ..., X,,, T] generated by E’ is equal to (1); in particular,
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there exist polynomials Q,,...,Q, € E, R,,...,R,, S € K[X,,...,X,, T] such
that

1=QR, + -+ QR + (1-PT)S.

Let us substitute T = 1/P(X,, ..., X}) in this relation; it follows an equality of
rational functions:

1= Qi(Xy. .o, Xu)Rj(Xsr - .., Xps 1/P).
j=1
Let e be an integer greater than the degrees of the polynomials R;,...,R,,,S
with respect to the variable T; multiplying this relation by P¢, we obtain

m
P =3 Qi(Xpr- - » Xn)P(Xis ., X)) Ri(Xss . .., X1, 1/P).
j=1

By the choice of the integer e, the rational function P¢Rj(X,,...,X,,1/P) isa
polynomial for every j € {1, ..., m}, so that P¢ belongs to the ideal (Q,, ..., Q).
In particular, P¢ € I, which shows that P € V1, as claimed. []

Corollary (1.7.7). — Let K be an algebraically closed field and let n > o be an
integer. The maps E — ¥ (E) and Z — ¥ (Z) induce bijections, inverse one of the
other, from the set of radical ideals of K[X,, ..., X, ] to the set of algebraic subsets
of K".

1.8. Tensor products (Medium up)

1.8.1. — Let kbearing,let M and N be k-modules. Their tensor product M®; N
is a k-module endowed with a k-bilinear map ¢: M xN — M ®; N which satisfies
the following universal property: For every k-module P and every k-bilinear
map b:M x N — P, there exists a unique k-linear map : M ®; N — P such that

b=poe.

1.8.2. — It may be constructed as follows. Let P, = k(M*N) the free k-module
on M x N. Its elements are maps with finite support from M x N to k. Let
0:M x N — P, be the map which associates with (m,7n) € M x N the function
which maps (m, n) to 1 and maps every other element of M x N to o. Let P, be
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the submodule of P, generated by elements of the form
d(am,n) —ad(m,n),
d(m,an) —ad(m,n),
d(m+m',n)-8(m,n)-38(m', n),
S(m,n+n')-8(m,n)-8(m,n’),

with m, m’ €e M, n,n’ e Nand a € k. Let P = P,/P,, let 1: P, — P be the canonical
surjective morphism and let ¢ = o 4.
The image ¢(m, n) is denoted m ® n and called a split tensor.

1.8.3. — Let u:M — M’ and v: N — N’ be morphisms of k-modules. The map
M x N - M’ ®, N’ given by (m, n) = u(m) ® v(n) is k-bilinear. Consequently,
there exists a unique morphism of k-modules, w: M ®; N - M’ ®; N/, such that
w(m®n) =u(m) ®v(n) for every m ¢ M and every n € N. This morphism is
often denoted by u ® v.

If u and v are surjective, then u ® v is surjective.

If u and v are split injective, that is, if they admit retractions, then u ® v is
split injective. Indeed, let u’: M’ - M and v: N’ — N be morphisms such that
u'ou =1Idy and v/ ov = Idy; then (' @ v ) o (u®@v) = (W' ou) ® (v ov) =
Idy ® Idy = Idmen. An important case where this happens is when k is a field.

1.8.4. — Let (M;);q be a family of k-modules, let M = @, M; be their direct
sum; for every i € I, let p;: M — M, be the projection of index i. Let (N;);q
be a family of k-modules and let N = @ i N be their direct sum; for every
j €], let i N — Nj; be the projection of index j. The map from M x N to
®;,j(M;®;N;) givenby (m,n) — ¥; i pi(m)®q;(n) is k-bilinear; consequently,
there exists a unique k-linear morphism m: M ® N — @; ;(M; ®, N;) such that
n(me@n) =%, pi(m)®q;(n). The morphism 7 is an isomorphism.

In particular, if M and N are free k-modules, their tensor product is a free
k-module. More precisely, let (m1;);c be a basis of M, let (#;) ¢ be a basis of N
then the family (m; ® 1;)(;, j)e14j is a basis of M ® N.

1.8.5. Base change. — Let M be a k-module and let A be a k-algebra. The
k-module M ®; A is naturally an A-module: the external multiplication being
characterized by the relation b(m ® a) = m ® ab. It is called the A-module
deduced from M by base change, and is sometimes denoted by M4.
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If f:M — M'is a morphism of k-modules, the morphism fa = f ® Ida: M —
M/, is A-linear.

1.8.6. — Let A and B be k-algebras. Then the tensor product A ®; B has a
unique structure of k-algebra for which (a ® b) - (a’ ® b’) = (aa’) ® (bb’) for
every a,a’ € A and every b, b’ € B.

The map A - A ® B given by a = a ®1is a morphism of k-algebras; similarly,
the map from B to A ® B given by b — 1 ® b is morphism of k-algebras.

1.8.7. — For example, let A and B be polynomial algebras in families of inde-
terminates (X;);ea and (Y)jj respectively. Then the tensor product A ® B is
isomorphic to the polynomial algebra in the family of indeterminates obtained
by concatenation of the families (X;) and (Y;). Such an isomorphism is induced
by the bilinear map from k[(X;)] x k[(Y;)] to k[(X;,Y;)] which maps a pair
(P(X;),Q(Y;)) toits product P(X;)Q(Y;).

Lemma (1.8.8). — Let I be an ideal of A, let ] be an ideal of B; let (1,]) denote the
ideal of A ® B which they generate. There exists a unique morphism of k-algebras

(AexB)/(L]) - (A/T) ® (B/])

which maps the class of a ® b to the tensor product @ ® b of the classes of a and b
in A/1 and B[] respectively. This morphism is an isomorphism of rings.

Theorem (1.8.9). — Let K be an algebraically closed field and let A,B be two
K-algebras. If A and B are integral domains, then A ®x B is also an integral
domain.

Proof. — The tensor product of two non-zero K-vector spaces is a non-zero
K-vector space; consequently, A ®x B # o and it suffices to show that the product
of two non-zero elements of A ®x B is non-zero.

Let f and g be two element of A ®x B such that fg = 0. We may decompose f

asasum Y. ;_ a; ® b; of split tensors, where b,, ..., b, are linearly independent
over K. Similarly, we write g = 373, a; ® b, where by, ..., b are linearly inde-

pendent over K.

Let A, be the subalgebra of A generated by a,,...,a,,al,...,a’, let B, be the
subalgebra of B generated by b,,...,b,,b!,...,b.. Let I and I’ be the ideals
(ay,...,a,)and (al,...,al) of A,. Since A, and B, have direct summands in A
and B as K-modules, the canonical morphism from A, ®x B, to A ®k B has
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a retraction, which allows to view A, ®x B, as a subalgebra of A ®x B. By
construction, f and g belongto A, ®xB,, and f g = 0. Let us show that InI’ = {o}.

Let m be a maximal ideal of A,. The quotient ring A,/m is a finitely generated
K-algebra, and is a field; consequently, it is an algebraic extension of K, hence
is isomorphic to K since K is algebraically closed. Let cly,: A, - K be the corre-
sponding morphism of K-algebras with kernel m. Let also 0,,: A, ®x B, = B, be
the morphism cl, ® idg ; it is a morphism of K-algebras.

Since

em(f)em(g) = em(fg) =0

and B, is an integral domain, either 8,,,(f) = o or 6,,(g) = 0. Moreover, one has

Om(f)zi:clm(ai)bi and Bu(g) = 3 clu(a))b,

j=1
Assume that 6,,(g) = o. Since b,, ..., b, are linearly independent over K, we
conclude that cly,(a;) = o for every i € {1,...,r}; in other words, the ideal

I=(ay,...,a,) is contained in m.

Similarly, if 6,,(f) = o, we obtain that the ideal I' = (a/, ..., al) is contained
in m.

In any case, one hasInI' c m.

This is valid for any maximal ideal m of A,. By corollary 1.6.4, every element
of In T is nilpotent. Since A, is an integral domain, one hasIn 1’ = {o}.

Assume that f # o. Then I # o; let thus x be a non-zero element of I. For every
yel',xy eInl, hence xy = o. Since A, is an integral domain, this implies
y =0,hencel’ = o, hence a/ =--- = a/ = o and g = o. This concludes the proof
that A ®k B is an integral domain. [

1.9. Noetherian rings

1.9.1. — Let k be a ring. One says that a k-module M is noetherian if one of the
following equivalent properties holds:

(i) Every strictly increasing sequence of submodules of M is finite;
(ii) Every non-empty family of submodules of M has a maximal element;
(iii) Every submodule of M is finitely generated.

The equivalence of (i) and (ii) is elementary. Let us assume that they hold, let
P be a submodule of M and let us prove that P is finitely generated. The set
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of all finitely generated submodules of P is non-empty, since {o} is finitely
generated, hence it has a maximal element, say P’. For every m € P, P’ + Am
is a finitely generated submodule of P which contains P’; by maximality of P/,
one has P’ + Am = P/, hence m € P’; consequently, P = P’ and P is finitely
generated, as was to be shown. Conversely, let us assume that every submodule
of M is finitely generated and let us prove by contradiction that every stricly
increasing sequence of submodules of M is finite. Let thus (P,) be a stricly
increasing infinite sequence of submodules of M and let P be their union. By
assumption, P is finitely generated, hence there are elements p,, ..., p; € P such
that P = Ap, +--- + Ap,. By definition of P, for each integer i € {1,..., s}, there
exists an integer n; such that p; € P,,.. If n = max(n,, ..., n;), one has p; € P,
for each i, hence P c P,,. Since P,, c P,, c P for every integer m > n, this shows
that P,,, = P, and contradicts the hypothesis that the sequence (P,,) is strictly
increasing.

One says that a ring A is noetherian if it is noetherian as a module over itself;
since a submodule of A is an ideal of A, this means that one of the following
equivalent properties holds:

(i) Every strictly increasing sequence of ideals of A is finite;
(ii) Every non-empty family of ideals of A has a maximal element;
(iii) Every idel of A is finitely generated.

In particular, principal ideal domains are noetherian.

1.9.2. — Let N be asubmodule of M. Then M is noetherian if and only if both N
and M/N are noetherian. In particular, finite direct sums of noetherian modules
are noetherian.

If A is an noetherian ring, then an A-module is noetherian if and only if it is
finitely generated.

Theorem (1.9.3) (Hilbert). — For every noetherian ring A, the ring A[X] is noethe-
rian. In particular, for every field K and every integer n > o, the ring K[X,, ..., X,]
is noetherian.

Proof. — Let I be an ideal of A[X]. For every integer m, let J,, be the set of
leading coefficients of elements of I whose degrees are equal to m (the leading
coeflicient of the zero polynomial being 0); one checks that is an ideal of A.
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For every integer m, the ideal ], is finitely generated. We may thus fix a finite
set Q,, of polynomials belonging to I,, whose leading coefficients generate J,,,.
Moreover, the family (],,) 30 is increasing. Since A is noetherian, there exists
an integer » such that J,, = J, for every integer m such that m > n.

Let Q be the finite set Q = Q, U --- U Q, and let I’ be the ideal of A[X] it
generates. One has I’ c [; it suffices to prove that I = I’. Let thus P € I and let
us prove by induction on deg(P) that P € I'. Let m = deg(P), and let a € J,,, be
the leading coefficient of P. Let p = min(m, n); one has a ¢ J,. By definition
of Q, there exists a polynomial P’ of degree p which is a linear combination of
polynomials in Q, (hence an element of I') whose leading coefficient is equal
to a. The polynomial P — T™~PP’ belongs to I and its degree is < m; by induction,
it belongs to I'. Consequently, P belongs to I’, as was to be shown. ]

1.10. Irreducible components

Definition (1.10.1). — Let X be a topological space. One says that X is irreducible
if it is not empty and if it is not the union of two closed subsets of X, both non-empty
and distinct from X. One says that a subspace of X is irreducible if the induced
subspace is irreducible.

In other words, a subset Z of X is irreducible if and only if it is non-empty
and if for every two closed subsets Y, and Y, of X such that Z c Y, U'Y,, one has
ZcY,orZcYy,.

This notion is very useful in the framework of algebraic geometry, where the
Zariski topology plays a prominent role. However, it has little interest for the
classical topological spaces; for example, the only irreducible subspaces of R”
are singletons.

Proposition (1.10.2). — Let A be a ring.

a) The topological space Spec(A) is irreducible if and only if the nilradical of A
is a prime ideal.

b) Let1 be an ideal of A. The closed subset V(I) of Spec(A) is irreducible if and
only if /1 is a prime ideal.

Proof. — Assertion a) is the particular case of b) for I = {o}. Conversely, if
I is an ideal of A, V(I) is homeomorphic to Spec(A/I) by proposition 1.5.10;
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moreover, the nilradical of A/I is equal to \/I/1, hence is prime if and only if v/
is a prime ideal of A.

It thus suffices to treat part a). Since Spec(A/n) is homeomorphic to Spec(A),
we may even assume that A is reduced.

Let us assume that Spec(A) is reducible. Let Y, and Y, be closed subsets
of Spec(A), distinct from Spec(A), such that Spec(A) = Y, uY,; letI, and I,
be radical ideals such that Y, = V(I,) and Y, = V(I,). Since Y, and Y, are not
equal to Spec(A), one has I, # {0} and I, # {o}; let then a € [, and b € I, be any
two non-zero elements. Since Spec(A) =Y, uY, =V(I,n1,) = V(0), one has
I,n1, = {o}. In particular, ab = o, which shows that A is not an integral domain.

Conversely, let a,b be non-zero elements of A such that ab = o. Then,
Spec(A) = V(o) = V(ab) = V(a) uV(b). Since a # o and n = o, there
exists a prime ideal p of A such that a ¢ p; in particular, V(a) # Spec(A). The
element a is not a unit (for, otherwise, b = o, a contradiction); consequently,
V(a) #+ @. Similarly, V(b) is neither empty, nor equal to Spec(A). This implies
that Spec(A) is not irreducible. O

Proposition (1.10.3). — Let X be an irreducible topological space and let U be a
non-empty open subset of X.

a) The open subset U is dense in X, and is irreducible;

b) The map Z — Z n'U defines a bijection between the set of irreducible closed
subsets of X which meet U and the set of irreducible closed subsets of U. Its inverse
bijection is given by Z. v Z.

Proof. — a) Bydefinition of an irreducible topological space, the union of two
closed subsets distinct from X is distinct from X. Considering the complemen-
tary subsets, the intersection of two non-empty open subsets of an irreducible
topological space is non-empty. In particular, U meets every non-empty open
subset of X, which means that U is dense.

Let us now prove that U is irreducible. Let Z, and Z, be closed subsets of X
such that U c Z, U Z,. Tt then follows that X = U ¢ Z, U Z,, so that X = Z, or
X =Z,. In particular, Uc Z, or U c Z,.

b) Let Y be an irreducible closed subset of U and let Z be its closure in X; let
us observe that Y = Z n U. Indeed, since Y is closed in U, there exists a closed
subset Z’ of X such that Y = U n Z’. By definition of the closure, we have Z c Z'.
Then,YcZnUcZ' nU=Y,henceY=ZnU.



1.10. IRREDUCIBLE COMPONENTS 29

Since Y is irreducible, it is non-empty, hence the set Z is not empty. Let
Z, and Z, be closed subsets of X such that Z c Z, uZ,. ThenY = UnZ c
(UnZ,)u(UnZ,). Since Y is irreducible, onehasY cUnZ,orYc UnZ,. In
the first case, Z, is a closed subset of X containing Y, hence Z c Z,; in the other
case, Z c Z,. This shows that Z is irreducible.

We may now conclude the proof of the proposition. By what precedes, setting
a(Y) =Y defines a map from the set of irreducible closed subsets of U to the set
of irreducible closed subsets of X.

Applied to an irreducible subset Z of X and to its open subspace Z n U, part a)
implies that if Zn U # @, then it is irreducible and 7ZnU = Z. Consequently,
one defines a map from the set of irreducible closed subsets of X which meet U
to the set of irreducible closed subsets of U by setting S(Z) = Z n U. Moreover,
if Z is a closed subset of X which meets U, then a0 B(Z) =ZnU=7Z;if Yisa
closed subset of U, then we had already proved that o a(Y) =Y nU = Y. This
shows that « and f3 are bijections, inverse one of the other. [

Definition (1.10.4). — An irreducible component of a topological space is a
maximal irreducible subset.

Lemma (1.10.5). — Let X be a topological space.

a) The closure of an irreducible subset of X is irreducible. In particular, every
irreducible component of X is closed.

b) Every irreducible subset of X is contained in some irreducible component. In
particular, X is the union of its irreducible components.

Proof. — a) Let Abeanirreducible subset of X and let Z,, Z, be closed subsets
of X suchthat Ac Z,UZ,. Consequently, Ac Z, uZ,,hence AcZ, or AcZ,.
Since Z, and Z, are closed, one thus has A c Z, or A c Z,. This proves that A is
irreducible.

b) Let % be the set of irreducible subsets of X which contain A. Let us show
that the set ¢, ordered by inclusion, is inductive. It is non-empty since A € €.
Let (Y;);a be a non-empty totally ordered family of irreducible subsets of X
containing A and let Y be its union. One has A c Y, because I # @. Let us show
that Y is irreducible. First, Y # &. Let then Z, and Z, be closed subsets of X such
that Y ¢ Z, U Z,. Let us assume that Y ¢ Z,, let y € Y be such that y ¢ Z, and let
j € Ibesuchthat y € Y;. Leti € [ and let us show that Y; c Z,. If Y; c Y;, one has
YicYcZ uZ,andY, ¢ Z, since Y; contains Y ; since Y; is irreducible, one
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thus has Y; ¢ Z,. In particular, Y; ¢ Z,. On the other hand, if Y; ¢ Y;, we have
Y; c Yjc Z,. Consequently, Y = U;q Y; ¢ Z,. This shows that Y is irreducible,
hence that € is inductive. By Zorn’s lemma, 4 has a maximal element; this
is a maximal irreducible subset of X, hence an irreducible component of X; it
contains A by construction.

For every x € X, {x} is irreducible. By what precedes, every point of X is
contained in an irreducible component. This means exactly that X is the union
of its irreducible components, as claimed. O]

Example (1.10.6). — An irreducible component of Spec(A) is a closed subset
of the form V(p), where p is a minimal prime ideal of A.

As a consequence of lemma 1.10.5, every prime ideal of A contains a minimal
prime ideal of A.

Definition (1.10.7). — One says that a topological space is noetherian if every
strictly decreasing sequence of closed subsets is finite.

Equivalently, a topological space is noetherian if and only if every non-empty
family of closed subsets has a minimal element.

Example (1.10.8). — Indeed, the property for Spec(A) of being noetherian
means that every non-empty family of radical ideals of A has a maximal element.
In particular, we see that if A is a noetherian ring, then Spec(A) is a noetherian
topological space.

Proposition (1.10.9). — Let X be a noetherian topological space.

a) Every subspace of X is noetherian;
b) The space X has finitely many irreducible components, and X is their union.
c) Every irreducible component of X contains a non-empty open subset of X.

Proof. — a) Let A be a subspace of X and let (A,,) be a stricly decreasing
sequence of closed subsets of A. By definition of the induced topology, there
exists for each # a closed subset Y,, of X such that A, = AnY,. SetZ, =
YonY,n---nY,;the sequence (Z,) is decreasing. Since onehas A, =AnZ,
for each n, this sequence is in fact stricly decreasing, hence is finite because X is
noetherian. This implies that the sequence (A,) is finite, as was to be shown.
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b) Since every subspace of X is noetherian, the assertion should hold for
every subspace of X. We will thus prove the desired result by contradiction by
considering a minimal subspace of X which is a counterexample.

Precisely, let € be the set of closed subsets of X which cannot be written as a
finite union of irreducible closed subspaces of X. Assume by contradiction that
¢ is non-empty. Since X is a noetherian topological space, the set €, ordered by
inclusion, admits a minimal element W. By construction, W is a closed subset
of X which is not a finite union of irreducible closed subspaces of X, but every
closed subspace of W (distinct from W) is such a finite union.

The space W is not irreducible. Since the empty space is the union of the empty
family, one has W # @. Consequently, there exist closed subsets W, and W, of W,
non-empty and distinct from W, such that W = W, u W,. By the minimality
of W, W, and W, can be written as a finite union of irreducible closed subspaces
of W; consequently, W is also a finite union of irreducible closed subspaces of W,
a contradiction!

In particular, there exists a finite family (X,,...,X,) of irreducible closed
subsets of X such that X = X, u--- u X,,. Up to removing X; from this family if
necessary, we may assume that for j # i, X; is not a subspace of X;.

Before we terminate the proof of b), let us prove that every irreducible subset Z
of X is contained in one of the X;. Since Z = U, (Z n X;), there exists i €
{1,...,n} such that Z = Z n X;, this means that Z c X;.

This implies in particular that every maximal element of the family (X, ..., X,)
is maximal among all closed irreducible subsets of X, so that X,, ..., X,, are the
irreducible components of X.

c) Let Y be an irreducible component of X, let Y’ be the union of the other
irreducible components, and let U = Y = (Y n Y’). Since X has finitely many
irreducible components, Y’ is closed, so that U is open. If, by contradiction,
U is empty, then YN Y’ = Y, hence Y c Y'. By the argument used at the end
of the proof of b), this implies that Y is contained in some other irreducible
component of X, contradicting the definition of an irreducible component. So
U is a non-empty open subset of X contained in Y. []

Corollary (1.10.10). — Let A be a reduced noetherian ring. Then A has finitely
many minimal prime ideals. Their intersection is equal to {0} and their union is
the set of zero divisors of A.
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Proof. — Since A is noetherian, the topological space Spec(A) is noetherian.
Consequently, A has finitely many minimal prime ideal, say p,, . .., p,, and every
prime ideal contains a minimal prime ideal. In particular, the nilradical of A,
which is the intersection of all prime ideals of A, is equal to the intersection of
all minimal prime ideals. Since A is reduced, this intersection is equal to {o}.
It remains to show that an element a € A is a zero divisor if and only if it
belongs to one of the p;. One has V(M. p;) = Ujs V(p;) # Spec(A), hence
the ideal MNj; p; contains a non-zero element, say x. Then ax belongs to the
intersection of all minimal prime ideals of A, hence ax = o; this shows that a
is a zero divisor. Conversely, let a € A be a zero divisor and let x € A= {0} be
such that ax = o. Since x # o, there exists i € {1,...,n} such that x ¢ p;. The
equality ax = o then implies that a € p;. ]

1.11. Dimension

1.11.1. — Let E be a partially ordered set.

A chain in E is a stricly increasing family x, < x; < --- < x,,. The length of that
chain is equal to n, it starts at x, and ends at x,,.

The dimension of E, denoted by dim(E), is the supremum of the lengths of
chains in E.

Let x € E. The height (resp. the coheight) of x is the supremum of the length
of chains ending (resp. starting) at x. They are denoted ht(x) and coht(x)
respectively.

Definition (1.11.2). — Let X be a topological space.

The Krull dimension of X, denoted dim(X), is the dimension of the set €(X) of
all irreducible closed subsets of X, ordered by inclusion.

Let Z be a closed irreducible subset of X. The codimension of Z in X, denoted
codim(Z), is the coheight of Z in the partially ordered set €.

The following facts follow directly from these definitions:

a) The dimension of X is the supremum of the dimensions of its irreducible
components;

b) Each irreducible component of X has codimension o;

c) For every closed irreducible subset Z of X, one has codim(Z) + dim(Z) <
dim(X);
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d) If Y and Z are irreducible closed subsets of X such that Y c Z, then
dim(Y) < dim(Z) and codim(Z) < codim(Y).

In view of these facts, one may define the codimension of an arbitrary closed
subset Z as the infimum of the codimensions of its irreducible components.

1.11.3. — Let Abearingandlet X = Spec(A). Every closed irreducible subset Z
of X is of the form Z = V(p), for some unique prime ideal p of A; in fact,
p =3(Z) = j({p}), so that V(p) = {p}. Moreover, if p and q are prime ideals,
then V(q) c V(p) ifand only ifp c q. Consequently, the three following partially
ordered sets are isomorphic:

— The set € of closed irreducible subsets of X, ordered by inclusion;
— The set of all prime ideals of A, ordered by containment; _
— The set Spec(A), ordered by the relation x < y if and only if x € {y}.

It follows that the dimension of X is equal to the supremum of the lengths of
chains of prime ideals of A, the Krull dimension dim(A) of the ring A.

For every prime ideal p of A, the codimension of V(p) in Spec(A) is equal
to the height ht(p) of p, defined as the supremum of the lengths of chains of
prime ideals of A ending at p. By the correspondence between prime ideals of
the localized ring A, and prime ideals of A contained in p, one also has

ht(p) = dim(A,).
Moreover, one has dim(V(p)) = dim(A/p), hence the inequality
ht(p) + dim(A/p) < dim(A).

Theorem (1.11.4) (First theorem of Cohen-Seidenberg)
Let B be a ring and let A be a subring of B. Assume that B is integral over A.

a) Let q be a prime ideal of B and let p = q 0 A. Then p is a maximal ideal of A
if and only if q is a maximal ideal of B.

b) Let q c q' be prime ideals of B such that qn A =q' nA. Then q =¢'.

c) The canonical map from Spec(B) to Spec(A) is surjective: for every prime
ideal p of A, there exists a prime ideal q of B such that qn A = p.

Proof. — a) Passingto the quotients, one gets an integral extension of integral
domains A/p c B/q. By lemma 1.4.5, A/p is a field if and only if B/q is a field; in
other words, p is maximal in A if and only if q is maximal in B.
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b) Let p = gn A and let us consider the integral extension of rings A, c B,
induced by localization by the multiplicative subset A =p. (It is indeed injective:
if a fraction a/s in A, maps to o in By, there exists t € A —p such that at = o,
hence a = 0.) Observe the obvious inclusion pA, c qB,,. On the other hand, the
ideal qB, does not contain 1, hence is contained in the maximal ideal pA,, of the
local ring A,. This shows that qB, n A, = pA,. Similarly, ¢'B, n A, = pA,.

Since pA, is maximal, gB, and q'B, are maximal ideals of B,. However, the
inclusion q c q’ implies qB, c q'B,. Necessarily, these two maximal ideals of B,
are equal.

Since localization induces a bijection from the set of prime ideals of B disjoint
from A = p to the set of prime ideals of By, one gets q = ¢'.

c) Let p be a prime ideal of A and let us consider the extension A, c B,
obtained by localization with respect to the multiplicative subset A —p. Since
B, # o0, we may consider a maximal ideal m of B,. There exists a prime ideal q c B
disjoint from A = p such that m = gB,. Considering the integral extension
A, c By, part a) implies that mn A, is a maximal ideal of Ay, hence mn A, = pA,.

Let us show that g n A = p. Indeed, let b € q n A; then b/1 € qB, N A, so
that there exists a € A = p such that ab € p. Since p is a prime ideal, b € p.
Conversely, if a € p, then a/1 € pA, hence a/1 € gB,. Consequently, there exists
a’ € A=p such that aa’ € q. Observe that a’ ¢ g, for otherwise, one would have
a’ € qn A = p, which does not hold. Since q is a prime ideal, a € g.

[]

Corollary (1.11.5). — Let B be a ring, let A be a subring of B. If B is integral over A,
then dim(A) = dim(B).

Proof. — Letqo & --- & q, be a chain of prime ideals of B. Let us intersect these
ideals with A; this gives an increasing family (qo N A) c--- c (g, N A) of prime
ideals of A. By part b) of theorem 1.11.4, this is even a chain of prime ideals, so
that dim(A) > dim(B).

Conversely, let p, ¢ --- ¢ p, be a chain of prime ideals of A. For each m ¢
{o,...,n},letus construct by induction a prime ideal q,, of B such that q,,nA =
P and such that q, c -+ ¢ q,. This will imply that dim(B) > dim(A), hence
the corollary.

By part c¢) of theorem 1.11.4, there exists a prime ideal q, of B such that g, N
A = g,. Assume (o, . .., are defined. Let us consider the integral extension
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A/p,, c B/q,, of integral domains. By theorem 1.11.4, applied to the prime
ideal p,,41 /P of A/p,,, there exists a prime ideal q of the ring B/q,, such that
qN (A/Pm) = Pmsr/Pm- Then, there exists a prime ideal q,,+, containing ¢, such
that q = qyn+1/qm. Moreover, . N A = Ppyiy-

This concludes the proof. O]

The following theorem lies at the ground of dimension theory in algebraic
geometry.

Theorem (1.11.6). — Let K be a field and let A be a finitely generated K-algebra.
Assume that A is an integral domain and let F be its field of fractions. One has
dim(A) = tr. deg, (F).

Proof. — We prove the theorem by induction on the transcendence degree of F.

If tr.deg, (F) = o, then A is algebraic over K. Consequently, dim(A) =
dim(K) = o.

Now assume that the theorem holds for finitely generated K-algebras which
are integral domains and whose field of fractions has transcendence degree
strictly less than tr. deg, (F).

By the Noether normalization lemma (theorem 1.6.1), there exist an integer n >
o, elements a,, ..., a, of A such that the morphism f:K[X,,...,X,] = A such
that f(X;) = a; is injective, and such that A is integral over its subring B =
Kla,,...,a,] = f(K[X,,...,X,]). Moreover, n = tr. deg, (F). By corollary 1.11.5,
it suffices to prove that the dimension of the polynomial ring K[X,, ..., X, ] is
equal to n.

Observe that

(0) c (X)) € (Xp.or Xn)

is a chain of prime ideals of K[X,, ..., X,]; since its length is equal to , this
shows that dim(K[X,, ..., X,]) > n. Conversely, let

be a chain of prime ideals of K[X,, ..., X, ] and let us set A’ = K[X,, ..., X,]/p..
Then A’ is a finitely generated K-algebra and dim(A’) > m — 1. Since p, is a
prime ideal, A’ is an integral domain; let F’ be its field of fractions. Any non-zero
polynomial P ¢ p, furnishes gives a non-trivial algebraic dependence relation
between the classes x,,...,x, of X, ..., X, in A’. Consequently, tr. deg, (F’) <
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n — 1. By induction, tr. deg,(F') = dim(A’), hence m —1 < n -1, and m < n.
This concludes the proof. O]

In the course of the proof of theorem 1.11.6, we established the following
particular case.

Corollary (1.11.7). — For any field K, one has dim(K[X,, ..., X,]) = n.

Proposition (1.11.8). — Let K be a field and let A, B be finitely generated K-algebras.
One has dim(A ®x B) = dim(A) + dim(B).

Proof. — By the Noether normalization lemma (theorem 1.6.1), there exist
integers m, n > o and injective integral morphisms f:K[X,,...,X,,] - A and
¢:K[Y,,...,Y,] > B. One has m = dim(A) and n = dim(B). Since A and B are
finitely generated, these morphisms are even finite. It follows that the natural
morphism

K[Xp ..o X Yoo, Y] 2 K[Xss ., X ] ® K[ Yy, ..., Y, ] > A®K B

is injective and finite. Consequently, dim(A ®x B) = m + n = dim(A) + dim(B).
]

Remark (1.11.9). — Dimension theory of rings has a lot of subtleties which do
not occur for finitely generated algebras over a field.

a) There are rings of infinite dimension, for example the ring A =
K[T,,T,,...] of polynomials in infinitely many indeterminates. Worse,
while all strictly increasing sequences of ideals in a noetherian ring are finite,
their lengths may not be bounded. In fact, Nagata has given the following
example of a noetherian ring whose dimension is infinite. Let (m,,) be a stricly
increasing sequence of positive integers such that m,,, — m, is unbounded;
for each n, let p, be the prime ideal of A generated by the elements T}, for
my < i < my,,. Let S be the intersection of the multiplicative subsets S, = A=p,,.
Then S7'A is noetherian, but dim(S™A) = +o0.

We shall prove below that noetherian local rings are finite dimensional.

b) There is a beautiful formula due to Grothendieck: let K be a field and let L
and M be extensions of K. Then

dim(L ®x M) = inf(tr. deg, (L), tr. deg; (M)).

This is proved in ( , , P- 349, remarque (4.2.1.4)).
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c) If A is a finitely generated algebra over a field, proposition 1.11.8 asserts that
dim(A[X]) = dim(A) + 1; in fact, this holds under the weaker assumption that
A is noetherian, see ( , , I1I, prop. 13). However, in the general case, it
lies between dim(A) + 1 and 2dim(A) + 1, and all possibilities appear!

1.12. Artinian rings

1.12.1. — Let k be a ring. One says that a k-module M is artinian if every
strictly decreasing sequence of submodules of M is finite or, equivalently, if every
non-empty family of submodules of M has a minimal element.

One says that a ring A is artinian if it is artinian as a module over itself; this
means that every strictly decreasing sequence of ideals of A is finite.

This also implies that every strictly increasing sequence of closed subsets
of Spec(A) is finite.

1.12.2. — Let P be a submodule of M. Then M is artinian if and only if both P
and M/P are artinian. In particular, finite direct sums of artinian modules are
artinian.

1.12.3. — Let A be a ring. An A-module M is said to be simple if its only
submodules are {0} and M; this is equivalent to the existence of a maximal
ideal m of A such that M ~ A/m.

The length of an A-module M is the dimension of the partially ordered set of
its submodules. It is denoted by length , (M), or even length(M) if the ring A is
clear from the context.

Proposition (1.12.4). — Let M be an A-module and let N be a submodule of M. If
two of the modules M, N and M /N have finite length, then so does the third one,
and one has the equality

length, (M) = length, (N) + length, (M/N).

Proof. — LetN, &N, ¢--- ¢ N, and My/N ¢ M,;/N ¢ --- ¢ M /N be chains of
submodules of N and M/N, then Then,

Nogng"'gNangg”'gMb
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is a chain of length a + b of submodules of M, hence the inequality length , (M) >
length, (N) + length, (M/N). In particular, if M has finite length, then so do N
and M/N.

Conversely, let us assume that N and M/N have finite length; we want to prove
that M has finite length and that length, (M) = length, (N) + length, (M/N).
Let thus M, ¢ M, ¢ --- & M, be a chain of submodules of M. One observes that
for every two submodules P’ and P” of M such that P’ ¢ P”, P"n N = P” nN and
P’ + N = P” + N, then P’ = P”. It follows that for every integer i € {o,...,a —1},
at least one of the two inclusions

MiﬂNCMiﬂﬂN and Mi+NCMi+1+N

is strict. This implies that length, (N) + length, (M/N) > a. It follows that
length, (N) +length, (M/N) > length, (M), whence the proposition. O

1.12.5. — An A-module has finite length if and only if it is artinian and noethe-
rian. Moreover, every maximal chain of submodules of such an A-module M
has length length , (M).

Lemma (1.12.6). — Let A be an artinian ring.

a) If A is an integral domain, then A is a field;
b) Every prime ideal of A is maximal;
c) Spec(A) is finite.

Proof. — a) Letusassume that A is an integral domain. Let x € A= {o}. The
infinite decreasing sequence of ideals A o (x) > (x2) o ... cannot be strictly
decreasing, hence there exists an integer n > o such that (x") = (x"*). Let
a € A be such that x” = ax"*'. Since x # o and A is an integral domain, we may
simplify by x", hence ax = 1. This shows that x is invertible.

b) Let p be a prime ideal of A. Then, A/p is an artinian ring which is an
integral domain. By part a), it is a field, hence p is a maximal ideal.

c) Since every prime ideal of A is maximal, every point of Spec(A) is closed.
If Spec(A) were infinite, there would exist an infinite sequence (x,) of pairwise
distinct points in Spec(A). The infinite sequence

gc{x}c{x,x}c...

of closed subsets of Spec(A) is then strictly increasing, which contradicts the
hypothesis that A is an artinian ring. []
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Theorem (1.12.7) (Akizuki). — Let A be a ring. The following properties are
equivalent:

(i) The ring A is artinian;

(ii) The A-module A has finite length;

(iii) The ring A is noetherian and dim(A) = o.

Proof. — Condition (ii) implies that every sequence of ideals of A which is
either strictly increasing or strictly decreasing is finite, hence that A is artinian
(condition (i)) and noetherian (the first half of condition (iii)).

Moreover, if A is artinian, then we have seen in lemma 1.12.6 that every prime
ideal of A is maximal, hence dim(A) = o.

Let us assume that A is noetherian and that dim(A) = o. Let p,,...,p, be
the minimal prime ideals of A, so that V(p,),...,V(p,) are the irreducible
components of Spec(A). Since dim(A) = o, p; is a maximal ideal and V(p;) =
{p;}; in particular, Spec(A) is a finite and discrete topological space.

Let n be the nilradical of A. One hasn = p,N---Np,, so that the A-module A/n
embeds into the finite product of the A-modules A/p;, for 1 < i < n. In particular,
length, (A/n) < n. It follows from this that every A/n-module which is finitely
generated has finite length.

For every integer d > o, the ideal n? is finitely generated, because A is
noetherian. This implies that n?/n* is a finitely generated A /n-module, hence
length(nd /nd+1) is finite.

Every element of n is nilpotent. Since A is noetherian, the ideal n is finitely
generated, hence there exists an integer e > o such that n¢ = o. Consequently,

length, (A) < ) length(n?/n*)
d=o0

is finite, which concludes the proof of implication (iii)=(ii).

It remains to show that an artinian ring has finite length. By lemma 1.12.6,
we known that Spec(A) consists of finitely many maximal ideals, say p,, ..., p,.
Let ] be their product; it is equal to the Jacobson radical of A. The decreasing
infinite sequence of ideals (A,],J?,...) cannot be strictly decreasing, so that
there exists an integer s > o such that J* = J**'. Let us prove that J* = o. Let thus
I = (0:J°) be the set of a € A such that aJ* = o; we will prove that I = A.

Assume otherwise. Since A is artinian and A # I, there exists an ideal I’ of A
such that I ¢ I’ and which is minimal for this property. Let now a € I’ =1. By
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corollary 1.3.3 to Nakayama’s lemma, applied to the submodules aA and I of A,
wehavelcaJ+1¢aA+1cT, hencel=a]+]I thatis, a] c 1. Foreveryb €],
we thus have ab € I, hence ab]* = o. This shows that aJ*** = o. Since J* = J*!, we
have aJ* = o, hence a € I. This contradiction proves that A = I. Consequently,
J* = o, as claimed.

Now consider the decreasing sequence of ideals

Aop,o--op,...p,=I0Ip,o---2Ip,...p,=*2Pp,2---2F =o.

Each successive quotient is a noetherian A-module of the form M/mM, where
m is maximal ideal of A, hence a finite dimensional A/m-vector space; its length
as an A-module is thus finite. Consequently, the length of A is finite, as was to
be shown. O

1.13. Codimension

Lemma (1.13.1). — Let A be a ring, let n > 1 be an integer and let p,, ..., p, be
prime ideals of A. If 1 is an ideal of A such that1 c p, U--- U p,, there exists an
integer i such that 1 c p;.

Proof. — We prove the lemma by induction on #. The result is obvious if n = 1.
Assume that I is contained in none of the ideals p;. By induction, for every i, one
has I ¢ Uj.; pj, hence there exists x; € I such that x; ¢ pj, if j # i. This implies
that x; € p; for every i. Leta = x, + x, ... x,,. Since x, € p, and x,, ..., x,, do not
belong to p,, onehas a ¢ p,. Let i > 2; then x, ¢ p; butx,...x, € p;, sothata ¢ p,.
Consequently, a does not belong to the union of the ideals p;, in contradiction
with the fact that it belongs to I. ]

Proposition (1.13.2). — Let K c F be a finite normal extension of fields. Let A be
a subring of K which is integrally closed in K and let B be the integral closure of A
in F. Let G be the group of automorphisms of F which restrict to identity on K.

a) Forevery o € G, one has o(B) = B;
b) For every point x € Spec(A), the group G acts transitively on the fiber

(“9p)~(x) in Spec(B).

Proof. — a) Let b € B. Then o(b) belongs to F and is integral over A. One
thus has o(b) € B. This shows that ¢(B) c B. Similarly, one has 67'(B) c B,
hence B c (B).
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b) By the first theorem of Cohen-Seidenberg (theorem 1.11.4), the map
4p:Spec(B) — Spec(A) is surjective, so that the fiber (%p)~*(x) is non-empty.
Let y, y’ be two elements of this fiber; let g, g’ be the corresponding prime ideals
of B. Let b € q'. The product a = [],.; 0(b) is an element of F which is fixed
by G. By Galois theory, it is radicial over K: there exists an integer g > 1 such
that a4 € K. (In fact, g = 1 if the extension F/K is separable, and otherwise g is a
power of the caracteristic of K.) Since b is integral over A, each ¢(b) is integral
over A, and a is integral over A, as well as a4. Since A is integrally closed in K,
one has a1 € A. Moreover, a? € q¢'NA = p = qn A;in particular, a4 € q. Since q is
a prime ideal, there exists o € G such that ¢(b) € q. This shows that b € 67(q),
hence q' ¢ Uyeg 0(9q).

By lemma 1.13.1, there exists ¢ € G such that ¢’ ¢ g(q). Since 6(q) N A =
o(qnA)=0(p) =q' nA, proposition 1.13.2 shows that g’ = ¢(q). This proves
the proposition.

O

Theorem (1.13.3) (Second theorem of Cohen-Seidenberg)

Let B be an integral domain and let A be a subring of B. Assume that A
is integrally closed in its field of fractions and that B is a finite A-module. Let
Po C -+ C P, be a chain of prime ideals of A and let q,, be a prime ideal of B such
that q, N A = p,. There exists a chain of prime ideals q, C -+ C q,-, C q,, such that
q;i N A =p; for every i.

Proof. — Let K be the field of fractions of A and let F be that of B. Let F’ be a
finite extension of F which is normal over K, let B’ be the integral closure of A
in F'. By the first Cohen-Seidenberg theorem (theorem 1.11.4), there exists a
chain g}, c --- c q), of prime ideals of B’ such that p; = g} n A for every i. Let g,
be a prime ideal of B’ such thatq, n B = q,,.

By proposition 1.13.2, there exists an automorphism ¢ of F’ such that o|x = id
and o(q},) = q,. For every integer i such thato < i <n-1,letq; = o(q}) N B.
Then q, c -+ c g, is a chain of prime ideals of B. For every integer i, one has

qinA=0(q;))nBnA=0(q;nA)=0(pi)=pi
hence the theorem. []

Corollary (1.13.4). — Let B be an integral domain, let A be a subring of B such that
B is a finite A-module. Assume that A is integrally closed in its field of fractions.
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Then, for every prime ideal q of B, one has
hts(q) = hta(qgn A).

Lemma (1.13.5). — Let A be a unique factorization domain and let p be a prime
ideal of A. Ifht(p) = 1, then there exists a prime element a € A such that p = (a).

Proof. — Let a € p be an arbitrary non-zero element. Since p is a prime ideal, a
is not a unit, hence it admits a decomposition a = b, . .. b, be a decomposition as
a product of irreducible elements. Necessarily, p contains one of these factors, so
that we may assume that a is irreducible. Since A is a UFD, the ideal (a) is then a
prime ideal. Since ht(p) = 1, the inclusion o ¢ (a) c p implies that p = (a). [

Theorem (1.13.6). — Let K be a field. Let A be a finitely generated K-algebra
which is an integral domain. For every prime ideal p of A, one has dim(A) =

dim(A/p) + ht(p).

In other words, for every irreducible closed subset Z of X = Spec(A), one
has the familiar relation dim(X) = dim(Z) + codim(Z). In spectra of finitely
generated K-algebras, dimension and codimension behave as expected.

Proof. — We have already explained that dim(A) > dim(A/p) + ht(p). On the
other hand, by the Noether normalization lemma (theorem 1.6.1), there exists an
integer n > o and an injective and integral morphism f:K[X,,...,X,] - A. Let
B be the image of f and let p = N B. One thus has dim(A) = n and dim(A/p) =
dim(B/q) (corollary 1.11.5), as well as hts(q) = htg(p) (corollary 1.13.4). It thus
suffices to prove the result when A = k[X,, ..., X,]. By induction on dim(A), it
even suffices to prove the case when hty (p) = 1.

In this case, lemma 1.13.5 asserts that there exists an irreducible polynomial
f € A such that p = (f). The transcendence degree of the field of fractions
of A/(f) is then at least n — 1: if the indeterminate X,, appears in f, then
the images x,, ..., x,_, of X, ..., X,_, are algebraically independent in A/( f),
since an algebraic dependence relation P(x,,...,x,_,) = 0 in A/(f) means that
P € (f), and this implies P = o if degy (f) # o. By theorem 1.11.6, one has
dim(A/p) > n — 1, hence the inequality ht(p) + dim(A/p) > n, as was to be
shown. []
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Corollary (1.13.7). — Let K be a field and let A be a finitely generated K-algebra
which is an integral domain. Every maximal chain of prime ideals of A has
length dim(A).

Proof. — Letp, C --- C p, is a maximal chain of prime ideals of A. We argue
by induction on n. One has p, = (0), because A is an integral domain. If
n = o, then A is a field, hence dim(A) = o. Let us assume that n > 1. The
chain p, c p, of prime ideals is maximal among those ending at p,. Since every
maximal chain of prime ideals ending at p, begins at (0) = p,, one has ht(p,) = 1.
Moreover, the quotient ring A/p, is an integral domain and a finitely generated
K-algebra. In this ring, the increasing sequence p,/p, c -+ € p,,/p, is a maximal
chain of prime ideals. By induction, one has dim(A/p,) = n — 1. Consequently,
n=1+dim(A/p,) =1+dim(A) — ht(p,) = dim(A), as was to be shown. [

1.14. Krull’s Hauptidealsatz and parameter systems

Theorem (1.14.1) (Krull’s Hauptidealsatz). — Let A be a noetherian ring and
let f be an element of A. The prime ideals of A which are minimal among those
containing f have height at most 1.

If f is not a zero-divisor, then f does not belong to any minimal prime ideal
of A (see the proof of corollary 1.10.10, the hypothesis that A be reduced is not
used for this assertion), so that the prime ideals of A which are minimal among
those containing f have height exactly 1.

Proof. — Let p be a prime ideal of A, minimal among those containing f; we
need to prove that ht(p) <1, that is, that there does not exist a chain ¢’ ¢ q ¢ p
of prime ideals of A. Let us argue by contradiction, considering such a chain.
If we quotient by g/, we may moreover assume that q’ = {0}, i.e.,, that A is an
integral domain; we then have to prove that {0} and p are the only prime ideals
of A which are contained in p. The ring of fractions A, is noetherian too, and its
maximal ideal pA, is minimal among its prime ideals containing f/1. Replace
the ring A by its fraction ring A, and f by its image in A, we may thus assume
that A is a local, noetherian, integral domain, and that p is its maximal ideal.
Let thus q be a prime ideal of A, distinct from p, and let us show that q = {o}.
Since p is minimal among the prime ideals of A which contain f, one has f ¢ q.
For every integer n > o, let q, = A n q"Ag; this ideal is called the nth symbolic
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power of q. It consists in the elements a € A for which there exists b ¢ b such that
ab e q". For every integer n such that n > o, one has q"** c q”, hence q,.; € q,.

By the correspondence between the prime ideals of the ring A/ fA and the
prime ideals of A which contain f, we see that (p + fA)/fA is the only prime
ideal of A/ fA, so that dim(A/fA) = o. Since this ring A/ f A is noetherian, it is
then artinian, hence the sequence (q,, + fA/fA), of ideals of A/ fA is eventually
constant. Let then 7 be an integer such that

qn + fA =qun + fA.

Let x € q,. By this relation, there exists a € A such that x + af € q,,.,; it follows
in particular that af € q,, hence a € q, since f ¢ q. Consequently, x € ¢, + fqn,
whence the equality

Jn = Jn+ +fqn-
Since f € p, this implies
Jn = Qu+1 T Pqn-

It now follows from Nakayama’s lemma (corollary 1.3.3), that q,, = q,4,. In
particular, one has

q0"Aq = 4nAq = dunfq = 9" Aq = 0 4" Aq.

By Nakayama’s lemma again, one has q”A, = o. Since q is a prime ideal, this
implies A4 = o0, hence q = o, as was to be shown. []

Corollary (1.14.2). — Let A be a noetherian ring, let n be an integer and let
fis o> fn be elements of A. Let p be a prime ideal of A which is minimal among
those containing (f,,. .., f,); then ht(p) < n.

Geometrically: For every irreducible component Z of V(f,,..., f,), one has
codim(Z) < n.

Proof. — In the noetherian local ring A,, the maximal ideal pA, is minimal
among those containing the images of f,, ..., f,. Moreover, the height of pA,
in Ay is equal to the height of p in A. We may thus assume that A is local and
that p is its maximal ideal.

Let p’ be a prime ideal of A such that p’ ¢ p; let us prove that ht(p’) < n —1.
Since A is noetherian, there exists a prime ideal p/ such that p’ c p! ¢ p and
which is maximal among these ideals. Since one has ht(p’) < ht(p!), it suffices
to prove that ht(p!). We may thus assume that p’ = p!.
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Since p’ # p, there exists i € {1,...,n} such that f; ¢ p’. By simplicity of
notation, we assume that i = 1. Then p’ ¢ p’ + (f;) € p, so that p is the unique
prime ideal of A which contains p’ + (f;). Consequently, every element of p is
nilpotent modulo p’ + (f,);let m e N, let g,,..., ¢, € p’and a,,...,a, € A be
such that " = g; + a,f, forevery i € {2,...,n}.

One thus has p o (fi, s --.>€»); In fact, a prime ideal of A containing
(fi» Q2> --->4n) contains £, ..., f, hence contains f,,..., f,, so that p is the
unique prime ideal of A containing (f, g,...,¢,)- Let B = A/(gs ..., 4n)
and let q be the image of p in B. The prime ideal q is the unique prime ideal
which contains the image of f;, hence htg(q) < 1, by Krull’s Hauptidealsatz
(theorem 1.14.1). The inclusions (g,, ..., g,) € p’ & p then imply that the prime
ideal p’ is minimal among those containing (g,, ..., gx)-

By induction, one thus has ht(p’) < n — 1, as claimed. Since p’ is maximal
among the set of prime ideals of A distinct from p, one then has ht(p) < n, as
was to be shown. O

Corollary (1.14.3). — Let A be a noetherian ring and let p be a prime ideal of A.
The height of p is the smallest integer n such that there exist elements f,, ..., f, € A
such that V(p) is an irreducible component of V(fi, ..., fn).

Proof. — Since A is noetherian, there exists an integer n and elements f,, ..., f,
of A such that V(p) is an irreducible component of (f,, ..., f,); it suffices, for
example, that p = (f,, ..., f,). By the preceding corollary, we then have ht(p) <
n.
Conversely, let n = ht(p), and let p’ be a prime ideal of A such that p’ ¢ p
and ht(p’) = n — 1. By induction, there exist elements g,,..., g, € A such that
V(p’) is an irreducible component of V(g,, ..., g,). Let (p’) be the family of
minimal prime ideals of A containing (g,, ..., g,). Since A is noetherian, it is
finite. Moreover, one has p ¢ p’ for every i, since the inclusion p c p’ would
imply that ht(p) < ht(p!) < n - 1. By lemma 1.13.1, one has p ¢ Up!, hence
there exists an element g, € p such that g, ¢ p’ for every i. Then (g,,...,gx) C b;
moreover, any prime ideal g which satisfies this relation and which is contained
in p contains p’, but cannot be equal to p’, hence is equal to p. This shows that
V(p) is an irreducible component of V(gi, ..., g,)- O

Corollary (1.14.4). — The dimension of a local noetherian ring is finite.
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Proof. — If A is local, and m is its maximal ideal, one has dim(A) = ht(m).
Consequently, dim(A) is finite if A is noetherian. O]



CHAPTER 2

CATEGORIES AND HOMOLOGICAL ALGEBRA

2.1. The language of categories

2.1.1. — A category C consists in the following data:

— A collection ob( C') of objects;
— For every two objects M, N, a set C'(M, N) called morphisms from M to N;
— For every three objects M, N, P, a composition map C(M,N) x C(N,P),
(f.8)mgef
so that the following axioms are satisfied:

(i) For every object M, there is a distinguished morphism idy € C'(M, M),
called the identity;

(ii) Onehasidyof = f for every f € C(M,N);

(iii) One has g oidy = g for every g ¢ C'(N,P);

(iv) For every four objects M,N,P,Q, and every three morphisms
fe C(M,N),ge C(N,P), he C(P,Q), the two morphisms ho (go f) and
(hog)o fin C(M,Q) are equal (associativity of composition).

A common notation for C'(M,N) is also Hom¢ (M, N). Finally, instead of
f € C(M,N), one often writes f: M — N.

2.1.2. — Let f:M — N be a morphism in a category C. One says that f is
left-invertible, resp. right-invertible, resp. invertible, if there exists a morphism
g:N — M such that go f = idy, resp. fog = idn, resp. go f = idy and fog = idx.

One proves in the usual way that if f is both left- and right-invertible, then it
is invertible. An invertible morphism is also called an isomorphism.

Example (2.1.3). — The category Set of sets has for objects the sets, and for
morphisms the usual maps between sets.
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Example (2.1.4). — The category G'r of groups has for objects the groups and
for morphisms the morphisms of groups. The category Ab of abelian groups
has for objects the abelian groups and for morphisms the morphisms of groups.
Observe that objects of Ab are objects of Gr, and that morphisms in Ab
coincide with those in G'r; one says that Ab is a full subcategory of Gr.

Example (2.1.5). — The category Ring of rings has for objects the rings and
for morphisms the morphisms of rings.

Example (2.1.6). — Similarly, there is the category Field of fields and, if k is
a field, the category Vecy of k-vector spaces. More generally, for every ring A,
there is a category Mod of right A-modules, and a category s Mod of left
A-modules.

Example (2.1.7). — Let C be a category; its opposite category C° has the same
objects than C, but the morphisms of C° are defined by C°(M,N) = C (N, M)
and composed in the opposite direction.

It resembles the definition of an opposite group. However, a category is usually
different from its opposite category.

Example (2.1.8). — LetIbe a partially ordered set. One attaches to I a category I
whose set of objects is I itself. Its morphisms are as follows: let i, j € I; if i < j,
then I (i, j) has a single element, say the pair (i, j); otherwise, I(i, j) is empty.
The composition of morphisms is the obvious one: (j, k) o (i, j) = (i, k) if i, j, k
are elements of I such that i < j < k.

Remark (2.1.9). — While, in this course, categories are mostly a language to
state algebraic results of quite a formal nature, an adequate treatment of category
theory involves set theoretical issues. Indeed, there does not exist a set containing
all sets, nor a set containing all vector spaces, etc., so that the word collection in
the above definition cannot be replaced by the word set (in the sense of Zermelo-
Fraenkel’s theory of sets). However, the theory of sets only considers sets! There
are at least three ways to solve this issue:

a) The easiest one is to treat object of category theory as formulas, in the
sense of first order logic. For example Ring is a formula ¢ g, with one free
variable A that expresses that A is a ring. This requires to encode a ring A and
all its laws as a tuple: for example, one may consider a ring to be a tuple (A, S, P)
where A is the ring, S is the graph of the addition law and P is the graph of the
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multiplication law. The formula ¢ ging (x) then checks that x is a triplet of the
form (A, S,P), where S c A3 and P c A3, that S is the graph of amap A x A - A
which is associative, commutative, has a neutral element, and for which every
element has an opposite, etc.

Within such a framework, one can also consider functors (defined below), but
only those which can be defined by a formula.

This treatment would be sufficient at the level of this course.

b) One can also use another theory of sets, such as the one of Bernays-Godel-
von Neumann, which allows for two kinds of collections: sets and classes. Sets,
obey to the classical formalism of sets, but classes are more general, so that one
can consider the class of all sets (but not the class of all classes). Functors are
defined as classes.

This is a very convenient possibility at the level of this course. However, at a
more advanced development of algebra, one is lead to consider the category of
categories, or categories of functors. Then, this approach becomes unsufficient
as well.

c) Within the classical Zermelo-Fraenkel theory of sets (with choice),
Grothendieck introduced universes which are very large sets, so large than
every usual construction of sets does not leave a given universe. One also
needs to refine the axiom of choice, as well as to add the axiom that there is
an universe, or, more generally, that every set belongs to some universe. This
axiom is equivalent to the existence of inaccessible cardinals, an axiom which is
well studied and often used in advanced set theory.

Remark (2.1.10). — Let C be a category. One says that C is small if ob( C) is a
set and if C'(M, N) is a set for every pair (M, N) of objects of C.

A category C' such that the collection C'(M, N) is a set for every pair (M, N)
of objects is said to be locally small. In practice most categories considered in
general mathematics, such as the categories of sets, of groups, abelian groups, of
modules over a fixed ring, of vector spaces, etc., are locally small, but not small.

A locally small category C is said to be essentially small if the isomorphism
classes of object of C form a set, that is, if there exists a set such that every object
of C' is isomorphic to one and only one member of this set.

For example, the category of finitely generated modules over a ring R is essen-
tially small: for every finitely generated R-module M there is an integer n > o
such that M is isomorphic to a quotient of R". The pairs (n,N) where n > o
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and N is a submodule of R” form a set; if we take the quotient of this set by
the equivalence relation for which (#n,N) ~ (p,P) if R”/N ~ R? /P, we get a set
representing all isomorphism classes of finitely generated R-modules.

Definition (2.1.11). — Let C be a category, let M,N be objects of C and let
fe C(MN).

One says that f is a epimorphism if for every object P of C and every morphisms
2,9, € C(N,P) such that g, o f = g, o f, one has g, = g,.

One says that f is an monomorphism if for every object L of C' and every
morphisms g, g, € C(P,M) such that f o g, = f o g,, one has g, = g,.

Exercise (2.1.12). — a) Prove that monomorphisms and epimorphisms in
Set or in categories of modules are respectively injections and surjections.

b) Prove that in the category of rings, monomorphisms are the injective
morphisms. However, show that the canonical morphism f:Z — Q is an epi-
morphism of rings.

2.2. Functors

Functors are to categories what maps are to sets.

2.2.1. — Let C and D be two categories.
A functor F from C to D consists in the following data:

— an object F(M) of D for every object M of C;

— amorphism F(f) € D(F(M), F(N)) for every objets M, N of C' and every
morphism f € C(M,N),
subject to the two following requirements:

(i) For every object M of C, F(idy) = idp(m);

(ii) For every objects M, N, P of C and every morphisms f € C(M,N) and
g € C(N,P), one has

F(go f)=F(g) o E(f).
A contravariant functor F from C to D is a functor from C° to D. Explicitly,
it consists in the following data

— an object F(M) of D for every object M of C;
— amorphism F(f) € D(F(N),F(M)) for every objets M, N of C and every
morphism f € C(M,N),
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subject to the two following requirements:

(i) For every object M of C, F(idy) = idg(m);
(ii) For every objects M, N, P of C and every morphisms f € C(M,N) and
g€ C(N,P), one has

F(go f) =F(f) o F(g).

2.2.2. — One says that such a functor F is faithful, resp. full, resp. fully faith-
ful if for every objects M,N of C, the map f ~ F(f) from C(M,N) to
C(F(M),F(N)) is injective, resp. surjective, resp. bijective. A similar defi-
nition applies for contravariant functors.

A functor F is essentially surjective if for every object P of D, there exists an
object M of C such that F(M) is isomorphic to P in the category D.

Example (2.2.3) (Forgetful functors). — Many algebraic structures are defined
by enriching other structures. Often, forgetting this enrichment gives rise to a
functor, called a forgetful functor.

For example, a group is already a set, and a morphism of groups is a map.
There is thus a functor that associates to every group its underlying set, thus
forgetting the group structure. One gets a forgetful functor from Gr to Set.
It is faithful, because a group morphism is determined by the map between
the underlying sets. It is however not full because there are maps between two
(non-trivial) groups which are not morphism of groups.

Example (2.2.4). — The construction of the spectrum of a ring defines a con-
travariant functor from the category Ring of rings to the category Top of
topological spaces.

In the other direction, set &'(X) to be the ring of continuous complex-valued
functions on a topological space X. If f: X — Y isa continuous map of topological
spaces, let f*: 0(Y) — €' (X) be the morphism of rings given by f*(u) =uo f.
This defines a contravariant functor from the category Top to the category of
algebras over the field of complex numbers.

2.2.5. — Let F and G be two functors from a category C' to a category D. A
morphism of functors o from F to G consists in the datum, for every object M
of C, of a morphism ay;: F(M) - G(M) such that the following condition
holds: For every morphism f:M — N in C, one has ay o F(f) = G(f) o ap.
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Morphisms of functors can be composed; for every functor F, one has an
identity morphism from F to itself. Consequently, functors from C to D form
themselves a category, denotes F'(C, D).

2.2.6. — Let C and D be categories, let F be a functor from C' to D and let
G be a functor from D to C'. One says that F and G are quasi-inverse functors
if the functors G o F and F o G are isomorphic to the identity functors of the
categories respectively C and D.

One says that a functor F: C' — D is an equivalence of categories if there exists
a functor G: D — C such that F and G are quasi-inverse functors.

Proposition (2.2.7). — For a functor F: C' — D to be an equivalence of categories,
it is necessary and sufficient that it be fully faithful and essentially surjective.

Proof. — Let G:D — C be a functor such that F and G are quasi-inverse.
For every object P of D, F o G(P) is isomorphic to P, hence F is essentially
surjective. Moreover, for every objects M, N of C, the functor G o F, being
isomorphic to id ¢, induces a bijection from C'(M, N) to itself. This bijection is
the composition of the map @¢: C(M,N) - D (M, N) induced by F and of the
map Og: D(M,N) - C(M,N) induced by G. This implies that @ is injective
and Qg is surjective. By symmetry, @ is surjective too, so that it is bijection. In
other words, the functor F is fully faithful.

Let us now assume that F is fully faithful and essentially surjective. For every
object M of D, let us choose an object G(M) of C' and an isomorphism ay;: M —
F o G(M). Let M, N be objects of D and let f € D(M,N); since F is fully
faithful, there exists a unique morphism f’ € C(G(M), G(N)) such that F(f’) =
ano foay;set G(f) = f'. Since a0 idy ey = idpog(m) = F(idg(m)), one has
G(idy) = idg(m). Similarly, if M, N, P are objects of D and f € D(M,N) and
g € D(N,P), one has

apogo foamy = (apogoay)o(anofoay)
= F(G(g)) - F(G(/))
= F(G(g) ° G(f));
hence G(g o f) = G(g) o G(f). Consequently, the assignment M — G(M) and

f + G(f) is a functor from D to C. Moreover, the maps ay:M — F o G(M)
define an isomorphism of functors from the functor Idp to the functor F o G.
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Let us now construct an isomorphism of functors from Idp to G o F. Let M
be an object of C'. Since F is fully faithful, there exists a unique morphism Sy €
C (M, G o F(M)) such that F(Bm) = ap(m)- Since ag(ypy is an isomorphism, By
is an isomorphism as well. Moreover, if M, N are objects of C and f:M — N is
a morphism, then

F(G o F(f) o Bur) = @y © B(f) © atygy © F(Ban)
= OfF(N) © F(f)
=F(Bno f).

Since F is fully faithful, one thus has Sy o f = Go F(f) o fum. In other words, the
isomorphisms By, for M € ob( C'), define an isomorphism of functors from Id ¢
toGoF.

As a consequence, the functor G is a quasi-inverse of the functor F', hence F
is an equivalence of categories. [

Example (2.2.8) (Linear algebra). — Let K be a field. Traditionally, undergradu-
ate linear algebra only considers as vector spaces the subspaces of varying vector
spaces K”, and linear maps between them. This gives rise to a small category,
because for every integer #, the subspaces of K form a set.

The obvious functor from this category to the category of finite dimensional
K-vector spaces is an equivalence of categories. It is fully faithful (knowing that
vector spaces lie in some K” does not alter the linear maps between them). It
is also essentially surjective: since vector spaces have bases, every finite dimen-
sional K-vector space V is isomorphic to K", with n = dim(V). Consequently,
the (small) ““category of undergraduate linear algebra’ is equivalent to the (large)
category of finite dimensional vector spaces.

Example (2.2.9) (Covering theory). — Let X be a topological space, and let
x € X. Let Covx be the category of coverings of X. For every covering p:E — X,
the fundamental group 7, (X, x) acts on the fiber p~*(x). This defines a functor
(“fiber functor”’) F:E — F(E) = p7*(x) from the category Covx to the category
of (X, x)-sets.

If X is connected and locally pathwise connected, then this functor is fully faith-
ful. If, moreover, X has a simply connected cover (one says that X is ““délagable’’;
for example, locally contractible topological spaces are délagable), then it is an
equivalence of categories.
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Example (2.2.10) (Galois theory). — Let K be a perfect field and let Q be an
algebraic closure of K; let G be the group of K-automorphisms of Q. For every
finite extension L of K, let S(L) = Homg(L, Q), the set of K-morphisms from L
to Q. This is a finite set, of cardinality [L : K], and the group Gk acts on it by the
formula g- ¢ = g o ¢, for every ¢ € S(L) and every g € Gg; moreover, the action
of Gy is transitive.

Every morphism of extensions f:L — L’ induces a map f*:S(L’) — S(L)
which is compatible with the actions of Gk. The assignments L — S(L) and
f = f* define a contravariant functor from the category of finite extensions of K
to the category of finite sets endowed with a transitive action of Gg.

Galois theory can be summaried by saying that this functor is an equivalence
of categories. An inverse functor F assigns to a set ® endowed with an action
of Gk the subfield F(®) of Q which is fixed by the kernel of the action of Gk
on @. Moreover, the automorphism group of the functor S is the group Gg.

By analogy with covering theory, it may look preferable to have a category
equivalent to the full category of finite Gg-sets. To that aim, one just needs
to replace in the previous definitions the category of finite extensions of K by
the category of finitely dimensional reduced K-algebras (aka ““finite étale K-
algebras”, which are nothing but finite products of finite extensions of K).

2.3. Limits and colimits

2.3.1. — A quiver Qis atuple (V,E,s,t) where V and E are sets, and s, t are
maps from E to V. Elements of V are called vertices; elements of E are called
arrows; for an arrow e € E, the vertices s(e) and f(e) are the source and the
target of e.

Every small category C' has an underlying quiver, whose set of vertices is the
set of objects of C, and whose set of arrows is the set of morphisms of C'

2.3.2. Diagrams. — Let Q = (V,E,s, t) be a quiver and let C be a category. A
Q-diagram &7 in C' consists in a family (A, ),cy of objects of C' and in a family
(fe)eee of morphisms of C' such that for every arrow e € E, f, € C (A, Ay(e))-

2.3.3. Limits. — A cone on a diagram .o/ is the datum of an object A of C
and of morphisms f,: A - A,, for every v € V, such that f, o f;,) = fy) for
every e € E. Such a cone is said to be a limit if for every cone (B, (g, )vev) of the
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diagram .7, there exists a unique morphism g:B - Ain C suchthatg, = f,o g
for every v € V.

Let (A, (f,)) and (A’, (f])) be two limits of a diagram .27 Then there exists a
unique morphism ¢: A’ - A such that f/ = f, o ¢ for every v € V; this morphism
is an isomorphism. In other words, when they exist, limits of diagrams are
unique up to a unique isomorphism.

A limit of a diagram ¢ is sometimes denoted by lim (/).

2.3.4. — Let Q = (V,E,s, ) be a quiver, let Q° = (V, E, ,s) be the opposite
quiver in which the source and target maps are exchanged. Every Q-diagram .o/
in a category C is naturally a Q°-diagram in the opposite category C°, which
we denote by o7°. A colimit of the diagram .7 is a limit of the diagram .27°.

Explicitly, a colimit of the diagram .27 = ((A,), (f.)) consists in an object A
of C, and in morphisms f,: A, - A, for v € V such that f;,) o fo = fy) for
every e € E (such a family (A, (f,)) can be called a cocone on the diagram .<7),
which satisfies the universal property: for every object B of C' and every family
(8B — A,) of morphisms such that g,y o f. = g() for every e € E, there exists
a unique morphism g: A — Bin C such that g, = go f, foreveryv e V.

When they exists, colimits of a diagram .7 are unique up to a unique isomor-
phism. A colimit of a diagram &7 is sometimes denoted by lim(.%/).

Example (2.3.5). — a) Let Q be the empty quiver (no vertex, no arrow). Let
us consider the unique Q-diagram; it consists in nothing. By definition, a cone
on this diagram is just an object A of C, and A is a limit if and only if there
exists a unique morphism in C'(B, A), for every object B of C. Consequently, a
limit of this diagram in the category C is called an terminal object of C.

Dually, if A is a colimit of this diagram, it is an object such that, for every
object B of C, there exists a unique morphism C'(A, B); it is called a initial
object.

In the category of sets, the empty set is an initial object, while singletons are
terminal objects. In the category of groups, or in the category of A-modules, the
trivial group (with one element) is both an initial and a terminal object. In the
category Ring of rings, the ring Z is an initial object (for any ring A, there is
exactly one morphism from Z to A), and the ring o is a terminal object.
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b) Let Qbe the quiver e e (two vertices, no arrow). A Q-diagram .o’ consists
in a pair (A, A’) of objects of C'. A colimit of this diagram .« is called a coproduct
of this diagram, and a limit is called a product.

This generalizes to quivers Q = (V, &, s, t) whose set of arrows is empty: a
Q-diagram is a family o7 = (A, ),cy of objects indexed by V, a colimit of <7 is a
coproduct, while a limit of .7 is a product.

A coproduct A is endowed with maps f,: A, — A and satisfies the following
universal property: for every object B of C and every family (g,: A, - B) of
morphisms, there exists a unique morphism ¢: A — B such that g, = ¢ o f,
for every v € V. Dually, a product A is endowed with maps f,:A - A, and
satisfies the following universal property: for every object B of C' and every
family (g,:B — A,) of morphisms, there exists a unique morphism ¢:B - A
such that g, = f, o ¢ for every v € V.

c) Let Q be the quiver o =3 o . A Q-diagram .o/ consists in two objects

M, N of C and two morphisms f,g:M — N in C, hence can be represented as
f

o =( M=ZN ).
g

A limit of this diagram .7 is called an equalizer of the pair (f, g). If C is the
category of sets, or the category of groups, the subset E of M consisting of m € M
such that f(m) = g(m) is an equalizer of the diagram .«

A colimit of <7 is called a coequalizer of the pair (f, g). If C is the category
of sets, then the quotient of N by the smallest equivalence relation such that
f(m) ~ g(m) for every m € M is a coequalizer of the diagram o7. If C is the
category of groups, then the quotient of N by the smallest normal subgroup
containing the elements f (m)g(m)™, for m € M, is a coequalizer of this diagram.
If C is the category of abelian groups, or the category of modules over a ring,
then the cokernel of f — g is a coequalizer of this diagram.

Exercise (2.3.6). — Let A be aring, let S be a multiplicative subset of A. Let Q be
the quiver whose vertex set is S and whose set of arrows is S x S, an arrow (s, t)
having source s and target st. Let M be an A-module and let .7 = (M), f;.;)
be the Q-diagram such that M; = M for every s, and f;, is the multiplication
by t. Show that the module S7'M, endowed with the morphism f;: M; - S7*M
given by m — m/s, is a colimit of the diagram .Z .
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Proposition (2.3.7). — In the category of sets, every diagram has a limit and a
colimit.

Proof. — Let Q = (V,E,s,t) be a quiver and let &7 = ((A,),(f.)) be a Q-
diagram of sets.

a) Construction of a limit. Let A* = [],.v A, and let A be the subset of A*
consisting of families (a,),ey such that f.(ay.)) = a.) for every e € E. For
everyv € V, let f,: A - A, be the map deduced by restriction of the canonical
projection from A* to A,. By construction, one has f, o f;.) = fy() for every
e € E.

Let now B be a set and let (g, ),cv be a family such that f, o gy) = gy(.) for
every e € E. Let ¢*:B - A* be the map given by ¢*(b) = (g,(b))yev. By
the definition of A, one has ¢*(b) € A for every b € B; the map ¢:B - A
deduced from ¢* satisfies g, = f, o ¢ for every v € V. Moreover, if y:B - A
is a map such that g, = f, oy for all v € V, then f,(y(b)) = £,(b), hence
v(b) = (g,(b))vev = @(b). Consequently, (A, (f,)) is a limit of the diagram .7,
as was to be shown.

b) Construction of a colimit. Let A, be the set of pairs (v, a), where v € V and
a € A,. Let ~ be the smallest equivalence relation on A, such that (s(e),a) ~
(t(e), fe(a)) for every e € E and every a € A (,); let A = A,/ ~ be the quotient
set; one writes [v, a] for the class in A of an element (v, a) € A,. Foreveryv € V,
let f,: A, — Abethe map givenby a ~ [v, a]. Foreverye € Eand every a € Ay,
one has

Juoy(fe(@)) = [t(e) fe(a)] = [s(e), a] = fye)(a),
so that fi(.)o fo = fi(e); this shows that (A, (f,)) is a cocone of the Q-diagram .<7.

Let (B, (g,)) be a cocone of this diagram. Let ¢: A — B be a map such that
¢pof, =g foreveryv e V. Forv e Vand a € A,, one thus has ¢([v,a]) =
¢(f,(a)) = g,(a). Since the map from A, to A is surjective, thus shows that
there exists at most one map ¢: A — B such that g o f, = g, for every v € V. Let
us prove its existence. Let ¢,: A, — B be the map given by ¢.((v,a)) = g,(a),
whenever v € V and a € A,. For every e € E and every a € Ay), one has
0.((£(6), £:(a))) = 2o (f:(@)) = g(0)(@) = 9. ((5(e), a)). Consequently; the
map ¢. is compatible with the equivalence relation ~ and there exists a map
¢: A - Bsuch that ¢([v,a]) = ¢.((v,a)) = g,(a) for everyv € Vand every a ¢
A,. Foreveryv € V and every a € A,, one has ¢(f,(a)) = ¢.((v,a)) = g,(a),
hence g o f, = g,.
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This concludes the proof of the proposition. ]

Corollary (2.3.8). — Let C be a category among the following: groups, abelian
groups, rings, modules over a given ring, algebras. Then every diagram in C has a
limit.

Proof. — LetQ = (V,E,s,t) be a quiver and let ((A,), (f.)) be a Q-diagram
in C. The objects A, are sets endowed with additional laws. The proof of the
corollary consists in first considering the limit of the corresponding Q-diagram
in the category of sets, and in observing that it is naturally an object of the
category C which is a limit of the diagram in that category. We keep the notation
introduced in the proof of proposition 2.3.7.

An arbitrary product of groups, rings, etc., has a canonical structure of a group,
aring, etc., so that the set A* = [],.y A, is really an object of the category C, and
the projections A* — A, are morphisms in that category. Moreover, since the
maps f, are morphisms in the category C, one checks readily that its subset A
consisting of families (a,) € A* such that f,(ay)) = ay() is a subobject, hence
an object of C, and the maps f,: A - A, are morphisms of C. By inspection of
the proof, one checks that the map ¢: A — B constructed there is a morphism in
the category C, so that (A, (f,)) is a limit of the diagram .27 in the category C.

O

Remark (2.3.9). — Let C be a category of algebraic structures, such as sets,
groups, rings, modules, algebras,... It holds true that every diagram in C' has
a colimit. However, the colimit of this diagram in C, which is a set with an
algebraic structure, does in general not coincide with the colimit of the corre-
sponding diagram of sets.

For example, the trivial group {e} with one element is an initial object of the
category of groups, while the initial object of the category of sets is the empty
set.

Similarly, the coproduct of a family of sets is its ““disjoint union”’, while the
coproduct of a family of groups is its free product, and the coproduct of a family
of abelian groups is its direct sum.

Coequalizers give another examples of this phenomenon: the coequalizer of a

f
diagram of groups H ? G is the quotient of G by the smallest normal

subgroup containing the elements of the form f(x)g(x)™, for x € H. For
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example, if G is simple and f # g, then Coequal( f, g) is the trivial group, while
the coequalizer of this diagram in the category of sets is generally larger.

We now describe a particular type of quivers (associated to so called filtrant
partially ordered sets), for which the colimit of a diagram in a category of a given
algebraic structure is an algebraic structure on the set which is the colimit of the
same diagram, viewed as a diagram of sets.

2.3.10. — Let I be a partially ordered set. An I-diagram consists in a family
(A;)ie of objects of C, and of morphisms f;j: A; - A whenever i, j are elements
of I such that i < j, subject to the conditions:

— One has f;; =1idy, forevery i e I;
— One has fj; o f;j = fir for every triple (i, j, k) of elements of I such that
i<j<k.

In other words, this is a functor from the category I associated with the partially
ordered set I (see example 2.1.8) to the category C'. The morphisms f;; are often
omitted from the notation.

Let E be the set of pairs (i, j) of elements of I such that i < jand let I be the
quiver (L, E,s, t), where s and t are given by s((i, j)) = i and #((i, j)) = j. An
I-diagram naturally gives rise to an I-diagram, whose eventual colimit (resp.
limit) is called its colimit (resp. its limit).

Explicitly, a colimit of an I-diagram ((A;), (fi;)) is an object A of the cate-
gory C endowed with morphisms f;: A; — A satistying fj o f;; = f; for all i, j
such that i < j, and such that object B of C, and every family (g;: A; - B) of
morphisms such that g;jo f;; = g;, there exists a unique morphism ¢: A — B such
that p o f; = g; for every i € L.

Similarly, a limit of an I-diagram ((A;), (fij)) is an object A of the category C
endowed with morphisms f;: A — A; satisfying f;; o f; = f; for all i, j such that
i < j, and such that object B of C, and every family (g;: B — A;) of morphisms
such that f;; o g; = gj, there exists a unique morphism ¢: A — B such that
gi=fiogpforeveryicel

2.3.11. — LetIbe a partially ordered set. One says that [ is filtrant if every finite
subset has an upper bound in I. This means that I is non-empty and for every
two elements i, j € I, there exists k € I such that i < k and j < k.
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If I is a filtrant partially ordered set, an I-diagram is also called a direct system,
or an inductive system. In this case, colimits are also called direct limits or
inductive limits, and limits are also called inverse limits or projective limits.

Proposition (2.3.12). — Let C' be a category among the following: groups, abelian
groups, rings, modules, algebras. Every directed system in C' has a colimit.

Proof. — Let I be a filtrant partially ordered set and let & = ((%%), (fij)) bea
directed system indexed by L. Let I be the quiver associated with I, so that .o/ is
an I-diagram. The objects of C are sets endowed with additional maps (binary
laws, operations,...) subject to algebraic conditions. The proof consists in first
considering a colimit (A, (fi: A; > A) of the diagram ¢ in the category of sets,
as given by proposition 2.3.7, and in observing that it is naturally a colimit in
the category C. For this, the hypothesis that the partially ordered set I is filtrant
is essential. Let us keep the notation of the proof of proposition 2.3.7.

Let T be one of the binary laws of objects of the category C, for example the
group law if C is the category of groups. While A, has not particular structure,
let us prove that there is a unique law T on A such that f;(aTb) = f;(a)Tfi(b)
iti e Iand a,b € A;. Indeed, we first define a map from A, x A, to A by
((i,a),(j,b)) = [k, fic(a)T fix(b)], whenever k is an element of I such that
i < kand j < k. It is well defined; indeed, if i < k" and j < k/, let k" € I be such
that k < k" and k' < k”'; since fixr is compatible with the law T, one has

(K", firr (@) T fjxr (0) ] = [K”, frwr (fix (@) T fx(0))] = [k, fix (@) T fix (D)),
and [K”, fixr(a)T fixn(b)] = [K', firr (@) T fir (b)] by symmetry.

We then observe that this map passes to the quotient by the equivalence
relation ~ and defines a desired law T on A.

If the laws T on the A; are commutative (resp. associative), one proves that
the obtained law T on A is commutative (resp. associative) as well. Assume that
for every i, the law T has a neutral element e; in A;; then, the classes [i, e;] (for
i € I) are equal to a single element e of A which is a neutral element. Similarly, if
every element of A; has an inverse for the law T, then every element of A has an
inverse: the inverse of a class [, a] is the class [i, b], where b is an inverse of a
in A;.

This treats the cases of groups and abelian groups. The case of rings is analo-
gous: by what precedes, the colimit A is endowed with a natural addition and a
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natural multiplication compatibly with the maps f;: A; = A; one then checks
that the multiplication distributes over the addition.

Similarly, when C' is the category of R-modules (for some ring R), one checks
that A has a unique structure of R-module such that x-[i, a] = [i, x - a] for every
x eR,everyieclandeveryacA,.

To conclude the proof of the corollary, it remains first to observe that the
maps f; are morphisms in the category C, and second to check that the map y
constructed in the proof of proposition 2.3.7 is a morphism in the category C.

[]

2.3.13. — Let C and D be categories, let F: C' - D be a functor.

Let Q be a quiver and let o7 = ((A,), (¢.)) be a Q-diagram in C. Assume
that this diagram has a colimit (A, (¢,)). Then F(<7) = ((F(A,)), (F(¢.))) is
a Q-diagram in D and the object F(A), equiped with the family of morphisms
(F(¢,)), is a cocone on that diagram.

One says that the functor F commutes with colimits if for every such situation,
the cocone (F(A), ((¢,))) is a colimit of the diagram F(.<7).

The definition, for the functor F, of commuting with limits is analogous: this
means that for every diagram .7 as above which has a limit (A, (¢, )), the cone
(F(A), (F(¢,))) on the diagram F(.«) is a limit.

Definition (2.3.14). — One says that a functor is right exact if it commutes with
every finite colimit, and that it is left exact if it commutes with every finite limit.
One says that a functor is exact if it is both left exact and right exact.

If F: C' - D is a contravariant functor, one considers it as a functor from C°
to D, so that we also have a definition of right or left exact contravariant functors.

Example (2.3.15). — Let A be a ring, let S be a multiplicative subset of A. Let us
consider the functor from the category of A-modules to that of S™*A-modules
which is given by (M ~ S7'M, f ~ S7'f). Let us show that it commute with
every colimit and with every finite limit.

We begin with the case of colimits. Let Q = (V,E) be a quiver, let .#Z =
((M,), (¢.)) be a Q-diagram of A-modules and let (M, (¢,) be its colimit.
Let us then show that the cocone (S'M, (S™'¢,)) on the diagram S7*.Z =
((S™M,), (S*¢,)) satisfies the universal property of a colimit. Let (N, (v, ))
be a cocone on this diagram, where N is an S"*A-module. For every v € V, v, is
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a morphism from S™M, to N such that y,(,) o (S¢.) = ¥, for every e € E.
For every v € V, let v/: M, — N be the morphism given by m ~ y,(m/1); then
(N, (¥/)) is a cocone on the initial diagram .#, so that there exists a unique
morphism y': M — N such that y’ o ¢, = v/, for every v € V. Since every element
of S acts by automorphism on N, there exists a unique morphism y:S7'M — N
such that w(m/s) = (1/s)y’(m) for every m € M and every s € S. For every
v eV, every m € Mand every s € S, one has v, (m/1) = v/,(m) = ¢'(¢,(m)) =
v(S¢,(m/1)), hence v, = yoS~¢,. Conversely, every morphism y: S7'M — N
such that ¥ oS¢, = y, for every v must satisfy y(¢,(m)/1) = v(¢,(m/1)) for
every v. Since M is a colimit of the diagram .#, the compositions of v and ¥
with the canonical morphism from M to S™'M coincide with y’. This implies
that v = v.

Let us now prove that the functor M - S'M commutes with every finite limit.
Let thus Q = (V, E) be a finite quiver and .# = ((M,), (¢.)) be a Q-diagram
of A-modules; let (M, (¢,)) be a limit of this diagram. Then (S™M, (S7¢,))
is a cone on the diagram S7'.#, and we need show that it satisfies its universal
property. Let thus N be an S*A-module and let (v, ),ev be a family, where
¥y:N - §7'M, is a morphism of A-mdules such that S7'¢, o Y.y = Yy, for
every e € E.

Let n € N. For every v € V, let m, ¢ M and s, € S be such that y,(n) = m,/s,;
since V is finite, we may replace s, by [],.y s, and assume that all elements s, are
equal to a single element s € S. For every e € E, one then has (S, ) (m(,)/s) =
My(e)/s, hence there exists s, € S such that s,¢.(m)) = s,m,). Since E is
finite, there exists an element s’ € S such that g, () = s'my () for every
e € E. It then follows from the universal property of a limit, applied to the
morphisms A - M,, a — as’m,, that there exists a unique element m € M such
that s'm, = ¢,(m) for every v € V. One then has ss'y, (n) = s'm, = ¢,(m).

Define w(n) = m/ss’; this is an element of S™M which does not depend on
the choices of the elements s and s’ such that v, (n) = m, /s for every v € V and
s'@e(My(e)) = s'my ) for every e € E. The map y: N — S7'M is a morphism of
S7'A-modules and one has (S7'¢,) oy = y, for every v e V.

It is moreover the unique such morphism. Let indeed ¥ be a morphism of
A-modules from N to S*M such that (S'¢, ) oy = v, for everyv € V. Let n € N,
let m € M and s € S be such that y(n) = m/s. One then has v, (n) = ¢,(m)/s
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for every v € V, so that, in the definition of v, one can take for s, s’, (m,), m the
elements s,1, (¢, (m)), m, which shows that y(n) = m/s = y(n).

2.4. Representable functors. Adjunction

2.4.1. — Let C be alocally small category and let P be an object of C.
One defines a contravariant functor hp from the category C' to the cate-
gory Set of sets, sometimes denoted Hom ¢ (e, P), as follows:

— For every object M of C, one sets hp(M) = C(M, P);

— For every morphism f:M — Nin C, hp(f) is the map u — u o f from
C(N,P) to C(M,P).
One says that a contravariant functor G: C° — Set is representable if it is
isomorphic to a functor of the form hp; one then says that P represents the
functor G.

Moreover, the assignment P ~ hp is a functor from the category C to the
category ( C°, Set) of contravariant functos from C to Set.

2.4.2. — One can also define a functor kp from the category C to the category
of sets as follows:

— For every object M of C, one sets kp(M) = C (P, M);

— For every morphism f:M — Nin C, kp(f) is the map u — f o u from
C(P,M) to C(P,N).
This is functor is also denoted by Hom (P, e). It is also the functor hp rep-
resented by the object P of the opposite category C°. Every functor which is
isomorphic to a functor of this form is called a corepresentable functor. If F is
isomorphic to kp, one also says that P corepresents the functor F.

In fact, one often writes “‘representable’ instead of “‘corepresentable’’, for the
covariance of the functor immediately resolves the ambiguity.

2.4.3. — Algebra is full of universal properties: the free module on a given
basis, quotient ring, quotient module, direct sum and product of modules,
localization, algebra of polynomials on a given set of indeterminates. They are
all of the following form: “in such algebraic situation, there exists an object and
a morphism satisfying such property and such that every other morphism which
satisfies this property factors through it”.
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The property for an object I to be an initial object can be rephrased as a
property of the corepresentable functor Hom ¢ (I, ), namely that this functor
coincides with (or, rather, is isomorphic to) the functor F that sends every object
of C to a fixed set with one element.

This allows to rephrase the definition of an initial object as follows: an object
I is an initial object if it corepresents the functor F defined above.

Objects that represent a given contravariant functor (resp. corepresent a given
functor) are unique up to a unique isomorphism:

Proposition (2.4.4) (Yoneda’s lemma). — Let C' be a category, let A and B be
two objects of C.

a) For any morphism of functors ¢ from hy to hg, there is a unique morphism
f:A — B such that o\(u) = f o u for every object M of C and any morphism
u e C(M,A). Moreover, ¢ is an isomorphism if and only if f is an isomorphism.

b) For any morphism of functors ¢ from ky to kg, there is a unique morphism
f:B — A such that o\(u) = u o f for every object M of C and any morphism
u € C (A, M). Moreover, ¢ is an isomorphism if and only if f is an isomorphism.

Proof. — a) If there exists a morphism f such that ¢\ (u) = f o u for every
u € C(M,A), then one has f = f oidy = @a(ida), hence the uniqueness of
a morphism f as required. Conversely, let us show that the morphism f =
@a(idy) € C(A, B) satisfies the given requirement. To that aim, let us first recall
the definition of a morphism of contravariant functors: for every object M of C,
one has a map ¢p:ha(M) - hg(M) such that hg(u) o on = ¢y o ha(u) for
every two objects M and N of C and every morphism u: M — N. In the present
case, this means that for every object M of C, ¢y is a map from C'(M, A) to
C (M, B) and that

on(v) ou =hg(u) o pn(v) = om0 (ha(u))(v) = pm(vou),
for every v € C(N, A) and every u € (M, N). Consequently, taking N = A and
v = id, in the above formula, one obtains
fou=ga(ida) ou = pm(idaou) = pm(u),

for every object M and every morphism u € C'(M, A).

Let us assume that f is an isomorphism and that g is its inverse. Then the
assignement yy (1) = gou defines a morphism of functors y from hg to h, which
is an inverse of ¢. Consequently, ¢ is an isomorphism. Conversely, assume that
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¢ is an isomorphism and let ¥ be its inverse. By what precedes, there is a unique
morphism g:B — A such that y(u) = g o u for every object M € C and every
u € C(M,B). The morphism of functors y o ¢ is the identity of h,, and is given
by wm o om(u) = (go f) ou forevery M € C and every u € C(M, A). By the
uniqueness property, one has g o f = id,. Similarly, f o g = idg. This shows that
f is an isomorphism.

b) This follows from a), applied in the opposite category C°. O]

2.4.5. Adjunction. — Let C and D be two categories, let F be a functor from
C to D and G be a functor from D to C.

An adjunction for the pair (F, G) is the datum, for every object M of C and
every object N of D, of a bijection

Oyn: C(M, G(N)) 5> D(F(M),N),

subject to the following relations: for every objects M, M’ of C', every morphism
f e C(M',M), every objects N, N’ of D, every morphism g € D(N,N’), and
every morphism u € C' (M, G(N)), one has the relation

Oy (G(g) oo f) = g o Pyn(u) o F(f)

in D(F(M'),N’).

If there exists an adjunction for the pair (F, G), one says that it is an adjoint
pair of functors, or a pair of adjoint functors. One also says that F is a left adjoint
of G, and that G is a right adjoint of F.

Proposition (2.4.6). — Let C and D be two categories, let G be a functor from
D to C. The following properties are equivalent:

(i) The functor G has a left adjoint;
(ii) For every object M of C, the functor Hom ¢ (M, G(e)) from D to Set is
representable.

Proof. — (i)=(ii). Let F be a functor from C to D which is a left adjoint of G
and let (@) n) be an adjunction for the pair (F, G).

Let M be an object of C. Then, the bijections @y, for every object N
of D, define an isomorphism of functors from the functor C'(M, G(e)) to
the functor D(F(M), o). Consequently, the object F(M) of D represents the
functor Hom (M, G(e)) from D to Set.
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(ii)=(i). Assume conversely that for every object M of C, the functor
Hom¢ (M, G(e)) from D to Set is representable. For every such object M,
let us choose an object F(M) of D as well as an isomorphism of functors ®y; .
from C'(M,G(e)) to D(F(M),e). Let f:M’' - M be a morphism in C,
let F(f) be the unique morphism f":F(M) — F(N) in D such that for
every u € C(M,G(N)), one has Oy n(u o f) = Oyn(u) o f'. Since
Opn(u o idy) = Oyn(u) = Pyn(u) o idpu), one has F(idy) = idpw.
Moreover, if f: M’ - M and g: M” — M’ are morphisms in C, then

Oy N(uogo f)=Dyn(uog)oF(f)=Dun(u)oF(g)oF(f),

so that F(go f) = F(g) o F(f). Consequently, the assignement M — F(M) and
f + E(f) is a functor, and the morphisms @y 5 form an adjunction for the pair
(F,G). In particular, G has a left adjoint. O

Example (2.4.7). — Many universal constructions of algebra are particular in-
stances of adjunctions when one of the functors is obvious.

a) Let G be the forgetful functor from the category of A-modules to the
category of sets. Let F be the functor that associates to every set S the free A-
module A®) on S, with basis (& ). For every A-module M, every set S and
and every function f:S — M, there exists a unique morphism of A-modules
¢: A(S) - M which maps ¢ to f(s) for every s € S. More precisely, the maps

g v: Homy (A®), M) - Fun(S, M), o~ (s o(s))

define an adjunction, so that (F, G) is an adjoint pair.

b) The forgetful functor from the category of groups to the category of sets
has a left adjoint which associates to every set S the free group on S.

c) Let A be aring. The forgetful functor from the category of A-algebras to
the category of sets has a left adjoint. It associates with every set S the ring of
polynomials A[(X;)ses] with coefficients in A in the indeterminates (Xj);es.

Example (2.4.8). — Let A and B be rings and let f: A — B be a morphism of
rings. Let G: Modg — Mod A be the forgetful functor, that associates with a
B-module M the associated A-module (the same underlying abelian group, with
the structure of an A-module given by a-m = f(a)m, for a € A and m € M). In
the other direction, the tensor product induces a functor F: Mod, -~ Modg:
one sets F(M) = M ®, B for every A-module M, and F(f) = f ® idp for
every morphism f:M — N of A-modules. For every A-module M and every
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B-module N, and every A-linear morphism u: M — N, there exists a unique
B-linear morphism v:M ® B — N such that v(m ® b) = bu(m) for every
m € M and every b € B. (Indeed, the map (m, b) — bu(m) from M x B to N is
A-bilinear.) Set @y n(u) = v. The maps

CDM’Ni HOl’IlA(M, N) - HOII’IB(M ®a B, N)
define an adjunction for the pair (F, G).

Exercise (2.4.9). — LetF: C' —» D and G: D — C be functors such that the pair
(F,G) is adjoint.

Let Q = (V,E,s, t)) be a quiver, let & = ((A,), (f.)) be a Q-diagram in C.
Let A = lim &7 be a colimit of &/ and let (f,:A, = A) be the family of canonical
maps. Prove that the family F(<7) = ((F(A,)), (F(f.))) is a Q-diagram and that
(F(A), (E(f,))) is a colimit of the Q-diagram F(.<7). One says that F respects
all colimits.

Similarly, prove that G respects all limits.

2.5. Exact sequences and complexes of modules

2.5.1. — An exact sequence of A-modules is a sequence (f,: M, > M,,_,), in-
dexed by n € Z, of morphisms of A-modules such that Im( f,,.,) = Ker(f,)
for every integer n. One sometimes represents such an exact sequence by the
diagram

"_>Mn+1&>M £>1\/1111

If it is an eact sequence, one has in particular f, o f,., = o for every integer n.
An exact sequence is said to be short if M,, = o except for three consecutive
integers. One thus writes a short exact sequence as

0>N-MLP oo,
omitting the other null terms. The conditions for this diagram to be a short exact

sequence are the following:

— The morphism i is injective;
— 'The image of i coincides with the kernel of p;
— The morphism p is surjective.
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Consequently, the morphism i identifies N with a submodule of M, the ker-
nel Ker(p) of p, and the morphism p identifies P with the Cokernel Coker(i) =
M/ Im(i) of i.

It could be said that homological algebra is the science of creation and manage-
ment of exact sequences. A first example is given by the following proposition.

Proposition (2.5.2) (Snake lemma). — Let us consider a diagram of morphisms
of A-modules:

p

0 N— M p 0
S R
o N — oML, pr o

in which the two rows are exact sequences, and the two squares are commutative,
meaning that i’ o f = goiand p’og="ho p.

By restriction, the morphisms i and p induce morphisms i.:Ker(f) — Ker(g)
and p.:Ker(g) — Ker(h); by passing to the quotients, the morphisms i’ and p’
induce morphisms i': Coker(f) — Coker(g) and p’:Coker(g) — Coker(h).
There exists a unique morphism 0:Ker(h) — Coker( f) of A-modules such that
d(p(x)) =cl(y) forevery (x,y) € M x N’ such that g(x) = i'(y). Moreover, the
diagram

o - Ker(f) LN Ker(g) iR Ker(h) 2

2, Coker(f) LA Coker(g) LN Coker(h) - o
is an exact sequence.

Proof. — Let x € Ker(f); then g(i(x)) =i'(f(x)) =i'(0) = o, so that i(x) €
Ker(g). Similarly, let y € Ker(g); one has h(p(x)) = p'(g(x)) = p'(0)) = o, so
that p(x) € Ker(h). This shows the existence of the morphisms i, and p.,.
Let x' € Im(f) and let x € N be such that x’ = f(x); then i’(x’) = i’ o
(x) g(i(x)), i'(x") € Im(g). Consequently, the kernel of the composition

N’ 5 M’ - M//Im(g) = Coker(g) contains Im( f). Passing to the quotient,
one obtains a morphism i, from M’/im(f) = Coker(f) to Coker(g).
One constructs the morphism p’,: Coker(g) — Coker (/) in the same way.
The morphism i, is injective: let x € N be such that i, (x) = 0; Then i(x) = o,
hence x = o.
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Moreover, for every x € Ker(f), one has p,(i.(x)) = p(i(x)) = o, hence
i.(x) € Ker(p,). On the other hand, let y € Ker(p.); then y € Ker(g) and
p(y) = o; since Ker(p) = Im(i), there exists x € N such that y = i(x); one has
i(f(x)) =g(i(x)) = g(¥) = o, hence f(x) since i is injective; consequently,
y € Im(i,). This shows that Im(i,) = ker(p.).

We write cl(x) to denote the class in Coker(f) of an element x € N’, and simi-
larly for the other two cokernels. Let x € N’; then p’, (i} (cl(x)) = cl(p(i(x))) =
o; consequently, Im(i%) c ker(p’). Let y € M’ be such that cl(y) € ker(p’,);
one thus has cl(p’(y)) = p.(cl(y)) = o in Coker(h), so that p’(y) € Im(h);
let then x, € P be such that p’(y) = h(x); since p is surjective, there exists
x € M such that x, = p(x); one has p’(g(x)) = h(p(x)) = h(x,) = p'(y), hence
y — g(x) € ker(p'); therefore, there exists z € N’ such that y = g(x) + i’(z); this
implies that cl(y) = cl(i’'(z)) = i%(cl(z)) € Im(i’). We thus have shown that
ker(pl) = Im(i,).

Moreover, let y € Coker(p’), let y' € P’ be such that y = cl(y’); since p’ is
surjective, there exists x’ € M’ such that y’ = p’(x’); one then has y = cl(y’) =
cd(p'(y")) = p.(cl(y")), which shows that p’, is surjective.

It remains to construct the homomorphism 0 and to show that Im(p,) =
ker(d) and Im(9) = ker(i’). Let Q be the submodule of M x N’ consisting of
pairs (x, y) such that g(x) = i’(y). If (x, ¥) € Q, then h(p(x)) = p'(g(x)) =
p'(i"(y)) = o, hence p(x) € ker(h). Let g:Q — ker(h) be the morphism of
A-modules given by q(x, y) = p(x); it is surjective. Let indeed z € ker(h); since
p is surjective, there exists x € M such that z = p(x); then p’(g(x)) = h(p(x)) =
h(z) = o, hence there exists y € N’ such that g(x) = i’(y), and z = g(x, y), as
was to be shown. Consequently, there exists at more one morphism o:ker(h) —
Coker(f) such that d(g(x, y)) = cl(y) for every (x,y) € Q. To prove the
existence of the morphism 0, it suffices to show that if (x, y) € Q satisfies
q(x,y) = o, then cl(y) = o; but then, p(x) = o, hence x € Im(i), so that there
exists z € N such that x = i(z); it follows that i'( f(z)) = g(i(2)) = g(x) = i'(y),
hence y = f(z) since i’ is injective; consequently, y € Im(f) and cl(y) = o.

Let x € Ker(g); then (x,0) € Q, so that d(p.(x)) = d(q(x, y)) = cl(o) = o;
this shows that d o p. = 0. Conversely, let z € ker(0); let (x, y) € Q be such
that g(x, y) = z; one has d(z) = cl(y), hence y € Im(f); consequently, there
exists t € N such that y = f(¢) and g(x) = i'(y) = i'(f(t)) = g(i(t)), so that
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u=x-i(t)eker(g);thenz=p(x)=p(u+i(t))=p(u) eIm(p.). We have
shown that ker(9) = Im(p.).

For every (x,y) € Q, one has i’ (cl(y)) = c(i'(y)) = cl(g(x)) = o
in Coker(g), so that i, o d = o. Conversely, let y’ € ker(i,); let y € N’ be
such that y' = cl(y); by definition, o = iL.(y") = cl(i’(y)) in Coker(g), so
that there exists x, € M such that i’(y) = g(x); one then has (x, y) € Q and
y' = c(y) = d(p(x)); we thus have shown that Im(d) = ker(i’) and this
concludes the proof of the snake lemma. O]

Corollary (2.5.3). — a) If f and h are injective, then g is injective. If f and h
are surjective, then g is surjective.

b) If f is surjective and g is injective, then h is injective.

c) If g is surjective and h is injective, then f is surjective.

Proof. — a) Assume that f and h are injective. The exact sequence given by

the snake lemma begins with o — o LN ker(g) . Necessarily, ker(g) = o.

If f and h are surjective, the exact sequence ends with o LR Coker(g) o,
so that Coker(g) = o and f is surjective.
b) If f is surjective and g is injective, one has ker(g) = o and Coker(f) = o.

The middle of the exact sequence can thus be rewritten as o LN ker(h) 2, 0, SO
that h est injective.
c) Finally, if g is surjective and 4 is injective, we have ker(h) = o, Coker(g) =

d i ETSNRT
0, hence an exact sequence o — Coker(f) Z, o, which implies that Coker(f) =
o and f is surjective.
[]

2.6. Differential modules and their homology

2.6.1. — To construct exact sequences, it appears important to consider dia-
grams as in the definition but where one relaxes the conditions Im( f,,) =
Ker(f,) of an exact sequence and only assumes the inclusions Im( f,,+,) c
Ker(f,). Such diagrams are called complexes, but it will be technically con-
venient to define them as graded differential modules.

Definition (2.6.2). — Let A be a ring.
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A differential A-module is an A-module M endowed with an endomorphism dy
such that dy; o dy = o.

Let (M, dy) and (N, dy) be differential A-modules. A morphism f:M — N is
a morphism of differential modules if dyo f = f o dy.

Let A = A[T]/(T2) and let ¢ be the class of T in A. With any differential
module (M, dy;) one associates a A-module M by setting M = M, endowed with
the structure of module given by (a + ¢b) - m = am + bdy(m). Conversely, any
A-module defines a differential A-module with the same underlying A-module,
and the differential being induced by the multiplication by e.

A morphism of differential modules f: M — N is nothing but a morphism of
the associated A-modules.

Let (M, d) and (N, d) be differential A-modules and let f: M — N be a mor-
phism of differential modules. Then ker( f) is a differential submodule of M, and
Im( f) is a differential submodule of N. Moreover, Coker( f) has a unique struc-
ture of a differential module such that the canonical surjection N - Coker( f)
is a morphism of differential modules.

2.6.3. — Let (M, d) be a differential A-module. One associates with M the
following A-modules:

— The module of cycles, Z(M) = ker(d);

— The module of boundaries, B(M) = Im(d);

— The module H(M) = Z(M)/B(M) of homologies.

Observe that f(Z(M)) c Z(N), and f(B(M)) c B(N). Consequently, f
induces a morphism H( f): H(M) - H(N).

Let M, N, P be differential A-modules, let let f:M — N and g:N — P be

morphisms of differential modules. Then g o f is a morphism of differential
modules and H(g o f) = H(g) o H(f).

2.6.4. — Let A bearing. A graded A-module is an A-module M together with
a family (M,,) of submodules, indexed by Z, of which M is the direct sum.
Elements of M,, are called homogeneous of degree n, the module M,, is called
the homogeneous component of degree n of M.

The graduation is said to be bounded from below (resp. from above) if there
exists an integer m € Z such that M,, = o for n < m (resp. for n > m); it is
bounded if it is bounded both from above and from below.
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A submodule N of M is said to be graded if N is the direct sum of the submod-
ules N,, = N n M,,. If this is the case, the quotient module P = M/N admits a
natural graduation such that P, = My/N,, for every integer n.

Let M, N be graded A-modules and let f: M — N be a morphism of A-modules.
One says that f is graded of degre r if f(M,,) c N,,,, for every n € Z. One also
calls the induced morphism f,: M,, - N,.., the homogeneous component of
degree n of f. If f is a graded morphism of graded A-modules, then Ker(f) is a
graded submodule of M and Im( f) is a graded submodule of N, and Coker( f)
has a natural structure of a graded module such that the canonical projection
N — Coker( f) is graded of degree o.

Definition (2.6.5). — Let A be a ring. A graded differential A-module is a
differential A-module (M, dy;) such that dy is homogeneous of some degree .

Let (M, d) be a graded differential A-module, let r € Z be such that d has
degree r. For every integer n, let M,, and d,: M,, - M,,.., be the homogeneous
components of degree n of M and d. Then d,,., o d,, = o.

Conversely, let (M,,) is a family of A-modules, let € Z, and, for every n,
let d,:M,, > M,,;, be a morphism of A-modules. If d,,, o d,, for each n, then
one defines a complex (M, d) of A-modules by setting M = @ M,, and letting d
be the unique endomorphism of M such that d|y, = d,,.

When r = -1, a graded differential A-module amounts to a diagram

dns+ d
"'_)Mn_'_lL)Mn_n)Mn_l_)...

of morphisms of A-modules such that d,, o d,,;, = o for all n. One speaks of a
homological complex, or simply a complex.
When r = 1, a graded differential A-module amounts to a diagram

dpy d,
o> My, — M, > M, >

of morphisms of A-modules such that d,, o d,,_, = o for all n. One speaks of a
cohomological complex. In this case, the custom is to indicate the grading as an
upper index, as in the diagram

dn_l dn
oM — M — M L

A morphism of graded differential modules is a morphism of differential mod-
ules which is a graded morphism of degree o of the underlying graded modules.
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Lemma (2.6.6). — Let (M, d) be a graded differential A-module of degree r.

a) The modules Z(M) and B(M) are graded submodules of (M, d), and
Bn(M) = B(M) nM, = d(Mn—r)°

b) The module H(M) is a graded A-module in a natural way, whose homoge-
neous component of degree n is given by H,(M) = Z,(M)/B,(M).

c) Let (N, d) be a graded differential A-module of degree r and let f:M - N
be a morphism of graded differential A-modules. Then the induced morphism
H(f):H(M) - H(N) is graded of degree o.

Proof. — For every n,let Z,(M) = Z(M) nM, and B,(M) = B(M) n M,,.

Let x € Z(M) and let (x,) be the homogenous components of x; one has
d(x) =Y d(x,); for every n, d(x,) € M,,,, hence d(x,) = o for all n. Conse-
quently, x,, € Z,(M) for each n. This shows that Z(M) = @ Z,,(M).

The inclusion d(M,,_,) c B, is obvious since d has degree r. Conversely, let
x € B,(M) and let y € M be such that x = d(y). Let (y,,) be the homogeneous
components of y; one has d(y) = > d(y,) = x. Since d(y,) € M., and
x € M,, this implies that d(y,,) = o for m #+ n —r and d(y,_,) = x. This shows
that x € d(M,,_,), so that d(M,,_,) = B,..

Consequently, ® B, = @ d(M,_,) = d(M) = B(M), so that B(M) is a graded
submodule of M.

Let f:M — N be a morphism of graded differential modules. Since f(M,) c
N,,, one has f(Z,(M)) c Z,(N), hence H( f)(H,(M)) c H,(N), showing that
H(f) is a graded morphism of degree o. O

.....

surjective) as a morphism of A-modules.

Similarly, an exact sequence of complexes is a sequence of morphisms
(fu: M, = M,,_,) of complexes such that the associated sequence of A-modules
is an exact sequence.

Theorem (2.6.8). — Let (M, dy), (N, dx), (P, dp) be differential A-modules lying
in an exact sequence

0o>M5NLPoo
of differential modules. Then there is a unique morphism 0: H(P) -~ H(M) of A-

modules such that o(cl(p(y))) = cl(x) for every pair (x, y) € Z(M) x p~(Z(P))
such that dy(y) = i(x).
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One has ker(H(i)) = Im(9d), ker(H(p)) = Im(H(i)) and ker(9)

Im(H(p))-
Moreover, if M, N, P are graded differential A-modules whose differential have

degree r, and if the morphisms i and p are graded of degree o, then d has degree r.

In other words, one has an “exact triangle”

H(P)

RN

HM) — L H(N)

When M, N, P are homological complexes, one has r = —1 and this triangle
can be rewritten as the long exact sequence

H, (i) H,(p)

5 Hyot (P) S H,y (M) =2 H,(N) —2 H,(P) 5 H,_,(M) -

When M, N, P are cohomological complexes, one has r = 1 and this triangle
can be rewritten as the long exact sequence

H,(p)

5 Hya(P) S Hy(M) 2 1, (N) 22 1, (P) & Hy (M) >

Proof. — Let Q be the submodule of M x N consisting of pairs (x, y) such that
x€Z(M),i(x) =dyand p(y) € Z(P). Let { ¢ H(P) and let z € Z(P) be such
that { = cl(z). Since p is surjective, there exists y € N such that p(y) = z; then
p(d(y)) =d(p(y)) = d(z) = o, so that d(y) € ker(p). Consequently, there
exists x € M such that d(y) = i(x); since i(d(x)) = d(i(x)) = d*(y) = o
and i is injective, one has d(x) = o, that is, x € Z(M). This shows that map
from Q — Z(P) given by (x, y) — p(y) is surjective.

As a consequence, there exists at most one morphism o:H(P) — H(M)
such that d(cl(p(y))) = cl(x) for every (x, y) € Q. Noreover, to prove that
such a morphism exists, it suffices to show that for every (x, y) € Q such that
p(y) € B(P), one has x € B(M). So let (x, y) be such a pair; let z’ € P be such
that p(y) = d(z’) and let y’ € N be such that z’ = p(y'); one has p(y) =d(z’) =
d(p(y')) = p(d(y')), hence there exists x' € M such that y = d(y') + i(x");
then i(x) =d(y) =d(i(x")) = i(d(x")), hence x = d(x')) since i is injective;
consequently, x € B(M) as was to be shown.

Let us show that d is homogeneous of degree r. Let { € H,,(P). Let us revisit
the argument showing that the map (x, y) ~ c(p(y)) from Q to H(P) is
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surjective. Let z € Z,(P) be such that { = cl(z). Since p is surjective, there
exists y € N such that z = p(y); let (y,,) be the homogeneous components
of y; one has y = ¥ y,,, hence z = p(y) = ¥ p(ym); since z is homogeneous
of degree n, and p(y,,) is homogeneous of degree m, one has p(y,,) = o for
m # n; consequently, z = p(y,). Since p(d(y,)) = d(p(y,)) = o, there exists
x € M such that d(y,) = i(x); let (x,,) be the homogeneous components
of M; one has d(y,) = > i(x,,). Since d(y,) is homogeneous of degree n + r
and i(x,,) is homogeneous of degree m, one has d(y,) = i(x,.,). Moreover,
i(d(xpsr)) =d(i(x44r)) = d?*(ya) = 0, so that d(x,,,) = o because i is injective.
Then (x4, ¥n) € Q, ( = cl(p(y,)), hence 9({) = cl(x,+,) € Hyir(P), which
shows that d is homogeneous of degree r, as claimed.

To shorten notation, we write i, = H(i) and p. = H(p); let us show that
Im(i,) = ker(p.). Since poi = 0, one has p.oi, = 0. Conversely, let § € ker(p.)
and let y € H(N) be such that # = cl(y); one has p.(n) = cl(p(y)), hence
p(y) € B(P). Let 2’ € P be such that p(y) = d(z’) and let y € N be such that
z' = p(y'); one has p(y) = d(z') = d(p(y')) = p(d(y")), so that there exists
x € M such that y = d(y’) = i(x). Then 5 = cl(y) = cl(i(x)) = i.(cl(x)), hence
7 € Im(i,).

Let us now show that Im(p, ) = ker(9). Let { € Im(p.); let # € H(N) be such
that { = p.(#) and let y € Z(N) be such that { = cl(y). Then d(y) = i(0), so
that (0, x) € Q. One thus has d({) = cl(o) = 0. Conversely, let { € ker(d). Let
(x, y) € Qbe such that cl(p(y)) = {. One has cl(x) = 9({) = o in H(M) so that
x € B(M). Consequently, there exists x’ € M such that x = d(x'); let y' = y —
i(x'); one has p(y') = ply) and d(y') = d(y) - d(i(x')) = d(y) - i(d(x)) = o
so that y’ € Z(N). This implies that { = cl(p(y')) = p«(cl(y")) € Im(p.).

Let us finally show that Im(9) = ker(i, ). Let (x, y) € Q; one has d(cl(p(y)) =
d(x), hence i.(A(c(p(y)))) = cl(i(x) = d(d()) = d(cl(z)) = o
Conversely, let £ € ker(i,) and let x € Z(N) be such that & = cl(x).
Since i.(§) = cl(i(x)), there exists y € N such that d(y) = i(x). Then

d(p(y)) = p(d(y)) = p(i(x)) = o, so that p(y) € N. This implies that
(x,y) € Qand that d(cl(p(y)) = &, so that £ e Im(9). O



76 CHAPTER 2. CATEGORIES AND HOMOLOGICAL ALGEBRA

Remark (2.6.9). — Let M, M/, N, N/, P, P’ be differential modules and let

0 M—"3N P 0
L
06— M — N 2 P o

be a commutative diagram of differential modules whose two rows are exact
sequences. Then the morphism 0:H(P) — H(M) and 0 H(P’) - H(M’)
satisfy

d'oH(h) =H(f) 0 0.

Let indeed (x, y) € Z(M) x p™(Z(P)) such that dx(y) = i(x). The definition
of d thus implies that

H(f) e a(cl(p(y)) = H(f)(cl(x)) = l(f(x)).

On the other hand, one has f(x) € Z(M'), since dyy(f(x)) = f(du(x)) = o,

(p")(g(y)) € Z(P'), since dp (p'(g(y)) = der(h(p(y)) = h(dp(p(y)) = k(o) =
0. Moreover, dx(g(v)) = g(dn(y)) = g(i(x)) = i'(f(x)), and it follows from
the definition of 0’ that

& S H()(cl(p(3)) = 9(cAlh(p()))) = (P (g(1)))) = A(F(x)).
This shows that 0’ o H(h) = H(f) o 9, as claimed.

Definition (2.6.10). — Let (M, dy) and (N, dy) be differential modules. Let f, g
be morphisms of differential modules from M to N. An homotopy from f to g is
an A-linear morphism u: M — N such that g — f = dy o u + u o dy;. One says that
f and g are homotopic if there exists a homotopy from f to g.

Lemma (2.6.11). — Assume that f and g are homotopic. Then H(f) = H(g).

Proof. — Let & € H(M) and let x € Z(M) be such that & = cl(x). Then f,(&) =
c(f(x)) and g.(&) = cl(g(x)), hence

8+(8) = fu (&) = cl(g(x) - f(x)) = cl(d(u(x))) + cl(u(d(x)) = o
since d(x) = o and d(u(x)) € B(N). ]
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2.7. Projective modules and projective resolutions

Definition (2.7.1). — Let A be a ring and let P be an A-module. One says that M
is projective if every surjective homomorphism p:M — P has a section, that is,
there exists a morphism s:P — M such that p o s = idp.

Proposition (2.7.2). — Let A be a ring and let P be an A-module. The following
properties are equivalent.

(i) The A-module P is projective;

(ii) For every surjective morphism of A-modules p: M — N and every morphism
f:P = N, there exists a morphism ¢:P — M such that f = p o ¢;

(iii) The module P is a direct summand of a free A-module: there exists an
A-module Q such that P & Q is a free A-module.

Moreover, if M is projective and finitely generated, then M is a direct summand of
a free finitely generated A-module.
In particular, a free A-module is projective.

Proof. — (i)=(ii). Let us assume that P is projective. Let p:M — N be a
surjective morphism of A-modules and let f: P — N be a morphism. Let Q be
the submodule of P x M consisting of pairs (x, y) such that f(x) = p(y) and
let g:Q — P be the morphism induced by the first projection. For every x ¢ P,
there exists y € M such that p(y) = f(x), because p is surjective; consequently,
(x,y) € Q, q(x,y) = x and q is surjective. Since P is a projective A-module,
there exists an A-morphism s:P — Q such that g o s = idp; for x € P, write
s(x) = (x,9(x)). Then ¢ is a morphism from P to M; for every x € P, one has
(%, 9(x)) € Q hence p(¢(x)) = f(x).

(ii)=(i). Indeed, the property of the definition of a projective module is the
particular case of (ii) where N = P and f = idp.

(i)=(iii). Let F be a free A-module and let p: F — P be a surjective homomor-
phism; if P is finitely generated, let us choose F to be finitely generated too. Let
r:P — F be a section of p and let F, = r(P). Since r is injective, P is isomorphic
to F,. Let F, = ker(p); this is a submodule of F. Let us check that F = F, ® F,. For
every x € F, one has x = r(p(x)) + (x — r(p(x))); by definition, r(p(x)) € F,,
while p(x - r(p(x))) = p(x) - (por)(p(x)) = p(x) - p(x) = o, so that
x-r(p(x)) € F,; consequently, F = F,+F,. Let moreover x € F,nF,. Then there ex-
ists y € P such that x = r(y) and p(x) = 0; one thus has y = p(r(y)) = p(x) = o,
hence x = o. This shows that (i)=-(iii), as well as the two additional assertions.
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(iii)=(i). Let p:M — P be a surjective morphism of A-modules. Let Q
be a A-module such that P @ Q is a free A-module. Let (e;);q be a basis of
P & Q; for every i, write e; = (x;, y;). For every i € I, let us choose an element
z; € M such that p(z;) = x;. Since (e;) is a basis of P @ Q, there exists a unique
morphism f:P & Q - M such that f(e;) = z; for every i. Let x € P, let (a;)
be the coordinates of (x,0) € P ® Q in the basis (¢;). One has x = ¥ a;x; and
0 =Y a;y;, hence f(x,0) = ¥ a;z; and p(f(x,0)) = ¥ a;x; = x. This shows
that the map r:x — f(x,0) is a morphism from P to M such that p o r = idp.
Consequently, P is projective. []

Corollary (2.7.3). — A direct sum of projective A-modules is projective.

Theorem (2.7.4) (Kaplansky). — Let A be a local ring. Every projective A-module
is free.

Proof. — Let M be a projective A-module. We only prove the proposition
under the additional assumption that M is finitely generated. Let m be the
maximal ideal of A and let k = A/m be its residue field. Then M/mM is a finitely
generated vector space over the field k; let (x,, ..., x,) be a family of elements
of M whose classes modulo mM form a basis of that vector space. Let us show
that (x,,...,x,) is a basis of M. Letting p: A" — M be the morphism given by
pla,...,a,) = a,x, +--- + a,x,, we need to prove that p is an isomorphism.
Let N be the image of p, that is, the submodule of M generated by (x,, ..., x,).
By construction, one has M = N + mM, hence the quotient A-module M/N
satisfies M/N = m(M/N). By Nakayama’s lemma, one thus has M/N = o, hence
N = M: the morphism p is surjective and the family (x, ..., x,) generates M.
Since M is projective, there exists a morphism r: M — A" such that por = idy.
Let M’ = (M) and N = ker(p); as shown in the proof of proposition 2.7.2, one
has A” = M’ @ N; in particular, N is isomorphic to a quotient of A”, hence
is finitely generated. One has k" ~ A"/mA" ~ (M'/mM’) & (N/mN). By
construction, M’ is isomorphic to M, hence M’'/mM’ is an n-dimensional vector
space over k. This implies that N/mN = o, hence N = mN; by Nakayama’s
lemma, one has N = o hence p is injective. This concludes the proof. ]

Definition (2.7.5). — Let A be a ring and let M be an A-module. A projective (resp.
free) resolution of M is a homological complex (P, d) such that P, is projective
(resp. free) for every n, P, = o for n < o, together with a morphism p:P, - M,
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such that the diagram

d, p
+>P, —-P,>M->o0

is exact.

Theorem (2.7.6). — a) Every module has a free resolution;

b) If A is a noetherian ring and M is finitely generated A-module, then there
exists a free resolution (P, d) of M such that P,, is finitely generated for every n;

c) Let (P,d, p)and (P',d’, p') be projective resolutions of modules M and M/,
and let f:M — M’ be an A-morphism. There exists a morphism of graded differ-
ential modules ¢: P — P’ such that p' o ¢, = f o p;

d) Two morphisms ¢ and y of graded differential modules from P to P’ such
that p' o ¢, = p' oy, = f o p are homotopic.

Proof. — We prove a) and b) at the same time. Let P, be a free A-module
together with a surjective homomorphism p: P, — M; if M is finitely generated,
we choose P, to be finitely generated too. Let P/ = ker(p); if M is finitely
generated and A is noetherian, then P, s finitely generated. We then choose a
free A-module P, together with a morphism d,: P, - P, whose image is P/; in
the ““finitely generated case’, we choose P, to be finitely generated. By induction,
we construct the desired homological complex.

c) Since P, is projective and p’: P, — M’ is surjective; applying property (ii) of
proposition 2.7.2 to the morphism f o p: P, = M’, we conclude that there exists
a morphism ¢,: P, - P/ such that p’ o ¢, = f o p.

In particular, one has p’ o 9, 0d, = fopod, =o0andIm(¢,od,) cker(p’) =
Im(d!). Applying property (ii) of proposition 2.7.2 to the projective module P,
to the surjective morphism from P! to Im(d!) deduced from d!, and to the
morphism ¢, o d;: P, - Im(d]), there exists a morphism ¢,: P, - P! such that
d o ¢, = @, 0d,.

By induction on n, we construct ¢,: P, — P/ such thatd/ c ¢, = ¢, ,0d,,
if n > 1. Then the morphism ¢: P — P’ which restricts to ¢, on P, is a graded
morphism of differential modules, and one has f o p = p’ o ¢,.

d) Let ¢ and y be morphisms of graded differential modules such that f o p =
p' o @, = p’oy,. For every n, let a, = ¥,, — ¢,,; this is a morphism of A-modules
from P, to P/,. Set u, = o for n < o.
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One has p’ o ay = p' 0 Yo — p' 0 o = 0, hence Im(a,) c ker(p’) = Im(d!).
Applying property (ii) of proposition 2.7.2, there exists a morphism u,: P, - P!
of A-modules such that a, = d! o u,.

One has

dlouyod, =a,0d, =d;oa,
hence the image of the morphism «, — u, o d,: P, > P! is contained in ker(d]) =
Im(d)). Since P, is projective, there exists a morphism u,: P, - P/ such that
o, —U,od, =d)ou,.

Assume that there exists, for each integer m < n, a morphism u,,: P,, = P/, .,
such that a,, = d!, ., ot + Uy, 0dy, In particular, o, = d) ou,_ +u, ,od,,,
so that

/ /
dn OUp, 0 dn = ((xn—l — Uy, 0 dn—l) o dn =Q&p 0 dn = dn o y.

As a consequence, the image of the morphism «,, —u,,_,od,,: P,, - P/ is contained
in ker(d!,) = Im(d),,,). Since P, is a projective module, there exists a morphism
u,:P, - Pl suchthata, =u,_od, +d,, ou,.

By induction, this shows the existence of a graded morphism u:P — P’ of

graded degree 1 such that & = u o d + d’ o u. This is the required homotopy. [

2.8. Injective modules and injective resolutions

Definition (2.8.1). — Let A be a ring and let I be an A-module. One says that 1 is
injective if every injective homomorphism i:1 — M has a retraction, that is, there
exists a morphism r: M — 1 such that r o i = id.

Proposition (2.8.2). — Let A be a ring and let I be an A-module. The following
properties are equivalent.

(i) The A-module 1 is injective;

(ii) For every injective morphism of A-modules i:M — N and every morphism
f:M — 1, there exists a morphism @:N — 1 such that f = ¢ o i;

(iii) For every ideal ] of A and every morphism f:] — I, there exists an element
x € Lsuch that f(a) = ax for every a €.

Proof. — (i)=(ii). Let us assume that I is injective. Let i:M — N be an injective
morphism of A-modules and let f: M — I be a morphism. Let Q be the submod-
ule of I x N consisting of pairs of the form ( f(z),—i(z)), for z € M; let us write
[x, y] for the class in (I x N)/Q of an element (x, y) € I x N. The morphism
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x — [x,0] fromIto (IxN)/Q is injective; indeed, if (x,0) € Q, then there exists
z € M such that x = f(z) and i(z) = o; since i is injective, one has z = 0, hence
x = o. Since I is an injective module, there exists a morphism g: (Ix N)/Q — I
such that g([x,0]) = x for every x € L. Let ¢: N — I be the morphism given by
¢(y) = g([o, y]). For every z € M, one has

¢(i(2)) = g([0,i(2)]) = g([f(2), 0]) - g([f(2), =i(2)]) = f(2),

hence f = ¢ o i.

(iii) is a particular case of (ii), where i: M — N is the injection of the ideal ]
into the ring A.

(iii)=(i). Let f:I - M be an injective morphism and let us show that there
exists a morphism "M — I such that r o f = id;. Let .# be the set of all
pairs (N, g), where N is a submodule of M containing f(I) and g¢:N — T is
a morphism of A-modules such that g o f = id;. We order .% by decreeing
that (N, g) < (N, ¢’) if N ¢ N’ and g'|x = g. Since f is injective, it induces
an isomorphism from I onto its image f(1); if g,: f(I) — I denotes the inverse
isomorphism, then ( f(I), g,) is the unique minimal element of .%.

Let us show that the partially ordered set .# is inductive. Let indeed (N, g,)
be a totally ordered family of elements of .#. Let N’ = f(I) u U, N,; this is a
submodule of M. Moreover there exists a unique morphism g: N’ — I such that
gIn, = ga for every a and g|f(1) = go. The pair (N, g) belongs to .# and is an
upper bound of the family (N, g, ).

By Zorn’s lemma, the set % has a maximal element (N, g). Let us prove by
contradiction that N = M. Otherwise, let m ¢ M =N, let N’ = N + Am and
let]={aeA;ameN}. Let i:] - I be the morphism given by i(a) = g(am)
for a € J; by assumption, there exists an element z € I such that i(a) = az

for every a € J. Let x € N and a € ] be such that x + am = o; one then has
g(x) = —g(am) = —i(a) = —az, so that g(x) + az = o. It follows that there
exists a unique morphism g¢’: N’ — I such that ¢’(x + am) = g(x) + az for every
x € N and every a € J. The pair (N, ¢’) is an element of .% which contradicts
the hypothesis that (N, ¢) is a maximal element. Consequently, N = M and
g:M — Iis a morphism of A-modules such that g o f = id;. This concludes the
proof of the proposition. O]

Corollary (2.8.3). — Products of injective A-modules are injective.
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Proof. — Let (M;);q be a family of injective A-modules; let M = [T, M;; for
every i, let p;:M — M; be the projection of index i. Let ] be an ideal of A, let
f:] = M be a morphism. Then p; o f is a morphism from J to M;, hence there
exists an element x; € M; such that p;(f(a)) = ax; for every a € J. Let x = (x;);
one has f(a) = (p;(f(a)) = (ax;) = ax for every a € J. This proves that M is
an injective module. ]

Corollary (2.8.4). — IfAisa principal ideal domain, then an A-module is injective
if and only if it is divisible. In particular, Q/Z is an injective Z-module.

Proof. — Let M be an injective A-module, let m € M, let a € A be any non-zero
element. Let f:(a) — M be the morphism given by f(ab) = bm, for b € B.
Since M is injective, there exists an element x € M such that f(ab) = abx for
every b € B; in particular, f(a) = m = ax. This shows that M is divisible.

Conversely, let M be a divisible A-module and let us prove, assuming that A is
a principal ideal domain, that M is an injective module. Let ] be an ideal of A,
let f:] = M be a morphism of A-modules. Since A is a pID, there exists a € A
such that] = (a). If a = o, then one can set m = 0. Let m = f(a) and let x e M
be such that m = ax; for every b € A, one has f(ab) =bf(a) = bm = abm. By
proposition 2.8.2, this shows that M is an injective A-module.

Since the Z-module Q is divisible, so is its quotient Q/Z. The ring Z being
a PID, this implies that Q/Z is an injective Z-module. ]

2.8.5. — For every A-module M, one writes M* = Homz(M, Q/Z), with its
structure of A-module given by a- ¢ = (x —» ¢(ax)) for every a € A, ¢ € M*
and x € M.

Lemma (2.8.6). — Let M be an A-module.

a) For every non-zero x € M, there exists ¢ € M* such that ¢(x) # o.
b) If M is a free A-module, then M* is an injective A-module.

Proof. — a) Let] = {a € Z; ax = o} and let n be the positive generator of
this ideal, so that Zx ~ Z/nZ; since x # o, one has n = o or n > 2. Let then
fiZx - QJ/Z given by f(ax) = la (mod Z) if n = o, and by f(ax) = >a
(mod Z) if n > 2; one has f(x) # o by construction. Since Q/Z is an injective
Z-module, there exists a morphism of abelian groups ¢: M — Q/Z such that
@|zx = f- One has ¢ € M* and ¢(x) = f(x) # o.
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b) We first show that A* is an injective A-module. Let ] be an ideal of A and
let f:] > A* be a morphism. For every x € ], f(x) is an additive map from A
to Q/Z; let f(x) = f(x)(1). This defines a morphism f:] - Q/Z of abelian
groups. Since Q/Z is an injective Z-module, there exists a morphism g: A - Q/Z
such that g|; = f. For every x € A, let g(x) be the element y ~ §(xy) of A*;
the map g: A — A* is additive. It is in fact A-linear since for every a, x, y € A,
one has g(ax)(y) = g(axy) and (a-¢)(x)(y) = g(x)(ay) = g(axy). Let us
show that g|; = f: let x € Jand y € A; one has g(x)(y) = g(xy) = f(xy) since
xy €J; consequently, g(x)(y) = f(xy)(1) = f(x)(y) because f is A-linear; this
shows that g(x) = f(x). By proposition 2.8.2, we thus have proved that A* is an
injective A-module.

Let now M be a free A-module. It is isomorphic to a direct sum A(M of copies
of A, hence M* ~ (A*)! is a product of copies of A*. By corollary 2.8.3, M* is an
injective module.

O

Proposition (2.8.7). — Let M be an A-module. There exists an injective
A-module 1 and an injective morphism i:M — L

Proof. — Let F be a free A-module and let p: F — M* be a surjective morphism
of A-modules. Then F* is an injective A-module. Let p*: (M*)* — F* be the
map given by ¢ — ¢ o p; it is an injective morphism of A-modules, because p is
surjective.

For every x € M, let j(x) € (M*)* be the map from M* to Q/Z given by
¢ — @(x); this defines a morphism of A-modules j:M — (M*)*. Let x € ker(j);
this means that ¢(x) = o for every ¢ € M*. It thus follows from lemma 2.8.6
that x = 0. Consequently, j is injective.

The composition p o j:M — F* is an injective morphism from M into an
injective A-module, hence the proposition. ]

Definition (2.8.8). — Let A be a ring and let M be an A-module. An injective
resolution of M is a cohomological complex (1,d) such that 1, is injective for
every n, I, = o for n < o, together with an injective morphism i: M — 1, such that
the diagram

i d, d,
o->- M-I, —-1—-1—...

is exact.
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Theorem (2.8.9). — a) Every module has an injective resolution;

b) Let (I, d,i) and (I',d’', i") be injective resolutions of modules M and M/, and
let f:M — M’ be an A-morphism. There exists a morphism of graded differential
modules ¢:1 — 1’ such that ¢, 0i' =io f.

c) Two morphisms ¢ and v of graded differential modules from P to P’ such
that ¢, 0i' =y, 0i’ =io f are homotopic.

Proof. — 'The proof is absolutely analogous to the proof of properties a), c),
and d) of theorem 2.7.6. ]

2.9. Abelian categories

The theory of abelian categories abstracts the main properties of modules over
a ring within the framework of category theory.

2.9.1. Preadditive categories. — Let C be a category. One says that C is a
preadditive category if for every objects M, N of C, the set C'(M, N) is endowed
with the structure of an abelian group such that for every three objects M, N, P
of C, the composition map C(M,N) x C(N,P) - C(M,P) is bilinear.

Lemma (2.9.2). — If (M, (p;)) and (M, (p’)) are products of the family (M),
there exists a unique isomorphism f: M’ — M such that p’ = p; o f for every i.

Proof. — Since M is a product, there exists a unique morphism f:M’' - M
such that p’ = p; o f for every i. Since M’ is a product, there exists a morphism
gM — M’ such that p; = p’ o g for every i. Then f o g € C(M,M) and
piofog=plog=p;=p;oidy for every i; since M is a product, one thus has
f o g =1idm. Reversing the roles of M and M/, one proves that g o f = idyy. This
shows that f is an isomorphism. ]

2.9.3. — Let (M;);q be a family of objects of the category C. If it exists, one
denotes by [];.; M; (resp. by @, M;) the product (resp. the coproduct) of the
family (M; ).

One says that the category C' admits products (resp. finite products) if every
family (resp. every finite family) of objects of C has a product.

One says that the category C admits coproducts (resp. finite coproducts) if
every family (resp. every finite family) of objects of C has a coproduct.
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Lemma (2.9.4). — Let C be a preadditive category. Let (M;);q be a finite family
of objects of C and let (M, (p;)) be a product of this family. There exists a family
(i), where g; € C(M;, M), such that (M, (g;)) is a coproduct of the family (M; ).

Proof. — Let j € 1. Since M is a product, there exists a unique morphism
gj€ C(M;j,M) suchthat p;oq;=o0ifi# jand p;oq; =idy,.
Foriel, letu; = g;o p;;onehasu; € C(M,M);letu =3, u;. For jel, one
has
jou=pje (2 qiopi) =2 pjoqiopi=p;=pjoidu.

i€l i€l
Since M is a product, this implies that u = idy.

Let now Q be an object of C' and let ( ;) be a family, where f; € C(M;,Q);
let us show that there exists a unique morphism f € C(M, Q) such that fog; = f;
for every i. Let f = ¥ fi o p;; this is an element of C'(M, Q). For every j €1,
one has

foqi=( fiepi)oqj=). fiepioq;=fioidy, = fi.

i€l iel

Conversely, let g € C (M, Q) be such that g o g; = f; for every i. One has
g=go(X qiopi)=),q0qi0pi=) fiopi=f
i€l i€l i€l

This concludes the proof. O]

Corollary (2.9.5). — Let C be a preadditive category. Let (M;);q be a finite
family of objects of C and let (M, (q;)) be a coproduct of this family. There exists
a family (p;), where p; € C(M,M;), such that (M, (p;)) is a product of the
family (M;).

Proof. — This follows from lemma 2.9.4 by passing the opposite category, which
is also a preadditive category. ]

2.9.6. Additive categories. — Let C be a preadditive category. One says that
it is an additive category if every finite family of objects of C has a product and
a coproduct.

A functor F: C' — D between additive categories is said to be additive if for
all objects M, N of C, the map C'(M,N) - D (M, N) induced by F is additive.

Exercise (2.9.7). — Let C be an additive category.
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a) Show that the product of an empty family in C' is both a terminal object
and an initial object. It is denoted by o.

b) Let M, N be objects of C and let f, g € C(M,N). Construct a canonical
commutative square

f+g

M

|5 |

MeM —— NeN
fog

in C, where Ay, A and f @ g are defined solely in terms of the structure of
category of C. Conclude that the group laws on the morphism sets of an additive
category is intrinsic.

2.9.8. Kernels. — Let C be an additive category and let u: M — N be a mor-
phismin C.

For u to be a monomorphism, it is necessary and sufficient that for every object
P of C, v = o is the only element of C (P, M) such that u o v = 0. The necessity
of this condition is obvious; conversely, if it holds and if f, g € C (P, M) satisfy
uof=uog thenuo(f-g)=o,sothat f-g=oand f=g.

A kernel of u an equalizer of the pair (u, 0); this is an object P together with a
morphism i: P — M such that u o i = 0 and such that for every object Q of C and
every morphism f:Q — M such that u o f = o, there exists a unique morphism
¢:Q — P such that i o ¢ = f. One sometimes says that i is a kernel of u. If (P, i)
and (P’, i") are kernels of u, there exists a unique morphism ¢: P — P’ such that
iog@=i',and ¢ is an isomorphism.

Let (P, i) be a kernel of u. Then i is a monomorphism. Let indeed f:Q — P
be a morphism such that i o f = 0. Applying the definition of a kernel to the
morphism o = i o f:Q - M, we observe ¢ = o is the only element of C'(Q,P)
such that i o ¢ = 0; consequently, f = o. Let us also observe that P represents
the functor Q ~ Ker(u.: C(Q,M) - C(Q,N)).

2.9.9. Cokernels. — Let C be an additive category and let u:M — N be a
morphism in C. The definition and the basic properties of a cokernel are
obtained by passing to the opposite category.

For u to be an epimorphism, it is necessary and sufficient that for every object P
of C and every v € C(N,P) such that v o u = 0, one has v = o.
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A cokernel of u is a coequalizer of the pair (u, 0); this is an object P together
with a morphism p: N — P such that p o u = 0 and such that for every object Q
of C and every morphism f:N — Q such that f o u = o, there exists a unique
morphism ¢:P — Q such that ¢ o p = f. It is a kernel of u in the opposite
category C°.

If (P, p) and (P, p’) are cokernels of u, then there exists a unique morphism
¢:P — P’ such that ¢ o p = p/, and ¢ is an isomorphism.

If (P, p) is a cokernel of u, then p is an epimorphism.

2.9.10. — Let C be an additive category. One says that C'is an abelian category
if the following properties hold:

— Every morphism in C has a kernel and a cokernel;
— Every monomorphism is the kernel of some morphism;
— Every epimorphism is the cokernel of some morphism.

Exercise (2.9.11). — Let C be an abelian category and let u: M — N be a mor-
phism in C. Show the following properties:

a) The morphism u is a monomorphism if and only if its kernel is o;

b) The morphism u is an epimorphism if and only if its cokernel is o;

c) The morphism u is an isomorphism if and only if it is both an epimorphism
and a monomorphism.

Example (2.9.12). — Let A be a ring, possibly noncommutative. The category
Mod 4 of (left) A-modules is an abelian category.

This is indeed a preadditive category. Moreover, in this category, all products
exist and are given by the usual products of A-modules, all coproducts exist and
are given by the direct sums of A-modules. Monomorphisms are the injective
morphisms, epimorphisms are the surjective morphisms. Kernels and cokernels
exist, and correspond to the usual notions. Moreover, an injective morphism
i:M — N is the kernel of its cokernel, the morphism p:N — Coker(i). Similarly,
a surjective morphism p:N — P is the cokernel of its kernel i:ker(p) — N,
hence the assertion.

One proves in a similar way that if A is (left) noetherian, then the category of
finitely generated (left) A-modules is an abelian category.
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Exercise (2.9.13). — Let C' be an abelian category. Show that every monomor-
phism is the kernel of its cokernel, and that every epimorphism is the cokernel
of its kernel.

2.10. Exact sequences in abelian categories

Let C be an abelian category.

Lemma (2.10.1). — Let M, N be objects of C and let f: M — N be a morphism
of C. Let p:N — Coker(f) be a cokernel of f and let j:Ker(p) - N be a kernel
of p.

a) There exists a unique morphism f;: M — Ker(p) such that f = jo f,.

b) For every object P’ of C, every monomorphism j':P’ — N and every mor-
phism f/: M — P’ such that f = j'o f], there exists a unique morphism g: Ker(p) —
P’ such that f/ = go f, and j = j' o g; moreover, g is a monomorphism.

c) The morphism f, is an epimorphism.

Proof. — a) Onehas pof = o by the definition of a cokernel; by the definition
of the kernel Ker(p), there exists a unique morphism f, such that f = jo f,.

b) Since j’isa monomorphism, there exists an object N, of C and a morphism
p'*N - Q' such that (P, j') is a kernel of p’. Then p’o f = p’ o j o f! = o;
consequently, there exists a unique morphism v: Coker(f) — Q' such that
p' =vop. Thenonehas p’oj=vopoj=o;since (P, ') is a kernel of p’, there
exists a unique morphism u:Ker(p) — P’ such that j = j o u. One then has
jlofl=f=jofi=jouo f. Since j/ is a monomorphism, this implies that
fl=uof.

QI
f ) A

TN

MLKer(p)' NN\ gl Coker(p)

|
18 y
fl i J

P/

Conversely, let u’: Ker(p) — P’ be a morphism such that j = j' o u’. One thus
has j' ou’ = j = j' o u, hence u = u’ because j’ is a monomorphism.
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Finally, since j = j' o u and j is a monomorphism, the morphism u is a
monomorphism as well.

c) Let (Q,, p,) be a cokernel of f; and let (Ker(p,), j,) be a kernel of p,. Since
P10 fi = o, there exists a unique morphism f/: M — Ker(p,) such that f, = j, o f/.
Onethenhas f = (joj;)of/,and joj, isa monomorphism. By part b), there exists
a monomorphism g: Ker(p) - Ker(p,) such that f/ = go fiand jo j, 0 g = j.

M f N P Coker(f)
Ny
Ker(p)
/ \
Ker(p,) <~ Coker(f,)

Since j is a monomorphism, this implies that j, o g = idge (). Consequently,
p1 = p:° j0 g =0, hence f, is an epimorphism. H

Lemma (2.10.2). — Let M, N be objects of C and let f:M — N be a morphism
of C. Let i:Ker(f) — M be a kernel of f and let g:M — Coker(i) be a cokernel
of i.

a) There exists a unique morphism f,: Coker(i) — N such that f = f, o q.

b) Forevery object Q' of C, every epimorphism q': M — Q' and every morphism
fl:Q' — Nsuch that f = f!oq', there exists a unique morphism g: Q' — Coker(i)
such that f/ = f, 0 gand q = g o q'; moreover, g is an epimorphism.

c) The morphism f, is a monomorphism.

Proof. — It follows from lemma 2.10.1 by passing to the opposite category C®.
O]

Proposition (2.10.3). — Let M, N be objects of C and let f:M — N be a mor-
phism. Let (Ker(f), i) be a kernel of f, let (Coker(f),q) be a cokernel of f, let
(Ker(qg), j) be a kernel of q and let (Coker(i), p) be a cokernel of i. There exists
a unique morphism ¢: Coker(i) — Ker(q) such that f = jo ¢ o p, and it is an
isomorphism.

Proof. — First observe that there exists at most one such morphism ¢. Indeed,
if f=jog'op,then jopop = jog’op;since jisa monomorphism, this implies
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@ o p = ¢’ o p; since p is an epimorphism, this implies ¢ = ¢'.
i f q
Ker(f) M > N > Coker(f)

b

Coker(i) SN Ker(q)

To construct such a morphism ¢, let f;: Coker(i) — N be the unique mor-
phism such that f = f, o p; it is a monomorphism (lemma 2.10.2). Then
qo fiop =gqo f = o. Since p is an epimorphism, g o f; = o and there ex-
ists a unique morphism ¢: Coker(i) - Ker(q) such that f, = jo ¢. Since f,isa
monomorphism, ¢ is a monomorphism as well. One has f = fiop=jogop.

Let f,: M — Ker(q) be the unique morphism such that f = jo f,; it is an epi-
morphism (lemma 2.10.1). Then jo f,0i = foi = o. Since j is a monomorphism,
one has f, o i = 0, hence there exists a unique morphism y: Coker(i) — Ker(q)
such that f, = y o p. Since f, is an epimorphism, v is an epimorphism as well.
Onehas f=jo f,=joyop.

Consequently, ¢ = y. It is both a monomorphism and an epimorphism, hence
it is an isomorphism. ]

Remark (2.10.4). — The objects Coker(i) and Ker(q) of the proposition are
called the image of f and the coimage of f respectively, are are denoted Im( f)
and Coim( f). To justify this terminology, observe that when C' is the abelian cat
egory Mod  of A-modules over some ring A, one has Coker(i) = M/ Ker(i) ~
Im(f).

In some books, the statement of the proposition is taken as a definition of an
abelian category.

2.10.5. — Let C be an abelian category, let M, N, P be objects of C and let
f:M — Nand g:N — P be morphisms of C such that go f = o.

Let i:Ker(g) — N be a kernel of g; since g o f = o, there exists a unique
morphism f:M — Ker(g) such that f =io f".

Let p:N — Coker(f) be a cokernel of f; since g o f = o, there exists a unique
morphism g’: Q — P such that g = g’ o p.

Let (H,, q) be a cokernel of f’ and let (H,, j) be a kernel of g’. The morphism
u = poi:K— Q satisfies

g’ouof’:(g’op)o(iof’):gof:o,
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hence there exists a unique morphism v: H, = H, such thatu = poi=jovogqg.
We shall prove that the morphism v is an isomorphism by identifying it with the
canonical isomorphism from Coim(u) to Im(u). In the case of a category of
modules, observe that H, = Ker(g)/Im( f), while H, = ker(g":N/Im( f) — P),
and the morphism v is the obvious isomorphism between this modules. The
proof for abelian categories is unfortunately more involved.

Let k:Im(f) - N and f = k o f, be the factorization of f given by
lemma 2.10.1; the morphism f, is an epimorphism and there exists a unique
morphism ¢:Im( f) — Ker(g) such that f' = ¢ o f, and k = i o ¢; one then has
feiofi=iogof.

Let ¢:Ker(u) — Ker(g) be akernel of u. Onehasuogo fi=poiogo f, =
pof =o0,hence uoc ¢ = osince f, is an epimorphism. Consequently, there
exists a unique morphism ¢’:Im(f) — Ker(u) such that ¢ = £ o ¢'; since ¢ is
a monomorphism, ¢’ is a monomorphism as well. Then poiof =uof = o,
hence i o ¢ factors through the kernel of p, which, by definition, is the coimage
of f. By proposition 2.10.3, (Im(f), k) represents the kernel of p, hence there
exists a unique morphism i": Ker(u) — Im(f) such that k o i’ = i o ¢; since i o £
is a monomorphism, i’ is a monomorphism too. Now, k = i o Q= koi'o ¢’
since k is a monomorphism, one has i’ o ¢’ = idyy,r). This implies that i’ is an
epimorphism; moreover, i’ o ¢’ 0 i" = i’, hence ¢’ 0 i’ = idger(,). We have shown
that ¢’ is an isomorphism from Im( f) to Ker(u).

Onehas f' = go f, = £o¢’o f,. By definition, the pair (H,, q) is a cokernel of f”,
but since ¢’ o f, is an epimorphism, (H,, q) is also a cokernel of ¢:Ker(u) —
Ker(g). In other words, we have identified H, with the coimage of u.

We can now apply the previous argument in the opposite category, or rework it
patiently by reversing all arrows, and exchanging kernels and cokernels, images
and coimages. This identifies (H,, j) with the image of u.

The morphism v is then the unique morphism Coim(u) - Im(u) such that
u = qov o j. By proposition 2.10.3, it is an isomorphism.
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Ker(u)

Im(f) —r Ker(g) d H, = Coim(u)

Tﬂ\i
f g

M N

\]

Im(u) = H, —=— Coker(f) — Im(g)

Coker(u)

Definition (2.10.6). — The homology of a sequence M EN N 2 such thatgof =0
is the object H, defined above.

One says that this sequence is exact at N if H,. With the above notation, the
following properties are equivalent:

(i) The sequence M i> N 5 is exact at N;

(ii) One has H, = o;

(iii) The morphism f”:M — Ker(g) deduced from f is an epimorphism;
(iv) One has H, = o;

(v) The morphism g’: Coker(f) — P deduced from g is a monomorphism.

2.10.7. — The notion of complex in an abelian category C can be developed
in analogy with the corresponding concept for modules over a ring, However,
some abelian categories do not always admit infinite coproducts, it is better
to have a naive definition of a graded differential object in C' which avoids to
considering a coproduct. So we shall just consider families (M,,) ,cz of objects
of C related by morphisms d,,: M,, - M,., such thatd,,, od, = o for all n. One
speaks of a cohomological complex if r = 1, and of a homological complex if
r=-L

The definition of a morphism of complexes can be copied verbatim, as can
that of a homotopy between two morphisms of complexes.
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2.10.8. — Let M = (M,,) be a homological complex in C'. Its homologies are
defined by H,(M) = H(M,,-, > M,, > M,,,,). A complex is an exact sequence
if and only if is exact at each term, that is if and only if its homologies are o.

A morphism of homological complexes f = (f,:M, - N,) induces mor-
phisms H,,(f):H,(M) — H,,(N). Two homotopic morphisms induce the same
morphism.

Example (2.10.9). — Leto - M L N %5 obea complex. The following
properties are equivalent:

(i) This complex is an exact sequence;

(ii) The morphism f is a monomorphism and p is a cokernel of f;

(iii) The morphism g is an epimorphism and f is a kernel of g.

Definition (2.10.10). — Let C and D be abelian categories and let F: C' — D

be an additive functor. One says that F is left exact if for every exact sequence

o-MLNLPS o, the complex o - F(M) ), F(N) He), F(P) is exact.

One says that the functor F is right exact if for every such short exact sequence, the

complex F(M) — ), F(N) — K8, F(P) — o is exact. One says that the functor F is
exact if it is both left and right exact.

If F is a contravariant additive functor from C' to D, it is viewed as a functor
from C to the opposite category D°, and this leads to analogous definitions.
For example, such a contravariant functor F is left exact if for every short exact

sequence as above, the complex o - F(P) —> 1), F(N) F(M) is exact.

Example (2.10.11). — Let C be an abelian category and let M be an object of C'.
a) The functor C (M, e) given by N — C (M, N) is a covariant left exact functor
from C to the category Ab of abelian groups.

Let o - N, L N, 2 N, — o be a short exact sequence in C and let us
consider the complex

o> CMN,) L cMN,) % c(M,N,)

deduced by application of the functor C'(M, o). Let u € C(M,N,) be a mor-
phism such that ¢g’(u) = o, that is, g o u = 0. Since f is a kernel of g, there exists
a unique morphism v € C(M, N, ) such that u = f ov = f/(v). This shows that
f" is injective and that Im( f") = Ker(g’), as required.
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b) The functor C(e,M):N — C(N,M) is a contravariant left exact functor
from C to Ab.

This is deduced from the preceding case by considering the opposite cate-
gory C°.

Remark (2.10.12). — Let F be an additive functor between abelian categories.
Assume that F has a right adjoint. Then F respects all colimits. Since a cokernel

f
of amorphism f:M — Nis a colimit of the diagram M —3 N, the functor

F respects cokernels. Consequently; it is right exact.
By symmetry, if F has a left adjoint, it respects all limits, hence it respects
kernels, so that it is left exact.

Exercise (2.10.13). — Let F be an additive functor between abelian categories. If
F is left (resp. right) exact, prove that F respects all finite limits (resp. colimits).
That is, for every finite quiver Q and every Q-diagram .27 which has a limit (resp.
a colimit) A, then F(A) is a limit (resp. a colimit) of F(.o/).

Remark (2.10.14). — As the first propositions of this section have shown, the
manipulation of diagrams in abelian categories leads to much more involved
arguments than what we are used to in the abelian category of modules over a
ring. Indeed, in a category such as Mod , to prove that a kernel is o, it suffices
to prove that each element of this kernel is o. To that aim, we may do some
“diagram chasing”’, pushing the element along morphisms, and lifting it along
epimorphisms. This kind of argument is forbidden in general abelian categories
whose objects have no elements to work with.

However, a theorem of Freyd-Mitchell shows that every (small) abelian cate-
gory C possesses a fully faithful and exact functor F to a category of modules
over some ring R. The properties of many canonical diagrams can then be
established after applying the functor F, where classical proofs are possible.

2.11. Projective and injective objects in abelian categories

2.12. Derived functors



CHAPTER 3

SHEAVES AND THEIR COHOMOLOGY

3.1. Presheaves and sheaves

Definition (3.1.1). — Let X be a topological space. A presheaf .7 on X is the datum
of a set % (U) for every open subset U of X, and of maps pyy: % (U) - F (V)
for every pair (U, V) of open subsets of X such that V c U subject to the following
conditions:

- If U,V, W are open subsets of X such that W c V c U, one has pyw =

Pvw © puv;
— For every open subset U of X, one has pyy = id # ().

Let U be an open subset of X. The set .% (U) is also denoted by I'(U, .%);
its elements are called the sections of .# on U. The maps pyy are called the
restriction maps.; when s € % (U), one also writes s|y for pyy(s).

Indeed, the basic intuition for presheaves is that of “‘generalized functions”.
Namely elements of .% (U) have to be thought as of functions on U, and for
s € #(U), the element pyvy(s) of F (V) is a kind of restriction of s to V.

To avoid some possible confusions, the restriction maps of the presheaf .7
are sometimes denoted by p{, .

Definition (3.1.2). — Let .%,% be presheaves on the topological space X. A mor-
phism of presheaves f:.# — ¥ is the datum, for every open subset U of X, of a
map f(U): Z(U) - 4(U) such that f(V) o ply, = p, o f(U) for every pair
(U, V) of open subsets of X such that V c U.

When the maps .% (U) is a subset of ¢ (U) for every U, and the maps f(U)
are the inclusion maps, one says that .7 is a sub-presheaf of 4.

Morphisms of presheaves can be composed, etc., so that presheaves on the
topological space X form a category PreShy.
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3.1.3. — LetXbeatopological space andlet.# be a presheaf on X. One says that
F is a presheaf in abelian groups if the sets % (U) are endowed with structures
of abelian groups and if the maps pyy are morphism of abelian groups. A
morphism of presheaves in abelian groups is a morphism of presheaves f such
that the maps f(U) are morphisms of abelian groups, for all open subsets U
of X.

Similar definitions can be given for more general algebraic structures, such as
modules, or rings, and even for general categories. A presheaf .# with values
in a category C'is the datum of objects .% (U) of C and of morphisms pyy €
C(#(U), #(V)) satisfying the previous relations. A morphism of presheaves
f:.# — ¢ with values in the category C is the datum of morphisms f(U) in C
satisfying the previous composition relations.

One can in fact give a compact definition of a presheaf with value in an arbitrary
category C. To this aim, define the category Openy of open subsets of X as
follows: its objects are the open subsets of X, and its maps are the inclusions
between open subsets. Explicitly, Openy(V,U) is empty if V ¢ U, and has
exactly one element if V. c U. A presheaf with values in a category C' is a
contravariant functor from the category Openy to the category C’; a morphism
of presheaves is a natural transformation of functors.

Definition (3.1.4). — Let .# be a presheaf on the topological space X. Let A be
a subspace of X and let % be the set of open neighborhoods of A in X, endowed
with the partial ordered opposite to inclusion. The colimit of the directed sytem
of sets (F (U))uew, is called the set of germs of sections of the sheaf F on A; it
is denoted by F,. If U is an open neighborhood of A in X and s € ¥ (U), the
canonical image sy of s in F is called the germ of s on A.

When A is reduced to a single point {x}, the set %, is called the stalk of .% at
the point x, and is denoted by .Z,.

If .# is a presheaf in abelian groups then .#, is an abelian group, and the maps
s+ sp from # (U) to %, are morphisms of abelian groups.

Let f:.# — ¢ be a morphism of presheaves on the topological space X. By
the universal property of the limit, there exists a unique map fa: #4 — 94
between the sets of germs of sections at A such that fy(ss) = f(s)a for every
open neighborhood U of A and every section s € .% (U). If f is a morphism of
presheaves of abelian groups, then f, is a morphism of abelian groups.
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Similar results hold for presheaves in algebraic structures, such as rings or
modules, for which the notion of (filtrant) colimit makes sense.

Definition (3.1.5). — Let X be a topological space and let ¥ be a presheaf on X.
One says that .F is a sheaf if the following property holds: For every open subset U
of X, every family (U;) ;e of open subsets of X such that U = U, U, every family
(5i)icr, where s; € 7 (U;) for every i, such that s;|u,u, = sjlu,nu,, there exists a
unique element s € % (U) such that s|y, = s; for every i € L

In words, a presheaf .7 is a sheaf provided every family (s;) of sections of .#
on open subsets U; of X which coincide on the intersections U; n U; can be
“glued” uniquely to a section s of .# on the union of the sets U;.

This definition needs to be adapted for presheaves with values in a general
category. Thus let .7 be a presheaf on X with values in a category C. One says
that .% is a sheaf if for every open subset U of X and every family (U;);¢ of
open subsets of X such that U = U; U;, every object M of C' and every family
(fi:M —» % (U;))ia of morphisms in C' such that py, u,nu, © fi = pu,u.ny; © f
for every i, j € I, there exists a unique morphism f:M — .#(U) in C such that
puu,°f = fiforeveryiel

Let Q be the quiver whose vertex set V is I x I, whose set of arrows E is
I xIx {o,1}, and whose source and target maps are given by

s((i,j,0)) = (i1),  s((i,5,1)) = (), £((is o 0)) = £((, j,1)) = (i j).

The presheaf .7 gives rise to a Q-diagram in the category C whose value at the
vertex (i, j) is # (U; n U;), whose value at an arrow (1, j, 0) is the restriction
morphism py, y,nu;,- and whose value at an arrow (i, j, 1) is the restriction
morphism py, u,~u,. The above sheaf condition means that the object .7 (U)
of C, endowed with the morphisms pyy, for i € I, represents the colimit of this
Q-diagram.

3.1.6. — A morphism of sheaves is just a morphism of the underlying
presheaves. In other words, sheaves of X form a full subcategory Shx of the
category of presheaves on X.

Example (3.1.7). — Let X be an open subset of R”, or a differentiable manifold
of class €’F for some p > 1.
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a) Functions of class €7 on X give rise to a sheaf € on X. Precisely, for every
open subset U of X, let 67 (U) be the set of all functions ¢: U — R of class €?;
for V. c U, let puv: €% (U) — € (V) be the restriction map. This defines a
presheaf €¥ in R-algebras on X; this presheaf is a sheaf.

Indeed, let U be an open subset of X, let (U;) ;¢ be a family of open subsets of X
whose union is U, and let (s;) be a family of sections of ¢}, where s; € €% (U;),
such that si\UimUj = sjlu,nu;. There exist a unique function s: U — R such that
s(x) = s;(x) for x € U;. This function s satisfies s|y, = s; for every i, and is of
class €?. Indeed, if x € Uand i € Iis such that x € U;, then U; is a neighborhood
of x in U on which the restriction of s is of class €7.

b) Bounded functions on X give rise to a presheaf #x on X, where #x(U) is
the set of all functions s: U — R which are bounded. However, this presheaf is

generally not a sheaf, unless X is finite (hence o-dimensional). Let indeed a € X
be a point which is not isolated, let U = X—={a}, and let s: U — R be the function
x — 1/d(a, x), where d is a distance on X compatible with its topology. For
every integer m > 1, let U,, be the set of points x € U such that d(a, x) > 1/m.
The union of the open sets U, is equal to U, the restriction of s to U,, is bounded
for every m, but s is not bounded.

c) Vector fields, distributions, etc. furnish other natural examples of sheaves
on X. Tempered distributions form a sub-presheaf of the sheaf of distributions,
but do not form a sheaf themselves.

Example (3.1.8). — Let X be a topological space and let .# be a presheaf on X.
Let Y be an open subspace of X. One defines a presheaf .%#|y on Y by set-
ting Z|y(U) = % (U) for every open subset U of Y, and by keeping the
same restriction maps. If f:.# — ¢ is a morphism of presheaves, the maps
f(U): #(U) - 4(U), for every open subset U of Y, define a morphism of
presheaves f|y: Z|y - Y|y.

If 7 is a presheaf of abelian groups, then so is % |y.

If Z is a sheaf, then so is Zy.

Example (3.1.9). — Let X be a topological space and let .7, % be presheaves
of abelian groups on X. One defines a presheaf of abelian groups .7# on X by
setting, for every open subset U of X, 57 (U) = Hom(.%|y,¥|u). (Note that
A (U) is a set of morphism of sheaves from .Z |y to 4|y, and should not be
confused with the morphisms of abelian groups from % (U) to ¥ (U).) The
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restriction maps pyy are defined as follows: let U and V be open subsets of X
such that V.c Uand let f € 57(U); one sets pyy(f) = fv. This is the presheaf of
morphisms from .# to ¢; it is denoted by s#om(.%,9).

Assume that ¢ is a sheaf; then JZom(.%,9) is a sheaf. Let indeed U be an
open subset of X, let (U; ) ;; be a family of open subsets of X such that U = ;. Uj,
let (¢;) be a family, where ¢; € J7(U;), such that ¢;|u,~u, = ¢jlu,nu,- Let us
show that there exists a unique morphism of presheaves ¢:.7 |y - ¢|y such
that ¢|y, = @, for every i.

Let V be an open subset of U and let s € .7 (U); for every i, set V; = VN U;
and t; = ¢;(slv,) € 4(V;). For i, j € I, one has

Vi)
since ¢ is a sheaf, there exists a unique section t € ¢(V) such that t|y, = ¢; for
every i € I. Set ¢(V)(s) = t. This defines a map ¢(V): #(V) - 4(V). For
s,s' € #(V)and i €I, one has

p(V)(s +5')

ti

vy, = 9i(slv)lviv,@i(slviav,) = 9i(slviav,) = tilviav;s

N/ q)i(slvi + SI|V,-)
= ¢i(slv,) + ¢i(slv,)
= (e(V)(s) + o(V)(s))lvss

consequently, (V) (s +s') = o(V)(s) + ¢(V)(s’), hence ¢(V) is a morphism
of abelian groups. Moreover, if V and W are open subsets of U such that W c V,
then

¢(W)(slw)lwnu, = ¢i(slwnu,)
= ¢i(slvau,)lwau,
= ¢(s)lwnu,
= (¢(s)lw)lwnu,
for every i. Consequently, (W) (slw) = ¢(W)(s)|w. This shows that the family
¢ = (¢(V)) is a morphism of presheaves of abelian groups from .|y to ¢/u.
Conversely, a morphism ¢": . Z |y - ¢|y such that ¢'|y, = ¢ is equal to ¢.
Indeed, for V.c Uand s € #(V), one has
¢'(V)($)lvau, = ¢'(V)(slvau,) = @i(slvau, = 9(v)(s)lvu,»
so that ¢'(V)(s) = ¢(V)(s); this shows that ¢’ = ¢, as claimed.

Lemma (3.1.10). — Let X be a topological space and let U be an open subset of X.
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a) Let .F be a sheaf on X and let s, t € % (U) be two sections such that s, = t,
for every x € U. Then s = t.

b) Let.#,% be presheaveson X and let f, g: F — & be morphisms of presheaves
on X such that f, = g, for every x € X. If 9 is a sheaf, then f = g.

Proof. — a) Let x € U; since s, = t,, there exists an open subset U, of U
containing x such that s|y, = |y . By the definition of a sheaf, applied to the
family (U, )cu of open subsets of X and to the family (s|y, ), the section ¢ is the
unique element of .% (U) whose restriction to U, is equal to s|y,. One thus has
s=1t.
b) Let U be an open subset of X and let s € .% (U). We need to prove that
s has the same image under the maps f(U) and g(U); let t = f(U)(s) and
t' = g(U)(s). For every x € U, one has t, = f,(sx) = gx(sx) = t.. Since ¥ is a
sheaf, it follows from a) that t = ¢/, as claimed.
[l

Lemma (3.1.11) (Glueing sheaves and morphisms of sheaves)
Let X be a topological space, let (U, )1 be a family of open subsets of X such
that X = Uiel U,’.

a) Let F and ¥ be presheaves on X; assume that ¢ is a sheaf. For every i € 1, let
@it F|u, = 9|u, be a morphism of presheaves. Assume that for every i, j € 1, the
morphisms ¢; and ¢; coincide on U; n'U;. Then there exists a unique morphism
of presheaves ¢: F — < such that ¢; = ¢|u, for every i €1,

If both .# and & are sheaves and @; is an isomorphism for every i € 1, then ¢ is
an isomorphism.

b) Foreveryicl, let Z; be a sheaf on Uj; for every pair (i, j) of elements of 1,
let ¢ Filu,nu, = Fjlunu, be an isomorphism of sheaves. Assume that following
properties hold:

(i) Forie€l, onehas ¢;; =1dz;
(ii) Fori, j €1, one has ¢ij = ¢
(iii) For i, j, k € I, the morphisms @ jx © @ijlu,nu,nu, and @ixlu,nu,nu, coin-
cide.
Then there exists a sheaf F on X, and for every i € 1, an isomorphism ¢;: F |y, —
Fi, suchthat ¢;jo9ilu,u, = @jlu,nu, for every pair (i, j) of elements of 1. Moreover,
if 4 is a sheaf on x and (y;) a family of isomorphisms from 4. to F; satisfying
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these requirements, there exists a unique morphism of sheaves v from % to ¢
such that Y|y, = v;' o @;, and it is an isomorphism.

Analogous results are valid for presheaves of abelian groups, rings, modules, etc.

Proof. — a) Let U be an open subset of X, let s € % (U). For every i € I, one
has ¢;(UnU;)(s) € Z(UnU;) and for i, j € [, one has

¢i(UnU;)(s)|vnu,nu, = :(UnU; nU;)(s|unu,au,)
= ¢;(UnU;nUj)(slunuinu;)
= ¢;(UnU;)(s)|unu,nu;-

Since ¥ is a sheaf, there exists a unique section ¢(U)(s) € 4(U) such that
o(U)(s)|u, = 9:(UnU;)(s) for every i € 1. This defines a map ¢(U): #(U) —
¢ (U). The family ¢ = (¢(U)) is a morphism of presheaves such that ¢|y. = ¢;.
It is the unique such morphism.

Assume that both .# and ¢ are sheaves, and that ¢; is an isomorphism for
every i. Then there exists a unique morphism of sheaves ¢’:¢ — .% such that
¢'|u, = ¢;" for every i. One has ¢’ o ¢ = Id #, because it is the unique morphism
of sheaves from .7 to itself whose restriction to U; is the identity, for every i € L.
Similarly, ¢ o ¢’ = Id #z. This shows that ¢ is an isomorphism and concludes the
proof of a).

b) Let U be an open subset of X; let . (U) be the set of all families (s;) €
[Tia Zi(UnU;) such that

silunu.nu, = @i (UnU; nUj) (silunu,nu,)
for every i,j € I. If U and V are open subsets of X such that V c U, let
puv:-Z (U) = Z (V) be the map defined by pyv((s;)) = (silvau,). Then ZF isa
presheaf on X.

Let us show that .% is a sheaf. Let (V)< be a family of open subsets of X,
let V.= U Vs for every A € L, let 53 € % (U, ); assume that s;|u,nu, = Sulu,nu,
for every A,y € L. One has s = (s),;)ia. Fix i € [; for every A € L, one has
spi € #i(VynU,;); for every A, u € L, one has

Sl,i‘VmV,,mUi = Sy,z’\vmvﬂmui-

Consequently, there exists a unique element s; € .%;(V nU;) such that s;|v,~u, =
sy,; for every A € L. Then

5j|VmU,~mUj = (Pij(V nU;n Uj)(5i|VﬂU,ﬂUj)>
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since for every A € L, one has

silvinunu; = @i (Va n Ui n Uj) (silv,nuinu,)-

This implies that s = (s;) ¢ is an element of .% (V). Moreover, for every A € L,
one has

slv, = (silv,nu,) = (s1,i) = s

The section s is the only section of .%# on V such that s|y, = s, for every A € L.
This concludes the proof that .% is a sheaf on X.

Let k € 1. For every open subset of X such that U c Uy, let ¢x(U): % (U) —
Z1(U) be the map given by (s;);q = sk. The family (¢4(U)) is a morphism
of sheaves from .% |y, to .%;. By definition, for s = (s;) € .# (U), and i € I, the
section s; € .%;(U N U;) satisfies (recall that U c Uy)

si = 9 (UNnU;) (sklunu,)-

Conversely, let s € F (Uy); for every i € I define s; = ¢; (U n U;)(s|uny, ). Since
¢kk = 1d, one has s; = s. Moreover, for every i, j € I, one has

¢i;{(UnU;nUj)(silunu,nu,)
= ¢;j(UnU;nU;)(¢x(UnU;)(sklunu,)|unu,nu,)
= 9;(UnU;nUj)(sklunuinu;)

= 5j|Ur1U,ﬂUj-

Consequently, the family (s;) belongs to .% (U) and is the unique element preim-
age of % (U) such that ¢ (U)((s;)) = s. This implies that ¢ is an isomorphism
of sheaves.

For j, k € 1, every open subset U of U; n Uy, and every family (s;) € % (U)
one also has

9ik(U) 0 9 (U)((s1)) = 9 (U) (k) = 55 = 9;,(U)((s1))

hence @ik © §0k\Uijk = §Dj|anUk-

This concludes the proof of the first part of assertion b). The rest of the
assertion follows from a). Let indeed ¢ be a sheaf on X and let (y;) be a family,
where y;: 9|y, — #; such that ¢;; o yilu,nu;, = ¥jlu,nu, for every i, j € 1. For
every i €I, 0; = ¢;* o y; is a morphism of sheaves from ¢|y, to .%|y,; For i, j € I,
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one has

Oilu.nu, = @7 o v

UnU; = §0}1|Uimuj o @Qijo@jio Wj‘UmUj
= 0_]|U,ﬂU]'

By a), there exists a unique morphism of sheaves 6:¢ — .# such that 0|y, = 9,
for every i, and it is an isomorphism. []

3.2. Some constructions of sheaves

3.2.1. Limits. — Let Q = (V,E, s, t) be a quiver and let #q = ((:#,), (¢.)) be
a diagram of presheaves on a topological space X.

For every open subset U of X, this diagram induces a diagram .#q(U) =
((Z,(U)), (¢.(U))) of sets. We denote its limit by .7 (U); for v € V, let
¢, (U): #(U) - %,(U) be the canonical map.

Let U and V be open subsets of X such that V c U. The family of maps
( pf{, o ¢,(U)) is a cone on the diagram .%(V). Consequently, there exists a
unique map pi: - Z (U) » Z (V) such that ¢,(V) o piy = p‘?{, o ¢,(U) for
every v.

The family of sets (% (U)) and the family of maps (p{,,) form a presheaf .7
on X.

Proposition (3.2.2). — a) The presheaf .F is a limit of the diagram .F in the
category of presheaves on X.

b) If the .#, are sheaves, then .F is a sheaf, and is a limit of the diagram #q in
the category of sheaves on X.

c) The analogous results hold when #q is a diagram of presheaves in abelian
groups, in rings, in A-modules, etc.

Proof. — a) Let (¥, (v,)) be a cone on the diagram %, of presheaves. For
every open subset U of X, the set ¢ (U), with the maps v, (U), is a cone on the
diagram .7 (U) of sets. Consequently, there exists a unique map 8(U): ¥4 (U) —
Z (U) such that ¢,(U) 0 §(U) = v, (U) for every .

Let U and V be open subsets of X such that V c U. Since v, is a morphism of
presheaves, one has

#o(V) 2 0(V) © pliv = ¥u(V) © pliv = Py © ¥4(U) = p © (V) 2 6(V)
for every v. Consequently, 0(V) o pg,, = pd 0 6(U).
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This shows that the family (6(U)) is the unique morphism of presheaves from
¢ to .# such that y, = ¢, o 0 for every v.

b) Let (U;); be a family of open subsets of X and let U be its union. For
every i € I, let s; € . (U;); assume that s;|u,u; = sj|u,nu, for every i, j and let
us show that there exists a unique element s € .% (U) such that s|y, = s; for
every i € L.

For every v, one has ¢,(s;) € #,(U;) and ¢,(s;)|u,nu; = ¢v(s;)|u,nu;. Since
F, is a sheaf, there exists a unique element s, € .%,(U) such that s,|y, = ¢,(s;)
for every i € I.

For every arrow e of Q, with source v and target v/ one has ¢.(s,) = s,,
because these two sections of .%#,, have the same restriction on Uj, for every i € I.
Consequently, there exists a unique element s € .% (U) such that ¢,(s) = s, for
every v.

Let i € I. One has sy, = s;, because both sections of . (U;) map to ¢,(s;), for
every v. Conversely, if s’ is a section of .% over U such that s'|y, = s; for every i.
One then has ¢,(s")|u, = ¢,(s'|u,) = ¢,(si) = ¢,(s)|u,, hence ¢,(s") = ¢,(s),
because .#, is a sheaf. By definition of the presheaf .%, one then has s’ = s.

c) Assume that the (pre)sheaves .#, are (pre)sheaves in abelian groups and the
morphisms ¢, are morphisms of presheaves in abelian groups. For every open
subset U of X, the set .% (U) has a natural structure of an abelian group such
that the morphisms ¢,(U):.%# (U) — .%#,(U) are morphisms of abelian groups.
Moreover, the maps p{j,; are morphisms of abelian groups, so that .7 is really a
presheaf in abelian groups. In the proof of a), one checks that if morphisms vy,
are morphisms of presheaves of abelian groups, then so is the morphism 0 that
we constructed.

The cases of (pre)sheaves of rings, etc. are analogous. ]

Example (3.2.3). — Let ¢ be a presheaf on X and let (.%;) ;< be a family of sub-
presheaves of . Their intersection % = 0; %, is defined by . (U) = N; %;(U)
for every open subset U of X; it is a sub-presheaf of ¢. This presheaf is the
colimit of the diagram of presheaves whose arrows are the inclusion morphisms
32,' > g

If the .%; are sheaves, then so is .%.

3.2.4. — If ¥ is a sheaf and .# is a sub-presheaf of ¢4, there exists a smallest
subsheaf .#’ of ¢ which contains .#, called the subsheaf of ¢ generated by .%.
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It is the intersection of all sub-sheaves of ¢ which contain .%#. For every open
subset U of X, .#'(U) is the set of sections s € ¢ (U) such that every point x € U
has an open neighborhood V contained in x such that sy € % (V).

Let indeed .#!(U) be this subset. The family %! = (#.(U)) is a sub-presheaf
of ¢ which contains .%#. It also contains every sheaf that contains .%#, hence
contains .%". It thus suffices to show that .#/ is a subsheaf of 4. Let then U be an
open subset of X, let (U; ) ;; be a family of open subsets of X such that U = ;. Uj,
let (s;) be a family, where s; € .7/ (U;) for every i, such that s;|y,u; = sjlu,nu;»
for every i, j € I. Since ¢ is a sheaf, there exists a unique section s € ¢ (U) such
that s|y, = s;, for every i € I. Moreover, s € %#/(U); let indeed x € U, let i € I be

such that x € U;, and let V be an open neighborhood of x contained in U; such
that s;|y € % (V); then sly = s;|y € #(V); consequently, s € #!(U), as claimed.

3.2.5. Image of a morphism of sheaves. — Let ¢:.% — ¢ be a morphism of
presheaves on X. For every open subset U of X, let .#,..(U) = ¢(U)(#(U)).
Then # is a sub-presheaf of 4.

Assume that ¢ is a sheaf; one defines the subsheaf image of ¢ as the smallest
subsheaf of ¢ which contains the presheaf .#,.. It is denoted by Im(¢).

If # and ¥ are (pre)sheaves in abelian groups and ¢ is a morphism of
presheaves in abelian groups, then Im(¢) is subsheaf in abelian groups. Similar
results hold for (pre)sheaves in rings, modules, etc.

Remark (3.2.6). — When ¥ is a sheaf, the presheaf .7 is generally not a
subsheaf of ¢4, even if .% itself is a sheaf. For example, let . and ¢ be both
equal to the sheaf %% of complex valued continuous functions on X, and let
@:6x — Cx be given by ¢(U)(f) = exp(f), for f € €(U;C). If X = C*, there
does not exist a continuous function f:X — C such that x = exp(f(x)), for
every x € C*. However, for every open subset U of X, small enough to be
contained in a contractible subset of C*, there exists a function fy: U — C such
that x = exp(fu(x)) for every x € U. In other words, the identity function g
(given by g(x) = x) does not belong to .%.(X), although every point of C* has
a neighborhood U such that g|y belongs to .7, (U).

Theorem (3.2.7). — Let X be a topological space. Let .F be a presheaf on X. There
exists a sheat .#* on X and a morphism of presheaves j: # — .#* which satisfies
the following universal property: for every sheaf ¢ on X and every morphism
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f:F — & of presheaves, there exists a unique morphism of sheaves ¢: F+ - ¢
such that f = ¢ o j.

Moreover, for every x € X, the map j: %, — F} is a bijection.

If (#,j)and (Z°, ') are two morphisms satisfying this universal property,
there exists a unique morphism ¢:.#*+ — .%#° such that j/ = ¢ o j, and this
morphism is an isomorphism. This can be proved by the usual kind of arguments.
One can also observe that the above universal property says that the sheaf .7 *
represents the functor 4 — Hom(.#,¥) on the category of sheaves on X.

The sheaf .#* is called the sheaf associated with .7 .

Proof. — One first defines a presheaf & on X such that &(U) = [],.y Zx, for
every open subset U on X, the restriction morphisms being the obvious ones:
if VcUands = (sy)xeu € &(U), then s|y = (sx)xev. There is a morphism of
presheaves j: . # — &, given by s — (s, )eu, whenever U is an open subset of X
and s € .7 (U).

This presheaf & is in fact a sheaf. Let indeed U be an open subset of X, (U; )¢
a family of open subsets of X such that U = U, U}, and (s;) ;¢ @ family, where
si € &(U;), such that sj|y,~u, = s]-|UimUj for every i,j € 1. For i € I, write
si = (Six)xeu;- Let x € Usif i, j € L are such that x € U;nUj, then s; , = s5;,; let s,
be this common value and let s = (s,).cy. Then s is an element of &(U) such
that sy, = (sx)xeu, = (Six)xeu, = Si» and it is the unique such element.

Let now .# * be the image of the morphism j; it is the smallest subsheaf of &
such that . *(U) contains j(.# (U)) for every open subset U of X. Moreover,
a section s € &(U) belongs to .7 *(U) if and only if U can be covered by open
subsets V for which there exists ¢ € .% (V) such that s|y = j(t).

By construction the morphism of presheaves j:.# — & factors through a
morphism from .% to .#*, which we still denote by j. It remains to show that
for every x € X, the map j,: %, - % is a bijection and that the pair (., j)
satisfies the desired universal property.

Let x € X. For every open subset U that contains X, let py: #*(U) - %, be
the canonical projection, given by s - s,. If U and V are open neighborhoods
of x such that V c U, one has py(s|y) = pu(s). By definition of the limit
lim #*(U), there exists a unique map p: #; — %, which maps the germ at x

of a section s = (s, ) ey € #*(U) to s, for every open neighborhood U of x. By

construction, p o j, is the identity. In particular, j is injective. Let us show that
jx is surjective. Let s € % be the germ of a section t € . *(U), for some open
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neighborhood U of x. By definition of .# ¥, there exists an open neighborhood V
of x such that V c U and a section ¢’ € .# (V) such that t, = j(#'), for every
y € V. By definition of the sheaf &, one thus has t|y = j(t'). Moreover, t and t|y
have the same germ at x, so that s = j,(#'). This concludes the proof that the
map jy: Fx = F, is an isomorphism.

Let us now prove that the pair (.% 7, j) satisfies the universal property of the
theorem. Let ¢ be a sheaf on X and let f:.# — ¢ be a morphism of presheaves.
Let U be an open subset of X and let t € .#*(U). Let I be the set of pairs (V,s),
where V is an open subset of U and s € .% (V) is such that s, = ¢, for every x € V.
Leti=(V,s)and j=(V',s') el and let W = V nV'. For every x € W, one has

F(8)x = f2(s2) = fu(tx) = fu(55) = f(5')x

Since ¥ is a sheaf, lemma 3.1.10 implies that f(s)|w = f(s")|w-

Fori = (V,s) eLletU; = Vand u; = f(s) € 4(V). By the definition of a
sheaf, applied to the family (U;);¢ of open subsets of X and to the family (u;)
of sections ¢, there exists a unique section u € ¢4 (U) such that uly = f(V)(s)
for every pair (V,s) € L. Set ¢(U)(¢) = u. This defines a map ¢(U):.%*(U) -
4(U).

The morphism j maps a section s € .% (U) to the section t = j(U)(s) = (sx)xeu
of #*. By construction, one thus has ¢(U)(j(U)(s)) = f(U)(s) for every
se #(U).

If U’ is an open subset of U, the definitions of ¢(U’) and ¢(U) imply at once
that o(U")(s|y') = ¢(U)(s)|ur. We thus have defined a morphism of sheaves ¢
from.#*to¥,and g o j=f.

Finally, let ¢, y be two morphisms of sheaves from .%* to ¢ such that f =
@ o j = wo j, and let us show that ¢ = y. For every point x € X, one has

fx = ¢x 0 jx = Wy o jy, hence ¢, = y, since j, is bijective. It follows from
lemma 3.1.10 that ¢ = y. ]

3.2.8. Colimits. — Let Q be a quiver and let #q = ((%#,),(¢.)) be a Q-
diagram of presheaves on X. For every open subset U of X, let %,.(U) =
lim(.#q(U)) be the colimit of the diagram of sets ((-#,(U)), (¢.(U))); let
¢,(U): #,(U) > #(U) be the canonical map. For every open subsets U, V

of X such that V c U, there exists a unique map pf{}”: Fpre(U) = Fpre(V)

such that piii" o 9,(U) = ¢, (V)  pi". The family Zyre = ((Fpre(U)) ()
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is a presheaf; by construction, the maps ¢,(U):.%,(U) - Fp(U) form a
morphism of presheaves ¢,: %, - Fpre.

Endowed with the family of morphisms (¢, ), the presheaf F . is a colimit of
the diagram 7. Let indeed (¢, (v,)) be a cocone on this diagram. For every
open subset U of X, the set 4 (U) is a cocone on the diagram .%4(U), hence there
exists a unique map 0(U): Fpre(U) - 4 (U) such that 0(U) o v, (U) = ¢,(U)
for every v. Let V and U be open subsets of X such that V c U. For every v, one
has

py 0 0(U) 0 9,(U) = py o v, (U)
= WV(V) © p?\v/

=0(V) 0 9, (V) o piy
Fore
=0(V) o pyy o 9y (U).

It follows that p,, 0 O(U) = (V) o pf{}”, which proves that the family of maps

6 = (6(U)) is a morphism of presheaves. It satisfies v, = 0 o ¢, for every v, and
it is the unique such morphism of presheaves.

3.2.9. — Let.%qbea Q-diagram of sheaves. Generally, the presheaf .7 . which

is the colimit of this diagram in the category of presheaves is not a sheaf. One

thus defines the sheaf h_n}(ﬁQ) to be the sheaf associated to this presheaf F .
It is indeed a colimit of the diagram .%, in the category of sheaves on X.

3.2.10. — Similarly, every diagram .%#, of sheaves of abelian groups has a colimit
which is computed as follows. One begins by defining a presheaf .7, on X
such that #,..(U) is the limit of the diagram .%(U) of abelian groups deduced
from 7. Then one shows that the sheaf .7 associated with this presheaf .7 ..
is a colimit of the initial diagram.

An analogous result for sheaves of rings, of modules, etc.

3.2.11. — Let Q be a quiver, let % = ((:%,), (¢.)) be a diagram of sheaves.
Let x € X. Taking the stalks at x, one obtains a natural diagram %, =
((Zyx), (@ex)) of sets.

If (%, (¢,)) is a colimit of the diagram .Zq, then (%, (¢,.x)) is a colimit of
the diagram % .
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Let indeed j,: {x} — X be the inclusion of the point x. Sheaves of sets (resp.
modules,...) on a topological space reduced to one point x can be identify with
the set (resp. module,...) of its global sections. Consequently, the stalk .#, of
a sheaf .Z at x identifies with the sheaf j7'.7,. Since the functor j,* associated
with the continuous map j, has a right adjoint (namely, the functor j, .), it
commutes with arbitrary colimits.

If (%, (¢y)) is a limit of the diagram . and if the quiver Q is finite, then
(Fx, (@v.x)) is a limit of the diagram Fq .

Let (G, (v,)) be a cone on the diagram % ,; let us show that there exists a
unique map y: G - .%, such that y, = ¢, , oy for every vertex v of Q, Let g € G.
For every vertex v, let U, be an open neighborhood of x and s, € .#,(U,) be
such that y,(g) is the germ of s, at x; since Q has finitely many vertices, we
may replace each U, be the intersection U of the family (U, ), and s, by s,|u;
we thus assume that s, € .%,(U) for every v. For every arrow e of Q, one has
the equality @ (So(e),x) = Se(e),x Of germs at x; consequently, there exists an
open neighborhood U, of x contained in U such that ¢.(U.)(ss()

u.) = Si(e)lu.-
Since Q has finitely many arrows, we may replace U by the intersection ((]e)Ue.
Since .Z is a limit of the diagram .%q, there exists a unique section y,(g) €
Z(U) such that ¢,(U)(y,(g)) = s for every vertex v. Let y(g) be the germ
of ¥,(g) at x. It does not depend of the choice of the open neighborhood U
of x and of the sections s, € .%,(U) such that y,(g) = s, . for every vertex v and
9e(U)(So(e)) = 5i(e) for every arrow e of Q. By construction, the map y: G — %,
satisfies @, , o ¥ = v, and it is the unique such map.

3.3. Direct and inverse images of sheaves

Let f:X — Y be a continuous map of topological spaces.

3.3.1. — Let.# bea presheaf on X. For every open subset V of Y, the set f (V)
is open in X, because f is continuous. One thus defines a presheaf f,.# on Y
be setting (f..#)(V) = Z(f*(V)) for every open subset Vof Y. If U and V
are open subsets of Y such that V c U, the restriction map p{j{fz from f,.% (U)
to f..# (V) is the map Pfy—l(u),f—l(v) from . (f(U)) to Z(f(V)).

Lemma (3.3.2). — If F is a sheaf, then f..7 is also a sheaf.
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Proof. — Letindeed V be an open subset of Y, let (V;); be a family of open
subsets of Y such that V = U, V; and let (s;) be a family of sections of f,.%,
where s; € (f..#)(V;), such that the restrictions of s; and s; to V; n V; coincide.
Set U = f(V) and U; = f7'(V;). By definition of the presheaf f..%, s; is an
element of .7 (U;) which we denote by t;. One has f*(V;nV;) =U;nV;, and
the restriction of ¢; to U; n U; corresponds with the restriction of s; to V; n'V;.
Consequently, one has t;]y,nu; = tjlu,nu, for every pair (i, j) of elements of L.
Since .7 is a sheaf, there is a unique element ¢ € .% (U) such that ¢y, = t; for
every i. This element ¢ corresponds to a section s € (f..%#)(V) and one has
s|u, = s; for every i; moreover, s is the only section possessing that property. This
concludes the proof that the presheaf .%# is a sheaf. ]

3.3.3. — Let.# and ¢ be presheaves on X and let u:.# — ¢ be a morphism
of presheaves. For every open subset V of Y, denote by ( f.u)(V) the map
u(f1(V)) from (£.7)(V) = Z(f(V)) to (£4)(V) = %(f(V)). Thisiisa
morphism of presheaves.

One has f,idz = ids, z. If vi¥ — S is another morphism of presheaves,
then f.(vou) = (fov) o (fou).

Consequently, the assignments .% — f..# and u — f.u define a functor from
the category PreShx of presheaves on X to the category PreShy of presheaves
on Y, and a functor from the category Shx of sheaves on X to the category Shy
of sheaves on Y.

3.3.4. — If .7 is a (pre)sheaf in abelian groups on X, then f..# has a natural
structure of a (pre)sheaf in abelian groups. If u:.# — ¥ is a morphism of
(pre)sheaves in abelian groups on X, then f,u is a morphism of (pre)sheaves in
abelian groups on Y. In other words, one also has a functor (still denoted by f.)
from the category Abx of sheaves of abelian groups on X to the category Aby
of sheaves of abelian groups on Y.

A similar result holds more generally for (pre)sheaves with values in a category.

3.3.5. — Let ¥ be a presheaf on Y. Let U and V be open subsets of X such that
U c V. Then f(U) c f(V); consequently, there exists a unique map pyy from
the set (v of germs of sections of ¢ at (V) to the set ¥y of sets of germs
of sections of ¢ at f(U) which associates with the germ at f(V) of a section s
of 4 on a neighborhood of f(V) the germ of this section at f(U).
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The family (%/(u)) together with the maps pyy is a presheaf on X, which we
denote (temporarily) by f,+(¥).

Definition (3.3.6). — If Y is a sheaf on Y, one defines the sheaf % on X as the
sheaf associated with this presheaf fyi .

In other words, for every sheaf .7 on X and every morphism v: f,1¥ — 7
of presheaves of X, there exists a unique morphism v': {7 — .% such that
v =v'o j,where j: {1 — 79 is the canonical morphism of presheaves.

3.3.7. — Letu:.# — ¢ beamorphism of presheaves on Y. There exists a unique
morphism of presheaves from f. (.7 ) to £+ (%) which, for every open subset U
of X, every open subset V of Y containing f(U) and every section s € % (U),
associates with the germ of the section s at f(U) the germ of the section u(U)(s).
We (temporarily) denote this morphism by f,1(u).

Denote by j and k the canonical morphisms from f,..7 to % and f,.¥
to f'¥ respectively. By the universal property of the associated sheaf, there
exists a unique morphism of sheaves f~u: f.% — 7% such that (f'uo j) =
ko (forett).

One has fidz = idf- 2. If vi¥ — 5 is a morphism of sheaves, one has
frvou)=(fv) o (fu).

In other words, the assignments .# — f1.% and u — f'u define a functor
from the category of sheaves on Y to the category of sheaves on X.

3.3.8. — If% isasheafin abelian groupsonY, then f % hasa natural structure
of a sheaf in abelian groups. If u: . % — ¢ is a morphism of sheaves in abelian
groups, then f~'u is also a morphism of sheaves in abelian groups. This gives a
functor, still denoted by f*, from the category A by of sheaves of abelian groups
on Y to the category Abx.

An analogous result holds for sheaves in rings, modules, etc., for which colimits
of direct systems is compatible with the colimit of the underlying direct system
of sets.

A similar construction can also be made for sheaves with coefficients in a
category C, provided that colimits of direct systems exist in the category C.

3.3.9. — Let.% be sheaf on X. Let U be an open subset of X and let s € % (U).
Let V be an open subset of Y which contains f(U); then f7*(V) contains U, so
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that there the restriction morphism p7 +1(v),u defines a map from (f.7)(V) =

F(f(V))to.Z#(U). When V runs along the family of open neighborhoods
of f(U) in Y, these maps give rise to a map from the set (f..# ) ¢(u) of germs of
sections of f..7 at f(U) to # (U), hence to a map ape(U) from f(f..7)(U)

Z(U). The family of maps (a,e(U)) is a morphism of presheaves from
the presheaf from f;1(f.#) to the sheaf .%. Consequently, there exists a
unique morphism of sheaves az: f'(f..#) — # such that aye = az o j,
where j: for(fe#) — f7(f.F) is the canonical morphism.

3.3.10. — Let% beasheafon Y. Let V be an open subset of Y, let s € (V) and
let U= f7(V). Since f(U) c V, one may consider the germ of s at f(U) which
is an element of f,1%(U); let B(V)(s) be its image in 7Y (U) = £.(f7Y)(V).
The maps (V) define a morphism of sheaves B from ¢ to f.(f7¥9).

Theorem (3.3.11). — Let .F be a sheaf on X, let 4 be sheaf on Y, and let
u:Yy — f..# be a morphism of sheaves. There exists a unique morphism of
sheaves v: f~1(¥) - .F such that u = f.(v) o Bg.

If u is a morphism of sheaves of abelian groups (resp. of rings, etc.), then so is v.

In other words, the map
Hom(f'¥Y,.#) - Hom(Y, f..% ), ur f.(u)opPy

is a bijection, so that the pair (f7, f.) of functors between the categories of
sheaves on X and on Y is adjoint.

Proof. — Letv:¥ — f..# be a morphism of sheaves on Y and let u: ¥ - .%
be the morphism given by u = az o (f7'v).

Let U be an open subset of X, let V be an open subset of Y such that f(U) c V;
onehas U c f(f(U)) c f*(V). Let us consider the commutative diagram of
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maps
9 (V) — L (£.F)(V) (V)
lgerm lgerm
G0y ——— (£ ) s) restr.

fg(U) L2 fa(f7)(U) —2E Z(U),

lcan. lcan. %(U))

) L2 g 2 ()

where the arrows indicated “germ’ map a section on V to its germ at f(U),
the vertical arrow indicated “‘restr.”” maps a section of .# on f7(V) to its
restriction on U, the horizontal arrow indicated “‘restr.”” is the morphism in-
duced by the natural restriction maps from the members of the directed system
(feZ )W) wspu) = (F (f(W)))wsfu) to F (U), and the arrows indicated
““can.” are the canonical morphisms from a presheaf to the associated sheaf.

Let us assume that U = f7(V) and let s € 4 (V). Since f(U) = Visopenin,
the maps ““‘germ’ in the diagram are bijections, as well as the vertical restric-
tion map. The definition of B4 shows that S«(s) is the image of s in 7% (U)
under the composition of arrows of the left hand column of the above dia-
gram. Consequently, u(U)(B»(s)) is the section v(s) € #(U) = f..# (V).
Since f.u(V) = u(U), it follows that v(s) = (f.u)(V)(B»(s)). This shows that
v =(fuu)o By.

Conversely, let u;, 1, be morphisms from f7'% to .%# such thatv = (f.u,)ofy =
(fiu,) o By. Let W be an open subset of X, let ¢ be a section of f7'% on W; let
us prove that u,(t) = u,(t) in % (W). Since .7 is a sheaf, it suffices to prove
that every point x of W has a neighborhood U such that u,(¢)|y = u,(¢)|y. By
definition of the sheaf f~'%, there exists an open neighborhood U of x in X, an
open subset V of Y such that f(U) c V and a section s € ¢4 (V) such that t|y is
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the image of s under the composition:

germ can

G(V) — Y5u) = fe9 (U) — f79(U).
Observe that By (s) is an element of f, f7Y (V) = f74(f~(V)); by the defini-

tion of By, its restriction to U is thus equal to f|y. Consequently,

w (8o = w(tly) = m(By(s)) = v(s) = ua(By(s)) = ua(tfu) = u(t)u.

This implies that u,(¢) = u,(t) and concludes the proof that u, = u,. O

3.4. The abelian category of abelian sheaves

In this section, we show that the category of abelian sheaves is an abelian
category. In fact, we treat a more general case.

3.4.1. — Let X be a topological space and let .7 be a sheaf of rings on X. An .7 -
(pre)module is a (pre)sheaf .# in abelian groups such that for every open subset
U of X, .# (U) is endowed with a structure of an ./ (U)-module, compatibly
with the restriction maps: for every pair (U, V) of open subsets of X such that
VcU,everyaeo/(U)andeverys e .%#(U),one has aly - s|y = (a-s)|v.
Equivalently, .# is an abelian (pre)sheaf endowed with the datum of a mor-
phism of (pre)sheaves in (possibly non-commutative) rings: &/ — &nd(.F).

3.4.2. — Let.#,% be o/ -modules. A morphism of &7 -(pre)modules ¢: . # — &
is a morphism of (pre)sheaves in abelian groups such that ¢(U)(a-s) = a -
¢(U)(s) for every open subset U of X, every a € &7 (U) and every s € .7 (U).

The identity is a morphism; the composition of two morphisms of .o7-
(pre)modules is a morphism of .<7 - (pre)modules. Consequently, .7’ -premodules
and .7 -modules form categories which we denote by PreMod ., and Mod .
They are additive category.

If # is an &7 -premodule, then the associated sheaf .# * has a unique structure
of an 7-module such that the canonical morphism j:.# - .#* is &/ -linear.

3.4.3. — Let.# be an &/-module on X. Let x € X. The stalk .%, has a unique
structure of .o7;-module for which a, - s, = (a-s),, for every open neighbor-
hood U of x, every a € o/ (U) and every s € .% (U).

Let ¢:.# — % be a morphism of .27-modules. For every x € X, the map
¢y Fy = 9, is a morphism of .o7,-modules.
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3.4.4. — Let A be aring and let Ax be the constant sheaf with value A. Every
Ax-module is naturally a sheaf in A-modules. This gives rise to an equivalence
of categories from the category of Ax-modules to the category of sheaves in
A-modules.

3.4.5. — Every diagram of sheaves of .7-modules has a limit and a colimit. In
particular, the category of .« -modules admits finite products and coproducts.
The limit is computed on each open set.
To compute the colimit, one first computes a presheaf of abelian groups and
then takes the associated sheaf, which has a natural structure of an .27 -module.
Let x € X. The functor “stalk at x”” from Mod . to Mod ., commutes with
all colimits, and with all finite limits.

3.4.6. Images, kernels and cokernels. — Let ¢:.# — ¢ be a morphism of
o/ -modules.

Its image Im(¢) is the subsheaf of 4 generated by the sub-presheaf given by
U~ ¢(U)(#(U)). Itis a sub-47-module of 4.

The kernel of ¢ is the o/ -submodule Ker(¢) of .# whose sections over an
open subset U of X are the elements of Ker(¢(U)).

To justify the terminology, let j be the inclusion of Ker(¢) in .%, and let us
show that (Ker(¢), j) is an equalizer of the pair (¢, 0) of morphisms from .#
to ¢. The morphism j is a monomorphism and one has o j = 0 = 00 }j. Let more-
over k: 7 — .% be amorphism of .27 -modules such that ok = o; for every open
subset U of X and every section s € .7°(U), one has ¢(U)(k(U)(s)) = o, hence
k(U)(s) = o; this shows that k(U)(s) € Ker(¢)(U), so that the morphism k
factors, necessarily uniquely, through Ker(¢).

A coequalizer Coker(¢) of the pair (¢,0)) is called a cokernel of ¢. The
canonical morphism from ¢ to Coker(¢) is an epimorphism.

Proposition (3.4.7). — Let X be a topological space, let o7 be a sheaf of rings on X,
let # and 4 be <f -modules and let ¢: F — & be a morphism of of -modules. Let
j:Ker(@) - F and p:99 — Coker(¢) be the canonical morphisms.

a) The following properties are equivalent:

(a) The morphism ¢ is a monomorphism;
(b) One has Ker(¢) = o;
(c) Forevery x € X, the morphism ¢, is injective;
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(d) The pair (.7, ¢) is a kernel of p.
b) The following properties are equivalent:
(a) The morphism ¢ is an epimorphism;
(b) One has Coker(¢) = o;
(c) Forevery x € X, the morphism ¢, is surjective;
(d) One hasIm(g) =¥;
(e) The pair (¢, ¢) is a cokernel of the morphism j.
c) The morphism ¢ is an isomorphism if and only if it is both a monomorphism
and an epimorphism.

Proof. — Recall that j is a monomorphism and p is an epimorphism.

a) (i)<(ii). One has ¢ o j = 0; consequently, if ¢ is a monomorphism, then
j=o0andKer(¢) = o. Conversely, assume that Ker(¢) = o and let y: 77 - .F
be a morphism of .7 -modules such that ¢ oy = o; then v factor through Ker(¢),
so that v = o.

(ii)<(iii). Since passing to stalks commute with finite limits, one has iso-
morphism Ker(¢), ~ Ker(¢, ) for every x € X. If Ker(¢) = o, this implies that
Ker(¢,) = o, hence ¢, is injective; conversely, if ¢, is injective for every x € X,
then all stalks of the sheaf Ker(¢) are o, hence Ker(¢) = o.

The implication (iv)=(i) is obvious, because kernels are monomorphisms.

b) (i)=(ii). One has p o ¢ = o; if ¢ is an epimorphism, then p = o and
Coker(¢) = o.

(i)« (iii) <= (iv). Let x € X. Passing to stalks commute with colimits, hence
Coker(¢), ~ Coker( ¢, ); moreover, the stalk of the subsheaf Im(¢) of 4 at x is
equal to Im(¢, ). If Coker(¢) = o, then for every x € X, one has Coker(¢,) = o,
so that ¢, is surjective. If ¢, is surjective for every x, then the subsheaf Im(¢)
then has the same stalks as ¢, so that one has Im(¢) = ¢. Finally, if Im(¢) = ¢,
then their stalks coincide, so that ¢, is surjective for every x; this implies that
every stalk ot the sheaf Coker(¢) is zero, hence Coker(¢) = o.

(iii)=(i). Let us assume that ¢, is surjective for every x and let y: &4 — 57
be a morphism of .o -modules such that y o ¢ = o; let us prove that v = o. For
every x € X, one has y, o ¢, = 0, hence v, = o because ¢, is surjective. This
implies that v = o, as claimed.

The implication (v)=(i) is obvious, because cokernels are epimorphisms.
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c) In any category, every epimorphism is a monomorphism and an epimor-
phism. Conversely, if ¢ is both a monomorphism and an epimorphism, then ¢,
is bijective for every x € X, so that ¢ is an isomorphism.

It remains to prove the implications (i)=(iv) in a) and (i)=(v) in b).

Since p o ¢ = o, one has Im(¢) c Ker(p). Moreover, one has Ker(p), =
Im(¢), = for every x. This implies that Im(¢) = Ker(p). The morphism
¢ # — Ker(p) induced by ¢ is thus an epimorphism. If ¢ is a monomorphism,
then ¢’ is a monomorphism as well, hence an isomorphism.

Let k:.# — Coker(j) be a cokernel of j. Since one has ¢ o j = o, there exists
a unique morphism ¢’": Coker(j) - ¢ such that ¢ = ¢’ o k. Moreover, one has
Ker(k,) = Im(j,), so that Ker(¢’,) = o for every x € X; this implies that ¢’ is
a monomorphism. If ¢ is an epimorphism, then ¢’ is an epimorphism as well,
hence it is an isomorphism. ]

Theorem (3.4.8). — Let X be a topological space and let </ be a sheaf of rings
on X. The category of <7 -modules is an abelian category.

Proof. — The category of .«7-modules is additive. We constructed kernels and
cokernels, and proved that every monomorphism is a kernel, and that every
epimorphism is a cokernel. The axioms defining an abelian category are satisfied,
hence the theorem. []

3.4.9. — Let.%# and ¢4 be .&/-modules.
Recall that the presheaf 7Zom ., (% ,%) of homomorphisms is defined by

Homy(F,9)(U) = Homy (F|u,Y|u).

It is in fact an abelian sheaf. If, moreover, .&7 is commutative, then it is a sheaf of
o/ -modules.

Observe that for every U, there is a canonical morphism
Hom(F,9)(U) - Hom ) (F(U),4(U)).

This morphism is neither surjective, nor injective in general.

3.4.10. — Letusassume that .o/ is commutative. The tensor product sheat 7 ® .,
¢ is an </ -module endowed with an universal bilinear morphism from .% x ¢.
To prove its existence, we first define a presheaf .7, of &7 (U)-modules by
the formula
Tre(U) = F(U) @01 4(V),
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for every open subset U of X, and the restriction morphism pf{f is defined as

pv ® py, whenever U and V are open subsets of X such that V c U. Let
be the sheaf associated with this presheaf and let j: 7, - 7 be the canonical
morphism. Then .7 is an ./-module. Moreover, the family (b(U)) of maps
given by b(U)(f,g) = j(U)(f ® g), for every open subset U of X, every f ¢
Z(U) and every g € 4(U) is a morphism of sheaves b:.# x ¢ — 7. This
morphism is o7 -bilinear.

Let us prove that the pair (7, b) satisfies the following universal property:
for every .o/ -module, every <7 -bilinear morphism c:.# x 4 — &, there exists
a unique .27 -linear morphism y: .7 — ¢ such that ¢ = y o b. Let U be an open
subset of X. The morphism ¢(U): #(U) x4 (U) - £ (U) is &/ (U)-bilinear;
consequently, there exists a unique morphism ypre(U): .7 (U) ® o (1) 4(U) —
Z(U) such that yp..(U)(f ® g) = c(U)(f, g) for every f € #(U) and every
g € 9(U). The family (ypre(U)) is a morphism of presheaves in «7-modules
from J.. to &2. Consequently, there exists unique morphism y:.7 - & of
2/ -modules such that y,.. = y o j. One has

y(U) o b(U)(f,8) = y(U) e j(U)(f ® &) = ypre(U)(f ® g) = c(U)(f>8)

for every open subset U of X, every f € .%# (U) and every g € ¢4 (U); this shows
that y o b = c. Conversely, this property implies that y o j = yp, so that y is the
unique morphisms of .&7-modules which enjoys it.

3.4.11. — Let ¢: Y — X be a continuous map of topological spaces, let <7 be a
sheaf of rings on X and let 4 be sheaf of rings on Y.

Observe that ¢, is a sheaf of rings on X, and that ¢'.¢7 is a sheaf of rings
on Y. Let moreover ¢': o/ - ¢.% be a morphism of sheaves of rings; it would
be equivalent to give oneself the morphism ¢’: 9~(&/') — £ associated with ¢!
by adjunction.

Let .# be an &/ -module and let ¢ be an Z-module.

The sheaf ¢.% has a canonical structure of a ¢.%-module. Using the mor-
phism ¢, we view it as an .&/-module.

Similarly, the sheaf ¢'.% on Y has a canonical structure of a ¢~*(.¢7')-module.
Define a Z-module by the formula

(P*ﬁ = r@ ®(P71(£{ (P_lﬁ.
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The assignments 4 — ¢.% and ¢*:.% — ¢*.% give rise to functors between
the category of .o7-modules and that of Z-modules.

Let u:. % — ¢.9 be a morphism of .&/-modules; let u": ¢97.% — ¥ be the
morphism of sheaves which is deduced from u by the adjunction property of the
pair (¢, ¢, ). Then u’ is a morphism of ¢~'.<7-modules. Consequently, there
exists a unique morphism ¢*u: *.# — ¢ of #8-modules such that ¢*u(V) (b ®
f) = b-u’(f) for every open subset V of Y, every b € (V) and every f ¢
L7 (V).

The map u — ¢*u is a bijection from Hom, (%, ¢.¥) to Homg(¢*.%,9).
When .# and ¢ vary, these maps define an adjunction for the pair of func-

tors (¢*, ¢.).






CHAPTER 4

SCHEMES

4.1. Sheaves associated to modules on spectra of rings

4.1.1. — Let A be aring and let X = Spec(A) be its spectrum. Recall that it is
the set of prime ideals of A, endowed with the spectral (or Zariski) topology
whose closed subsets are those of the form

V(E) = {p € Spec(A); Ecp},

for some subset E of A. For every subset Z of Spec(A), we also defined

i(Z)=(p={acAsacp VpeZ},
peZ
and that the operations V and j define bijections, inverse one from the other,
from the set of radical ideals of A to the set of closed subsets of Spec(A).

The algebraic geometry of schemes considers these topological spaces Spec(A)
as its building blocks. In some sense, the prime spectrum of a ring is seen as a
more fundamental object than the ring itself. This suggests an adjustment of the
notation.

As in any topological space, elements of X are called points; a point of X is
thus denoted by a letter, such as x, and the corresponding prime ideal of A will
be denoted p,. With this notation, one thus has

i(Z) = () px-

x€Z

Then, the quotient ring A/p, is an integral domain, and its field of fractions will
be denoted «(x); it is called the residue field of X at x. One has morphisms of
rings:

A= Alp, = k(x).
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For f € A and x € Spec(A), one writes f(x) for the image of f in the residue
field x(x); with this notation, the condition f € p, is then equivalent to the
condition f(x) = o. For E c A and Z c Spec(A), one thus has

V(E)={xeX; f(x)=0oVfeE} and j(Z)={f¢cA; f(x)=0VxeZ}.
For f € A, one also has

V(f)={xeX; f(x)=0} and D(f)={xeX; f(x)+o}.
The subsets D(f), for f € A, form a basis of open subsets of Spec(A). For
f, g €A, the conditions (i) g € \/(f), (ii) V(g) 2 V(f), and (iii)) D(g) c D(f),

are equivalent.

4.1.2. — Let A be aring and let M be an A-module. Let us define a presheaf of
A-modules Mpre on X.

Let U be an open subset of Spec(A) and let S(U) be the set of all f € A such
that f(x) # o for every x € U. The set S(U) is a multiplicative subset of A. It
contains 1. Moreover, if f, g € S(U) and x € U, then (fg)(x) = f(x)g(x) in the
residue field x(x), hence (fg)(x) # o. Let ju: M — S(U)™M be the canonical
morphism of A-modules, given by m — m/1.

Let U and V be open subsets of Spec(A) such that V c U. By definition, one
has S(U) c S(V). Let pM,:S(U)"*M — S(V)~*M be the unique morphism of
A-modules such that jy = pX, o ju.

Consequently, the modules M (U) = S(U)*M and the morphisms pM,
define define a presheaf of A-modules on X.

Let u:M — N be a morphism of A-modules. The morphisms S(U)"M —
S(U)™'N deduced from u form a morphism of presheaves uf: Myre — Npre.
One has (Idy)5 =Id and (v o u)y < =45 o ul™.

4.1.3. — If Bisan A-algebra, then Epre is even a presheaf of A-algebras. Indeed,
the A-modules of fractions S(U)'B are A-algebras, and the morphisms pg,, are
morphisms of A-algebras.
If u:B - C is a morphism of A-algebras, then the associated morphism
pre,

U, Bpre = Epre of presheaves of A-modules is a morphism of presheaves of
A-algebras.

Remark (4.1.4). — Let A be a ring and let M be an A-module. Let f € A and
let U = D(f). By assumption, an element g belongs to S(U) if and only if
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V(g) c V(f), that is if and only if f € \/(g). In particular, the multiplicative
subset S¢ = {1, f, f%,...} is contained in S(U). Let us observe that the canonical
morphism ¢ from S/ Mto S(U)™M is an isomorphism.

Let m € Mand n > o be such that ¢(m/f") = 0 in S(U) M. Then there exists
g € S(U) such that gm = o. Since f € \/(g), there exists p > 0 and h € A such
that f? = gh; then fPm = o, hence m/f" = o in S/M.

Conversely, let m € M and let g € S(U). By the same argument, there exists
p>oandh e Asuch that ff = gh. One has f, g, h € S(U) and m/g = mh/gh =
mh/fP in S(U)M. Consequently, m/g = ¢(mh/ f?) belongs to the image of ¢.

Definition (4.1.5). — Let A be a ring and let M be an A-module. One defines the
sheaf M to be the sheaf of A-modules associated with this presheaf I\N/Ipre.

If u: M — N is a morphism of A-modules, the morphism of sheaves M - N
associated with the morphism u% © of presheaves is denoted u,, or .

If B is an A-algebra, then the sheaf B is a sheaf of A-algebras. If u:B - Cisa
morphism of A-algebras, then the associated morphism u, is a morphism of
sheaves of A-algebras.

If B is an A-algebra and M is a B-module, then M is a B-module.

Lemma (4.1.6). — Let x € X and let Sy be the multiplicative subset A =p, of A.
Let M be an A-module. The canonical morphism from M to M, induces an
isomorphism of A, -modules from the stalk M., of the sheaf M with the module of
fractions M, = S;*M deduced from M and the multiplicative subset S,. If M is an
A-algebra, then this isomorphism is an isomorphism of A, _-algebras.

Proof. — Since the canonical morphism from I\N/Ipre,x to M, is an isomorphism,
it suffices to prove that the canonical morphism from M to Mpre,x is itself an
isomorphism. By definition, Mye  is the colimit lim S(U)™'M, where U ranges
over all open subsets of X which contain x. For every such U, one has S(U) c
A=p,; let ¢: Mpre,x — M, be the canonical morphism. It is surjective: for
f € A=p,and m € M, the element m/f of M,_ is the image by ¢ of the
class of the element m/f of S(D(f))*M. It is also injective: if, for an open
neighborhood U of x, f € S(U), and m € M, one has ¢([m/f]) = o, there exists
g € A=y, such that gm = o; this implies that m/f = 0 in S(D(g) )M, hence
[m/f] =0 in M. O]
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Remark (4.1.7). — Let A be aring, let X = Spec(A) be its spectrum; let f € A;
let M be an A-module. Recall (proposition 1.5.10) that the canonical morphism
of rings A — A induces a homeomorphism from Spec(Ay) to the open sub-
set D(f) of Spec(A). Under this homeomorphism, the sheaf M on Spec(Ay)
identifies with the restriction M|ps) to D(f) of the sheaf M on X.

Indeed, for every g € A, one has D(fg) c D(f), Mpe(D(fg)) = M;,, while
prre(D(g)) = (My),, so that both presheaves Mpr|p(s) and Mg, on D(f)
are canonically identified.

Theorem (4.1.8). — Let A be a ring, let X = Spec(A) be its spectrum; let M be
an A-module and let M be the associated sheaf of Ox-modules. For every open
subset U of X, let 0y: S(U)™M — M(U) be the canonical morphism.

For every f € A, the morphism Opy) is an isomorphism. In particular, the
canonical morphism from M to M(X) is an isomorphism.

Proof. — Let f € A andlet U = D(f).

We first show that 6y is injective. Let m € M and let g € S(U) be such that
Oy(m/g) = o. In particular, for every x € U, its germ 0y(m/g), at x vanishes,
hence m/g = o in M, . Let I be the set of elements a € A such that am = o; it
is an ideal of A. By assumption, for every x € U, there exists a € A = p, such
that am = o, that is, V(I) n U = @. In other words, one has V(I) c V(f), hence
f € /1. Consequently, there exists an integer n > o such that f" € I. One has
f"m = o, hence m/g = 0in My, and m/g = 0 in S(U)*M since f € S(U).

Let us now show that 0y is surjective. Let y € M(X) and let us show that
there exists m € M such that g = 6x(m). Let x € X; by the construction of
the sheaf associated to a presheaf, there exists an open neighborhood U, of x,
elements f, € S(U,) and m, € M such that u|y, = Oy, (m./f:).

Since the open sets of the form D (/) form a basis of open subsets of X, there
exists h, € A such that D(h,) c U, nD(f,) and x € D(h,). Then h, ¢ p, and
one has p|p(n,) = Op(n,)(Mx/ fx). Moreover, since D(h,) c D(fx), there exists
gx € A such that f, g, = hy*. Then m,/ f, = gem,/hy*. We may then replace f,
and h, by hy*, and replace m, by g,m,; this simplifies the notation in so that
Uy = D(fx) and plu, = Ou, (m./fz).

Let x,y € X. One has yly,qu, = 0u,qu,(m./fy) = 0u,au,(m,/f,). Conse-
quently, the morphism 0y, ny, maps the element m../ f,—m,/ f, of S(U,nU, )M
to o. Since U, n U, = D(f.f,), the injectivity part implies that m,/f, = m,/f,
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in S(U, n U,)™'M; by the remark 4.1.4, one even has m,/f, = m,/f, in the
module My ; . By the definition of modules of fractions, this means that there
exists an integer n, > o such that (f.f,)" fym, = (fify)™ fim,.

Since x € D( f), the open sets D( f,) cover Spec(A), hence the intersection of
the sets V( f,) is empty. This implies that the family ( f; ) cx generates the unit
ideal of A; as a consequence, there exist a finite subset  of X which generates
the unit ideal. Let n = sup, 5(nx,); for every x, y € %, one has fy*'f)'m, =
frfrtim,. Since the family (f*'),cx generates the unit ideal, there exists a

y x
family (h,)yes such that 3, .5 f/*h, = 1. Let then

X

m = Z hy i my.

XEX

For every x € Z, one has

METEDY T hymy = D L hymy = flmy D [y = flmy.
yeX yeXx yeX
Consequently, m/1 = m,/f, in My, and Oy, (m/1) = Oy, (my/fc) = Oy () in
M(U,). Since the open sets (U, ) s cover X and M is a sheaf, this shows that
u = Ox(m) and concludes the proof that the map 6y is surjective.

It remains to show that the map 0py) is surjective for every element f € A.
Given remark 4.1.7, this can be deduced from the preceding part by replacing A
by the ring of fractions A and M with the module of fractions M. One can
also redo explicitly the proof. In both cases, details are left to the reader. O]

Corollary (4.1.9). — Let A be a ring and let X = Spec(A). Let M be an A-module
and let ¥ be a A-module. For every morphism ¢:M — N (X) of A-modules,
there exists a unique morphism §: M — A of A-modules such that ¢(X) = ¢.

This corollary has two important consequences.

Firstly, it can be reformulated as saying that the pair of functors (M
M, ¥ + A (X)) from the category Mod, of A-modules to the cate-
gory Mod of A-modules on X is adjoint. In particular, the functor M = M
respects all colimits, and the functor 4" — 4 (X) respects all limits (exer-
cise 2.4.9).

Secondly, implied to A-modules of the form .#* = N, it implies that the
functor given by .% + .7 (Spec(A)) from the full subcategory of the category of
A-modules on X whose objects are of the form M, to the category of A-modules
is an equivalence of categories. Indeed, the functor M ~ M is a quasi-inverse.
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Proof. — Let ¢: M — .4 (X) be a morphism of A-modules. For every open
subset U of X, let ¢pre (U): S(U)*M — 4" (U) be the morphism of A-modules
given by ’(ﬁpre(m/s) = (1/s)p(m), where, for s € S(U), 1/s is considered as an
element of A(U) The family (@pre(U)) is a morphism of presheaves on X.
Let j: Mpre — M be the canonical morphism from the presheaf Mpre to the
associated sheaf. There exists a unique morphism of sheaves :M — .4 such
that o(U)(j(U)(m/s)) = ¢pre(U)(m/s) = (1/s)@(m) for every m € M, every
open subset U of X and every s € S(U). This is a morphism of A-modules,
and one has ¢(X) = ¢. Conversely, let y:M — .4 be any morphism of A-
modules such that (X) = ¢. For every open subset U of X, every m € M and
every s € S(U), one necessarily has

y(U)(j(U)(m/s)) = (1fs) - w(U) o j(U)(m/1)
= (1/s) - 9(X)(m)|u = (V) (j(U)(m/s)),

hence y o j = ¢ o j. Consequently, ¥ = @, as claimed. O

Corollary (4.1.10). — Let A be a ring. The assignment M v M and ¢ > ¢ is a
functor from the category of A-module to the category of A-modules. This functor
commutes with all colimits, with all finite limits, and is fully faithful.

Proof. — We have already noted that this functor is fully faithful. Since it has a
right adjoint, it commutes with every colimit, finite or not (see exercise 2.4.9).
Let us now show that it commutes with every finite limit.

Let Q = (V,E) be a finite quiver and let . = (M, ) be a Q-diagram of A-
modules, let (M, (¢,)) be its limit. Let (.4, (y,)) be a cone on the diagram .#
of A-modules which is associated with ..

By definition, for every v, ,:N — M, is a morphism of A-modules such
that yy(,) © Yo = @y(¢) for every e € E. Then (A" (X), (v,(X))) is a cone on the
diagram .# of A-modules, hence there exists a unique morphism of A-modules
0: A (X) - M such that v, (X) = ¢, o 6 for every v € V.

Let a € A and let S, be the multiplicative subset S, = {1, a, a?,...} of A. Since
the functor M — S*M commutes with finite limits (it is exact, see example 2.3.15),
the cone (S;'M, (S, ¢, )) is a limit of the diagram (S;*M, ). Since the canonical
morphism from S;*M, to M(D(a)) is an isomorphism, the cone (S;'M, (S;'¢,))
is a limit of the diagram (M(D(a)). Since (.4 (D(a)), (y,(D(a)))) is also
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a cone on this diagram, there exists a unique morphism of S;'A-modules
0,: 4 (D(a)) - S;*M such that y,(D(a)) = ¢,(D(a)) o 0, for every v e V.
Let now U be an open subset of X. There exists a unique morphism of Ox(U)-
modules 6(U): .4 (U) - M(U) such that 0(U)(s)Iba) = 0a(s|p(a)) for ev-
ery a € A such that D(a) c U. Moreover, the family (6(U)) is a morphism
of Ox-modules from .4 to M such that v, = ¢, o 6, and it is the unique such
morphism. [

Example (4.1.11). — Here are two particularly important examples:

a) Let :M — N be a morphism of A-modules, and let $: M — N be the
associated morphism between the corresponding A-modules on Spec(A). Then
the A-modules associated with Ker(¢) and Coker(¢) are respectively a kernel
and a cokernel of ¢.

b) Let (M;) be a family of A-modules, and let M = @, M; be its direct sum
(coproduct). Then M is a direct sum of the family (M;) of A-modules.

4.2. Locally ringed spaces

Definition (4.2.1). — A ringed space is a topological space X endowed with a
sheaf of rings Ox, which is called its structure sheaf.

When we talk of a ringed space, we often omit the sheaf of rings from the
notation.

Definition (4.2.2). — Let (X, Ox) and (Y, Oy) be ringed spaces. A morphism
of ringed spaces from X to Y is a pair (¢, ¢!) consisting of a continuous map
¢: X = Y and morphism of sheaves of rings ¢!: Oy — ¢, Ox.

Concretely, given a continuous map ¢ of topological space, the morphism ¢!
amounts to the datum, for every open subset U of Y, of a morphism of rings
o' (U): Oy(U) - Ox(9*(U)), subject to the following compatibility with re-
strictions: if U and V are open subsets of Y such that V c U, then ¢!(V)(s|y) =
ot (U)(s)|v for every s € Oy(U).

Instead of ¢!: Oy — ¢,0%, it is equivalent to give oneself the morphism
¢’ 97 0y - Ox deduced by the adjunction property of the pair of functors

(¢, ¢.) (theorem 3.3.11).
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4.2.3. — Let (¢, ¢!) be a morphism of ringed spaces from (X, Ox) to (Y, Oy).
Let x € Xand let y = ¢(x). There is a unique morphism of rings ¢i: Oy , - Ox .
such that ¢4 (f,) = ¢*(U)(f) for every open neighborhood U of y and every
section f € Oy(U).

Definition (4.2.4). — A locally ringed space is a ringed space such that the stalks
of its structure sheaf are local rings.

A morphism from a locally ringed space (X, O) to a locally ringed space (Y, Oy)
is a morphism (@, ¢!) of ringed spaces such that for every x € X, the associated
morphism @l: Oy oy = Ox.x is a local morphism of local rings.

Recall from $§1.1.7 that a morphism of local rings is said to be local if the image
of every non-invertible element is not invertible.

We keep the notation of the previous definition. Let (X, Ox) be alocally ringed
space. For every point x € X, the residue field of the local ring 0x , is usually
denoted by x(x). The image in x(x) of a germ f € Ox , is denoted by f(x); for
every open neighborhood U of x and every section f € Ox(U), the image of the
germ f, in x(x) is denoted by f(x).

Let (¢, ') be a morphism of locally ringed spaces. Let x € X. Since the mor-
phism ¢ is local, it induces, by passing to the residue fields, a morphism of fields
from x(@(x)) to x(x). If U is an open neighborhood of ¢(x) and f € Oy (U),
then the element ¢! (U)(f)(x) of x(x) is the image of the element f(¢(x))

of k(p(x)).

4.2.5. — Let 9:X - Y and y: Y — Z be morphisms of locally ringed spaces.
Their composition ¥ o ¢ is defined as follows: the underlying continuous map is
the usual composition, and the morphism of sheaves (y o ¢)t: 07 - (v o ). Ox
is given by v, (¢!) o yt. For every x € X, the morphism

(Yo @)k: Oxx = Oz y(p(x))

is the composition of ¢: Ox x = Oy 4(x) and of Yy (x): Oy o(x) = Ozy(e(x))s it i
thus a morphism of local rings.
Locally ringed spaces form a category.

Example (4.2.6). — a) Let X be an open subset of R” or, more generally, a
¢’ *°-manifold. Let €° be the sheaf of € *-functions on X. For every point x € X,
the ring 6", is the ring of germs of ¢"-functions in a neighborhood of x; this
is a local ring whose maximal ideal m, is the ideal of germs of functions which
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vanish at x. In particular, the residue field x(x) is equal to R, and for every open
neighborhood U of x, the “value” ¢(x) € x(x) of a section ¢ € 6°(U) is the
actual value of ¢ at x.

Let X and Y be ¥’ *>°-manifolds. The definition of a morphism f:X — Y says
that f is a continuous map such that for every open subset V of Y and every ¢ *°-
function ¢ on V, the composition ¢ o f is € on f~*(V). Then the assignment
¢ — ¢ o f induces a morphism of sheaves fi: €3° — f,€¢°, so that the pair
(f, f*) is a morphism of locally ringed spaces.

Conversely, let (f, f1): (X, 65°) — (Y, 65°) be a morphism of locally ringed
spaces. This first implies that f is continuous. Moreover, we have explained
that for every open subset V of Y and every function f € 43°(V), one has
fH(V)(¢)(x) = ¢(f(x)). Consequently, the morphism of sheaves f! is given
by composition of functions.

In conclusion, morphisms of 4 *°-manifolds coincide with the morphisms of
the associated locally ringed spaces.

b) Let (X, Ox) be alocally ringed space and let U be an open subset of X. The
pair (U, Ox|u) is a locally ringed space.

Let j:U — X be the inclusion. For every open subset V of X, one has
(j«(Ox|v))(V) = Ox(UnV); let j#(V) be the restriction morphism. This
defines a morphism of sheaves ji: Ox — j.Ox|u. For every x € U, the morphism
jL: Ox x = (Ox|y)x induced by jt is an isomorphism. Consequently, (j, j*) is a
morphism of locally ringed spaces.

Let moreover f:Y — X be a morphism of locally ringed spaces. If f(Y) c U,
there exists a unique morphism of locally ringed spaces g:Y — U such that
f=Jjeg N

c) Let A be a ring. Endowed with the sheaf of rings A, the topological
space Spec(A) is a locally ringed space. (Such locally ringed spaces are the
fundamental bricks of algebraic geometry, and are called affine schemes.) Recall
indeed from lemma 4.1.6 that the stalk of the sheaf A at a point x € Spec(A)
identifies with the local ring A, .

d) Let A be aring. For every f € A, the canonical homeomorphism of D( f)
to Spec(A¢) identifies the restriction to D(f) of the structure sheaf A with the
structure sheaf A of Spec(Ay). As a consequence, D( f) is an affine scheme.
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Lemma (4.2.7). — Let X be locally ringed space, let Ox be its structure sheaf. Let
U be an open subset of X, let f € Ox(U) andlet D(f) = {x € U; f(x) # o}. Then
D(f) is the largest open subset of U the restriction to which f is invertible.

Proof. — Let V be an open subset of U such that f|y is invertible and let g €
Ox(V) be such that f|lyg = 1. Then, for every x € V, one has f(x)g(x) =1,
hence x € D(f); consequently, V c D(f).

Let x € D(f). Since f(x) # o, the germ f, of f at x is invertible, because it
does not belong to the maximal ideal of the local ring O .. Consequently, f,
is invertible, hence there exists an open neighborhood V of x contained in U
and an element g € Ox(V) such f, g, = 1. This implies that there exists an open
neighborhood W of x contained in V such that f|wglw = 1: this shows that flw
is invertible. In particular, W c D( f), so that D(f) is open in U.

For every x € D(f), let W, be an open neighborhood of x contained in D( f)
and let g, € Ox(W,) be an inverse of f|,. For every pair (x, y) of elements
of D(f), the restrictions of g, and g, to W, n W, are both equal to the inverse
of flw,nw,. By the sheaf condition, there exists a unique element g € Ox(D(f))
such that glw, = g, for every x € D(f). One then has (fg)lw, = flw.gx =1
for every x, hence f|p(s)g = 1 since the union of the open subsets W, is equal

to D(f). ]

Theorem (4.2.8). — Let (X, Ox) be alocally ringed space; let A be a ring. For every
morphism of rings u: A - Ox(X), there exists a unique morphism ¢ = (¢, t) of
locally ringed spaces from X to Spec(A) such that u = ¢!(Spec(A)).

Proof. — We first establish the uniqueness of such a morphism (¢, ') by
analysing properties which follow from the condition ¢!(Spec(A)) = u.

For every point x € X, let p, be the kernel of the canonical morphism f — f(x)
from Ox(X) to x(x); itisa prime ideal of O (X), because x(x) is a field, hence an
integral domain. For f € A, one has f(¢(x)) = ¢!(Spec(A))(f)(x) = u(f)(x),
so that the conditions f € py(x) and u(f) € p. are equivalent. In other
words, one has the equality p,(,) = u™*(px). This shows that the point ¢(x)
of Spec(Spec(A)) is the prime ideal u~*(p,) of A. This also shows that
¢ (D(f)) = D(u(f)). Since u(f) is invertible on D(u(f)), there ex-
ists a unique morphism of rings from us Ay — Ox(D(u(f))) such that
us(a/1) = u(a)lpeu(s)) for every a € A. Since Ogyec(a)(D(f)) = Ay, this also
implies the equality ¢#(D(f)) = uy. Since the open subsets of Spec(A) of the
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form D( f) constitute a basis of open subsets, we conclude from this analysis
that there exists at most one morphism (¢, ¢!) of locally ringed spaces such
that ¢! (Spec(A)) = u.

Let us now show its existence.

For x € X, define p, as above. We first construct a map ¢: X — Spec(A) by
defining ¢(x) € Spec(A) as the prime ideal u™(p,) of A.

By construction, a point x € X belongs to ¢7'(D(f)) if and only if
f ¢ u(py), that is, if and only if u(f)(x) # o; in other words, we have
¢ Y (D(f)) = D(u(f)); it is thus open in X. Since the open subsets of Spec(A)
of the form D( f) constitute a basis of open subsets of Spec(A), this implies that
the map ¢ is continuous.

Let us now show that there exists a morphism of sheaves @: Ogec(a) = ¢+ Ox
such that ¢!(Spec(A)) = u. For every f € A, the restriction to D(u(f))
of the element u(f) € Ox(X) is invertible and we define ¢f(D(f)) to be
the unique morphism of rings from Ogyec(a)(D(f)) = Ay which maps a/1
to u(f)|p(u(s))- If f and g are elements of A such that D(g) c D(f), one has
' (D(f))(a)lpg) = ¢"(D(g))(alp(g)), for every a € Ay, because both sides
coincide on the image of A in A;. Let U be an open subset of Spec(A); let
(fi)ia be a family of elements of A such that U = U;qD(f;); one then has
¢ (U) = Uia D(u(fi)). Let a € Ogpec(a)(U); for i € 1, let a; = alp(y,). For
i, j € Lonehas D(£)nD(f;) = D(fif;), and D(u(f1)) "D(u(£;)) = D(u(fif;)):
moreover, ¢!(D(f;))(a:) € x(D(u(£,)) and gH(D(£;))(a,) € Ox(D(u(f;)))
coincide with !(D(f;f;))(alp(y,s,)) on D(u(fif;))- Consequently, there exists
a unique element ¢!(U)(a) € Ox(¢*(U)) whose restriction to D(u(f;)) is
equal to ¢#(D(f;))(a;). The map ¢#(U) is a morphism of rings. The family
(¢"(U)) of morphisms is a morphism of rings of sheaves from Ofgpec(a) to ¢, Ox.
By construction, one has ¢!(Spec(A)) = u. This concludes the proof. O

Lemma (4.2.9) (Glueing locally ringed spaces). — Let (X;);q be a family of
locally ringed spaces. For every pair (i, j) of elements of 1, let X;; be an open subset
of X; and let ¢;;: X;; = X;; be an isomorphism of locally ringed space. Assume that
the following properties hold:

(i) For every i, one has X;; = X; and ¢;; = 1d;

(ii) For every i and j, one has ¢;; = (p]Tl.l;

(iii) For every i, j, k, one has ¢;j(X;; n Xjx) = Xji N Xji and the restriction
of @ik to the open subset X;; n Xji of X; coincides with the restriction of ¢ jx o @;j.
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Then there exists a locally ringed space X, a family (U; ) of open subsets of X,
and a family (¢, )i such that for every i, j € 1, the following properties hold:
(i) The morphism ¢, is an isomorphism of locally ringed space from U; to X;;
(ii) OnehasX;j=¢;(U;nUj);
(iii) The morphisms ¢;jo ¢; and ¢; coincide on U; N U;.

Proof. — Let us first define the topological space X, to be the union of the
family (X;);e: @ point of X, is a pair (i, x) such that x € X;. One then defines
a relation on X, by setting (i,x) ~ (j, y) if x € Xj; and y = ¢;j(x). This is an
equivalence relation. Let X be the quotient topological space X,/ ~: this is the set
of equivalence classes of points of X, endowed with the quotient topology, for
which a subset Q of X is open if and only if its preimage in X, by the canonical
map 7: X, — X is itself open. The map 7 is continuous.

Let i € I and let U be an open subset of X;; one has

n ' (n({i} xU)) = Lg{j} x ¢ij(Xijn U),
j

so that 771(7(U)) is open in X.. By definition of the quotient topology, 7(U) is
open in X. Since every open subset of X, is a union of open subsets of the form
{i} x U;, where U; is an open subset of X;, this shows that 7 is an open map.

For every i € I, let U; = n({i} x X;); it is an open subset of X and the family
(U}) e is an open covering of X. Moreover, the map 7 induces a continuous and
open bijection 7; from X; to U;; as a consequence, 71; is a homeomorphism.

For i € I, let Oy, be the sheaf of rings 71; . 0%, on U;; equivalently, one has
Ox, = n;'Oy,. For i, j € 1, the isomorphism ¢;; of locally ringed spaces induces
an isomorphism of sheaves of rings

91']'3 ﬁUJU,-mUj = (ﬂi,*ﬁXiNUiﬂUj = (7Ti|xij)*(ﬁxi|x,»j)
|
2, 9ij(1jlx; )« (Ox,lx;,) = Ou,lu,nu;-
Assumptions (i), (ii), (iii) imply that these isomorphisms satisfy the relations of
lemma 3.1.11. Consequently, there exists a sheaf of rings 0x on X and isomor-
phisms 0;: Ox|y, = Oy, such that 0;; 0 0,]y,nu, = 0j|u,u;-

Let x € X, let i € I be such that x € U;; let y € X; be such that 71;(y) = x. The
isomorphism 6; induces an isomorphism of the stalk Ox , with the stalk Oy,
which is itself isomorphic to O, ,; in particular, it is a local ring. This shows
that (X, Ox) is a locally ringed space. O
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Remark (4.2.10). — The locally ringed space X defined by the lemma is called
the locally ringed space defined by glueing the family (X;);; along the open sub-
spaces X;; by means of the isomorphisms ¢;;. It satisfies the following universal
property: For every locally ringed space Y, every family of morphisms (v; )1,

where y;: X; — Y is a morphism of locally ringed spaces such that yjo¢;; = v;
there exists a unique morphism y: X — Y such that y o ¢; = y;.

X,‘j’

4.3. Schemes
Definition (4.3.1). — Let (X, Ox) be a locally ringed space.

a) One says that X is an affine scheme if it is isomorphic to (Spec(A), A).

b) One says that X is a scheme if every point of X has an open neighborhood U
such that the locally ringed space (U, Ox|y) is an affine scheme.

c) A morphism of schemes is a morphism of the underlying locally ringed spaces.

Example (4.3.2). — a) Everyaffine schemeis a scheme. If a scheme X is affine,
then it is isomorphic to Spec(Ox(X)).

b) The locally ringed space induced on every open subset of an affine scheme
is a scheme. Indeed, if X = Spec(A) and U is an open subset of X, then every
point of x has a neighborhood in U of the form D(f), for some f € A. By
remark 4.1.7, the locally ringed spaced induced on D(f) is an affine scheme,
isomorphic to Spec(Ay).

In particular, the set of open subsets U of X such that (U, Ox|y) is an affine
scheme is a basis of the topology of X.

c) The coproduct (disjoint union) of a a family of schemes is a scheme.

d) Let (X, Ox) be a scheme and let U be an open subset of X. Then (U, Ox|y)
is a scheme; one says that it is an open subscheme of X. If, moreover, U is affine,
then one says that it is an affine open subscheme of X.

Example (4.3.3). — Let X and Y be schemes; assume that Y is an affine scheme,
say Y = Spec(A). By theorem 4.2.8, for every morphism of rings u: A - Ox(X),
there exists a unique morphism of schemes f:X — Y such that f#(Y) = u.

In particular, there exists a unique morphism of schemes f: X — Spec(0x (X))
such that f! = Id. Moreover, X is an affine scheme if and only if f is an isomor-
phism.
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Exercise (4.3.4). — Let k be a field, let A = k[x, y] and let X = Spec(A). Let
U = X=V(x, y). Then, (U, Ox|y) is a locally ringed space which is not an affine
scheme.

Definition (4.3.5). — Let S be a scheme. An S-scheme is a scheme X equipped
with a morphism of schemes f:X — S. If (X, f) and (Y, g) are S-schemes, a
morphism of S-schemes ¢: X — Y is a morphism of schemes such that go ¢ = f.

If (X, f) is an S-scheme, the morphism f is called the structural morphism
of X. In practice, the morphism f is omitted from the notation; for example,
one thus may write: “Let X be an S-scheme; let f be its structural morphism.”

Assume that k is a ring and that S = Spec(k). An S-scheme is also called
a k-scheme, and a morphism of S-schemes is also called a k-morphism. By
definition, a k-scheme is just a scheme X equipped with a morphism of rings
from k to Ox(X), so that the structure sheaf of X is a sheaf in k-algebras. In
particular, an affine k-scheme is the spectrum of a k-algebra. Moreover, a
morphism of schemes ¢: X — Y is a morphism of k-schemes if the morphism of
sheaves ¢!: Oy — ¢, Ox is a morphism of sheaves in k-algebras.

Example (4.3.6). — The category of locally ringed spaces admits coproducts
(disjoint unions), and the coproduct of any family of schemes is a scheme.

Let us moreover remark that the coproduct of a finite family of affine schemes
is affine. So let (A;);q be a finite family of rings; for every i, let X; = Spec(A;).
Let A = [];qA; and let X = Spec(A); for every i, the projection of index i,
piA — A;, induces a morphism j; from X; to X.

For every i, let ¢; be the element of A all of whose components are o, except for
the component of index i which is equal to 1. Let m € I. One has j,}(D(ey,)) =
D(pm(em)) = D(1) = X,,,. Moreover, the morphism p,, extends to a surjective
morphism from A, to A,; this morphism is in fact an isomorphism, so that j,,
induces an isomorphism from X,, to D(e,,).

Finally, ¢,,¢, = o for every pair (m, n) of distinct elements of I, so that D(e,,, ) N
D(e,) = @.

This proves that the affine scheme X = Spec([]; A;) is the coproduct of the
(finite) family (Spec(A;)) in the category of locally ringed spaces.

Proposition (4.3.7) (Glueing schemes). — Let (X; )1 be a family of schemes. For
every i €1, let X;; be an open subschemes of X;; for every pair (i, j) of elements of 1,



4.3. SCHEMES 135

let ¢;j: X;j — X;i be an isomorphism of schemes. Assume that these isomorphisms
satisfy the conditions of lemma 4.2.9. Then the locally ringed space X obtained by
glueing the schemes X; along the open subschemes X;; by means of the isomorphisms
@ij is a scheme.

Proof. — Indeed, X is the union of open subsets which are isomorphic, as locally
ringed spaces, to the schemes X;. Consequently, every point of X has an open
neighborhood which is an affine scheme, hence X is a scheme. [

Example (4.3.8) (Affine spaces). — Let k be a ring. The affine space of dimen-
sion n over k is defined by A} = Spec(k[T,, ..., T,]). Since k[T,,...,T,] isa
k-algebra, this is k-scheme.

For every k-scheme X, one has Hom (X, A}) = Ox(X)". In particular, for
every k-algebra A, one has Hom, (Spec(A), A}) = A"

Example (4.3.9) (Projective spaces). — Let k be a ring. The projective space
of dimension n over k is defined by glueing n + 1 affine schemes U,,...,U,
isomorphic to A. Precisely, let U = A7** = Spec(k[T,,...,T,]) and, for ev-
eryi€{o,...,n}, let U; = Spec(k[T,,...,T,]/(T;-1)) = V(T; —1).

For every pair (i, j), let U;; be the open subscheme D(T};) of U;; it is affine, iso-
morphic to Spec(k[T,, ..., T,]/(Ti—1)[1/T;]). There exists a unique morphism
of schemes ¢;;: U;; — Uj; such that

@l k[To, ..., To]/(Tj = 1)[1/Ti] = k[T, ..., Tn]/(Ti = 1)[1/T}]

maps T,, to T;T,,/T; for every m. Indeed, the morphism from k[T,,...,T,]
to k[T, ..., T,]/(Ti—1)[1/T;] which maps T,, to T;T,,/T; for every m maps T
to T; = 1, hence it passes to the quotient by (T —1), and it maps T} to 1/T; which
is invertible, hence it extends to k[T, ..., T,]/(T;—1)[1/T;].

One can check that the glueing conditions of proposition 4.3.7 are satisfied.
The scheme obtained is called the projective space of dimension n over k; it is
denoted by P}. Since the schemes U; are k-schemes, and are glued via morphisms
of k-schemes, this is a k-scheme.

We shall prove later that P} is not an affine scheme when n > 1.

Example (4.3.10). — Let X be a scheme. Let x be a point of X and let x(x) be

its residue field. Let us define a canonical morphism ¢ from Spec(x(x)) to X.
The space Spec(x(x)) has exactly one point, and the underlying continuous

map of topological spaces is just the one with image x. Let us now describe
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the morphism ¢k Ox — ¢.Og,ec(x(x))- For every open subset U of X which
contains x, one has ¢, (Ospec(x(x)))(U) = (x), and ¢!(U) is the canonical
“evaluation morphism” Ox(U) — x(x). On the other hand, if U is an open
subset of X such that x ¢ U, then ¢, (Ospec(x(x))) (U) = 0, and ¢#(U) is the zero
morphism.

Let us give an alternate description. The morphism ¢ factors through every
open subscheme of X which contains x. Let thus U be an affine open subscheme
of X such that x € U and let A be a ring such that U = Spec(A). The point x
corresponds to a prime ideal p, of A, and the morphism ¢:Spec(x(x)) —
Spec(A) is nothing but the morphism deduced from the ring morphism A —

A/px - K(X)

4.4. Some properties of schemes

Definition (4.4.1). — One says that a scheme X is reduced if for every x € X,
the local ring Ox  is reduced. One says that it is integral if it is irreducible and
reduced.

Recall that a ring is said to be reduced if no-nonzero element is nilpotent.
Since the fraction rings of a reduced ring are reduced, the spectrum of a ring A
is a reduced ring if and only if the affine scheme Spec(A) is reduced. Moreover,
the affine scheme Spec(A) is integral if and only if the ideal (o) is its (necessarily
unique) minimal prime ideal, that is, if and only if A is an integral domain.

An open subscheme of a reduced scheme is reduced.

Since a non-empty open subset of an irreducible topological space is irre-
ducible (prop. 1.10.3), a non-empty open subscheme of an integral scheme is
integral.

Proposition (4.4.2). — Let X be a scheme.

a) Let f € Ox(X) be such that V(f) = X. If X is reduced, then f = o.

b) If X is reduced, then the ring Ox(U) is reduced for every open subscheme U
of X.

c) Conversely, if every point of X has an affine open neighborhood U such that
Ox(U) is reduced, then X is reduced.

Proof. — a) Let U = Spec(A) be an affine open subscheme of X and let
a = f|u. One has V(a) = Spec(A), hence a is nilpotent in A. This implies that
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fx is nilpotent in Ox , for every x € U, hence f, = 0. Consequently, the germ
of f at every point of X vanishes, hence f = o.

b) Let us assume that X is reduced and let us prove that Ox(U) is reduced for
every open subset U of X. Let f € Ox(U) and let n be a positive integer such
that /" = 0. One then has V(f) = V(f") = X, hence f = o by a).

c¢) Let U be an affine open subscheme of X and let A = Ox(U). Under the
canonical isomorphism from U with Spec(A), a point x € U corresponds to a
prime ideal p of A, and the local ring O , corresponds to the ring of fractions
a,. Let f € A, be a nilpotent element; let a € A and s € A = p be such that
f =a/sandlet n € N be such that f” = 0. Then a”/s" = o, hence a”/1=01in A,,
so that there exists t € A = p such that ta” = o; one then has (ta)" = o. If A is
reduced, then ta = o, hence a/s = o; this proves that A, is reduced. ]

Proposition (4.4.3). — Let X be a non-empty scheme. The following conditions
are equivalent:

(i) The scheme X is integral;

(ii) For every non-empty open subset U of X, the ring Ox(U) is an integral
domain;

(iii) For every non-empty affine open subscheme U of X, the ring Ox(U) is an
integral domain.

(iv) The scheme X is connected, and every point of X has an affine open neigh-
borhood U such that Ox(U) is an integral domain.

Proof. — (i)=(ii). Let us assume that X is an integral scheme and let us prove
that the ring Ox(U) is an integral domain for every non-empty open subset of X;
we may assume that U = X. Since 1 is invertible in 0x(X), one has D(1) = X
(see lemma 4.2.7), hence 1 # o; this shows that Ox(X) # o. Let then f and g be
elements of Ox(X) such that fg = 0. ThenX = V(fg) = V(f) uV(g). Since X
is irreducible, this implies that X = V(f) or X = V(g). Since X is reduced, one
has f =oorg=o.

(ii)=>(iii) is obvious.

(iii)=(iv). Let us assume that Ox(U) is an integral domain for every non-
empty affine open subset U of X, and let us prove that X is irreducible; this will
imply that X is connected and non-empty. First of all, it is non-empty: indeed,
the empty scheme is, and its ring of functions, being equal to o, is not an integral
domain. By contradiction, let us consider two distinct irreducible components Y
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and Z of X; by definition of an irreducible component, one has YNnZ # Y and
Y nZ # Z, for these equalities mean that one of Y or Z is contained in the other.
Let then y € Y and z € Z be points such that y ¢ Zand z ¢ Y. Let U be an affine
open neighborhood of y which is contained in Y= (Y nZ) and let V be an affine
open neighborhood of z which is contained in Z— (Y nZ). Then U and V are
disjoint open subsets of X and U UV is isomorphic to Spec(Ox(U) x Ox(V))
(see example 4.3.6), hence is affine. Since the ring Ox(U) x Ox(V) is not an
integral domain (one has (1,0) - (0,1) = (0,0) = 0), we obtain a contradiction.
This proves that X is irreducible.

(iv)=(i). The conditions imply that X is reduced, so that we need to prove
that it is irreducible. It is non-empty by hypothesis.

To prove that it irreducible, we prove that every non-empty open subset U
of X is dense. Let x € U and let V be an affine open neighborhood of x such that
Ox (V) is an integral domain. Then V is irreducible, hence its open subset Un'V
is dense. Since U NV is a closed subset of V which contains U n V, we deduce
that V c U. We have proved that U is open in X. Since U is non-empty and X is
connected, this implies that U = X, hence U is dense in X. Consequently, X is
irreducible. ]

Example (4.4.4). — Let k be an integral domain.

a) The affine space A} is the spectrum of the integral domain k[T,, ..., T,],
hence it is an integral scheme.

b) The projective space P} is an integral scheme.

Indeed, by its very construction, P} is the union of (# + 1) open affine sub-
schemes U, ..., U,, and each of them is isomorphic to the affine space A7, hence
is integral. Moreover, for every pair (i, j) of integers such thato < i < j < n,
U, nU; is isomorphic to Spec(k[T,, ..., T,,1/T,]), hence is non-empty. This
implies that P} is connected. It thus follows from the previous proposition that
P} is an integral scheme.

Proposition (4.4.5). — Let X be a scheme. For every_closed irreducible subset Z
of X, there exists a unique point z € X such that Z. = {z}.

This point is called the generic point of Z.

Proof. — Let x be a point of Z and let U be an affine open subscheme of X such
that x € U. Let A be a ring such that U = Spec(A). By proposition 1.10.3, Zn U
is an irreducible closed subset of U, and one has Z = Z n U. It then follows from
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proposition 1.10.2 that there exists a prime ideal p of A such that ZnU = V(p).
Let z be the point of Z corresponding to the prime ideal p € Spec(A) = U. One
has V(p) = {p} in Spec(A), so that {z} contains Z n U; since it is closed in X, it
also contains Z N U = Z. Conversely, z € Z and Z is closed, hence {z} c Z.

Conversely, let z’ be a point of Z such that {2’} = Z. Since X = U is a closed
subset of X which does not contain Z, it does not contain z’, hence z’ € U.
Consequently, z’ corresponds to a prime ideal p’ of A, and

ZnU={z}nU=V(p)=V(p)
in Spec(A). This implies that p’ = p, hence z’ = z. []

Proposition (4.4.6). — An affine scheme is quasi-compact. More generally, a
scheme is quasi-compact if and only if it is the union of finitely many affine open
subschemes.

Recall that a topological space X is said to be quasi-compact if every open cover
of X admits a finite sub-cover, namely if for every family (U;);¢ of open subsets
of X such that X = U, U;, there exists a finite subset ] of I such that X = U, U;.
This is the French terminology, where ““compact’ means “‘quasi-compact and
Hausdorff”’, hence ““compact’™ in the American terminology for which compact
spaces are called ““compact Hausdorft”.

A subset of a topological space is said to be quasi-compact if it is so with the
induced topology. It follows readily from the definition that a finite union of
quasi-compact subsets of a topological space is quasi-compact.

Proof. — Let AbearingandletX = Spec(A). Let (U; ) be a family of open sub-
sets of X such that X = U;¢ U;. For every i € L, let (f; j);, be a family of elements
of A such that U; = Ujq, D(fi,j). Let ] be the union of the family (J;); an element
of ] is just a pair (i, j) where i € I and j € J;. One thus has X = U, jg D(fi.j)
hence @ = N(;,jg V(fi,j). Consequently, the ideal of A generated by the f; ; con-
tains 1, and there exists a finite subset ], of ] and a family (a; j)(i, j)eJ, of elements
of A such that 1=} ; ;¢ a;,fi,j. This implies Spec(A) = Ui )¢, D(fij)- If Lo
is the image of J, by the projection (i, j) ~ i, one then has Spec(A) = U, U;.
This shows that affine schemes are quasi-compact.

Conversely, let X be a scheme and let (U; ), be a covering of X by open affine
subschemes. If X is quasi-compact, there exists a finite subfamily of (U;) which
covers X; if I is finite, then X is quasi-compact since U; is quasi-compact for
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every i, and every finite union of quasi-compact subsets of a topological space
is quasi-compact. []

Lemma (4.4.7). — Let f:X — S be a morphism of schemes. The following proper-
ties are equivalent:

(i) For every quasi-compact open subset U of S, f=(U) is quasi-compact;

(ii) For every affine open subset U of S, f~*(U) is quasi-compact;

(iii) Every point of S has an affine open neighborhood U such that f—(U) is
quasi-compact.

If these properties hold, one says that the morphism f is quasi-compact.

Observe that a morphism of affine schemes is quasi-compact. Let indeed
@: A — B be a morphism of rings. For every a € A, the equality ¢~*(D(a)) =
D(¢(a)) proves that “p~*(D(a)) is affine. Since every quasi-compact open sub-
set U of Spec(A) is the union of a finite family of open subsets of the form D(a),
this implies that ?¢~*(U) is quasi-compact.

Moreover, if a morphism f:Y — X is quasi-compact, then for every open
subset U of X, the induced morphism fi;: f7*(U) — U is quasi-compact as well.

Proof. — The implication (i)=(ii) follows from the fact that affine schemes are
quasi-compact, and the implication (ii)=(iii) holds true because every point
of S has an affine open neighborhood.

Let us now assume that (iii) holds true.

Let U be an affine open subset of S such that f7(U) is quasi-compact. Let A be
aring such that U = Spec(A). Since f~*(U) is quasi-compact, it can be written as
a finite union of affine open subsets V,, ..., V, of f7(U). For every i, let B; be a
ring such that V; = Spec(B;); the morphism f|y, corresponds to a ring morphism
ui: A — B;. Forevery a € A, one has (f|v,)(D(a)) = D(u;(a)) = Spec(A,,(a))
so that (f|v,)*(D(a)) is affine; consequently, f(D(a)) = U, (f|v,)*(D(a))
is quasi-compact.

Let now W be a quasi-compact open subset of S. Let s € S; let U = Spec(A) be
an affine open neighborhood of s such that f=*(U) is quasi-compact and let W;
be an open subset of U of the form D(a), for a € A, such that W, c Un W. By
what precedes, f~1(W;) is quasi-compact. Since W is the union of the family
(Wy)sew of open sets and is quasi-compact, there exists a finite subset X of S
such that W = U,z Ws. Then f1(W) = Uses f(W5) is quasi-compact, as was
to be shown. []
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Definition (4.4.8). — Let f:X — S be a morphism of schemes. One says that
f is quasi-separated if for every affine open subscheme U of S and every pair
(V, V') of affine open subsets of X contained in f~1(U), the intersection VN V' is
quasi-compact.

One says that a scheme X is quasi-separated if the canonical morphism from X
to Spec(Z) is quasi-separated.

In other words, a scheme X is quasi-separated if and only if the intersection of
any two quasi-compact open subsets of X is quasi-compact.

Definition (4.4.9). — One says that a scheme is locally noetherian if every point
has a neighborhood isomorphic to the spectrum of a noetherian ring. One says
that it is noetherian if it is locally noetherian and quasi-compact.

Proposition (4.4.10). — a) The underlying topological space of a noetherian
scheme is noetherian.

b) Every open subscheme of a locally noetherian scheme is locally noetherian.

c) Every open subscheme of a noetherian scheme is noetherian.

d) Let X be an affine scheme. If X is noetherian, then Ox(X) is a noetherian
ring.

Proof. — a) If X is a noetherian scheme, it is the union of finitely many
open subschemes which are spectra of noetherian rings. Each of them being a
noetherian topological space, X is a noetherian topological space.

b) Let X be a locally noetherian scheme and let U be an open subscheme of X.
Let x € U and let W = Spec(A) be an affine open neighborhood of x, where A is
a noetherian ring. Let a € A be such that x € D(a) and D(a) c Un W. Then
D(a) ~ Spec(A,) is an affine open neighborhood of x contained in U; moreover,
the ring A, is generated by 1/a over A, hence is a noetherian ring. This shows
that U is locally noetherian.

c) With the same notation, U is both quasi-compact (because it is a noetherian
topological space) and locally noetherian, hence is noetherian.

d) Let A be a ring, let X = Spec(A). Let (I,,) be an increasing sequence of
ideals of A. Every point x € X has an affine open neighborhood Uy, in X such
that &'(U, ) is a noetherian ring. Let then a, € A be such that x € Dx(a,) c U,;
one thus has Dx(a,) = Dy, (ay), hence &(Dx(ay)) = 0(Uy),, = A,,. Since
O(Uy)a, is generated by 1/a, over &'(Uy), it is a noetherian ring. Consequently,
A, is a noetherian ring. Since X is quasi-compact, there exists a finite family
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(a;) of elements of A such that X = J; D(a;) and A, is a noetherian ring for
every i.

Let us now show that A is noetherian. Let (I,,) be a strictly increasing sequence
of ideals of A, and let I be its union. For every i, there exists an integer n; such
that I,, = I for n > n;. Let n > sup(n;) and let us show that I,, = I. Let thus u € I
and let ] be the set of elements v € A such that uv c I,; this is an ideal of A.
Moreover, for every i, one has v / 1e€l,-A,, hence there exists an integer k;
such that af."' €J. Let k = sup(k;). Since X = U; D(a;), the ideal of A generated
by the family (a;) contains 1, as does the ideal generated by the family (af).
Consequently, 1 € Jand u € I,. ]

4.4.11. — Let X be a scheme and let Z be a subset of X; let x € Z. We introduced
in definition 1.11.2 the dimension of Z and its dimension at x, respectively de-
noted by dim(Z) and dim, (Z), as well as its codimension, denoted by codim(Z).
Recall that dim(Z) is the supremum of the lengths of chains of closed irreducible
subsets of Z, while dim, (Z) is the supremum of the lengths of chains of closed
irreducible subsets of Z containing x. On the other hand, if Z is a closed irre-
ducible subset of X, then codim(Z) is the supremum of the lengths of chains
of closed irreducible subsets of X containing Z. in particular, if x is the generic
point of Z, then codim(Z) = dim, (X). In general, one defines codim(Z) as the
infimum of the codimensions of the closed irreducible subsets of X contained
in Z.

Recall also the following properties, for an arbitrary closed subset Z of X:

a) The dimension of Z is the supremum of the dimensions of its irreducible
components;

b) Each irreducible component of X has codimension o in X;

c) For every closed irreducible subset Z of X, one has codim(Z) + dim(Z) <
dim(X);

d) If Y and Z are irreducible closed subsets of X such that Y c Z, then
dim(Y) < dim(Z) and codim(Z) < codim(Y).

e) If X = Spec(A) is affine and Z = V(p), then codim(V(p)) = dim(A,).

f) For every open subset U of X such that Zn U # &, one has codim(Z) =
codimy(ZnU) and dim,(Z) = dim,(Z n U) for every x € Zn U. In particular,
for every point x € U, one has dim,(U) = dim,(X). This follows from the fact
that the map Z — Z n U induces a bijection from the set of closed irreducible
subsets of X which meet U to the set of closed irreducible subsets of U.
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Example (4.4.12). — Let k be a field and let X be an integral k-scheme of finite
type. By this, we mean that X is irreducible and that every point of X has an
affine open neighborhood U such that x(U) is an integral domain which is
finitely generated as a k-algebra.

Let x be the generic point of X. Let U be an affine open neighborhood of x such
that A = Ox(U) is a finitely generated k-algebra and an integral domain. The
point x of X corresponds to the prime ideal (0) of A, hence the local ring Ox ,,
isomorphic to the ring of fractions A,y = Frac(A), is a finitely generated field
extension of k. It is called the field of rational functions on X and is denoted
by R(X). By theorem 1.11.6, one has dim(U) = tr. deg, (R(X)). It then follows
from the definition of the dimension that dim(X) = tr. deg, (R(X)).

Let Z be an irreducible closed subset of X, let z be its generic point and let
U = Spec(A) be an affine open neighborhood as above such that z € U. Let p be
the prime ideal of A corresponding to Z. One thus has

dim,(X) = dim,(U) = codim(Z) = dim(A,)
and
dim(Z) =dim(Zn U) = dim(A/p).
It then follows from theorem 1.13.6 that

dim(Z) + codim(Z) = dim(X).

Moreover, all maximal chains of closed irreducible subsets of X have
lengths dim(X). One says that X is catenary.

Example (4.4.13). — Let K be a field. It follows from corollary 1.11.7 that for
every integer n > o, one has dim(A}) = n. By the preceding example, one also
has dim(P}) = n.

4.5. Products of schemes

4.5.1. — Let C be a category. Let S be an object of C, and let (X;); be objects
of C endowed with morphisms f;: X; — Sin C. Let Q be the quiver whose set
of vertices is the disjoint union of I and a point s, and with exactly one arrow
from every point i € I to s, and none other. The morphisms f; give rise to a
Q-diagram in C'. By definition, a limit of this diagram is called a fiber product
of the family (X;, f;). Explicitly, a fiber product is an object P of C, equipped
with morphisms p;: P — X; for every i, and p: P — S, such that p = f; o p; for
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every i, and such that for every object T of C, and every family (g;);c, where
gi:' T — X, is a morphism in C, every morphism ¢g:T — Ssuch that fiog; = ¢
for every i € I, there exists a unique morphism y: T — P such that g; = p; o y for
everyiand g=pov.

When I has two elements, the above diagram takes the form

Y
Js
S

and a fiber product is usually denoted X x5 Y. One also says that the (commuta-
tive) square

X#

XxsY —2 Y

o,k

Xx—71 .3

is cartesian. Then, for every object T of C, the maps p and g induce maps
pr: C(T,XxsY) -» C(T,X) and g1: C(T,X xsY) - C(T,Y). The resulting
map

(p1.qr): C(T,XxsY) - C(T,X) x C(T,Y)

is a bijection from C(T, X xsY) to the subset C'(T,X) x ¢(1,5) C(T,Y) of pairs
(p,v)in C(T,X) x C(T,Y) such that foy = go ¢.

This can also be rephrased by introducing the category Cs of objects of C'
“over S”’, whose objects are pairs (X, f), where f:X — S is a morphism, and
whose morphisms from (X, f) to (Y, g) is a morphism ¢:X — Y in C such that
go ¢ = f. Rephrasing the previous definition, a fiber product of a family (X;) of
objects over S is nothing but a product of this family in the category Cs.

Lemma (4.5.2). — Let k be a ring, let S = Spec(k). Let 1 be a finite set; for every
i €1, let A; be a k-algebra and let X; = Spec(A;). Let A = ®; A, be the tensor
product of these k-algebras; for every i € 1, it is an A;-algebra. Then the affine
scheme Spec(A) is a product of the family (X;) of S-schemes.

Proof. — For every i € I, let f;:X; — S be the morphism induced by the mor-
phism k — A; (i.e, by the structure of k-algebra of A;). Let T be a scheme, let
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¢:'T — S be a morphism of schemes, and let (g;); be a family, where g;: T — X;
is a morphism of S-schemes; we thus have f; o g; = gforeveryiel
Let y:k — Or(T) be the morphism g!(Spec(k)). For every i, let y;: A; —
Or(T) be the morphism g!(Spec(A;)); this is a morphism of k-algebras, because
fiogi =g The map
(ai)iel = H Yi(ai)

i€l
is k-multilinear. Consequently, there exists a unique morphism of k-algebras
uw@A; —> Or(T)
i€l
such that u(®;eqa;) = [T yi(a;). By theorem 4.2.8, there exists a unique mor-
phism ¢: T — Spec(A) such that u = ¢!(Spec(A)). It is a morphism of S-
schemes, because u is a morphism of k-algebras.

Let i € I. The morphism gf(Spec(A;)):A; - Or(T) is the composition of
f1(Spec(A;)):A; — A and of u = ¢!(Spec(A)); by theorem 4.2.8, one has
fiog =g

Conversely, every morphism y: T — Spec(A) of k-schemes such that f; o
v = g, for every i induces a morphism y#(Spec(A)):A — &1 (T) such that
y!(Spec(A)) o f}(Spec(k)) = g!(Spec(k)). Since A is generated by the images
of the algebras A;, one has y#(Spec(A)) = u. By theorem 4.2.8, this implies that
y=9. U

Lemma (4.5.3). — Let S be a scheme, let S, be an open subscheme of S, let (X;) c1 be
a finite family of S,-schemes; for every i, let f;: X; — S, be the structural morphism.
Assume that this family of S,-schemes admits a product P; for every i, let p;: P — X;
be the canonical morphism.

Let V be an open subscheme of S; for every i € 1, let U; be an open subscheme
of X; such that f;(U;) c V. Let Q = Ny p;*(U;). It is an open subset of P and the
induced scheme (Q, Op|q) is a fiber product of the family (Uj, fi|u,) of V-schemes.

Proof. — Since p; is continuous and U; is open, Q is an open subset of P. Let
(T, g) be a V-scheme; for every i, let g;: T — U; be a morphism of V-schemes.
Composing ¢ with the inclusion from V to S, and, for every i, the morphism g;
with the inclusion from U; to X;, we can view T as an S-scheme endowed for
every i with an S-morphism to X;.

Since ¢ = f; o g, one has in fact g(T) c S,, which allows us to view T as an
S,-schemes, and the morphisms g; as morphisms of S,-schemes. Consequently,
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there exists a unique morphism y;,: T — P of S-schemes such that p; oy, = g;
for every i. Since the image of g; is contained in U;, one has y(T) c p;*(U;) for
every i, hence y,(T) c Q. Consequently, the morphism v, induces a morphism
v: T — Q of S,-schemes such that p;|q o ¥ = g; for every i. It is also a morphism
of S-schemes.

This is in fact the unique such morphism. Let indeed y: T — Q be a morphism
of S-schemes such that p;|q o § = g; for every i. Then ¥ can be considered as
a morphism of S;-schemes from T to P and one has p; o ¢ = g; = p; oy for
every i. Since P is a product of the family (X;) of S,-schemes, this implies that

V=v. ]
Theorem (4.5.4). — 'The category of schemes admits all finite fiber products.

Proof. — LetIbea finite set, let S be scheme, let (X;) ;¢ be a family of S-schemes;
for every i, let f;: X; — S be the structural morphism. We need to show that
the family (X;) of S-schemes has a product. By lemma 4.5.2, this family has a
product if S and all the schemes X; are affine. In general, the construction of the
desired product will consist in glueing the fiber products of families (U; = V) ey,
where V is an open affine subscheme of S and, for every i, U; is an open affine
subscheme of X; such that f;(U;) c V.

Let (S)) e be an covering of S by open affine subschemes. For every A € L and
every i € I, let (U ) mem, , be a covering of f7*(S,) by open affine subschemes.
Let M be the union of the family M; ,: an element of M is a pair (A, (m;)) where
AeLand m; e M, foreveryi el

For every m = (A, (m;)) € M, let P, be the product of the family (U; ,,,.)ie1
of affine S,-schemes; by lemma 4.5.3, it is also a product of this family in the
category of S-schemes. For every i, let p,, ;: P, = X, be the canonical morphism
(its image is contained in U; ,,,.). Let also g,,: P, — S be the morphism f; o p,, ;,
for every i € I; one has g,,(P,,) c S;.

Let m = (A, (m;)) and m’ = (A’, (m’)) be elements of M. For every i €1, let
Vi=Upm nU; ,andlet Pyy = Nict(pm,i)*(Vi); by lemma 4.5.3, the open
subscheme P, of P,, is a product of the family (V;). By symmetry, P, is
also a product of this family. Consequently, there exists a unique morphism of
S-schemes ¢, Py = Py such that ppy i © @ = pm,i for every i € I, and
it is an isomorphism.
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Let P be the scheme obtained by glueing the family of schemes (P,,)mem
along their open subschemes P,,, via the isomorphisms ¢,,,. For every m ¢
M, let ¢,,:P,, - P be the canonical morphism; by definition, it induces an
isomorphism of P,, onto an open subscheme W, of P, and one has ¢,, 0 ¢,y =
¢, for every pair (m, m') of elements of M. For every i € I, there exists a
unique morphism of schemes p;:P — X; such that p; o ¢,, = p,,,; for every
m € P. Similarly, there exists a unique morphism of schemes g: P — S such that
g0 @, = gn for every m € M; one has g = f; o p; for every i € I. Consequently, P
is an S-scheme (via ¢) and the morphisms p; are morphisms of S-schemes.

Let m € M and let Uy, = N1 p;*(Uim,;). Let us show that U,, = W,,,. The
inclusion W,, c U,, follows from the equality p; o ¢, = pi m,, for every i e L.
Conversely, let m’ € M. By lemma 4.5.3 the isomorphism ¢,,:P,, — W,
induces an isomorphism from P,,,,, with U,, n W ,,.. Since ¢,y = @, © @y it
follows that U,, N W,y = (P ) € W,,.. Consequently,

UmZUmﬁ( U Wm/)z U (UmﬂWm/)CWm.

m'eM m'eM
This shows that U,,, = W,,, as claimed.

Let us now show that the S-scheme P, equipped with the family of morphisms
(pi)ia is a product of the family (X;);q of S-schemes. We need to check the
universal property: Let T be an S-scheme; for every i € I, let h;: T — X; be an
S-morphism; let us show that there exists a unique morphism of S-schemes
y: T — P such that p; o y = h; for every i.

For every m € M, let T, = N h;*(Uj,). Since Py, is a product of the
family (U; ,,.); of S-schemes, there exists a unique morphism of S-schemes
v Ty = Py such that p,, ;o w!, = hy|r, foreveryiel Let w,, = ¢, 0 ¢!.

Let m,m' € M and let V = T,, n Ty, so that the morphism v/, |y factors
through P,,,,,, Then, the morphism ¢,y o ¥/, |v from V to P, satisfies

P,i © Quum © Yy = Pmsi © Yonlv = hily = powi 0 Y
Since P, is a product of the family (U; ,/); of S-schemes, one thus has v, |y =
Pmm' © Vh,|v. In particular, the morphisms ¥y, = @y, © ¥y and Yy = @0 Y/,
coincide on V. As a consequence, there exists a unique morphism of S-schemes
v: T — P such that y|r, = v, for every m € M. Moreover, for every such m and
every i € I, one has

pioVlr, = Pi® Pm oWy = Pmio Y, = hilr,.

V.
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This implies that p; oy = h; for every i € I.

Conversely, let y: T — P be a morphism such that p; o ¢ = h; for every i € L.
Let us show that ¢ = y. Let m € M. Observe that one has T,, = v*(U,,) =
¥ (Um) = Nia(pi o ¥) " (Uim,) = Nia hi(Uim,) = ¥ (Um) = Tin. Moreover,
pioVYlr, = hi|lr, = pioylr,. Since U, is a product of the family (U, ,,.); of
S-schemes, the two morphisms from T,, to U,, induced by y and y are equal.
In other words, y|r, = ¥|r, . Since the family (T,,)em of open subschemes
cover P, this implies that v = y. O]

Corollary (4.5.5). — Let S be a scheme, let X and Y be S-schemes. Every non-
empty finite family (f;)ie of S-morphisms from X to Y has an equalizer in the
category of S-schemes.

Recall that an equalizer (Z, ) of the family (f;) is a scheme Z endowed with
a morphism g: Z — X such that all morphisms f; o g are equal, and such that for
every scheme T and every morphism h: T — X such that all morphisms f; o h
are equal, there exists a unique morphism k: T — Z such that h = go k.

Proof. — Let Y! be the product of I copies of X over S; for every i € I, let
pi:Y! = Y be the projection of index i. Let f: X — Y! be the unique S-morphism
such that p; o f = f; forevery i € I. Let also : Y — Y! be the diagonal morphism,
namely, the unique morphism such that p; o § = idy for every i € [; it is an
S-morphism. Let Z be the fiber product of the morphisms f and g;let p:Z - X
and g: Z — Y be the canonical projections. Let us show that (Z, p) is an equalizer
of the family ( f;).

By definition, for every i € I, one has fiop=p;o fop=p;ogoq=gq,so that
all morphisms f; o p are equal. Let T be a scheme, let h: T — X be a morphism
of schemes such that all morphisms f; o h are equal to a common morphism
j:T =Y. Then p;o foh=fioh=j=p;ogo j,so that there exists a unique
morphism k: T — Z such that h = po k and j = q o k. Conversely, if k: T — Z is
a morphism such that h = po k/,then gogok’ = fo pok’ = f o h. For every
element i of I, one then has go k’ = pjogogok’ = p;jo foh = fioh = j; Since I
is non-empty, this proves that g o k" = j. By the definition of the fiber product Z,
one then has k' = k. [

Remark (4.5.6). — If the morphisms f;: X; — S are quasi-compact, then the
morphism g:P — S from the fiber product of the family (X;) to S is quasi-
compact as well.
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Indeed, the construction of P shows that for every A € L, the open sub-
set f:7(S)) of X; is the union of a finite family of affine open subschemes, so
that one can assume that the sets M,  are finite, for every i € I and every A. For
every A, g7'(Sy) is the union of the affine schemes P () (.., for (m;) € [T; M; .
Consequently, g7(S, ) is quasi-compact. This concludes the proof.

4.5.7. — Let f:X — S be a morphism of schemes. Let T be a scheme and let
u: T — S be a morphism of schemes. Let Xt be the fiber product X xg T, and
let fr: X1 — T be the second projection. The T-scheme (Xr, fr) is called the
T-scheme deduced from X by base change to T.

Let Y be an S-scheme and let g:Y — S be its structural morphism. and
let 9: X — Y be a morphism of S-schemes. There exists a unique morphism
¢1: X1 = Y7 of T-schemes such that g o ¢t = ¢ o p, where p: Xt — X and
q: Yt — Y are the first projections. This morphism ¢r is called the morphism
deduced from ¢ by base change to T.

The assignments X — Xt and ¢ ~ ¢ define a functor u* from the category
Schg of S-schemes to the category Schr of T-schemes.

Let s be a point of S and let j;: Spec(x(s)) — S be the associated morphism.
The Spec(x(s))-scheme XxgSpec(x(s)) - Spec(x(s)) is called the fiber of f ats;
it is denoted by X;. This terminology is justified by the fact that the underlying
continous map to the first projection X; — X induces a homeomorphism from X;
to the closed subset f~(s) of X with the induced topology.

4.6. Group schemes

4.6.1. — Let C be a category which admits finite products and a terminal
object p.

By Yoneda’s lemma (proposition 2.4.4), the datum of a morphism m: G x
G — G is equivalent to the data of functorial maps m,: C(A,G) x C(A,G) -
C (A, G), thatis, such that mg(f, g) o9 = ma(f o ¢, go @) for every pair (A, B)
of objects of C, every morphism ¢ € C'(A, B) and every pair (f, g) in C(B,G).

A group object in the category C'is an object G of C' endowed with a morphism
m: G x G - G such that for every object A of C, the map m, is a group law on
the set C' (A, G). Let m be such a morphism.

The associativity of the group laws m, means that my o (ma x id¢(a,g)) =
my o (id¢(a,g) xma) for every object A of C'. Applying again Yoneda’s lemma,
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it thus translates into the equality
(4.6.1.1) mo (m xidg) = mo (idg xm)

of morphisms from G x G x G to G.

Let ex € C(A,G) be the unit element of the group law m, and let
in: C(A,G) - C(A,G) be its inversion. For every morphism ¢:A — B,
the map C(B,G) - C(A,G) deduced from ¢ is a morphism of groups. In
particular, it maps ep to eu; in other words, eg o ¢ = es. Similarly, for every
f e C(B,G),onehas ig(f) o ¢ =is(f o ¢). Consequently, the family of maps
(ia) is a morphism of functors from hg to itself. By Yoneda’s lemma, there
exists a unique morphism i: G — G such that is(f) = i o f for every object A
of C and every f € C(A,G). Concretely, one has i = ig(idg).

The fact that for every object A, the map i, is the inversion of C(A, G) is
equivalent to the relation

(4.6.1.2) mo (ixidg) =mo (idg xi) = eg = eo tg

in C(G,G).

Similarly, the formula eg o f = ex means that the assignment A — e, is a
morphism of functors from the functor h, (such that h,(A) is a set with one
element, for every object A) to the functor hg. Consequently, there exists a
unique morphism e: p - G such that e5 = e o ¢, for every object A of C', where
ta: A — pis the unique morphism to the terminal object p. Similarly, the fact
that e, is the neutral element of C' (A, G), for every object A, translates into the
formula

(4.6.1.3) mo (idg xe) = mo (e xidg) =idg.

Conversely, if G is an object of C', endowed with three morphisms m: GxG —
G, e:p - Gand i: G — G satisfying the relations (4.6.1.1), (4.6.1.3) and (4.6.1.2),
then it is a group object in C.

Furthermore, the group laws m, are commutative if and only if one has

(4.6.1.4) mos=m,

where s:G x G - G x G is the unique morphism such that p, os = p, and
p» o s = p;. One then says that this group object is commutative.

Definition (4.6.2). — Let S be a scheme. A (commutative) S-group scheme is a
(commutative) group object in the category Schs of S-schemes.
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4.6.3. The additive group. — Let G, = Spec(Z[T]). For every scheme A, one
has

Hom(A, G,) = Hom(Z[T], OA(A)) = Or(A),

and this set is naturally an additive group, functorially in A. It thus defines a com-
mutative group scheme (G,, m) The morphism m: G, x5 G, - G, corresponds
to the morphism of rings Z[T] - Z[T] ®z Z[T] given by T » 19 T+ T ® 1.

4.6.4. The multiplicative group. — Let G, = Spec(Z[T,1/T]) be the open
subscheme D(T) of G,. For every scheme A, one has

Hom(A, Gy, ) = Hom(Z[T,1/T], Os(A)) = Os(A)™.

Again, this set is naturally a group for multiplication, functorially in A, so that
G, is a commutative group scheme. Its multiplication m: G Xgpec(z) Gm —
Gy, corresponds to the unique morphism of rings Z[T,1/T] - Z[T,1/T] ®z
Z[T,1/T] givenby T » T ® T.

4.6.5. The general linear group. — Let n be an integer and let A «
Z[(T; ;)i j<n] be the determinant polynomial; let G be the open subset
D(A) in Spec(Z[ (T} j):<i,j<n])- In particular, G is affine, and one has

0c(G) = Z[(Ti;),1/A].

For every scheme A, Hom(A, G) is the set of matrices M with coefficients in
the ring 04 (A) such that det(M) is invertible. It thus identifies with the group
GL(n, OA(A)). When A varies, the group laws on these groups endows the
scheme G with a structure of an S-group scheme (non-commutative if n > 2).
The morphism m: G x G — G corresponds to the morphism

Z[(Ti;),1/A] = Z[(Tij),1/A] @ Z[(Tij),1/A]
given by

n
T,‘)j = ZT,‘)]{ ® Tk,j-
k=1
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4.6.6. — Let G and H be two group schemes over S. A morphism of group
schemes ¢: G — H is a morphism of S-schemes such that for every S-scheme T,
the map ¢1: G(T) — H(T) is a morphism of groups. Note that by the Yoneda
lemma, a functorial family (¢t) of morphism of groups comes from a unique
morphism of S-schemes, hence from a unique morphism of group schemes.

Equivalently, a morphism of schemes ¢: G — H is a morphism of group
schemes if one has myo(¢@, ¢) = pomg, where mg: GxsG - Gand my: HxgH —
H are the group laws.

For example, there is a unique morphism of group schemes det: GL(n) - Gy,
such that detr is the determinant morphism from GL(#, 01(T)) to Gy (T) =
Or(T)x.

4.6.7. — Let G and H be two group S-schemes. Then the product G xs H
has a unique structure of group scheme such that the canonical projections
from G xg H to G and H are morphisms of group schemes.

4.7. Coherent and quasi-coherent modules on schemes

Definition (4.7.1). — Let (X, Ox) be a locally ringed space and let ./ be an Ox-
module. One says that ./ is quasi-coherent if every point x € X has an open
neighborhood U such that .# |y is isomorphic to the cokernel of a morphism of
Ox|y-modules of the form

o) - o).

Theorem (4.7.2). — Let A be a ring, let X be the affine scheme Spec(A) and let
A be an Ox-module on X. The following properties are equivalent:

(i) The Ox-module .# is quasi-coherent;

(ii) For every f € A, the canonical morphism 4 (X)s — #(D(f)) is an
isomorphism of A s-modules.

(iii) There exists an A-module M such that ./ is isomorphic to M;

Observe that property (ii) is the conjonction of two properties:

(ii") For every f € A and every section s € .Z (D(f)), there exists a section
s’ € ./ (X) and an integer n > o such that s” f = s'|p(;

(ii"”) For every f € A and every section s € .7 (X) such that s|p() = o, there
exists an integer n > o such that s” f = o.
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Proof. — Let us assume that (ii) holds and let M = .# (X). Let us consider the
canonical morphism of sheaves 6: M — ./ . By the definition of the Ox-module
M, 6(U) is an isomorphism whenever U is an open subset of X of the form D( f).
Since these subsets form a basis of open subsets of X, this implies that 0 is an
isomorphism. We thus have shown the implication (ii)=(iii).

Assume that .# = M and let us show that it is a quasi-coherent A-module.
Let p: A® — M be a surjective morphism of A-modules, and let ¢: AU) — A(D
be a morphism of A-modules such that Im(¢) = Ker(p), so that M ~ Coker(p).
Since the functor M ~ M commutes with all colimits and with all finite limits
(corollary 4.1.10, see also example 4.1.11), the A-module M is a cokernel of the
morphism ¢: ﬁ)((] ) ﬁ)((l) of Ox-modules. This proves that (iii)=>(i).

Finally, let .# be a quasi-coherent Ox-module on X. Let (U, ) be a family
of open subsets of X such that X = (U Uy and such .Z |y, is isomorphic to
a cokernel of a morphism of 0y, -modules, say ¢;: ﬁg;) - ﬁgj). We may
assume that U, is a distinguished open subset of the form D(f;), for some
f) € A. By corollary 4.1.10, there exists an A 5, -module M, and an isomorphism
M, ~ M |p(1,) of Opyf,)-modules.

Since Spec(A) is quasi-compact, there exists a finite subset L’ of L such that
Usey D(f)) = X; we may thus assume that the set L is finite.

Let f € A and let s € .7 (X) be such that s|p(s) = 0. For every A € L, consider
the section sy = s|p(y,). Since s;|p(s) = 0, there exists an integer 1, > o such that
f™s|p(s) = 0. Let n = sup, (n1). One has f"s|p(f,) = o for every A € L, hence
fs=o.

Let f € Aandlets € .#Z(D(f)). For every A € L, consider the section
s|o(ff,) of the sheaf .#|p () on its distinguished open subset D(f,f) = D(f) n
D(f)). There exists a section s} € .# (D(f,)) and an integer n, > o such that
F™sloissy = Silorf)- Let no = supyq(ny); let us replace n) by n and s) by
frms!, we assume that f"s and s) coincide on D(ff}). As a consequence, for
A, u € L, the sections s, and s, coincide on D(f f) f,). This implies that there
exists an integer m (A, u) such that fm#)(s) —s,) = 0. Let m = sup(m (A, u));
replace n by n + m and s by f™s,. Then has f"s and s, coincide on D(f f;);
s) and s, coincide on D(f)f,). Consequently, there exists a unique section
s' € ./ (X) such that s'|p(5,) = s for every A € L. Since s'|p(ff,) = f"s|p(s,) for
every A, this implies that s'|p(s) = f”s. We thus have proved the implication
(i)=(ii). ]
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Corollary (4.7.3). — Let X be a scheme. A colimit of a diagram of quasi-coherent
Ox-modules is quasi-coherent, a limit of a finite diagram of quasi-coherent Ox-
modules is quasi-coherent. In particular, for every morphism ¢: M — N of
quasi-coherent Ox-modules, the Ox-modules Ker(¢), Im(¢) and Coker(¢) are
quasi-coherent.

Proof. — Let U be an affine open subscheme of X, say U = Spec(A) for some
ring A. Let & be a diagram of quasi-coherent Ox-modules and let .Z be its
colimit. By passing to the A-modules of sections on U, the diagram & furnishes a
diagram Z(U) of A-modules. Moreover, if M is the colimit of this diagram, then
M is the colimit of the diagram 2|y of Oy-modules. This implies that .|y is
isomorphic to M, hence is quasi-coherent. Consequently, .# is quasi-coherent.

In particular, the cokernel of a morphism of quasi-coherent &x-modules is
quasi-coherent.

If 7 is finite, the same argument shows that a limit of & is quasi-coherent.
This implies that the kernel of a morphism ¢:.# — .4 of quasi-coherent Ox-
modules is quasi-coherent. Since the image of ¢ is isomorphic to the kernel of
the canonical morphism from .4 to Coker(¢), it is a quasi-coherent &x-module
as well. []

Corollary (4.7.4). — a) Let A be a ring and let X = Spec(A); let M and N
be A-modules. There exists a unique isomorphism of Ox-modules ¢:M ®4,
N — M ®4 N such that ¢(X) induces the canonical homomorphism M(X) ®%(x)
N(X) > M ®4 N.

b) The tensor product of two quasi-coherent Ox-modules on a scheme is quasi-
coherent.

Proof. — a) Recall that the sheaf M ® N is the sheaf associated with the
presheaf on Spec(A) given by

U~ M(U) @) N(U).

The canonical morphism S(U)™M — M(U) In particular, For every open
subset U of X, let 9: M ®4 N - M ®; N(U) be the morphism of A-modules
induced by the bilinear map (m, n) — m|y ® nly. It induces a morphism

b) Let X be a scheme, let .# and ¢ be quasi-coherent Ox-modules. Let U be
an open subset of X such that (U, Ox|y) is an affine scheme, isomorphic to the
spectrum of a ring A. Then the restriction to U of the sheaf .7 ® 4, ¢ is the sheaf
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Flu ®eyly Y|u. Let M and N be A-modules such that .7 |y and ¥|y are equal
with M and N respectively. By part a), the sheaf Z |y ® ¢, |u is associated
with the A-module M ® N. It is thus quasi-coherent. By definition of a scheme,
every point of X has a neighborhood U which is an affine scheme. This proves

that ¥ ®g, ¢ is a quasi-coherent Ox-module.
O

Corollary (4.7.5). — Let A and B be rings, let X = Spec(A), let Y = Spec(B); let
@: A > B be a morphism of rings and let f:Spec(B) — Spec(A) be the associated
morphism of schemes. For every quasi-coherent Oy-module #, f..# is a quasi-
coherent Ox-module.

Note that if a priori, f..# is a f.0y-module, we can use the canonical mor-
phism ft: Ox — f, Oy to view it as an Ox-module.

Proof. — Let M be the B-module .#Z (Y); since .# is quasi-coherent, we may
assume that .# = M. One has f..# (X) = . (f(X)) = M, where we view M
as an A-module via the morphism ¢.

Let then a € A. By definition, one has

fot (D(a)) = A (f7(D(a))) = 4 (D(9(a))) = My(a),

so that the canonical morphism (f..#)(X), - (f..# )(D(¢(a))) identifies
with the tautological isomorphism from M, to M,,). This implies that f,.# is
a quasi-coherent Ox-module. []

Corollary (4.7.6). — Let f:Y — X be a morphism of schemes and let .# be a
quasi-coherent Ox-module. Then the Oy-module f* ./ is quasi-coherent.

Moreover, for every affine open subscheme V of Y and every affine open sub-
scheme U of X such that f(V) c U, the canonical homomorphism Oy(V) ® g, (u)
A (U) — f* (V) is an isomorphism.

Proof. — Let y € Y and let x = f(y), let U be an open neighborhood of x
such that .Z|y is isomorphic to the cokernel of a morphism ¢: ﬁx|8) — ﬁ’;dg).
Let V = f71(U). Since the functor f* is right exact and commutes with direct
sums, the Oy|y-module f*.Z|y is isomorphic to the cokernel of the morphism
fo: ﬁﬂg ) S ﬁﬂg ) deduced from ¢. This proves that f*.#|y is quasi-coherent.

Let now U and V be affine open subschemes of X and Y respectively such that
f(V) cU. Let A = Ox(U) and B = Oy(V); let M = .# (U), so that one can
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identify .# | with M. Moreover, one has (f*.# )|y = g*(.#|v), where g: V — U
is the morphism of schemes deduced from f by restriction. Let ¢: AJ) — A() be
a morphism of A-modules such that M = Coker(¢). By what precedes, the Oy -
module A |y = g*.# |y is the cokernel of the morphism g* ¢: ﬁ\(fl ) S ﬁ\(,l). Since
V is affine, .4 (V) is the cokernel of the morphism g*¢(V):B() — B() deduced
from ¢ by base-change to B. It is thus isomorphic to B ®4 M, as claimed. [

4.7.7. — Let X be a ringed space. Let .# be an Ox-module. Let (s;);q be a
family of global sections of ./Z .

Let ﬁ)((l) be the direct sum of copies of 0%, indexed by ; for i € I, denote
by ji: Ox — @((I) the canonical injection with index i. For every i € I, there
exists a unique morphism of Ox-modules, ¢;: Ox — .#, such that ¢;(X)(1) = s;.
Consequently, there exists a unique morphism of &x-modules ¢: ﬁ)((l) A
such that ¢ o j; = ¢, for every i € I. It is in fact the unique morphism of
Ox-modules such that ¢(X) o j;(X)(1) = s;.

By construction, the x-module ﬁg) can be identified with the submodule of
U}, whose sections over an open subset U consist of families ( f;);e; of elements
of Ox(U) such that for every point x € U, there exists an open neighborhood V
of x in U such that f;ly = o for all but finitely many i € I. Consequently, the
morphism ¢ is given by ¢ (U)((f;)) = X e fisi|u for every open subset U of X
and every section (f;);e € ﬁ)((l) (U); the sum looks infinite but is locally finite.

One says that the family (s;); generates .# (resp. is a frame of .4) if this
morphism ¢ is an epimorphism (resp. an isomorphism). If such a family exists,
then one says that .# is globally generated (resp. is free).

Definition (4.7.8). — Let X be a ringed space and let .# be an Ox-module.

a) One says that ./ islocally free (resp. invertible) if every point x € X has a
neighborhood U such that |y is a free Oy-module (resp. is isomorphic to OY).

b) One says that ./ is of finitely generated (or of finite type) if every point
of X has a neighborhood U such that /|y is generated by a finite family of global
sections.

c) One says that ./ is of finitely presented (or of finite presentation) if every
point of X has a neighborhood U such that . |y is isomorphic to the cokernel of a
morphism p: 0), — OL, where 1 and ] are finite sets.
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We notice that if U is an open neighborhood of x satisfying each of the given
conditions, then any open subset contained in V satisfies them as well.

The definition of a finitely presented &x-module is the same as that of a quasi-
coherent Ox-module, the only difference being on the requirement that I and |
be finite sets. In particular, a finitely presented Ox-module is quasi-coherent.
Moreover, condition ¢) can also be rephrased by saying that .#|y is globally
generated by some finite family (s;) of sections of .# (U), and that the kernel
of the associated morphism ¢: 0} — . is itself generated by a finite family of
global sections.

Proposition (4.7.9). — Let X be a ringed space and let o -~ .# LA NEh o
be an exact sequence of Ox-modules.

a) If N is finitely generated, then &7 is finitely generated.
b) If A and & are finitely generated, then .4 is finitely generated.
c) If & is finitely presented and .V is finitely generated, then ./ is finitely

generated.

Proof. — a) Letx € X. Let U be an open neighborhood of x and let (s;); bea
finite family of sections of .#"(U) such that the morphism ¢: Ox[;; > 4|y given
by (fi) = Y. fisi is an epimorphism. Then the morphism p o ¢: Ox[i; > Py is
an epimorphism as well, which implies that & is finitely generated.

b) Let x € X, let U be an open neighborhood of x, small enough so that
there exists a finite family (s;); of sections of & (U) which generates &y,
and a finite family (¢;) ¢ of sections of .# (U) which generates .#|y. Since the
morphism p is surjective, there exists for each i € I an open neighborhood U;
of x in U and a section s} € .4"(U;) such that p(U;)(s!) = s|u,. Replacing U by
the open neighborhood M U; of x, the sections s} and ¢; by their restrictions, we
assume that s; = p(U)(s!) for every i. Let us then prove that ./"|y is generated
by the union of the families (k(%;))je and (s})a. Let indeed V be an open
subset of U and let s € 47 (V). Let y € V. By assumption, there exists an open
neighborhood V' of y in V and elements ( f;) ;¢ of Ox (V') such that p(V)(s)|y =
> fisilv:. Let t = s|y» = ¥ fisilvs; by construction, p(V')(t) = o, so that t belongs
to ker(p)(V’). Consequently, there exists an open neighborhood V' of y in V’
and elements (g;)jq of Ox(V") such that t|y» = ¥ gik(¢;)|y». Then sly» =
Y. gik(tj)|lvr + X fi v, which concludes the proof that the the union of the
families (k(t;)) ;e and (s});er generates A |y.

V//S;
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c) Let x € X. Let us choose an open neighborhood U of x and a presentation

ol Y [z 4 P|u. There exists an open neighborhood U of x and a morphism
u: 0y > Ay suchthat pou = ¢. Then pouoy = ¢ oy = o; it follows that
there exists a unique morphism v: 0} - .# |y such that uoy = kov.

Let us now observe that the canonical morphism k: Coker(v) — Coker(u)
deduced from k is an isomorphism. While this can be proved by a variant of
the snake lemma in the category of abelian sheaves, let us do it by hand. Since
the stalk of the cokernel is the cokernel of the morphism induced between
stalks, (Coker(v), = Coker(v,), and similarly for u), it suffices to prove that
for every point y € U, the induced morphism k,: Coker(v,) — Coker(u,) is
an isomorphism. Let thus m € .#, be such that k,(7) = o, where i is the
image of m in Coker(v,); let then s € O} | by such that k,(m) = u,(s); one
has ¢, (s) = pyou,(s) = py o ky(m) = o, hence there exists t € %' such that
s = y(t); this implies that k,,(m) = u, oy, (t) = k, o v, (¢); since k, is injective,
one thus has m = v, (), hence m = o; this shows that Ey is injective. Let then
n € A); since @y is surjective, there exists s € 0% , such that p,(n) = ¢,(s); then
py(n—uy(s)) = o, so that there exists m € .#, such that n = u,(s) + k,(m);
one then has 7 = k, (1) in Coker(u,), which shows that k, is surjective.

Since .4 |y is finitely generated, so is Coker(u), which proves that Coker(v)
is finitely generated. Applying assertion a) to the exact sequence o - O} %
M|y — Coker(v) — o, we conclude that ./ |y is finitely generated, as claimed.

[]

Proposition (4.7.10). — Let A be a ring, let X = Spec(A), let M be an A-module.
The Ox-module M is finitely generated (resp. finitely presented) if and only if the
A-module M is finitely generated (resp. finitely presented).

Proof. — Let us assume that the A-module M is finitely generated, let (s;);e
be a finite generating family of elements of M, and let ¢: &% — M be the asso-
ciated morphism. For every f € A, the morphism ¢(D( f)) identifies with the
morphism from A} to My deduced from the morphism ¢(X) by passing to the
modules of fractions; it is thus surjective. Since the open subsets of X of the
form D( f) constitute a basis of open subsets of X, this implies that Im(¢) = M,
hence ¢ is an epimorphism. Consequently, M is a finitely generated &’x-module.

Assume now that M is a finitely presented A-module. If (s;) is as above, then
the kernel K of the canonical morphism from A! to M is finitely generated. By
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what precedes, K is a finitely generated ¢x-module. Since M is the cokernel of
the morphism K — &%, we conclude that M is finitely presented.

Conversely, let us assume that M is a finitely generated &’x-module. Let (U )
be a family of open subsets of X such that .Z |y, is generated by finitely many
sections and such that X = ;¢ U;. We may assume that there exists f; € A such
that U; = D(f;). Since Spec(A) is quasi-compact, there exists a finite subset I’
of I such that X = U,y U;. We thus may assume that I is a finite set.

For every i, let (s;,j) j¢j, be a finite family of elements of .# (U;) = My, which

that f,""s; ; belongs to the image of M in My, say f, s, ; = m; j/1, for some
m;,j € M. Let M’ be the submodule of M generated by the family (m; ;) ;. For
Jeli

every i € I, one has M, = Mg, so that (M/M’)y, = o. Every global section of
the quasi-coherent Ox-module associated with the A-module M/M’ is locally o,
hence is 0; consequently, M/M’ = 0 and M’ = M. This shows that M is finitely
generated.

Assume now that M is finitely presented. It is thus finitely generated, so that
the A-module M is finitely generated. Let (s;);q be finite generating family
of elements of M and let ¢: AT > M be the associated surjective morphism of
A-modules and let K = Ker(¢). Let then ¢: &% — M be the corresponding
morphism of Ox-modules; it is surjective and its kernel is K. By prop. 4.7.9, its
kernel K is a finitely generated 0x-module. By what precedes, K is a finitely
generated A-module; this shows that M is finitely presented, as claimed. [

Proposition (4.7.11). — Let X be a scheme and let ./ and .V be quasi-coherent
Ox-modules. If # is finitely presented, then the Ox-module 7omeg (M, N) is

quasi-coherent.

Proof. — Tt suffices to treat the case where X is affine; let then A = 0x(X),
M = #(X) and N = A(X). Let us define a morphism of A-modules
@:Homy (M, N) — #Zomz(M,N). Let thus f € HomA(M N); since N(X) = N,
there exists a unique morphism of sheaves f M — N such that f (X) f. The
map f + f is a morphism of A-modules from Homa (M, N) to Homy A(M N).
The latter module being the set of global section of the sheaf J#omy(M,N),
there exists a unique morphism of sheaves of A-modules

®:Homa (M, N) — Fomz(M,N)
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such that ®(X)(f) = f for every f € Homa (M, N).

For every a € A, the morphism ®(D(a)) is the canonical morphism
from Homa(M,N), to Hom,, (M,,N,); by lemma 4.7.12 below, it is an
isomorphism.

Since the subsets of Spec(A) of the form D(a) are a basis of open subsets, this
implies that the morphism @ is an isomorphism of sheaves. []

Lemma (4.7.12). — Let A be a ring, let S be a multiplicative subset of A, let M
and N be A-modules. There exists a unique morphism of A-modules,

0: S Homy (M, N) - Homg-14 (S7'M, S7'N),

which, for u € Homy (M, N), maps u/1 to the morphism given by m[s — u(m)/s.
If M is finitely generated, then 0 is injective; if M is finitely presented, then 0 is an
isomorphism.

Proof. — Let 0,:Homy (M, N) - Homg-15(S7*M, S'N) being the map under-
lying the functor S — S™'M; by definition, 8,(u)(m/s) = u(m)/s, for u €
Homu (M, N), m € M, and s € S. Since the target of 6, consists of an S7*A-module,
there exists a unique morphism 6: S Homa (M, N) - Homg-:14 (S7'M, S7'N)
such that 6(u/s) = s716,(u).

Let us now assume that M is finitely generated and let us show that the
morphism 6 is injective. Let (m,,...,m,) be a finite generating family; let
v: A" - M be the morphism given by (a,,...,a,) » ¥ a;m;. Consider an el-
ement of Ker(0); let us write it as u/s, where s € S and u € Homs (M, N). By
assumption, for every i € {1,...,r}, one has u(m;/1) = o hence there exists an
element s; € S such that s;u(m;) = o. Let t = s,...s,; one has tu(m;) = o for
every i, hence tu(m) = o for every m € M. In other words, tu = o; this implies
that u/s = o.

Let us now assume that M is finitely presented. Let P = Ker(y); it is a
finitely generated A-module. Let v:S'M — SN be a morphism of S7'A-
modules. There exists an element s € S and a family (#,, ..., n,) of elements
of N such that v(m;/1) = n;/s, for every i. Let u,: A” - N be the morphism
given by u,(a,...,a,) = Y a;n;. For every p = (a,...,a,) € P, one has
u,(p) = v(y(p) = v(o) = o in S'N; since P is finitely generated, there ex-
ists an element ¢ € S such that fu,(p) for every p € P. Passing to the quotient
by P, there exists a morphism u: M — N such that u o y = tu,. It follows
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that u(m)/1 = (t/s)v(m/1), for every m € M, hence 0(u) = (¢/s)v. Finally,
v = 0(ts7'u), which shows that 6 is surjective. O

Exercise (4.7.13). — Give examples of a ring A, of a multiplicative subset S of A
and of A-modules M and N such that the canonical morphism 6 of lemma 4.7.12
is not injective (resp. is injective but not bijective).

Definition (4.7.14). — Let X be a ringed space and let .# be an Ox-module. One
says that ./ is coherent if it is of finite type and if, for every open subset U of X,
and every finite family (s;) ;e of elements of .# (U), the kernel of the associated
morphism @: O% — M is of finite type.

It follows from the definition that a coherent Ox-module is finitely presented;
in particular, it is quasi-coherent. Similarly, any finitely generated submodule of
a coherent Ox-module is coherent.

Exercise (4.7.15). — Let X be a ringed space. Let ¢: . % — ¢ be a morphism of
O'x-modules.

a) Assume that .Z is finitely generated and ¢ is coherent. Then Im(¢) is
coherent and Ker(¢) is finitely generated.

b) If .# and ¢ are coherent, then Ker(¢) and Coker(¢) are coherent.

c) If, out of Ker(¢), %, and Im(¢), two Ox-modules are coherent, then so is
the third one.

Lemma (4.7.16). — Let A be a ring and let X = Spec(A). Assume that the
scheme X is noetherian. Then the following properties hold:

a) The ring A is noetherian;

b) The sheaf of rings O is coherent.

c) For every A-module M, the quasi-coherent module M is coherent if and only
if M is finitely generated.

Proof. — a) Let ] be an ideal of A; let us prove that J is finitely generated.
let us prove that the associated sheaf of ideals ] ¢ O is a finitely generated
Ox-module. Let thus x € X and let U be an affine open neighborhood of x of the
form Spec(B), where B is a noetherian ring. Then J(U) is an ideal of Ox(B) = B;
since B is noetherian, it is finitely generated, so that J|y is a finitely generated -
module. This implies that the €x-module J is finitely generated and it follows
from proposition 4.7.10 that the ideal ] is finitely generated.
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b) The sheaf O is generated by its global section 1, hence it is finitely generated.
Let U be an open subset of X, let (s;) 1 be a finite family of elements of Ox(U)
and let ¢: O, - O be the associated morphism. We need to show that Ker(¢)
is finitely generated.

Let x € U and let f € A be an element such that x € D(f) c U. Then
Ker(¢)|p(y) is a quasi-coherent O'x-module associated to the kernel K of the
morphism ¢(D(f)) of As-modules given by (a;) = X; aisi|p(s). Observe that
for every f € A, the ring of fractions A is noetherian, because it is generated
by 1/f as an A-algebra. Consequently, the A ;-module K, being a submodule of
the finitely generated A ;-module AIf, is finitely generated as well. This implies
that Ker(¢)|p(y) is finitely generated, and concludes the proof that Ker(¢) is
finitely generated.

c) If M is coherent, it is finitely generated; by prop. 4.7.10, the A-module M is
finitely generated. Conversely, let us assume that M is finitely generated, so that
there exists an integer n > o, a submodule P of A” such that M is isomorphic
to the quotient A" /P. This implies that the &x-module M is isomorphic to the
quotient of &} by the finitely generated submodule P. Since @ is coherent,
assertion c) of exercise 4.7.15 implies that OF is coherent; it then follows from
assertion b) of that exercise that M is coherent. ]

Theorem (4.7.17). — Let X be a locally noetherian scheme and let ./ is a quasi-
coherent Ox-module. The following properties are equivalent:

(i) The Ox-module ./ is coherent;
(ii) The Ox-module ./ is finitely presented;
(iii) The Ox-module . is finitely generated.

Proof. — The implications (i)=-(ii) and (ii)=-(iii) have already been discussed.
Assuming that . is finitely generated, it remains to prove that it is coherent.
Let x € X and let U be an affine open neighborhood of X. Since X is locally
noetherian, U is isomorphic to the spectrum of a noetherian ring A (one has
A = 0x(U)). Since .# is finitely generated, proposition 4.7.10 implies that
the A-module . (U) is finitely generated. Consequently, .Z |y is a coherent
Oy-module. This concludes the proof that .# is coherent. O]
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4.8. Schemes associated with graded algebras

4.8.1. — Let A be a graded algebra. By definition, there exists a family (A,,) N
of additive subgroups of A such that A = @ A, and such that A,,- A,, c A,
for every n, m € N. Elements of A, are said to be homogeneous of degree n.
For a € A, one can write a = ).,y a,, Where a, € A, for every integer n. The
element a,, is called the homogeneous component of degree n of a.

An A-module M is said to be graded if there exists a family (M,, ) ,cz of additive
subgroups of M such that M = @M, and A,, - M,,, ¢ M,;,,, for every n € N and
every m € Z. The homogeneous components of an element of M are defined
similarly as those of an element of A.

A submodule N of a graded module M is called to be graded if is equal to the
direct sum @,,.z(N nM,).

4.8.2. — Anideal I of A is said to be homogeneous if it satisfies the equivalent
conditions:

(i) The ideal I is generated by homogeneous elements;
(ii) The homogeneous components of every element of I belong to [;
(iii) The ideal Iis a graded submodule of A.

The subgroup A, = @,.,A, of A is a homogeneous ideal of A, called the
irrelevant ideal.

Lemma (4.8.3). — The radical of a homogeneous ideal of A is a homogeneous

ideal.

Proof. — Let I be a homogeneous ideal of A. Let f € \/Iand let (f,) be the
family of its homogenous components; we need to show that f, € \/1 for every
integer n > o. Otherwise, there exists a largest integer d such that f; ¢ \/I. Let
f' = 3 p<d f; by assumption, one has f — " € \/1, hence f’ € /1. Let e > o be an
integer such that (f’)¢ € I. The homogeneous component of degree de of f is
equal to ( f;)¢; since I is a homogeneous ideal, one has (f;)¢ € I, hence f; € V/1.
This contradicts the definition of d. ]

Lemma (4.8.4). — Let A be a graded ring and let I be a homogeneous ideal of A
which does not contain A.. Assume that for every pair (a,b) of homogeneous
elements of A such that a ¢ Land b ¢ 1, one has ab ¢ 1. Then Lis a prime ideal.
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Proof. — One hasI # A. Let a, b be elements of A =—1I and let us show that
ab ¢ 1. Let (a,) and (b,) be their homogeneous components; there exists a
largest integer d such that a, ¢ I and a largest integer e such that g, ¢ I. Let
a' =Y, qanand b’ =Y, by;onehasa—a’ eland b - b’ €1, so that

c=a'b'=a'(b'-b)+a'b=a"(b'-b)+(a’'—a)b+abel
On the other hand, the homogeneous components (¢, ) of ¢ are given by

Cn = Z apbn—p§

p<d
n—-p<e

in particular, ¢4, = a4b, ¢ L. Since I is a homogenous ideal, this implies that
¢ ¢ I, as was to be shown. O

4.8.5. — Let Proj(A) be the set of homogeneous prime ideals of A which do
not contain the irrelevant ideal A, .

For every subset E of A consisting of homogeneous elements, one defines
V. (E) as the set of p € Proj(A) such that E c p, and D, (E) = Proj(A) =V, (E).

The subsets of Proj(A) of the form V., (E) are the closed subsets of a topology
on Proj(A), called the Zariski topology. In fact, one has Proj(A) c Spec(A),
and it is the topology induced by the Zariski topology of Spec(A).

The topological space Proj(A) is called the projective spectrum of A.

For every subset Z of Proj(A), let j.(Z) be the set of all f € A, such that
Z c V,(f). This is a homogeneous ideal of A, contained in A, which is equal
to its radical.

4.8.6. — Let Abeagradedring, let f be a homogeneous element of A of strictly
positive degree, say d. The natural diagram of rings

A——Ar—— Ay
gives rise to a commutative diagram of topological spaces

Proj(A) «—— D.(f) ___

-~
~~
T~ f
~
~
~
~
~ <
~

-~

Spec(A) «—— D(f) —— Spec(Ay) — Spec(Ay))s
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in which the dashed arrow represents a continuous map vy D.(f) —
Spec(A(yy); we will prove that the map vy is a homeomorphism.

Concretely, the map v is defined as follows. Let p be a homogeneous prime
ideal of A which does not contain f. Then the ideal y;(p) is the set of elements
of Ay of the form a/f", wherea e pn A,y and n e N.

It follows from its definition that map vy is continuous. More precisely, let
n € Nandlet g € A, 4, let us show the two relations

v (D(¢/f") =D.(fg) and  yp(D.(f2)) = y7(D+(f)) nD(g/f").

If g € p, then g/f" € y;(p) by definition of this prime ideal. Conversely, if
g/f™ € ys(p), there exists an integer m > o and a € p N Ay, such that g/f" =
a/ f™; this implies that there exists p > o such that f™*Pg = f"*Pg; in particular,
f™*Pg e p, hence g € p since p is a prime ideal which does not contain f. Since
D.(fg) =D.(f)nD.(g), this concludes the proof of the two indicated relations.
The first one implies that y is continuous, and the second one that it induces
an open map onto its image.

Let us now show that v/ is injective. Let q,q’ € D, (f) be such that y;(q) =
¥¢(q'); let us show that q = q'. Let a be a homogeneous element of q and let
n be its degree; then a“ is an element of degree nd of q, so that a?/f" € A5);
the definition of y;(p) shows that a?/f" € y;(p), hence a?/f" € y¢(q’), hence
a? € ¢'. Since ¢’ is a prime ideal of A, one then has a € q’. This implies
the inclusion q c ¢', and the other follows by symmetry. Consequently, v is
injective.

Let q be a prime ideal of A(f). For every integer n > o, let p, be the set of
elements x € A, such that x?/f" € q. Observe that p,, is an additive subgroup
of A,. Let indeed x, y € A,; it follows from Newton’s binomial formula that
(x — y)*@/ f>" € q; since q is a prime ideal, we thus have (x — y)¢/f" € q, hence
X -y €p, Letthenp = @,50pn. If a € A, and x € p,, then (ax)4/frm =
(a?/fm)(x?/f") € q, hence ax € p; this implies that p is a homogeneous ideal
of A. Since 1 ¢ g, one has f ¢ p. Leta € A, and b € A, be such that ab € p; then
(ab)d[frntm = (a4]fm™)(b?]f") € g; since q is prime, at least one of a?/ f™ and
b?/f" belongs to q, which means that a € p or b € p. Consequently, p is a prime
ideal, hence a member of D, ( f).

Let us show that y¢(p) = g. Let indeed n be an integer and x € p,4; by
assumption, x4/ f"? € q, hence x/ f" € q because q is a prime ideal; consequently,
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¥¢(p) c q. Conversely, an element of q has the form x/f", with n e N and x €
A,q; then x?/fnd € g, hence x € p by definition of p; consequently, x/f" € y¢(p).

We have shown that y is a continuous, bijective, and open map from D (f)
to Spec(A(s)). Therefore, it is a homeomorphism.

Proposition (4.8.7). — Let A be a graded ring.

a) Let E be a set of homogeneous elements of A,, let f € A.. The following
propositions are equivalent:

(i) One has D.(f) c D,(E);

(ii) One hasV,(f) > V,(E);

(iii) There exists an integer n > o such that f" belongs to the homogeneous
ideal of A generated by E.

b) The maps E — V. (E) and Z ~ j,(Z) induce bijections, inverse one of the
other, between the set of closed subsets of Proj(A) and the set of homogeneous
radical ideals of A which are contained in A..

Proof. — a) The equivalence (i)« (ii) is obvious, and it follows from the
definitions of V. (f) and V. (E) that (iii) implies (i). Let us now show that (i)
implies (iii).

Let E be a set of homogeneous elements of A contained in A, let I be the
homogeneous ideal of A generated by E, and let f € A, be a homogeneous
elements of A. Let d be the degree of f. For every homogeneous element g € A, of
degree n,set g’ = g/ f" € A(y). Let E' be the set of elements g’, for g € E. We have
proved that y(D.(f) nD.(g)) = V(g'); consequently, y(D.(f) nV.(E)) =
V(E).

Assume now that D, (f) c D, (E) or, equivalently, such that D, (f)nV,(E) =
@. It follows that V(E’) = @, hence the ideal I of A5 generated by E’ contains 1.
There thus exists an almost null family (b, )t of elements of Ay such that
1= ) b,g'. Each element b, is of the form ¢/ f™, for some homogeneous ele-
ment ¢ of degree md; consequently, there exists an almost null family (¢, ) gex
of homogeneous elements of A and an integer m > o such that f™ = )" c,g9. In
particular, f” eI and f € VI

b) Let I be a homogeneous ideal of A and let I, = I n A,; let us show that
V,(I) = V,(L,). The inclusion V. (I) c V, (L, ) follows from the definition, since
I, c I. Conversely, let p € V. (L, ). One thushas I, c pbutp p A,. Let f € A, be
such that f ¢ p. For every a € I, one has af € I, hence af € p; since p is prime,
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this implies that a € p; consequently, I, c p. Since p is a homogeneous ideal of A,
one has I c p, hence p € V,(I). We thus have shown that V. (I) = V. (1,), as
claimed.

Let E be a family of homogeneous elements of A and let Z = V. (E). Let I be
the ideal generated by E; one has Z = V., (I). Moreover, Z = V., (1/1) since, for a
prime ideal p, the conditions I c p and \/I c p are equivalent.

Moreover, v/1 is a homogeneous ideal of A, and one has Z = V. (/1). One has
VINnA, cj,(Z). Moreover, it follows from a) that every element f of j, (Z) N A,
belongs to VL. This shows that iv(Z2) = VINnA,.

Consequently, for a homogeneous radical ideal I c A, one has j, (V. (1)) = L

Let Z be a closed subset of Proj(E). By what precedes, there exists a radical
and homogeneous ideal I of A, contained in A, such that V. (I) = Z. One then
hasj,(Z) =1, hence V.(j,(Z2)) = V. (1) = Z. O

4.8.8. — Let A be a graded algebra and let M be a graded A-module. Let S be
a multiplicative subset of A consisting of homogeneous elements. Let Ms) be
the subset of S™'M consisting of elements of the form m/s, where m € M and
s € S are homogeneous of the same degree. It is a submodule of S™"M. Moreover,
M s) is an A(g)-module.

Let U be an open subset of Proj(A) and let S(U) be the set of homogeneous
elements s € A such that s ¢ p, for every homogeneous prime ideal p € U. If
V c U, one has S(U) c S(V). One defines the sheaf M on Proj(A) as the sheaf
associated with the presheaf given by U = Msyy).

For every integer p € Z, the twist of order p of M is the graded A-module
M(p) whose underlying A-module is M, but whose grading is shifted by p:
M(p)n = M., for every integer n.

Lemma (4.8.9). — Let A be a graded algebra, let f be a homogeneous element
of A of degree d > o and let U = D,(f). The element f belongs to S(U). For
every graded A-module M, the canonical morphism of graded modules from My
to Mg () is an isomorphism. In particular, it induces an isomorphism from Mg
to M(S(U))-

Proof. — Onehas f € S(U) by the very definition of D (f). Let ¢: My — Mgy
be the canonical morphism.

Let x € My; there exists m € M and an integer n > o such that x = m/f". If
x € Ker(¢), there exists s € S(U) such that sm = o. Since s € S(U), D, (f) is
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contained in D, (s), so that there exists an integer p > o and ¢ € A such that
f? = st. Consequently, f?m = o, hence x = o. This shows that ¢ is injective.
Let x be an element of Mg(y); let m € M and s € S(U) be such that x = m/s.
By the preceding argument, there exists an integer p > o and t € A such that
fP =st. Then x = (tm)/fP, so that x € Im(¢).
Since ¢ is compatible with the natural gradings of M s and Mgy, it induces
an isomorphism from My to M(s(uy).- []

Proposition (4.8.10). — Let A be a graded ring, let f be a homogeneous element
of A of strictly positive degree and let M be a graded A-module.

a) Under the homeomorphism v ¢, the sheaf 1’\V/I\D+( f) is transformed to the quasi-
coherent sheaf on Spec(A ) associated to the A(y)-module M.

b) The ringed space (Proj(A), A) is a scheme.

c) For every graded A-module M, the A-module M on Proj(A) is quasi-
coherent.

Proof. — a) Letd be the degree of f. For every homogeneous element g € A
of strictly positive degree n, denote by U, the open subset D, (f) nD.(g) =
D,(fg) of D.(f). By the previous lemma, the module of fractions Msu,))
identifies with M(y,). Observe also that the natural morphism from My,
to My, induces an isomorphism from (Ms))ge/+ t0 M(f,). On the other
hand, we have proved that y(U,) = D(g9/f"). Consequently, the presheaf
given by U = M(gu)) on D, (f) identifies, via y, with the sheaf M), at least
on distinguished open subsets. This identifies the associated sheaf K/I\m( ) with
the sheaf M ).

b) By a), the restriction of the ringed space (Proj(A),A) to the open sub-
set D, (f) is an affine scheme. By definition of a projective spectrum, the open
subsets of this form cover Proj(A), since for every p € Proj(A), there exists
f € A, such that f ¢ p. Consequently, the ringed space (Proj(A),A) is a
scheme.

c) Let M be a graded A-module. The restriction to D, ( f) of the A-module
M is quasi-coherent, since it identifies with the quasi-coherent Op. (s)-module
associated to the A(r)-module M 7). Consequently, it is quasi-coherent. []

Example (4.8.11). — Let k be a ring and let A = k[T,, ..., T,] be the ring of
polynomials in (7 + 1) indeterminates with coefficients in k. Let us endow the
ring A with the graduation by degree.
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For every i € {o,...,n}, let U; be the open subset D,(T;) of Proj(A)
and let y; be the k-isomorphism from D, (T;) to the affine scheme X; =
Spec(k[U,, ..., U,]/(U; — 1)) such that yi{(U;) = T;/T; for every j. For
every pair (i,j), let X;; be the open subscheme D(Uj;) of X;. One has
1//1(D+(T1T])) = D(U]) = Xl] = Spec(k[Uo, e Un]/(Ul - 1) [l/U]]) and the
isomorphism y;; = y; o ;" from the open subscheme X;; = D(U;) of X; to the
open subscheme X;; = D(U;) of X; is given by
Yh(Un) = (v oy (Un) = (Wi (Tm/T)) = Un(y;)H(Ti/T;) = UpUy/U;.
By definition, the scheme P} is defined by gluing the family (X;) along the open
subschemes (X;;) by means of the isomorphisms v;;. For every i, let ¢;: X; - X
be the canonical open immersion and let U; be its image. By what precedes,
there exists a unique morphism ¢: Proj(A) — P¥ such that ¢|p,(,) = @i o ¥;
and it is an isomorphism.

Remark (4.8.12). — Let A be a graded ring. The assignment M ~ M is a functor
from the category of graded A-module to the category of quasi-coherent A-
modules on the homogeneous spectrum Proj(A). This functor has less good
properties than the analogous functor on spectra (which is an equivalence of
categories). In particular, it is neither fully faithful, nor essentially surjective in
general.

If A = A, (the graduation of A is concentrated in degree o), then Proj(A) =
@, since A, = o and every ideal of A (prime, homogeneous, or not) must
contains A,.

More generally, let M be a graded A-module and let m € N be such that M,, = o
for n > m. Then, for every homogeneous element f € A of strictly positive degree,
say d, one has M(s) = o. Indeed, an element of My is of the form m/ f*, where
m € M and k € N; for every integer p > o, one then has m/f* = fPm/fk+p = o,
Since D, (f) is an affine scheme, this implies that N/I\m( ) = o. Since these affine
schemes cover Proj(A), one has M = o.

We shall prove however that if the algebra A is generated by finitely many
elements of A,, then every quasi-coherent A-module on Proj(A) is of the form M;
for the moment, we refer to ( , , théoréme 2.7.5).

Proposition (4.8.13). — Assume that A, is a noetherian ring and that A is a
finitely generated A,-algebra.

a) For every strictly positive integer d, the ring @4, Ay is noetherian;
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b) The scheme Proj(A) is noetherian (ie, quasi-compact and locally noetherian);
c) Forevery finitely generated graded A-module M, the A-module M on Proj(A)
is coherent.

Proof. — a) Let f,,..., f, be homogeneous elements of A such that A =
Aol fis---» fn]- By hypothesis, the morphism of A,-algebras ¢: A, [T,,...,T,,] —
A such that ¢(T;) = f; for every i is surjective. Since the ring A,[T,, ..., Tp,] is
noetherian (theorem 1.9.3), so is A. This also implies that for every integer n,
the A,-module A, is generated by the elements of the form f ... f;" such that
md, + -+ + ny,d, = n, hence is finitely generated.

Let d be a strictly positive integer and let us consider the graded ring A’ =
Dajn An. Writing n; = q;d + r;, with o <r; < d, we have

fire = O (D (P ),

so that the A,-algebra A’ is generated by f4,..., f¢ and by the finite set of
elements of the form £ ... f," such that d divides ). d;r;.

b) Let f be a homogeneous element of strictly positive degree and let us show
that the ring A ) is noetherian. The isomorphism A[T]/(fT - 1) ~ Ay implies
that A ¢ is noetherian. If f has degree 1, then every element of As of degree
divisible by d can be written uniquely under the form af”, where a € A5 and
n € Z, so that the ring Ay is isomorphic to the quotient of the ring A by its
(non-homogeneous) ideal (f —1). This implies that A ¢y is a noetherian ring. In
fact, note that

Ay = Ar/(f =) = A[T]/(fT =1, f =) = A[T]/(T =1, f 1) = A/(f - ).

Let us now treat the general case; let d be the degree of f. Similarly, every
element of A of degree divisible by d can be written uniquely under the form
af",wherea € A(y)and n € Z, so that the ring Ay is isomorphic to the quotient
of the graded ring A’, = @4 (Af)n by the (non-homogeneous) ideal (f —1). By
a), A’ is a noetherian ring, hence so are A% and Ay) = A [(f=1).

This shows that the affine open subscheme D, (f) of Proj(A) is the spec-
trum of a noetherian ring. It first follows that Proj(A) is a locally noetherian
scheme. Since the ring A is noetherian, its ideal A, is finitely generated, say
A =(fi,.-., fm)- Consequently, one has Proj(A) = U, D, (f;), which shows
that it is quasi-compact.
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c) Let M be a finitely generated graded A-module. For every homogeneous
element f of strictly positive degree, say d, the restriction 1\~/I|D+( ) identifies
with the quasi-coherent module on Spec(A 5)) associated with the A(¢)-module
M),

First assume that d = 1. In that case, M is finitely generated as an A ;-module.
Moreover, every element of M can be written uniquely under the form f"m
where m € M(y) and n € Z. Consequently, Ms/(f — 1)My is isomorphic to M.
This implies that M) is a finitely generated A y)-module.

In the general case, one proves as above that M" = @4, M is finitely generated
asan A’- module, where A’ = @y}, Ag. Then M is a finitely generated A’ -module,
and M(y) = ( n=M f/ (f —1) is a finitely generated A(f)-module.

This proves that M is a coherent A-module on Proj(A).

4.9. Locally free modules

4.9.1. — Let X be a scheme and let .# be an Ox-module. For every x € X, let
d.y(x) = dimy (. (Ax B0, k(x)).

Proposition (4.9.2). — Let X be a scheme and let ./ be a finitely generated quasi-
coherent Ox-module. The function d_, is upper semi-continuous: for every n € N,
the set of points x € X such that d_,(x) > nis closed in X, and the set of points x € X
such that d 4 (x) < n is open in X.

The result does not hold without the hypothesis that .# finitely generated,
and quasi-coherent.

Proof. — We may assume that X is affine, say X = Spec(A); let M be the A-
module .Z (X). Let n € N and let x € X be such that d ,(x) < n; let p be the
corresponding prime ideal of A. Let thus m,, ..., m, be elements of M which
generate M ®, k(p); let N be the submodule of M generated by m,, ..., m,,. One
has x(p) = Ay /pAy; moreover, M ®, k(p) = M, ®4, «(p), and similarly for N.
Consequently, we have
M, = N, + pM,.

By Nakayama’s lemma (corollary 1.3.3), this implies the equality M, = N,.

Let (x;) be a finite generating family for M; for every i, there exists s; € A= p
such thats;x; € N. Let s be the product of the s;; one has sx; € N for every i, hence
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sM c N. Consequently, M; is generated by the family (m,/1,..., m,/1). There-
fore, for every y € D(s), M ®, (p,) is generated by the images of m;,, ..., m,,
so thatd ,(y) < n. O

4.9.3. — If ./ is free, i.e., if there exists a set I such that .Z =~ ﬁg), then
d_x(x) = Card(I) for every x € X: the function d_, is constant on X.

Recall that one says that ./ is locally free if, for every x € X, there exists
an open neighborhood U of x such that .Z|y is a free Ox|y-module. In that
case, the function d_, is locally constant on X. If, moreover, d_; (x) is finite for
every x € X, then ./ is finitely generated and one says that .# is locally free of
finite rank. One says that ./ is locally free of rank # if it is locally free and if
d.x(x) = n for every point x € X.

When X = Spec(A) is affine and M is an A-module, one says that M is locally
free (resp. locally free of rank n) if the Ox-module . is locally free (resp. locally
free of rank n).

Proposition (4.9.4). — Let A be a ring, let X = Spec(A), and let M be an A-
module. The following properties are equivalent:

(i) The Ox-module M is locally free of finite rank;

(ii) The A-module M is finitely generated and projective.

(iii) There exists an integer n and an A-module N such that M ® N ~ A",

(iv) The A-module M is finitely presented, and for every p € Spec(A), the
Ap-module My is free;

(v) Forevery p € Spec(A), there exists an element f € A =1p such that My is a
finitely generated free A -module;

Proof. — (i)=(ii). Let p:N — N’ be a surjective morphism of A-modules and
let f:M — N’ be a morphism of A-modules. We need to show that there exists a
morphism g: M — N such that f = pog. To that aim, let us set P = Homs (M, N),
P’ = Homa (M, N’), and let p.: P — P’ be the morphism of A-modules induced
by p. It suffices to prove that p. is surjective and, to that aim, that the morphism
of sheaves p,:P — P’ is surjective. Since M is finitely generated, the canonical
morphism from P to Hom,, (M, N) is an isomorphism, as is the canonical
morphism from P’ to Homg, (M, N’) Let f is an element of A such that M]|p £
is free; then p.|p(y) is surjective. This implies that p.:P — P is a surjective
morphism of quasi-coherent Ox-modules. In particular, the morphism p, =
7.(X):P —> P/ is surjective, as was to be shown.
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(ii)=(iii). This follows from proposition 2.7.2, (ii)=-(iii).

(iii)=(iv). Since they are isomorphic to a quotient module of A", both A-
modules M and N are finitely generated; consequently, M is finitely presented.
For every p € Spec(A), one has an isomorphism M, ® N, ~ AJ}. In particular,
M,, is a finitely generated projective A,-module, hence is free (theorem 2.7.4).

(iv)=(v). Let p € Spec(A), let n € N and let m,,..., m, be elements
of M such that (m,/1,...,m,/1) is a basis of M,. Let ¢:A” — M be the
morphism of A-modules defined by ¢(a,,...,a,) = Y a;m;. One has
Coker(¢), = Coker(¢,) = o. Since M is finitely generated, Coker(¢) is finitely
generated too, hence there exists an element f € A —p such that Coker(¢) = o.
This implies that ¢ is surjective. Then, M being finitely presented, the kernel
of ¢ is finitely generated. Moreover, one has Ker(¢), = o. Consequently, there
exists g € A—p such that Ker(¢y,) = Ker(¢), = 0. This implies that ¢, is an
isomorphism. Consequently, My, is free and finitely generated.

(v)<>(i). The quasi-coherent sheaf M on X associated to a free A-module
M = AW is isomorphic to A(M, so that M is free if and only if M is free. Moreover,
M is finitely generated if and only if M is finitely generated. Let now f € A.
Applying this remark to the A ;-module My, we see that the Ox|p(s)-module
1\~/I|D( 7) is free of finite rank if and only if M is free and finitely generated. This
shows that (i) and (v) are equivalent. ]

Corollary (4.9.5). — Let A be a principal ideal domain and let X = Spec(A).
Every locally free Ox-module of rank n is trivial, i.e., is isomorphic to O%.

Proof. — If A is a principal ideal domain and m is an integer, then every sub-
module of A™ is free. O

Corollary (4.9.6). — Let X be a scheme, let .# and N be locally free finitely
generated Ox-modules and let ¢: # — N be a surjective homomorphism. Then
Ker(¢) is locally free; moreover, if X is affine, then ¢ has a section.

Proof. — Let us first assume that X is affine. Let A = Ox(X), let M = .Z (X)
and N = 4/(X), and let f: M — N be the morphism ¢(X). The A-modules M
and N are finitely generated and projective, and the morphism f is surjective.
In particular, there exists a morphism ¢g:N — M such that f o ¢ = idy, hence
M is isomorphic to N @ Ker( f). Since M is projective and finitely generated,
there exists an integer m and an A-module M’ such that M @ M’ ~ A™; then
(M’ @ N) @ Ker(f) ~ A™, which shows that Ker( f) is projective and finitely
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generated. In this case, this shows that Ker(¢) is a finitely generated locally free
Ox-module, and that ¢ has a section.

In general, this implies that for every affine open subscheme U of X, Ker(¢)|y
is a finitely generated locally free Ox|y-module. Consequently, Ker(¢) is a
finitely generated locally free &x-module, as claimed. ]

Proposition (4.9.7). — Let X be a scheme and let .4 be a quasi-coherent Ox-
module of finite presentation.

a) If A is locally free, then the function x — d_y(x) on X is locally constant.
b) Conversely, if X is reduced and the function d_, is locally constant, then .#
is locally free.

Proof. — If . is free, then d_, is constant. It thus suffices to prove that .# is
locally free if d_, is constant and X is reduced. We may even assume that X is
an affine scheme. Let then A = Ox(X) and M = .Z (X); the ring A is reduced,
the A-module M is finitely presented and we need to prove that it is locally free
of rang n, assuming that for every € Spec(A), one has dim,,)(M ®4 x(p) = n.
By proposition 4.9.4, we need to prove that for every prime ideal p of A, the
Ap-module M, is free of rank n. Replacing A by A, and M by M, we may thus
assume that A is a local ring; let m be its maximal ideal.

Let (m,, ..., m,) be elements of M whose images in M ® x(m) constitute
a basis of that vector space. Let f: A” — M be the morphism of A-modules
given by f(a,,...,a,) Y a;m;. One has M = Im(f) + mM, by assumption; it
thus follows from Nakayama’s lemma (corollary 1.3.3) that f is surjective. Let
N be its kernel. Let p be a prime ideal of A. Let f(p):x(p)” > M ®4 x(p) be
the morphism deduced from f; it is surjective by right exactness of the tensor
product; since, M ®4 «x(p) has dimension n, by assumption, this implies that
f(p) is an isomorphism. Now, the injection j from N to A" induces a mor-
phism j(p):N — x(p)" whose image is zero, since it is contained in Ker(f(p)).
Necessarily, N c p”. This holds for every prime ideal p € Spec(A), and the
intersection of them is {0}, because A is reduced. Consequently, N = o0 and f is
an isomorphism. ]

4.9.8. — All standard constructions from linear algebra (direct sums of mod-
ules over some ring, tensor products, symmetric and exterior powers, sheaves of
homomorphisms, duals,...) associate free modules with free modules. Thanks
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to the above proposition, they translate from the context of free modules over a
ring to that of locally free sheaves of finite rank over a scheme.

Assume that .# and ./ are locally free sheaves of ranks m and n on X. Then
M & N islocally free of rank m + n; Hom(.#, #") and .# ® ./ are locally
free of rank mn. In particular, #V = Fomg, (M , O) is locally free of rank m;
moreover, the canonical morphism from .#Z"V ® 4, A to ome (M, N) is
an isomorphism. For every integer p > o, the exterior power A? ./ is locally
free of rank (';:), and the symmetric power S?.Z is locally free of rank ("”5 ).

In particular, the ““maximal’ exterior power of .# is locally free of rank 1;
it is called the determinant of .# and is denoted by det(.#). One has an

isomorphism det(.#Z & .A") ~ det(.#) ® det(./1").

Proposition (4.9.9). — Let X be a scheme and let .# be a quasi-coherent Ox-
module. The following properties are equivalent:

(i) The Ox-module .4 is locally free of rank 1;

(ii) The canonical morphism #"~ ® g, M — O is an isomorphism;

(iii) There exists a quasi-coherent Ox-module N such that # 4, N is iso-
morphic to Ox.

Proof. — (i)=(ii). We may assume that .# is free, hence possesses a frame (¢);
then .V is free as well, and possesses a frame (@), characterized by the relation
¢(¢) = 1. The indicated canonical morphism maps (a¢@)® (be) to ab; it identifies
with the isomorphism of Ox®¢, with Ox.

(ii)=(iii). Indeed, one may take 4" = .Z".

(iii)=>(i). We may assume that X is affine, say X = Spec(A); then M = .Z (X)
and N = 4/(X) are two A-modules such that there exists an isomorphism
p:M e, N~A.

Let us assume for the moment that there exists a split tensor m ® n such that
¢(m ® n) = 1. Let us consider the unique morphism y from M ®, N ®, M
to M such that y(x, y,z) = ¢(z ® y)x for every x € M, y € N and z € M. Now,
if x € M is such that x ® n = 0, one has x = y(x ® n ® m) = y(0) = o. Then,
for every x € M, the element x’ = x — ¢(x ® n)m of M satisfies p(x’ ® n) =
p(x®n)—e(x®n)p(me n) = o;since ¢ is an isomorphism, one has x’ ® n,
hence x’ = o. This shows that the map from M to A given by x —» ¢(x ® n) is an
isomorphism, with inverse given by a — am. Consequently, m is a basis of M.
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In general, since ¢ is an isomorphism, there exist families (m;) and (#;) of
elements of M and N respectively such that ¢(Y m; ® n;) = 1. For every i, let us
seta; = p(m; ®n;). By localization, ¢ induces an isomorphism ¢,,: My, ®4, Ng,,
which maps the split tensor a;'m; ® n; in M, ®4, N, to 1. Consequently, M,
is a free A,.-module of rank 1.

Since 1 = ¥ a;, the open subsets D(a;) cover Spec(A). Consequently, M is
locally free of rank 1. O

4.9.10. — Let X be a scheme. In view of the preceding proposition, a locally
free Ox-module of rank 1 is also called an invertible sheaf. Let Pic(X) be the set
of isomorphism classes of invertible sheaves. The tensor product of Ox-modules
endowes Pic(X) with the structure of a group. The neutral element is the class
of the sheaf Ox. If .# is an invertible sheaf, the inverse of the class of ./ is the
class of its dual .Z".

4.9.11. Locally free sheaves and cohomology. — Let X be a scheme, let n be
an integer and let .# be a locally free Ox-module of rank n on X.

Let %/ be an covering of X by open subschemes of X. We say that .# is % -free
on 7 if for every open subscheme U € 7%, the restriction .Z |y is free, i.e., is
isomorphic to Ox|},.

Let us assume that this is the case. For every U € %, let us choose an isomor-
phism sY: O - A |y.

Let U,V € 7% . Since sY|yny and sV|yny are two isomorphism from 07,
to . |ynv, there exists a unique isomorphism Ayy € GL(#n, (U nV)) such
that sY|ynyv 0 Ayv = sV|unv. Let U, V, W € %; on UnV n'W, one has

w

sYoAuw =5V =5V 0 Ayyw = sV 0 Ayy 0 Ayw;

consequently, the family z'(s) = (Ayv)u,vew satisfies the following cocycle rela-
tion:
AUW :AUVAVW in GL(Vl,ﬁ(UﬁVﬂW))

In particular, one has Ayy = I, and Ayy = Ay},. Let Z'(%, GL(n)) be the set of
all families (Ayv) satisfying this cocycle relation. An element of Z'(%,GL(n))
is called a Cech 1-cocycle with values in GL(#) on X, and the element z'(s) is
called the Cech 1-cocycle associated to the family s = (sV)yey of trivializations.

Let (tV)yew be another family, where tY is an isomorphism from &7 to .#|y.
For every U € %, there exists a unique matrix By € GL(n, &(U)) such that
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tU = sV o By. Let then (U, V) be a pair of elements of %/; on U NV, one has
tV =5V oBy =sY o Ayy o By = tY o Bi} o Ayy o By.

Consequently, the Cech 1-cocycle z'(t) associated to the family t = (tV)yey is
given by
z'(t) = (ByAuvBv)u,ven .

Let BY(%,GL(n)) be the set of families (By)ues, where By € GL(n, 0 (U)).
This is a group, and this group acts on Z!'(% ,GL(n)) by the above formula:
(Bu) - (Auv) = (B{'AuvBy). The set of equivalence classes is denoted by
H'(%,GL(n)) and is called the first set of Cech cohomology of % with values
in GL(n).

The set Z' (% , GL(n)) admits a privileged element, namely the 1-cocycle given
by Ayv = I, for every pair (U, V). Its class in H'(%, GL(n)) is called the trivial
class.

When n = 1, the set Z'(%/, GL(n) ) has a natural structure of an abelian groups,
and the abelian group B'(%, GL(n)) acts on Z*(% , GL(n)) via a morphism of
groups. Consequently, the set H*(%/, GL(n)) has a natural of an abelian group;
the trivial class is its neutral element.

Theorem (4.9.12). — Let X be a scheme and let %/ be an open covering of X. The
previous construction furnishes a bijection cq, from the set of isomorphism classes

of U -free sheaves of rank n on X to the set H (% ,GL(n)). When n = 1, this
bijection is an isomorphism of abelian groups.

4.9.13. — Let us define a category whose objects are open coverings of X. Let
% and ¥ be open coverings of X; call any map j: % — ¥ such that U c j(U)
for every U € % . a morphism from %/ to ¥'. Such a map j exists if and only the
open covering 7 is finer than the open overing 7.

Moreover, the map j allows to define maps

(4.9.13.1) i ZN(Y,GL(n)) - Z (% ,GL(n)),
(4.9.13.2) j":BY(¥,GL(n)) - B (% ,GL(n)),
and

(4.9.13.3) j*H'(7,GL(n)) > H(%,GL(n)).

In fact, associating to a given open covering % the set of Cech cocycles and the
first Cech cohomology group is a contravariant functor from the category to
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open coverings to the category of (pointed) sets, and to the category of groups
when n = 1.

Finally, we define the first Cech cohomology set of X with values in GL(#n) by
the colimit

H'(X, GL(n)) = lim H'(%, GL(n)),
-

indexed by the category of open coverings of % .

Corollary (4.9.14). — There exists a unique map M — c(#') from the set of
locally free sheaves of rank n on X to H (X, GL(n)) such that c(. ) is the class of
the Cech cohomology class c(% , M), for every open covering % of X and every
U -trivial sheaf of rank n, ./ . It is bijective, and an isomorphism of abelian groups

ifn=1

Proof. — We observe thatif j: 2 — ¥ isa morphism of open coverings of X and
A is alocally free sheaf of rank n on X which is ¥ -trivial, then j*(cy (A)) =
coy (). This implies the existence of the map .# +— c(.#'). Its bijective
character follows from the fact that the maps ¢4, are bijective, and that for every
locally free sheaf of rank n, ., on X, there exists an open covering % such that

M is U -trivial. [

Remark (4.9.15). — The constructions from linear algebra described in §4.9.8
associate free modules with free modules. on locally free sheaves of finite rank
have a reflection on cohomology classes. For example, if .# and .4/ are locally
free sheaves of ranks m and n on X, and % is an open covering of X such that
A and A are % -trivial, then A& & N, Homep,, M @ N ,...are U -trivial as
well.

For example, assume that .# and .4 are represented by cocycles z4 (4") €
ZX (% ,GL(m)) and z4 (A") € Z'(% ,GL(n)), associated with given trivial-
izations. The proof that .#Z & ¥, etc., are % -trivial furnishes explicit % -
trivializations of these Ox-modules, hence a particular cocycle. More precisely,
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the following formulas hold:

|z ()
(4.9.15.1) zy (M & N) = ( oy (JV))’
(4.9.15.2) 2y (M) = (zq (M)
(4.915.3) zy (M N ) =29 (M) ® 29/ (N) (Kronecker product),

(4.9.15.4) zy(det(A)) = det(zy (A )), ...

Remark (4.9.16) (Comparison with differential geometry)

Let M be a ¢’*-manifold; denote its sheaf of €’*-functions by ¢¥. Let n be
an integer. A vector bundle of rank n on M is a manifold E endowed with a
morphism p:E — M, structures of real vector spaces on the fibers E, = p~*(x),
for x € M, satisfying the following local triviality property: for every point x
of M, there exists an open neighborhood U of x, an isomorphism of manifolds
¢u: p(U) — R" x U such that pr, opy = py and such that for every y € U, the
map pr, ogy induces a linear bijection from p~*(y) to R".

Given an open covering % of M and such a trivialization ¢y, for every open
subset U € %, one defines a €*-map fv:UnV - GL(n,R), for every pair
(U, V) of elements of %. Equivalently, one can view fyy as an element of
GL(n,¢*(U nV)). The family (fyv) satisfies the cocycle relation: on U n
V n W, one has fuvfyw = fuw. The cohomology classes of this cocycle in
H'(% ,GL(n)) and in H(X, GL(n)) do not depend on the choice of the local
trivializations ¢y and on the chosen open covering 7% .

Let then & be the sheaf of ¢’*-sections of E: for every open subset U of X,
&(U) is the set of all €*-morphisms s: U — E such that p o s = idy. The vector
space laws on the fibers p~*(m) endow this sheaf with the structure of a sheaf in
R-vector spaces. In fact, it is naturally a %}t -module, and this module is locally
free of rank n.

The sheaf of sections of a projection pr,: R” x U — U identifies with the sheaf
(€%)". Consequently, the trivialization ¢y of E on an open set U € % gives rise
to an isomorphism of &y with 6. In particular, & is % -trivial; moreover its
cohomology class coincides with that of E.

Conversely, given a locally free sheaf .# of rank n on M, one can define a vector
bundle of rank n on M whose sheaf of sections is equal to .% . For that, it suffices
to choose an open covering %7 of M such that .% is % -trivial, trivialisations
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sY, for U € %, and to use the associated cocycle z (.F) to glue trivial vector
bundles R" x U.

This more geometric point of view on locally free sheaves given by the notion
of vector bundle has an analogue in algebraic geometry.

Namely, if X is a scheme, a vector bundle of rank n on X is a scheme E endowed
with an affine morphism p:E — X, a locally free sheaf of rank n, &, and an
isomorphism Sym* & — p, 0% of quasi-coherent Ox-algebras. Then the sheaf
of sections of p is isomorphic to the dual sheaf & of &', and the X-scheme E is
isomorphic to the spectrum Spec(Sym” &) of the quasi-coherent Ox-algebra
Sym* &V.

The reason for this duality can be explained as follows. Observe that if k is a
ring, then A} ~ Spec(k[T,,...,T,]),and k[T,,..., T,] is the symmetric algebra
on a free k-module V of rank #n, and then, T}, ..., T, are linear forms on V.

Lemma (4.9.17). — Let k be a ring and let A be a graded k-algebra; let X =
Proj(A). Let M be a graded A-module, let d be an integer such that d > o.

a) There exists a unique morphism of quasi-coherent sheaves, 0: M® 4, Ox(d) —
M(d), such that 0((m/f?) ® (g/f9)) = gm/fr*4 for every homogeneous ele-
ment f € A, every homogeneous element g € A such that deg(g) = gdeg(f) +d,
and every homogeneous element m € M such that deg(m) = p deg(f).

b) For every m € My, there exists a unique section s,, € F(X,W) such that
Smlp. () = m/1, for every f € A,. The map m v s,, is a k-morphism from My
to T(X, M(d)).

c) Let f € Ay. The section s¢|p, () is a basis of Ox(d)|p. (y), and the restriction
to D, (f) of the morphism 6 is an isomorphism.

Proof. — a) The given formula describes the restriction of 0 to an arbitrary
affine open subset D, (f). It thus suffices to check that these requirements are
compatible, a verification left to the reader.(")

b) This is straightforward.

c) Let us first prove that for every open subscheme U of D, (f), and every
section s € T(U, M(d)), there exists a unique element t € (U, M) such that
s = 0(t ® sf). We may assume that there exists g € A, such that U = D, (fg);
then there exists an homogeneous element m € M such that s = m/(fg)?, and

d = deg(m) - pdeg(f)— pdeg(g). The formulas = f(gm)/(fg)P expresses s
O
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as 0(t®ss), where t € T (U, M) is represented by (gm)/(fg)?*',a homogeneous
fraction of degree o. Since Ay is a subring of Ay in which the element f is
invertible, this is the unique such expression.

Applied to M = A, this shows that s is a basis of Ox(d)|p, (5). O]

Proposition (4.9.18). — Let k be a ring and let A be a graded k-algebra which is
generated by A, as an A,-algebra; let X = Proj(A).

a) For every integer d € Z, the quasi-coherent sheaf Ox(1) is invertible.

b) For every graded A-module M and every integer d, the canonical morphism
0:M ® Ox(d) - W is an isomorphism.

c) In particular, for every pair (d,e) of integers, one has an isomorphism

ﬁx(d) ® ﬁx(e) ~ ﬁx(d + e).

Proof. — Letd € N. For every f € A,, the restriction of Ox(d) to the open
subscheme D, (f) = D, (f%) of X is locally free of rank 1. Since A is generated
by elements of A,, these affine open subschemes consistute an open covering
of X, so that Ox(d) is locally free of rank 1. For the same reason, the morphism
On: M® Ox (d) - W is an isomorphism. In particular, for every integer e € Z,
the morphism 6, (,) is an isomorphism from Ox(e)® Ox(d) to Ox(d+e). Taking
e = —d, this implies that Ox (-d) is isomorphic to the dual of O, hence is locally
free of rank 1 as well.

This establishes the proposition, except for the isomorphism of part ¢) when
d < o. To prove this remaining case, we can start from the isomorphism Ox(e) ~
Ox(-d) ® Ox(d + e); tensoring both sides by Ox(d ), we obtain an isomorphism

ﬁx(d) &® ﬁx(e) i~ ﬁx(d) &® ﬁx(—d) &® ﬁx(d + e),

hence the required isomorphism if we use the fact that Ox(d) ® Ox(-d) is
isomorphic to Ox. ]

Example (4.9.19). — Let k be a ring; the case of X = P = Proj(k[To, ..., T4])
is extremly important for algebraic geometry. The graded k-algebra
A = k[T,,...,T,] being generated by elements of degree 1, namely, T, ..., T,,
the quasi-coherent sheaf 0x(1) is locally free of rank 1.

Moreover, let us show that for every integer d, the k-linear morphism P ~ sp
from A, to T'(P}, Ox(d)) is an isomorphism; in particular, I'(P}, Ox(d)) = o
for d < o. Let thus 0 € T'(P?, Ox(d)). For every i € {o,...,d}, there is a unique
polynomial P; € k[T,/T,..., T,/T;] such that o|p (r,) = Pisifﬁ’id. On D, (T;T)),
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one thus has st, = (T;/T;)sr, leading to the equality P;T{ = P;T? of rational
functions. Let P be this common rational function; looking at the formula
P = P, T¢, we see that its denominator is a power of T;; but switching to j # i
shows that its denominator is a power of T;. Consequently, P is a polynomial.
Since P; is homogeneous of degree o, P is homogeneous of degree d; in particular,
one has P = 0 if d < 0, and ¢ = o. Finally, viewed as an element of A(d )(1,)> One
has st,|p, (t,) = Ti/1, hence o|p,(r,) = P, T¢/1 = P/1, so that olp,(r,) = splp, (1)
consequently, 0 = sp, and the polynomial P is the unique one such that this
relation holds.

4.10. Invertible sheaves and divisors

Let X be a scheme. For simplicity, we assume that X is noetherian and integral.
Let x(X) be its field of fractions; this is the local ring of X at its generic point.
Let also .#x be the constant sheaf on X with value x(X): for every non-empty
open subset U of X, one has .#x(U) = «(X). If U is affine, say U = Spec(A),
then x(X) = Frac(A) is an A-algebra, and .#x|y = 12_(5(/); in particular, .#x is a
quasi-coherent Ox-module.

Theorem (4.10.1). — Let A be a unique factorization domain and let X = Spec(A).
Then Pic(X) = o: every invertible sheaf on X is free.

Proof. — Let .Z be an invertible Ox-module. Let % be an open covering of X
such that .Z is % -trivial; since X is quasi-compact, we may also assume that %
is finite and that every open subset U € 7% is of the form D(a), for some a € A.
Let us show the following result: let a,,a, € A be non-zero elements and
let a be their gcd; if Z|p(,,) and .Z|p(,,), then Z|p ) is trivial. For i € {1,2},
let indeed s; be an isomorphism from Ox|p(,,) to -Z|p(q,); let f be the unique
element of Ox(D(a,) N D(a,)) such that s,|p(s,)D(a.) = fS2|D(a,)"D(as)-
(Unfinished) [
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MORPHISMS OF SCHEMES

5.1. Morphisms of finite type, morphisms of finite presentation

Definition (5.1.1). — Let A be a ring and let B be an A-algebra. One says that B
is a finitely presented A-algebra if there exists a family (b,, ..., b,) of elements
of B such that the unique morphism of A-algebras ¢: A[T,, ..., T,] - B such that
@(T;) = b; for every i is surjective and its kernel is a finitely generated ideal.

Recall that one says that B is a finitely generated A-algebra if there exists a finite
family (b,, ..., b,) of elements of B such that the morphism ¢: A[T,,..., T,] of
A-algebras such that ¢(T;) = b; for every i is surjective.

If the ring A is noetherian, then the ring A[T,, ..., T, ] is noetherian as well,
so that every finitely generated A-algebra is finitely presented.

If f: A — Bisaring morphism, it endowes B with the structure of an A-algebra
and we also say that f is of finite type (resp. is of finite presentation) to mean
that the A-algebra B is of finite type (resp. of finite presentation).

Example (5.1.2). — We have seen in example a) of §1.2.5 that for every element a
of A, the morphism ¢: A[T] - A, of A-algebras such that ¢(T) = 1/a is surjec-
tive and its kernel is generated by (1 — aT). Consequently, the A-algebra A, is
finitely presented.

Lemma (5.1.3). — Let A be a ring and let B be a finitely presented A-algebra. For
every integer m, the kernel of every surjective morphism ¢: A[X,, ..., X,;,] = B of
A-algebras is finitely generated.

Proof. — Let ¢:A[X,,...,X,,] = Bbeasurjective morphism of A-algebras. Let
n be an integer and let y: A[Y,,...,Y,] — B be a surjective morphism whose
kernel is finitely generated.



184 CHAPTER 5. MORPHISMS OF SCHEMES

For every i € {1,...,m}, let P, € A[Y,,...,Y,] be a polynomial such that
v(P;) = (X;); let a: A[X] - A[Y] be the unique morphism of A-algebras such
that a(X;) = P;, for every i; one has o & = ¢. For every j € {1,...,n},let Q; ¢
A[X,,...,X,,] be a polynomial such that ¢(Q;) = w(Y;); let B: A[Y] - A[X]
be the unique morphism of A-algebras such that f(Y;) = Q;, for every j; one
has g o =y.

Let (Ny) be a finite family of polynomials in A[Y] which generates Ker(y)
and let I be the ideal of A[X] generated by the polynomials X; — 8 o «(X;) and
the polynomials S(Ny). It is is finitely generated, by construction; to conclude
the proof of the lemma, it suffices to prove that it equals Ker(¢).

Observe that for every polynomial P € A[X], one has P — S o a(P)) € Ker(¢),
since p o fo a(P) = yoa(P) = ¢(P). Moreover, $(Ny) € Ker(¢), for every k,
since ¢ o B(Ny) = ¢(Ny) = o. In particular, the ideal I is contained in Ker(¢).

Let us then observe that for every polynomial P € A[X], one has P — o
a(P) € 1. Indeed, if p: A[X] - A[X]/I is the canonical surjection, then p
and p o a o 3 are two morphisms of A-algebras from A[X] to A[X]/I which
coincides on X, . . ., X,,;; Their equalizer is a sub-algebra of A[X] which contains
the indeterminates X,, .. ., X,,, hence is equal to the whole of A[X]. Let finally
P e Ker(¢). Then a(P) € Ker(v), since y o a(P) = ¢(P) = o. Since the ideal I
contains the image by f of a generating family of Ker(y ), one has f(a(P)) € L
Finally, the relation P = (P-Soa(P))+ S oa(P) shows that P € L. This concludes
the proof. ]

Lemma (5.1.4). — Let A be a ring, let B be an A-algebra and let C be a B-algebra.

a) If B is finitely generated over A and C is finitely generated over B, then C is
finitely generated over A.

b) If Cis finitely generated over A, then it is finitely generated over B.

c) If B is finitely presented over A and C is finitely presented over B, then C is
finitely presented over A.

Proof. — We write f: A — B and g:B — C for the canonical ring morphisms.

a) Letb,,...,b, € BsuchthatB=A[b,,...,b,];letc,...,c, € Csuch that
C = B¢y, ..., ¢y]. Then, the subring A[g(b,),...,g(bu),c1...,cy] of Cisa
finitely generated A-algebra which contains the image of B under g, as well
as Cy,...,Cp; it is thus equal to C, which shows that C is a finitely generated
A-algebra.
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b) Let c,,...,c, be elements of C such that C = A[c,,...,c,]. Then one
has C = B[¢,, ..., c,], since this subring of C contains the image of A and the
elements c,, ..., c,. Consequently, C is a finitely generated B-algebra.

c) Letb,,...,b, € Bsuch that B = A[b,,...,b,];let p: A[X,,...,X,,] > B
be the unique morphism of A-algebras such that ¢(X;) = b; for every i; by
lemma 5.1.3, Ker(¢) is finitely generated. Similarly, let ¢,, ..., ¢, € C such that
C =B[¢,...,¢,] and let y:B[Y,,...,Y,] = C be the unique morphism of B-
algebras such that y(Y;) = ¢; for every j; then Ker(y) is finitely generated. Let
0:A[X,, ..., X Yy,...,Y,] = Cbe the unique morphism of A-algebras such
that 0(X;) = g(b;) for every i and 6(Y;) = ¢; for every j.

To shorten the notation, we write A[X] for A[X,, ..., X,,], etc. Let (P,,...,P;)
be polynomials in A[X] generating Ker(¢). Let (Q,,...,Q;) be polynomi-
als in B[Y] generating Ker(y). Let us extend ¢ to a morphism ¢’ from
AlXy, .o, X Yy, o 5, Y] to B[Y,, ..., Y,] such that ¢(X;) = ¢/(X;) for ev-
ery i, and ¢'(Y;) = Y; for every j; it is surjective. Consequently, there exist
polynomials (Q{,...,Q¢) in A[X, Y] such that ¢'(Q}) = Q; for every ;.

One has P,...,P,,Q/,...,Q! € Ker(8). Conversely, let R € Ker(6). Since
0 = yo¢’,onehasy(¢'(R)) = o. Consequently, there are polynomials R; € B[ Y]
such that ¢'(R) = ¥ R;Q;. Since ¢’ is surjective, there are polynomials R’ €
A[X, Y] such that R; = ¢(R}) for every j. Then R - ¥ RIQ] € Ker(y), so that
there are polynomials S; in A[X] such thatR = ¥ S;P; + ¥ R;Q;.. This shows
that Ker(0) c (P,,..., P, Q. ..., Q.), hence the equality. This proves that C is
a finitely presented A-algebra, as claimed. ]

Lemma (5.1.5). — Let A be a ring, let B and C be A-algebras.

a) If B is finitely generated (resp. finitely presented), then B ®, C is a finitely
generated (resp. finitely presented) C-algebra;
b) If B and C are finitely generated (resp. finitely presented), then so is B®, C.

Proof. — a) Let n be an integer and let ¢: A[X,,...,X,] - B be a surjec-
tive morphism of A-algebras. Then the morphism ¢ ®4 idc: A[X,, ..., X, ] ®a
C — B is surjective. Since the natural morphism from A[X,,...,X,] ®4 C to
C[X,,...,X,] is an isomorphism, this implies that B ®4 C is a finitely generated
C-algebra.
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Assume that B is finitely presented and let N = ker(¢); it is a finitely generated
ideal of A[X,, ..., X, ]. Since the kernel of ¢ ® , id¢ is generated by N, it is finitely
generated as well, and B ®4 C is a finitely presented C-algebra.

b) Assertion b) then follows from a) and from lemma 5.1.4. N

Definition (5.1.6). — Let f:Y — X be a morphism of schemes.

One says that f is locally of finite type (resp. is locally of finite presentation) if
for every point y of Y, there exists an affine open neighborhood V of y in'Y and an
affine open neighborhood U of f(y) in X such that Oy (V) is a finitely generated
Ox(U)-algebra (resp. a finitely presented Ox(U)-algebra).

One says that f is of finite type (resp. is of finite presentation) if it is locally of
finite type (resp. locally of finite presentation) and quasi-compact.()

Remark (5.1.7). — If f is locally of finite type and X is locally noetherian, then
f is locally of finite presentation.

Let indeed y € Y and let x = f(y). Let U be an affine open neighborhood
of x and let V be an affine open neighborhood of y contained in f*(U) such
that Oy (V) is a finitely generated 0x(U)-algebra. Since U is locally noetherian,
Ox(U) is a noetherian ring. Consequently, Oy (V) is a finitely presented Ox(U)-
algebra.

Lemma (5.1.8). — Let f:Y — X be a morphism of schemes. Assume that f is
locally of finite type (resp. locally of finite presentation). Let y € Y, let x = f(y),
let U be an affine open neighborhood of x and let V be an open neighborhood of y.
There exists an affine open neighborhood V' of y which is contained in f(U)nV
such that Oy(V') is a finitely generated (resp. a finitely presented) Ox(U)-algebra.

Proof. — By assumption, there exists an affine open neighborhood V, of y in Y,
and an affine open neighborhood U, of x in X such that Oy (V,) is a finitely
generated Ox(U,)-algebra (resp. a finitely presented Ox (U, )-algebra).

Let a € Ox(U,) be such that x € D(a) and D(a) c Un U let U, = D(a) and
let V, = f*(U,)nV,. Then U, and V, are affine open neighborhoods of x and y
respectively such that f(U,) c V,. One has 0x(U,) = Ox(U,),, Oy(V,) =
Oy(V1)a = Oy(V:) ®py(u,) Ox(U,), so that the morphism Ox(U,) - Oy(V,)

(1) The standard definition of a morphism of finite presentation imposes that it be quasi-separated. I need
to correct this at some point.
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is deduced from the morphism Ox(U,) - Oy(V,) by base change; it is thus
finitely generated (resp. finitely presented).

Let then a’ € Ox(U) be such that x € D(a’) and D(a’) c U,; let U; =
D(a') and let V, = f*(U,) N V,. By the same argument, U, and V, are affine
open neighborhoods of x and y respectively, one has f(U,;) c V, and the
corresponding morphism Ox(U,) — Oy(V,) is finitely generated (resp. finitely
presented).

Let now b € Oy(V,) be such that y e D(b) and D(b) c VnV,;let V! = D(b).
Then V' is an affine open neighborhood of y contained in V. By example 5.1.2,
the morphism Oy(V,) - Oy(V') = Oy(V,), is finitely presented, as well as the
morphism Ox(U) - Ox(U;) = Ox(U),.. Consequently, the composition

Ox(U) » Ox(U;) » Oy(V;) » Oy (V')

is finitely generated (resp. is finitely presented). This concludes the proof of the
lemma. B

Corollary (5.1.9). — Let f:Y — X be a morphism of schemes. Let U be an open
subscheme of X and let V be an open subscheme of f~(U). If f is locally of finite
type (resp. locally of finite presentation), then the morphism f|y:V — U deduced
from f by restriction is locally of finite type (resp. locally of finite presentation) as
well.

Corollary (5.1.10). — If f is of finite type (resp. of finite presentation), then for
every open subscheme U of X, the morphism fy: f(U) — U deduced from f is

of finite type (resp. of finite presentation).

Proof. — By corollary 5.1.9, the morphism fy is locally of finite type (resp. of
finite presentation). Since it is also quasi-compact, this implies the corollary. [

Proposition (5.1.11). — Let A be a ring, let B be an A-algebra, let X = Spec(A),
let Y = Spec(B) and let f:Y — X be the associated morphism of schemes. If f is
of finite type (resp. of finite presentation), then B is a finitely generated (resp. a
finitely presented) A-algebra.

Proof. — Bylemmas.1.8, every point y of Y has an affine open neighborhood V',
such that Oy(V))) is a finitely generated (resp. a finitely presented) A-algebra. Let
then by, € B be an element such that y € D(b,) and D(b,) c V;let V), = D(b,).
One has Ov(V,) = Ov(V})y, where b}, = b,|y,. Consequently, Oy(V,) is a
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finitely generated (resp. finitely presented) A-algebra; observe moreover that
Oy(Vy) =By,

Since Y is affine, it is quasi-compact and there exists a finite subset X of Y
such that Y = U,y V. The ideal of B generated by the family (b)) s contains 1,
hence there exists a family (c)) ,ex of elements of B such that1= 3,5 b,c,.

Let us now prove that the A-algebra B is finitely generated. For every y € Z, let
S, be a finite subset of B such that the A-algebra By is generated by S, and 1/b,.
Let S be a finite subset of B containing the sets S,, the elements b, as well as the
elements ¢y, for y € 3. Let then ¢: A[(X;).s] = B be the unique morphism of
A-algebras such that ¢(X) = s for every s € S.

Let B’ = Im(¢) and let us show that B’ = B. Let M = B/B/; this is a B’-module
such that M, = o for every y € Z. Since B’ contains the elements c,, the ideal
of B’ generated by the elements b, contains 1; therefore, one has M = o, hence
B’ = B.

Let us now assume that for every y € %, the A-algebra B, is finitely presented.
Let us then prove that the kernel N of ¢ is a finitely generated A[X]-module; for
this, it suffices to prove that the quasi-coherent sheaf N on Spec(A[X]) is finitely
generated.

Let y € X and let P, € A[X] be such that ¢(P) = b, (for example, one may take
P =X, ). Then D(P,) = Spec(A[X, T]/(1 - TP, )); moreover, the morphism ¢,
from A[X, T] to By, that coincides with ¢ on A[X] and such that ¢(T) =1/b, is
surjective, and its kernel N, is finitely generated since B, is a finitely presented
A-module. Since N(D(P,)) is the image of N, in A[X, T]/(1-TP,), it is finitely
generated as well.

Let V = Uyex D(P,). Let us show that V is an open subset of Spec(A[X])
which contains V(N). Let indeed p be a prime ideal of A[X] which contains N,
Its image ¢(p) in B is a prime ideal of B, because ¢ is surjective. Consequently,
there exists y € X such that b, ¢ ¢(p), because these elements b, generate the
unit ideal of B, hence p € D(P,,).

Let then U = Spec(A[X])=V(N) be the complementary open subset to V(N).
One has N|y = Ospec(a[x])|u» hence Ny is finitely generated.

We thus have shown that the quasi-coherent sheaf N on Spec(A[X]) is finitely
generated. By proposition 4.7.10, the A[X]-module N is finitely generated. In

other words, N is a finitely generated ideal, and B is a finitely presented A-
algebra. []
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Corollary (5.1.12). — Let f:Y — X be a morphism of schemes. Assume that f is of
finite type (resp. of finitely presentation). For every affine open subset U of X, there
exists a finite family (V;) of affine open subschemes of Y such that f*(U) = U; V;
and Oy(V;) is a finitely generated (resp. a finitely presented) Ox(U)-algebra for
every i.

Proof. — Since the open subscheme f1(U) is quasi-compact, it is the union of
a finite family (V) of affine open subschemes. For each i, the morphism from V;
to U induced by f is locally finitely generated (resp. locally finitely presented); by
the preceding proposition, the Ox(U)-algebra Oy (V;) is then finitely generated
(resp. finitely presented). This concludes the proof of the corollary. O]

Proposition (5.1.13). — Let S be a scheme, let X, Y be S-schemes, let f, g be their
structural morphisms.

a) Let h: X — Y be a morphism of S-schemes. If f is locally finitely generated,
then h is locally finitely generated.

b) If h and g are locally finitely generated (resp. locally finitely presented), then
f is locally finitely generated (resp. locally finitely presented).

c) If f is locally finitely generated (resp. locally finitely presented), then so is
fxgidy: X xg Y = Y.

d) If both f and g are locally finitely generated (resp. locally finitely presented),
then sois f xs g: X xg Y > S.

5.2. Subschemes and immersions

Definition (5.2.1). — Let ¢: Y — X be a morphism of schemes.

a) One says that it is an open immersion if it is a homeomorphism from Y to an
open subset of X and if for every y € Y, the morphism of local rings ¢!, is bijective.

b) One says that ¢ is an immersion if it induces a homeomorphism from Y to
a locally closed subspace of X and if for every y € Y, the morphism of local rings
@b Ox o(y) = Oy, is surjective.

c) One says that it is an closed immersion if it is an immersion and if (Y) is
closed in X.

Let X be a topological space. Recall that a subspace Z of X is said to be locally
closed if it can be written as the intersection of an open and of a closed subspace.
This means that for every point x € Z, there exists an open neighborhood U of x
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in X such that Z n U is closed in U. The union of all such open sets is the largest
open subset U of X such that T n U is closed in U.

Consequently, if ¢: Z — X is an immersion and if U is the largest open subset
of X such that ¢(Z) is closed in U, then ¢ induces a closed immersion from Z
to U.

If :Z — X is an immersion of schemes whose underlying map of topological
spaces is an inclusion, we also say that Z is a subscheme of X.

Remark (5.2.2). — An immersion is a monomorphism in the category of
schemes.
Example (5.2.3). — a) Let X be a scheme and let U be an open subset of X.

Then (U, Ox|y) is a scheme and the canonical morphism ¢: U — X of locally
ringed spaces is an open immersion.

b) Let A be aring, let X = Spec(A); let I be an ideal of A, let Y = Spec(A/I)
and let : Y — X be the morphism of schemes deduced from the canonical
surjection from A to A/IL Let us prove that ¢ is a closed immersion.

By proposition 1.5.10, we already know that ¢ induces a homeomorphism
from Y to the closed subset V(I) of X. Let y € Y and let x = ¢(y); then p, is
a prime ideal of A containing I and p, is the corresponding ideal of A/I. The
morphism of local rings ¢l: Ox , — Oy, identifies with the canonical morphism
from Ay, to (A/I),,, which is indeed surjective.

By construction the ring morphism ¢! (X): Ox(X) - ¢.0y(X) identifies with
the canonical surjection from A to A/IL Since X is affine and the Ox-modules
Ox and ¢, Oy are quasi-coherent, the morphism of sheaves ¢! is surjective.

c) Let ¢:Y - X be an immersion of schemes. For every open subscheme U
of X, the morphism ¢y: ¢7(U) — U deduced from ¢ by restriction is an immer-
sion. If, moreover, (Y) n U is closed in U, then it is a closed immersion.

Conversely, let ¢: Y — X be a morphism of schemes. Let us assume that every
point of Y has an open neighborhood U such that the morphism ¢y: ¢7(U) - U
is an immersion. Then ¢ is an immersion.

Indeed, ¢ is injective and induces an open map from Y to ¢(Y); consequently,
it defines a homeomorphism from Y to its image, which is locally closed in X.
Moreover, for every point y € Y, the morphism ¢l: O ¢,y - Oy, induced by ¢
coincides with the morphism ¢f; , Whenever U is an open subset of X such that
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¢(y) € U. If gy is an immersion, then ¢} , is surjective, hence ¢l is surjective
as well.

We shall see that these examples are archetypal immersions.

Lemma (5.2.4). — Let ¢:Y — X be an open immersion. Then ¢(Y) is an open
subset of X and ¢ induces an isomorphism from Y to the scheme (¢(Y), Ox|y(v))

Proof. — By definition of an open immersion, ¢ induces a homeomorphism
from Y to an open subset V of X. Moreover, for every y € Y, the morphism
¢h: Ox () = Oy, is an isomorphism of local rings. Let y:Y — V be the
induced morphism of locally ringed spaces; it is a homeomorphism. If we use ¥
to identify Y and V, then ¢! is a morphism of sheaves on Y which induces an
isomorphism on stalks; it is thus an isomorphism. ]

Lemma (5.2.5). — Let ¢:Y — X be a morphism of schemes which induces a
homeomorphism from Y to a locally closed subset of X. Let y € Y and let x = ¢(y),
let V be an open neighborhood of y in Y. There exists an affine open neighborhood U
of x such that ¢~*(U) is an affine open neighborhood of y contained in V.

Proof. — By the definition of a locally closed subset, there exists an open sub-
set ) of X such that ¢(Y) is a closed subset of ), and the morphism from Y
to O deduced from ¢ is closed.

Let U, be an affine open neighborhood of x which is contained in Q and let V,
be an affine open neighborhood of y contained in ¢~*(U,) N V. Let ¢,: V, - U,
be the morphism of schemes deduced from ¢ by restriction; let A, = Ox(U,),
B, = Oy(V,) andlet u = ¢!: A, - B, be the morphism of rings associated with ¢,.

Then Z, = ¢(Y) n U is closed in U, and ¢(V,) is an open subset of Z,; conse-
quently, there exists an open subset U, of U, such that ¢(V,) = ¢(Y) n U,. Let
a € A, be any element such that x € D(a) and D(a) c U,. Then U = D(a) is an
affine open neighborhood of x in U,, and ¢7*(U) is an open neighborhood of y
contained in V,. Moreover, ¢*(U) is affine since it is equal to D(u,(a)); finally,
the relation ¢(¢™*(U)) = ¢(Y) n U shows that it is closed in U. O

Proposition (5.2.6). — Let ¢:Y — X be a morphism of schemes. The following
properties are equivalent:

(i) For every affine open subscheme U = Spec(A) of X, there exists an ideal 1
of A and an isomorphism of A-schemes yy: 97*(U) — Spec(A/I);
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(ii) Every point of X has an affine open neighborhood U = Spec(A) such that
there exists an ideal 1 of A and an isomorphism of A-schemes yy: 9~(U) —
Spec(A/T);

(iii) The morphism ¢ induces a homeomorphism fromY to a closed subset of X,
and the morphism of sheaves ¢': Ox - ¢, Oy is surjective;

(iv) The morphism ¢ is a closed immersion.

If they hold, then the Ox-algebra ¢, Oy is quasi-coherent.

Proof. — In each of these situations, every point of X has an affine open neigh-
borhood U such that ¢~*(U) is affine; this is obvious in cases (i) and (ii), and
follows from lemma 5.2.5 in cases (iii) and (iv). Then the restriction to U of the
Ox-module ¢, Oy is isomorphic to the sheaf (¢u).(0y-(v)). By corollary 4.7.5,
the latter sheaf is a quasi-coherent Oy-module. Consequently, ¢. Oy is a quasi-
coherent Ox-module.

The implication (i)=(ii) follows from the fact that every point of a scheme
has an affine open neighborhood.

Assume that (ii) holds. Let U = Spec(A) be an open affine subscheme of X
and let I be an ideal of A such that there exists an A-isomorphism yy: ¢7(U) —
Spec(A/I). By example 5.2.3, b), we see that the morphism ¢ induces a homeo-
morphism from ¢*(U) to the closed subset V(I) of U, and the morphism of
local rings ¢k: Ox 4,y = O,y is surjective for every y € ¢7*(U). It also follows
from that example that the morphism of local rings ¢l: O 4,y = Oy, is surjec-
tive for every y € ¢*(U). Since X is covered by such affine open subsets, this
implies that ¢ induces a homeomorphism from Y to a closed subset of X, that
¢! is surjective, and that ¢!, is surjective for every y € Y. We thus have proved
the implications (ii)=(iii) and (ii)=(iv).

We now assume (iii). To prove that ¢ is a closed immersion, it suffices to prove
that the morphism ¢l: Ox 4,y = Oy, is surjective for every y € Y. Let U be
an affine open subset of X such that ¢~*(U) is an affine open subset of X. Let
A = Ox(U),let B = Oy(¢7(U)) and let u = ¢!(U). Since ¢! is surjective and
the sheaves Ox and ¢. Oy are quasi-coherent, the ring morphism u is surjective.
Let then y € ¢7*(U); it corresponds to a prime ideal g of B, the point ¢(y)
corresponds to the prime ideal p = u™(q), and the morphism ¢! identifies with
the morphism A, — Bg; it is thus surjective.

Let us finally assume that ¢ is a closed immersion and let us prove (i). To
simplify the notation, we may replace X by U and assume that X = Spec(A).
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Let B = Oy(Y) and let u: A — B be the morphism of rings corresponding to
the morphism of schemes ¢:Y — Spec(A); let I = Ker(u), so that u factors
through the quotient A/I. Let y: Y — Spec(A/I) be the morphism of schemes
associated with the ring morphism A/I — B, and let j: Spec(A/I) - Spec(A) be
the closed immersion defined by the ideal I; one has ¢ = j o y. It follows from
the definitions that y is a closed immersion as well. We may thus assume that
I = (0), in other words, that the morphism u is injective. We then need to prove
that ¢, or, equivalently, u, is an isomorphism.

Let us first show that ¢ is surjective. Let x € X=¢(Y). Since ¢(Y) is closed,
there exists an affine open neighborhood U of x such that ¢(Y) nU = &, or,
equivalently, that 97*(U) = @. Let a € A be such that x € D(a) and D(a) c U.
Then ¢(Y) c V(a); in other words, one has ¢(a) € q for every prime ideal g
of B. Consequently, ¢(a) is nilpotent. Since ¢ is injective, a is nilpotent as well,
which contradicts the hypothesis that x € D(a).

Since ¢ is a closed continuous bijection, it is a homeomorphism from Y
to X. In particular, for every y € Y, the canonical morphism from (¢. Oy),(y)
to Oy, is an isomorphism. The morphisms ¢}, being surjective, for every y €Y,
the morphism of sheaves ¢! is surjective. Since X is affine and the sheaves
Ox and ¢, Oy are quasi-coherent Ox-modules, this implies that u is surjective;
therefore, u is an isomorphism. This concludes the proof of the proposition. [}

Corollary (5.2.7). — Let f:Y - X and g:Z — Y be immersions (resp. closed
immersions, resp. open immersions) of schemes. Then f o g: Z — X is an immersion
(resp. a closed immersion, resp. an open immersion,).

Proof. — LetzeZ,let y=g(z)and x = f(y). Let V be an open neighbhorood
of y in Y such that the map gy: g7*(V) — V is closed. Let then U be an open
neighborhood of x in X such that the map fy: f(U) — U is closed and such
that f7*(U) c V. The map from g7*(f*(U)) to f(U) deduced from gy is then
closed, hence the map from g7*(f*(U)) to U deduced from f o g by restriction
is closed. Consequently, f o ¢ induces a homeomorphism from Z to a locally
closed subset of X.

If f and g are closed immersions, then f o g is closed, and f o g induces a
homeomorphism from Z to a closed subset of X.

Moreover, the morphism (f o g)i: Ox, — Oy, is the composition of the
morphisms f} and gl; it is thus surjective.
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This shows that f o g is an immersion, and a closed immersion if f and g are
closed immersions.

If f and g are open immersions, they induce isomorphisms from Y to an open
subscheme of X, and from Z to an open subscheme of Y. Their composition
induces an isomorphism from Z to an open subscheme of X, hence is an open
immersion. []

Corollary (5.2.8). — Let f:Y — X and g:Z — X be morphisms of schemes. Let us
prove that if f is an immersion (resp. a closed immersion, resp. an open immersion),
then so is the morphism fz deduced from f by base change to Z.

Proof. — a) We first assume that f is an open immersion. Then U = f(Y)
is an open subset of X and f induces an isomorphism from Y to U, so that the
morphism f identifies with the open immersion from ¢7*(U) to U.

b) Assume that f is closed immersion. Let U = Spec(A) be an affine open
subset of X, let I be an ideal of A such that V = f7(U) is X-isomorphic to
Spec(A/I). Let W = Spec(B) be an affine open subset of Z such that g(V) c U,
in particular, B is an A-algebra. Since the natural ring morphism from (A/I)®4B
to B/IB is an isomorphism, we see that V xy W is an affine open subset of Y x X,
isomorphic to Spec(B/IB); by restriction, the morphism fz induces a morphism
from V xy W to W which identifies with the closed immersion of Spec(B/IB)
to Spec(B). Since every point of Z has an affine open neighborhood W whose
image is contained in an affine open subset of X, this proves that f; is a closed
immersion.

c) Inthe general case, let U be the largest open subset of X such that f induces
a closed immersion from Y to U. Then f is the composition of the closed
immersion from Y xy g*(U) to g7*(U), and of the open immersion from g=*(U)
to Z. It is thus an immersion.

O]

5.2.9. — Let X be a scheme and let Z be a closed subset; let j:Z — X be the
inclusion.

Let O be a sheaf of rings on Z such that (Z, ) is a scheme and let j': Ox —
j«O7 be a morphism of sheaves such that (j, j!) is an immersion. Then j
is surjective, and its kernel .# is a quasi-coherent ideal of Jx. Moreover, if
U is an affine open subscheme U = Spec(A) of X, then I = .#(U) is an
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ideal of A, and j induces a homeomorphism from Z n U to the closed sub-
set V(£ (U)) of Spec(A), and (j, j!) induces an isomorphism of schemes
from (j*(U), Oz|;+(v)) to Spec(A/T).

Conversely, let .# be a quasi-coherent ideal of % such that for every affine
open subscheme U = Spec(A) of X, denoting by I the ideal .#(U) of A, one
has V(I) =ZnU. Then 0y = j*(0x/.#) is a sheaf of rings on Z. Let jt: Ox —
j« Oy be the morphism of sheaves deduced from the canonical surjection of Ox
to Ox/.7. Then (j, j*) is a closed immersion, and .# = Ker(j!).

One says that Z is the closed subscheme of X defined by the quasi-coherent
ideal .7, and one denotes it by Z = V(.¥).

The inclusion of quasi-coherent ideals gives rise to a natural order relation on
closed subschemes: the larger the ideal, the smaller the subscheme. We will say
that V(.#) is supported by Z to mean that the closed subspace of X underlying
the subscheme V(.%) is equal to Z.

Proposition (5.2.10). — Let X be a scheme and let Z be a closed subset of X. There
is a unique structure of closed subscheme on Z such that for every x € Z, the

local ring Oy, has no non-zero nilpotent element. It is defined by the largest
quasi-coherent ideal .9 such that Z = V(.%).

Proof. — For every open subset U of X, let .#(U) be the set of f € Ox(U) such
that f(x) = o for every x € Z. This defines a a sheaf of ideals .# c Ox.

To prove that .7 is quasi-coherent, it suffices to prove that its restriction to
every affine open subscheme of X is quasi-coherent. Let thus U = Spec(A) be
an affine open subscheme of X and let I = . (U) = j(Zn U). Then I is a radical
ideal of A and is the largest ideal of A such that V(I) = ZnU. Let a € A. One has
A, = Oy(D(a)), and the inclusion I, c .# (D(a)) follows from the definition.
Conversely, let f € Z(D(a)); let g € A and n € N be such that f = g/a”; by
assumption, one has g € p for every prime ideal p containing I such that a ¢ p; it
follows that ag € I, hence f = ag/a™" € I,,. This proves that .# is quasi-coherent.

The underlying topological space to the subscheme V(.#) is equal to Z. One
has ZnU ~ Spec(A/I). For every x € Zn U, o is the only nilpotent element of
Oy, because the ideal I is radical.

Moreover, if 7 is a quasi-coherent ideal such that V(_#') has support Z, then
7 (U)=j(ZnU) = #(U) for every affine open subscheme U of X. O
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5.3. Affine morphisms, finite morphisms

Definition (5.3.1). — Let f:Y — X be a morphism of schemes. One says that f is
affine if for every open affine subscheme U of X, f~(U) is an affine scheme.

5.3.2. — Here is a general way to construct affine morphisms. Let </ be a
quasi-coherent Ox-algebra.

For every affine open subset U of X, let Yy = Spec(.27 (U)); this is an affine
scheme equiped with a morphism fy to Spec(0x(U)) = U.

For every pair (U, W) of affine open subschemes of X such that W c U,
the restriction morphism &/ (U) — /(W) induces a morphism ¢{;,: Yw —
Yy such that fiy o ¢{,,y = fu. Since &7 is a quasi-coherent Ox-algebra, the
restriction morphism induces an isomorphism 7 (W) ~ o7 (U) ® 5,y Ox(W).
Consequently, the morphism ¢}, induces an isomorphism ¢uw from Yy to
the open subscheme f;'(W) of Yy.

Let U and V be affine open subschemes of X. There exists a unique isomor-
phism of schemes yyy from the open subscheme f;'(U n V) of Yy to the open
subscheme f,;’(UNV) of Yy whose restriction to f;'(W) is equal to ¢yw o o3
for every affine open subscheme W of Un V.

We can now glue the schemes (Yy) along the open subschemes Yyy by means
of these isomorphisms yyy. This defines a scheme Y, as well as a morphism
of schemes y:Y — X, and isomorphisms yy: ¢y *(U) — Yy for every affine
open subscheme U of X, such that y|y = fu o yy and such that the morphisms
Yuv © Yy and yy coincide on |V,-1(UOV). This X-scheme is called the spectrum of
the quasi-coherent Ox-algebra, and is denoted by Spec(.«).

By construction, for every affine open subscheme U of X, U is isomor-
phic to Spec(0x(U)), yv*(U) is isomorphic to Spec(«/(U)), and the mor-
phism yy: y(U) — U identifies with the morphism of affine schemes deduces
with the ring morphism Ox(U) - &7 (U).

Example (5.3.3). — It follows from proposition 5.2.6 that a morphism f:Y - X
is a closed immersion if and only if it is affine and the morphism fi0x — f, Oy
is surjective.

Let, moreover, .# be the kernel of the morphism f!:0x - f.0y. Ttis a
quasi-coherent Ox-module and the quotient sheaf 0x/.7 is a quasi-coherent
Ox-algebra. Then f induces an isomorphism from Y to the closed subscheme

V(%) = Spec(Ox/.7).



5.3. AFFINE MORPHISMS, FINITE MORPHISMS 197

5.3.4. — The spectrum of a quasi-coherent sheaf of algebras satisfies a universal
property.

Let f:Y — X be a morphism of schemes, let &7 be a quasi-coherent Ox-algebra
and let u: &/ — f, Oy be a morphism of Ox-algebras. Let g:Spec(<7) — X be
the canonical morphism.

Let U be an affine open subscheme of X and let fi;: f7*(U) — U be the mor-
phism deduced from f by restriction. The identification ( fu).0f+ ) = f+Oy|u
and the morphism g(U): &7 (U) — f.0y(U) give rise to a morphism of schemes
pu: fH(U) - Spec(«7(U)) = g7*(U). These morphisms glue together and de-
fine a morphism of X-schemes ¢:Y — Spec(%/).

Proposition (5.3.5). — Let f:Y — X be a morphism of schemes. Assume that every
point of X has an affine open neighborhood U such that f~*(U) is affine. Then the
Ox-algebra f.Oy is quasi-coherent, and there exists an X-isomorphism from Y
to Spec( f+ Oy). In particular, the morphism f is affine.

Proof. — Letus first prove that f. Oy is quasi-coherent. Let x € X and let U be an
affine open neighborhood of x such that f7*(U) is affine; let fy: f(U) - U be
the morphism of schemes deduced by restriction. By definition, f, Oy|y is isomor-
phicto (fu)«Of(u). It thus follows from corollary 4.7.5 that the sheaf f, Oy|yisa
quasi-coherent Oy-algebra. Consequently, f. Oy is a quasi-coherent Ox-algebra.

We consider the spectrum Z = Spec( f, Oy) of this algebra, and its canonical
morphism g:Z — X to X. Let ¢: Y — Z be the canonical morphism of X-schemes
associated with f. Oy; let us prove that it is an isomorphism.

Let U be an affine open subscheme of X such that f7(U) is affine, say Spec(B).
Then one has f,0y(U) = B, and the morphism ¢ identifies with the identical
morphism from f~*(U) = Spec(B) to g7*(U) = Spec(B). Consequently, ¢ is an
isomorphism. []

Corollary (5.3.6). — Let f:Y — X be an affine morphism of schemes and let Z be
an X-scheme. The morphism f;: Y, — Z deduced from f by base-change to Z is

affine.

Proof. — Let g:Z — X be the structural morphism. Every point of Z has an
affine open neighborhood U such that ¢g(U) is contained in an affine open
subset V of X. Then f,*(U) identifies with to the fiber product f(V) xy U of
affine schemes, hence is affine. O]
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Definition (5.3.7). — Let f:Y — X be a morphism of schemes. One says that f is
finite if it is affine and if f. Oy is a finitely generated Ox-module.

Lemma (5.3.8). — Let f:Y — X be a morphism of schemes. Assume that every
point x € X has an affine open neighborhood U such that f7(U) is an affine open
subscheme of Y and such that Oy (f~(U)) is a finitely generated Ox(U)-module.
Then f is a finite morphism.

Proof. — By proposition 5.3.5, f is an affine morphism. Let &/ = f.0y. It
is a quasi-coherent Ox-module; let us prove that it is finitely generated. By
hypothesis, every point of X has an affine open neihborhood U such that .7 (U)
is a finitely generated Ox (U)-module. By proposition 4.7.10, 7 |y is then a finitely
generated Ox|y-module. Consequently, <7 is a finitely generated Ox-module,
as was to be shown. []

Remark (5.3.9). — a) Let A be a ring and let B be an A-algebra. Let X =
Spec(A), let Y = Spec(B) and let f:Y — X be the associated morphism. The
following properties are equivalent:

(a) The morphism f is finite;

(b) The A-module B is finitely generated;

(c) The A-algebra B is finitely generated and integral.

Assume that they hold, and let I = ker(A — B). The first theorem of Cohen-
Seidenberg (theorem 1.11.4) then implies that f(Y) = V(I).

b) Let k be a field and let A be a non-zero finitely generated k-algebra. Let
n be a nonnegative integer and f:k[T,,...,T,] — A be an integral injective
morphism of k-algebras. The associated morphism of schemes %f:Spec(A) —
A7 is then finite and surjective. This is the geometric formulation of Noether’s
normalization lemma (theorem 1.6.1).

c) Assume that k is infinite and let X be a non-empty closed subscheme of A}".
It follows from exercise 1.6.5 that there exists an integer »n such that o < n < mand
a linear morphism p: A7" - A} which induces a finite and surjective morphism
px: X — AL
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5.4. Separated and proper morphisms

Definition (5.4.1). — Let X be an S-scheme and let p, and p, be the two projections
from X xs X to X. The diagonal morphism & is the unique morphism of S-schemes
from X to X xg X such that p, o6 = p, 0 6 =idx.

Lemma (5.4.2). — Let f:X — S be a morphism of schemes.

a) The diagonal morphism §:X — X xg X is an immersion.
b) If f is affine, then § is a closed immersion.
c) If f is a monomorphism, then § is an isomorphism.

Proof. — a) Letx € Xandlets = f(x). Let U = Spec(A) be an affine open
neighborhood of x in X whose image is contained in an affine open neighbor-
hood V = Spec(R) of s in S. Then W = p;*(U) n p;*(U) is an affine open
subscheme of X xg X which contains §(x ), isomorphic to Spec(A xg A). More-
over, (W) = U and the induced morphism dw: U - W corresponds to the
morphism of R-algebras y: A xg A - A such that y(a ® b) = ab. Since it
is surjective, the morphism Jy is a closed immersion. Consequently, § is an
immersion.

b) If f is affine, then we may take U = f7(V), and the open subschemes
of X xg X of the form W = p7*(U) n p;*(U) cover X xg X. For each such W,
the morphism dw: 6 1(W) — W is a closed immersion, so that § is a closed
immersion.

c) Let T be an S-scheme and let u, v be two S-morphisms from T to X. This
means that f ou = f ov. Since f is a monomorphism, one then has u =
v. Consequently, for every S-scheme T, the morphism & induces a bijection
from Homg(T, X) to Homg(T, X) x Homg(T,X) = Homg(X xg X). In other
words, the morphism ¢ induces an isomorphism of functors from hx to hx..x;

by Yoneda’s lemma, ¢ is an isomorphism.
O

Corollary (5.4.3). — Let S be a scheme, let X and Y be schemes, and let f,g:Y - X
be two S-morphisms. Let (Z, j) be an equalizer of the pair (f, g). Then j: T — Y is
an immersion of S-schemes; if X is separated over S, then j is a closed immersion.

Proof. — Recall the construction of an equalizer done in corollary 4.5.5. Let
p and g be the two projections from X xg X to X; let §:X — X xg X be the
diagonal immersion. Let h: Y — X xg X be the unique S-morphism such that
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poh=fandqoh =g LetT =Y xx.x X be the fiber product of the pair
(h, §) of morphisms to X x5 X and let ¢: T — Y be the first projection. Then ¢
is an S-morphism and it is shown in the proof of corollary 4.5.5 that (T, ¢) is an
equalizer of the pair (f, g). We thus observe that ¢ is the morphism of schemes
deduced from J by base change to Y. This shows that ¢ is an immersion, and
is a closed immersion if § is itself a closed immersion, that is, if X is separated
over S. ]

Lemma (5.4.4). — A morphism of schemes f:X — S is quasi-separated if and
only if its diagonal immersion is quasi-compact.

Proof. — [

Definition (5.4.5). — One says that a morphism of schemes f:X — S is separated
if the diagonal immersion is a closed immersion.

One says that a scheme X is separated if the canonical morphism from X
to Spec(Z) is separated.

Since a closed immersion is quasi-compact, a separated morphism is quasi-
separated, and a separated scheme is quasi-separated.

Proposition (5.4.6). — Let f:X — S be a morphism of schemes. The following
assertions are equivalent:

(i) The morphism f is separated;

(ii) The image of the diagonal immersion is a closed subset of X xg X;

(iii) For every S-scheme T and every pair (u,v) of S-morphisms from T to X,
the equalizer of u and v is a closed subscheme of T.

Proof. — (i)« (ii). If f is separated, then the diagonal immersion is a closed
immersion by definition, so that its image is a closed subset of X xg X. Conversely,
an immersion is a closed immersion if and only if its image is closed, hence the
converse implication.
(iii)=-(ii). Let us apply the hypothesis to T = X xg X and to the two projections
to X. Their equalizer being the diagonal subscheme, it follows that f is separated.
The implication (i)=-(iii) follows from corollary 5.4.3. ]

Proposition (5.4.7). — a) Let f:X — S be a morphism of schemes. Assume that
every point of S has an open neighborhood U such that the induced morphism
fu: f(U) - U is separated. Then f is separated.
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b) An affine morphism, an immersion of schemes is a separated morphism.

c) Let f:X — S be a separated morphism of schemes and let T be an S-scheme.
Then the morphism fr deduced from f by base-change to T is separated.

d) Let f:Z — Yand g:Y — X be morphisms of schemes. If f and g are separated,
then g o f is separated; if g o f is separated, then f is separated.

e) LetSbeascheme, let f:Y - Xand f":Y' — X' be morphisms of S-schemes. If
f and ' are separated, then the morphism (f, f'):Y xsY' — X xg X' is separated.

Proof. — a) Let g:X — X xg X be the diagonal immersion. To prove that g
is a closed immersion, it suffices to establish that every point of X x¢ X has an
open neighborhood V such that gy: ¢g7(V) — V is a closed immersion. Let z be
point of X xg X and let s be its image in S; let U be an open neighborhood of s
such that fy is separated. Then V = f71(U) xy f*(U) is an open neighborhood
of z, and the immersion gy identifies with the diagonal immersion associated
with the morphism fy: f7(U) — U. By hypothesis, gy is a closed immersion.
This proves that g is a closed immersion, as claimed.

b) If f: X — Sisan immersion, then it is a monomorphism hence the diagonal
morphism g: X — X xg X is an isomorphism. Consequently, f is separated.

We have already explained that affine morphisms are separated. In fact, by a),
it would suffice to prove that a morphism of affine schemes is separated, which
is at the heart of the proof that the diagonal morphism is an immersion.

c) The diagonal morphism gr: Xt — X x7 Xt associated with fr is obtained
from the diagonal morphism g: X — X xg X by base change to T. If the mor-
phism f is separated, then the diagonal g is a closed immersion, hence so is gr,
so that the morphism fr is separated.

d) Let us assume that f and g are separated and let us show that g o f is
separated. We make use of the criterion 5.4.6. Let T be a Z-scheme and let (u, v)
be a pair of Z-morphisms from T to X. Since g is separated, the equalizer (T,, h,)
of the pair (f o u, f o v) is a closed subscheme of T. Since f is separated, the
equalizer (T,, h,) of the pair (u o hy,v o h,) is a closed subscheme of T,. Let
h =h,oh,: T, - T; it is the composition of two closed immersions, hence is a
closed immersion. Let us observe that (T,, h) is the equalizer of the pair (u,v).
Onehasuoh =uoh,oh, =voh,oh, =voh. Let moreover kU — T be
a morphism such that u o k = v o k and let us show that there exists a unique
morphism k’: U — T, such that k = h o k’. Since h is a monomorphism, there
exists at most one such morphism, hence we just need to prove its existence.
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Onehas fouok = fovok,so that there exists a morphism k,: U — T, such that
k = h, o k,. Consequently, u o h; o k; = v o h, o k;, so that there exists a morphism
k,:U — T, such that k, = h, o k,. It follows that k = h, o h, o k, = h o k,, and the
morphism k, satisfies the given requirement.

Let us now assume that g o f is separated. Let T be a Y-scheme and let
(u,v): T - Z be a pair of morphisms of Y-schemes. Composing its structural
morphism with g, we may view T as an X-scheme; then u and v are morphisms
of X-schemes. Since g o f is separated, the equalizer E of the pair (u, v) is then
a closed subscheme of T. This proves that f is separated.

e) Let g:Y > YxxYand g1 Y — Y’ xx Y’ be the diagonal immersions. Since
f and f’ are assumed to be separated, they are closed immersions. Let p and
p' be the projections from X xg X’ to X and X' respectively; let g and g’ be the
projections from Y xg Y’ to Y and Y’ respectively. Let ¢: Y xg Y - X xg X’ be the
morphism ( f, f'): itis characterized by the relations po¢ = fogand p’o¢ = f'o
g'. The fiber product (Y xgY")x«x (Y xsY’) identifies with (Y xxY) xs (Y’ xx Y")
and the diagonal morphism y: (Y x5 Y') — (Y x5 Y )xxx/(Y x5 Y') associated
with the morphism (g, g’). It is thus a closed immersion. O

Corollary (5.4.8). — Let X and S be schemes and let f: X — S be a morphism of
schemes. The following conditions are equivalent:

(i) The morphism f is separated;

(ii) The inverse image f~(U) of every affine open subset U of S is a separated
scheme;

(iii) Every point of S has an open neighborhood U such that f~(U) is a sepa-
rated scheme.

Proof. — Let g:S — Spec(Z) be the canonical morphism.

(i)=(ii). Let U be an affine open subset of S, let fi: f*(U) — U be the mor-
phism deduced from f by restriction, so that the unique morphism from f=*(U)
to Spec(Z) is equal to gly o fu. If f is separated, then fy is separated; since U
is affine, g|y is separated; it follows from assertion d) of proposition 5.4.7 that
f(U) is a separated scheme.

(ii)=(iii) because every point of U has an affine open neighborhood.

(iii)=(i). By proposition 5.4.7, a), it suffices to prove that every point of S has
an open neighborhood U such that the morphism fy: f7(U) — U is separated.
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Choose U so that f7*(U) is a separated scheme. Then g|y o fy is separated by
definition, and the above proposition, d), implies that fy is separated. O]

Proposition (5.4.9). — Let f:X — S be a morphism of schemes and let (U;);q
be a family of open subschemes of X such that X = U;q U;. For every pair (i, j)
of elements of 1, let p; and p; be the two projections from U; xs U; to U; and U;
respectively, and let g;;: U; N U; - U; x5 U; be the unique morphism such that
piogijand pjog;; are the canonical inclusions of U;nU into U; and U respectively.
Then f is separated if and only if the morphism g;; is a closed immersion for every

pair (i, j).

Proof. — Let g: X — X xg X be the diagonal immersion. For every pair (i, j) of
elements of I, one has g7*(U; xs U;) = U; nUj, and the morphism g;; is deduced
from g by restriction to these open sets. Since the open subsets of X xg X of the
form U;xsU; cover XxsX, the morphism g is a closed immersion if and only if g;;
is a closed immersion for every pair (i, j). This establishes the proposition. []

This statement is helpful to decide the separatedness of schemes which are
constructed by glueing.

Corollary (5.4.10). — Let X be the S-scheme obtained by glueing a family (X; )«
of S-schemes along open subschemes X;; by means of isomorphisms ¢;;. For every
pair (i, j) of elements of 1, let y;;: X;; — X; xs X; be the morphism whose first
component if the injection of X;; into X;, and whose second component is the
morphism ¢;;. Then X is separated if and only if the morphism y;; is a closed
immersion for every pair (i, j).

Proof. — Fori €1, let ¢;:X; - X be the canonical inclusion, and let U; = ¢;(X;),
so that ¢; induces an isomorphism from X; to U;. Under these isomorphisms,
the morphisms g;; of the proposition identify with the morphisms y;; of the
corollary. This concludes the proof. []

Corollary (5.4.11). — Let A be a ring and let S = Spec(A). Let X be an A-scheme.
The following properties are equivalent:

(i) The scheme X is separated;

(ii) For every pair (U, V) of affine open subschemes of X, the intersection UnV
is affine, and Ox(U n'V) is generated by the images of Ox(U) and Ox (V) by the
restriction morphisms;
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(iii) There exists an open cover (U;);q of X by affine open subschemes such
that for every pair (i, j) of elements of I, the scheme U; N U is affine, and its ring
Ox(U; n'U;) is generated by the images of Ox(U;) and Ox(Uj) by the restriction
morphisms.

Proof. — Let §:X — X xg X be the diagonal immersion.

(i)=(ii). Let us assume that X is separated and let U, V be affine open sub-
schemes of X. Then U xgV is an affine open subscheme of XxsX, and § *(Ux V)
is equal to Un V. Since ¢ is a closed immersion, by assumption, it follows that
U NV is affine. Moreover, Ox(U nV) is a quotient of Ox(U) ® Ox(V); conse-
quently, it is generated by the images of Ox(U) and Ox(V).

The implication (ii)=>(iii) follows from the definition of a scheme, namely,
that every point of X has an affine open neighborhood.

(iii)=(ii). By restriction, the diagonal immersion § induces a morphism
from §7(U; xs U;) = U;nUj to U; xs U;. Under the conditions of (iii) imply,
this is a morphism of affine schemes which is a closed immersion, since the
associated morphism of rings is surjective. Since the family (U; xs Uj); jer
covers X xg X, this implies that J is a closed immersion. Consequently, X is
separated. ]

Corollary (5.4.12). — For every ring k, the projective space of dimension n over k,
P}, is separated.

Proof. — Let X = P}; let us recall that it is the k-scheme obtained by glueing
a family (X;)o<i<n of affine schemes, each of them isomorphic to A}. Let (i, j)
be a pair of elements of {o,...,n}. To check the criterion of the previous
corollary, we may assume that i # j and, up to a permutation of indices, that
i = oand j = n. Then X, = Spec(k[S,,...,S,]), X, = Spec(k[To, ..., Tu1]),
one has X,,, = D(S,) = Spec(k[S,,...,S,,1/S,]), Xuo = D(T,) = Spec(k[T,, —
, Tro1,1/To]) and o, Xo, = X0 is the unique morphism of k-schemes such
that ¢f,(S;) = T;/T,, for every i € {1,...,n —1} and ¢! ,(S,) = 1/T,. We
observe that X, is affine and that Ox(X,,) = k[T,, ..., T,,1/T,] is generated
by Ox(X,) = k[T,,..., T,] and by 1/T, which belongs to x(X,) by ¢! . This
concludes the proof that P} is separated. ]

Definition (5.4.13). — Let f:X — S be a morphism of schemes. One says that f is
proper if it is of finite type, separated, and universally closed.
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Let us precise that f is universally closed it and only if for every S-scheme T,
the morphism fr: Xt — T deduced from f by base change to T is closed.

Proposition (5.4.14). — a) Let f:X — S be a morphism of schemes. Assume
that every point of S has an open neighborhood U such that the induced morphism
fu: fY(U) - U is proper. Then f is proper.

b) A closed immersion of schemes is a proper morphism.

c) Let f:X — S be a proper morphism of schemes and let T be an S-scheme.
Then the morphism fr deduced from f by base-change to T is proper.

d) Let f:Z — Y and g:Y — X be morphisms of schemes. If f and g are proper,
then g o f is proper.

e) Let S be a scheme, let :Y — X and f:Y' — X' be morphisms of S-schemes.
If f and f' are proper, then the morphism (f, f'):Y xs Y' — X xg X' is proper.

Proof. — a) Assume that every point of S has an open neighborhood U such
that fy: f*(U) — U is proper. Then f is of finite type and separated. For every
closed subset Z of X, one has f(Z) nU = fy(Zn f*(U)), so that f(Z)n U is
closed in U for every open subset U of S such that fy is closed. This implies
that f(Z) is closed, so that f is a closed map. More generally, let (T, ¢) be an
S-scheme and let W = ¢7(U); one has (fr)*(W) = f(U) xg W, and the
(fr)w: (fr)™(W) - W deduced from fr identifies with the morphism (fy)w
deduced from fy by base change to W. If fy; is closed, then (fy)w is closed.
Since T is covered by such open subsets W, this implies that fr is closed.

b) Let f be a closed immersion. It is of finite type and separated, and closed.
For every S-scheme T, fr is again a closed immersion, hence is closed. This
proves that f is a proper morphism.

c) Let f:X — S be a proper morphism and let T be an S-scheme. Then fr is of
finite type, and is separated; it is also closed, and in fact universally closed since
for every T-scheme U, the morphism ( fr)y identifies with the morphism fy
deduced from f by base change to U. Consequently, fr is a proper morphism.

d) The morphism go f is of finite type, and is separated. For every S-scheme T,
one has (go f)r = gr o fr; since the composition of closed maps is a closed
map, this implies that g o f is universally closed. Consequently, g o f is a proper
morphism.
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e) The morphism (f, f’) is the composition of the morphism fy:Y xs Y' -
X x5 Y’ deduced from f by base change to Y" and of the morphism f;: X xg Y’ —
X xg X" deduced from f’ by base change to X. It is thus proper. []

Proposition (5.4.15). — A finite morphism is proper and has finite fibers.

A difficult theorem of Chevalley asserts the converse: a proper morphism with
finite fibers is finite.

Proof. — Let f:Y — X be a finite morphism. Then f is affine, hence it is sepa-
rated. Let us prove that f is closed. Let Z be a closed subset of Y; to prove that
f(Z) is closed in X, it suffices to prove that for every affine open subscheme U
of X, f(Z)nU = f(f(U)NnZ) is closed in U. We may thus assume that X and Y
are affine, say X = Spec(A) and Y = Spec(B), where B is an A-algebra which
is finitely generated as a B-module. Let ] be an ideal of B such that Z = V(J).
Let ¢ be the composition A — B — B/J and let I be its kernel. The associated
ring morphism A/I — B/J is injective and integral, since B/]J is an finitely gener-
ated A/I-module. By the first theorem of Cohen-Seidenberg (theorem 1.11.4),
the associated morphism from Spec(B/]) to Spec(A/I) is surjective. Since the
canonical surjection from A to A/I induces a homeomorphism from Spec(A/I)
to the closed subset V(I) of Spec(A), this implies that f(Z) = V(I). In particular,
f(Z) is closed in X.

For every X-scheme Z, the morphism of schemes f: Yz — Z deduced from f
by base change is finite; by what precedes, it is closed as well. This proves that
the morphism f is proper.

Let us now prove that its fibers are finite. As above, we may assume that
X = Spec(A) and Y = Spec(B). Let x € X; then its fiber f7'(x) identifies with
Spec(B ®4 x(x)), where x(x) is the residue field of X at x. The x(x)-algebra
B ®4 x(x) is finitely generated as a x(x)-vector space, hence it has finite length.
In particular, it is an artinian ring and it follows from lemma 1.12.6 that its
spectrum is finite. ]

Theorem (5.4.16). — The canonical morphism f:P}, — Spec(Z) is proper.

Proof. — This morphism is separated and of finite type, so we just need to
prove that it is universally closed. Let T be a scheme and let fr: P} — T be the
morphism deduced from f by base-change to T; let us prove that fr is closed.
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It is enough to treat the case where T is an affine scheme, which brings us to
proving that the canonical morphism f: P} — Spec(k) is closed for every ring k.

Recall that the scheme P} is isomorphic to the projective spectrum of the
graded ring A = k[T,, ..., T,]; let A, be the ideal (T,...,T,). Let Zc P} bea
closed subset and let ] = j, (Z) be its homogeneous ideal. For every integer d > o,
let Aj c R[T,,...,T,] be the k-submodule of homogeneous polynomials of
degree d and let]J; =] n Ay.

By assumption y ¢ f(Z), hence V,(pR[T,, ..., T,]) N Z = @. Consequently,
the homogeneous ideal

V,(5+(Z) + pR[To, ..., Tu]) = ZA V,(pR[Ts, ..., T4]) = @.

Consequently, the smallest radical ideal of A which contains j,(Z) +
pR[T,,...,T,] is equal to A,. In particular, for every i, there exists an
integer d; such that d; > o, a homogeneous polynomial P; € j,(Z) and a
homogeneous polynomial Q; € pR[T,, ..., T,] such that T‘f" =P; +Q;.

Let d = Y7, d;. By construction, every monomial of degree m belongs to
i+(Z)+pR[T,, ..., T,], hence the equality A; = J;+pA,. By Nakayama’s lemma
(corollary 1.3.2) applied to the finitely generated k-module A;/J; and the ideal p
of k, there exists an element a € k such that a — 1 € p and such that aA; c J;. In
particular, aT? € J; for every integer i € {o,...,n}.

This implies that the ideal J contains the ideal a(T%,...,T%), so that Z =
V.(J) € V((a)). Consequently, f(Z) c V(a); moreover, a ¢ p. In other words,
the set Spec(k) — f(Z) contains the neighborhood D(a) of p. This shows that
f(Z) is closed and concludes the proof that the morphism f: P, — Spec(Z) is
proper. []

Definition (5.4.17). — Let f:X — S be a morphism. One says that f is projective
if there exists an integer n > o and a closed immersion of S-schemes, g:X —

P XSpec(Z) S.

By theorem 5.4.16, the projection from P" x S to S is proper. It thus follows
from proposition 5.4.14 that a projective morphism is proper.
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5.5. Flat morphisms

Definition (5.5.1). — Let A be a ring and let M be an A-module. one says that
M is flat (over A) if for every injective morphism u:N — N’ of A-modules, the
morphism idy @u: M ®4 N - M ®a N’ is injective.

One says that M is faithfully flat (over A) if it is flat and if M ® 4 N # o for every
non-zero A-module N.

This definition can be reformulated as follows.

Lemma (5.5.2). — Let A be aring, and let Ty be the “tensorization by M’ functor,
from the category of A-modules to itself.

a) The A-module M is flat if and only if the functor Ty, is exact.

b) The following assertions are equivalent: (i) The A-module M is faithfully flat;
(ii) For any morphism u:N — N’ of A-modules, then u is injective if and only if
idy ®u is injective; (iii) The functor Ty is exact and conservative.

An functor T is called conservative if every morphism u such that T(u) is an
isomorphism is itself an isomorphism.

Proof. — a) By definition, the functor Ty, is given by Ty (N) = M ®4 N and
Twm(u) = idy ®u for every A-module N and every morphism u of A-modules.
Recall that this functor is right exact; indeed, the universal property of the tensor
product expresses the functor T, as a left-adjoint of some functor. In particular,
for every exact sequence N’ - N — N’ — o of A-modules, the associated
sequence M ®4 N > M ®4 N - M ®4 N’ — o is exact. The definition of a flat
module thus says that M is flat if and only if this functor Ty is exact: for every
exact sequence o - N” - N — N’ — o of A-modules, the associated sequence
0>MA\N">MesN->M®es N — ois exact.

b) Assume that M is flat. Let u: N — N’ be morphism of A-modules. Then
Coker(idy ®u) = M ®4 Coker(u), and Ker(idy ®u) = M ®4 Ker(u). Con-
sequently, idy ®u is surjective (resp. injective) if and only if u is surjective
(resp. injective). It follows that idy; ®u is an isomorphism if and only if  is an
isomorphism, that is, if the functor Ty is conservative.

Conversely, let us assume that M is flat and that the functor T, is conservative.
Let then N be an A-module such that M ® 4 N = o and let u: 0 — N be the zero
morphism; then Ty (1) = o is the isomorphism from o to 0 = M ®4 N, so that u
is an isomorphism: this shows that N = o.
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The same argument shows that M is faithfully flat over A if and only if, for every
morphism u of A-modules such that Ty(u) is injective, then u is injective. [

Proposition (5.5.3). — Let A be a ring.

a) The A-module A is faithfully flat.

b) A filtrant colimit of flat A-modules is flat.

c) A direct sum @; M; of a family (M;) of A-modules is flat if and only if M; is
flat for every i.

d) Every projective A-module is flat; conversely, if M is a finitely presented flat
A-module, then M is projective. Every non-zero free A-module is faithfully flat.

e) For every multiplicative subset S of A, the A-module S A is flat.

f) Let M and N be flat (resp. faithfully flat) A-modules. Then M ®4 N is flat

(resp. faithfully flat).

Proof. — a) Under the canonical isomorphism A®, N ~ N givenbya®n —
an, a morphism id, ®u identifies with u. In other words, the functor T}, is
isomorphic with the identical functor. It is thus exact and conservative.

b) Let ((M;)ier, (¢ij) be a diagram of flat A-modules indexed by a filtrant
partially ordered set, and M = lim M;; for i € I, let ¢;: M; — M be the canonical
morphism. Let then u: N — N’ be an injective morphism of A-modules and let
us show that idy ®u is injective. Let x be any element of its kernel; there exists
an element i € I and x; € M; ® N such that x = (¢; ® idy)(x;). Consequently,
one has

(¢i ®idxn)(Ta, (x:)) = (@i ® idy) o (idn, ®u)(x;)

= ¢;i ® u(x;)
= (ldM ®u) o (QD, ® ldN)(Xl)
=Twm(u)(x) = o.

Since the tensor product is a right exact functor, the canonical morphism from
li_n)l(M,- ® N) to M ® N is an isomorphism. This implies that there exists j € I
such that j > i and such (¢;; ® idx) (Twm,(x;)) = o. Let then x; = ¢;j(x;); one
has Ty, (x;j) = o. Since M; is a flat A-module, this implies that x; = o. Finally,
x = ¢i(xi) = 9;(9ij(xi)) = ¢j(x;) = 0. This shows that the morphism T (u) is
injective and concludes the proof that M is a flat A-module.

c) Let M be the direct sum of the family (M;); for every i, let p;: M — M;
be the projection of index i. Under the isomorphism M ®, N ~ @;;M; ®, N
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associated with the family (p; ® idy), a morphism idy ®u identifies with the
morphism @ idy, ®u. Consequently, idy ®u is injective if and only if idy;, ®u
is injective for every i.

d) If follows from b) that a free A-module is flat; it is moreover faithfully flat
if it is non-zero. If M is a projective A-module, there exists an A-module N such
that M @ N is free; then M @ N is flat; by b), M is flat as well.

Let finally M be a finitely presented flat A-module. To prove that M is projective,
it suffices to establish that M, is a free A,-module for every prime ideal p of A.
By e), this module is flat. We may thus assume that A is a local ring; let us denote
by m its maximal ideal. Let (m,, ..., m,) be a finite family of elements of M
which induces a basis of M/mM over k(m) and let f: A" - M be the morphism
given by (a,,...,a,) — ¥ a;m;. Since its image N satisfies M = N + mM,
Nakayama’s lemma implies that f is surjective (corollary 1.3.3). Let P be the
kernel of f. Since M is flat, P ® «(m) is a kernel of the morphism f:x(m)" -
M ®4 x(m) induced by f, hence P ®4 x(m) = o. Since M is finitely presented, P
is finitely generated, and Nakayama’s lemma implies that P = o.

e) This follows from example 2.3.15.

f) Given the associativity isomorphisms (M ®4 N) @, P~ M ®, (N ®4 P) of
the tensor product, the functor Ty, N is the composition Ty o Ty of the exact

functors Ty and Ty, hence is exact.
H

Proposition (5.5.4). — Let A be a ring and let B be an A-algebra.

a) For every flat (resp. faithfully flat) A-module M, the B-module M ® o B is flat
(resp. faithfully flat).

b) Assume that B is flat over A. Then for every flat B-module M, the A-module M
is flat.

c) Assume that B is faithfully flat over A. Then, for every A-module M, the
B-module M ® 5 B is flat (resp. faithfully flat) if and only if M is flat (resp. faithfully
flat) over A.

Proof. — a) For every B-module N, there is an isomorphism from (M ®4
B) ®s Nwith M ®, N, givenby (m® b) ® n —» m® (bn),form e M, b e B
and n € N. Thanks to these isomorphisms, the functor Tye,p identifies with
the composition of the functor Ty, with the forgetful functor from the category
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of B-modules to the category of A-modules. Since the latter functor is exact, this
implies that Tye,p is exact is Ty is.

Assume moreover that M is faithfully flat and let N be a B-module such that
(M ®4 B) ® N =0. Then M ®4 N = 0, hence N = o. This shows that M ®, B is
a faithfully flat B-module.

b) Let us denote by M, the A-module associated with M. Since B is an A-
algebra, every module of the form B ®, N, for an A-module N is naturally a
B-module, and the functor Ty can be viewed as a functor from the category of A-
modules to the category of B-modules. Since B is flat over A, this functor is exact.
Under the isomorphisms My ®4 N ~ M ®g (B ®4 N), the functor Ty, identifies
with the composition of the functor Ty and the functor T. Consequently, it is
exact as well, and M, is a flat A-module.

c) Let us assume that M ®, B is a flat B-module. Let u: N — N’ be an injective
morphism of A-modules; since B is faithfully flat over A, the morphism up =
u ®idp: N ®4 B = N’ ®4 B is injective. Consequently, the morphism idy ®up
from M ®, N ®, Bto M ®4 N’ ®4 B is injective. Since B is faithfully flat over A,
this implies that the morphism idy ®u is injective as well. Consequently, M is a
flat A-module.

O

Proposition (5.5.5). — Let A be a ring and let M be an A-module. The following
properties are equivalent:

(i) The A-module M is flat (resp. faithfully flat);
(ii) For every p € Spec(A), the Ay-module M, is flat (resp. faithfully flat);
(iii) For every m € Spm(A), the Ay-module My, is flat (resp. faithfully flat).

Proof. — (i)=(ii) follows from the fact that flatness is preserved by base change,
and (ii)=(iii) is obvious.

Let us assume that My, is flat over A, for every m, and let u: N — N’ be an
injective morphism of A-modules, let v = idy ®u and let us prove that v is
injective. Let m € Spm(A); the morphism uy, is injective, hence My, is a flat
A-module. Since the morphism vy, identifies with idy ®uy,, we conclude
that vy, is injective. By exactness of localization, the canonical morphism from
Ker(v)n, Ker(vy,) is an isomorphism, hence Ker(v),, = o. This this holds for
every maximal ideal m of A, one has Ker(v) = o (lemma 1.2.9), hence v is
injective.
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This shows that the three statements concerning flatness are equivalent. Let
us check thee equivelence of their counterparts for faithfull flatness. Let N be
a A-module such that M ® N = o. For every prime ideal p of A, one has an
isomorphism of Ap-modules, M, ®4, Ny, so that the implication (i')=(ii") holds,
and the implication (ii’)=(iii’) is again obvious. Finally, if (iii’) holds and if
M®aN = o, then My,, ®,, Ny, = o for every maximal ideal m of A, hence Ny,, = 0;
by lemma 1.2.9, one has N = o. [

Exercise (5.5.6). — Let A be aring and let M be an A-module.

a) Prove that M is flat if and only if, for every ideal I of A, the canonical
morphism from I ®y M to IM is an isomorphism.

b) Assume that A is a principal ideal domain. Prove that M flat if and only if it
is torsion free. Prove that Q is a flat Z-module which is not projective.

Exercise (5.5.7). — Let A be aring and let M be an A-module. A relation in M
is an expression of the form Y7 a;x; = o, where (a;) is a family of elements
of A, and (x;) is a family of elements of M. A relation is said to be trivial if there
exists a family (b;;) of elements of A and a family (y;) of elements of M such
that x; = 77, b;jy; forall i,and }1", a;b;; = o for all j.

Prove that M is flat if and only if every relation in M is trivial.

Proposition (5.5.8). — Let A be a ring and let M be a flat A-module. The following
properties are equivalent:

(i) The A-module M is faithfully flat;
(ii) For every prime ideal p of A, one has M ®4 x(p) # o;
(iii) For every maximal ideal m of A, one has M ® 5 k(m) # o.

Proof. — (i)=(ii) follows from the definition, since x(p) # o.

(ii)=(iii) is obvious.

(iii)=(i). Let N be an A-module such that M ®, N = 0. Let x € N and let
I={acA;ax = o} be its annihilator. Let g: A/T - N be the unique morphism
which maps the class of an element a € A to ax; it is injective. Since M is flat, the
morphism idy ®g is injective as well, hence M ® (A/I) = o, thatis, M = IM. If
[ = A, then1eTIand x = o. Otherwise, there exists a maximal ideal m of A such
that I c m; one then has M = IM = mM, which contradicts the assumption that
M ®4 x(m) # o, O
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Corollary (5.5.9). — Let f: A — B be a flat ring morphism. Then f is faithfully
flat if and only if the map °f: Spec(B) — Spec(A) is surjective.

Proof. — Letpbeaprimeideal of A. The prime ideals g of Bsuch that f7(q) = p
are in bijection with the prime ideals of B, which contain pB,. Consequently,
p belongs to the image of f if and only if B, /pB, # o. Since the latter ring
is isomorphic to B ®4 x(p), this shows that ¢f is surjective if and only if f is
faithfully flat. 0

Corollary (5.5.10). — A local morphism of local rings which is flat is faithfully
flat.

Proof. — Let f: A — B be a flat local morphism of local rings. Let p be the
maximal ideal of A and let q be the maximal ideal of B. By assumption, one
has f(q) = p, hence B/pB + 0. Consequently, f satisfies the assumption (iii) of
proposition 5.5.8, hence f is faithfully flat. []

Definition (5.5.11). — Let X be a scheme and let ./ be an Ox-module. One says
that M is flat if, for every x € X, the Ox x-module #, is flat.

If A is flat, then .Z|y is a flat Oy-module. Conversely, if every point x of X
has an open neighborhood U such that .Z |y is a flat Oy-module, then .Z is
flat.

Together with proposition 5.5.5, these remarks imply the following proposition.

Proposition (5.5.12). — Let X be a scheme and let .# be a quasi-coherent Ox-
module. The following properties are equivalent:

(i) The Ox-module . is flat;

(ii) For every affine open subset U of X, the Ox(U)-module .# (U) is flat;

(iii) Every point of X has an affine open neighborhood U such that the Ox(U)-
module . (U) is flat.

Example (5.5.13). — Let X be a scheme. The following properties of flat Ox-
modules follow directly from the definition and from proposition 5.5.3.
a) The Ox-module O is flat.

b) A direct sum @ .#; of a family (.#;) of Ox-modules is flat if and only if
A is flat for every i.

c) A finitely presented Ox-module is flat if and only if it is locally free.
d) Let .# and ./ be flat Ox-modules; then .Z ®4, .1 is flat.
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Definition (5.5.14). — Let f:Y — X be a morphism of schemes. One says that f
is flat if Oy, is a flat Ox ¢(,)-module, for every y € Y.
One says that f is faithfully flat if it is flat and surjective.

If Y is an X-scheme, then one also says that Y is flat (resp. faithfully flat) over X
to mean that its structural morphism is flat.

There is a more general definition that is often useful in more advanced topics
of algebraic geometry. Let .# be a quasi-coherent Oy-module. One says that
A is f-flat ata point y € Y if .Z), is flat over O (,y. One says that it is f-flat if
it is f-flat at every point of Y.

Given this definition, saying that f is flat is equivalent to saying that Oy is
f-flat.

Lemma (5.5.15). — Let f:Y — X be a morphism of schemes. The following
properties are equivalent:

(i) The morphism f is flat;

(ii) For every open affine subscheme U of X and every affine subscheme V of
f(U), the ring Oy(V) is a flat Ox(U)-module;

(iii) For every point y € Y, there exists an affine open neighborhood V of y in Y,
and an affine open neighborhood U of f(y) in X such that f(V) c U and such
that the ring Oy (V) is a flat Ox(U)-module.

In particular, a morphism of affine schemes f:Spec(B) — Spec(A) is flat if
and only if B is a flat A-module. By corollary 5.5.9, it is then faithfully flat if and
only if B is a faithfully flat A-module.

Proposition (5.5.16). — a) Let f:Y — X and g:Z — Y be flat morphisms, then
fogisflat.

b) Let f:Y - X and g:Z — X be morphisms of schemes. If f is flat, then the
morphism f;:Y7 — Z deduced from f by base change to Z is flat. If f; is flat and
g is faithfully flat, then f is flat.

c) Let f:Y — X and g:Z — X be morphisms of schemes. If f and g are flat,
then the canonical morphism h:Y xx Z — X is flat.

Proposition (5.5.17) (Going down for flat morphisms). — Let f: A — B be a flat
morphism of rings. Let (P, ..., P, ) be a chain of prime ideals of A and let q,, be a
prime ideal of B such that *f(q,) = p,. There exists a chain (o, ..., qy,) of prime
ideals of B such that *f(q,,) = pm for every m € {o,...,n}.
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Proof. — By induction, we may assume that n = 1. Let us then consider the
flat morphism of local rings g: A, — B, deduced from f by localization. It
is surjective, hence there exists a prime ideal q, of B contained in ¢, such that
PoAy, = £71(q0By, ). Necessarily, p, = f*(q,), and this concludes the proof of
the proposition. O]

Proposition (5.5.18). — Let A and B be noetherian local rings, let my and mg
denote their maximal ideals and let ¢: A — B be a local morphism. Then

dim(B) < dim(A) + dim(B/m4B).
If ¢ is flat, then equality holds:
dim(B) = dim(A) + dim(B/m4B).

Proof. — Let d = dim(A) and let (a,,...,a;) be a family of elements
of myA such that my = \/(a;,...,a4). Let e = dim(B/myB), and let
(by,...,b.) be elements of mp such that mp = \/(bl, ...,b.) +muaB. Then
(¢(ay),...,9(aq),by,...,b,) is an ideal of B, contained in msB. Moreover, the
radical of this ideal contains myB and (b,,..., b, ), hence it is equal to m,B.
This implies that

dim(B) < d + e =dim(A) + dim(B/m4B).

Let us now assume that ¢ is flat. Let (p,, ..., ps) be a chain of prime ideals
of A and let (qg4,.-.,q4:e) be a chain of prime ideals of B containing m,B.
By the going-down proposition for flat morphisms (proposition 5.5.17), there
exist prime ideals qo, . . ., q4_, of B such that “¢p(q;) = p; for every i, and such
Jo € -+ C qq. Then (qo,-..>qd>--->qdre) is @ chain of prime ideals of B, hence
dim(B) > d +e. ]

Theorem (5.5.19). — Let K be a field, let X and Y be K-schemes of finite type;
Assume that X is irreducible and that Y is equidimensional. Let f:Y — X be a flat
K-morphism. For every x € X, the fiber Y, is equidimensional and

dim(Y,) = dim(Y) - dim(X).

Geometrically, this theorem says that given a flat morphism f:Y — X as in
the statement of the theorem, all fibers of f have the same dimension which is
the difference of the dimensions of Y and X. Flatness is thus seen as a property
that the fibers of a morphism behave in a reasonable way:.
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Proof. — Let y be a closed point of Y. Let Z be an irreducible component of Y
containing y. Since Y is equidimensional, one has dim(Z) = dim(Y), hence

dim(0z,) = dim(Z) - dim({y}) = dim(Y) - dim({y}).

Consequently,
dim(&x,,) = dim(Y) - dim({y}).

On the other hand, y is the generic point of { y}, which is a closed subscheme of Y,
hence is a K-scheme of finite type; we thus have dim({y}) = tr.deg, (x(y)).
Similarly, dim({x}) = tr.deg(x(x)). Moreover, () is a finite extension
of (x), because y is a closed point of Y,.. Consequently,

dim({p7) = tr. deg (x(»)) = tr. degy (x(x)) = dim({x]) = dim(X)~dim(&..).
This implies the relation

dim(Oy,y) — dim(0x ) = dim(Y) - dim(X).
On the other hand, since y is a closed point of Y, one has

dim, (Y,) = dim( 6y, ,) = dim(Gy ,fm, O,),

since

ﬁYx,y = ﬁy)y &® K(.X') = ﬁy)y/mxﬁy,y.

Proposition 5.5.18 then shows that dim, (Y, ) > dim(Y) — dim(X), with equality
if f is flat at y. In particular, dim(Y,) > dim(Y) — dim(X). If f is flat, then
dim,(Y,) = dim(Y) - dim(X) for every closed point y € Y,.. It first follows that
dim(Y,) = dim(Y) - dim(X). If Y, were not equidimensional, it would possess
an irreducible component T of dimension < dim(Y) — dim(X); let then y be a
closed point of T which does not belong to the union of the other components;
one has dim (Y, ) = dim(T), a contradiction. O

Exercise (5.5.20). — Let f:A%> — A} be the morphism given by f(x,y) =
(xy,y). Let U = AX =V (x, y). Prove that fy: f*(U) - U is an isomorphism.
Let P = V(x, y). Prove that f1(P) ~ AL. It thus follows from theorem 5.5.19
that f is not flat; prove this fact directly.
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5.6. The module of relative differential forms

Definition (5.6.1). — Let k be a ring, let A be a k-algebra and let M be an A-
module. A map d: A — M is called a k-derivation if it is k-linear and if one
has

d(ab) = ad(b) + bd(a)

for every pair (a, b) of elements of A.

For every integer n such that #n > 1 and every a € A, one proves by induction
that

d(a") =na""'d(a)
Let a, b € A; if b is invertible, then d(b- (a/b)) = (a/b)d(b) + bd(a/b), so that
d(a/b) =b>(bd(a) - ad(b)).

In particular, d(1) = d(1/1) = o; consequently, d(a) = ad(1) = o for every
element a in the image of k.

The set Derg (A, M) of k-derivations from A to M is an A-submodule of the
A-module MA. When k = Z, one simply says that d is a derivation; the module
Derz(A, M) is simply denoted by Der(A, M).

If f:M — N is a morphism of A-modules and d: A — M is a k-derivation,
then f o f is a k-derivation. This defines a map f,: Dery(A, M) — Dery(A,N);
it is a morphism of A-modules.

Example (5.6.2). — Let k be a ring, let I be a set and let A = k[(T;);c | be the
ring of polynomials with coefficients in k in the family of indeterminates (T} ).

a) Foreveryiel,themapP % /0T, is a k-derivation from A to A.

b) Let M be an A-module. The map Deri(A,M) — M! which associates,
with every k-derivation d: A - M, the family (d(T;));e is an isomorphism of
A-modules.

Let us denote this map by ¢. It is A-linear. Moreover, for every multi-index
(n;) € N(D and every k-derivation d: A — M, one has

d([1T7) = Yoy [T Ty d(T);
i i€l jel
j#i
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this sum is finite since n; = o for all but finitely many elements i € I. Conse-

quently,

a@) =y =

i€l !
where, again, this sum is in fact finite because a polynomial P depends on finitely
many indeterminates, hence dP/dT; = o for all but finitely many i € I. This shows
that the morphism ¢ is injective. Moreover, if (m;);¢ is a family of elements
of M, then the map

d(T)),

oP
P~ — m,;
297,

is a k-derivation; consequently, ¢ is surjective.

Exercise (5.6.3). — Let kbearing,let A bea k-algebraandlet M be an A-module.
Let M, be the abelian group M, = A @ M, endowed with the multiplication law
given by (a, m)-(a’,m’) = (aa’, am’+ a’m). Show that M, is a ring and that the
map from M, to A given by (a,m) — a is a morphism of rings. Let d: A -~ M
be a map. prove that the map from A to M, given by a — (a,d(a)) is a ring
morphism if and only if d is a derivation.

Proposition (5.6.4). — Let k be a ring and let A be a k-algebra.

a) There exists an A-module (0, Ik and a k-derivation dji: A —> Q) Ik satisfying
the following universal property: for every A-module M and every derivation
d:A — M, there exists a unique A-linear morphism ¢: Q;\/k — M such that
poday=d.

b) If A is a finitely generated k-algebra, then Q) isa finitely generated A-
module.

c) If A is a finitely presented k-algebra, then Q' ,, is a finitely presented A-

A/k
module.

Any A-module Q) Ik such in the proposition is called the module of differential
forms of A over k. Since it satisfies a universal property, the pair (Q}, e dask) is
well defined up to isomorphism.

In fact, the assignment M — Deri(A, M) is a functor from the category of

A-modules to itself; the functorial isomorphisms
Hom, (2 4, M) — Deri(A, M), f fodani

show that this functor is corepresentable.



5.6. THE MODULE OF RELATIVE DIFFERENTIAL FORMS 219

Lemma (5.6.5). — Let k be a ring, let B be a k-algebra; Assume that there exists a
pair (O, dpi) satisfying the universal property of a module of differentials of B.

B/k’
Let I be an ideal of B and let A = B/T; let Qi be the A-module Qﬁ/k/(lﬂﬁ/k +
Bdpg(1)); let p:B — A and q: Qp ) — Q) be the canonical surjections.

a) There exists a unique map dy:A — Q) p such that dyj(p(a)) =

q(dg/(a)) for every a € B; it is a k-derivation.

b) The pair (<, e da k) satisfies the universal property of a module of differen-
tials of A.

c) IfQ}a/k is a finitely generated B-module, then Qi
A-module.

d) I]‘Q}g/k is a finitely presented B-module and 1 is a finitely generated ideal,

then Q) isa finitely presented A-module.

is a finitely generated

Proof. — a) A priori, (), Ik 18 defined as a B-module; since the elements of I

act by o in O o itisa A-module. Moreover, the map g o dy/y is k-linear and
its kernel contains I; consequently, there exists a unique k-linear morphism
dajii A — Qk/k such that dy /i o p = g o dyyy.

b) Let now M be a A-module and let d:A — M be a k-derivation. The
surjective morphism p: B — A endowes M with the structure of a B-module, and
the map a — d(p(a)) is a k-derivation from B to M; consequently, there exists
a B-linear morphism f: Q, =M such thatd o p = f ody. For every a € I, one
has f(dg/x(a)) = d(p(a)) = o, hence dgi(I) c Ker(f). Moreover, for every
w ey, and every a € [, one has f(aw) = af(w) = o, since M is an A-module;
consequently, IQ} i © Ker(f). Consequently, there exists a B-linear morphism

g: Q) M such that f = g o g; this is an A-linear morphism. Finally, one has

dOP:deB/k=g°q0d3/k:goqodB/k=gOdA/k°P-

Since p is surjective, this implies that d = g o d . Finally, if g': O}, x> Misan
A-linear morphism such thatd = g’od, x, onehasdop = g’ogody), = gogodyyy,
hence g’ o q = g o g; by the universal property of dy . Since q is surjective, this
implies g = ¢’

c) Let us assume that k18 finitely generated as a B-module. Since Q0 k18
a quotient of O, o itis finitely generated as a B-module, hence as an A-module
since the morphism from B to A is surjective.
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d) Let us finitely assume that O /i 18 finitely presented as a B-module and
that [ is a finitely generated ideal. Then Q} Ik /10 k18 finitely presented as well,
and Q) Ik
images elements of the form dgi(a), for a € I. Let (b,, ..., b,) be a finite family
generating I. For every family a € I and every family (4,,. .., a,) of elements

of B such thata = a,b, +--- + a,,b,,, one has

is the quotient of that module by the A-submodule generated by the

dB/k(a) = Z aidB/k(bi) + Z bidB/k(ai)'

Consequently, (3}, , is isomorphic to the quotient of Q}, Ik /IQ% by the finitely

AJk B/k
generated submodule generated by the images of the elements dg/(b;), for

1< i < n. It is thus finitely presented.
O

Proof of proposition 5.6.4. — Like every k-algebra, A is isomorphic to the quo-
tient of a polynomial algebra B = k[(T) )] by an ideal J. For example, the
unique morphism from k[(T;)aea] to A such that T, — a is surjective. If A is
finitely generated, we may even assume that the set L is finite; if, moreover, A
is finitely presented, then the ideal J is finitely generated. By example 5.6.2, the
k-algebra B admits a module of differentials, namely the module Q = BL. By
lemma 5.6.5, the k-algebra A admits the quotient 00}, ,, = BL/(IBL + Bdg (1)) as
a module of differentials. It also follows from this lemma that (0}, isa finitely
generated (resp. finitely presented) A-module if A is a finitely generated (resp.
finitely presented) k-algebra. ]

Remark (5.6.6). — Given the above explicit construction of the A-module e
we observe that it is generated by the elements of the form d (a), for a € T, for
every subset T of A which generates A as a k-algebra. This can also be proved by
showing that the submodule generated by these elements satisfies the universal

property of a module of differentials.

5.6.7. — Let k be a ring, let A and B be k-algebras and let f:A — B be a

morphism of k-algebras. The map dgj; o f: A - Qy isa k-derivation on A;

consequently, there exists a unique A-linear morphism ¢: Q0 ™ Oy such

thatdB/kOf=§DOdA/k. Let p: B®, Q) ,, — O

Ak B/k be the associated morphism

of B-modules.
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Lemma (5.6.8). — Let S be a multiplicative subset of A, let B = SA and let
f:A — B be the canonical morphism. Then the associated morphism ¢:S7'A ®4
Q= Qg is an isomorphism.
Proof. — Letd]:Sx A - STA®, Q) given by
di(s,a) =s"®dy(a) —sady(s),
forae AandseS.ForaeA,s,t €S, onehas
d;(st,at) = (st) " @ daj(at) — (st)atdy(st)
= (st)tdys(a) + (st) "ada(t)
— (st)at’dpi(s) — (st) *astd ()

=s"'dajx(a) - s*adai(s)

=d/(s,a).
Consequently, if a,b € A and s, t € S are such that a/s = b/t, let u € S such that
uta = sub; then

di(s,a) =d|(stu,uta) = d,(stu,sub) = d/(t,b).

This shows that there exists a unique map d’:S7'A - S7'A ®4 Q) ,, such that

Ak
d'(a/s) = d!(s,a) for every a € A and every s € S. This map d' is a k-derivation

(exercise...) Consequently, there exists a unique S~*A-linear morphism y: Q
B®os Q) such that d’ = y o dyyy.
For a e A and s €S, one has
¢ o y(dgi(a/s)) = (d'(a/s))
= (s ®dy(a) —sady(s))
= s 'dpji(a/1) - sadg(s/1)
= dg(afs),

so that oy odpy = dp/; by the universal property of the module of differentials,
one has ¢ o y = id. Moreover, for every a € A, one has

yoo(1@dap(a)) =y(dsi(a/1)) =1® dy(a).

Since the elements of B®4 Q) Ik of the form 1® d /x(a) generate this B-module,

this implies that y o ¢ = id.

1
B/k

We thus have proved that ¢ is an isomorphism. O]
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5.6.9. — Let k be a ring, let A and B be k-algebras and let f:A — B be a
morphism of k-algebras. The map d/s: B — Q} alsa k-derivation on B; con-
sequently, there exists a unique morphism y: Q},, — Q! , of B-modules such

B/k B/A
that dB/A =yo dB/k'

Proposition (5.6.10). — Let k be a ring, let A and B be k-algebras and let f: A — B
be a morphism of k-algebras. The diagram

1 ¢ 1 14 1
is an exact sequence.

Proof. — For every b € B, one has dg/s(b) = y(dg/(b)). Since Oy, is gener-
ated, as a B-module, by elements of the form dg/, (b), for b € B, the morphism y
is surjective. Let M be the image of ¢; it is the B-submodule of Q} Ik generated
by elements of the form dg/(f(a)), for a € A. Let us show that M = Ker(y).

For every a € A, one has

y(dp/k(f(a))) =dga(f(a)) =dga(a-1) =0

since dg/ 4 is an A-derivation. This shows that M c Ker(y). Let y,: Q} Ik /M -
Qp/a be the induced homomorphism. Let d: B — Q}, Ik /M be the map given by
b~ [dgi(b)]. It is a k-linear derivation; in fact, one has d(f(a)) = o for every
a € A, by definition of M, so that d is an A-derivation. Consequently, there
exists a unique B-linear morphism 6,: O, a = Qg /M such that 8, o dg, = d.
For every b € B, one has

0.0 y,(d(b)) = 0, 0 yi([dpi(b)]) = 0.(dpa(b)) = d(b);

since the elements of the form dpg,(b) generate the B-module O, e this implies
that 6, o y, = id. In particular, y, is injective, hence M = Ker(v). This concludes

the proof of the proposition. ]

5.6.11. — One can extend to schemes the definition of the module of differen-
tials. Let f:Y — X be a morphism of schemes. Recall that the canonical mor-
phism f!: Ox — f. Oy induces, by adjunction, a ring morphism f*: f~(0x) —
Oy. In particular, every Oy-module can be considered, via f, as an f~'(0x)-
module. An Oy-derivation from Oy to a quasi-coherent Oy-module ./ is a
f7(Ox)-linear morphism d: Oy — .# such that for every open subscheme U
of Y, every element a, b € Oy(U), one has d(ab) = ad(b) + bd(a).
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Proposition (5.6.12). — Let f:Y — X be a morphism of schemes.

There exists a quasi-coherent Oy-module ), xonY and an f7(Ox)-linear
derivation dy x: Oyx > Qy X which satisfies the universal property: for every Oy-
module ./ and every Ox-derivation d: Oy — .#, there exists a unique Oy-linear
morphism ¢: Qyx = M such thatd = ¢ o dyx.

If f is locally finitely generated, then Q) xisa finitely generated Oy-module. If
f is locally finitely presented, then €, xisa finitely presented Oy-module.

Proof. — O

Exercise (5.6.13). — Let k be aring and let A be a k-algebra. Let m: A®; A - A
be the unique morphism of k-algebras such that m(a ® b) = ab for every pair
(a,b) of elements of A. Let I be its kernel. Let j, and j, be the maps from A
to A ®; A given by j,(a) = a ® 1and j,(a) = 1 ® a; they are morphisms of
k-algebras. Prove that the stuctures of an A-module on I/1? induced by j, and j,
coincide. Prove that for every a € A, one has j,(a) — j,(a) € I. Letd: A - I/I> be
the map given by d(a) = (j,(a) — j,(a)) (mod I?). Prove that the pair (I/I2,d)
satisfies the universal property of a module of differentials.
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