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CHAPTER 1

CATEGORIES

1.1. Sets, universes and categories

1.1.1. — Wewish toworkwithin the classical framework of set theory, as formal-
ized by the zfc axioms: Zermelo-Fraenkelwith choice. However, the inexistence
of a “set of all sets”makes this framework not really adequate to consider theusual
categories or functors. We thus complement this theory with Grothendieck’s
concept of universes.

Deûnition (1.1.2). — An universe is a set U satisfying the following properties:
a) For every set x ∈ U and every element y ∈ x, one has y ∈ U;
b) For every x , y ∈ U, one has {x , y} ∈ U;
c) For every x ∈ U, one has P(x) ∈ U;
d) For every I ∈ U and every family (xi)i∈I of elements ofU, one has⋃i∈I xi ∈ U;
e) _e set N belongs to U.

1.1.3. — In some precise sense, an universe can be seen as amodel of set theory:
the axioms of a universe precisely guarantee that all classical operations of sets
do not leave a given universe. For example, if x , y are elements of a universe U,
then the pair (x , y), deûned à la Kuratowski by (x , y) = {{x}, {x , y}} belongs
to U. _en the product set x × y, a subset ofP(P(x ∪ y)) belongs to U, as well
as all of its subsets, so that the graphs of all functions from x to y belong to U.
In particular, if f is surjective, then any retraction (whose existence is asserted
by the axiom of choice) belongs to U.
Consequently, existence of universes does not follow from the axioms of zfc —

this would indeed contradict Gödel’s second incompleteness theorem— and
zfc has to be supplemented by an axiom such as the following.

Axiom (1.1.4). — For every set x, there exists an universe U such that x ∈ U.
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One checks readily that the intersection of a non-empty family of universes
is a universe. Consequently, under axiom 1.1.4, for every set x, there exists a
smallest universe U containing x.

Deûnition (1.1.5). — A categoryC is the datum of two sets ob(C ) andmor(C ),
whose elements are respectively called its objects and its morphisms, of two maps
o, t ∶ mor(C )→ ob(C ) (origin and target) and of a partial composition map:
mor(C ) ×mor(C )→C , denoted ( f , g)↦ g ○ f satisfying the following prop-
erties, where f , g , h ∈ mor(C ):

a) the composition g ○ f is deûned if and only if t( f ) = o(g); one has o(g ○ f ) =
o( f ) and t(g ○ f ) = t(g);
b) the composition is associative: if t( f ) = o(g) and t(g) = o(h), then h ○ (g ○
f ) = (h ○ g) ○ f ;
c) for every object X ∈ ob(C ), there exists a morphism idX ∈ mor(C ) such

that o(idX) = t(idX) = X, idX ○ f = f for every f ∈ mor(C ) such that t( f ) = X,
and g ○ idX = g for every g ∈ mor(C ) such that o(g) = X.

If f ∈ C , the objects o( f ) and t( f ) are called the origin and the target of f .
For any two objects X,Y in a categoryC , one writes C (X,Y), or HomC (X,Y)
to be the subset of mor(C ) consisting of all morphisms f with origin X and
target Y.

Example (1.1.6). — Let C be a category. Its opposite category, denoted byC o,
has the same objects and the samemorphisms, but the origin/target maps are
exchanged, and the order of composition is switched.
When one writes down a general construction/theorem from category theory

both in C and in the opposite categoryC o, one obtains two related statements,
one being obtained from the other by “reversing the arrows”.

Example (1.1.7). — Let A be a set and let ⩽ be a preordering relation on A, that
is, a binary relation on A which is re�exive and transitive. From (A, ⩽), one
deûnes a categoryA as follows: one has ob(A) = A andmor(A) is the set of
pairs (a, b) ∈ A ×A such that a ⩽ b, themaps o and t being the ûrst and second
projection respectively, the composition is deûned by (b, c) ○ (a, b) = (a, c) for
every a, b, c ∈ A.
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Example (1.1.8). — All classical mathematical objects, such as sets, abelian
groups, topological spaces, k-modules (where k is a ring), k-algebras, etc., give
rise to categories.

Since there is no set of all sets, we need to ûx a universe U. _e category
SetU of U-sets has for objects the elements of U and for morphisms themaps
between those sets, the composition being given by the usual composition of
maps. Similarly, the abelian groups whose underlying set belongs to U are the
objects of a categoryAbU, themorphisms of this category being themorphisms
of abelian groups between them. One deûnes analogously categories TopU or
RingU whose objects are the topological spaces, or the rings, with underlying
set an element of U. Or, if k is an object of RingU, one deûnes categories
Mod(k)U or Alg(k)U of k-modules, or of k-algebras, whose underlying set
belongs to U.

In practice, one can o�en work within an universe U which is ûxed once and
for all and talk about the category Set of sets, etc.

Deûnition (1.1.9). — Let U be a universe.

a) One says that a categoryC is a U-category if ob(C ) andmor(C ) belong
to U.
b) One says that a set X is U-small if there exists a bijection f ∶ X→ X′ with an

element of U.
c) One says that a categoryC is U-small if ob(C ) andmor(C ) are U-small.
d) One says that a category C is locally U-small if for every objects X,Y ∈

ob(C ), the set C (X,Y) is U-small.

Let U be a universe andC be a category. Since ob(C ) can be identiûed with
the subset ofmor(C ) of all identities, we observe that ifmor(C ) belongs to U,
then ob(C ) belongs to U as well.
For example, the category SetU of U-sets is locally U-small, but not U-small.

However, if V is an universe such that U ∈ V, then SetU is a V-category.

1.1.10. — Let X,Y ∈ ob(C ) and f ∈C (X,Y).
One says that f is le�-invertible if there exists g ∈C (Y,X) such that g○ f = idX;

any such element g is called a le�-inverse of f .
One says that g is right-invertible if there exists h ∈C (Y,X) such that f ○ h =

idY, and every such element g is called a right-inverse of g.
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One says that f is invertible, or an isomorphism if it is both le�- and right-
invertible. In this case, any le�-inverse g and any right-inverse h of f coincide,
since g = g ○ idY = g ○ ( f ○ h) = (g ○ f ) ○ h = idX ○h = h, and this element is
simply called the inverse of f .

_e deûnitions of a le�-invertible morphism and of a right-invertible are
deduced one from the other by passing to the opposite category.

1.1.11. — Let X,Y ∈ ob(C ) and f ∈C (X,Y).
One says that f is amonomorphism if for every object Z ∈ ob(C ) and every

h, h′ ∈C (Z,X), the equality f ○ h = f ○ h′ implies that h = h′.
If f is le�-invertible, then f is amonomorphism. Let indeed h, h′ ∈C (Z,X)

be such that f ○ h = f ○ h′; for every le�-inverse g of f , one then has

h = (g ○ f ) ○ h = g ○ ( f ○ h) = g ○ ( f ○ h′) = (g ○ f ) ○ h′ = h′.

One says that f is an epimorphism if for every object Z ∈ ob(C ) and every
g , g′ ∈C (Y,Z), the equality g ○ f = g′ ○ f implies that g = g′.
If f is right-invertible, then f is an epimorphism. Let indeed g , g′ ∈C (Y,Z)

be such that g ○ f = g′ ○ f ; for every right-inverse h of f , one then has

g = g ○ ( f ○ h) = (g ○ f ) ○ h = (g′ ○ f ) ○ h = g′ ○ ( f ○ h) = g′.

_e deûnitions of amonomorphism and of an epimorphism are deduced one
from the other by passing to the opposite category.

_e reader will take care that amorphism can be both amonomorphism and
an epimorphism, without being an isomorphism (exercise 1.7.2).

Deûnition (1.1.12). — LetC andD be two categories. A functor F fromC toD
is the datum of two maps ob(F) ∶ ob(C ) → ob(D) andmor(F) ∶ mor(C ) →
mor(D) satisfying the following properties:

a) For every f ∈ mor(C ), one has o(mor(F)( f )) = ob(F)(o( f )) and
t(mor(F)( f )) = ob(F)(t( f ));
b) For every pair ( f , g) inmor(C ) such that t( f ) = o(g), one hasmor(F)(g○
f ) = mor(F)(g) ○mor(F)( f );
c) For every object X ∈ ob(C ), one has mor(F)(idX) = idob(F)(X).

In practice, themapsmor(F) and ob(F) associatedwith a functor F are simply
denoted by F.
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Deûnition (1.1.13). — LetC andD be two categories, and let F,G be two functors
from C to D . A morphism of functors α ∶ F → G is a map α ∶ ob(C ) →
mor(D) satisfying the following properties:
a) For every X ∈ ob(C ), themorphism α(X) has source F(X) and target G(X);
b) For every X,Y ∈ ob(C ) and every f ∈ C (X,Y), one has α(Y) ○ F( f ) =

G( f ) ○ α(X).

Morphisms of functors are composed in the obvious way, turning the set
Fun(C ,D) of functors from C to D into a category.

Let U be a universe. If C and D are U-categories, then Fun(C ,D) is a
U-category.

1.2. Limits, colimits, adjunctions

1.2.1. — A quiver Q is the datum of a set V (vertices), of a set A (arrows), and
of two maps o, t ∶ V→ Q (origin and target).

Let Q = (V, A, o, t) be a quiver.
Let C be a category. A Q-diagram in C is given by a family (Xv)v∈V of

objects ofC and of a family ( fa)a∈A of arrows ofC such that o( fa) = Xo(a) and
t( fa) = Xt(a).

1.2.2. — Let C be a category and let D = ((Xv), ( fa)) be a Q-diagram in C .
A cone on the diagram D is the datum of an object X of C and of a family

(pv)v∈V satisfying the following properties:
a) For every v ∈ V, pv is amorphism in C with origin X and target Xv ;
b) For every a ∈ A, one has fa ○ po(a) = pt(a).
One says that a cone (X, (pv)) on a diagram D = ((Xv), ( fa)) is a limit of

the diagram D if for every cone D′ = (X′, (p′v)) on D, there exists a unique
morphism φ ∈C (X′,X) such that pv ○ φ = p′v for every v ∈ V.

Let (X, (pv)) and (X′, (p′v)) be two limits on D. Since X is a limit and X′ is a
cone on D, there exists a uniquemorphism φ ∈C (X′,X) such that pv ○ φ = p′v
for every v ∈ V. Since X′ is a limit and X is a cone on D, there exists a unique
morphism φ′ ∈ C (X,X′) such that pv = p′v ○ φ′ for every v ∈ V. _en pv =
p′v ○ φ′ = pv ○ φ ○ φ′, for every v ∈ V; since X is a limit, one has φ ○ φ′ = idX.
Similarly, p′v = pv ○ φ = p′v ○ φ′ ○ φ, for every v ∈ V; since X′ is a limit, one has
φ′ ○φ = idX′ . Consequently, φ and φ′ are isomorphisms, inverse one to the other.
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1.2.3. — By passing to the opposite category, one deûnes the notions of a cocone
on a diagram D and of a colimit of D. Explicitly, a cocone on the diagram D is
the datum of an object X ofC and of a family (pv)v∈V satisfying the following
properties:

a) For every v ∈ V, pv is amorphism in C with origin Xv and target X;
b) For every a ∈ A, one has pt(a) ○ fa = po(a).

One says that a cocone (X, (pv)) on a diagram D = ((Xv), ( fa)) is a colimit of
the diagram D if for every cocone D′ = (Y, (qv)) on D, there exists a unique
morphism φ ∈C (Y,X) such that φ ○ pv = qv for every v ∈ V.

If (X′, (p′v)) is another colimit of the diagram D, then there exists a unique
morphism φ ∶ X → X′ such that φ ○ pv = p′v for every v ∈ V, and φ is an
isomorphism.

Example (1.2.4). — a) Let Q be the empty quiver— no vertex and no arrow.
_ere exists a unique corresponding Q-diagramD inC : it is empty— no object,
no morphism. A cone on D is just an object ofC ; a limit of D is an object X
such that for every object X′ in C , there exists a uniquemorphism φ ∶ X′ → X
in C . Such an object is called a terminal object ofC . Passing to the opposite
category, a colimit of D is called an initial object: this is an object X such that for
every object X′ ∈C , there exists a uniquemorphism φ ∶ X→ X′ in C .

In the case of the category of sets, the empty set is an initial object, and terminal
objects are sets with one element; in the case of the category of k-modules, the
initial and the terminal objects are the zero module; in the case of the category
of groups, the initial and the terminal objects are the groups reduced to the unit
element. In the category of rings, the ring Z is an initial object, and the zero ring
is a terminal object. _e category of ûelds has no initial object and no terminal
object.
b) Let Q = (V, A, o, t) be a quiver with no arrows. A Q-diagram in C is just

a family (Xv)v∈V of objects, indexed by the set V of vertices of Q. A limit of D is
called a product of the family (Xv); a colimit of D is called a coproduct of the
family (Xv).

In the case of the category of sets, one gets the product, resp. the disjoint
union; in the case of the category of k-modules, one gets the product, resp. the
direct sum; in the case of the category of groups, one gets the product, resp. the
free product. In the category of rings, the product is a product, and the tensor
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product furnishes a coproduct. In the category of ûelds, products or coproducts
rarely exist.
c) Let Q be a quiver with two vertices a, b and two arrows both with origin a

and target b. AQ-diagram is given by two objectsA, B inC and twomorphisms
f , g ∶ A→ B. A limit of this diagram is called an equalizer of the pair ( f , g); a
colimit is called a coequalizer of the pair ( f , g).

In the case of the category of sets, the equalizer of ( f , g) is the subset of A
consisting of those elements a ∈ A such that f (a) = g(a). In fact, the same
formula works for the categories of groups, of k-modules, of rings, of ûelds, etc.,
the set-theoretical equalizer is a subobject of A and is the equalizer in the given
category. In the category of k-modules, f − g is amorphism, and the equalizer
of ( f , g) is also the kernel of f − g.

In the category of sets, the coequalizer of ( f , g) is the quotient of B by the
ûnest equivalence relation in B that identiûes f (a) and g(a), for every a ∈ A.
However, in the category of groups, of k-modules, of rings, of ûelds, one needs to
consider the ûnest equivalence relation in B which identiûes f (a) and g(a), for
every a ∈ A, and which moreover is compatible with the given laws. _is gives
the same set in the category of k-modules, or of rings, but not in the category
of groups, where the coequalizer of ( f , g) is the quotient of B by the smallest
normal subgroup of B that contains f (a)g(a)−1, for every a ∈ A.

Deûnition (1.2.5). — LetC andD be categories and letG ∶ C →D and F ∶ D →
C be functors. An adjunction for the pair (G, F) is the datum of a pair (η, ε) of
functors η ∶ idC → F ○G and ε ∶ G ○ F→ idD satisfying the relations

εG(x) ○G(ηx) = idG(x) and F(εy) ○ ηF(y) = idF(y) .

hold for every x ∈ ob(C ) and every y ∈ ob(D). _e morphism η is called the
counit of the adjunction, and themorphism ε is called its unit.

If the pair (G, F) possesses an adjunction, then one says One says that (G, F) is
an adjoint pair, or that G is a le� adjoint to F, or that F is a right adjoint to F, and
one writes G ⊣ F.

Proposition (1.2.6). — Let C and D be categories and let G ∶ C → D and
F ∶ D →C be functors. _e following datas are equivalent:

a) An adjunction (η, ε) for the pair (G, F).
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b) A morphism of functors η ∶ idC → F ○ G such that for every x ∈ ob(C )
and every y ∈ ob(D), the map D(G(x), y) → C (x , F(y)) given by g ↦ g♭ =
F(g) ○ ηx is bijective.
c) A morphism of functors ε ∶ G ○ F → idD such that for every x ∈ ob(C )

and every y ∈ ob(D), the map C (x , F(y)) → D(G(x), y) given by f ↦ f ♯ =
εy ○G( f ) is bijective,
d) For every object x of C and every object y ofD , a bijection f ↦ f ♯ from

C (x , F(y)) to D(G(x), y), with inverse g ↦ g♭, such that for any objects x , x′
ofC , any objects y, y′ ofD , any morphisms u ∈C (x′, x) and v ∈D(y, y′), any
morphism f ∈D(G(x), y) and any morphism g ∈C (x , F(y)), one has

(v ○ g ○G(u))♭ = F(v) ○ g♭ ○ u and v ○ f ♯ ○G(u) = (F(v) ○ f ○ u)♯.

In their presence, one has moreover the relations:

g♭ = F(g) ○ ηx
f ♯ = εy ○G( f )
ηx = (idG(x))♭

εy = id♯F(y) .

Proof. — To pass from d) to b),we just set ηx = (idG(x))♭ for every object x ofC .
One observes that for every morphism g ∈ D(G(x), y), one has F(g) ○ ηx =
F(g) ○ id♭G(x) = g♭. _en, for every morphism u ∈C (x , x′), one has

F ○G(u) ○ ηx = G(u)♭ = ηx′ ○ u.

Consequently, themorphisms ηx ∶ x ↦ F ○G(x) deûne amorphism of functors
from idC to F ○G.
Conversely, if b) holds, we just need to check that the asserted bijection g ↦ g♭

satisûes the given formulae of d). Indeed, for u ∈ C (x′, x) and v ∈ C (y, y′),
one has

(v○g○G(u))♭ = F(v)○F(g)○(F○G)(u)○ηx′ = F(v)○F(g)○ηx○u = F(v)○g♭○u,

which proves the second formula. _e other follows.
_e equivalence between datas c) and d) is proved similarly, or by considering

opposite categories.
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Let us now pass from d) to a). We already dispose of two morphisms of
functors η ∶ idC → F ○G and ε ∶ G ○ F→ idD . Moreover, one has

εG(x) ○G(ηx) = η♯x = idG(x)

and
F(εy) ○ ηF(y) = ε♭y = idF(y) .

Finally, let us pass from a) to d). For g ∈D(G(x), y), we set g♭ = F(g) ○ ηx ∈
C (x , F(y)); for f ∈C (x , F(y)), we set f ♯ = εy ○G( f ) ∈D(G(x), y). For every
f ∈C (x , F(y)) and every g ∈D(G(x), y), we then have

( f ♯)♭ = (εy ○G( f ))♭ = F(εy) ○ (F ○G)( f ) ○ ηx = F(εy) ○ ηF(y) ○ f = f

and

(g♭)♯ = (F(g) ○ ηx)♯ = εy ○ (G ○ F)(y) ○G(ηx) = g ○ εG(x) ○G(ηx) = g ,

so that the deûnedmaps f ↦ f ♯ and g ↦ f ♭ are bijections, inverse one of the
other. _e remaining formulas follow, as in the passage from b) and c) to a).

Remark (1.2.7). — Let C andD be categories and let F ∶ D →C be a functor,
and let G,G′ ∶ C →D be two functors which are both le� adjoint to F. _en G
and G′ are isomorphic.

More precisely, let (η, ε) and (η′, ε′) be adjunctions for the pairs (G, F) and
(G′, F) respectively. For every x ∈ ob(C ), every y ∈ ob(D), we obtain a
bijection

D(G(x), y) ∼Ð→C (x , F(y)) ∼Ð→D(G′(x), y),
given explicitly by

g ↦ g̃ = ε′y ○ (G′ ○ F)(g) ○G′(ηx) = g ○ ε′G′(x) ○G′(ηx) = g ○ θx ,

where θx = ε′G′(x) ○G′(ηx) ∈D(G′(x),G(x)). _is implies that θx is an isomor-
phism, for every x ∈ ob(C ). Moreover, the family θ = (θx) is an isomorphism
of functors from G′ to G.

Similarly, if F, F′ ∶ C → D and G ∶ D → C are functors such that G is le�
adjoint both to F and F′, then F and F′ are isomorphic.

Proposition (1.2.8). — Let C and D be categories and let G ∶ C → D and
F ∶ D →C be functors. Let (ε, η) be an adjunction for the pair (G, F).
a) _e functor G is faithful if and only if ηx is a monomorphism for every

object x ofC ;
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b) _e functor G if full if and only if ηx is right invertible, for every object x
ofC ;
c) _e functor G is fully faithful if and only if η is an isomorphism of functors.

a′) _e functor F is faithful if and only if εy is an epimorphism for every object y
ofD ;
b′) _e functor F if full if and only if εy is le� invertible, for every object y ofD ;
c′) _e functor F is fully faithful if and only if ε is an isomorphism of functors.

Proof. — a) Let us assume that ηx is amonomorphism, for every object x
ofC , and let us prove that G is faithful. Let x , x′ be objects ofC and let u and u′

be elements ofC (x′, x) such that G(u) = G(u′). _en

ηx ○ u = (F ○G)(u) ○ ηx′ = (F ○G)(u′) ○ ηx′ = ηx ○ u′,

hence u = u′. Conversely, let us assume that G is faithful and let u, u′ ∈C (x′, x).
One has (ηx ○ u)♯ = εG(x) ○ G(ηx) ○ G(u) = G(u), and (ηx ○ u′)♯ = G(u′).
Consequently, if etax ○ u = ηx ○ u′, then G(u) = G(u′), hence u = u′, since G is
faithful. _is proves a).
b) Let us assume that ηx is right invertible. Let x , x′ be objects ofC and let

v ∈ D(G(x′),G(x)). Let θx ∈ C (F ○G(x), x) be such that ηx ○ θx = idF○G(x).
Let us set u = θx ○ F(v) ○ ηx′ ; this is an element ofC (x′, x). Moreover, ηx ○ u =
F(v) ○ ηx′ = v♭, so that v = (ηx ○ u)♯ = G(u). _is proves that G is full.
Conversely, let us assume that G is full, let x be an object of C and let us

choose amorphism θx ∈ C (F ○G(x), x) such that G(θx) = (idF○G(x))♯. _en
(ηx ○ θx)♯ = G(θx) = (idF○G(x))♯, so that ηx ○ θx = idF○G(x). _is proves that ηx
is right invertible.
c) Let us assume that G is fully faithful. Let x ∈ ob(C ); then ηx has a right

inverse θx , by b). It follows that ηx ○ θx ○ ηx = ηx , hence θx ○ ηx = idF○G(x),
because ηx is a monomorphism, by a). Consequently, ηx is an isomorphism.
_is implies that η is an isomorphism of functors.
Conversely, let us assume that η is an isomorphism of functors. In particular,

ηx is an isomorphism for every object x of C . _en the functor G is faithful,
by a), and is full, by b); it is thus fully faithful.

_e primed assertions follow from what has just been proved, by passing to
the opposite category.
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Proposition (1.2.9). — Let C and D be categories and let G ∶ C → D and
F ∶ D →C be functors. Assume that (G, F) is an adjoint pair.

a) _e functor F preserves limits and sendsmonomorphisms tomonomorphisms;
b) _e functor G preserves colimits and sends epimorphisms to epimorphisms.

Proof. — Let (ε, η) be an adjunction for the pair (G, F). Let Q = (V, A) be a
quiver and let D = ((yv), (ga)) be a Q-diagram in D , with limit y; let g = (gv)
be the canonical family of morphisms, where gv ∈ D(y, yv) for every v ∈ V.
_en F(D) = ((F(yv)), (F(ga))) is aQ-diagram inC , and (F(y), (F(ga))) is a
cone on F(D). Let us show that it is a limit. Let (x , ( fv)) be a cone on F(D): for
every v ∈ V, one has fv ∈ C (x , F(yv)); for every edge a ∈ A with origin v and
term v′, one has fv′ = F(ga) ○ fv . For every v ∈ V, one has f ♯v ∈D(G(x), yv); for
every edge a ∈ A with origin v and term v′, one has f ♯v′ = (F(ga) ○ fv)♯ = ga ○ f ♯v .
Consequently, (G(x), ( f ♯v )) is a cone on D; by deûnition of a limit, there exists
a uniquemorphism g ∈D(G(x), y) such that f ♯v = gv ○ g for every v ∈ V. Let
f = g♭ ∈C (x , F(y)); for every v ∈ V, one has (F(gv)○ f )♯ = gv ○ f ♯ = gv ○ g = f ♯v ,
so that F(gv) ○ f = fv. Conversely, if f ′ ∈ C (x , F(y)) satisûes F(gv) ○ f ′ = fv
for every v ∈ V, then f ♯v = gv ○ ( f ′)♯, hence ( f ′)♯ = g and, ûnally, f ′ = f . _is
concludes the proof that the cone (F(y), (F(gv))) is a limit of the diagram F(D).

Let v ∶ ∈ D(y, y′) be a monomorphism and let us prove that F(v) is a
monomorphism. Let u, u′ ∈ C (x , F(y)) be such that F(v) ○ u = F(v) ○ u′.
_en v ○ id♯ ○G(u) = (F(v) ○ u)♯ = v ○ id♯ ○G(u′). Since v is amonomorphism,
we get id♯ ○G(u) = id♯ ○G(u′), hence u♯ = (u′)♯, hence u = u′. _is proves that
F(v) is amonomorphism, as claimed.

_e other assertion follows by passing to the opposite categories.

(1)

1.3. Additive categories

1.3.1. — Let C be a category. A zero object in C is an object 0 which is both
initial and terminal. _en for every pair (X,Y) of objects in C , there exists a
uniquemorphism in C (X,Y) which factors through 0; it is denoted by 0.

(1)To be added: examples, (co)limits as adjoint?
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Deûnition (1.3.2). — Let C be a category. One says that C is semi-additive if
the following conditions are satisûed:

a) C admits ûnite products and ûnite coproducts;
b) _ere exists an object ofC , denoted by 0, which is both initial and terminal;
c) Let (X1,X2) be a pair of objects ofC , let (X1 ⊔X2, ( j1, j2)) be a coproduct,

let (X1 × X2, (p1, p2)) and let ε ∶ X1 ⊔ X2 → X1 × X2 be a morphism such that
pa ○ ε ○ jb = idXa if a = b, and 0 otherwise. _en ε is an isomorphism.

Let us detail the third condition a little bit. By deûnition of a coproduct, the
map f ↦ ( f ○ j1, f ○ j2) is a bijection fromC (X1⊔X2,X1×X2) to∏2

b=1C (Xb ,X1×
X2). Similarly, for every b ∈ {1, 2}, the deûnition of a product implies that the
map g ↦ (p1 ○ g , p2 ○ g) is a bijection from C (Xb ,X1 ×X2) to∏2

a=1C (Xb ,Xa).
Consquently, the map f ↦ (pa ○ ε ○ jb)(a,b)∈{1,2}2 is a bijection from C (X1 ⊔
X2,X1 × X2) to ∏2

a,b=1C (Xb ,Xa). Consequently, there there exists a unique
morphism ε as stated, and the assertion is that ε is an isomorphism.

Lemma (1.3.3). — Let C be a semi-additive category. For every pair (X1,X2) of
objects ofC and every pair f , g ∈C (X1,X2), let f + g be the unique element of
C (X1,X2) such that

X1
dX1Ð→ X1 ×X1

( f ,g)
ÐÐ→ X2 ×X2

ε−1

Ð→ X2 ⊔X2
δX2Ð→ X2,

where dX1 is the unique morphism whose composition with the two canonical
morphismsX1×X1 → X1 is idX1 , and δX2 is the uniquemorphismwhose composition
with the two canonical morphisms X2 → X2 ⊔X2 is idX2 . _en the composition law
( f , g)↦ f + g on C (X1,X2) is commutative, associative, the zero morphism is a
neutral element.

Moreover, for every triple (X1,X2,X3) of objects of C , the composition map
C (X1,X2) ×C (X2,X3)→C (X1,X3) given by ( f , g)↦ g ○ f is bi-additive: for
f , f ′ ∈C (X1,X2) and g , g′ ∈C (X2,X3), one has

g ○ ( f + f ′) = (g ○ f ) + (g ○ f ′) and (g + g′) ○ f = (g ○ f ) + (g′ ○ f ).

Proof. — To be done.

Deûnition (1.3.4). — One says that a semi-additive categoryC is additive if its
semi-groups ofmorphisms C (X1,X2) are abelian groups.
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Example (1.3.5). — a) Let k be a ring; the category of k-modules is an additive
category.
b) Let X be a topological space and let O be a sheaf of rings on X; the category

of O-modules is an additive category.
c) _e category of complex Banach spaces, with continuous linear maps for

morphisms, is an additive category.
d) _e opposite category to a (semi-)additive category is again a (semi-)additive

category.

1.3.6. — Let C be an additive category. Let (X,Y) be a pair of objects of C
and let f ∈C (X,Y) be amorphism. An equalizer of the pair ( f , 0) is called a
kernel of f , and is denoted by Ker( f ); a coequalizer of the pair ( f , 0) is called a
cokernel of f , and is denoted by Coker( f ). If f is amonomorphism, then 0 is a
kernel of f ; if f is an epimorphism, then 0 is a cokernel of f .

LetKer( f ) be a kernel of f , and let i ∶ Ker( f )→ X be the canonical morphism.
By deûnition of a kernel, themap C (Z,Ker( f ))→C (Z,X) given by g ↦ i ○ g
is injective. In other words, i is amonomorphism.
By passing to the opposite category, one deduces that the canonical morphism

p ∶ Y→ Coker( f ) is an epimorphism.

1.4. Abelian categories

Deûnition (1.4.1). — One says that an additive categoryC is an abelian category
if the following properties hold:

a) Every morphism has a kernel and a cokernel;
b) Every monomorphism is a kernel;
c) Every epimorphism is a cokernel.

Example (1.4.2). — a) Let k be a ring. _e category of k-modules is an
abelian category. Epimorphisms are surjectivemorphisms,monomorphisms
are injectivemorphisms; kernel and cokernels coincide with the usual notions.
A theorem ofMitchell asserts that for every abelian categoryC , there exists a

ring k and an exact fully faithful functor ofC into a category of k-modules. In
particular, kernels and cokernels are preserved by this embedding. For certain
arguments, this allows to pretend objects of C are k-modules and play with
their “elements”.



14 CHAPTER 1. CATEGORIES

b) LetX be a topological space and let O be a sheaf of rings onX. _e category
of O-modules is an abelian category. Monomorphisms, resp. epimorphisms,
are themorphisms which induce injective, resp. surjective,morphisms on all
stalks. Consequently,monomorphisms are injectivemorphisms. However, not
every epimorphism is surjective (see exercise 3.10.1). Kernels are deûned naively;
however, the cokernel of amorphism φ of O-modules is the sheaf associated
with the presheaf U↦ Coker(φU).
c) Let A be an abelian category. _e additive categoryC (A) of complexes

inA is an abelian category. Kernels and cokernels are computed termwise and a
morphism of complexes f ∶ X→ Y is amonomorphism (resp. an epimorphism,
resp. an isomorphism) if and only if so is f n ∶ Xn → Yn, for every integer n ∈ Z.
d) _e category of Banach spaces is not an abelian category. Indeed, in this cat-

egory,monomorphisms are the injective continuous morphisms, while kernels
aremonomorphisms with closed image.

Proposition (1.4.3). — Let f ∶ X→ Y be amorphism in an abelian categoryC .
a) _emorphism f is amonomorphism if and only if Ker( f ) = 0;
b) _emorphism f is an epimorphism if and only Coker( f ) = 0;
c) _emorphism f is an isomorphism if and only it is both amonomorphism

and an epimorphism.

Proof. — a) _e conditions “ f is amonomorphism” and “Ker( f ) = 0” are
both equivalent to the statement that for every object Z, the zero morphism is
the only morphism h ∈C (Z,X) such that f ○ h = 0.
b) Similarly, the conditions “ f is an epimorphism” and “Coker( f ) = 0” are

both equivalent to the statement that for every object Z, the zero morphism is
the only morphism g ∈C (Y,Z) such that g ○ f = 0.
c) If f is an isomorphism, then it is both an epimorphism and amonomor-

phism. Let us assume, conversely, that f is both an epimorphism and amonomor-
phism. Since f is amonomorphism, it is the kernel of amorphism g ∶ Y → Z.
In particular, one has g ○ f = 0 = 0 ○ f . Since f is an epimorphism, one has
g = 0. Since f ∶ X → Y is a kernel of 0, the relation 0 ○ idY = 0 implies the
existence of a uniquemorphism h ∶ Y→ X such that idY = f ○ h. In particular,
f is right-invertible. By passing to the opposite category, one proves that f is
le�-invertible. Consequently, f is an isomorphism, as was to be shown.

Lemma (1.4.4). — Let C be an abelian category.
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a) Every monomorphism is a kernel of its cokernel;
b) Every epimorphism is a cokernel of its kernel.

Proof. — a) Let i ∶ X → Y be a monomorphism. Let p ∶ Y → Coker(i) be a
cokernel of i and let j ∶ Ker(p)→ Y be a kernel of p. Since q ○ i = 0, there exists
a uniquemorphism u ∶ Ker( f )→ Ker(q) such that i = j ○ u. Let us prove that
u is an isomorphism.
By deûnition of an abelian category, there exists a morphism f ∶ Y → Z

such that i is a kernel of f . Since f ○ i = 0, there exists a (unique) mor-
phism w ∶ Coker(i)→ Z such that f = w ○ q.

X Z

Y

Ker(q) Coker(i)

←

→u

←

→
i ← →f

←

→q

← →
j

←

→

v ←

→
w

Since f ○ j = w ○ q ○ j = 0, there exists amorphism v ∶ Ker(q) → Ker( f ) such
that j = i ○ v. Since i and j are kernels, they are monomorphisms. _en the
relations i = j ○ u = i ○ v ○ u and j = i ○ v = j ○ u ○ v imply that v ○ u = idKer( f )
and u ○ v = idKer(q). In particular, u is an isomorphism.

_e proof of assertion b) is similar, and follows from a) by passing to the
opposite category.

Proposition (1.4.5). — Let C be an abelian category and let f ∶ X → Y be a
morphism in C . Let i ∶ Ker( f ) → X be a kernel of f and let p ∶ Y → Coker( f )
be a cokernel of f . Let q ∶ X→ Coker(i) be a cokernel of i and let j ∶ Ker(p)→ Y
be a kernel of p. _ere exists a unique morphism f̃ ∶ Coker(i) → Ker( f ) such
that f = j ○ f̃ ○ q, and f̃ is an isomorphism.

A kernel of p is called an image of f and is denoted by Im( f ); a cokernel of j
is called a coimage of f is denoted by Coim( f ). _e proposition thus says that
anymorphism f induces a canonical isomorphism from its image to its coimage.
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_is is represented by the following diagram:

Ker( f ) X Y Coker( f )

Coim( f ) Im( f )

↩ →i ← →f

←↠ q

← ↠p

←→≃
f̃

↩→j

Observes that when one passes to the opposite category, kernels and cokernels
are switched, as are images and coimages.
As an intermediate step, the proof of the proposition uses a result which can

be seen as corollary.

Lemma (1.4.6). — a) _ere exists a unique morphism f1 ∶ X → Im( f ) such
that f = j ○ f1.
b) For every factorization f = j′ ○ f ′1 , where j′ ∶ T → Y is amonomorphism

and f ′1 ∶ X → T is a morphism, there exists a unique morphism u ∶ Im( f ) → T
such that f ′1 = u ○ f1 and j = j′ ○ u.
c) _emorphism f1 is an epimorphism.

Proof. — a) By deûnition, Im( f ) is a kernel of p ∶ Y → Coker( f ), so that
p ○ f = 0. Consequently, the assertion follows from the deûnition of a kernel.
b) Let p′ ∶ T→ Coker( j′) be a cokernel of j′. Since p′○ f = p′○ j′○ f ′1 = 0, there

exists a uniquemorphism u′ ∶ Coker( f )→ Coker( j′) such that p′ = u′○p. _en
p′○ j = u′○ p○ j = 0, so that there exists a uniquemorphism u ∶ Ker(p)→ T such
that j = j′ ○ u. _en j′ ○ f ′1 = f = f ○ f1 = j′ ○ u ○ f1; since j′ is amonomorphism,
one has f ′1 = u ○ f1.
c) Let s ∶ Ker(p) → S be a morphism such that s ○ f1 = 0; let us prove that

s = 0. Let k ∶ Ker(s)→ Ker(p) be a kernel of s; there exists a uniquemorphism
f ′1 ∶ X → Ker(s) such that f1 = k ○ f ′1 . _en f = j ○ f1 = ( j ○ k) ○ f ′1 . Since j ○ k
is amonomorphism, part b) of lemma 1.4.6 asserts that there exists a unique
morphism u ∶ Ker(p)→ Ker(s) such that f ′1 = u ○ f1 and j = j ○ k ○ u. Since j is
amonomorphism, this implies that k ○ u = idIm( f ). Finally, s = s ○ k ○ u = 0.

Proof of proposition 1.4.5. — Since p ○ f = 0, there exists a unique morphism
f1 ∶ X→ Ker(p) such that f = j ○ f1; by lemma 1.4.6, f1 is an epimorphism. _en
j○ f1○ i = f ○ i = 0, hence f1○ i = 0, because j is amonomorphism. Consequently,
there exists a unique morphism f̃ ∶ Coker(i) → Ker(p) such that f1 = f̃ ○ q.
One then has f = j ○ f̃ ○ q. If f̃ ′ is a secondmorphism such that f = j ○ f̃ ′ ○ q,
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one has f̃ ′ ○ q = f̃ ○ q, because j is amonomorphism, hence f̃ ′ = f̃ , because q is
an epimorphism.

Since f1 = f̃ ○ q is an epimorphism, f̃ is an epimorphism as well. By passing
to the opposite category, we see that f̃ is amonomorphism. Consequently, f̃ is
an isomorphism, as claimed.

1.4.7. — Grothendieck (1957) introduced additional conditions on an abelian
category, pertaining to the existence of arbitrary limits or colimits and their
property. Let A be an abelian category. One deûnes the following axioms:

(AB3) _e categoryA admits arbitray colimits (one says that it is cocomplete);
it is equivalent to the property that it admits arbitrary coproducts.

(AB4) _e categoryA satisûes the axiom AB3 and the coproduct of a family
ofmonomorphisms is amonomorphism; this implies that coproducts are exact.

(AB5) _e categoryA satisûes the axiomAB3 and colimits are exact: a colimit
of a family ofmonomorphisms is amonomorphism.
_e axioms (AB∗3 ), (AB∗4), (AB∗5 ) are deûned similarly by replacing colimits,
cocomplete, coproducts andmonomorphisms by limits, complete, products and
epimorphisms; they amoint to the initial axioms in the opposite categoryAo.

Of course, the axiom (AB3) and its dual should have been stated with more
care: for example, assuming that U is a universe such thatC (X,Y) belongs to U,
for every pair (X,Y) of objects, one should restrict to limits or colimits deûned
by quivers in U.

One says that a family (Pi)i∈I of objects ofC is generating (resp. is cogener-
ating) if, for every nonzero object X ofC , there exists an index i ∈ I such that
C (Pi ,X) = 0 (resp. C (X,Pi) = 0). When the family (Pi)i∈I is reduced to a
single object P, one says that P is a generator (resp. a cogenerator).

One says that an abelian categoryC is a Grothendieck category if it satisûes
the axiom (AB∗5 ) (existence and are exactness of colimits) and if it admits a
generator P. _en for every object X ofC , there exists a set J, a family (i j) j∈J
and an epimorphism f ∶ ⊕ j∈J Pi j → X.

Example (1.4.8). — a) Let k be a ring; the category Mod(k) is an abelian
category which satisûes the axioms (AB3), (AB4), (AB5), (AB∗3 ) and (AB∗4), but
does not satisfy (AB∗5 ).

Moreover, the ring k (viewed as a k-module) is a generator. Consequently, the
categoryMod(k) is a Grothendieck category.



18 CHAPTER 1. CATEGORIES

b) LetX be a topological space and let O be a sheaf of rings onX. _e category
Mod(O) ofO-modules on X satisûes the axioms (AB3), (AB4), (AB5), (AB∗3 ),
but not (AB∗4).
For every open subset, let OU be the extension by zero of the ring sheaf O ∣U.

_e family (OU)U is generating.

Deûnition (1.4.9). — Let C be an abelian category.

a) An object I ofC is said to be injective if for every monomorphism j ∶ X→ Y
and every morphism f ∶ X → I, there exists a morphism g ∶ Y → I such that
f = g ○ j.
b) An object P ofC is said to be projective if for every epimorphism p ∶ X→ Y

and every morphism f ∶ P → Y, there exists a morphism g ∶ P → X such that
f = p ○ g.

In other words, an object I is injective if and only if the le�-exact functor
C (⋅, I) is exact; an object P is projective if and only if the le�-exact functor
C (P, ⋅) is exact.

_eorem (1.4.10) (Grothendieck). — Let C be a Grothendieck abelian category.
For every objectX ofC , there exists an injective object I ofC and amonomorphism
f ∶ X→ I.

For the proof, see (Grothendieck, 1957, théorème 1.10.1).
When the conclusion of the theorem holds, one says that C admits enough

injectives.
(2)

1.5. Complexes in additive categories

Let A be an additive category.

(2)To be added: representability of a contravariant additive functor from an abelian category admitting a
generator to the category of abelian groups.
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1.5.1. — A complex in A is a sequence (dn ∶ Xn → Xn+1)n∈Z ofmorphisms in A

such that dn+1 ○ dn = 0 for every n ∈ Z. _ese morphisms dn are called the
diòerentials of this complex. One generally denotes such a complex by the
letter X, remembering of the objects rather than the diòerentials, which may
then be denoted by dn

X,writing the name X of the complex as a subscript to avoid
possible confusions.

LetX and Y be complexes inA. Amorphism of complexes f ∶ X→ Y is a family
f = ( f n)n∈Z where, for every n ∈ Z, f n ∈A(Xn ,Yn), such that

dn
Y ○ f n = f n+1 ○ dn+1

X

for every n ∈ Z. Morphisms of complexes are composed in the obvious way.
_e complexes in C form an additive categoryC (A): products and coprod-

ucts are computed termwise.
One also considers ûnite or semi-inûnite complexes involving sequences in-

dexed by an interval inZ. _ey amount to extending the sequence of diòerentials
by zero morphisms to/from zero objects.

1.5.2. — LetX be a complex in an additive categoryA. Let m ∈ Z. _emth shi�
of X is the complex ΣmX deûned by: (ΣmX)n = Xm+n and dn

ΣmX = (−1)mdm+n
X

for every n ∈ Z. For m = 1, one simply writes ΣX; this is the complex obtained
by shi�ing X one step to the le�.

If f ∶ X→ Y is amorphism of complexes in A, themorphism Σm f ∶ ΣmX→
ΣmY is deûned by (Σm f )n = f m+n for every n ∈ Z.

In this way, the assignment (X↦ ΣmX, f ↦ Σm f ) gives rise to a functor Σ of
the categoryC (A) onto itself.

One has Σ0 = id and Σm+p = Σm ○ Σp for every m, p ∈ Z. In particular, the
functors Σm are isomorphisms of categories.

1.5.3. — Let f , g ∶ X→ Y be two morphisms of complexes in an additive cate-
goryA. A homotopy with origin f and target g is a sequence θ = (θn)n∈Z where,
for every n ∈ Z, θn ∈A(Xn ,Yn−1) such that,

f n − gn = dn−1
Y ○ θn + θn+1 ○ dn

X.

Let h ∶ Y→ Z be amorphism of complexes; then the family h ○ θ = (hn−1 ○ θn)
is a homotopy with origin h ○ f and target h ○ g.

Let k ∶ Z→ X be amorphism of complexes; then the family θ ○ k = (θn ○ kn−1)
is a homotopy with origin f ○ k and target g ○ k.
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1.5.4. — Let X and Y be complexes in the additive categoryA; for every n ∈ Z,
let f n ∈A(Xn ,Yn). We deûne as follows the cone of f , denoted by C f : For every
n ∈ Z, one sets Cn

f = Yn ⊕Xn+1, and one deûnes amorphism dn
C f ∶ C

n
f → Cn+1

f by
the block-matrix ( d

n
Y f n+1

0 −dn+1
X

).
Observe that dn+1

C f ○ d
n
C f is given by the product ofmatrices

(d
n+1
Y f n+2

0 −dn+2
X

)(d
n
Y f n+1

0 −dn+1
X

) = (0 dn+1
Y f n+1 − f n+2dn+1

X
0 0 ) ,

so that C f is a complex if and only if f is amorphism of complexes.
Let us assume that f is amorphism of complexes. _e canonical morphisms

αn
f ∶ Yn → Cn

f = Yn⊕Xn+1 deûne amorphismof complexes α f ∶ Y→ C f . Similarly,
the canonical morphisms βn+1

f ∶ Cn
f = Yn ⊕ Xn+1 → Xn+1 deûne amorphism of

complexes β f ∶ C f → ΣX. One has β f ○ α f = 0.
For every n ∈ Z, let θn

f ∶ Xn → Yn−1 ⊕ Xn = Cn−1
f be the canonical morphism.

One has

dn−1
C f ○ θn

f + θn+1
f ○ dn

X = (d
n−1
Y f n

0 −dn
X
)( 0

idXn
) + ( 0

idXn+1
) dn

X

= ( f
n

−dn
X
) + ( 0

dn
X
) = ( f

n

0 ) = α f ○ f .

Consequently, the family θ f = (θn
f ) is a homotopy with origin α f ○ f and target 0.

Conversely, let g ∶ Y→ Z be amorphismof complexes and let η be a homotopy
with origin g ○ f and target 0. _en the family (γn) given, for every n ∈ Z, by
γn = ( gn φn ) is the uniquemorphismof complexes γ ∶ C f → Z such that γ○α f = g
and γ ○ θ = η.

In other words, the triple (C f , α f , θ f ) solves the universal problem of mak-
ing α f ○ f the origin of a homotopy θ f with target 0.
For every n ∈ Z, let φn

f ∶ C
n
f → Yn = (ΣY)n−1 be the canonical morphism. One

has

dn−1
ΣY ○ φn

f + φn+1
f ○ dn

C f = −d
n
Y (idYn 0) + (idYn+1 0)(d

n
Y f n+1

0 −dn+1
X

)

= (−dn
Y 0) + (dn

Y f n+1) = (0 f n+1)
= Σ f ○ β f ,

so that the family φ f = (φn
f ) is a homotopy with origin Σ f ○ β f and target 0.
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1.5.5. — Let f , g ∶ X→ Y be two morphisms of complexes and let φ be a homo-
topy with origin f and target g. For every n ∈ Z, let λn ∶ Yn ⊕Xn+1 → Yn ⊕Xn+1

be given by the block-matrix ( 1 φn+1

0 1 ). _e family λ = (λn) is an isomorphism
of complexes from C f to Cg which makes the diagram

X Y C f ΣX

X Y Cg ΣX

←→f

⇐⇐ ⇐⇐

←→
α f

←→ λ

←→
β f

⇐⇐

←→g ←→
α f ←→

β f

commutative.

1.5.6. — Let X,Y be complexes in an additive category A. Two morphisms
of complexes f , g ∶ X → Y are said to be homotopic if there exists a homotopy
with origin f and target g. _is is an equivalence relation, compatible with the
group structure on C (A)(X,Y). Morphisms homotopic to 0 are called null
homotopic; they form a subgroup C (A)(X,Y)0 ofC (A)(X,Y). Deûne

K (A)(X,Y) =C (A)(X,Y)/C (A)(X,Y)0.

Passing to the quotients, the composition maps in C (A) induce composition
maps

K (A)(X,Y) ×K (A)(Y,Z)→K (A)(X,Z).
_esemaps deûne a categoryK (A), called the homotopy category of the additive
categoryA.

It is an additive category. _e functors Σm, for m ∈ Z, extend to K (A).

1.6. Complexes in abelian categories

1.6.1. — Let us assume that A an abelian category. Let X be a complex in A.
Let n ∈ Z. We want to deûne the nth cohomology object of X. When A is the
category of modules over a given ring k, this object is classically deûned by
Hn(X) = Ker(dn

X)/I(dn−1
X ). In the abstract framework of abelian categories, a

few other descriptions are available, none of them is obviously preferable to the
other.

Since dn
X ○ dn−1

X = 0, the canonical monomorphism Im(dn−1
X ) → Xn factors

uniquely through Ker(dn) → Xn. Let Hn(X) be a cokernel of the induced
morphism φn

X ∶ Im(dn−1
X )→ Ker(dn

X).
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_e consideration of the opposite category furnishes a diòerent descrip-
tion: the canonical morphism Xn → Im(dn

X) factors uniquely through
Xn → Coker(dn−1

X ); let H̃n(X) be a kernel of the resulting epimorphism
ψn
X ∶ Coker(dn−1

X )→ Im(dn
X).

(1.6.1.1)

Im(dn−1
X ) Ker(dn

X) Hn(X)

Xn−1 Xn Xn+1

H̃n(X) Coker(dn−1
X ) Coim(dn

X)

↩ →
φn
X

↩
→

↩
→

← ↠

← →
dn−1
X

←

↠

← →
dn
X

←

↠

←

↠

↩ → ←↠
ψn
X

↩

→

Let u ∶ Ker(dn
X) → Coker(dn−1

X ) be the composition of the two canonical
morphisms indicated on the diagram.

Since u ○ φn
X = 0, themorphism φn

X factors uniquely through Ker(u). Since
the following composition of canonical monomorphisms

Im(dn−1
X )↪ Ker(u)↪ Ker(Xn → Coker(dn−1

X ))→ Im(dn−1
X )

is the identity, these monomorphisms are isomorphisms; in particuliar, the
morphism φn

X induces an isomorphism Im(dn−1
X ) ∼Ð→ Ker(u).

Since ψn
X ○ u = 0, themorphism ψn

X factors uniquely through Coker(u); one
checks as above that it induces an isomorphism Coker(u) ∼Ð→ Coim(dn

X)
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Using the canonical identiûcationCoim(u) ∼Ð→ Im(u), one then gets canonical
isomorphisms

Coim(u) ≃ Coker(Ker(u)→ Ker(dn
X))

≃ Coker(Im(dn−1
X )→ Ker(dn

X))
≃ Coker(Xn−1 → Ker(dn

X))
≃ Hn(X)

≃ Im(u) ≃ Ker(Coker(dn−1
X )→ Coker(u))

≃ Ker(Coker(dn−1
X )→ Coim(dn

X))
≃ Ker(Coker(dn−1

X )→ Xn+1)

≃ H̃n(X)

Once identiûed via these isomorphisms, any of these objects will be called the
nth cohomology object of the complex X, and denoted by Hn(X).
One says that the complex X is acyclic, or exact at Xn ifHn(X) = 0. By what

precedes, this is equivalent to any of the (equivalent) conditions:

u = 0

Coim(dn−1
X ) ∼Ð→ Ker(dn

X)
Xn−1 ↠ Ker(dn

X)

Coker(dn−1
X ) ∼Ð→ Im(dn

X)
Coker(dn−1

X )↪ Xn+1.

If the complex X is exact at Xn, for every n ∈ Z, then one says that X is acyclic,
or exact.

Lemma (1.6.2). — Let A be an abelian category and let X be a complex in A;
let n ∈ Z. With the notation of the diagram (1.6.1.1), consider the following mor-
phisms: (i) themorphismHn(X)→ Coker(dn−1

X ) deduced from the canonical mor-
phism of the diagram and the canonical isomorphism H̃n(X)→ H̃n(X); (ii) the
canonical morphism Coker(dn−1

X )→ Xn+1) factors uniquely through amorphism
Coker(dn−1

X ) → Ker(dn+1
X ); (iii) the canonical morphism Ker(dn+1

X ) → Hn+1(X).
_esemorphisms induce an exact sequence:

0→ Hn(X) (i)Ð→ Coker(dn−1
X ) (ii)Ð→ Ker(dn+1

X ) (iii)Ð→ Hn+1(X)→ 0.
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Proof. — Composed with dn+1
X on the le�, and with the canonical epimorphism

Xn → Coker(dn−1
X ) on the right, themorphism Coker(dn−1

X )→ Xn+1) becomes
equal to dn+1

X ○dn
X = 0. Consequently, SinceXn → Coker(dn−1

X ) is an epimorphism,
this implies that themorphism Coker(dn−1

X )→ Xn+1 factors through Ker(dn+1
X ),

hence the existence of themorphism labeled (ii).
Exactness at Hn(X) follows from the fact that the morphism (i), H̃n(X) →

Coker(dn−1
X ), is amonomorphism. Similarly, exactness at Hn+1(X) follows from

the fact that themorphism (iii), Ker(dn+1
X )→ Hn+1(X), is an epimorphism.

Let us show exactness at Coker(dn−1
X ): the kernel of themorphism (ii) coin-

cides with that of ψn
X, because themorphism Coim(dn

X)→ Xn+1 is amonomor-
phism, that is, with Im(u), that is with the image ofHn(X).

Let us ûnally show exactness at Ker(dn+1
X ): by construction, the kernel of

the morphism (iii) is the image of dn
X, which coincides with the image of the

morphims (ii).

1.6.3. — _e cohomology objects are functorial: any morphism of complexes
f ∶ X→ Y induces morphisms of cohomology objects Hn( f ) ∶ Hn(X)→ Hn(Y)
in such a way that Hn(g ○ f ) = Hn(g) ○Hn( f ) and Hn(idX) = idHn(X). _ese
functors are also additive.

IfHn( f ) is an isomorphism for every n ∈ Z, then one says that f is a homolo-
gism, or a quasi-isomorphism. We also say that two complexes are homologous,
or quasi-isomorphic, if there exists a homologism from one to another. (_is is
not an equivalence relation in general.)

Lemma (1.6.4). — Let A be an abelian category.

a) Let f , g ∶ X→ Y bemorphisms of complexes in A. If f and g are homotopic,
then Hn( f ) = Hn(g) for every n ∈ Z.
b) Let f ∶ X→ Y be amorphismof complexes inA. If f induces an isomorphism

in the homotopy categoryK (A), then f is a homologism.
c) Let X be a complex in A. If the identity morphism idX is null homotopic,

then the complex X is acyclic.

Proof. — a) Let (θn)n∈Z be a family ofmorphisms, where for every n, θn ∈
A(Xn ,Yn−1), such that gn − f n = dn−1

Y ○ θn + θn+1 ○ dn
X for every n ∈ Z. _e

morphism Hn(g) −Hn( f ) ∶ Hn(X) → Hn(Y) decomposes as the sum of two
morphisms respectively induced by dn−1

Y ○ θn and θn+1 ○ dn
X. _e ûrst one is
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zero, because it factors through the image of dn−1
Y in Hn(Y), which is zero by

construction. _e second one is zero as well, since dn
X annihilates Ker(dn

X).
Consequently,Hn(g) = Hn( f ).
b) Let g ∶ Y → X be amorphism of complexes such that f ○ g and g ○ f are

homotopic to identity. _en Hn( f )○Hn(g) = id andHn(g)○Hn( f ) = id, hence
Hn( f ) is an isomorphism, for each n ∈ Z. In other words, f is a homologism.
c) Assume that idX is null homotopic. _en one has idHn(X) = Hn(idX) =

Hn(0) = 0, for every n ∈ Z. Consequently, Hn(X) = 0 for every n, and X is
acyclic.

1.6.5. — Let

0→ X
f
Ð→ Y

g
Ð→ Z→ 0

be an exact sequence of complexes in an abelian categoryA. For every n ∈ Z,
themorphisms f n and gn give rise to an exact sequence

0→ Xn f n
Ð→ Yn gn

Ð→ Zn → 0

in A.
Let C f be the cone of f , let α f ∶ Y → C f and β f ∶ C f → ΣX be the canonical

morphisms, and let θ f ∶ C f → Σ−1X be the canonical homotopy such that α f ○ f =
dC f ○ θ f + θ f ○ dX.

Since g ○ f = 0, the null homotopy g ○ f ≃ 0 induces a uniquemorphism of
complexes h ∶ C f → Z such that h ○ α f = g and h ○ θ f = 0. Explicitly, α f = ( 1

0 )
and θ f = ( 0 1 ), so that h = ( g 0 ).

Lemma (1.6.6). — a) _emorphisms f , α f , β f induce a long exact sequence
of objects in A:

Hn−1(β f )ÐÐÐÐ→ Hn(X)
Hn( f )
ÐÐÐ→ Hn(Y)

Hn(α f )ÐÐÐ→ Hn(C f )
Hn(β f )ÐÐÐ→ Hn+1(X)

Hn+1( f )
ÐÐÐÐ→ . . .

b) _emorphism h ∶ C f → Z is a homologism.
c) _emorphism f is a homologism if and only if C f is acyclic, if and only if Z

is acyclic.

Proof. — For this proof, we shall pretend that the abelian categoryA is a cate-
gory ofmodules.
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a) Since α f ○ f is null homotopic, one hasHn(α f )○Hn( f ) = 0. Since β f ○α f =
0, one has Hn(β f ) ○ Hn(α f ) = 0. Since Σ f ○ β f is null homotopic, one has
Hn+1( f ) ○Hn(β f ) = 0.

Let x ∈ Xn be such that dX(x) = 0 and such that Hn( f )([x]) = 0 in Hn(Y).
Let y ∈ Yn−1 be such that f (x) = dY(y); let z = ( −yx ); one has dC f (z) = 0 and
β f (z) = x. _is proves exactness at Hn(X).

Let y ∈ Yn be such that dY(y) = 0 and such that Hn(α f )([y]) = 0; let z ∈ Cn−1
f

be such that ( y
0 ) = dC f (z); write z = ( y′

x′ ). One has d(y′) + f (x′) = y and
d(x′) = 0, hence [y] = [ f (x′)] = Hn( f )([x′]). _is proves exactness at Hn(Y).

Let z ∈ Hn(C f ) be such that dC f (z) = 0 and Hn(β f )([z]) = 0 in Hn+1(X);
write z = ( y

x ). One has d(y) + f (x) = 0 and d(x) = 0; moreover, there exists
x′ ∈ Xn such that x = d(x′). Consequently, d(y + f (x′)) = 0 and

z = ( y+ f (x′)
0 ) − ( f (x′)

−x ) = ( y+ f (x′)
0 ) − dC f ((

0
x′ ))

so that [z] = Hn(α f )([y + f (x′)]). _is proves exactness at Hn(C f ).
b) Let n ∈ Z. Let z ∈ Cn

f be such that d(z) = 0 and Hn(h)([z]) = 0. Let
z′ ∈ Zn−1 be such that h(z) = dZ(z′); write z = ( y

x ). _en d(y) + f (x) = 0,
d(x) = 0 and d(z′) = g(y). Since gn−1 ∶ Yn−1 → Zn−1 is surjective, there exists
y′ ∈ Yn−1 such that z′ = g(y′); then d(z′) = dZ(g(y′)) = g(dY(y′)), so that
g(y−dY(y′)) = 0; consequently, there exists x ∈ Xn such that y−dY(y′) = f (x).
We thus have z = ( d(y′)+ f (x)x ) = d(( y′

x )), so that [z] = 0. _is proves that Hn(h)
is injective.

Let now z ∈ Zn be such that dn
Z(z) = 0. Since gn is surjective, there exists y ∈ Yn

such that z = gn(y), hence 0 = dn
Z(gn(y)) = gn(dn

Y(y)). Consequently, there ex-
ists x ∈ Xn−1 such that dn

Y(y) = f n−1(x). One has f n(dn−1
X (x)) = dn

Y( f n−1(x)) =
0, hence dX(x) = 0 since f n is injective. Let z′ = ( y

−x ) ∈ Cn−1
f . One has d(z′) = 0

and h(z′) = g(y) = z, so that Hn(h)([z′]) = [z]. _is proves that Hn(h) is
surjective.
c) If Hn(C f ) = 0, the exact sequence of a) shows that Hn( f ) is an epimor-

phism and Hn+1( f ) is amonomorphism. Consequently, if C f is acyclic, then
Hn( f ) is an isomorphism for every n, so that f is a homologism.
Conversely, if Hn( f ) is an epimorphism, then Hn(α f ) = 0, while if Hn( f )

is a monomorphism, then Hn−1(β f ) = 0. In particular, if f is a homologism,
then Hn(α f ) = 0 and Hn(β f ) = 0 for every n. _en, 0 = Im(Hn(α f )) =
Ker(Hn(β f )) = Hn(C f ) for every n, so that C f is acyclic.
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1.7. Exercises

Exercise (1.7.1). — Let C be the category of sets.
a) Provemonomorphisms, epimorphisms, and isomorphisms coincide respec-

tively with injective, surjective, and bijectivemaps.
b) Show that the empty set is the initial object, while singletons are terminal

objects.
c) Observe that every morphism to the initial object is an isomorphism, while

not everymorphism from the terminal object is an isomorphism. Conclude that
the category of sets is not equivalent to its opposite category.
d) Compute equalizers, coequalizers, products and coproducts inC . More

generally, prove that “all” limits (resp. colimits) exist in C .

Exercise (1.7.2). — In the category of rings, let f ∶ Z → Q be the inclusion
morphism. Show that f is both amonomorphism and an epimorphism but is
not an isomorphism.

Exercise (1.7.3). — a) Let C be a category, let I be a set and, for every i ∈ I, let
fi ∈C (xi , yi) be amorphism in C . Assume that the products x =∏i∈I xi and
y =∏i∈I yi exist in C and let f ∈C (x , y) be the corresponding morphism. If
fi is amonomorphism, for every i ∈ I, then f is amonomorphism.
b) State the analogous property for coproducts of epimorphisms.
c)Assume thatC is an additive category. Prove that products of ûnite families

of epimorphisms are epimorphisms, and that coproducts of ûnite families of
monomorphisms aremonomorphisms.

Exercise (1.7.4). — Let C be a category.
a) One says that a morphism u ∈ C (x , y) is an extremal epimorphism if,

for every factorization u = m ○ v, where m is amonomorphism, then m is an
isomorphism. Prove that an extremal epimorphism is an epimorphism.
b) A morphism which is both an extremal epimorphism, and a monomor-

phism is an isomorphism.
c) One says that amorphism u ∈ C (x , y) is a regular epimorphism if there

exists an object t and two morphisms f , g ∈C (t, x) of which u is a coequalizer
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(that is, a colimit of the diagram t x

←→f←→g
). Prove that a regular epimorphism

is an extremal epimorphism.

Exercise (1.7.5). — Let A be an abelian category satisfying both axioms (AB5)
and (AB∗5 ).
a) Let X be and let I be a set. Let (Xi)i∈I be the family in A where Xi = X for

every i ∈ I. Show that the canonical morphism X(I)→ XI from the coproduct of
the family (Xi)i∈I to its product is an isomorphism.
b) Prove that X is a zero object in A.



CHAPTER 2

TRIANGULATED CATEGORIES

2.1. Triangulated categories

Let C be an additive category endowed with an automorphism Σ ofC (trans-
lation).

Deûnition (2.1.1). — A triangle in C is a complex T such that dn+3
T = Σdn

T for
every n ∈ Z. Amorphism of triangles f ∶ T→ T′ is amorphism of complexes such
that f n+3 = Σ f n for every n ∈ Z.

Concretely, a triangle only depends on three consecutive objects and mor-
phisms, and is represented as follows:

X uÐ→ Y vÐ→ Z wÐ→ ΣX,

the next diòerential being Σu ∶ ΣX→ ΣY, etc. Conversely, a sequence (u, v ,w)
of three composablemorphisms gives rise to a triangle if and only if v ○ u = 0,
w ○ v = 0 and Σu ○w = 0. _e datum of amorphism from such a triangle to a
similar triangle

X′ u′Ð→ Y′ v′Ð→ Z w′

Ð→ ΣX′

is equivalent to the datum of three morphisms f ∶ X → X′, g ∶ Y → Y′ and
h ∶ Z→ Z′ such that u′ ○ f = g ○ u, v′ ○ g = h ○ v and w′ ○ h = Σ f ○w.

Morphisms of triangles are composed in the obvious way, and triangles in C

form a category.
Triangles are complexes in C , hence can be shi�ed; observe that a shi� of a

triangle is a triangle. However, to avoid confusion with the automorphism Σ
ofC , we shall not use the letter Σ to indicate shi�s of triangles.
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2.1.2. — Since triangles inC are complexes, amorphismof triangles φ ∶ T→ T′
gives rise to a cone Cφ. Let us explicit the description of this cone. Let us thus
consider amorphism of triangles, as represented by the diagram:

X Y Z ΣX

X′ Y′ Z′ ΣX.

← →u

←→ f

← →v

←→ g

← →w

←→ h ←→ Σ f

←→u′ ←→v′ ←→w′

By deûnition, its cone is the complex

X′ ⊕ Y
(u

′ g
0 −v )ÐÐÐÐ→ Y′ ⊕ Z

( v
′ h
0 −w )ÐÐÐÐ→ Z′ ⊕ ΣX

(
w′ Σ f
0 −Σu

)

ÐÐÐÐÐ→ ΣX′ ⊕ ΣY.

_ere is also a natural notion of homotopy between morphisms of triangles. If
two morphisms of triangles F = ( f , g , h) and F′ = ( f ′, g′, h′) are homotopic, the
choice of a homotopy η = (θ , φ,ψ) with origin ( f , g , h) and target ( f ′, g′, h′)
gives rise to amorphismof triangles λ ∶ CF → CF′ , explicitly given by the diagram

CF X′ ⊕ Y Y′ ⊕ Z Z′ ⊕ ΣX ΣX′ ⊕ ΣY

CF′ X′ ⊕ Y Y′ ⊕ Z Z′ ⊕ ΣX ΣX′ ⊕ ΣY

←→ λ

= ←→
(u

′ g
0 −v )

←→ ( 1 θ
0 1 )

←→
( v

′ h
0 −w )

←→ ( 1 φ
0 1 )

←→
(
w′ Σ f
0 −Σu

)
←→ ( 1 ψ

0 1 )

←→ ( 1 Σθ
0 1 )

= ←→
(u

′ g′
0 −v )

←→
( v

′ h′
0 −w )

←→
(
w′ Σ f ′
0 −Σu

)

_is morphism λ is an isomorphism.
Finally, one says that a triangle T is contractible if idT is null homotopic.

Deûnition (2.1.3). — A triangulated category is an additive categoryC endowed
with an automorphism Σ and a set T of triangles such that the following properties
hold:

(2.1.3.1) A triangle isomorphic to a triangle in T belongs to T ;
(2.1.3.2) A triangle X uÐ→ Y vÐ→ Z wÐ→ ΣX in C belongs to T if and only if the

triangle Y −vÐ→ Z −wÐ→ ΣX −ΣuÐÐ→ ΣY belongs to T ;
(2.1.3.3) For every object, the triangle X idXÐ→ X→ 0→ ΣX belongs to T ;
(2.1.3.4) For every morphism u ∶ X→ Y in C , there exists a triangle X uÐ→ Y→

Z→ ΣX in T ;
(2.1.3.5) Let X uÐ→ Y vÐ→ Z wÐ→ ΣX and X′

u′Ð→ Y′ v′Ð→ Z w′

Ð→ ΣX′ be triangles
of T . For every f ∈ C (X,X′) and every g ∈ C (Y,Y′) such that u′ ○ f = g ○ u,
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there exists amorphism h ∈C (Z,Z′) such that ( f , g , h) induces amorphism of
triangles:

X Y Z ΣX

X′ Y′ Z′ ΣX

← →u

←→ f

← →v

←→ g

←→w

←→ h ←→ Σ f

←→u′ ←→v′ ←→w′

whose cone belongs to T .

Let us say that a triangle in C is a distinguished triangle if it belongs to T ,
and that a morphism of triangles is a distinguished morphism if its cone is a
distinguished triangle.

_e axioms a triangulated category thus claim that triangles isomorphic to
distinguished triangles are distinguished (2.1.3.1), as well as their shi�s (2.1.3.2);
they assert the existence of distinguished triangles (2.1.3.3), (2.1.3.4); they ûnally
allow to construct distinguishedmorphisms between distinguished triangles
with two prescribed arrows (2.1.3.5).

Given two morphisms of triangles which are homotopic, if one of them is
distinguished, then so is the other.

If one relaxes axiom (2.1.3.5) by only requiring the existence of amorphism h,
one gets the weaker notion of a pretriangulated category.

2.1.4. — Let (C , Σ,T ) be a (pre)triangulated category. Let us endow the
opposite categoryC o with the translation functor Σ−1. Observe that a triangle
in C , when viewed as a complex in C o, is again a triangle, so that T o = T is a
set of triangles in C .

Let us prove that (C o, Σ−1,T o) is a (pre)triangulated category. Ax-
ioms (2.1.3.1) and (2.1.3.2) follow formally from their analogue in C .

LetX be anobject inC . Shi�ing the distinguished triangleΣ−1X
idΣ−1XÐÐÐ→ Σ−1X→

0→ X in C , we obtain the distinguished triangle Σ−1X→ 0→ X − idXÐÐ→ X. In the
opposite category, this triangle rewrites as X − idXÐÐ→ X → 0 → Σ−1X. Since it is
isomorphic to the triangle X idXÐ→ X→ 0→ Σ−1X, axiom (2.1.3.3) holds in C o.
A similar argument shows that axioms (2.1.3.4) and (2.1.3.5) hold as well.

Example (2.1.5). — Let C be an additive category and let K (C ) be the homo-
topy category of complexes in C . We have seen how the cone of amorphism of
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complexes f ∶ X→ Y sits in a diagram

X
f
Ð→ Y

α fÐ→ C f
β fÐ→ ΣX,

where α f ○ f is homotopic to 0, β f ○ α f = 0 and Σ f ○ β f is homotopic to 0.
Consequently, these diagrams give rise to triangles in the homotopy category.
We shall prove below (theorem 2.4.3) that the categoryK (C ), endowed with
the triangles isomorphic to such a cone triangle, is a triangulated category.

Deûnition (2.1.6). — Let C be a (pre)triangulated category. An additive functor
H ∶ C → A to an abelian category is said to be cohomological if the complex
H(T) in A is exact for every distinguished triangle T.

Let H ∶ C → A be a cohomological functor. For every integer m ∈ Z, set
Hm = H ○ Σm. By deûnition, every distinguished triangle

X uÐ→ Y vÐ→ Z wÐ→ ΣX

gives rise to a long exact sequence

⋅ ⋅ ⋅→ H−1(Z)
H−1(w)
ÐÐÐ→ H0(X)

H0(u)
ÐÐÐ→ H0(Y)

H0(v)
ÐÐÐ→ H0(Z)

H0(w)
ÐÐÐ→ H1(X)

H1(u)
ÐÐÐ→ . . .

On the other hand, a shi�ing argument shows that to verify that an additive
functor is cohomological, it suõces to prove that for every distinguished triangle
as above, the complex H(X)→ H(Y)→ H(Z) is exact at H(Y).

Lemma (2.1.7). — Let C be a (pre)triangulated category and let A be an object
ofC . _e functor C (A, ⋅) ∶ C →Ab is a cohomological functor.

Proof. — Let X uÐ→ Y vÐ→ Z wÐ→ ΣX be a distinguished triangle and let us show
that the complex

C (A,X) u∗Ð→C (A,Y) v∗Ð→C (A,Z)

is exact in themiddle, where u∗ and v∗ are the group morphisms deduced from
composition with u and v respectively.
First of all, we recall that v∗ ○ u∗ = 0; indeed v∗ ○ u∗ maps every f ∈C (A,X)

to v ○ u ○ f = 0.
Let then f ∈ C (A,Y) be such that v∗( f ) = v ○ f = 0. By axioms (2.1.3.3)

and (2.1.3.2), the triangle A → 0 → ΣA − idΣAÐÐÐ→ ΣA is distinguished; by ax-
iom (2.1.3.2), the triangle Y −vÐ→ Z −wÐ→ ΣX −ΣuÐÐ→ ΣY is distinguished. By ax-
iom (2.1.3.5), there exists amorphism h1 ∈ C (ΣU, ΣX) making the following
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diagram

A 0 ΣA ΣA

Y Z ΣX ΣY

←→

←→ f

←→

←→

←→− idΣA

←→ h1

←→ Σ f

←→−v ←→−w ←→−Σu

commutative. In particular, Σu ○ h1 = Σ f , so that f = u ○ Σ−1h1 belongs to
Im(u∗).

2.2. Decent cohomological functors, and applications

Deûnition (2.2.1). — Let A be an abelian category satsfying the axiom (AB∗4):
products exist, and a product of exact sequences is exact. A cohomological functor
H ∶ C →A is said to be decent if it respects products.

For example, for every object A ∈ ob(C ), the functor C (A, ⋅), from C to the
categoryAb of abelian groups, is a decent cohomological functor.

Deûnition (2.2.2). — A triangle T in C is said to be decent if the complex H(T)
is exact for every decent cohomological functor H.

In particular, a distinguished triangle is decent.
In this deûnition,we should take care about universes. In practice,wewill only

use decent cohomological functors of the form C (A, ⋅), where A is an object of
the (pre)triangulated categoryC . Consequently, if U is a universe containing
C (X,Y) for every X,Y ∈ ob(C ), it suõces to consider cohomological functors
with values in AbU. (Check!)

Proposition (2.2.3). — Let C be a (pre)triangulated category. Let us consider a
morphism

X Y Z ΣX

X′ Y′ Z′ ΣX.

← →u

←→ f

← →v

←→ g

← →w

←→ h ←→ Σ f

←→u′ ←→v′ ←→w′

of decent triangles.

a) _e cone triangle of this morphism is a decent triangle.
b) If f and g are isomorphisms, then h is an isomorphism, so that thismorphism

of triangles is an isomorphism.
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Proof. — a) By deûnition, the triangle cone of this morphism is the triangle

X′ ⊕ Y
(u

′ g
0 −v )ÐÐÐÐ→ Y′ ⊕ Z

( v
′ h
0 −w )ÐÐÐÐ→ Z′ ⊕ ΣX

(
w′ Σ f
0 −Σu

)

ÐÐÐÐÐ→ ΣX′ ⊕ ΣY.

Let us prove that it is decent. Let H ∶ C →A be a decent cohomological functor
and let us show that the induced diagram

H(X′⊕Y)
H(u

′ g
0 −v )ÐÐÐÐÐ→ H(Y′⊕Z)

H( v′ h
0 −w )ÐÐÐÐÐ→ H(Z′⊕ΣX)

H(w
′ Σ f
0 −Σu

)

ÐÐÐÐÐÐ→ H(ΣX′⊕ΣY).

is an exact sequence in the abelian categoryA. SinceH respects products, we
have H(X′ ⊕ Y) = H(X′) ⊕H(Y), etc., so that this diagram is the cone of the
morphism of complexes in A obtained by applying the functor H to the initial
morphism of triangles. By assumption, these complexes are acyclic, so that the
resulting complex is acyclic as well (lemma 1.6.6; amorphism between acyclic
complexes must be a homologism!). _is proves that the given morphism of
triangles is decent, as was to be shown.
b) Let A be an object ofC and let us apply the functor C (A, ⋅); we obtain

the diagram of abelian groups

C (A,X) C (A,Y) C (A,Z) C (A, ΣX) C (A, ΣY)

C (A,X′) C (A,Y′) C (A,Z′) C (A, ΣX′) C (A, ΣY′)

←→u

←→ f

←→v

←→ g

←→w

←→ h ←→ Σ f

←→Σu

←→ Σg

←→
u′

←→
v′

←→
w′

←→
Σu′

whose two rows are exact sequences. _e two le� vertical morphisms are induced
by f and g, hence are isomorphisms, as well as the two right vertical morphisms,
which are induced by Σ f and Σg. By the ûve lemma, themorphism h ∶ Z→ Z′
induces an isomorphism C (A,Z) → C (A,Z′). Since this holds for every
object A, it then follows from the Yoneda lemma that h is an isomorphism.

Corollary (2.2.4). — Let C be a (pre)triangulated category and let u ∶ X → Y
be a morphism in C . Let T ∶ X uÐ→ Y → Z → ΣX and T′ ∶ X uÐ→ Y → Z′ →
ΣX be distinguished triangles. _ere exists a morphism of triangles of the form
(idX, idY, h); moreover, for every such morphism, themorphism h ∶ Z→ Z′ is an
isomorphism.
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_is corollary furnishes a kind of “uniqueness” to the axiom (2.1.3.4), in the
sense that any two triangles extending a given morphism are isomorphic. How-
ever, there is no canonical such isomorphism. _is is in fact one of the defects
of the theory of triangulated categories that it does not functorially complete
morphisms into triangles.

Proof. — _e existence of such a morphism of triangles follows from ax-
iom (2.1.3.5). Since a distinguished triangle is decent, proposition 2.2.3 implies
that h is an isomorphism.

Corollary (2.2.5). — Let C be a (pre)triangulated category. Let f ∶ X → Y be a
morphism in C . _e triangle X

f
Ð→ Y→ 0→ ΣX is distinguished if and only if f

is an isomorphism.

Proof. — We consider themorphism of triangles:

X X 0 ΣX

X Y 0 ΣX,

←→idX

⇐⇐

←→

←→ f

←→

⇐⇐ ⇐⇐

←→f ←→ ←→

in which the top triangle is distinguished by construction, and in which two
out of three vertical morphisms are isomorphisms. If f is an isomorphism,
then this morphism of triangles is an isomorphism, so that the bottom triangle
is distinguished as well. Conversely, if both triangles are distinguished, then
proposition 2.2.3 (a�er a shi� of the diagram) implies that f is an isomorphism.

Corollary (2.2.6). — Let us consider the following diagram of distinguished trian-
gles (in which the dashed arrows are not supposed to exist):

X Y Z ΣX

X′ Y′ Z′ ΣX.

← →u

←→ f

← →v

←→ g

← →w

←→ h ←→ Σ f

←→
u′

←→
v′

←→
w′

a) _e following conditions are equivalent: 1) One has v′ ○ g ○ u = 0; 2) _ere
exists f ∶ X → X′ such that u′ ○ f = g ○ u; 3) _ere exists h ∶ Z → Z′ such that
h ○ v = v′ ○ g; 4) _ere exists amorphism of triangles ( f , g , h).
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b) If they hold, and if C (X, Σ−1Z′) = 0, then such morphisms f and h are
uniquely determined.

Proof. — Let us prove that 1)⇒2). Applying the decent functor C (X, ⋅) to the
bottom triangle, one obtains an exact sequence

C (X, Σ−1Z′)→C (X,X′) u′Ð→C (X,Y′) v′Ð→C (X,Z′).

Since v′○(g○u) = 0, there exists amorphism f ∈C (X,X′) such that g○u = u′○ f .
If,moreover,C (X, Σ−1Z′) = 0, there exists exactly one such morphism f .
Conversely, the existence of amorphism f ∶ X → X′ such that u′ ○ f = g ○ u

implies that v′ ○ g ○ u = v′ ○ u′ ○ f = 0. _is shows that 1) and 2) are equivalent.
_e proof of the equivalence 1)⇔3) follows by passing to the opposite

(pre)triangulated category.
_e implications 4)⇒2) and 4)⇒3) are obvious.
Finally, if 2) holds, the existence of amorphism of triangles as in 4) follows

from axiom (2.1.3.5), so that 2)⇒4). _e proof of the implication 3)⇒4) is
analogous.
When these conditions hold and C (X, Σ−1Z′) = 0, the uniqueness of the

morphisms f and h has been established during the proof of their equivalence.

Corollary (2.2.7). — Let X uÐ→ Y vÐ→ Z wÐ→ ΣX be a distinguished triangle. Assume
that C (X, Σ−1Z) = 0. _en:

a) _emorphism w is the uniquemorphism ∂ such that the triangle X uÐ→ Y vÐ→
Z ∂Ð→ ΣX is distinguished;
b) For every distinguished triangle of the form X uÐ→ Y v′Ð→ Z′ w′

Ð→ ΣX, there exists
a uniquemorphism of triangles of the form (idX, idY, h), and it is an isomorphism.

Proposition (2.2.8). — Let C be a (pre)triangulated category.
a) A product (resp. a coproduct) of a family of distinguished triangles is a

distinguished triangle.
b) A trianglewhich is a direct factor of a distinguished triangle is a distinguished

triangle.

Proof. — a) Let (Xi
u iÐ→ Yi

v iÐ→ Zi
w iÐ→ ΣXi)i∈I be a family of distinguished

triangles. Assume that the products X = ∏i∈IXi, Y = ∏i∈IYi and Z = ∏i∈IZi

exist. Since Σ is an automorphismof the categoryC , it commuteswith products,
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and ΣX is a product of the family ΣXi . Let u ∶ X→ Y be the uniquemorphism
pYi ○ u = ui ○ pXi , for every i; deûne v and w similarly. _en X uÐ→ Y vÐ→ Z wÐ→ ΣX
is a triangle, and the claim is that this triangle is distinguished.
We ûrst prove that it is a decent triangle. To that aim, let A be an object ofC

and let us apply the cohomological functor C (A, ⋅) to this triangle. We get a
complex

C (A,∏
i

Σ−1Zi)
(Σ−1w i)ÐÐÐ→C (A,∏

i
Xi)

(u i)ÐÐ→

C (A,∏
i
Yi)

(v i)ÐÐ→C (A,∏
i
Zi)

(w i)ÐÐ→C (A,∏
i

ΣXi)

which, by deûnition of products in a category, identiûes with the product of the
complexes

C (A, Σ−1Zi)
Σ−1w iÐÐ→C (A,Xi)

u iÐ→C (A,Yi)
v iÐ→C (A,Zi)

w iÐ→C (A, ΣXi),

for i ∈ I. Since each of these complexes of abelian groups is exact (lemma 2.1.7),
the initial complex is exact as well.

Let us now complete themorphism u ∶ X → Y into a distinguished triangle
X uÐ→ Y vÐ→

′

Z′ w′

Ð→ ΣX. For every i ∈ I, there exists amorphism hi ∶ Z′ → Zi which
gives rise to amorphism of distinguished triangles:

X Y Z′ ΣX

Xi Yi Zi ΣXi .

← →u

←→pXi

←→v′

←→ pYi

← →w′

←→ h i

←→ ΣpXi

←→u i ←→v i ←→w i

Let h ∶ Z′ → Z =∏i∈IZi be themorphism (hi). It ûts in amorphism of decent
triangles

X Y Z′ ΣX

X Y Z ΣXi .

←→u

⇐⇐

←→v′

⇐⇐

← →w′

←→ h ⇐⇐
←→u ←→v ←→w i

Since two out of threemorphisms are isomorphisms (they are identities!), so
is h. Consequently, the initial triangle X uÐ→ Y vÐ→ Z wÐ→ ΣX is distinguished, as
was to be proved.

_e case of coproducts follows by considering the opposite triangulated cate-
gory.
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b) Let T ∶ X uÐ→ Y vÐ→ Z wÐ→ ΣX and T′ ∶ X′ u′Ð→ Y′ v′Ð→ Z′ w′

Ð→ ΣX′ be two triangles
whose direct sum

X⊕X′
(
u

u′ )ÐÐÐ→ Y⊕ Y′
(
v
v′ )ÐÐÐ→ Z⊕ Z′

(
w

w′ )

ÐÐÐÐ→ ΣX⊕ ΣX′

is a distinguished triangle. Let us prove that T is a distinguished triangle.
First of all, it is decent. Indeed, for every object A ∈C , applying the functor

C (A, ⋅) to the triangle T⊕ T′ furnishes the exact sequence

C (A, Σ−1Z)⊕C (A, Σ−1Z′)
(Σ

−1w
Σ−1w′

)

ÐÐÐÐÐÐÐ→C (A,X)⊕C (A,X′)→
(
u

u′ )ÐÐÐ→C (A,Y)⊕C (A,Y′)
(
v
v′ )ÐÐÐ→C (A,Z)⊕C (A,Z′)→
(
w

w′ )

ÐÐÐÐ→C (A, ΣX)⊕C (A, ΣX′).

Consequently, the complex

C (A, Σ−1Z) Σ−1wÐÐ→C (A,X) uÐ→C (A,Y) vÐ→C (A,Z) wÐ→C (A, ΣX)

is exact, which proves that the triangle T is decent.
Let us now complete themorphism u ∶ X → Y into a distinguished triangle

X uÐ→ Y ṽÐ→ Z̃ w̃Ð→ ΣX. Let h ∶ Z̃ → Z and h′ ∶ Z̃ → Z′ be morphisms that ût in a
morphism of distinguished triangles:

X Y Z̃ ΣX

X⊕X′ Y⊕ Y′ Z⊕ Z′ ΣX⊕ ΣX′.

← →u

←→( 10 )

←→ ( 10 )

← →ṽ

←→ ( h
h′ )

← →w̃

←→ ( 10 )

←→
(
u

u′ )

←→
(
v
v′ )

←→
(
w

w′ )

Composing with the projections, we obtain amorphism of decent triangles:

X Y Z̃ ΣX

X Y Z ΣX

←→u

⇐⇐ ⇐⇐

←→ṽ

←→ h

←→w̃

⇐⇐

←→u ←→v ←→w

where two vertical arrows out of three are isomorphisms. Consequently, the
remaining arrow h is an isomorphism; the triangle T is isomorphic to the top
triangle, which is distinguished, hence T is a distinguished triangle.
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Example (2.2.9). — Let X and Y be objects of a (pre)triangulated category. _e
canonical morphisms X→ X⊕ Y and X⊕ Y→ Y ût in a triangle X→ X⊕ Y→
Y 0Ð→ ΣX. _is triangle is distinguished.

Indeed, it is the direct sum of the triangles X idXÐ→ X → 0 → ΣX and 0 →
Y idYÐ→ Y→ 0. _e ûrst one is distinguished, by axiom (2.1.3.3). _e second one
is isomorphic to the triangle 0 → Y − idYÐÐ→ Y → 0 which is a shi� of the distin-
guished triangle Y idYÐ→ Y→ 0→ ΣY, hence is distinguished by axioms (2.1.3.1)
and (2.1.3.2).

Proposition (2.2.10). — Let C be a (pre)triangulated category.
a) A contractible triangle is distinguished.
b) A morphism between distinguished triangles which is null homotopic is

distinguished.

Proof. — a) Let T be a contractible triangle. Let us ûrst prove that it is decent.
Let A be an object of C and let us apply the functor C (A, ⋅). We obtain a
complex C (A,T) of abelian groups. Let h ∶ T → T[−1] be a homotopy with
origin idT and target 0; then C (A, h) is a homotopy with origin idC (A,T) and
target 0. Consequently, the complexC (A,T) is exact.

Let X uÐ→ Y vÐ→ Z wÐ→ ΣX be this triangle and let

X Y Z ΣX

X Y Z ΣX

←→u

⇐⇐ ←→

θ

⇐⇐

←→v
←→ φ

←→w

⇐⇐ ←→ ψ

⇐⇐

←→u

←→v

←→w

be a homotopy with origin idT and target 0, so that

idX = θ ○ u + Σ−1(w ○ ψ)
idY = φ ○ v + u ○ θ

idZ = ψ ○w + v ○ φ.

Since v ○ u = 0, this implies

u = φ ○ v ○ u + u ○ θ ○ u = u ○ θ ○ u = u + u ○ Σ−1(w ○ ψ),

so that u ○ Σ−1(w ○ ψ) = 0, hence Σu ○ (w ○ ψ) = 0. Let us complete u ∶ X → Y
into a distinguished triangle

X uÐ→ Y v′Ð→ Z′ w′

Ð→ ΣX
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and let us apply the cohomological functorC (ΣX, ⋅); one gets an exact sequence

C (ΣX,Z′)
w′

∗Ð→C (ΣX, ΣX) Σu∗ÐÐ→C (ΣX, ΣY).

consequently, there exists ψ′ ∈ C (ΣX,Z′) such that w′ ○ ψ′ = w ○ ψ. Let λ =
ψ′ ○w + v′ ○ φ ∶ Z→ Z′; one has

w′ ○ λ = w′ ○ ψ′ ○w +w′ ○ v′ ○ φ = w ○ ψ ○w = w −w ○ v ○ φ = w

λ ○ v = ψ′ ○w ○ v + v′ ○ φ ○ v = v′ − v′ ○ u ○ θ = v′.

Consequently, the diagram

X Y Z ΣX

X Y Z′ ΣX

⇐⇐

←→u
⇐⇐

←→v

←→w

←→ λ ⇐⇐

←→u

←→
v′

←→
w′

depicts amorphism of triangles. Since these triangles are decent and two out of
three vertical morphisms are isomorphisms, it is an isomorphism of triangles.
In particular, the initial triangle is distinguished.
b) Since homotopical morphisms of triangles give rise to isomorphic cones

(§2.1.2), it suõces to show that the null morphism between two distinguished
triangles

X Y Z ΣX

X′ Y′ Z′ ΣX′

←→ 0

← →u

←→ 0

← →v ← →w

←→ 0 ←→ 0

←→
u′

←→
v′

←→
w′

is a distinguishedmorphism. By deûnition, the cone of this morphism of trian-
gles is the triangle

X′ ⊕ Y
(u

′

−v )ÐÐÐÐ→ Y′ ⊕ Z
( v

′

−w )ÐÐÐÐ→ Z′ ⊕ ΣX
(w

′

−Σu )ÐÐÐÐÐ→ ΣX′ ⊕ ΣY′.

It is isomorphic to the direct sum of the two triangles

X′ u′Ð→ Y′ v′Ð→ Z′ w′

Ð→ ΣX′ and Y −vÐ→ Z −wÐ→ ΣX −ΣuÐÐ→ ΣY,

the ûrst one is distinguished by hypothesis, and the second one by axiom (2.1.3.2).
_us, proposition 2.2.8 implies that this cone triangle is distinguished, as was to
be shown.
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2.3. _e octahedral axiom

Let (C , Σ,T ) be a triangulated category.

Deûnition (2.3.1). — One says that a commutative square

Y Z

Y′ Z′

← →f

←→g ←→ g′

←→f
′

is homotopically cartesian if there exists amorphism h ∶ Z′ → ΣY in C so that
the diagram

Y
(

g
− f )
ÐÐÐ→ Y′ ⊕ Z

( f ′ g′ )
ÐÐÐ→ Z′ hÐ→ ΣY

is a distinguished triangle.

Observe that the composition of the ûrst two arrows vanished, since

( f ′ g′ ) ○ ( g
− f ) = g′ ○ f − f ′ ○ g = 0.

We leave to the reader to check that if the above square is homotopically
cartesian, witnessed by amorphism h ∶ Z′ → ΣY, then themorphism −h shows
that the square

Y Y′

Z Z′

←→g

←→f ←→ f ′

←→g′

is homotopically cartesian as well.

Lemma (2.3.2). — a) Let

Y Z

Y′ Z′

← →f

←→g ←→ g′

←→f
′

be a homotopically cartesian commutative square and let

Y Z

Y′ P

←→f

←→g ←→ γ′

←→φ′
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be a commutative square in C . _ere exists a morphism h ∶ Z′ → P such that
h ○ g′ = γ′ and h ○ f ′ = φ′.
b) Let Y,Y′,Z be objects ofC and let f ∶ Y→ Z and g ∶ Y→ Y′ bemorphisms.

_ere exist an object Z′ andmorphisms g′ ∶ Z→ Z′ and f ′ ∶ Y′ → Z′ such that the
diagram

Y Z

Y′ Z′

← →f

←→g ←→ g′

←→f
′

is a homotopically cartesian square.
c) Moreover, if Z′′ is an object of C and g′′ ∶ Z → Z′′, f ′′ ∶ Y′′ → Z′ are mor-

phisms in C such that

Y Z

Y′ Z′′

← →f

←→g ←→ g′′

←→f
′′

is homotopically cartesian, there exists an isomorphism h ∶ Z′ → Z′′ such that
h ○ f ′ = f ′′ and h ○ g′ = g′′.

Proof. — a) _e functor Hom(⋅,P) is a cohomological functor on the oppo-
site triangulated category. Applying it to the distinguished triangle Y→ Y′⊕Z→
Z′ → ΣY, we obtain an exact sequence

C (Z′,P)→C (Y′ ⊕ Z,P)→C (Y,P).

_e image of themorphism φ′ − γ′ is φ′ ○ g − γ′ ○ f = 0. Consequently, there
exists amorphism h ∈C (Z′,P) such that φ′ = h ○ f ′ and γ′ = h ○ g′.
b) It suõces to complete themorphism ( g

− f ) ∶ Y→ Y′ ⊕ Z in a distinguished
triangle.
c) _is follows from the uniqueness property of corollary 2.2.4.

Lemma 2.3.2 provides “homotopy push-outs” in triangulated categories; by pass-
ing to the opposite category, one deduces the following lemma which provides
“homotopy pull-backs”.
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Lemma (2.3.3). — a) Let

Y Z

Y′ Z′

← →f

←→g ←→ g′

←→f
′

be a homotopically cartesian commutative square and let

Q Z

Y′ Z′

←→φ

←→γ ←→ g′

←→f
′

be a commutative square in C . _ere exists a morphism h ∶ Q → Y such that
f ○ h = φ and g ○ h = γ.
b) Let Y′,Z,Z′ be objects of C and let f ′ ∶ Y′ → Z′ and g′ ∶ Z → Z′ be mor-

phisms. _ere exist an object Y and morphisms f ∶ Y → Z and g ∶ Y → Y′ such
that the diagram

Y Z

Y′ Z′
← →f

←→g ←→ g′
←→f

′

is a homotopically cartesian square.
c) Moreover, if Ỹ is an object ofC and g̃ ∶ Ỹ → Y, f̃ ∶ Ỹ → Y are morphisms

in C such that

Ỹ Z

Y′ Z′

← →f̃

←→g̃ ←→ g′

←→f
′

is homotopically cartesian, there exists an isomorphism h ∶ Ỹ → Y such that
f ○ h = f̃ and g ○ h = g̃.

Lemma (2.3.4). — Let

X Y Z ΣX

X Y′ Z′ ΣX

←→u

⇐⇐

← →v

←→ g

←→w

←→ h ⇐⇐

←→u′ ←→v′ ←→w′
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be a distinguishedmorphism of distinguished triangles. _en the triangle

Y
(

g
−v )ÐÐ→ Y′ ⊕ Z

(v′ h)
ÐÐ→ Z′ Σu○w′

ÐÐÐ→ ΣY

is distinguished. In particular, the square

Y Z

Y′ Z′

← →v

←→ g ←→ h

←→v′

is homotopically cartesian.

Proof. — By hypothesis, the cone C of this this morphism of triangle,

X⊕ Y Y′ ⊕ Z Z′ ⊕ ΣX ΣX⊕ ΣY,←→
(u

′ g
0 −v ) ←→

( v
′ h
0 −w ) ←→

(w
′ 1
0 −Σu )

is a distinguished triangle. Observe that the diagram

X⊕ Y Y′ ⊕ Z Z′ ⊕ ΣX ΣX⊕ ΣY′

X⊕ Y Y′ ⊕ Z ΣX⊕ Z′ ΣX⊕ ΣY′
←→

(u
′ g
0 −v )

←→( 1 0
u 1 )

←→
( v

′ h
0 −w )

⇐⇐

←→
(w

′ 1
0 −Σu )

←→ (−w′ −1
1 0 )

←→ ( 1 0
Σu 1 )

←→
(
0 g
0 −v )

←→
(
0 0
v′ h )

←→
(
−1

Σu○w′ )

is commutative. Indeed,

( 1 0
Σu 1)(w

′ 1
0 −Σu

) = ( w′ 1
Σu ○w′ 0) = (−1 Σu ○w′

)(−w
′ −1

1 0 ) ,

(−w
′ 1

1 0)(v
′ h
0 −w) = (0 0

v′ h
)

(u
′ g
0 −v) = (0 g

0 −v)( 1 0
u 1) .

Since the vertical morphisms are isomorphisms, it is an isomorphismof triangles
from C to the bottom triangle, which is therefore distinguished. On the other
hand, the bottom triangle is the direct sum of the triangle T of interest and the
triangle X→ 0→ ΣX −1Ð→ ΣX. Consequently, the triangle T is a direct factor of a
distinguished triangle, hence is distinguished.
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Lemma (2.3.5). — Let

Y Z

Y′ Z′

← →v

←→g ←→ h

←→
v′

be a homotopically cartesian square, and let ∂ ∶ Z′ → ΣY be such that

Y
(

g
−v )ÐÐ→ Y′ ⊕ Z

( v′ h )ÐÐÐ→ Z′ ∂Ð→ ΣY

is a distinguished triangle. Let

Y
g
Ð→ Y′

g′
Ð→ Y′′

g′′
Ð→ ΣY

be a distinguished triangle. _ere exists a distinguished triangle

Z hÐ→ Z′ h′Ð→ Y′′ h′′Ð→ ΣZ

such that the diagram

Y Y′ Y′′ ΣY

Z Z′ Y′′ ΣZ

←→g

←→v

←→g′

←→ v′

←→g′′

⇐⇐ ←→ Σv

←→
h

←→
h′

←→
h′′

is commutative. Moreover, ∂ = g′′ ○ h′.

Proof. — Let k ∶ Z′ → Y′′ be amorphism such that themorphism of triangles

Y Y′ ⊕ Z Z′ ΣY

Y Y′ Y′′ ΣY

←→
(

g
−v )

⇐⇐

←→( v′ h )

←→ ( 1 0 )

←→∂

←→ k ⇐⇐

← →g

← →
g′

←→
g′′
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is a distinguishedmorphism(axiom (2.1.3.5)), so that its cone C is a distinguished
triangle. Let us consider the diagram:

Y⊕ Y′ ⊕ Z Y′ ⊕ Z′ Y′′ ⊕ ΣY ΣY⊕ ΣY′ ⊕ ΣZ

Y⊕ Y′ ⊕ Z 0⊕ Y′ ⊕ Z′ ΣY⊕ 0⊕ Y′′ ΣY⊕ ΣY′ ⊕ ΣZ.

← →
(
g 1 0
0 −v′ −h )

←→ ( 1
g 1
−v 0 1

)

← →
(
g′ k
0 −∂

)

←→ ( 0 0
1 0
v′ −1

)

← →

⎛

⎝

g′′ 1
0 −Σg
0 Σv

⎞

⎠

←→ (−g′′ −1
0 0
−1 0

) ←→ (
1

Σg 1
−Σv 0 1

)

←→
(
0

1
h
)

←→
(
0
0

k
)

←→
(
1
0

Σv○g )

Its ûrst line is the triangle C; its bottom line is the direct sumof the three triangles

Y→ 0→ ΣY 1Ð→ ΣY

Y′ 1Ð→ Y′ → 0→ ΣY′

Z hÐ→ Z′ kÐ→ Y′′
Σv○g′′
ÐÐÐ→ ΣZ;

the vertical morphisms are isomorphisms. Let us check that is is commutative:

⎛
⎜⎜
⎝

0 0
1 0
v′ −1

⎞
⎟⎟
⎠
(g 1 0
0 −v′ −h) =

⎛
⎜⎜
⎝

0 0 0
g 1 0

−v′ ○ g 0 h

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0
1

h

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1
g 1
−v 0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

−g′′ −1
0 0
−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 0
1 0
v′ −1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0 0
0 0
−g′ −k

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0 0
1 0
v′ −1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0
0

k

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1
Σg 1
−Σv 0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

g′′ 1
0 −Σg
0 Σv

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1
0

Σv ○ g

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

−g′′ −1
0 0
−1 0

⎞
⎟⎟
⎠

Consequently, the bottom triangle is distinguished; in particular, the triangle
Z hÐ→ Z′ kÐ→ Y′′

Σv○g′′
ÐÐÐ→ ΣZ is distinguished. Set Z′′ = Y′′, h′ = k and h′′ = Σv ○ g′′;

one has h ○ v = v′ ○ g, by hypothesis; one has ∂ = g′′ ○ k = g′′ ○ h′ and h′ ○ v′ =
k ○ v′ = g′, by deûnition of k; and one has Σv ○ g′′ = h′′ by deûnition of h′′. _is
concludes the proof of the lemma.
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_eorem (2.3.6) (Verdier’s “octahedral axiom”). — Let

X1
u3Ð→ X2

v3Ð→ Z3
w3Ð→ ΣX1

X2
u1Ð→ X3

v1Ð→ Z1
w1Ð→ ΣX2

X1
u2Ð→ X3

v2Ð→ Z2
w2Ð→ ΣX1,

be three distinguished triangles, where u2 = u1 ○ u3. _ere exist two morphisms
m1 ∶ Z3 → Z2 and m3 ∶ Z2 → Z1 such that

Z3
m1Ð→ Z2

m3Ð→ Z1
Σv3○w1ÐÐÐ→ ΣZ3

is a distinguished triangle, ûtting in a commutative diagram

X1 X2 Z3 ΣX1

X1 X3 Z2 ΣX2

Z1 Z1

ΣX1 ΣX2 ΣZ3 Σ2X1

← →
u3

⇐⇐

← →
v3

←→ u1

← →
w3

←→ m1

⇐⇐

← →u2 ← →v2

←→ v1

← →w2

←→ m3

⇐ ⇐

←→ w1

←→ Σv3○w1

←→
Σu3 ←→

Σv3 ←→
−Σw3

Proof. — By axiom (2.1.3.5) of triangulated categories (deûnition 2.1.3), there
exists amorphism m1 ∶ Z3 → Z2 ûtting in a distinguishedmorphism of distin-
guished triangles

X1 X2 Z3 ΣX1

X1 X3 Z2 ΣX2.

←→u3

⇐⇐

←→v3

←→ u1

←→w3

←→ m1

⇐⇐
←→u2 ←→v2 ←→w2

By lemma 2.3.4, the commutative square

X2 Z3

X3 Z2

←→v3

←→ u1 ←→ m1

←→v2
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is homotopically cartesian, and the triangle

X2
(

u1
−v3 )ÐÐÐ→ X3 ⊕ Z3

(v2 m1)ÐÐÐ→ Z2
Σu3○w2ÐÐÐ→ ΣX2

is distinguished. Lemma 2.3.5 then furnishes amorphism m3 ∶ Z2 → Z1 giving
rise to amorphism of distinguished triangles

X2 Z3

X3 Z2

Z1 Z1

X2 Z3.

←→v3

←→ u1 ←→ m1

←→v2
←→ v1

←→ m3

⇐⇐

←→ w1

←→ Σv3○w1

←→Σv3

_is concludes the proof of the theorem.

Remark (2.3.7). — _e name of this axiom comes from a particularway of repre-
senting its ûnal diagram as an octahedron. Indeed, if one identiûes the vertex Xi

and its shi� ΣXi , for each i, as well as the two vertices of an identity morphisms,
one gets a ûgurewith eight triangles: four of them are the distinguished triangles,
and the four other are the commutative triangles.

_e reader shall ûnd inHartshorne (1966), Beı̆linson et al (1982),Neeman
(1990), or in May (2001) alternative representations of the diagram, which s·he
may ûndmore appealing.

Remark (2.3.8). — Verdier’s deûnition of a triangulated category amounts to a
pretriangulated category satisfying the octahedral axiom (theorem 2.3.6). Con-
versely, theorem 1.8 of (Neeman, 1991) proves that a triangulated category in
Verdier’s sense is a triangulated category according to deûnition 2.1.3.

To conclude this section, let us quote a strengthening of the octahedral axiom,
refering to (Beı̆linson et al, 1982, prop. 1.1.11) for its proof.
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Proposition (2.3.9) (“3 × 3 lemma”). — Every commutative square

X Y

X′ Y′

← →u

←→f ←→ g

←→
u′

can be completed to a diagram

X Y Z ΣX

X′ Y′ Z′ ΣX′

X′′ Y′′ Z′′ ΣX′′

ΣX ΣY ΣZ Σ2Z

← →u

←→f ←→ g

← →v

←→ h

← →w

←→ Σ f

← →u′

←→f ′ ←→ g′

← →v′

←→ h′

← →w′

←→ Σ f ′

←→u′′

←→f ′′ ←→ g′′

←→v′′
←→ h′′

←→w′′

(−1) ←→ −Σ f ′′

←→Σu ←→Σv ←→−Σw

where the rows and columns are distinguished triangles, with commutative squares
except for the right bottom one which is (−1)-commutative.

2.4. _e homotopy category of an additive category

2.4.1. — Let A be an additive category and let K (A) be its homotopy cate-
gory; recall that the objects ofK (A) are complexes in A, andmorphisms are
homotopy classes ofmorphisms of complexes. It is an additive category. Let Σ
be the translation functor ofK (A).
For every morphism f ∶ X → Y of complexes in A, we have constructed

in §1.5.4 its cone C f which is a complex, together with morphisms of complexes
α f ∶ Y → C f , β f ∶ C f → ΣX, such that α f ○ f , β f ○ α f and Σ f ○ α f are null
homotopic. In the homotopy categoryK (A), this construction gives rise to a
triangle:

X
f
Ð→ Y

α fÐ→ C f
β fÐ→ ΣX.

We have also proved in §1.5.5 that two homotopicmorphisms f , g ∶ X→ Y give
rise to isomorphic triangles.

Deûnition (2.4.2). — Let T be the set of all triangles inK (A) which are isomor-
phic to the cone triangle of amorphism of complexes.
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_eorem (2.4.3). — Let A be an additive category. Together with its translation
automorphism, and its set of triangles T , the homotopy category K (A) is a
triangulated category.

Let us say that a triangle is distinguished if it belongs to T .

Proof. — 1) By deûnition, a triangle which is isomorphic to a distinguished
triangle is distinguished.

2) Let us consider a distinguished triangle T and let us prove that the shi� of T
isdistinguished aswell. Wemay assume that T is the triangleX

f
Ð→ Y

g
Ð→ C f

hÐ→ ΣX

(where g = α f and h = β f ), so that its shi� is the triangle Y
−g
Ð→ C f

−hÐ→ ΣX
−Σ f
ÐÐ→

ΣY. By deûnition, C−g = C f ⊕ΣY = Y⊕ΣX⊕ΣY, endowed with the diòerential

dC−g = (dC f −g
0 −dY

) =
⎛
⎜⎜
⎝

dY Σ f 1
0 −ΣdX 0
0 0 −ΣdY

⎞
⎟⎟
⎠
.

Let u = (
0
1

−Σ f ) ∶ ΣX → C−g ; let v = ( 0 1 0 ) ∶ C−g → ΣX. Observe that u is a
morphism of complexes because

dC−g ○ u =
⎛
⎜⎜
⎝

dY Σ f 1
0 −ΣdX 0
0 0 −ΣdY

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0
1

−Σ f

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0
−ΣdX

ΣdY ○ Σ f

⎞
⎟⎟
⎠
,

u ○ dΣX = −
⎛
⎜⎜
⎝

0
1

−Σ f

⎞
⎟⎟
⎠

ΣdX =
⎛
⎜⎜
⎝

0
−ΣdX

Σ f ○ ΣdX

⎞
⎟⎟
⎠

and Σ f ○ΣdX = ΣdY○Σ f , since f ∶ X→ Y is amorphismof complexes. Similarly,

dΣX ○ v = −ΣdX ○ (0 1 0) = (0 −ΣdX 0) ,

v ○ ΣdC−g = (0 1 0)
⎛
⎜⎜
⎝

dY Σ f 1
0 −ΣdX 0
0 0 −ΣdY

⎞
⎟⎟
⎠
= (0 −ΣdX 0) ,

hence v is amorphism of complexes. One has

v ○ u = (0 1 0)
⎛
⎜⎜
⎝

0
1

−Σ f

⎞
⎟⎟
⎠
= 1.
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On the other hand,

u ○ v =
⎛
⎜⎜
⎝

0
1

−Σ f

⎞
⎟⎟
⎠
(0 1 0) =

⎛
⎜⎜
⎝

0 0 0
0 1 0
0 −Σ f 0 =

⎞
⎟⎟
⎠
= id−

⎛
⎜⎜
⎝

1 0 0
0 0 0
0 Σ f 1

⎞
⎟⎟
⎠
.

Let θ ∶ C−g → Σ−1C−g be deûned by thematrix ( 0
0

1 0 0 ). One has

dC−gθ + θdC−g =
⎛
⎜⎜
⎝

dY Σ f 1
0 −ΣdX 0
0 0 −ΣdY

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0
0

1 0 0

⎞
⎟⎟
⎠

+
⎛
⎜⎜
⎝

0
0

1 0 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

dY Σ f 1
0 −ΣdX 0
0 0 −ΣdY

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 0 0
0 0 0

−ΣdY 0 0

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0 0 0
0 0 0
dY Σ f 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0 0
0 0 0
0 Σ f 1

⎞
⎟⎟
⎠

= id−u ○ v .

Consequently, u ○v − id is null homotopic. _is proves that u induces an isomor-
phism from C f to C−g in the homotopy category, with inverse isomorphism v.
Let us now prove that the diagram

Y C f ΣX ΣY

Y C f C−g ΣY

←→−g

⇐⇐

←→−h

⇐⇐
←→−Σ f

⇐⇐

←→
−g

←→α−g

← →v

←→
β−g

is commutative. Indeed, one has

v ○ α−g = (0 1 0)
⎛
⎜⎜
⎝

0 0
1 0
0 1

⎞
⎟⎟
⎠
= (1 0) = β f .

We have proved that the triangle ΣT is isomorphic do the cone triangle of C−g ;
it is thus distinguished.

One proves similarly, or by considering the opposite category ofC , that Σ−1T
is distinguished as well.
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3) Let X be a complex and let f ∶ 0 → X be the unique morphism. One
has C f = X, α f = id, and β f = 0. _is leads to a distinguished triangle 0→ X 1Ð→
X → 0. _is triangle is isomorphic to the triangle 0 → X −1Ð→ X → 0, which is
therefore distinguished. Since a shi� of a distinguished triangle is distinguished,
this proves that the triangle X 1Ð→ X→ 0→ ΣX is distinguished.

4) For every morphism f ∶ X→ Y, the cone triangle X
f
Ð→ Y

α fÐ→ C f
β fÐ→ ΣX is

distinguished, by deûnition.
5) Let us ûnally prove axiom (2.1.3.5): given two distinguished triangles and

a partial morphism between them, we need to show that it can be completed
into a distinguishedmorphism of distinguished triangles in K (A). Wemay
assume that the two given triangles are cone triangles, and choose representatives
in C (A). Let thus consider a diagram of complexes in A:

X Y Cu ΣX

X′ Y′ Cu′ ΣX′

← →u

←→f

←→αu

←→ g ←→ h

←→βu

←→ Σ f

←→u′ ←→αu′ ←→βu′

where u, u′, f , g aremorphisms of complexes such that g ○ u is homotopic to
u′ ○ f ; let θ ∶ X→ Σ−1Y′ be a homotopy such that g ○u −u′ ○ f = dθ + θd. Let us
show the existence of amorphism h ∶ Y⊕ ΣX→ Y′ ⊕ ΣX′ such that the triangle

X′ ⊕ Y
(u

′ g
0 −α )ÐÐÐÐ→ Y′ ⊕ (Y⊕ ΣX)

(
α′ h
0 −β )
ÐÐÐÐ→ (Y′ ⊕ ΣX′)⊕ ΣX

(
β′ Σ f
0 −Σu

)

ÐÐÐÐÐ→ ΣX′ ⊕ ΣY

is distinguished. We set h = ( g Σ−1θ
0 Σ f ). _en

h ○ α − α′ ○ g = (g Σ−1θ
0 Σ f )(1

0) − (1
0) g = 0,

Σ f ○ β − β′ ○ h = Σ f (0 1) − (0 1)(g Σ−1θ
0 Σ f ) = (0 Σ f ) − (0 Σ f ) = 0,

so that the preceding diagram is indeed amorphism of distinguished triangles.
To prove that its cone is a distinguished morphism, we shall show that there
exists morphisms of complexes φ and ψ, as represented by the diagram below,



2.4. THE HOMOTOPY CATEGORY OF AN ADDITIVE CATEGORY 53

that give rise to isomorphisms, inverse one of the other:

X′ ⊕ Y Y′ ⊕ Y⊕ ΣX Y′ ⊕ ΣX′ ⊕ ΣX ΣX′ ⊕ ΣY

X′ ⊕ Y Y′ ⊕ Y⊕ ΣX Y′ ⊕ Y⊕ ΣX⊕ ΣX′ ⊕ ΣY ΣX′ ⊕ ΣY

←→
(
u′ g
0 −1
0 0

)

⇐⇐ ⇐⇐ ⇐⇐

← →
(

1 g θ
0 0 f
0 0 −1

)

←→ φ

← →
(0 1 f
0 0 −u )

⇐⇐

←→
(
u′ g
0 −1
0 0

)

←→
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎞
⎟
⎠

←→
(0 0 0 1 0
0 0 0 0 1 )

← →ψ

Set

φ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 θ
0 0 0
0 0 −1
0 1 f
0 0 −u

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

and ψ =
⎛
⎜⎜
⎝

1 0 0 0 0
g 0 0 1 0
θ f −1 0 0

⎞
⎟⎟
⎠
.

Write A, B, C for the matrices of the ûrst row, and A′, B′, C′ for those of the
second row. One has

ψA′ = A, B′φ = B, ψ ○ φ = id .

Moreover,

φ ○ φ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 g 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 u 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= id+

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 g 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 u 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let

H =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∶ Y′ ⊕Y⊕ ΣX⊕ ΣX′ ⊕ ΣY→ Σ−1Y′ ⊕ Σ−1Y⊕X⊕X′ ⊕Y.
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_e diòerential of the cone Y′ ⊕ Y⊕ ΣX⊕ ΣX′ ⊕ ΣX is given by

δ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

d 0 0 u′ g
0 d u 0 −1
0 0 −d 0 0
0 0 0 −d 0
0 1 0 0 −d

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

and one checks that δH+Hδ = φ○ψ−id. Consquently, φ andψ are isomorphisms
in the homotopy category, inverse one of the other. Consequently, the ûrst row
is isomorphic to the bottom row, which is a cone, hence it is is a cone.

_is concludes the proof of the theorem.

2.5. Localization

Deûnition (2.5.1). — Let C ,D be triangulated categories. A functor F ∶ C →D

is called a triangulated functor if it is additive, commutes with translations, and if
it maps a distinguished triangle in C to a distinguished triangle in D .

2.5.2. — Let C be a triangulated category. A subcategoryD ofC is called a
triangulated subcategory if the following properties hold:

(i) Every object ofC which is isomorphic to an object ofD belongs to D ;
(ii) For every objects X,Y ofD , one has D(X,Y) =C (X,Y);
(iii) _e subcategoryD is stable under the translation functor ofC and under

ûnite coproducts;
(iv) For everymorphism f ∶ X→ Y inD , there exists a distinguished triangle

X
f
Ð→ Y

g
Ð→ Z hÐ→ ΣX in C , and Z is an object ofD .

_ese axioms imply that D is a triangulated category when endowed with the
restriction of the translation functor Σ and the set of triangles of C whose
vertices belong toD , and that the inclusion functor is a fully faithful triangulated
functor.

Moreover, in a distinguished triangle X → Y → Z → ΣX, if two objects out
of three belong to D , then so does the third one. _is holds by hypothesis if X
and Y belong to D , and the two other cases follow by considering translated
triangles.
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_e triangulated subcategoryD is said to be thick if for every objects Y,Y′
ofC such that Y⊕ Y′ is an object ofD , then Y,Y′ ∈ ob(D).

Lemma (2.5.3). — Let F ∶ C →D be a triangulated functor. Let Ker(F) be the
full subcategory ofC whose objects are the objects X ∈ ob(C ) such that F(X) ≃ 0.
_en Ker(F) is a thick triangulated subcategory.

Proof. — a) Let X ∈ ob(Ker(F)); then F(X) ≃ 0, hence F(ΣX) = Σ(F(X)) ≃
0, so that ΣX ∈ ob(Ker(F)). One proves similarly that if X ∈ ob(Ker(F)), then
Σ−1X ∈ ob(Ker(F)) too.
b) Let X,Y ∈ ob(C ) be such that X ≃ Y; if F(X) ≃ 0, then F(Y) ≃ F(X) ≃ 0;
c) Let Y,Y′ ∈ ob(C ); if Y⊕ Y′ ∈ Ker(F), then 0 ≃ F(Y⊕ Y′) ≃ F(Y)⊕ F(Y′),

hence F(Y) ≃ 0 and Y ∈ Ker(F);
d) Let X → Y → Z → ΣX be a distinguished triangle in C ; assume that

X,Y ∈ ob(Ker(F)), so that F(X) ≃ F(Y) ≃ 0; then 0 → 0 → F(Z) → 0 is a
distinguished triangle in D , so that F(Z) ≃ 0, hence Z ∈ ob(Ker(F)).

_e following theorem asserts that every thick triangulated subcategory ap-
pears in this way.

_eorem (2.5.4) (Verdier). — Let C be a triangulated category and let N be
a triangulated subcategory of C . _ere exist a triangulated category D and a
triangulated functor F ∶ C →D such that:

a) N ⊂ Ker(F);
b) If F′ ∶ C →D ′ is a triangulated functor such that N ⊂ Ker(F′), there exists

a unique triangulated functor G ∶ D →D ′ such that F′ = G ○ F.
Moreover, Ker(F) is the smallest thick triangulated subcategory of C contain-
ing N .

_e proof of the theorem will occupy the rest of the section. We consider
throughout a triangulated categoryC and a triangulated subcategoryN .

Deûnition (2.5.5). — One says that amorphism f ∶ X→ Y inC is an isomorphism

(mod N ) if there exists a distinguished triangle X
f
Ð→ Y → Z → ΣX in C such

that Z ∈ ob(N ).

By corollary 2.2.4, this implies that Z ∈ ob(N ) for every such distinguished
triangle.
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Lemma (2.5.6). — a) If a morphism in C is an isomorphism, then it is an
isomorphism (mod N );
b) Let f ∶ X→ Y and g ∶ Y→ Z bemorphisms in C ; if two morphisms among
f , g and g ○ f are isomorphisms (mod N ), then so is the third one;
c) Let f ∶ X→ Y be amorphism in C . _en f is an isomorphism (mod N ) if

and only if Σ f is an isomorphism (mod N ).

As a consequence, there exists a unique subcategory S of C whose set of
morphisms is the set of isomorphisms (mod N ). Its set of objects is the set of
objects ofC .

Proof. — a) Indeed, if f is an isomorphism, then the triangle X
f
Ð→ Y→ 0→

ΣX is distinguished, and 0 ∈N .
b) Let us consider an octahedral diagram

X Y U ΣX

X Z V ΣX

W W

ΣX ΣY ΣU Σ2X.

← →f

⇐⇐

← →

←→ g ←→

← →

⇐⇐

← →g○ f

←→

← → ← →

←→
←→

⇐⇐

←→

←→ ←→ ←→

By deûnition, f , resp. g, resp. g ○ f , is an isomorphism (mod N ) if and only if
U, resp. W, resp. V, is an object ofN . SinceN is a triangulated subgcategory
ofN , if, in the distinguished triangle U → V →W → ΣU, two objects out of
three belong to N , then so does the third one. _is implies the claim.
c) Let us assume that f is an isomorphism (mod N ) and let X

f
Ð→ Y

g
Ð→ Z hÐ→

ΣX be a distinguished triangle, where Z ∈ ob(N ). Translating this triangle
three times, one obtains a distinguished triangle ΣX

−Σ f
ÐÐ→ ΣY

−Σg
ÐÐ→ ΣZ −ΣhÐÐ→ Σ2X,

which is isomorphic to the triangle ΣX
Σ f
Ð→ ΣY

Σg
Ð→ ΣZ −ΣhÐÐ→ Σ2X. Since ΣZ is

an object of N , this shows that Σg is an isomorphism (mod N ). _e other
direction is analogous.
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2.5.7. — Let X,Y be objects of C . Let D(X,Y) be the set of triples (Z, f , g)
where Z ∈ ob(C ), f ∈ S(Z,X) is an isomorphism (mod N ) and g ∈C (Z,Y);
we represent such a triple by the diagram

Z

X Y

←→f ←
→

g

Let ∼ be the relation in D(X,Y) deûned as follows: (Z′, f ′, g′) ∼ (Z′′, f ′′, g′′)
if there exists a triple (Z, f , g) ∈ D(X,Y) and isomorphisms (mod N ) u′ ∈
S(Z,Z′) and u′′ ∈ S(Z,Z′′) such that f = f ′○u′ = f ′′○u′′ and g = g′○u′ = g′′○u′′.
We represent this by the diagram:

Z′

X Z Y

Z′′

←→

f ′ ←

→
g′← →u′

←→ u′′
←→

f

←→g

←

→

f ′′

← →
g′′

Lemma (2.5.8). — a) Let

Y Z

Y′ Z′

← →v

←→g ←→ h

←→v′

be a homotopically cartesian square. _en v ∈ mor(S) if and only if v′ ∈ mor(S);
and g ∈ mor(S) if and only if h ∈ mor(S).
b) _e relation ∼ in D(X,Y) is an equivalence relation.
c) Let (W1, f1, g1) ∈ D(X,Y) and (W2, f2, g2) ∈ D(Y,Z); there exists a triple

(W, f , g) ∈ D(W1,W2) such that the square

W W2

W1 Y

←→g

←→f ←→ f2

← →g1

is commutative; for such (W, f , g), the triple (W, f1 ○ f , g2 ○ g) belongs toD(X,Z)
and its equivalence class of only depends on the equivalence classes of the triples
(W1, f1, g1) and (W2, f2, g2).
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Proof. — a) With the notation of lemma 2.3.5, themorphism g is an isomor-
phism (mod N ) if and only if Y′′ ∈ ob(N ), if and only if h is an isomorphism
(mod N ). _e other assertion follows by symmetry.
b) It is obvious that the given relation is re�exive and symmetric; let us es-

tablish that it is transitive. Let (Z, f , g), (Z′, f ′, g′), (Z′′, f ′′, g′′) be elements
of D(X,Y) such that (Z, f , g) ∼ (Z′, f ′, g′) and (Z′, f ′, g′) ∼ (Z′′, f ′′, g′′); by
deûnition, there exist two diagrams

Z

X W Y

Z′

←→

f ←

→
g← →u

←→u′

←→ ←→

←

→

f ′

← →
g′

and

Z′

X W′ Y

Z′′

←→

f ′ ←

→
g′← →v′

←→v′′

←→ ←→

←

→

f ′′

← →
g′′

as above, where u, u′, v′, v′′ are isomorphisms (mod N ). By lemma 2.3.3, there
exists an object W′′ andmorphisms w ∈C (W′′,W) and w′ ∈C (W′′,W′) that
give rise to a homotopically cartesian square

W′′ W

W′ Z′.

←→w

←→ w′ ←→ u′

←→v′

By a), themorphisms w and w′ belong to mor(S). Consequently, the diagram

Z

X W′′ Y

Z′′

←

→

f ←

→
g← →

u○
w

←→
v′
′
○
w
′

←→ ←→

←

→

f ′′

← →
g′′

proves that (Z, f , g) ∼ (Z′′, f ′′, g′′), as was to be shown.
It then follows from the deûnition of ∼ that it is the equivalence relation gen-

erated by the relation given by (Z, f , g) ∼ (Z′, f ′, g′) if there exists amorphism
u ∈ S(Z′,Z) such that f ′ = f ○ u and g′ = g ○ u.
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c) By lemma 2.3.3, there exists a homotopically cartesian commutative square:

W W2

W1 Y.

←→g

←→f ←→ f2

←→g1

By a), the morphism f is an isomorphism (mod N ), so that (W, f , g) ∈
D(W1,W2). _is proves that D(W1,W2) is not empty.

Let (W, f , g) be any element of D(W1,W2); observe that f1 ○ f ∈ S(W,X),
so that (W, f1 ○ f , g2 ○ g) belongs to D(X,Z). Let us now show that for every
such triple (W, f , g), the equivalence class of (W, f1 ○ f , g2 ○ g) modulo ∼ only
depends on the equivalence classes of (W1, f1, g1) and (W2, f2, g2).

More generally, let (W′
1, f ′1 , g′1) ∈ D(X,Y) and (W′

2, f ′2 , g′2) ∈ D(Y,Z) be equiv-
alent to (W1, f1, g1) and (W2, f2, g2) respectively. Let us choose (W′, f ′, g′) ∈
D(W′

1,W′
2) such that g′1 ○ f ′ = f ′2 ○ g′ and let us prove that the elements (W′, f ′1 ○

f ′, g′2 ○ g′) and (W, f1 ○ f , g2 ○ g) of D(X,Z) are equivalent. By the deûnition of
the equivalence relation ∼, wemay assume that there exists u1 ∈ S(W′

1,W1) and
u2 ∈ S(W′

2,W2) such that f1 ○ u1 = f ′1 and g1 ○ u1 = g′1 on the one side, and that
f2 ○ u2 = f ′2 and g2 ○ u2 = g′2 on the other side.
By lemma 2.3.3, there exists amorphism h ∶ W′ →W such that f ○ h = u1 ○ f ′

and g ○ h = u2 ○ g′, so that the following diagram is commutative:

W′ W′
2

W W2 Z

W′
1 W1 Y

X

← →g′

←

→
h←

→

f ′

←→ u2

←

→
g′2

←→g

←→f ←→ f2

←→g2

←→u1

←

→f ′1

←→f1

← →g1

Recall that f , f ′, u1 are isomorphisms (mod N ). By lemma 2.5.6, b), u1 ○ f ′ is an
isomorphism (mod N ), so that f ○ h is an isomorphism (mod N ). Applying
lemma 2.5.6, b), again, we conclude that h is an isomorphism (mod N ).
Consequently, (W, f1 ○ f , g2 ○ g) is equivalent to (W′, f1 ○ f ○ h, g2 ○ g ○ h)

which is equal to (W′, f ′1 ○ f ′, g′2 ○ g′).
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Proposition (2.5.9). — a) _ere exists a unique categoryD such that ob(D) =
ob(C ),D(X,Y) = D(X,Y)/∼ for every objects X,Y, and such that the composi-
tion of the classes of triples (W1, f1, g1) ∈ D(X,Y) and (W2, f2, g2) ∈ D(Y,Z) is
the class of a triple (W, f1○ f , g2○ g)where (W, f , g) is any element ofD(W1,W2)
such that g1 ○ f = f2 ○ g.
b) _ere exists a unique functor F ∶ C → D such that for every morphism
f ∶ X → Y in C , the morphism F( f ) is the equivalence class of the triple
(X, idX, f ).
c) For every morphism f ∈ S(X,Y), F( f ) is an isomorphism in D , and its in-

verse is the class of the triple (X, f , idX). Moreover, for every triple φ = (W, f , g) ∈
D(X,Y), one has F([φ]) = F(g) ○ F( f )−1.
d) Let D ′ be a category, let F′ ∶ C → D ′ be a functor such that F′( f ) is in-

vertible, for every morphism f ∈ mor(S). _en there exists a unique functor
G ∶ D →D ′ such that F′ = G ○ F.

Proof. — a) _e set of objects, the set ofmorphisms and the composition law
are prescribed; it thus remains to prove that the composition law is associative
and the existence of neutral elements at each object.

Let X,Y,Z,T be objects ofC , let u ∈ D(X,Y), v ∈ D(Y,Z) and w ∈ D(Z,T);
write [u] for the class of u in D(X,Y), etc. We build objects P,Q,R as depicted
by the diagram, all of whose vertical arrows are isomorphisms (mod N ):

R Q ⋅ T

P ⋅ Z

⋅ Y

X

←→

←→

← →

←→

← →

←→

← →

←→

← →

←→

← →

←→

By construction, [v] ○ [u] is the class of the triple (P,P → X,P → Z), hence
[w] ○ ([v] ○ [u]) is the class of the triple (R,R → X,R → T). Similarly, [w] ○ [v]
is the class of the triple (Q,Q→ Y,Q→ T), hence ([w] ○ [v]) ○ [u] is the class
of the triple (R,R → X,R → T). _e composition law is thus associative.
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Let us show that the class εX of the triple (X, idX, idX) is an identity at X. Let
φ = (W, f , g) ∈ D(X,Y). By construction, the diagram

W W Y

X X

X

⇐⇐

←→f

←→g

←→ f

⇐⇐

⇐⇐

shows that the composition [φ]○[εX] is represented by φ, so that [φ]○[εX] = [φ].
One proves similarly that [εY] ○ [φ] = [φ].
b) For f ∈ C (X,Y), the origin of F( f ) is X, and the target of F( f ) is Y.

Consequently, there exists at most one such functor, and themap on objects has
to be the identity.
By construction, F(idX) = εX. Let f ∈C (X,Y) and g ∈C (Y,Z); the diagram

X Y Z

X Y

X

←→f

⇐⇐

←→g

⇐⇐

⇐⇐

←→f

and the deûnition of the composition law show that F(g ○ f ) = F(g) ○ F( f ).
Consequently, F is a functor.
c) Let f ∈ S(X,Y); let φ be the class of (X, f , idX). _e diagram

Y

X X Y

X X

Y

←

→

idY←

→

idY

⇐⇐

⇐⇐

←

→

f

⇐⇐

←→
f

←→ f

⇐⇐



62 CHAPTER 2. TRIANGULATED CATEGORIES

proves that F( f )○ [φ] is represented by (X, f , f ) and that (X, f , f ) is equivalent
to (Y, idY, idY). Consequently, F( f ) ○ [φ] = εY. One proves similarly that
[φ] ○ F( f ) = εX.
Finally, if φ = (W, f , g) ∈ D(X,Y), the diagram

W W Y

W W

X

⇐⇐

⇐⇐ ⇐⇐

←→g

⇐⇐

←→f

shows that F(g) ○F( f )−1 is represented by (W, f , g), hence [φ] = F(g) ○F( f )−1.
d) Necessarily, G(X) = F′(X) for every object X ofC . Moreover, for every

triple φ = (W, f , g), one has [φ] = F(g) ○ F( f )−1 so that necessarily, G([φ]) =
F′(g)−1 ○ F′( f ). It remains to show that these formulae deûne a functor G such
that G ○ F = F′.

Let φ = (W, f , g) and (W′, f ′, g′) be equivalent triples; let us show that
F′(g) ○ F′( f )−1 = F′(g′) ○ F′( f ′)−1. By the deûnition of the equivalence relation
on D(X,Y), wemay assume that there exists h ∈ S(W,W′) such that f = f ′ ○ h
and g = g′ ○ h. _en

F′(g) = F′(g′)○F′(h) = F′(g′)○F′( f ′)−1○F′( f ′)○F′(h) = F′(g′)○F′( f ′)−1○F′( f ),

hence F′(g) ○ F′( f )−1 = F′(g′) ○ F′( f ′)−1. Consequently, G is well deûned. One
has F′ = G ○ F by construction.

To prove that G is a functor, we need to check that it maps unit elements to
unit elements, and that it is compatible with composition. Since εX = F(idX),
one has G(εX) = F′(idX) = idF′(X). Let then φ = (W1, f1, g1) ∈ D(X,Y) and
ψ = (W2, f2, g2) ∈ D(Y,Z); let (W, f , g) ∈ D(W1,W2) be such that g1○ f = f2○ g.
By deûnition, [ψ] ○ [φ] is the class of the triple (W, f1 ○ f , g2 ○ g). Consequently,

G([ψ] ○ [φ]) = G([(W, f1 ○ f , g2 ○ g)])
= F′(g2 ○ g) ○ F′( f1 ○ f )−1

= F′(g2) ○ F′( f2)−1 ○ F′( f2) ○ F′(g) ○ F′( f )−1 ○ F′( f1)−1

= G([ψ]) ○ F′( f2 ○ g) ○ F′( f )−1 ○ F′( f1)−1

= G([ψ]) ○ F′(g1) ○ F′( f1)−1 = G([ψ]) ○G([φ]),
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hence G is a functor.
_is concludes the proof of the proposition.

Remark (2.5.10). — _e universal property stated in part d) of proposition 2.5.9
is preserved by passing to the opposite categories, so that the category Do is
canonically isomorphic to the category obtained by this construction by starting
from C o and its triangulated subcategoryN o.

Proposition (2.5.11). — a) Let f , g ∶ X→ Y bemorphisms in C . _e following
conditions are equivalent:

(i) F( f ) = F(g);
(ii) _ere exist an isomorphism h (mod N ) such that f ○ h = g ○ h;
(iii) _ere exists an isomorphism h (mod N ) such that h ○ f = h ○ g;
(iv) _emorphism f − g factors through an object ofN .

b) Let f ∶ X→ Y be amorphism in C . _e following conditions are equivalent:
(i) F( f ) is an isomorphism;
(ii) _ere exists morphisms g ∶ W→ X and h ∶ Y→ Z such that f ○ g and

h ○ f are isomorphisms (mod N );
(iii) For every distinguished triangle X

f
Ð→ Y→ Z→ ΣX in C , there exists

an object Z′ ∈C such that Z⊕ Z′ ∈N ;

(iv) _ere exists a distinguished triangle X
f
Ð→ Y→ Z→ ΣX in C and an

object Z′ ∈C such that Z⊕ Z′ ∈N .

Proof. — a) (i)⇒(ii). By hypothesis, the triples (X, idX, f ) and (X, idX, g) in
D(X,Y) are equivalent; there exist a triple (W, f ′, g′) inD(X,Y) andmorphisms
u ∈ S(W,X) and v ∈ S(W,Y) such that u = f ′ = v and f ○ u = g′ = g ○ v. In
particular, themorphism f ′ is an isomorphism (mod N ).

_e implication (i)⇒(iii) follows from the same argument by passing to the
opposite category.

_e implications (ii)⇒(i) and (iii)⇒(i) hold, because F(h) is an isomorphism.
Let us prove that (ii)⇒(iv). Let h ∶ W→ X be an isomorphism (mod N ) such

that f ○ h = g ○ h; by deûnition of S , wemay complete h into a distinguished
triangleW hÐ→ X kÐ→ N → ΣW, where N ∈ N . Let us apply the cohomological
functor C (⋅,Y) on C o: this gives an exact sequence

C (N,Y) k∗Ð→C (X,Y) h∗Ð→C (W,Y).



64 CHAPTER 2. TRIANGULATED CATEGORIES

By assumption, h∗( f −g) = ( f −g)○h = 0; consequently, there exists amorphism
j ∶ N→ Y such that f − g = j ○ h: themorphism f − g factors through an object
ofN .
Conversely, assume that (iv) holds and let us consider an object N ofN and a

factorization f − g = v ○u, where u ∈C (X,N ) and v ∈C (N,Y). _ere exists a
distinguished triangleX uÐ→ N→W wÐ→ ΣX, hence, by translation, a distinguished
triangle Σ−1W −Σ−1wÐÐÐ→ X −uÐ→ N → W. Consequently, Σ−1w ∈ S(Σ−1W,X).
Moreover, ( f − g) ○ Σw = v ○ u ○ Σw = 0. _is proves (ii).
b) (i)⇒(ii). Let (W, s, g) ∈ D(Y,X) be a triple whose equivalence class is an

inverse of F( f ). By deûnition of the composition, (W, s, f ○ g) is equivalent
to (Y, idY, idY). Consequently, there exists a triple (Z, h, k) and isomorphisms
(mod N ), u ∶ Z → W and v ∶ Z → Y, such that s ○ u = h, f ○ g ○ u = k,
h = idY ○v = v and k = idY ○v = v. _en, h = k = v and u are isomorphisms
(mod N ) and ( f ○ g) ○ u = k, so that f ○ g is an isomorphism (mod N ). _e
other part of (ii) follows by passing to the opposite category.

(ii)⇒(i). _ese assumptions imply that F( f ) is le�-invertible and right-
invertible; consequently, F( f ) is invertible.

(ii)⇒(iii). Let h ∶ Y→ T be such that h ○ f is an isomorphism (mod N ). By
the implication (ii)⇒(i), F( f ) is an isomorphism, as well as F(h ○ f ), so that
F(h) is an isomorphism as well. _e commutative diagram

X Y Z ΣX

T T⊕ Z Z ΣT,

← →f

←→h○ f

← →u

←→ ( hu ) ⇐⇐

←→

←→ Σh○Σ f

←→p

( 10 )

←→q

(0 1 )

←→0

corresponds to amorphism of distinguished triangles; since its bottom row is
a contractible triangle, this morphism is distinguished (proposition 2.2.10, b)),
hence the commutative square

X Y

T T⊕ Z

← →f

←→h○ f ←→ ( hu )

←→
( 10 )

is homotopically cartesian (lemma 2.3.4).
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Since h ○ f is an isomorphism (mod N ), so is ( h
u ). Let then

p = ( 1
0 ) ∶ T→ T⊕ Z and q = ( 1 0 ) ∶ T⊕ Z→ T.

One has
( h

u ) ○ f = ( h○ f
u○ f ) = ( h○ f

0 ) = p ○ (h ○ f ).

Since F( f ), F(( h
u )) and F(h ○ f ) are isomorphisms in D , this shows that F(p)

is an isomorphism in D . One has q ○ p = idT, so that F(q) is the le�-inverse
of F(p). Consequently, it is also its right-inverse and the image of p ○ q = ( 1 0

0 0 )
by F coincides with that of id.
By a), there exists an isomorphism (mod N ), s̃ = ( s

t ) ∶ W→ T⊕Z, such that
( 0 0
0 1 ) ○ s̃ = 0. Consequently, t = 0. Let W sÐ→ T → N→ ΣW be a distinguished

triangle; its coproduct with the distinguished triangle 0 → Z −1Ð→ Z → 0 is the
distinguished triangle

W
( s0 )ÐÐ→ T⊕ Z→ N⊕ Z→ ΣW,

so that N⊕ Z is an object ofN , as was to be shown.
_e implication (iii)⇒(iv) is obvious since there exists a distinguished triangle

of the form X
f
Ð→ Y→ Z→ ΣX.

Let us ûnally prove that (iv)⇒(ii). Consider a distinguished triangle X
f
Ð→ Y→

Z→ ΣX. Since 0→ Z′ −1Ð→ Z′ → 0 is a distinguished triangle, the triangle

X
( f0 )ÐÐ→ Y⊕ Z′ → Z⊕ Z′ → ΣX

is distinguished. Since Z⊕ Z′ is an object ofN , by assumption, themorphism
( f0 ) ∶ X→ Y⊕Z′ is an isomorphism (mod N ). Let g = ( 1

0 ) ∶ X→ Y⊕Z′. One
has ( f0 ) = g ○ f , which proves the ûrst part of (ii). _e second one is proved
analogously.

Corollary (2.5.12). — Let X be an object ofC . _e object F(X) is isomorphic to 0
if and only if there exists an object Y ofC such that X⊕ Y ∈ ob(N ).

Proof. — Apply part b) of the proposition to the zero morphism f ∈C (0,X).
_en F(X) ≃ 0 if and only if F( f ) is an isomorphism. Given the distinguished
triangle 0→ X→ X→ 0, the corollary follows from the equivalence (i)⇔(iii).
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Proposition (2.5.13). — _e categoryD is an additive category and the functor F
is an additive functor.

Proof. — a) Let us show that 0 is both an initial and a terminal object in D .
We thus need to show that for every object X ofC , the setsD(X, 0) and D(0,X)
have exactly one equivalence class.

Let (V, f , g), (V′, f ′, g′) ∈ D(X, 0); since 0 is a terminal object in C , one has
g = g′ = 0. Let

W V

V′ X

←→u

←→u′ ←→ f

←→
f ′

be an homotopically cartesian square (lemma 2.3.3). Since f and f ′ are iso-
morphisms (mod N ), so are u and u′ (lemma 2.5.8). _e triple (W, f ○ u, 0)
and themorphisms u, u′ imply that (V, f , g) ∼ (V′, f ′, g′), as was to be shown.
Consequently, 0 is a terminal object in D . By considering the opposite category,
0 is an initial object in D .
b) LetX,Y be objects ofC , and let us show thatX⊕Y is a product ofX andY in

the categoryD . Let i ∶ X→ X⊕Y, j ∶ Y→ X⊕Y, p ∶ X⊕Y→ X and q ∶ X⊕Y→ Y
be the canonical morphisms. Given an object P and two morphisms φ ∶ P→ X
and ψ ∶ P → Y in D , we need to show that there exists a unique morphism
θ ∶ P → X ⊕ Y such that F(p) ○ θ = φ and F(q) ○ θ = ψ. _e morphisms
φ,ψ are represented by triples (W, f , g) ∈ D(P,X) and (W′, f ′, h) ∈ D(P,Y).
Considering a homotopically cartesian square

W′′ W′

W P

←→

←→ ←→ f ′

← →f

we reduce to the case where W = W′ and f = f ′. Let k = ( g
h ) and let θ ∈

D(P,X ⊕ Y) be the class of the triple (W, f , k). One has F(p) ○ θ = φ and
F(q) ○ θ = ψ. Let θ′ ∈D(P,X⊕ Y) be amorphism such that F(p) ○ θ′ = φ and
F(q) ○ θ′ = ψ. Up to replacing W, we may assume that θ′ is represented by a
triple of the form (W, f , k′), where k′ = ( g′

h′ ). _en (W, f , g) and (W, f , g′) are
equivalent, so that, in particular, F(g) = F(g′); by proposition 2.5.11, a), there
exists an isomorphism (mod N ), u ∶ U→W, such that g ○ u = g′ ○ u. Similarly,
there exists an isomorphism (mod N ), v ∶ V → W, such that g ○ v = g′ ○ v.
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Considering a homotopy pull-back of u and v, wemay assume that U = V and
u = v. _en k ○ u = k′ ○ u, hence F(k) = F(k′).

Similarly, one proves that X⊕ Y is a product.
c) By the two preceding paragraphs, the categoryD is semi-additive, and the

functor F is additive. It remains to prove that every morphism φ ∈D(X,Y) has
an opposite. Let (W, f , g) be a triple representing φ and let φ′ = [(W, f ,−g)].
One checks that φ + φ′ = [(W, f , 0)] = 0. _is concludes the proof that the
categoryD is additive.

2.5.14. — If f is an isomorphism (mod N ), then so are Σ f and Σ−1 f ; conse-
quently, there exists unique endofunctors ofD , stil denoted by Σ and Σ−1, such
that Σ ○ F = F ○ Σ and Σ−1 ○ F = F ○ Σ−1. One has Σ ○ Σ−1○ = F = idD ○F, so that
Σ ○ Σ−1 = idD ; similarly, Σ−1 ○ Σ = idD . In particular, Σ is an automorphism of
the categoryD .

Lemma (2.5.15). — Any diagram of distinguished triangles in C

X Y Z ΣX

X′ Y′ Z′ ΣX′

← →u

←→f
← →v

←→ g
← →w

←→ h ←→ Σ f

←→u′ ←→v′ ←→w′

where f , g are isomorphisms (mod N ) can be extended to amorphismof triangles,
where h is an isomorphism (mod N ).

Proof. — Let us complete the morphism u′ ○ f ∶ X → Y′ to a distinguished
triangle X

u′○ f
ÐÐ→ Y′ v′′Ð→ Z′′ w′′

Ð→ ΣX. We then decompose the given diagram as the
composition of two diagrams of distinguished triangles:

X Y Z ΣX

X Y′ Z′′ ΣX

X′ Y′ Z′ ΣX′

← →u

⇐⇐

← →v

←→ g

← →w

←→ h′′ ⇐⇐

←→u′○ f

←→f

←→v′′

⇐⇐

←→w′′

←→ h′ ←→ Σ f

←→u′ ←→v′ ←→w′
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Starting with the ûrst two triangles, let us now apply the octahedral axiom:

X Y Z ΣX

X Y Z′′ ΣX

N N

ΣX Y Z Σ2X

← →u

⇐⇐

← →v

←→ g

← →w

←→ h′′ ⇐⇐

← →u′○ f ←→v

←→

← →

←→

⇐⇐

←→ ←→

←→Σu ← →Σv ←→−Σw

Since g is an isomorphism (mod N ), the object N belongs to N ; consequently,
h′′ is an isomorphism (mod N ) as well.
We then apply the octahedral axiom in the opposite category to the last two

triangles, a�er having shi�ed them to the le�:

Σ−1Y′ Σ−1Z′ X′ Y′

N′ N′

Y′ Z′′ ΣX ΣY

Y′ Z′ ΣX′ ΣY′

←→−Σ−1v′

←→

← →−Σ−1w′
←→

← →−u′

⇐ ⇐

←→ ←→

← →−v′′

⇐⇐
← →−w′′

←→ h′

← →−Σu′○Σ f

←→Σ f ⇐⇐

← →−v′ ← →−w′ ←→−Σu′

Again, since the morphism Σ f is an isomorphism (mod N ), the object N′

belongs to N , so that h′ is an isomorphism (mod N ). Finally, we may let
h = h′ ○ h′′; it is an isomorphism (mod N ).

_eorem (2.5.16). — LetT be the set of triangles inD which are isomorphic to the
image under F of a distinguished triangle ofC . _e categoryD is a triangulated
category, when endowed with its endofunctor Σ and the set T of triangles, and
the functor F ∶ C →D is a triangulated functor.

Let us remark that the given set of distinguished triangles in D is the small-
est possible one for which F is a triangulated functor. Indeed, this condition
implies that the image of a distinguished triangle is again distinguished, and
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axiom (2.1.3.1) of a triangulated category imposes that the triangles in T be
distinguished.

Proof. — 1) By construction, a triangle which is isomorphic to a distin-
guished triangle is distinguished.

2) It follows from the deûnition and the analogous property for the triangu-
lated categoryC that if T is a triangle in D , then the shi� of T is distinguished
if and only if T is distinguished.

3) For every object X, the triangle X 1Ð→ X → 0 → ΣX in D is the image
under F of the “same” triangle in C , hence is distinguished.

4) Let φ ∶ X→ Y be amorphism inD ; let it be represented by a triple (W, s, f ),
where s is an isomorphism (mod N ). Let W

f
Ð→ Y

g
Ð→ Z hÐ→ ΣW be a distin-

guished triangle in C . _e diagram in D

W Y Z ΣW

X Y Z ΣX

←→F( f )

←→F(s) ⇐⇐

←→F(g) ←→F(h)

⇐⇐ ←→ Σs

←→φ

←→
F(g)

←→
ΣF(s)○F(h)

shows that the bottom triangle is distinguished.
5) Let us consider a partial diagram of distinguished triangles in D :

X Y Z ΣX

X′ Y′ Z′ ΣX′

← →u

←→f

← →v

←→g

← →w

←→ Σ f

←→
u′

←→
v′

←→w′

and let us show that there exists amorphism h ∶ Z→ Z′ in D that gives rise to a
distinguishedmorphism of distinguished triangles.
Wemay assume that both horizontal triangles are images by F of distinguished

triangles in C .
Let us show that the le�most commutative square is isomorphic to the image of

a commutative square in C . Let (U, s1, u1) ∈ D(X,Y) and (V, t1, g1) ∈ D(Y,Y′)
be representatives of u and g. Let (W, t2, u2) ∈ D(U,V) be a triple built from
a homotopy pull-back of u1 and t1. Similarly, let (U′, t′1, f1) ∈ D(X,X′) and
(V′, s′1, u′1) ∈ D(X′,Y′) be representatives of f and g′. Let (W′, s′2, f2) be a triple
built from a homotopy pull-back of f1 and s′1. Let ûnally (P, s3, t3) ∈ D(W,W′) be
a triple built from a homotopy pull-back of t′1 ○ s′2 and s1 ○ t2. _ese constructions
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are summarized by the diagrams:

W V Y′

U Y

X

←→u2
←→t2 ←→ t1

←→g1

←→u1

←→s1

W′ V′ Y′

U′ X′

X

←→f2

←→s′2 ←→ s′1

←→u′1

←→f1

←→t′1

P W

W′ X

← →t3

←→s3 ←→ s1○t2

←→t′1○s
′

2

Moreover, t2, s′1, s3 and t3 are isomorphisms (mod N ).
Let us complete u2 ○ t3 ∶ P→ V into a distinguished triangle P→ V→ Q→ ΣP

in C ; let us complete u′1 ∶ V′ → Y′ into a distinguished triangle V′ → Y′ → Q′ →
ΣV′ in C . _is furnishes the diagram of distinguished triangles in C :

X Y Z ΣX

P V Q ΣP

V′ Y′ Q′ ΣV′

X′ Y′ Z′ ΣX′

← →u ← →v ← →w

← →
← →s

←→ f ′

← →t

←→

←→ g′ ←→ h′

← →

← →r

←→ Σ f ′

← →Σs

←→

←→s′
←→

⇐⇐

←→

←→ r′ ←→ Σs′

←→u′ ←→v′ ←→w′

where s, t, s′ are morphisms in S such that f = F(s′) ○ F( f ′) ○ F(s)−1 and
g = F(g′) ○ F(t)−1. Let us choose amorphism h′ ∶ Q → Q′ that gives rise to a
distinguishedmorphism of distinguished triangles in C . By lemma 2.5.15, there
exist morphisms r ∶ Q→ Z and r′ ∶ Q′ → Z′ in S that give rise to isomorphisms
of triangles inD . _emorphism h = F(r′)○F(h′)○F(r)−1 ∶ Z→ Z′ inD induces
a distinguished isomorphism of distinguished triangles.

_is shows that the category D satisûes the ûve axioms of a triangulated
category. By construction, the functor F is triangulated.

Proof of theorem 2.5.4. — We have constructed a triangulated categoryD and a
triangulated functor F ∶ C →D such thatN ⊂ Ker(F). Let now F′ ∶ C →D ′ be
any triangulated functor to a triangulated categoryD ′ be such thatN ⊂ Ker(F′).
Let f ∶ X → Y be an isomorphism (mod N ) and let X

f
Ð→ Y → Z → ΣX

be a distinguished triangle in C ; by deûnition, Z is an object of N . _en
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F′(X)
F′( f )
ÐÐ→ F′(Y) → 0 → ΣF′(X) is a distinguished triangle, because F′ is a

triangulated functor andN ⊂ Ker(F′). By corollary 2.2.5, themorphism F′( f )
is an isomorphism.
By proposition 2.5.9, there exists a unique functor G ∶ D → D ′ such that

F′ = G ○ F.
_e functor G is additive: let indeed φ,ψ ∶ X→ Y bemorphisms in D ; there

exists an object W, an isomorphism (mod N ), s ∶ W → X, and morphisms
f , g ∶ W → Y in C such that φ = F( f ) ○ F(s)−1 and ψ = F(g) ○ F(s)−1. _en,
φ + ψ = F( f + g) ○ F(s)−1, hence

G(φ + ψ) = G(F( f + g) ○ F(s)−1) = G(F( f + g)) ○G(F(s))−1

= F′( f + g) ○ F′(s)−1 = F′( f ) ○ F′(s)−1 + F′(g) ○ F′(s)−1

= G(φ) +G(ψ),

as was to be shown.
_e functor G is triangulated. Indeed, if T is a distinguished triangle in D ,

it is isomorphic to the image by F of a distinguished triangle T1 in C . _en
G(T) = G(F(T1)) = F′(T1) is a distinguished triangle, because F′ is a triangu-
lated functor.
Finally, it follows from corollary 2.5.12 that Ker(F) is the smallest thick tri-

angulated subcategory ofC containing N . _is concludes the proof of theo-
rem 2.5.4.

Proposition (2.5.17). — We keep the notation of theorem 2.5.4. For an object Y
in C , the following assertions are equivalent:

(i) One has C (X,Y) = 0 for every object X ∈N ;
(ii) For every diagram

W

X Y

←→s ←
→

f

← →g

in C , where s ∈ S is an isomorphism (mod N ), there exists a uniquemorphism
g ∶ X→ Y in C such that g ○ s = f ;
(iii) For every object X inC , the functor F induces an isomorphismC (X,Y)→

D(F(X), F(Y));
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(iv) For every object Z inC and everymorphism f ∶ Y→ Z which is an isomor-
phism (mod N ), there exists amorphism g ∶ Z→ Y such that g ○ f = idY.

We leave to the reader to state the analogous statement in the opposite category.

Proof. — (i)⇒(ii). Let
W

X Y

←→s ←

→

f

← →g

be a diagram in C , where s is an isomorphism (mod N ). Let W sÐ→ X→ Z→
ΣW be a distinguished triangle in C ; since s is an isomorphism (mod N ), the
object Z belongs to N . Applying the (contravariant) cohomological functor
C (⋅,Y), we obtain an exact sequence

C (Z,Y)→C (X,Y) sÐ→C (W,Y)→C (Σ−1Z,Y).

Since Z and Σ−1Z belong to N , one has C (Z,Y) = C (Σ−1Z,Y) = 0. Conse-
quently, the morphism s induces an isomorphism C (X,Y) ∼Ð→ C (W,Y). In
particular, there exists a uniquemorphism g ∶ X→ Y in C such that g ○ s = f .

(ii)⇒(iii). By deûnition of morphisms in D , assertion (ii) implies that the
canonical morphism C (X,Y) → D(X,Y) is surjective. On the other hand,
let g ∈ C (X,Y) be such that h(g) = 0. By proposition 2.5.11, there exists a
morphism s ∶ W → X in S such that g ○ s = 0 in C . Assertion (i) applied
with f = 0 then implies that g = 0.

(iii)⇒(iv). Let f ∶ Y → Z be an isomorphism (mod N ). Since it induces
an isomorphism inD , assertion (iii) implies that there exists amorphism g ∈
C (Z,Y) such that h(g) = h( f )−1. One has h(g ○ f ) = idY. By (iii) again,
g ○ f = idY in C (Y,Y), as was to be shown.
(iv)⇒(i). Let X be an object in N and let f ∶ X→ Y be amorphism in C . Let

X
f
Ð→ Y

g
Ð→ Z → ΣX be a distinguished triangle. _e triangle Y

g
Ð→ Z → ΣX

Σ f
Ð→

ΣY is distinguished as well, so that g is an isomorphism (mod N ). By (iv),
there exists amorphism h ∶ Z → Y such that h ○ g = idY in C . Consequently,
f = idY ○ f = h ○ g ○ f = 0 in C . _is proves that C (X,Y) = 0, as claimed.

Corollary (2.5.18). — LetN ⊥ be the subcategory ofC consisting of objects Y such
that C (X,Y) = 0 for every X ∈N . _en N ⊥ is a thick triangulated subcategory
ofC the restriction to which the functor F induces a fully faithful functor to D .
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Proof. — _e subcategoryN ⊥ is stable under translation. Let X → Y → Z →
ΣX be a distinguished triangle, where X and Z belong to N ⊥. Let W be an
object in N . Applying the cohomological functor C (W, ⋅), we obtain an exact
sequence

C (W,X)→C (W,Y)→C (W,Z)
of abelian groups. Consequently,C (W,Y) = 0. _is proves that Y ∈N ⊥.
Consequently, the full subcategoryN ⊥ is stable under forming distinguished

triangles. In particular, it is stable under forming ûnite coproducts, hence it is
an additive subcategory.
Finally, let X and Y be objects in C such that X⊕ Y ∈N ⊥. For every object

W ∈N , one has 0 =C (W,X⊕Y) =C (W,X)⊕C (W,Y), so that C (W,X) =
C (W,Y) = 0. Consequently, X and Y belong to N ⊥.

_is shows that N ⊥ is a thick triangulated subcategory.
_e last assertion follows from proposition 2.5.17.

2.6. Derived categories

2.6.1. — Let A be an abelian category and let K (A) be its homotopy category.
By lemma 1.6.6, the cohomology functors Hn ∶ K(A)→A are cohomological
functors, for all n ∈ Z. One has Hn = H0 ○ Σn.

Lemma (2.6.2). — Let N be the full subcategory ofK (A) whose objects are the
acyclic complexes.
a) _e subcategoryN is a thick triangulated subcategory ofK (A).
b) Let f ∶ X→ Y be amorphism of complexes in A. _en f is an isomorphism

(mod N ) if and only if its cone C f is acyclic, if and only if f is a homologism.

Proof. — a) First of all, N is an additive subcategory of K (A), invariant
under the translation automorphism. Let then X,Y be acyclic complexes and
u ∶ X→ Y be amorphism in K (A); let us extend it to a distinguished triangle
X uÐ→ Y vÐ→ Z wÐ→ ΣX in K (A). We need to show that Z is acyclic as well. By
deûnition of the distinguished triangles ofK (A), wemay assume that Z is the
cone of amorphism of complexes representing u. Since X and Y are acyclic, u is
a homologism. By lemma 1.6.6, Z is acyclic.
b) _is follows from lemma 1.6.6.
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Deûnition (2.6.3). — Let A be an abelian category. _e derived categoryD(A)
is the triangulated category quotient of the homotopy categoryK (A) by its thick
triangulated subcategory of acyclic complexes.

_ere are canonical functors

A→C (A) kÐ→K (A) hÐ→D(A).

_e functor A → C (A) considers an object X ofA as the unique complex
such that Xn = 0 for n ≠ 0 and X0 = X, all diòerentials being 0. It is fully faithful.

Let f be amorphism in K (A). By lemma 2.5.11, b), themorphism h( f ) is an
isomorphismif and only if f is a homologism. More generally, ifH ∶ K (A)→B

is a functor, there exists a functor G ∶ D(A)→B such that H = G○h if and only
ifH maps homologisms to isomorphisms. _e necessity of the condition is clear,
by what precedes, and the converse assertion follows from proposition 2.5.9, d).
If,moreover, the functor H is additive (resp. a cohomological functor), then so
is G.

2.6.4. — Let A be an abelian category and let C be a triangulated category. A
∂-functor F ∶ A→C is an additive functor endowed, for every exact sequence
S = (0 → X → Y → Z → 0) in A, with a morphism ∂(S) ∶ F(Z) → ΣF(X),
satisfying the following properties:
a) For every exact sequence S = (0→ X uÐ→ Y vÐ→ Z→ 0), the diagram

F(X)
F(u)
ÐÐ→ F(Y)

F(v)
ÐÐ→ F(Z)

∂(S)
ÐÐ→ ΣF(X)

is a distinguished triangle;
b) For every morphism of exact sequences

S 0 X Y Z 0

S′ 0 X′ Y Z 0,

←→

←→ ←→

←→f

←→

←→ g

←→

←→ h

←→ ←→ ←→ ←→

the diagram

F(Z) ΣF(X)

F(Z′) ΣF(X′)

← →∂(S)

←→F(h) ←→ ΣF( f )

←→∂(S)

is commutative.
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Lemma (2.6.5). — _e functorA→D(A) is a ∂-functor,when,with every exact
sequence 0 → X uÐ→ Y vÐ→ Z → 0, one associates the composition in D(A) of the
canonical morphism βu ∶ Cu → ΣX and of the inverse of the canonical homologism
Cu → Z (see lemma 1.6.6).

Proof. —

2.6.6. — Let X be a complex in an abelian categoryA. _e naïve (or stupid)
truncations of X are obtained by replacing Xm by zero outside of a given range,
for example:

σ⩽n(X) = ⋅ ⋅ ⋅→ Xn−1 → Xn → 0→ . . .
_ere is a canonical morphism from X to σ⩽n(X), induced by the identity maps
Xm → Xm for m ⩽ n, and by the zero maps otherwise. _is morphism induces
isomorphisms Hm(X) → Hm(σ⩽n(X)) for m < n; for m = n, one gets the
morphism

Hn(X) = Ker(dn
X)/ Im(dn−1

X )→ Xn/ Im(dn−1
X ) = Hn(σ⩽n(X))

which is not an epimorphism unless dn
X = 0. Moreover, homologous complexes

may have non-homologous stupid truncations.
_e correct truncations of X are the following complexes:(1)

τ⩽n(X) = ⋅ ⋅ ⋅→ Xn−1 → Ker(dn
X)→ 0→ 0→ . . .

τ′⩽n(X) = ⋅ ⋅ ⋅→ Xn−1 → Xn → Im(dn
X)→ 0→ . . .

τ′⩾n(X) = ⋅ ⋅ ⋅→ 0→ Im(dn−1
X )→ Xn → Xn+1 → . . .

τ⩾n(X) = ⋅ ⋅ ⋅→ 0→ 0→ Coker(dn−1
X )→ Xn+1 → . . .

_ere are canonical morphisms of complexes

τ⩽n(X)→ τ′⩽n(X)→ X→ τ′⩾n(X)→ τ⩾n(X),

of which non-obvious morphisms are induced by the diòerential.
_e morphisms τ′⩾n(X) → τ⩾n(X) and τ⩽n(X) → τ′⩽n(X) are homologisms,

hence they induce isomorphisms in the derived categoryD(A).
_emorphism τ′⩽n(X)→ X induces an isomorphism Hi(τ⩽n(X)) ∼Ð→ Hi(X)

for every integer i such that i ⩽ n, while one has Hi(τ′⩽n(X)) = 0 for i > n. _e
similar property holds for themorphism τ⩽n(X)→ X.

(1)_ere still aremistakes there...
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_emorphism X→ τ′⩾n(X) induces an isomorphism Hi(X) ∼Ð→ Hi(τ⩾n(X))
for every integer i such that i ⩾ n, and one has Hi(τ⩾n(X)) = 0 for i < n. _e
similar property holds for themorphism X→ τ⩾n(X).

Moreover, the diagrams

0→ τ′⩽n−1(X)→ τ⩽n(X)→ Σ−nHn(X)→ 0(2.6.6.1)

0→ Σ−nHn(X)→ τ⩾n(X)→ τ′⩾n+1(X)→ 0(2.6.6.2)

0→ τ⩽n(X)→ X→ τ′⩾n+1(X)→ 0(2.6.6.3)

0→ τ′⩽n(X)→ X→ τ⩾n+1(X)→ 0(2.6.6.4)

are exact sequence of complexes.
_ese exact sequences of complexes induce distinguished triangles in the

homotopy categoryK (A) and in the derived categoryD(A):

τ′⩽n−1(X)→ τ⩽n(X)→ Σ−nHn(X)→ Στ′⩽n−1(X)(2.6.6.5)

Σ−nHn(X)→ τ⩾n(X)→ τ′⩾n+1(X)→ Σ1−nHn(X)(2.6.6.6)

τ⩽n(X)→ X→ τ′⩾n+1(X)→ Στ⩽n(X)(2.6.6.7)

τ′⩽n(X)→ X→ τ⩾n+1(X)→ Στ′⩽n(X).(2.6.6.8)

Every morphism of complexes f ∶ X → Y induces in an obvious way amor-
phism of complexes τ⩽n( f ) ∶ τ⩽n(X)→ τ⩽n(Y), and τ⩽n deûnes a functor from
the categoryC (A) to itself. If f is null homotopic (resp. a homologism), then
so is τ⩽n( f ). Consequently, the functor τ⩽n extends to an endofunctor of the
homotopy categoryK (A) (resp. of the derived categoryD(A)).

Similar properties hold for the other truncations.
_e diagrams (2.6.6.1–2.6.6.4), the distinguished triangles (2.6.6.5–2.6.6.8),

are functorial.

2.6.7. — By imposing the vanishing of appropriate cohomology objects, we
can deûne various full subcategories ofK (A):
– K ⩾a(A), whose objects X satisfy Hn(X) = 0 for n < a;
– K +(A) = ⋃a∈ZK ⩾a(A), whose objects X satisfy Hn(X) = 0 for n smaller

than some integer (depending on X);
– K ⩽a(A), whose objects X satisfy Hn(X) = 0 for n > a;
– K −(A) = ⋃a∈ZK ⩽a(A), whose objects X satisfy Hn(X) = 0 for n larger

than some integer (depending on X);
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– K b(A) = K +(A) ∩K −(A), whose objects X satisfy Hn(X) = 0 outside
of some bounded interval (depending on X).
_eir images in D(A) are denoted byD⩾a(A), etc.

_e categories K −(A),K +(A) andK b(A) are triangulated subcategories
ofK (A) containing the subcategory of acyclic objects inK (A). _e categories
D−(A),D+(A) andDb(A) are triangulated subcategories ofD(A); they can
also be deûned as the localization of the corresponding subcategories ofK (A)
under their subcategory of acyclic objects.

_e categories K ⩽a(A) andK ⩾a(A) are not triangulated subcategories of
K (A); they are not even stable under translation.

Remark (2.6.8). — Let X ∈ K ⩽0(A) and Y ∈ K ⩾0(A). _e cohomological
functor H0 ∶ D(A)→A induces an isomorphism

D(A)(X,Y)→A(H0(X),H0(Y)).

To begin with, an object of D(X,Y) is a triple (Z, f , g), where f and g are
homotopy classes of an homologism f ∶ Z→ X and of amorphism of complexes
g ∶ Z→ Y, which, by abuse, we still denote by the same letter. _en Z ∈K ⩽0(A),
so that the canonical morphism τ⩽0(Z)→ Zmaps to isomorphisms under all
functors Hn(⋅); consequently, it is an isomorphism. Similarly, the canonical
morphism Y → τ⩾0(Y) is an isomorphism. We may thus assume that Zn = 0
for n > 0 and that Yn = 0 for n < 0. In particular, one has H0(Z) = Coker(d−1Z )
and H0(Y) = Ker(d0Y). _en all components gn vanish, for n ≠ 0, so that g is
given by a singlemorphism g0 ∶ Z0 → Y0, subject to the conditions g0 ○ d−1X = 0
and d0Y ○ g0 = 0. Consequently, the datum of g is equivalent to that of the
morphism H0(g) ∶ H0(Z)→ H0(Y). Composed with the isomorphism f ∶ Z→
X in D(A)(Z,X), this implies the claim.

In particular, the canonical functor A→D(A) is fully faithful.

Deûnition (2.6.9). — Let X be a complex in an abelian categoryA. One says that
X is homotopically injective ifK (A)(N,X) = 0 for every acyclic complex N.

By deûnition, this notion only depends on the isomorphism class of X in the
homotopy categoryK (A).

Proposition (2.6.10). — Let Y be a complex in an abelian categoryA. _e follow-
ing assertions are equivalent:
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(i) _e complex Y is homotopically injective;
(ii) For every diagram

W

X Y

←→s ←

→

f

← →g

ofmorphisms of complexes, where s is a homologism, there exists a uniquemor-
phism g ∶ X→ Y in K (A) such that g ○ s is homotopic to f ;

(iii) For every complexX, the functorh induces an isomorphismK (A)(X,Y)→
D(A)(X,Y);

(iv) For every complex Z and every homologism f ∶ Y → Z, there exists a
morphism g ∶ Z→ Y such that g ○ f is homotopic to idY.

Proof. — _is is a particular case of proposition 2.5.17.

Proposition (2.6.11). — Homotopically injective complexes form a thick triangu-
lated subcategory I ofK (A) and the restriction to I of the localization functor
K (A)→ D(A) is fully faithful.

Proof. — _is follows from corollary 2.5.18.

_eorem (2.6.12). — IfA is a Grothendieck abelian category (see §1.4.7), then
every complex is homologous to a homotopically injective complex.

_is theorem is due to Spaltenstein (1988) in the particular case whereA
is the category of abelian sheaves on a topological space. His methods have
then be extended to reach the result in this form by Alonso Tarrío et al
(2000) and Serpé (2003). More precisely, these authors show that the func-
tor h ∶ K (A)→D(A) admits a right adjoint.

Corollary (2.6.13). — Let A be a Grothendieck abelian category and let I be
the thick triangulated category ofK (A) consisting of all homotopically injective
complexes. _e triangulated functor I →D(A) is an equivalence of triangulated
categories.

Corollary (2.6.14). — Let A be a Grothendieck abelian category. If U is an uni-
verse such that A is locally U-small, then D(A) is locally U-small.
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Example (2.6.15). — Let U be a universe, let k be a ring whose underlying set
belongs to U and let Mod(k)U be the category of k-modules whose underlying
set belongs to U. For every objects X,Y ofMod(k)U, one has Hom(X,Y) ∈ U,
so that the category Mod(k)U is locally U-small. Consequently, the derived
categoryD(Mod(k)U) is locally U-small.

Proposition (2.6.16). — Let Y be a complex in an abelian category.

a) Assume that Yn = 0 for n ≠ 0. _en Y is homotopically injective if and only
if Y0 is an injective object ofA.
b) Assume that Yn = 0 for n < 0 and that Yn is an injective object of A for

n ⩾ 0. _en Y is homotopically injective.

Proof. — a) Let us assume that Y is homotopically injective and let us show
that Y0 is injective. Let j ∶ X′ → X be amonomorphism in A, let f ′ ∶ X′ → Y0 be
amorphism; we need to show that there exists f ∶ X→ Y0 such that f ○ j = f ′.
Let k ∶ X → X′′ be a cokernel of j, so that N = (0 → X′

j
Ð→ X kÐ→ X′′ → 0)

is an acyclic complex in A (we put the term X′ in degree 0). Morphisms of
complexes u ∶ N → Y correspond to morphisms u0 ∶ X′ → Y0; a morphism
is null homotopic if and only if extends to X. Since K (A)(N,Y) = 0, the
morphism f ′ extends to X, as claimed.

_e converse assertion follows from b).
b) Let us now assume that Yn = 0 for n < 0 and that Yn is injective for

n ⩾ 0, and let us prove that Y is homotopically injective. Let N be an acyclic
complex and let f ∶ N→ X be amorphism of complexes. In order to show that
f is null homotopic, we will construct morphisms θn ∶ Nn+1 → Yn such that
f n = θn ○ dn

X + dn−1
Y ○ θn−1, by induction on n. If n < 0, it suõces to deûne θn = 0.

We then assume that θm is constructed for m < n and proceed to deûning θn.
Consider the diagram

Nn−2 Nn−1 Nn Nn+1

Yn−2 Yn−1 Yn Yn+1

←→

←→f n−2

←→dn−1

←→f n−1←→

θn−2

←→d
n

←→f n←→

θn−1

←→ f n+1←→ θn

←→ ←→
dn−1

←→
dn

One has

f n ○ dn−1
N = dn−1

Y ○ f n−1 = dn−1
Y (θn−1 ○ dn−1

N + dn−2
Y ○ θn−2) = dn−1

Y ○ θn−1 ○ dn−1
N ,
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hence f n − dn−1
Y θn−1 ∶ Nn → Yn factors through Nn/ Im(dn−1

N ). Since N
is acyclic, Im(dn−1

N ) = Ker(dn
N). _e morphism dn

N induces a monomor-
phism Nn/Ker(dn

N) → Nn+1. Since Yn is injective, there exists a morphism
θn ∶ Nn+1 → Yn such that f n − dn−1

Y θn−1 = θn ○ dn
N. _is provides the required

morphism.
_is shows that themorphism f is null homotopic and concludes the proof of

the proposition.

Proposition (2.6.17). — Let A be a Grothendieck abelian category and let I be
its additive full subcategory of injective objects. Let X ∈C (A) be a complex, let
p ∈ Z be such that Hn(X) = 0 for every integer n ⩽ p.

a) _ere exists a complex Y ∈ C (I ) such that Yn = 0 for every n ⩽ p and a
homologism f ∶ X→ Y.
b) If, moreover, Xn = 0 for n ⩽ p, then one can moreover choose Y and f in

such a way that f n is amonomorphism for every n ∈ Z.

Proof. — We ûrst observe that asssertion a) follows from b). Indeed, by hypoth-
esis, the canonical morphism X → τ⩾p(X) is a homologism, and the complex
τ⩾p(X) satisûes the hypothesis of b), so that X is homologous to a complex
in C >p(I ).

Let us now prove b). We shall construct the complex Y and the morphism
i ∶ X→ Y by induction, degree by degree, in such a way that for every integer n ∈
N, the inducedmorphism X→ σn(Y) induces isomorphisms Hm(X)→ Hm(Y)
for m < n, and amonomorphism Hn(X)→ Coker(dn−1

Y ).
For n < p, we take Yn = 0, themorphisms in and dn

Y are taken equal to zero.
Assuming that Ym and im are deûned for m ⩽ n, and that dm

Y is deûned for
m ⩽ n − 1, let us deûne Yn+1, in+1 ∶ Xn+1 → Yn+1 and dn

Y ∶ Yn → Yn+1. We ûrst
deûne

Zn+1 = Coker(dn−1
Y )⊕Coker(dn−1

X )
Ker(dn+1

X )

so to have a cartesian diagram

Coker(dn−1
X ) Ker(dn+1

X )

Coker(dn−1
Y ) Zn+1.

←→

←→ ←→

← →
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_is furnishes a commutative diagram

0 Hn(X) Coker(dn−1
X ) Ker(dn+1

X ) Hn+1(X) 0

0 Hn(X) Coker(dn−1
Y ) Zn+1 Hn+1(X) 0

←→ ←→
⇐⇐

←→

←→

←→

←→

←→

⇐⇐

←→ ←→ ←→ ←→ ←→

in which the ûrst line is the exact sequence from lemma 1.6.2.
Let us prove that the second line is exact as well. _e morphism Hn(X) →

Coker(dn−1
Y ) is a monomorphism, by the induction hypothesis, and the mor-

phism from Zn+1 to Hn+1(X) is an epimorphism by construction of Zn+1. To
prove the remaining two other exactness properties, we pretend that A is a
category ofmodules.

Let us consider the class ȳ in Coker(dn−1
Y ) of an element y in Yn which is

mapped to 0 in Zn+1; by construction, the element ( ȳ, 0) of Coker(dn−1
Y ) ⊕

Ker(dn+1
X ) belongs to the submodule Coker(dn−1

X ): there exists an element x ∈ Xn

such that ( ȳ, 0) = (x̄ ,−x̄), so that x ∈ Ker(dn+1
X ) and y comes from the class

of x in Hn(X).
Let us then prove exactness at Zn+1. Let y ∈ Coker(dn−1

Y ) and x ∈ Ker(dn+1
X )

such that the class z of ( ȳ, x) in Zn+1 is mapped to 0 in Hn+1(X). _is means
that x belongs to Im(dn

X), so that there exists x′ ∈ Xn such that x = dn
X(x′). In

the right hand side of the equality (y, x) = (y+ in(x), 0)−(in(x),−dn
X(x′)), the

class in Zn+1 of the ûrst term comes from Coker(dn−1
Y ), while that of the second

term is zero. Consequently, z comes from Coker(dn−1
Y ), as was to be shown.

Let now Yn+1 be an object of I and j ∶ Zn+1 ↪ Yn+1 be amonomorphism; these
exist, sinceA is aGrothendieck abelian category. We then deûne dn

Y ∶ Yn → Yn+1

to be the compositions with j of the canonical morphisms Yn → Coker(dn−1
Y )→

Zn+1. Similarly, we consider the composition Ker(dn+1
X ) → Zn+1 j

Ð→ Yn+1; since
Yn+1 is injective, this morphism can be extended to amorphism in+1 ∶ Xn+1 →
Yn+1.

TO BE FINISHED

As a corollary, we have the following partial result in the direction of theo-
rem 2.6.12.
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Corollary (2.6.18). — Let A be an abelian category possessing enough injec-
tives, for example, a Grothendieck abelian category. _en the canonical functor
K +(I )→D+(A) is an equivalence of triangulated categories.

Proof. — By proposition 2.6.17, every complex in C +(A) is homologous to
a complex in K +(I ). Such a complex is homotopically injective, by proposi-
tion 2.6.16. _e corollary follows from that.

2.7. Derived functors

2.7.1. — Let A,B be abelian categories and let F ∶ A → B be an additive
functor. _e functor F induces an additive functor on complexes, F ∶ C (A)→
C (B); since it preserves homotopies, it also induces a triangulated functor on
F ∶ K (A) → K (B) between the associated homotopy categories. However,
if X is an acyclic complex in A, the complex F(X) may not be acyclic (unless
F is exact) so that this functor F ∶ K (A) →K (B) does not induce a natural
triangulated functor between the corresponding derived categories.

_e theory of right (resp. le�) derived functors aims at associating with F a
functor RF (resp. LF) between the corresponding derived categories which
re�ects the properties of the initial functor F.
We assume that A is a Grothendieck category and let I be the thick trian-

gulated subcategory ofK (A) of homotopically injective complexes. _en the
functor I →D(A) is an equivalence of triangulated categories (corollary 2.6.13).
_e derived functorRF is deûned as the composition of a (chosen) quasi-inverse
of this equivalence, the functor F, and the canonical functor to D(B). _is is
depicted by the diagram

I K (A) K (B)

D(A) D(B)

←

→∼

←→

←→ h

←→F

←→ h

←→RF

in which, we insist, the square is usually not commutative! Explicitly, given
a complex X ∈ K (A), the “recipe” to computeRF(X) consists in taking the
chosen homotopically injective resolution of X, namely a homologism ε ∶ X→ I
to a homotopically injective complex I, and deûning RF(X) = F(I). Moreover,
RF(X) is endowedwith a canonical morphism F(ε) ∶ F(X)→RF(X) inK (B).
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Let f ∶ X → X′ be a morphism in K (A), let ε′ ∶ X′ → I′ be the chosen ho-
motopically injective resolution of X′. Since I′ is homotopically injective, there
exists a uniquemorphism f ′ ∶ I→ I′ in K (A) such that f ′ ○ ε = f ○ ε′ (proposi-
tion 2.6.10); let us deûneRF( f ) = F( f ′) ∶ F(I)→ F(I′).

_esemaps deûne a functor K (A)→D(B).
If f ∶ X → X′ is a homologism, then the morphism f ′ ∶ I → I′ constructed

above is an isomorphism in K (A) (proposition 2.6.10), so that RF( f ) is an
isomorphism. Consequently, the functor we have just deûned extends to a
functor

RF ∶ D(A)→D(B),
called the right derived functor of F.

Remark (2.7.2). — a) For every object X ofK (A) and every homologism
ε ∶ X→ I,where I is homotopically injective, themorphism F(ε) ∶ F(X)→ F(I) =
RF(X) inK (B) satisûes an universal property: for every object Y ofK (B),
the canonical morphism F(ε) ∶ h(F(X))→RF(X) induces an isomorphism

colim
X

sÐ→X′
K (A)(Y, F(X′)) ∼Ð→D(B)(h(Y),RF(X)).

(In fact, the system (F(X′))X→sX′ is “eventually constant”.)
_is universal property of the right derived functor RF is also formulated by

saying that RF is a le� Kan extension of the functor h ○K (F) with respect to
the localization functor h ∶ K (A)→D(A).
b) If we remove the hypothesis that the abelian categoryA is a Grothendieck

category, then the right derived functor RF may not exist. However, the le�
hand side of this formula furnishes a deûnition, for every object X, of a “functor
RF(X)” on the category D(B). One then may say that F is right derivable
at X if this “functor RF(X)” is representable and denote byRF(X) an object
that represents it. _e previous construction shows that the functor F is right
derivable at every object that admits a homotopically injective resolution.

Lemma (2.7.3). — Let F ∶ A → B be an additive functor between abelian cate-
gories; assume that A is a Grothendieck abelian category. Let X ∈D+(A) and let
a ∈ Z.
a) If X ∈D⩾a(A), then RF(X) ∈D⩾a(B). In particular,RF(X) ∈D+(B);
b) For every integer n such that n ⩽ a, the canonical morphism τ⩽a(X) → X

induces an isomorphism Hi(RF(τ⩽a(X)))→ Hi(RF(X)).
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Proof. — a) _e construction of a homotopically injective resolution ofX is a
complex I such that In = 0 for n < a. Consequently,RF(X) = F(I) is a complex
whose terms of degree < a vanish. _is implies that Hn(RF(X)) = Hn(F(I))) =
0 for n < a. Consquently, RF(X) ∈ D⩾a(B). _e second assertion follows
readily since there exists an integer a such that X ∈D⩾a(A).
b) Let us consider the distinguished triangle τ⩽a(X) → X → τ>a(X) →

Στ⩽a(X) inD(A). Applying the triangulated functor RF and a shi�, we obtain
a distinguished triangle

Σ−1RF(τ>a(X))→RF(τ⩽a(X))→RF(X)→RF(τ>a(X)).

Let n be an integer and let us apply the cohomological functor Hn: we obtain an
exact sequence

Hn−1(RF(τ>a(X)))→ Hn(RF(τ⩽a(X)))→ Hn(RF(X))→ Hn(RF(τ>a(X))).

_e complex τ>a(X) belongs to D>a(A), hence its image by RF belongs to
D>a(B), by a). If n < a, then the extreme terms of this exact sequence vanish,
so that the consideredmorphism

Hn(RF(τ⩽a(X)))→ Hn(RF(X))

is an isomorphism.

2.7.4. — Assume that the functor F is le� exact. For every integer n, let
RnF ∶ A→B be the composition of the inclusion functor A→D(A), ofRF,
and of Hn. Every exact sequence 0 → X → Y → Z → 0 in A gives rise to a
distinguished triangle X→ Y→ Z→ ΣX in D+(A). Applying the triangulated
functor RF and the cohomology functor Hn = H ○ Σn, we obtain to a long exact
sequence

⋅ ⋅ ⋅→Rn−1F(Z)→Rn(F(X))→RnF(Y)→RnF(Z)→Rn+1F(X)→ . . .

Let X be an object inA. Viewing X as a complex concentrated in degree 0, we
already know that RF(X) ∈D⩾0(X). Consequently,RnF(X) = 0 for n < 0.

Let us then choose an injective resolution ε ∶ X→ I of X, where I is a complex
with injective terms such that In = 0 for n < 0. Since F is le� exact, the exact
sequence 0→ X→ I0 → I1 gives rise to an exact sequence 0→ F(X)→ F(I0)→
F(I1), which shows that themorphism F(ε) ∶ F(X)→ F(I) =RF(X) induces
an isomorphism F(X) ≃R0F(X).
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Deûnition (2.7.5). — Let F ∶ A → B be a le� exact additive functor between
abelian categories. One says that a full additive subcategoryA0 ofA is injective
with respect to F, or is F-injective, if the following conditions hold:

(i) Every object ofA admits amonomorphism into an object ofA0;
(ii) For every exact sequence 0 → X → Y → Z → 0 in A, where X and Y are

objects ofA0, the object Z belongs to A0;
(iii) For every exact sequence 0 → X → Y → Z → 0 in A, with objects in A0,

the complex 0→ F(X)→ F(Y)→ F(Z)→ 0 is exact.

Example (2.7.6). — If the categoryA has enough injectives, then the full sub-
category of injectives objects ofA is F-injective for every le�-exact functor F.
Assertion (i) is the deûnition of having enough injectives. Let 0→ X

j
Ð→ Y

p
Ð→

Z→ 0 be an exact sequence of objects in A, where X and Y are injective objects.
Since X is an injective object, the identity idX extends along themonomorphism
j ∶ X → Y, hence there exists a morphism r ∶ Y → X such that r ○ j = idX;
consequently, the morphism (r, p) ∶ Y → X ⊕ Z is then an isomorphism and
the given exact sequence is split. It ûrst follows that Z, a direct summand of an
injective object, is injective as well, and then that the image of the given exact
sequence under any additivemorphism is again exact.

Proposition (2.7.7). — Let F ∶ A → B be a le� exact additive functor between
abelian categories. Let A0 be an F-injective subcategory ofA.

a) For every complex Y ∈K +(A) with terms in A0, the canonical morphism
F(Y)→RF(Y) in D+(B) is an isomorphism;
b) For every complex X ∈K +(A), there exists a complex Y ∈K +(A0) and a

homologism ε ∶ X→ Y in K+(A).

In particular, one can deûneRF(X) by considering an arbitrary F-injective
resolution of X.

Proof. —

Remark (2.7.8). — Let F ∶ A→B be a le�-exact functor between abelian cate-
gories. Let A0 be an F-injective subcategory ofA. _en, every object X ofA0
satisûes RnF(X) = 0 for n > 0— one says that X is F-acyclic.
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2.7.9. — Let A,B ,C be Grothendieck abelian categories, let F ∶ A→B and
G ∶ B → C be additive functors, so that the three derived functors RF, RG
andR(G ○ F) are deûned. Let us construct a canonical morphism of functors

R(G ○ F)→RG ○RF

Let X be any object in K (A) and let ε ∶ X → I be a homologism from X to a
homotopically injective object I. By construction, RF(X) = F(I) andR(G ○
F)(X) = (G ○ F)(I). Let J be a homotopically injective object in K (B) and let
η ∶ F(I) → J be a homologism, so that RG(F(I)) = G(J). Evaluated at X, the
canonical morphism

R(G ○ F)(X)→RG ○RF(X)

is then themorphism

G(η) ∶ R(G ○ F)(X) = (G ○ F)(I)→ G(J) =RG(F(I)) =RG ○RF(X).

We leave to the reader to check that this construction furnishes amorphism of
functors.

Corollary (2.7.10). — LetA,B ,C beGrothendieck categories and let F ∶ A→B

and G ∶ B →C be le� exact functors. Let A0 be an F-injective subcategory ofA
and let B0 be an G-injective subcategory ofB such that F(X) ∈ ob(B0) for every
object X ofA0. _en the canonical morphism of functors

R(G ○ F)→RG ○RF, D+(A)→D+(C ),

is an isomorphism.

Proof. — Let X be any object in K +(A) and let ε ∶ X → I be a homologism
fromX to a homotopically injective object I. Wemay assume thatX is a bounded
below complex, with terms in A0. Since A0 is F-injective, the morphism
F(ε) ∶ F(X)→ F(I) inK +(B) is a homologism and induces an isomorphism
in D(B) from F(X) to F(I) =RF(X). Moreover, one has R(G ○ F)(X) = (G ○
F)(I). Let J be a homotopically injective object in K +(B) and let η ∶ F(I)→ J
be a homologism, so that RG(F(I)) = G(J). On the other hand, since F(X)
belongs toK +(B0), themorphism G(η) ∶ G(F(X))→ G(J) is an isomorphism,
becauseB0 is an F-injective subcategory ofB , as was to be shown.
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2.8. Exercises

Exercise (2.8.1). — Let C be an abelian category and let X be a complex in C .
One says that X is contractible if idX is null homotopic.
a) Prove thatX is contractible if and only if it is acyclic and if the exact sequence

0→ Ker(dn
X)→ Xn → Im(dn

X)→ 0 is split, for every integer n ∈ Z.
b) Let k be a ring and let C be the category of k-modules. Assume that X is

an acyclic complex such that Xn is a free k-module, for every n ∈ Z.
Prove thatX is contractible if,moreover, k is a ûeld or a principal ideal domain.
c) Prove that X is contractible if,moreover one has Xn = 0 for every n < 0.
d) Let k = Z/4Z and Xn = Z/4Z for every n ∈ Z, let dn

X be given by the
multiplication by 2. Prove that X is acyclic but not contractible.

Exercise (2.8.2). — Let X uÐ→ Y vÐ→ Z wÐ→ ΣX be a distinguished triangle in a
(pre)triangulated category. Establish the equivalence of the following conditions:
(i) u is an isomorphism; (ii) v = 0; (iii) w = 0. If they hold, prove that Z = 0.

Exercise (2.8.3). — (From (Gelfand &Manin, 2003, Exercise III.4.1).) Let A
be an abelian category and let f ∶ X → Y be a morphism of complexes in A.
Consider the four following statements: (i) f = 0 in C (A); (ii) f = 0 in K (A);
(iii) f = 0 in D(A); (iv) Hn( f ) = 0 for every n ∈ Z.
a) Establish the following implications: (i)⇒(ii)⇒(iii)⇒(iv).
b) Give examples where (ii) holds but not (i), and (iii) holds but not (ii).
c) Let A = Ab be the category of abelian groups and let f be given by the

following morphism of complexes

. . . 0 Z Z 0 . . .

. . . 0 Z Z/3Z 0 . . .

←→ ←→

←→

←→2

←→ ←→
←→ ←→

←→
←→ ←→ ←→ ←→ ←→

where the horizontal maps are induced by multiplication by 2, while the vertical
maps are the canonical ones. Prove that Hn( f ) = 0 for all n ∈ Z but that f ≠ 0
in D(A).





CHAPTER 3

COHOMOLOGY OF SHEAVES

3.1. General topology

3.1.1. — Let X be a topological space. We say that X is separated (equivalently,
Hausdorò) if any two distinct points admit disjoint neighborhoods.
We say that X is compact if it is separated and if it satisûes the Borel–Lebesgue

covering property: if a family of open subsets covers X, then a ûnite subfamily
already covers X.
We say that X is locally compact if it is separated and if every point of X has a

compact neighborhood.
Let X be a topological space and let A be a subset of X. One says that A is

locally closed if for every point a ∈ A, there exists a neighborhood U of a in X
such that A ∩U is a closed subset of U.

Lemma (3.1.2). — Let X be topological space and let A be a subset of X.

a) Assume that A is locally closed in X. _e union U of all open subsets V of X
such that A∩V is a closed subset of V is an open subset of X of which A is a closed
subset, and it is the largest such open subset.
b) _e following properties are equivalent: (i) _e set A is locally closed in X;

(ii) _ere exist an open subset U and a closed subset Z of X such that A = U ∩ Z;
(iii) _e set A is open in its closure A.
c) Assume that X is locally compact. _en A is locally closed in X if and only if

it is locally compact for the induced topology.

Proof. — a) _e set U is open in X, because it is the union of a family open
subsets of X. By deûnition of a locally closed subset of X, one has A ⊂ U. Let us
prove that A is closed in U. Let x ∈ U A; by construction of U, there exists a
open subsetV ofX, containing x, such thatA∩V is closed inV; thenV (A∩V)
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is an open neighborhood of x in U, which proves the claim. Any open subset V
of X of which A is a closed subset is amember of the family of which U is the
union, so that U is indeed the largest such open subset of X.
b) (i)⇒(ii). By a), there exists an open subset U of X of which A is a closed

subset. By deûnition of the induced topology of U, there exists a closed subset Z
of X such that A = Z ∩U, as was to be shown.

(ii)⇒(iii). Under the assumptions of (ii), the relation U A = U (U ∩ Z)
shows that A is closed in U, so that A ∩U = A. By deûnition of the induced
topology of A, this proves that A is open in A.

(iii)⇒(i). Let V be an open subset of X such that A = V ∩ A. One observes
that for every a ∈ A, the set V is an open neighborhood of a such that A∩V = A
is closed in V. Consequently, A is locally closed in X.
c) First assume thatA is locally closed in X and let U be an open subset of X of

whichA is a closed subset. _en U is locally compact, hence A is locally compact
as well, because open subsets and closed subsets of a locally compact space are
locally compact. Let us now assume that A is locally compact. Let a ∈ A and
let W be a compact neighborhood of a in A which is compact, hence closed
because X is separated (being locally compact). Let V be a closed neighborhood
of a in X such that W = A ∩V. SinceW is compact, it is closed in V; then V̊ is
an open neighborhood of a in X and

A ∩ V̊ = (A ∩V) ∩ V̊ =W ∩ V̊

is closed in V̊. _is proves that A is locally closed in X.

Deûnition (3.1.3). — A continuous map f ∶ X→ Y is separated if for every pair
(x , x′) of points of X such that f (x) = f (x′) and x ≠ x′, there exist disjoint open
subsets U and U′ of X such that x ∈ U and x′ ∈ U′.

If X is separated, then every continuous map with origin X is separated.

Deûnition (3.1.4). — A continuous map f ∶ X → Y is closed if f (A) is a closed
subset of Y, for every closed subset A of X. It is proper if it is universally closed,
that is, if themap f × idZ ∶ X × Z→ Y × Z is closed, for every topological space Z.

Proposition (3.1.5). — Let f ∶ X→ Y be a continuous map; let us assume that X
is separated.
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a) _emap f is proper if and only if f −1(y) is compact, for every y ∈ Y.
b) If X and Y are locally compact (in particular, separated), themap f is proper

if and only if f −1(A) is a compact subset of X, for every compact subset A of Y.

Proposition (3.1.6). — Let f ∶ X→ Y be a continuous map.
a) Assume that f is proper (resp. separated). _en for every subspace A of Y,

themap fA ∶ f −1(A)→ A induced by f by restriction is proper (resp. separated).
b) Assume that f is proper (resp. separated). _en for every closed subspace Z

of X, themap f ∣Z ∶ Z→ Y is proper (resp. separated).
c) Assume that there exists an open covering V of V such that for every V ∈ V ,

the map fV ∶ f −1(V) → V is proper (resp. separated). _en f is proper (resp.
separated).

Deûnition (3.1.7). — A topological space X is paracompact if for every open
covering U of X, there exists an open covering V of X satisfying the following
properties:

a) For everyV ∈ V , there exists U ∈ U such thatV ⊂ U (the covering V reûnes
the covering U );
b) Every point of X has an open neighborhood A such that the set of V ∈ V such

that A ∩V ≠ ∅ is ûnite.

A compact topological space is paracompact; ametrizable topological space
is paracompact; every subspace of a cellular space is paracompact.

Lemma (3.1.8). — Let X be a locally compact topological space.

a) For every open subset U of X and every point a ∈ U, there exists an open
neighborhood V of a such that V ⊂ U.
b) Let (U1, . . . ,Un) be a ûnite family of open subsets of X, let U = U1 ∪ ⋅ ⋅ ⋅ ∪Un

and let A be a compact subset of X which is contained in U. _ere exists a family
(V1, . . . ,Vn) of open subsets of X such that A ⊂ V1 ∪ ⋅ ⋅ ⋅ ∪ Vn and Vi ⊂ Ui for
every i ∈ {1, . . . , n}.
c) In particular, for every compact subsetA ofX and every open neighborhoodU

of A, there exists an open neighborhood V of A such that V ⊂ U.

Proof. — a) By deûnition of a locally compact topological space, the point a
admits a compact neighborhood C. Replacing U by U ∩ C̊, wemay assume that
U is compact. Let thenA = ∂(U) = U U; it is a compact subset ofXwhich does
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not contain the point a. Since X is separated, there exists, for every point x ∈ A,
an open neighborhood Vx of a and an open neighborhoodWx of x such that
Vx ∩Wx = ∅. Since A is compact, there exists a ûnite family S of A such that
theWx , for x ∈ S, cover A; let then W = ⋃x∈SWx and V = U ∩ ⋂x∈SVx . By
construction,W is an open neighborhood of A, V is an open neighborhood of a
contained in U, and V ∩W = ∅. Moreover,

V ⊂ U ∩⋂
x∈S

Vx ⊂ U ⋃
x∈S

Wx ⊂ U.

b) For every a ∈ A, letVa be a compact neighborhood of a which is contained
in U. When a ∈ A, the interiors V̊a form an open covering of A; since A is
compact, there exists a ûnite subset S of A such that A ⊂ ⋃a∈S V̊a. _e latter set
is an open neighborhood V of A; since S is ûnite, V ⊂ ⋃a∈SVa ⊂ U.
c) For every a ∈ A, let us choose an index i(a) ∈ {1, . . . , n} such that a ∈ Ui(a)

and an open neighborhoodWa of a such that Wa ⊂ Ui(a). _e family (Wa)a∈A
of open subsets of X covers A; consequently, there exists a ûnite subset S of A
such that the family (Wa)a∈S covers A. For every i ∈ {1, . . . , n}, let Vi be the
union of the open sets Wa, for a ∈ S such that i = i(a); it is an open subset of X
such that Vi = ⋃ a∈S

i(a)=i
Wa ⊂ Ui . Moreover, ⋃i∈IVi = ⋃a∈SWa is a neighborhood

of A in X.

3.2. Abelian categories of abelian sheaves

3.2.1. — Let X be a topological space. _e set Op(X) of open subsets of X is
ordered by inclusion; we consider the associated categoryOp(X).

Let C be a category (for instance, the category of sets, or the category of
abelian groups). AC -presheaf on X is a contravariant functor F from Op(X)
to the categoryC . Amorphism of presheaves is amorphism of functors.

It the category C admits limits (resp. colimits), then the category of C -
presheaves on X admits limits (resp. colimits), which are computed pointwise.

3.2.2. — Let U be an open subset of X and let U be an open covering of U. To
these data, we attach a quiver whose vertices are the pairs {V,V′} of elements
ofU , this vertex being the target of two arrows of respective origins {V} and
{V′}. Every C -presheaf F deûnes a diagram, with value F (V ∩ V′) at the
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vertex {V,V′}, and with morphisms induced by the inclusions V ∩V′ ⊂ V (resp.
V ∩V′ ⊂ V′), for V,V′ ∈ U .

One says that a C -presheaf is a sheaf if for every open subset U of X, and
every open covering U of U, the cone (F (U)→F (V ∩V′))V,V′∈U is a limit.

3.2.3. — Assume that the categoryC admits limits. _en the natural functor
from the category of sheaves on X to the category of presheaves admit a le�
adjoint F →F †, inducing, for every presheafF and every sheaf G , a bijection

Hom(F †,G ) ∼Ð→ Hom(F ,G )).

Let us consider a diagram of sheaves. Viewed as a diagram of presheaves, its
limit is a sheaf, and is its limit in the category of sheaves.

However, the presheaf-colimit of this diagram is usually not a sheaf; the
associated sheaf furnishes a colimit in the category of sheaves.

3.2.4. — We denote byAb(X) the category of sheaves of abelian groups on X.
IfOX is sheaf of rings onX,we denote byMod(OX) the category ofOX-modules
on X. Let k be an abelian group (resp. a ring); we write kX for the constant sheaf
on X associated with k. One has Mod(ZX) =Ab(X).

_ese categories admit limits and colimits. Limits (for example products or
equalizers), are computed as presheaves. Colimits, for example coproducts or
coequalizers, require to consider the sheaf associated with the colimit-presheaf.

_eorem (3.2.5). — Let X be a topological space and let O be a sheaf of rings
on X. _e category Mod(O) of sheaves of O-modules on X is a Grothendieck
abelian category. In particular, the categoryAb(X) of abelian sheaves on X is a
Grothendieck abelian category.

As a consequence, these categories have enough injective objects (theo-
rem 1.4.10).

3.2.6. — Assume that OX is a sheaf of commutative rings. _en the category of
OX-modules admits an internal Hom bifunctor Hom(⋅, ⋅), and a tensor product.
_ese are additive functors.
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3.2.7. — Let x ∈ X. _e ûber of a an abelian sheafF at a point x is the colimit

Fx = colimU∋x
F (U).

_e functor Ab(X)→Ab given by F ↦Fx is exact.

3.2.8. — Let f ∶ X → Y be a continuous map. For every open subset V of Y,
f −1(V) is an open subset of X. Consequently, f induces a functor Op(Y) →
Op(X).
By composition, every presheafF on X induces a presheaf f∗F on Y. IfF is

a sheaf, then f∗F is a sheaf as well.
_emapping F ↦ f∗F gives rise to a functor f∗ ∶ Ab(X)→Ab(Y).
_is functor has a le� adjoint, denoted f ∗, which can be deûned as fol-

lows. For every sheaf G on Y and every open subset U of X, let f ∗preG (U) =
colimV⊃ f (U)G (V). _e universal maps endow f ∗preG with the structure of a
presheaf on Y. Let f ∗G be the associated sheaf.
For every open subset V of Y, one has f ( f −1(V)) ⊂ V. _e canonical mor-

phism G (V) → colimW⊃ f ( f −1(W))G (W) = f ∗preG ( f −1(V)). furnishes a mor-
phism of sheaves εG ∶ G → f∗ f ∗G . _is morphism is functorial in G .

On the other hand, for every open subset U of X and every open subset V of Y
containing f (U), one has U ⊂ f −1(V); then, the canonical map f ∗pre( f∗F )(U) =
colimV⊃ f (U) f∗F (V) = colimV⊃ f (U)F ( f −1(V))→F (U) deûnes amorphism
of presheaves f ∗pre( f∗F )→F , hence amorphism of sheaves εF ∶ f ∗( f∗F )→
F . _is morphism is functorial in F .

_emorphisms ε⋅ and η⋅ are the unit and the counit of an adjunction f ∗ ⊣ f∗,
and furnish functorial bijections:

HomX( f ∗G ,F ) ≃ HomY(G , f∗F )

for every sheafF on X and every sheaf G on Y.
At the level of ûbers, one has functorial isomorphisms ( f ∗G )x ≃ G f (x), for

every x ∈ X. _is implies in particular that the functor f ∗ ∶ Ab(Y)→Ab(X) is
exact.

3.2.9. — When C is the category of sets, sheaves have an alternative, topo-
logical, deûnition in terms of étale spaces over X, that is, a topological space E
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endowedwith a continuousmap p ∶ E→ Xwhich is a local homeomorphism (ev-
ery point of E has an open neighborhood U such that p∣U is a homeomorphism
from U to an open subset of X).

To every étale space p ∶ E→ X is associated its sheafF of continuous sections.
_e ûber Fx is identiûedwith p−1(x). Conversely, given a sheafF , one endowes
the set EF = ∐x∈X Fx with a topology so that the projection EF → X is étale
and its sheaf of continuous sections identiûes with F .

In the setting of étale spaces, the functor f ∗ corresponds to the ûber product
of topological spaces.

3.2.10. — Let F be an abelian sheaf on X. Let U be an open subset of X and
let s ∈ F (U). By the sheaf property ofF , if V is a family of open subsets of U
with union V, such that s∣W = 0 for every W ∈ V , then s∣V = 0. _e support of s,
supp(s), is the intersection of all closed subsets Z ofU such that s∣U Z = 0. It is a
closed subset of U, and the restriction of s to its complement is 0; consequently,
it is the smallest such closed subset.

Morphisms of sheaves respect supports. Precisely, let u ∶ F → G be amor-
phism of abelian sheaves on X. For every open subset U of X and every sec-
tion s ∈ F (U), one has supp(u(s)) ⊂ supp(s). Indeed, the restriction of s to
U supp(s) is the zero section, so that the restriction of u(s) to U supp(s) is
zero as well.

_eorem (3.2.11). — LetF be sheaf onX, letA be a subspace ofX and let j ∶ A→ X
be the canonical inclusion. Let us make one of the following hypotheses:

(i) _e subspace A admits a basis of paracompact neighborhoods;
(ii) _e space X is paracompact and A is closed;
(iii) _e space X is metrizable;
(iv) _e space X is separated and A is compact.

_en the canonical morphism of presheaves j∗preF → j∗F induces a bijection

colim
U⊃A

F (U)→ j∗F (A).

For the proof, I refer to (Godement, 1973, théorème 3.3.1, p. 150) or (Bourbaki,
2016, I, p. 37, théorème 2).

Corollary (3.2.12). — Let X and Y be topological spaces and let f ∶ X → Y be
a continuous map. Let F be a sheaf on X. Let y ∈ Y and write Xy = f −1(y).
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_e restriction maps Γ( f −1(V),F )→ Γ(Xy ,F ∣Xy), when V ranges over all open
neighborhoods of y deûne amap ( f∗F )y → Γ(Xy ,F ∣Xy). If f is proper and X is
separated, then this map is a bijection.

Proof. — Since f is proper, the set Xy is compact. By case (iv) of theorem 3.2.11,
the canonical map

colim
U⊃Xy

Γ(U,F )→ Γ(Xy ,F ∣Xy)

is bijective, where U ranges over all open neighborhoods of Xy in X.
Let U be an open neighborhood of Xy in X. Since f is proper, it is closed,

hence f (X U) is a closed subset of Y; since it does not contain y, there exists
an open neighborhood V of y in Y such that f (X U) ⊂ Y V. Consequently,
f −1(V) ⊂ U. Neighborhoods of Xy of the form f −1(V) are thus coûnal in the
ordered set of all neighborhoods of Xy, and the canonical map

( f∗F )y = colimV⊃y
Γ( f −1(V),F )→ colim

U⊃Xy
Γ(U,F )

is bijective. _is implies the corollary.

3.3. Extensions by zero

3.3.1. — Let j ∶ W → X be the inclusion of a locally closed subset of X. Let F

be a sheaf on W. For every open subset U of X, let j!F (U) be the subset of
j∗F (U) = F (W∩U) consisting of all sections s whose support (which is closed
in W ∩ U) is closed in U. _is is a sub-presheaf of j∗F , actually a subsheaf.
Moreover, the construction j! gives rise to a functor Ab(W)→Ab(X).

Lemma (3.3.2). — a) For every x ∈ X W, one has j!(F )x = 0.
b) For every x ∈W, the canonical morphism ( j∗F )x →Fx induces an isomor-

phism ( j!F )x →Fx .

Proof. — a) Let x ∈ X W. Let U be an open subset of X such that x ∈ U and
let s ∈ F (W∩U) be an element of j!F (U). By hypothesis, one has supp(s) ⊂W,
so that x /∈ supp(s), hence there exists an open neighborhood V of x such that
V ⊂ U and s∣V = 0. _is implies that the germ sx of s at x is 0. We thus have
( j!F )x = 0.
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b) Let x ∈W. SinceW is locally closed, there exists an open neighborhood V
of x inX such thatW∩V is closed inV. For every an open subset U ofV and every
s ∈ j∗F (U) = F (W∩U), the support supp(s) of x is closed inW∩U, hence inU,
becauseW∩U is closed inU. Consequently, j!F (U) = j∗F (U) for every suchU.
In particular, the inclusion j!F → j∗F induces an isomorphism ( j!F )∣U →
( j∗F )∣U. In particular, the canonical morphisms ( j!F )x → ( j∗F )x →Fx are
isomorphisms.

Proposition (3.3.3). — Let X be a topological space and let j ∶ W → X be the
inclusion of a locally closed subset of X. _e functor j! is exact and fully faithful.
It induces an equivalence of categories from Ab(W) to the full subcategory of
Ab(X) consisting of abelian sheaves G such that Gx = 0 for every x ∈ X W. On
that subcategory, the functor j∗ induces a quasi-inverse.

Proof. — At the level of ûbers, the functor j! induces the identity functor, or
the zero functor; it is in particular exact.

LetG be an abelian sheaf onX such thatGx = 0 for every x ∈ X W. Let us show
that the canonical morphism ηG ∶ G → j∗ j∗G factors through j! j∗G . Let indeed
U be an open subset of X. _en j∗ j∗G (U) = j∗G (W ∩U) and themorphism
ηG (U) ∶ G (U)→ j∗G (W ∩U) factors through themorphism s ↦ (s∣V)V from
G (U) to j∗preG (W ∩U) = colimV⊃W∩U G (V) ≃ colimU⊃V⊃W∩U G (V). Moreover,
for every s ∈ G (U), the support of s is closed in U, hence the support of s∣V
is closed in V, for every open subset V of X such that U ⊃ V ⊃ W ∩ U. _is
implies that the image of s belongs to j! j∗G (U). _e resulting morphism of
sheaves, G → j! j∗G , induces an isomorphism on ûbers: this is tautological for
x ∈W, and follows from the fact that Gx = 0 otherwise. _is morphism is thus
an isomorphism.

Let then F be an abelian sheaf onW. _e canonical morphism εF ∶ j∗ j∗F →
F induces amorphism j∗ j!F →F . Let O be an open subset ofX containingW
such that W is closed in O. Let V be an open subset of W. _e canonical
morphisms

j∗pre j!F (V) = colim
U⊃V

j!F (U) ≃ colim
O⊃U⊃V

j!F (U)

→ colim
O⊃U⊃V

j∗F (U) = colim
O⊃U⊃V

F (W ∩U)→F (V)
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are isomorphisms. _ey induce an isomorphism from the presheaf j∗pre j!F
to the sheaf F , so that the corresponding morphism from j∗ j!F to F is an
isomorphism as well.

Let F and G be abelian sheaves on W and let v ∶ j!F → j!G be amorphism
of abelian sheaves. _ere exists a a uniquemorphism of sheaves u ∶ F → G the
diagram

j∗ j!F j∗ j!G

F G .

←→j∗v

←→εF ←→ εG

← →u

Since j!u induces themorphism vx on the ûbers at x, one then has j!u = v.
_is concludes the proof of the proposition.

3.3.4. — We still consider the inclusion j ∶ W → X of a locally closed subset
of X. Let G be a sheaf on X. For every open subset U of X, let ΓW(G )(U) be
the set of all sections s ∈ G (U) such that supp(s) ⊂W. _is is a subsheaf of G ;
moreover, the construction G ↦ ΓW(G ) is functorial.

Let x ∈ X W, let U be an open neighborhood of x and let s ∈ ΓW(G ). By
assumption, x /∈ supp(s); by deûnition of the support, there exists an open
neighborhood V of x which is contained in U such that s∣V = 0. _is shows that
ΓW(G )x = 0. Moreover, if Gx = 0 for every x ∈ X W, then ΓW(G ) = G .

Let us deûne j!G = j∗ΓW(G ). _is construction deûnes a functor Ab(X)→
Ab(W). _emorphisms

F → j∗ j!F = j! j!F

and
j! j!G → ΓW(G )→ G

are the unit and the counit of an adjunction ( j!, j!): they provide functorial
isomorphisms

HomX( j!F ,G ) ≃ HomW(F , j!G )

for every abelian sheafF on W and every abelian sheaf G on X.

3.3.5. — IfW is closed in X, then j! = j∗.
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3.3.6. — Let us assume that W is open in X; let Z = X W and let i ∶ Z→ X be
the inclusion.

LetG be an abelian sheaf onX. For every open subset U ofW and every section
s ∈ G (U), the support of s is closed in U, hence ΓW(G )∣W = G . Consequently,
one has the equality j! = j∗ of functors from Ab(X) to Ab(W).
We now show that the diagram

(3.3.6.1) 0→ j! j∗G → G → i∗i∗G → 0

is an exact sequence, where themorphisms are induced by the counit of the adjunc-
tion j! ⊣ j∗ and the unit of the adjunction i∗ ⊣ i∗. It is called the glueing exact
sequence.
We ûrst show that themap j! j∗G → G is injective. Let indeed U be an open

subset of X and let s ∈ j! j∗G (U). By deûnition, s is a section of j∗G (U) =
G (W ∩ U) whose support is closed in U, and the counit is induced by the
identity map, hence it is injective.

_e image of s in i∗i∗G (U) = i∗G (Z ∩U) is the germ of s along Z ∩U; since
supp(s) is a closed subset of U contained in W ∩U, it does not meet Z ∩U, and
this germ is zero. Conversely, let s ∈ G (U) be a section whose germ along Z ∩U
vanishes. _is implies that there exists an open neighborhood V of Z ∩U in U
such that s∣V = 0. Consequently, the support of s is contained in U V, hence is
closed in U, so that s is induced by a section of j! j∗G (U).
Finally, let U be an open subset of X and let s ∈ i∗i∗G (U) = i∗G (Z ∩U). By

construction, Z∩U is covered by open subsetsV ofU onwhich s is induced by a
section t of G (V). _is proves the surjectivity of the unit morphism G → i∗i∗G .

On the level of ûbers, the glueing exact sequence (3.3.6.1) induces the exact
sequences

0→ Gx → Gx → 0→ 0, for x ∈W,
0→ 0→ Gx → Gx → 0, for x ∈ Z.

3.3.7. — We keep the same context. Let X be a topological space, let j ∶ W→ X
be the inclusion of an open subset W of X, and let i ∶ Z→ X be the inclusion of
the complementary closed subset Z = X W.
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Between the categories of abelian sheaves onX, Z, andW,we have six functors:
i∗, i∗, i!, j!, j∗, j∗ forming four adjoint pairs i∗ ⊣ i∗, i∗ ⊣ i!, j! ⊣ j∗ and j∗ ⊣ j∗:

Ab(Z) Ab(X) Ab(W).← →i∗
⊥ ←→ i∗

⊥ ←→

i !

← →j∗
←→ j!

⊥

⊥ ←→

j∗

Moreover, one has j∗ ○ i∗ = 0, i∗ ○ j! = 0 and i! ○ j∗ = 0.
_e functor i∗ is fully faithful. In fact, the counit of the pair (i∗, i∗) and the

unit of the pair (i∗, i!) are isomorphisms.
Moreover, the functors j! and j∗ are fully faithful: the counit of the pair ( j∗, j∗)

and the unit of the pair ( j!, j∗) are isomorphisms.

3.3.8. — Every sheafF on X furnishes a sheaf j∗F onW, a sheaf i∗F on Z,
and a morphism of sheaves i∗ηF ∶ i∗F → i∗ j∗( j∗F ) on Z. _e assignment
F ↦ ( j∗F , i∗F , i∗ηF) induces a functor from the category Ab(X) to the
category of triples (FW,FZ, φ) of triples consisting of an abelian sheaf FW
onW, an abelian sheafFZ on Z, and of amorphismof abelian sheaves φ ∶ FZ →
i∗ j∗FW. Let us show that this functor is an equivalence of categories.
We ûrst show that it is fully faithful. Let indeed F ,G be sheaves on X and

let us consider v ∶ i∗F → i∗G and w ∶ j∗F → j∗G be morphisms of sheaves
making the diagram

i∗F i∗ j∗ j∗F

i∗G i∗ j∗ j∗G

←→i∗ηF

←→ v ←→ i∗ j∗w

← →i∗ηG

commutative. Let U be an open subset of X and let s ∈ F (U); let us show that
there exists a unique section u(s) ∈ G (U) such that u(s)∣Z∩U = v(s∣Z∩U) and
u(s)∣W∩U = w(s∣W∩U). _ese conditions impose u(s)x = vx(sx) for x ∈ Z, and
u(s)x = wx(sx) for x ∈W, so that there is at most one such section u(s).
Conversely, let t = v(s∣Z∩U). For every point x ∈ Z ∩U, there exists an open

neighborhood Vx of x in U and a section tx ∈ G (Vx) such that tx ∣Z∩Vx = t∣Z∩Vx .
Observe that we have the following equalities in i∗G (Z ∩U):

i∗ j∗w ○ i∗ηF(s∣Z∩U) = ( j∗w ○ i∗ηF(s∣U))∣Z∩U = j∗w(s∣W∩U)∣Z∩U,
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where j∗w(s∣W∩U) is just the section w(s∣U∩W) ∈ G (W ∩U), but considered as
a section of j∗G (U). _en, the commutation of the above diagram implies that

tx ∣Z∩Vx = i∗ηG (t∣Z∩Vx)
= i∗ηG ○ v(s∣Z∩Vx)
= i∗ j∗w ○ i∗ηF(s∣Z∩Vx)
= j∗w(s∣W∩Vx)∣Z∩Vx

in i∗ j∗ j∗G (Z ∩ Vx). Consequently, there exists an open neighborhood Ux

of Z ∩Vx in Vx such that tx ∣W∩Ux = w(s∣W∩Ux). Up to replacing Vx by Ux , we
thus assume that tx ∣W∩Vx = w(s∣W∩Vx) for every x ∈ Z. _is shows that tx satisûes
the properties of the required section u(s∣Vx). By the uniqueness property, tx
and ty coincide on Vx ∩ Vy, for all x , y ∈ Z; and tx coincides with v(s∣W∩U)
on W ∩Vx , by construction. Consequently, there exists a section u(s) ∈ G (U)
such that u(s)∣Vx = tx for every x ∈ Z, and u(s)∣W∩U = v(s∣W∩U). It satisûes the
desired requirements, and this concludes the proof that the considered functor
is fully faithful.
We now prove that it is essentially surjective. Let (FW,FZ, φ) be a triple

consisting of a sheafFW on W, a sheafFZ on Z, and of amorphism of sheaves
φ ∶ FZ → i∗ j∗FW. For every open subset U of X, one deûnes F (U) as set set of
pairs (s, t), where s ∈ FW(W∩U), t ∈ FZ(Z∩U) satisfy φ(t) = i∗s. In fact,F
is the kernel of themorphism of sheaves

j∗FW × i∗FZ → i∗ j∗FW, (s, t)↦ i∗(s) − φ(t).

It is thus a sheaf on X , and one checks readily that it maps to the given triple
by the considered functor. _is concludes the proof.

3.4. Direct images

3.4.1. — Let X and Y be topological spaces, let f ∶ X → Y be a continu-
ous map. _e functor f∗ ∶ Ab(X) → Ab(Y) is le� exact, as is the functor
Γ ∶ Ab(X) → Ab . As usual, we denote by R f∗ ∶ D(Ab(X)) → D(Ab(Y))
andRΓ ∶ D(Ab(X))→D(Ab) their derived functors.
For n ∈ Z, we also denote byRn f∗ ∶ Ab(X) → Ab and Hn ∶ Ab(X) → Ab

the functors Hn ○R f∗ andHn ○RΓ.
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Remark (3.4.2). — Let F be a sheaf on X and let n be an integer.
Let ε ∶ F toI ● be an injective resolution ofF . By deûnition, one hasRnF =

Ker(dn
I )/ Im(dn−1

I ). It follows from the deûnition of kernels, images and quo-
tients in the category of sheaves that RnF is the sheaf associated with the
presheaf V↦ Ker(dn

I ∣V)/ Im(dn−1
I ∣V) = Hn( f −1(V),F ).

Consequently, the sheafRnF on X. is the sheaf associated with the presheaf
V↦ Hn( f −1(V),F ).(1)

Proposition (3.4.3). — Let f ∶ X→ Y be a continuous map of topological spaces
and let F be a sheaf of abelian groups on X. If the sheafF is injective, then so is
f∗F .

Proof. — _is follows from the fact that the functor f∗ has a le� adjoint which
is exact. Explicitly, let u ∶ M →N be amonomorphism of abelian sheaves on Y
and let φ ∶ M → f∗F be amorphism of abelian sheaves on Y. Let u♭ ∶ f ∗M →
f ∗N and φ♭ ∶ f ∗M →F be the corresponding morphism of abelian sheaves
on X. Since f ∗ is exact, the morphism u♭ is a monomorphism. Since F is
injective, there exists a morphism v ∶ f ∗N → F such that v ○ u♭ = φ♭. Let
v♯ ∶ N → f∗F be themorphism of sheaves on Y corresponding to v. One has
v♯ ○ u = φ. Consequently,F is injective.

Corollary (3.4.4). — Let f ∶ X→ Y and g ∶ Y→ Z be continuous maps of topolog-
ical spaces. _e canonical morphism of functors R(g ○ f )∗ → Rg∗ ○Rf∗ from
D+(Ab(X)) to D+(Ab(Z)) is an isomorphism.

Proof. — Consider an element ofD+(Ab(X)), represented by a complexF ● in
K +(Ab(X))with injective terms. _en the canonical morphisms (g○ f )∗F ● →
R(g ○ f )∗F ● and f∗F ● → R f∗F ● are homologisms. Since F j is injective
for every j, so is f∗F j; consequently, the canonical morphism g∗( f∗F ●) →
Rg∗( f∗F ●) is an isomorphism. _e corollary follows.

_eorem (3.4.5). — (2) Let f ∶ X→ Y be amap of topological spaces; assume that
X is separated and that f is proper. Let y ∈ Y and let Xy = f −1(y).
a) For every sheafF on X, the canonical map ( f∗F )y → Γ(Xy ,F ∣Xy) is an

isomorphism;

(1)Trouver une formulation correcte.
(2)Pas correctement énoncé; ajouter la preuve.
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b) _is isomorphism extends uniquely to an isomorphism of cohomological
functors (R j f∗⋅)y ≃R jΓ(Xy , ⋅∣Xy) on D+(Ab(X)).

Deûnition (3.4.6). — One says that a sheafF on X is �asque if for every open
subset U of X, the restriction map F (X)→F (U) is surjective.

Lemma (3.4.7). — Let F be a �asque sheaf on X.

a) _e sheafF ∣U is �asque, for every open subset U of X;
b) Let f ∶ X→ Y be a continuous map. _e sheaf f∗F is �asque.

Proof. — a) Let V be an open subset of U and let s ∈ F (V). Since F is
�asque, there exists s′ ∈ F (X) such that s′∣V. _en t = s′∣U is an element
ofF (U) such that t∣V = s. _is proves that F ∣U is �asque.
b) Let U be an open subset of Y and let s ∈ f∗F (U). By deûnition, s is a

section t of F ( f −1(U)). Since F is �asque, there exists a section t′ ∈ F (X)
such that t′∣ f −1(U) = t. _en t′ can be viewed as a section s′ ofF (Y) and t′∣U = t.
_is proves that f∗F is �asque.

Example (3.4.8). — If X is discrete, every section of an étale space is continuous,
so that a sheafF on X is �asque if and only if its ûbers Fx are non-empty, for
all x ∈ X. Indeed, In particulier, every abelian sheaf on X is �asque in this case.

LetXδ be the setX endowedwith the discrete topology. _e identity p ∶ Xδ → X
is continuous. For every abelian sheafF on X, one lets G(F ) = p∗p∗F . _is
is a �asque sheaf on X, and the unit ηF ∶ F → G(F ) is a monomorphism.
Explicitly, one has G(F )(U) = ∏x∈U Fx , for every open subset U of X, the
restriction morphisms are the morphisms ∏x∈U Fx → ∏x∈V Fx , for V ⊂ U
which are not only surjective, but have a section.

Example (3.4.9). — An injective sheafF on X is �asque.
Let indeed U be an open subset of X and let s ∈ F (U). Let j ∶ U→ X be the

canonical inclusion; let f ∶ j!ZU →F be the uniquemorphism corresponding
to the morphism ZU → j∗F which maps 1 to s. _e canonical morphism
u ∶ j!ZU → ZX is injective; sinceF is injective, there exists a uniquemorphism
g ∶ ZX →F such that g ○ u = f ; it corresponds to a section t ∈ F (X) such that
t∣U = s. Consequently, the restriction morphism F (X)→F (U) is surjective,
as as to be shown.
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Proposition (3.4.10). — Let F be a sheaf on X. Assume that for every open
subset U of X and every s ∈ F (U), there exists an open covering V of X such
that for every V ∈ V , there exists tV ∈ F (V) such that tV∣U∩V = s∣U∩V. _en F is
�asque.

Proof. — Let U be an open subset of X and let s ∈ F (U). Let us show that there
exists t ∈ F (X) such that t∣U = s. Let R be the set of pairs (V, t), where V is
an open subset of X and t ∈ F (V). _e relation ⪯ deûned by (V, t) ⪯ (V′, t′)
if and only if V ⊂ V′ and t′∣V = t is an ordering relation on R; moreover,
the ordered set R is inductive. By Zorn’s lemma, wemay consider amaximal
element (W, t) of R such that (U, s) ⪯ (W, t); let us show that W = X. By
hypothesis, there exists an open covering V of X and, for every V ∈ V , an
element tV ∈ F (V) such that tV∣U∩W = t∣W∩V. IfW ≠ X, there exists an open
subset V ∈ V such that V /⊂W; then, there exists a unique section t′ ∈ (W ∪V)
which restricts to t onW and to tV on V. In particular, (W∪V, t′) is an element
ofR such that (W, t) ⪯ (W ∪V, t′), contradicting the hypothesis that (W, t)
weremaximal.

Corollary (3.4.11). — Let F be a sheaf on X. Assume that there exists an open
covering V of X such that F ∣V is �asque, for every V ∈ F . _en F is �asque.

Proof. — Indeed, the condition of the proposition is satisûed: since F ∣V is
�asque, there exists t ∈ F (V) which restricts to s∣U∩V.

Proposition (3.4.12). — Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of
abelian sheaves. Assume that F ′ is �asque.

a) For every open subset U of X, the sequence 0 → F ′(U) → F (U) →
F ′′(U)→ 0 is exact.
b) IfF is �asque, then F ′′ is �asque as well.

Proof. — (3) It is a general fact that the sequence 0 → F ′(X) → F (X) →
F ′′(X)→ 0 is exact, except possibly at F ′′(X).

Let s ∈ F ′′(X). Let us show that there exists t ∈ F (X) with image s. Let R be
the set of pairs (V, t), where V is an open subset of X and t ∈ F (V) maps to s∣V
in F ′′(V). _e relation ⪯ deûned by (V, t) ⪯ (V′, t′) if and only if V ⊂ V′ and
t′∣V = t is an ordering relation on R; moreover, the ordered set R is inductive.

(3)_is seems to be another instance of the same reasoning. Find a unifying statement?
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By Zorn’s lemma, wemay consider amaximal element (W, t) ofR; let us show
that W = X. By hypothesis, there exists an open covering V of X and, for every
V ∈ V , an element tV ∈ F (V) which maps to s∣V in F ′′(V). IfW ≠ X, there
exists an open subset V ∈ V such that V /⊂ W. _en the elements t∣V∩W and
tV∣V∩W of F (V ∩W) both map to s∣V∩W in F ′′(V ∩W); consequently, their
diòerence belongs to F ′(V ∩W). SinceF ′ is �asque, there exists u ∈ F ′(X)
such that t∣V∩W − tV∣V∩W = u∣V∩W. In other words, the elements t ∈ F (W)
and tV + u∣V ∈ F (V) agree on V ∩W; consequently, there exists a unique
section t′ ∈ (W ∪V) which restricts to t on W and to tV + u∣V on V; it maps to
s∣W∪V in F ′(W ∪ V). In particular, (W ∪ V, t′) is an element of R such that
(W, t) ⪯ (W ∪V, t′), contradicting the hypothesis that (W, t) weremaximal.

Let U be an open subset of X. By restriction to U, the initial exact sequence of
sheaves on X furnishes an exact sequence of sheaves on U, andF ′∣U is �asque.
By the case already treated, the diagram 0→F ′(U)→F (U)→F ′′(U)→ 0
is exact.
Assume now that F is �asque as well; let us show that F ′′ is �asque. Let

U be an open subset of X and let s ∈ F ′′(U). By what precedes, there exists
t ∈ F (U) which maps to s. SinceF is �asque, there exists t′ ∈ F (X) such that
t′∣U = t. _en the image s′ of t′ in F ′′(X) satisûes s′∣U = s. Consequently,F ′′ is
�asque.

Corollary (3.4.13). — Let f ∶ X → Y be a continuous map of topological spaces.
_e full subcategory ofAb(X) consisting of �asque sheaves is injective with respect
to the functor f∗.

In particular, the category of �asque sheaves on X is injective with respect to the
global sections functor Γ(X, ⋅).

As a consequence, ifF ● is a complex inK +(Ab(X)) such that F j is �asque,
for every j, then the canonical morphism f∗F ● →R f∗F ● is a homologism of
complexes of abelian sheaves, hence it induces an isomorphism inD+(Ab(Y)).

Proof. — We need to check the three properties of deûnition 2.7.5:

(i) Every abelian sheaf on X embeds in a �asque sheaf.
(ii) For every exact sequence 0 → F ′ → F → F ′′ → 0 of abelian sheaves

on X, whereF ′ andF ′′ are �asque, the sheafF ′′ is �asque.
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(iii) For every exact sequence 0 → F ′ → F → F ′′ → 0 of �asque abelian
sheaves on X, the diagram 0 → f∗F ′ → f∗F → f∗F ′′ → 0 of abelian sheaves
on Y is exact.

_e ûrst property follows from example 3.4.8, and the second one follows
from proposition 3.4.12, b). Let us ûnally prove the last one. Let V be an open
subset of Y. Taking sections on V, the given diagram induces a diagram 0 →
f∗F ′(V) → f∗F (V) → f∗F ′′(V) → 0 of abelian groups, which identiûes
with the diagram 0 → F ′( f −1(V)) → F ( f −1(V)) → F ′′( f −1(V)) → 0. By
proposition 3.4.12, the latter diagram is exact. In particular, the initial diagram
is exact, as was to be shown.

3.5. Cohomology with compact support

3.5.1. — Let f ∶ X→ Y be a continuousmap. LetF be an abelian sheaf onX. For
every open subset V of Y, let f!F (V) be the set of all sections s ∈ F ( f −1(V))
whose support is proper and separated over V, that is, such that the map f
induces by restriction a proper and separatedmap f ∣supp(s) ∶ supp(s)→ f −1(V).
_is is a subgroup of f∗F (V).

Proposition (3.5.2). — Let f ∶ X → Y be a continuous map. For every abelian
sheafF on X, f!F is an abelian subsheaf of f∗F .

Proof. — Let V be an open subset of Y. _e support of the zero section of f∗F
is empty, hence is proper over V. Let then s, s′ ∈ F ( f −1(V)); consider them as
elements the support of the element s + s′ is contained in the union supp(s) ∪
supp(s′); it is proper over V; consequently, s + s′ ∈ f!F (V). Similarly, the
support of −s is equal to the support of s, so that −s ∈ f!F (V) if s ∈ f!F (V).
_is shows that f!F (V) is a subgroup of f∗F (V).

Let U,V be open subsets of Y such thatV ⊂ U. Let s ∈ f∗F (U) = F ( f −1(U)).
One has supp(s∣ f −1(V)) = supp(s) ∩ f −1(V). Consequently, supp(s) is proper
over U, then supp(s∣ f −1(V)) is proper over V. Consequently, the restriction
morphism f∗F (U) → f∗F (V) maps f!F (U) into f!F (V). In other words,
f!F is a sub-presheaf of f∗F .
Let ûnally U be an open subset of Y, let V be an open covering of U and let

(sV)V∈V be a family, where sV ∈ f!F (V), such that sV∣V∩W = sW∣V∩W for every
V,W ∈ V . Viewing the section sV as an element of f∗F (V), for every V ∈ V ,
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we see that there exists a unique element s ∈ f∗F (U) such that s∣V = sV for
every V ∈ V ; indeed, f∗F is a sheaf. _en, for every V ∈ V , the intersection
supp(s) ∩ f −1(V) is proper over V; consequently, supp(s) is proper over U,
hence s ∈ f!F (U). _is proves that f!F is a subsheaf of f∗F , and concludes
the proof of the proposition.

3.5.3. — Let f ∶ X→ Y be a continuous map of topological spaces.
Let u ∶ F → G be a morphism of abelian sheaves on X. For every open

subset V of Y, the morphism f∗(u) ∶ f∗F (V) → f∗G (V) maps f!F (V) to
f!G (V). Indeed, the image f∗(u)(s) of a section s ∈ f!F (V) is the section u(s)
of f∗G ( f −1(V)); its support is a closed subset of the support of s, hence is proper
over V.
Consequently, themaps F ↦ f!F and u ↦ f!(u) deûne a functor from the

categoryAb(X) to the categoryAb(Y).

Lemma (3.5.4). — _e functor f! is a le�-exact additive functor. (4)

Proof. — It follows from its deûnition that the functor f! is additive.
Let 0→F ′ →F →F ′′ be an exact sequence of abelian sheaves on X and let

us show that the diagram 0→ f!F ′ → f!F → f!F ′′ of abelian sheaves on Y is
an exact sequence.

Let V be an open subset of Y and let s ∈ f!F ′(V) map to 0 in f!F (V). _en
s, viewed as an element of F ′( f −1(V)), maps to 0 in F ( f −1(V)). Since the
morphism from F ′ to F is amonomorphism, one has s = 0. _is shows that
themorphism f!F ′ → f!F is amonomorphism.

Let then s ∈ f!F (V) map to 0 in f!F ′′(V). Again, the section s, when viewed
as an element of F ( f −1(V)) maps to 0 in F ′′( f −1(V)). By deûnition of the
exactness of the sequence 0 → F ′ → F → F ′′, there exists a unique sec-
tion s′ ∈ F ′( f −1(V)) which maps to s. Since the morphism F ′ → F is a
monomorphism, the support of s′ is equal to the support of s, hence is proper
over V, since s ∈ f!F (V). _is proves that the section s of f!F (V) is the image
of a section of f!F ′(V), as was to be shown.

3.5.5. — By the general theory of derived functors, the functor f!, for a contin-
uous map f ∶ X → Y, gives rise to a functor R f! ∶ D(Ab(X)) → D(Ab(Y)).

(4)Prove the general commutationwith ûltered colimits, aswell as commutationwith arbitrary coproducts.
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When f is the canonical map from X to a point, the functor f! identiûes with
the functor Γc of sections with compact support.

3.5.6. — To be able to compute conveniently cohomology with compact sup-
port, it is important to ûnd a suitable category of abelian sheaveswhich is adapted
to these functors and is as large as possible. On locally compact topological
spaces, a convenient category is that of so� sheaves.

Deûnition (3.5.7). — Let X be a locally compact topological space. An abelian
sheafF is so�(5) if for every compact subspace A of X, the canonical morphism
F (X)→F ∣A(A) is surjective.

Example (3.5.8). — Every �asque sheaf on a locally compact topological space is
so�.

Let indeed X be a locally compact topological space and let F be a �asque
sheaf on X. Let A be a compact subset of X and let s ∈ Γ(A,F ∣A). By the
extension theorem 3.2.11, there exists an open neighborhood U of A and a
section s′ ∈ Γ(U,F ) such that s′∣A = s. By the deûnition of a �asque sheaf, there
exists t ∈ Γ(X,F ) such that t∣U = s′. _en t∣A = (t∣U)∣A = s′∣A = s. _is proves
that F is so�.

Example (3.5.9). — Let X be a locally compact topological space. _e sheaf CX
of continuous functions on X is so�.

Let indeed A be a compact subset of X and let f ∈ CX∣A(A). _e sheaf CX∣A
is the sheaf of germs of continuous functions on a neighborhood of A, but the
extension theorem 3.2.11 implies that f is induced by a continuous function f ′
deûned on an openneighborhoodW of A. Wemay assume thatW is compact. By
Urysohn’s theorem (which is valid on compact spaces), there exists a continuous
function h ∶ W → [0; 1] such that h ≡ 1 in a neighborhood of A and h ≡ 0 on
∂W. Let g ∶ X→ R be deûned by g(x) = h(x) f ′(x) for x ∈W and g(x) = 0 for
x ∈ X W. Its restriction to W is continuous; since X W andW is a covering
ofX by closed subsets, the function g is continuous. By construction, it coincides
with f ′ on neighborhood of A, so that the section g∣A of CX∣A(A) is equal to f .
A similar argument shows that the sheaf ofC∞-functions on a closed subset X

of amanifold is so�.
(5)In the book of (Godement, 1973), which considers general support conditions, this notion is called
c-so�.
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Lemma (3.5.10). — Let F be a so� abelian sheaf on a locally compat topological
space X. For every locally compact(6) subspaceW of X, the sheafF ∣W is so�

Proof. — Let A be a compact subset ofW and let s ∈ (F ∣W∣A)(A) = F ∣A(A).
_en A is a compact subset of X, hence there exists t ∈ F (X) such that t∣A = s.
_en t∣W is a section ofF ∣W(W) which restricts to s on A.

Proposition (3.5.11). — Let X be a locally compact topological space and let F

be a so� abelian sheaf on X. Let A be a compact subset of X and let U be an
open neighborhood of A. _e canonical morphism Γc(U,F ) → Γ(A,F ∣A) is
surjective.

Proof. — Let V be an open neighborhood of A such that V is compact and
contained in U. Let s ∈ Γ(A,F ∣A). Let B = A ∪ ∂V; since A ∩ ∂V = ∅, there
exists a unique section s′ ofF ∣B(B)whose restriction toA is equal to s andwhose
restriction to ∂V is zero. Since F is so�, there exists a section t′ ∈ Γ(X,F )
such that t′∣A = s and t′∣∂V = 0. _ere exists an open neighborhoodW′ of ∂V
such that t′∣W′ = 0; let W = W′ ∪ (X V). _en there exists a unique section
t ∈ F (X) such that t∣V = t′ and t∣W = 0; indeed,W∩V =W′∩V and t′∣W′∩V = 0.
By construction, the support of t is contained in X W ⊂ V. Since V is compact
and contained in U, so is the support of t.

Corollary (3.5.12). — LetO be a so� sheaf of rings on a locally compact topological
space X, then any sheaf of O-modules on X is so�.

Proof. — Let indeedF be a sheaf of O-modules on X and let A be a compact
subset of X. Let s ∈ Γ(A,F ∣A). By the extension theorem 3.2.11, there exists
a neighborhood U of A and a section s′ ∈ Γ(U,F ) such that s′∣A = s. Let
f ∈ Γc(U,O) be any section with compact support such that f ∣A = 1. _e
section f s′ ∈ Γ(U,F ) has compact support, hence can be extended by zero to a
section t ∈ Γ(X,F ). By construction, one has t∣A = f ∣As′∣A = s.

Proposition (3.5.13). — Let X be a locally compact topological space and let 0→
F ′ →F →F ′′ → 0 be an exact sequence of abelian sheaves on X Assume that
F ′ is so�.

(6)Recall from lemma 3.1.2 that a subset W of a locally compact space is locally compact if and only if it is
locally closed.
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a) For every open subset U of X, the sequence 0→ Γc(U,F ′)→ Γc(U,F )→
Γc(U,F ′′)→ 0 is exact.
b) If,moreover,F is so�, then F ′′ is so� as well.

Proof. — By le�-exactness of the functor Γ(U, ⋅), the given sequence is exact
except possibly at Γ(U,F ′′), so that we just need to prove the surjectivity of the
morphism Γ(U,F )→ Γ(U,F ′′).

Let us ûrst prove this surjectivity in the case where U = X is compact.
Let s′′ ∈ F ′′(X). _ere exists a ûnite covering (Ui)1⩽i⩽n of X and a family (si),

where si ∈ F (Ui) for every i, such that si li�s s′′∣Ui . Let (Vi)1⩽i⩽n be an open
covering of X such that Vi ⊂ Ui for every i (lemma 3.1.8). For m ∈ {1, . . . , n}, let
Wm = V1 ∪ ⋅ ⋅ ⋅ ∪Vm. Let us show by induction on m that s′′∣Wm li�s to a section
of F . For m = 1, the section s∣W1 li�s s′′∣W1 . Let s ∈ F (Wm) be a section that
li�s s′′∣Wm ; the restrictions of s and sm+1 to Wm ∩Vm+1 both li� s′′∣Wm∩Vm+1 , so
that their diòerences belong to F ′(Wm ∩Vm+1). SinceF ′ is so�, there exists
a section s′ ∈ F ′(X) such that s∣Wm∩Vm+1 − sm+1∣Wm∩Vm+1 = s′∣Wm∩Vm+1 . _en s
and sm+1 + s′∣Vm+1 coincide on Wm ∩ Vm+1, hence can be glued to a section of
F (Wm+1) that li�s s′′∣Wm+1 . _is proves the desired surjectivity when U = X is
compact.

Let now U be an open subset of X and let us prove that the morphism
Γc(U,F )→ Γc(U,F ′′) is surjective. Let s′′ ∈ Γc(U,F ′′) and let V be an open
neighborhood of s′′ such that V is compact. SinceF ′∣V is so� and V is compact,
the section s′′ li�s to a section s ∈ F (V). _e restriction s∣∂V maps to 0 in
F ′′(∂V), hence belongs to F ′(∂V). Since F ′ is so�, there exists a section
t ∈ F ′(V) such that t∣∂V = s∣∂V. _e section s − t ∈ F (V) li�s s′′∣V and restricts
to 0 on ∂V. Consequently, its extension by 0 is an element ofF (U)which li�s s′′;
moreover, its support is contained in V, hence is compact. _is concludes the
proof of a).

Let us ûnally assumemoreover that F is so� and let us prove that F ′′ is so�
as well. Let A be a compact subset of X and let s′′ ∈ Γ(A,F ′′∣A). Let V be an
open neighborhood of A such thatV is compact and s′′ is induced by a section of
F ′′ on V; we still denote it by s′′. SinceF ′∣V is so�, there exists s ∈ F (V) that
li�s s′′. SinceF is so�, there exists t ∈ Γc(X,F ) that extends s. _e image t′′

of t in Γc(X,F ′′) extends s′′. _at concludes the proof of the proposition.
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Corollary (3.5.14). — Let f ∶ X → Y be a continuous map of topological spaces.
Assume that X is locally compact. _en the functor f! ∶ Ab(X) → Ab(Y) is
le� exact and the full subcategory ofAb(X) consisting of so� abelian sheaves is
injective with respect to f!.

In particular, this subcategory is injective with respect to the functor Γc(X, ⋅) of
global sections with compact support.

Proof. — Every abelian sheaf can be embedded into a �asque sheaf, hence into a
so� sheaf. Let 0→F ′ →F →F ′′ → 0 be an exact sequence of abelian sheaves
on X, whereF ′ andF are so�; by the proposition, the sheafF ′′ is so� as well,
so that we just need to prove that the sequence 0→ f!F ′ → f!F → f!F ′′ → 0
of abelian sheaves on Y is exact. By le� exactness of the functor f!, it suõces
to prove the surjectivity of themorphism f!F → f!F ′′. By proposition ??, its
ûber at a point y ∈ Y identiûes with themorphism Γc(Xy ,F ∣Xy)→ Γc(Xy ,F ′′

Xy
).

_e sequence 0 → F ′∣Xy → F ∣Xy → F ′′∣Xy → 0 is exact, and F ′
Xy

is �asque.
Consequently, the sequence obtained by applying the functor Γc(Xy , ⋅) is exact,
as was to be shown.

Corollary (3.5.15). — Let j ∶ U→ X be the inclusion of an open subset. _ere exists
a unique isomorphism of ∂-functors RΓc(U, ⋅) → RΓc(X, ⋅) ○ j! which extends
the isomorphism of functors Γc(U, ⋅)→ Γc(X, j!(⋅)).

Proof. — _e functor j! is exact, because it induces either the identity, or 0, on
the ûbers. Consequently, the compositionRΓc(X, ⋅) ○ j! is indeed a ∂-functor.
Moreover, applying the functor j! to an injective resolution G0 → . . . ofF , one
gets a so� resolution of j!F . Applying the functor Γc(X, ⋅), we obtain the the
desired isomorphism.(7)

Corollary (3.5.16). — Let X be a locally compact topological space. Let F be an
abelian sheaf on X. _e following properties are equivalent:

(i) _e abelian sheafF is so�;
(ii) One has H j

c(U,F ) = 0 for every open subset U of X and every integer j ⩾ 1;
(iii) One has H1

c(U,F ) = 0 for every open subset U of X.

(7)Uniqueness?
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Proof. — _e implication (i)⇒(ii) follows from the preceding corollary, and
the implication (ii)⇒(iii) is obvious. Let us thus assume that H1

c(U,F ) = 0 for
every open subset U of X and let us prove that F is so�.

Let now A be a compact subset of X, let i ∶ A ↪ X and j ∶ X A → X be the
inclusions. Let us consider the long exact sequence of cohomology with compact
supports associated with the canonical exact sequence

0→ j! j∗F →F → i∗i∗F → 0 ;

we obtain

0→ Γc(X A,F ∣U)→ Γc(X,F )→ Γc(A,F ∣A)→ H1
c(X A,F ∣U).

_e assumption (iii) implies that the canonical morphism Γc(X,A ) →
Γ(A,F ∣A) is surjective. _is proves that F is so�.

3.5.17. — To be added: f! of so� is so�; composition (g ○ f )! = g! ○ f!, and
similarly a�er derivation.

_eorem (3.5.18). — (8) Let f ∶ X→ Y be a continuous map of topological spaces
and let F be a sheaf on X. Let y ∈ Y and let Xy = f −1(y). By restriction, the canon-
ical map ( f∗F )y → Γ(Xy ,F ∣Xy) induces a bijection ( f!F )y

∼Ð→ Γc(Xy ,F ∣Xy).
Moreover, one has isomorphisms of ∂-functors (Rn f!(⋅))y → Hn

c (Xy , (⋅)∣Xy).

3.6. Tensor products

3.7. Verdier duality

3.8. _e six operations

3.9. Constructible sheaves

3.10. Exercises

Exercise (3.10.1). — LetX be a complexmanifold, for exampleX = C, and let OX
be the sheaf of holomorphic functions on X. By associating with a holomorphic
function f on an open subset U of X the (non-vanishing) function exp( f ), one
deûnes amorphism of sheaves ε ∶ OX → O×

X .

(8)Donner un énoncé plus précis, et la preuve.
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a) Prove that if U is simply connected (say, contractible), then the induced
morphism εU ∶ OX(U)→ O×

X(U) is surjective.
b) Prove that themorphism ε is surjective.
c) Let X = C and U = C×. Prove that the function z ∈ O×

X(C×) does not belong
to the image of εU.

Exercise (3.10.2). — Let X be a topological space.
a) Let U and V be open subsets of X; computeHom(ZU,ZV).
b) Let U be a family of open subsets of X and let FU be the sheaf⊕U∈U ZU

on X. IfU is a covering of X, construct an epimorphism of sheaves fU ∶ FU →
ZX.
c) Let (Un) be a sequence of open coverings of X such that, for every n ∈ N,

the covering Un+1 reûnes Un, and such that the empty set is the only open
subset U ofXwhich is ûner that everyUn. Let fn ∶ Fn → ZX be the epimorphism
constructed in the preceding question. Prove that the corresponding product
morphism, f ∶ ∏Fn →∏ZX, is not an epimorphism.





CHAPTER 4

TRUNCATION STRUCTURES

4.1. Deûnition of truncation structures

Deûnition (4.1.1). — Let D be a triangulated category. A truncation structure,
in short t-structure, on D is the datum of two full subcategories D⩽0 andD⩾1 of
D satisfying the following conditions:

(i) Every object isomorphic to an object ofD⩽0 (resp. ofD⩽0) belongs to D⩽0

(resp. ofD⩽0);
(ii) One has D(X,Y) = 0 for every X ∈ ob(D⩽0) and every Y ∈ ob(D⩾1);
(iii) One has ΣD⩽0 ⊂D⩽0 andD⩾1 ⊂ ΣD⩾1;
(iv) For every object X ∈ ob(D), there exists a distinguished triangle A→ X→

B→ ΣA in D , where A ∈ ob(D⩽0) and B ∈ ob(D⩾1).

Remark (4.1.2). — Let (D⩽0,D⩾1) be a truncation structure on the triangulated
categoryD . We introduce the notation D⩽n = Σ−nD⩽0 andD⩾n+1 = Σ−nD⩾1,
for every integer n.
Condition (iii) of the deûnition can thus bewrittenD⩽0 ⊂D⩽1 andD⩾1 ⊂D⩾0.

In fact, for every pair (m, n) of integers such that m ⩽ n, one has D⩽m ⊂D⩽n

andD⩾n ⊂D⩾m.

Example (4.1.3). — Let (D⩽0,D⩾1) be a truncation structure on the triangulated
categoryD . For every integer n, the pair (D⩽n ,D⩾n+1) is a translation structure
on D , called the translation structure deduced by translation.

Example (4.1.4). — Let (D⩽0,D⩾1) be a truncation structure on the triangu-
lated categoryD . _en (D⩾1,o,D⩽0,o) is a truncation structure on the opposite
triangulated categoryDo.
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Example (4.1.5). — Let D be a triangulated category. _en the pairs (D , 0)
and (0,D) are “degenerate” truncation structures on D .

Example (4.1.6). — (1) LetA be an abelian category and letD(A) be its derived
category. Let n ∈ Z. Recall that D⩽n(A) is the full subcategory of D(A) con-
sisting of complexes X such that H j(X) = 0 for j > 0, whileD⩾n+1(A) is the full
subcategory ofD(A) consisting of complexes Y such that H j(Y) = 0 for j ⩽ 0.
Given a complex X ∈ D(A), recall that τ⩽0X ∈ D⩽0(A), τ⩾1X ∈ D⩾1(A), and that
there is a distinguished triangle τ⩽0X → X → τ⩾1X → Στ⩽0X. _is shows that
the pair (D⩽0(A),D⩾1(A)) is a truncation structure onD(A). Moreover, for
every integer n, one hasD⩽n(A) = Σ−nD⩽0(A) andD⩾n+1(A) = Σ−nD⩾1(A).

Proposition (4.1.7). — Let (D⩽0,D⩾1) be a truncation structure on the triangu-
lated categoryD .

a) _e inclusion D⩽0 →D admits a right adjoint τ⩽0 with counit η;
b) _e inclusion D⩾1 →D admits a le� adjoint τ⩾1 with unit ε;
c) For every object X ofD , there exists a uniquemorphism ∂X ∶ τ⩾1X→ Στ⩽0X

such that the triangle τ⩽0X
ηXÐ→ X εXÐ→ τ⩾1X

∂XÐ→ Στ⩽0X is distinguished.
d) LetA ∈ ob(D⩽0), B ∈ ob(D⩾1) and letA→ X→ B→ ΣA be a distinguished

triangle. _ere exists a uniquemorphism of distinguished triangles

A X B ΣA

τ⩽0X X τ⩾1X Στ⩽0X.

← →

←→ ⇐⇐

← →

←→

← →

←→

←→ηX ←→εX ←→∂X

Proof. — a) We need to ûnd, for every object Y ∈ ob(D), an object τ⩽0 of
D⩽0, a morphism ηY ∶ τ⩽0Y → Y in D inducing bi-functorial isomorphisms
D(X,Y) ≃ D(X, τ⩽0Y), for X ∈ ob(D⩽0). Let A → Y → B → ΣA be a distin-
guished triangle, where A ∈ D⩽0 and B ∈ D⩾1. Applying the cohomological
functor D(X, ⋅) to the translated distinguished triangle Σ−1B→ A→ Y→ B, we
obtain an exact sequence

D(X, Σ−1B)→D(X, A)→D(X,Y)→D(X, B).

(1)Preuve incomplète
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Since Σ−1B ∈ D⩾1 and B ∈ D⩾1, the two extreme groups vanish, so that the
morphism A → Y induces an isomorphism D(X, A) → D(X,Y) for every
X ∈ ob(D⩽0).
For every object Y in D , let us choose a distinguished triangle A uÐ→ Y→ B→

ΣA and let us set τ⩽0Y = A and ηY = u. Let f ∶ Y→ Z be amorphism in D . By
what precedes, the morphism ηZ induces an isomorphism D(τ⩽0Y, τ⩽0Z) →
D(τ⩽0Y,Z). Let then τ⩽0( f ) ∶ τ⩽0Y→ τ⩽0Z be the uniquemorphism such that
ηZ ○ τ⩽0( f ) = f ○ ηY.
One checks readily that τ⩽0 is a functor and that themorphisms ηY, for Y ∈

ob(D), are the counits of an adjunction, making τ⩽0 a right adjoint of the
inclusion ofD⩽0 in D .
b) _is is proved analogously to a), or can be deduced from a) by passing to

the opposite category and shi�ing. In fact, onemay choose for every object Y a
distinguished triangle A→ Y→ B→ ΣA as above and set τ⩾1Y = B.
c) Let Y be an object ofD . By construction, the counit ηY of the adjunction

(⋅, τ⩽0) and the unit εY of the adjunction (τ⩾1, ⋅) stand in a distinguished triangle

τ⩽0Y
ηYÐ→ Y εYÐ→ τ⩾1

∂Ð→ Στ⩽0Y.

Since D(τ⩽0Y, τ⩾1Y) = 0, the uniqueness of the diòerential ∂ follows from
corollary 2.2.6.
d) Let Y be an object ofD , let A uÐ→ Y vÐ→ B wÐ→ ΣA be a distinguished triangle,

where A ∈D⩽0 and B ∈D⩾1. Let us show that there exist a uniquemorphism of
distinguished triangles of the form ( f , idY, h):

A Y B ΣA

τ⩽0Y Y τ⩾1Y Στ⩽0Y.

← →u

←→ f ⇐⇐

← →v

←→ h

← →w

←→ Σ f

←→ηY ←→εY ←→∂Y

Since A ∈ ob(D⩽0) and τ⩾1Y ∈ ob(D⩾1), one has εY ○ idY ○u ∈D(A, τ⩾1Y) = 0,
by deûnition of a truncation structure. Consequently, the assertion follows from
corollary 2.2.6.

Corollary (4.1.8). — a) Let X ∈ ob(D). _e following properties are equiva-
lent: 1) One has τ⩽0X = 0; 2) One has D(A,X) = 0 for every object A ∈ ob(D⩽0);
3) _emorphism ηX ∶ X→ τ⩾1X is an isomorphism; 4) One has X ∈ ob(D⩾1).
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b) _e category D⩾1 is a thick additive subcategory of D ; it is stable under
products and under extensions (if X → Y → Z → ΣX is a distinguished triangle
and X,Z ∈ ob(D⩾1), then Y ∈ ob(D⩾1)).

Proof. — a) Assume that τ⩽0X = 0; by adjunction of (⋅, τ⩽0), one then has
D(A,X) ≃ D(A, τ⩽0X) = 0. Assume conversely that D(A, τ⩽0X) = 0. By
adjunction of (⋅, τ⩽0), one has 0 =D(τ⩽0X,X) =D(τ⩽0X, τ⩽0X), so that idτ⩽0X =
0 and τ⩽0X = 0. _is proves that 1)⇔2).

1)⇒3). Assume that τ⩽0X = 0. _e canonical distinguished triangle 0→ X εXÐ→
τ⩾1X→ 0 then implies that εX is an isomorphism.

3)⇒4). If εX is an isomorphism, it follows from the deûnition of a truncation
structure that X ∈ ob(D⩾1).

4)⇒1). Finally, let us assume that X ∈ ob(D⩾1). One thus has 0 =
D(τ⩽0X,X) =D(τ⩽0X, τ⩽0X), hence τ⩽0X = 0.
b) _e characterization 2)⇔4) implies that it is stable under products. More

precisely, for every family (Xi)i∈I with product X and for every object A ∈D⩽0,
the isomorphism D(A,X) ≃ ∏i D(A,Xi) implies that X ∈ D⩾1 if and only if
Xi ∈D⩾1 for every i. In particular,D⩾1 is a thick additive subcategory ofD .

Let X → Y → Z → ΣX be a distinguished triangle, where X and Z belong
to D⩾1. Let A ∈ D⩽0; let us apply the cohomological functor D(A, ⋅) to this
triangle. _is furnishes an exact sequenceD(A,X) → D(A,Y) → D(A,Z).
SinceD(A,X) =D(A,Z) = 0, we thus haveD(A,Y) = 0, hence Y ∈ ob(D⩾1)
by a).

Recall that if Y ≃ X⊕ Z, then there exists a distinguished triangle X → Y →
Z→ ΣX; in particular Y belongs to D⩾1 if both X and Z do.

Either by a similar reasoning, or by passing to the opposite category, one has
the following corollary.

Corollary (4.1.9). — a) Let X ∈ ob(D). _e following properties are equiva-
lent: 1) One has τ⩾1X = 0; 2) One has D(X, B) = 0 for every object A ∈ ob(D⩾1);
3) _emorphism ηX ∶ τ⩽0X→ X is an isomorphism; 4) One has X ∈ ob(D⩽0).
b) _e category D⩽0 is a thick additive subcategory of D ; it is stable under

coproducts and under extensions (if X→ Y→ Z→ ΣX is a distinguished triangle
and X,Z ∈ ob(D⩽0), then Y ∈ ob(D⩽0)).
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4.1.10. — In category theory, an adjoint is only unique up to a canonical iso-
morphism, and the construction of the functors τ⩽0 and τ⩾1 involved the choice
of a distinguished triangle A → X → B → ΣA, for every object X ∈ D , where
A ∈D⩽ and B ∈D⩾1.

If X ∈ D⩽0, wemay assume that the chosen distinguished triangle is X idXÐ→
X→ 0→ ΣX, where 0 is a zero object, chosen to be X if X ≃ 0. In this case, one
has τ⩽0X = X for every object X ∈D⩽0, and ηX = idX.

Similarly, if X ∈ D⩾1, we assume that the chosen distinguished triangle is
0 → X idXÐ→ X → Σ0, where 0 is a zero object chosen to be X if X ≃ 0, so that
τ⩾1X = X and εX = idX.
When X ∈ D⩽0 ∩D⩾1, it is a zero object and the two chosen distinguished

triangles coincide.

4.1.11. — Let n be an integer. _e functor τ⩽n = Σ−nτ⩽0Σn is a right adjoint of
the inclusion functor D⩽n →D . _e functor τ⩾n+1 = Σ−nτ⩾1Σn is a le� adjoint
of the inclusion functor D⩾n+1 →D .

_e functors are called the truncation functors associated with the given trun-
cation structure on D .

To simplify the notation, we also let τ<n = τ⩽n−1 and τ>n = τ⩾n+1, for every
integer n. In particular, an object X ofD belongs toD⩽n if and only if τ>nX = 0;
it belongs to D⩾n if and only if τ<nX = 0.

4.1.12. — Let a, b be integers such that a ⩽ b. One has D⩽a ⊂D⩽b. Given our
construction of the functors τ⩽n,we thus have τ⩽b ○τ⩽a = τ⩽a. On the other hand,
the composition τ⩽a ○ τ⩽b is a right adjoint of the inclusion ofD⩽a into D , so
that there is a canonical isomorphism of functors τ⩽a ≃ τ⩽b ○ τ⩽a.

Similarly, we have τ⩾a+1 ○ τ⩾b+1 = τ⩾b+1 ≃ τ⩾b+1 ○ τ⩾a+1.

4.1.13. — Let a, b be integers and let X ∈ ob(D⩽b). _en one has τ>bτ⩾aX ≃
τ⩾aτ>bX = 0, hence τ⩾aX ∈D⩽b.

Similarly, if X ∈D⩾a, then τ⩽bX ∈D⩾a as well.

Proposition (4.1.14). — Let a and b be integers such that a ⩽ b. For every object
X ∈D , there exists a uniquemorphism fX ∶ τ⩾a ○ τ⩽bX→ τ⩽b ○ τ⩾aX such that the
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following diagram is commutative

τ⩽bX X τ⩾aX

τ⩾aτ⩽bX τ⩽bτ⩾aX

←→εaτ
⩽bX

← →
ηbX ← →

εaX

← →
fX

← →ηbτ⩾aX

Moreover, themorphisms fX give rise to an isomorphism of functors f ∶ τ⩾a ○τ⩽b →
τ⩽b ○ τ⩾a.

Proof. — Since τ⩽bX ∈ D⩽b, the morphism εaX ○ ηbX factors uniquely through
τ⩽bτ⩾aX: there exists a uniquemorphism f ′X ∶ τ⩽bX→ τ⩽bτ⩾aX such that ηbτ⩾aX ○
f ′X = ηaX ○ εbX. As we have seen, one has τ⩽bτ⩾aX ∈ D⩾a; consequently, the
morphism f ′X factors uniquely through τ⩾aτ⩽bX: there exists a uniquemorphism
fX ∶ τ⩾aτ⩽bX→ τ⩽bτ⩾aX such that fX ○ εaτ⩽bX = f

′
X. _emorphism fX satisûes

ηbτ⩾aX ○ fX ○ ε
a
τ⩽bX = η

b
τ⩾aX ○ f

′
X = εaX ○ ηbX.

_e uniqueness of such a morphism is established by the same argument, re-
versed: the relation ηbτ⩾aX ○ ( fX ○ ε

a
τ⩽bX) = ε

a
X ○ ηbX implies that fX ○ εaτ⩽bX = f

′
X, and

this in turns characterizes fX.
Let us show that fX is an isomorphism. We build an octahedron

τ<aX τ⩽bX τ⩾aτ⩽bX Στ<aX

τ<aX X τ⩾aX Στ<aX

τ>bX τ>bX

Στ<aX Στ⩽bX Στ⩾aτ⩽bX Σ2τ<aX

⇐⇐

← →

←→ ηbX

← →
εaτ
⩽bX

←→

← →

⇐⇐

← →
ηa−1
X

←→ εb+1
X

← →
εaX

←→

← →

⇐ ⇐

←→ ←→

←→ ←→ ←→

where both horizontal triangles are the canonical truncation triangles, as well as
the le� vertical triangle. _is furnishes a distinguished triangle

τ⩾aτ⩽bX→ τ⩾aX→ τ>bX→ Στ⩾aτ⩽bX.
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One has τ⩾aτ⩽bX ∈ D⩽b and τ>bX ∈ D>b, so that there exists a unique isomor-
phism of distinguished triangles

τ⩾aτ⩽bX τ⩾aX τ>bX Στ⩾aτ⩽bX

τ⩽bτ⩾aX τ⩾aX τ>bτ⩾aX Στ⩽bτ⩾aX.

←→
←→

← →

⇐⇐ ←→

← →

←→

←→
ηbτ⩾aX ←→ ←→

_e le� vertical morphism is equal to fX. Indeed, themorphism

ηbτ⩾aX ○ fX ∶ τ⩾aτ⩽bX→ τ⩾aX

is the only one that makes themiddle upper square of the octahedron commute,
and u = fX is the only morphism such that ηbτ⩾aX ○ u = ηbτ⩾aX ○ fX. Consequently,
fX is an isomorphism.
Finally, one deduces from the characterization of the morphism fX that it

induces an isomorphism of functors.

4.2. _e heart of a truncation structure

Deûnition (4.2.1). — Let D be a triangulated category. _e heart of a truncation
structure (D⩽0,D⩾1) on D is the full subcategoryD⩽0 ∩D⩾0.

_eorem (4.2.2). — Let D be a triangulated category and let C be the heart of a
truncation structure (D⩽0,D⩾1) on D .

a) _e categoryC is an abelian category; as a subcategory ofD , it is thick and
stable under ûnite products and extensions.
b) A complex 0→ X uÐ→ Y vÐ→ Z→ 0 inC is an exact sequence if and only if there

exists a morphism w ∶ Z → ΣX such that X uÐ→ Y vÐ→ Z wÐ→ ΣX is a distinguished
triangle in D .
c) _e functor H0 = τ⩾0τ⩽0 ∶ D →C is a cohomological functor.

Proof. — a) First of all, the categoryC is a thick additive subcategory ofD ,
because both D⩽0 andD⩾0 are themselves thick additive subcategories ofD .

Let us show that any morphism in C admits a kernel and a cokernel. Let
thus u ∶ X→ Y be amorphism in C and let us choose a distinguished triangle
X uÐ→ Y vÐ→ Z wÐ→ ΣX in D . _e vertices Y and ΣX of the translated triangle
Y→ Z→ ΣX→ ΣY belong to D⩽0 and to D⩾−1, hence Z ∈D⩽0 ∩D⩾−1.
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Let us then prove that the composition v′ = εZ ○ v ∶ Y → τ⩾0Z is a cokernel
of u. One has v′ ○ u = εZ ○ v ○ u = 0. Let moreover f ∶ Y →W be amorphism
in C such that f ○ u = 0; applying the (contravariant) cohomological functor
D(⋅,W) to the previous distinguished triangle, we obtain an exact sequence

D(ΣX,W) w∗

Ð→D(Z,W) v∗Ð→D(Y,W) u∗Ð→D(X,W).

Since ΣX ∈D⩽−1 andW ∈D⩾0, one hasD(ΣX,W) = 0. Since u∗( f ) = f ○u = 0,
there exists a unique morphism g′ ∈ D(Z,W) such that f = v∗(g′) = g′ ○ v.
Since W ∈ D⩾0, there exists a unique morphism g ∈ D(τ⩾0Z,W) such that
g′ = g ○ εZ. _emorphism g satisûes f = g′ ○ v = g ○ εZ ○ v = g ○ v′, and it is the
unique such morphism.

In a similarmanner,we show that the compositionw′ = Σ−1w○ηΣ−1Z ∶ τ⩽0Σ−1Z→
X is a kernel of f .

Retaining the notation, let us moreover assume that u is amonomorphism.
_en its kernel vanishes, one has τ⩽0Σ−1Z = 0, hence Σ−1Z ∈D⩾1, hence Z ∈D⩾0.
Since we had Z ∈D⩽0, this shows that Z ∈C . _e preceding construction then
shows that u ∶ X→ Y is a kernel of v.

Similarly, if u is an epimorphism, its cokernel vanishes, hence τ⩾0Z = 0. _is
implies that Z ∈ D⩽−1 ∩D⩾−1, hence Σ−1Z ∈ C . _e preceding construction
shows that u is the cokernel of themorphism Σ−1w ∶ Σ−1Z→ X.
We have shown that C is an additive category in which every morphism

admits a kernel and a cokernel, such that every monomorphism is a kernel, and
every epimorphism is a cokernel. Consequently,C is an abelian category.
b) By deûnition, a complex 0→ X uÐ→ Y vÐ→ Z→ 0 inC is an exact sequence if

and only if u is amonomorphism and v ∶ Y→ Z is its cokernel. _e description
of the cokernel of v shows that there exists amorphism w ∶ Z → ΣX such that
the diagram X uÐ→ Y vÐ→ Z wÐ→ ΣX is a distinguished triangle. Conversely, given
such a distinguished triangle with vertices in C , the construction of the kernel
and cokernel of u proves that 0→ X uÐ→ Y vÐ→ Z→ 0 is an exact sequence.
c) Let X uÐ→ Y vÐ→ Z wÐ→ ΣX be a distinguished triangle. Let us show that the

induced complex H0(X)
H0(u)
ÐÐÐ→ H0(Y)

H0(v)
ÐÐÐ→ H0(Z) is exact at H0(Y).

1) Let us ûrst assume that X belongs to D⩽0 and prove that H0(X)
H0(u)
ÐÐÐ→

H0(Y)
H0(v)
ÐÐÐ→ H0(Z)→ 0 is exact.

In fact, we ûrst begin by treating the particular case where all of X,Y,Z belong
to D⩽0.



4.2. THE HEART OF A TRUNCATION STRUCTURE 123

Let T ∈ C . Applying the (contravariant) cohomological functor D(⋅,T) to
the given triangle, we obtain an exact sequence of abelian groups:

D(ΣX,T) w∗

Ð→D(Z,T) v∗Ð→D(Y,T) u∗Ð→D(X,T).

Since ΣX ∈D⩽−1 and T ∈D⩾0, one has D(ΣX,T) = 0. On the other hand, since
T ∈D⩾0, themorphism ε0Z ∶ Z→ τ⩾0Z induces an isomorphism D(τ⩾0Z,T) ∼Ð→
D(Z,T). Since T ∈ D⩽0, the morphism ητ⩾0Z ∶ τ⩽0τ⩾0Z → τ⩾0Z induces an
isomorphism D(τ⩾0Z,T) ∼Ð→ D(H0(Z),T). In this way, the previous exact
sequence rewrites as the exact sequence

0→C (H0(Z),T)
H0(v)∗
ÐÐÐ→C (H0(Y),T)

H0(u)∗
ÐÐÐ→C (H0(X),T),

since H0(X),H0(Y),H0(Z) belong to C . Since this holds for every object T
ofC , the initial diagram is exact.
We now return to the general case where only X is assumed to belong to D⩽0.
Let us ûrst prove that themorphism τ⩾1v ∈D(τ⩾1Y, τ⩾1Z) is an isomorphism.

Let T ∈D⩾1; applying the contravariant cohomological functor D(⋅,T) to the
initial distinguished triangle furnishes an exact sequence

D(ΣX,T) w∗

Ð→D(Z,T) v∗Ð→D(Y,T) u∗Ð→D(X,T).

Since X ∈ D⩽0, one has ΣX ∈ D⩽0 as well, and D(ΣX,T) = D(X,T) = 0,
because T ∈ D⩾1. Consequently, the morphism v∗ ∶ D(Z,T) → D(Y,T)
is an isomorphism. Making use of the adjunction (τ⩾1, ⋅), we obtain that
τ⩾1(v)∗ ∶ D(τ⩾1Z,T) → D(τ⩾1Y,T) is an isomorphism. Since this holds for
every object ofD⩾1, we ûnally deduce that τ⩾1v is an isomorphism, as claimed.

Let us now build an octahedron

X τ⩽0Y U ΣX

X Y Z ΣX

τ⩾1Y τ⩾1Y

ΣX Στ⩽0Y ΣU Σ2X

⇐⇐

← →

←→ ηY

← →

←→
← →

⇐⇐
← →u

←→ εY

← →v

←→

← →

⇐⇐

←→ ←→

←→ ←→ ←→
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where the le� vertical distinguished triangle is the truncation triangle associated
with Y. Let us consider the right vertical distinguished triangle U → Z →
τ⩾1Y → ΣU. _e morphism Z → τ⩾1Y is precisely the composition of the
unit Z → τ⩾1Z and of the inverse of the isomorphism τ⩾1v. Consequently, the
object U is isomorphic to τ⩽0Z, and this distinguished triangle is isomorphic to
the canonical truncation triangle of Z. _e top horizontal distinguished triangle
then identiûes with the triangle

X u′Ð→ τ⩽0Y
τ⩽0vÐÐ→ τ⩽0Z→ ΣX,

where u′ is the unique morphism such that εY ○ u′ = u. _e three objects
X, τ⩽0Y, τ⩽0Z belong to D⩽0; applying the case already established, we obtain
the desired exact sequence.

2) One proves similarly (or by passing to the opposite category), that ifZ ∈D⩾0,
then the diagram 0→ H0(X)

H0(u)
ÐÐÐ→ H0(Y)

H0(v)
ÐÐÐ→ H0(Z) is an exact sequence.

3) Let us ûnally establish the general case. We begin with an octahedron

τ⩽0X X τ⩾1X Στ⩽0X

τ⩽0X Y U Στ⩽0X

Z Z

Στ⩽0X ΣX Στ⩾1X Σ2τ⩽0X.

⇐⇐

← →

←→ u

← →

←→

← →

⇐⇐

← →u′

←→ v

← →

←→

← →

⇐ ⇐

←→ w ←→

←→ ←→ ←→

in which the le� vertical triangle is the initially given distinguished triangle.
Since τ⩽0X ∈ D⩽0, the second horizontal distinguished triangle furnishes an
exact sequence

H0(X)
H0(u)
ÐÐÐ→ H0(Y)→ H0(U)→ 0.

Since τ⩾1X ∈D⩾1, one has Στ⩾1X ∈D⩾0 and the the second vertical distinguished
triangle (shi�ed once) furnishes an exact sequence

0→ H0(U)→ H0(Z)→ H0(Στ⩾1X).

_e composition of the epimorphism H0(Y) → H0(U) and of themonomor-
phism H0(U)→ H0(Z) is themorphism H0(v); we thus have established the
exactness ofH0(X)→ H0(Y)→ H0(Z) at themiddle object.
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_is concludes the proof of c), hence of the theorem.

4.2.3. — If X ∈D<0, then H0(X) = τ⩾0τ⩽0X = τ⩾0X = 0. Similarly, if X ∈D>0,
then τ⩽0X = 0 henceH0(X) = 0.
For every integer n and every object X ofD , we set Hn(X) = H0(ΣnX). With

this notation, any distinguished triangle X→ Y→ Z→ ΣX in D gives rise to a
long exact sequence

⋅ ⋅ ⋅→ Hn−1(Z)→ Hn(X)→ Hn(Y)→ Hn(Z)→ Hn+1(X)→ . . .

in C .
Observe that Hn(X) = Σnτ⩾nτ⩽nX. If X ∈D<n or X ∈D>n, then Hn(X) = 0.
Let m be an integer and let ηX ∶ τ⩽mX → X be the canonical morphism. For

every integer n > m, one has Hn(τ⩽mX) = 0, since τ⩽mX ∈D⩽mX ⊂D⩽nX. On
the other hand, if n ⩽ m, thenHn(ηX) ∶ Hn(τ⩽mX)→ Hn(X) is an isomorphism;
indeed,

Hn(τ⩽mX) = τ⩾nτ⩽nτ⩽mX
Hn(ηX)ÐÐÐ→ τ⩾nτ⩽nX = Hn(X).

Similarly, one has Hn(τ⩾mX) = 0 for n < m, while the canonical morphism
εX ∶ X→ τ⩾mX induces an isomorphism Hn(X) ∼Ð→ Hn(τ⩾mX) for n ⩾ m.

Deûnition (4.2.4). — A truncation structure (D⩽0,D⩾1) on D is said to be non-
degenerate if ⋂n D⩾n and ⋂n D⩽n are reduced to zero objects.

_e canonical truncation structure on the derived categoryD(A) of an abelian
category (example 4.1.6) is nondegenerate. Indeed if X ∈ ⋂nD(A)⩾n, then
H j(X) = 0 for every j ∈ Z, so that the zero morphism 0→ X is a homologism.

However, the “degenerate” truncation structures of example 4.1.5 are not non-
degenerate.

Proposition (4.2.5). — Let (D⩽0,D⩾1) be a nondegenerate truncation structure
on D . _en the following properties hold:
a) An object X ∈D is zero if and only ifH j(X) = 0 for every integer j;
b) An object X ∈D belongs to D⩽n if and only if H j(X) = 0 for every integer j

such that j > n;
c) An object X ∈D belongs to D⩾n if and only if H j(X) = 0 for every integer j

such that j < n;
d) Amorphismu ∶ X→ Y inD is an isomorphismif and only ifH j(u) ∶ H j(X)→

H j(Y) is an isomorphism for every integer j.
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Proof. — a) If X = 0, then H j(X) = 0 for every j, becauseH j is an additive
functor. Conversely let X be an object of D such that H j(X) = 0 for every
integer j.
First assume that there exists an integer n such that X ∈ D⩽n. _en 0 =

Hn(X) = τ⩾n(X), so that X ∈ D⩽n−1. By induction, one has X ∈ ⋂m D⩽mX =
{0}. Similarly, if there exists an integer n such that X ∈ D⩾n, then one has
0 = Hn(X) = τ⩽n(X), hence X ∈D⩾n+1 and, by induction, X ∈ ⋂m D⩾m = {0}.

In the general case, let us consider the canonical triangle τ⩽0X→ X→ τ⩾1X→
Στ⩽0X. Applying the functor H0, it induces a long exact sequence

. . . Hn−1(X)→ Hn−1(τ⩾1X)→ Hn(τ⩽0X)→ Hn(X)→ . . .

so that Hn−1(τ⩾1X) ≃ Hn(τ⩽0X) for every integer n. Let n ∈ Z; if n > 0, we have
Hn(τ⩽0X) = 0; otherwise, one has n ⩽ 0, then Hn(τ⩽0X) ≃ Hn−1(τ⩾1X) = 0
since n − 1 ⩽ 0. Since τ⩽0X ∈D⩽0, the particular case already treated shows that
τ⩽0X = 0. One proves similarly that τ⩾1X = 0. _en, the distinguished triangle
0→ X→ 0→ 0 proves that X = 0.
b) We already know that if X ∈D⩽n, then H j(X) = 0 for every integer j > n.

Conversely, let X be an object ofD such that H j(X) = 0 for every integer j > n.
_en the object τ⩾n+1X satisûes H j(X) = 0 for every j ∈ Z. By assertion a), one
has τ⩾n+1X = 0, hence X ∈D⩽n, by corollary 4.1.9.
c) _is is analogous: one proves that H j(τ⩽n−1X) = 0 for every integer j, hence

τ⩽n−1X = 0, hence X ∈D⩾n.
d) If u is an isomorphism, then so is Hn(u) for every integer n. Let us assume,

conversely, that Hn(u) is an isomorphism for every integer n. Let us complete u
into a distinguished triangle X uÐ→ Y vÐ→ Z wÐ→ ΣX. Applying the functor H0, we
obtain a long exact sequence:

⋅ ⋅ ⋅→ Hn−1(Z)
Hn−1(w)
ÐÐÐÐ→ Hn(X)

Hn(u)
ÐÐÐ→ Hn(Y)

Hn(v)
ÐÐÐ→ Hn(Z)

Hn(w)
ÐÐÐ→ Hn+1(X)→ . . .

in C . Using that Hn(u) is an isomorphism for every n, one deduces Hn(Z) = 0
for every n. By a), this implies thatZ = 0. Consquently, u is an isomorphism.

4.3. t-exact functors

Deûnition (4.3.1). — Let D and D ′ be triangulated categories endowed with
truncation structures and let F ∶ D →D ′ be a triangulated functor. One says that
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F is right t-exact if F(D⩽0) ⊂ D ′⩽0, and that it is le� t-exact if F(D⩾1) ⊂ D ′⩾1.
One says that F is t-exact if it is both le� t-exact and right t-exact.

4.3.2. — Assume that F is le� t-exact. By translation, one observes that
F(D⩾n+1) ⊂D ′⩾n+1 for every integer n.

Let moreover X ∈ D , let τ⩽0X → X εÐ→ τ>0X → Στ⩽0X be the canonical
triangle. Applying F, we obtain a distinguished triangle F(τ⩽0X)→ F(X)

F(ε)
ÐÐ→

F(τ>0X) → ΣF(τ⩽0X) in D ′. By assumption, F(τ>0X) ∈ D ′>0; consequently,
the morphism F(ε) ∶ F(X) → F(τ>0X) factors through a unique morphism
τ>0F(X)→ F(τ>0X).

4.3.3. — Assume that F is right t-exact. By translation, one observes similarly
that F(D⩽n) ⊂D ′⩽n for every integer n.

Moreover, for every object, the morphism F(η) ∶ F(τ⩽0X) → F(X) factors
through a unique morphism F(τ⩽0X) → τ⩽0F(X), where η ∶ τ⩽0X → X is the
canonical morphism.

4.3.4. — Let F ∶ D →D ′ be a triangulated functor between triangulated cate-
gories endowed with truncation structures. Let C andC ′ be their hearts, and
let F̃ = H0 ○ F ∶ C →C ′; it is an additive functor.

Proposition (4.3.5). — a) If F is le� t-exact, then F̃ is le� exact.
Moreover, for every object X ∈ D⩾0, the canonical morphism ηX ∶ τ⩽0X → X

induces an isomorphism H0 ○ F(ηX) ∶ F̃(H0(X)) ≃ H0(F(X)).
b) If F is right t-exact, then F̃ is right exact.
Moreover, for every object X ∈ D⩽0, the canonical morphism εX ∶ X → τ⩾0X

induces an isomorphism H0 ○ F(εX) ∶ H0(F(X))→ F̃(H0(X)).

Proof. — a) Let us assume that F is le� t-exact. Let 0 → X uÐ→ Y vÐ→ Z → 0
be an exact sequence in C . By theorem 4.2.2, there exists amorphism w ∶ Z→
ΣX such that X uÐ→ Y vÐ→ Z wÐ→ ΣX is a distinguished triangle. Applying the
triangulated functor F, we obtain a distinguished triangle F(X)

F(u)
ÐÐ→ F(Y)

F(v)
ÐÐ→

F(Z)
F(w)
ÐÐ→ ΣF(X) in D ′. Since F is le� t-exact and X,Y,Z belong to D⩾0, their

images F(X), F(Y), F(Z) belong toD ′⩾0; in particular,H−1(F(Z)) = 0. _e long
exact sequence associated with the previous triangle and the cohomological
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functor H0 give rise to an exact sequence

0→ H0(F(X))
H0F(u)
ÐÐÐ→ H0(F(Y))

H0F(v)
ÐÐÐ→ H0(F(Z)).

_is proves that the functor H0 ○ F is le� exact.
Let then X ∈ D⩾0, so that τ⩽0X = H0(X). Applying as above triangulated

functor F and the cohomological functor H0, the canonical triangle τ⩽0X
ηXÐ→

X→ τ>0X→ Στ⩽0X leads to an exact sequence

0→ H0F(τ⩽0X)
H0F(η)
ÐÐÐ→ H0F(X)→ H0F(τ>0X).

Since τ>0X ∈ D⩾1, the le� t-exactness of F implies that F(τ>0X) ∈ D ′⩾1, hence
H0(F(τ>0X)) = 0. Consequently, the morphism H0 ○ F(ηX) ∶ F̃(H0(X)) =
H0F(H0(X))→ H0F(X) is an isomorphism, as claimed.
b) _e case of a right t-exact functor is treated similarly.

Corollary (4.3.6). — Let D ,D ′,D ′′ be triangulated categories endowed with
truncation structures. Let F ∶ D →D ′ andG ∶ D ′ →D ′′ be triangulated functors.

a) If F and G are le� t-exact, then G ○ F is le� t-exact and the morphism of
functors H0G(η) ∶ G̃ ○ F̃ → G̃ ○ F is an isomorphism, where η ∶ τ⩽0 → id is the
counit of the adjunction (⋅, τ⩽0) in D .
b) If F and G are right t-exact, then G ○ F is right t-exact and the morphism

of functors H0G(ε) ∶ G̃ ○ F→ G̃ ○ F̃ is an isomorphism, where ε ∶ id→ τ⩾0 is the
unit of the adjunction (τ⩾0, ⋅) in D .

Proof. — a) Assume that F and G are le� t-exact. _en G ○ F(D⩾1) ⊂
G(D ′⩾1) ⊂D ′′⩾1, so that G ○ F is le� t-exact as well.

Let then X ∈C . By deûnition, G̃ ○ F(X) = H0(G(F(X))). Let Y = F(X); since
F is le� t-exact, Y ∈ D ′⩾0, and F̃(X) = H0(Y). Consequently, the morphism
H0G(ηX) ∶ G̃(F̃(X))→ H0G(Y) = G̃ ○ F(X) is an isomorphism.
b) _e case of right t-exact functors is analogous.

Proposition (4.3.7). — Let D andD ′ be triangulated categories endowed with
truncation structures. Let G ∶ D →D ′ and F ∶ D ′ →D be triangulated functors.
Assume that F is right adjoint to G.

_en, F is le� t-exact if and only if G is right t-exact. If these properties hold,
then F̃ is right adjoint to G̃.
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Proof. — Let us assume that F is le� t-exact and let us prove that G is right
t-exact. Let X be an object ofD⩽0 and let us prove that G(X) ∈D ′⩽0. We use the
criterion of corollary 4.1.9; letY ∈D ′⩾1; since F is le� t-exact, one has F(Y) ∈D⩾1;
consequently,D ′(G(X),Y) ≃D(X, F(Y)) = 0; this proves that G(X) ∈D⩽0.
Conversely, these arguments prove that if G is right t-exact, then F is le�

t-exact.
Let X be an object ofC ′ and Y be an object ofC . Since F(Y) ∈D⩾0, one has

F̃(Y) = H0(F(Y)) = τ⩽0F(Y); similarly, G̃(X) = H0(G(X)) = τ⩾0G(X).
_e adjunction (G, F) furnishes a bifunctorial isomorphism D(X, F(Y)) ≃

D ′(G(X),Y). Since X ∈ D⩽0, the adjunction (⋅, τ⩽0) furnishes a bifunctorial
isomorphism C (X, F̃(Y)) ≃ D(X, F(Y)). Similarly, the adjunction (τ⩾0, ⋅)
furnishes a bifunctorial isomorphism C ′(G̃(X),Y) ≃D ′(G(X),Y).

_e composition of these isomorphisms is a bifunctorial isomorphism
C (X, F̃(Y)) ≃C ′(G̃(X),Y). In particular, F̃ is right adjoint to G̃.

4.4. Glueing truncation structures

Proposition (4.4.1). — Let D be a triangulated category, let M ,N be two full
triangulated subcategories such that every object isomorphic to an object ofM
(resp. N ) belongs to M (resp. N ). Wemake the following hypotheses:

(i) For every A ∈M and every B ∈N , one has D(A, B) = 0;
(ii) For every object X ∈D , there exists a distinguished triangle A→ X→ B→

ΣA, where A ∈M and B ∈N .
Let QM ∶ D →D/M and QN ∶ D →D/N be the localization functor from D

to its quotients by the subcategories M andN respectively.
a) _e functor QM ∣N ∶ N →D/M is an equivalence of categories. It admits

a quasi-inverse whose composition with QM is a le� adjoint τN of the inclusion
N →D .
b) _e functor QN ∣M ∶ M →D/N is an equivalence of categories. It admits

a quasi-inverse whose composition with QN is a right adjoint τM of the inclusion
M →D .

We shall sum up the conclusion of the proposition by saying that the diagrams

0→M →D
τNÐ→N → 0 and 0→N →D

τMÐ→M → 0

are exact sequences of triangulated categories.
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Proof. — _e two statements are obtained one from another by passing to the
opposite category, so that we only prove the ûrst one.

Let us observe that (M ,N ) is a truncation structure onD . By corollaries 4.1.8
and 4.1.9, an object X ofD belongs toN if and only ifD(A,X) = 0 for every
object A ofM , and an object X ofD belongs to M if and only ifD(X, B) = 0
for every object B ofN . Moreover, the subcategories M andN are thick.

Let X,Y be objects of N . By proposition 2.5.17, the localization func-
tor QM ∶ D →D/M induces an isomorphism

N (X,Y) =D(X,Y) ∼Ð→ (D/M )(Q(X),Q(Y)),

so that the functor QM is fully faithful.
Let τM ∶ D →M and τN ∶ D →N be the truncation functors associatedwith

this truncation structure. LetX be an object ofD ; in the canonical distinguished
triangle τMX → X → τNX → ΣτMX, the morphism X → τNX induces an
isomorphism inD/N , by construction of the quotient category, because τMX ∈
M . Consequently, QN (X) →Ð→ QN (τNX). _is proves that the functor QN is
essentially surjective.
We then observe that the functor τM ∶ D → M is a right adjoint of the

inclusion functor M ↪D . By what precedes, it induces a quasi-inverse of the
functor QN .

4.4.2. _e general context of glueing. — We ûx some notation which will
remain in force in the following sections; themotivation for this situation will
be explained in example 4.4.3.
We assume given three triangulated categoriesD ,DU,DF and six triangulated

functors:

DF D DU.← →i∗
←→ i∗

←→

i !

← →j∗
←→j!

←→

j∗

We also make the following hypotheses:

(i) _e two pairs (i∗, i∗) and (i∗, i!) are adjoint.
(ii) _e two pairs ( j!, j∗) and ( j∗, j∗) are adjoint. In each case, the corre-

sponding units will be denoted by a letter ε, the corresponding counits by a
letter η.
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(iii) _e functors i∗, j! and j∗ are fully faithful. Equivalently, the counits
i∗i∗ → id and j∗ j∗ → id are isomorphisms, as well as the units id → i!i∗ and
id→ j∗ j!.

(iv) One has j∗i∗ = 0. As a consequence, its le� adjoint i∗ j! = 0, and its right
adjoint i! j∗ = 0. Moreover, for X ∈ DF and Y ∈ DU, one has D( j!Y, i∗X) =
DU(Y, j∗i∗X) = 0 andD(i∗X, j∗Y) =DU( j∗i∗X,Y) = 0.

(v) For every object X ∈D , there exists distinguished triangles

j! j∗X
η
Ð→ X εÐ→ i∗i∗X→ Σ j! j∗X

and
i∗i!X

η
Ð→ X εÐ→ j∗ j∗X→ Σi∗i!X.

By corollary 2.2.7, the unlabeled arrows of these triangles are uniquely deter-
mined and these triangles are functorial in X.

Observe the symmetry: passing to the opposite categories interchanges i!

and i∗ on the one hand, and j! and j∗ on the other hand.
As a consequence of these hypotheses, we note the following functorial iso-

morphism, for every Y ∈DU:

DU( j!Y, j∗Y) ≃DU(Y, j∗ j∗Y) ≃DU(Y,Y).

Example (4.4.3). — _e important example of such a glueing context, and the
motivation for the notation, comes from topology.(2) _en,D ,DU andDF are
the derived categoriesD(Ab(X)),D(Ab(U)) andD(Ab(F)) of the categories
of abelian sheaves on a topological space X, an open subset U, and the closed
complement subset F = X U. Let i ∶ F→ X and j ∶ U→ X be the inclusions.

(i) _e extension by zero functor i! = i∗ ∶ Ab(F) → Ab(X) is exact, and
induces a functor, still denoted i∗, from DF to D. _e functor of restriction
to F, i∗ ∶ Ab(X) → Ab(F), is also exact, and induces a triangulated functor
i∗D →DF. _e functor i∗ does not admit a right adjoint at the level of categories
of sheaves, but Verdier duality provides a right adjoint i! ∶ D →DF at the level
of derived categories.

(2)What follows is not strictly true; one should rather assume that X, U, F are moderate topological
spaces and restrict to the subcategories of the indicated derived categories consisting of complexes with
constructible cohomology. _is will hopefully be cleaned up once the sections on Verdier duality and
constructible sheaves are written.
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(ii) Similarly, the extension by zero functor j! ∶ Ab(U) → Ab(X) is exact
and fully faithful and induces a functor j! ∶ DU →D .

_e functor of restriction to U, j∗ ∶ Ab(X) → Ab(U), is exact as well, and
induces a functor j∗D →DU.

On the other hand, the functor j∗ ∶ Ab(U) → Ab(X) is only le� exact and
we denote by j∗ ∶ DU →D its right derived functor.

(iii) _e full faithfulness of i∗, j! and j∗ holds at the level of categories of
sheaves, it remains true at the level of derived categories.

(iv) _e relation j∗i∗ = 0 holds at the level of categories sheaves, and remains
true at the level of derived categories.

(v) Every abelian sheafF on X gives rise to an exact sequence

0→ j! j∗F →F → i∗i∗F → 0.

Applied to every term of complex C of abelian sheaves on X, these exact se-
quences furnish an exact sequences of complexes of abelian sheaves, hence,
passing to the homotopy categoryK (Ab(X)), a distinguished triangle

j! j∗C→ C→ i∗i∗C→ Σ j! j∗C.

_e second required distinguished triangle is deduced from this one by apply-
ing the duality functor.
For every Y ∈ DU, the identity morphism idY ∈ DU(Y,Y) corresponds, via

the isomorphism D( j!Y, j∗Y) ≃ DU(Y,Y) to a morphism j!Y → j∗Y. At the
level of sheaves, this morphism is nothing but the fact that the sheaf j!F is a
subsheaf of j∗F .

Proposition (4.4.4). — With the hypotheses of §4.4.2, one has the following three
exact sequences of triangulated categories:

0→DF
i∗←ÐD

j!←ÐDU → 0

0→DF
i∗Ð→D

j∗
Ð→DU → 0

0→DF
i !←ÐD

j∗←ÐDU → 0.

Proof. — Since the triangulated functors i∗ ∶ DF → D and j! ∶ DU → D are
fully faithful, they induce equivalences of triangulated categories from DF and
DU to their images. _e hypothesis (iv) and the ûrst distinguished triangle (v)
of §4.4.2 allow us to apply proposition 4.4.1 to the triangulated categoryD and
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to its pair (i∗DF, j!DU) of triangulated subcategories. It furnishes two exact
sequences of triangulated categories

0→DF
i∗Ð→D

j∗
Ð→DU → 0 and 0→DU

j!Ð→D
i∗Ð→DF → 0.

Indeed, with the notation of that proposition, the two functors τDU and τDF are
induced by the distinguished triangle (v), hence are given by τDUX = j! j∗X and
τDFX = i∗i∗X; ûnally, we have identiûedDF andDU as a subcategory ofD via
the functors j! and i∗ respectively.

_e same argument applied to the second distinguished triangle of §4.4.2 (v)
furnishes two exact sequences of triangulated categories:

0→DF
i∗Ð→D

j∗
Ð→DU → 0 and 0→DU

j∗Ð→D
i !Ð→DF → 0.

_e second exact sequence is the one that was missing.

Deûnition (4.4.5). — Let (D⩽0
U ,D⩾1

U ) and (D⩽0
F ,D⩾1

F ) be truncation structures
onDU andDF respectively. LetD⩽0 andD⩾1 be the full subcategories ofD whose
objects are given by

ob(D⩽0) = {X ∈ ob(D) ; j∗X ∈D⩽0
U and i∗X ∈D⩽0

F }(4.4.5.1)

ob(D⩾1) = {X ∈ ob(D) ; j∗X ∈D⩾1
U and i!X ∈D⩾1

F }.(4.4.5.2)

_eorem (4.4.6). — _e pair (D⩽0,D⩾1) given by deûnition 4.4.5 is a truncation
structure on D .

We say that this truncation structure ofD is obtained by glueing the given
truncation structures on DU andDF.

Proof. — We check the axioms of a truncation structure.
a) By construction of the categories D⩽0 andD⩾0, they contain any object

ofD which is isomorphic to one of their objects.
b) Let X ∈ ob(D⩽0) and let Y ∈ ob(D⩾1). Applying the contravariant coho-

mological functor D(⋅,Y) to the distinguished triangle j! j∗X→ X→ i∗i∗X→
Σ j! j∗X, we obtain an exact sequence

D(i∗i∗X,Y)→D(X,Y)→D( j! j∗X,Y).

By adjunction of the pair (i∗, i!), one has D(i∗i∗X,Y) ≃ DF(i∗X, i!Y) = 0,
since i∗X ∈ D⩽0

F and i!Y ∈ D⩾1
F . Similarly, the pair ( j!, j∗) is adjoint, hence
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D( j! j∗X,Y) ≃ DU( j∗X, j∗Y) ≃ 0, since j∗X ∈ D⩽0
U and j∗Y ∈ D⩾1

U . Conse-
quently,D(X,Y) = 0.
c) _e inclusions ΣD⩽0 ⊂ D⩽0 and Σ−1D⩾1 ⊂ D⩾1 follow from the fact that

the functors i∗, j∗ and i! are triangulated.
d) Let X be an object ofD ; let us construct a distinguished triangle A→ X→

B→ ΣA, where A ∈D⩽0 and B ∈D⩾1.
Let g ∶ X → j∗τ>0 j∗X be the unique morphism whose image under the ad-

junction isomorphism D(X, j∗τ>0 j∗X) ≃ DU( j∗X, τ>0 j∗X) is the canonical
morphism ε j∗X ∶ j∗X → τ>0 j∗X. We complete g into a distinguished triangle

Y
f
Ð→ X

g
Ð→ j∗τ>0 j∗X→ ΣY.

Similarly, let v ∶ Y→ i∗τ>0i∗Y be the uniquemorphismwhose image under the
adjunction isomorphism D(Y, i∗τ>0i∗Y) ≃ DF(i∗Y, τ>0i∗Y) is the canonical
morphism εi∗Y ∶ i∗Y → τ>0i∗Y. Let us complete v to a distinguished triangle
A uÐ→ Y vÐ→ i∗τ>0i∗Y→ ΣA.

Let us then build an octahedron:

A Y i∗τ>0i∗Y ΣA

A X B ΣA

j∗τ>0i∗X j∗τ>0i∗X

ΣA ΣY Σi∗τ>0i∗Y Σ2A.

← →u

⇐⇐

← →v

←→ f

← →

←→ h ⇐⇐

← →f ○u ← →w

←→ g

← →

←→ k

⇐⇐

←→ ←→

← →u ← →v ←→

It suõces to prove that A ∈D⩽0 and B ∈D⩾1.
Applying the functor j∗ to the second vertical triangle, we obtain a distin-

guished triangle

j∗i∗τ>0i∗Y
j∗(h)
ÐÐ→ j∗B

j∗(k)
ÐÐ→ j∗ j∗τ>0 j∗X→ Σ j∗i∗τ>0i∗Y.

Since j∗i∗ = 0, the morphism j∗(k) is an isomorphism. Composed with the
counit η ∶ j∗ j∗

∼Ð→ id (which is an isomorphism, because j∗ is fully faithful), we
obtain an isomorphism ητ>0 j∗X ○ j∗(k) ∶ j∗B ∼Ð→ τ>0 j∗X. In particular, j∗B ∈D⩾1

U .
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Similarly, applying the functor i! to this second vertical triangle, we obtain the
distinguished triangle

i!i∗τ>0i∗Y
i !(h)
ÐÐ→ i!B

i !(k)
ÐÐ→ i! j∗τ>0i!X→ Σi!i∗τ>0i∗Y.

Since i! j∗ = 0, themorphism i!(h) is an isomorphism. Composed with the unit
ε ∶ id ∼Ð→ i!i∗ (which is an isomorphism, because i∗ is fully faithful), we obtain
an isomorphism i!(h) ○ ετ>0 i∗Y ∶ τ>0i∗Y

∼Ð→ i!B. Consequently, i!B ∈D⩾1
F .

Let us now apply j∗ to the second horizontal triangle;we obtain a distinguished
triangle

j∗A
j∗( f ○u)
ÐÐÐ→ j∗X

j∗(w)
ÐÐ→ j∗B→ Σ j∗A.

Observe that ετ>0 j∗X ○ j∗(k) ○ j∗(w) = ετ>0 j∗X ○ j∗(k ○w) = ετ>0 j∗X ○ j∗(g) = ε j∗X.
Consequently, we have a distinguished triangle

j∗A
j∗( f ○u)
ÐÐÐ→ j∗X

ε j∗XÐÐ→ τ>0 j∗X→ Σ j∗A.

Equivalently, themorphism j∗( f ○u) factors uniquely through an isomorphism
j∗A ∼Ð→ τ⩽0 j∗X. In particular, j∗A ∈D⩽0

U .
Let us apply i∗ to the ûrst horizontal triangle; this furnishes a distinguished

triangle

i∗A
i∗(u)
ÐÐ→ i∗Y

i∗(v)
ÐÐ→ i∗i∗τ>0i∗Y→ Σi∗A.

_e counit η ∶ i∗i∗
∼Ð→ id is an isomorphism, because i∗ is fully faithful, and one

has ητ>0 i∗Y ○ i∗(v) = ηi∗Y. Consequently, there exists a distinguished triangle of
the form

i∗A
i∗(u)
ÐÐ→ i∗Y

ηi∗Y
ÐÐ→ τ>0i∗Y→ Σi∗A.

_is implies that themorphism i∗(u) factors uniquely through an isomorphism
i∗A ∼Ð→ τ⩽0i∗Y. In particular, i∗A ∈D⩽0

F .
We thus have proved that A ∈D⩽0 and B ∈D⩾1, as claimed.
Consequently, (D⩽0,D⩾1) is a truncation structure on D .

Proposition (4.4.7). — a) _e functors j! and i∗ are right t-exact;
b) _e functors j∗ and i∗ are t-exact;
c) _e functors j∗ and i! are le� t-exact.

Proof. — If X ∈ D⩽0, then j∗X ∈ D⩽0
U and i∗X ∈ D⩽0

F ; consequently, j∗ and i∗

are right t-exact. If X ∈D⩾1, then j∗X ∈D⩾1
U and i!X ∈D⩾1

F ; consequently, j∗ and
i! are le� t-exact.
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By proposition 4.3.7, the functor j! is right t-exact and the functor j∗ is le�
t-exact, because j! is a le� adjoint of j∗, and j∗ is a right adjoint of j∗.

Since it is a right adjoint of i∗ and a le� adjoint of i!, proposition 4.3.7 implies
that the functor i∗ is t-exact.

Corollary (4.4.8). — Let CU and CF denote the hearts of the given truncation
structures onDU andDF, and letC be the heart of the truncation structure onD

which is obtained by glueing. For each of the six functors F ∈ {i∗, i!, i∗, j∗, j!, j∗},
we let F̃ = H0 ○ F the corresponding functors between the hearts:

CF C CU.← →ı̃∗
←→ ı̃∗

←→

ı̃ !

← →ȷ̃∗
←→ȷ̃!

←→

ȷ̃∗

a) _e adjoint pairs ( j!, j∗), ( j∗, j∗), (i∗, i∗) and (i∗, i!) give rise to adjoint
pairs ( ȷ̃!, ȷ̃∗), ( ȷ̃∗, ȷ̃∗), (ı̃∗, ı̃∗) and (ı̃∗, ı̃!). Moreover, the functors ı̃∗, ȷ̃! and ȷ̃∗ are
fully faithful.
b) One has ȷ̃∗ ○ ı̃∗ = 0, ı̃∗ ○ ȷ̃! = 0 and ı̃! ○ ȷ̃∗ = 0. For every object X ∈CF and

every object Y ∈CU, one has C (ı̃∗X, ȷ̃∗Y) =C ( ȷ̃!Y, ı̃∗X) = 0.
c) For every object X ∈C , there are exact sequences

0→ ı̃∗H−1(i∗X)→ ȷ̃! ȷ̃∗X→ X→ ı̃∗ ı̃∗X→ 0

and
0→ ı̃∗ ı̃!X→ X→ ȷ̃∗ ȷ̃∗X→ ı̃∗H1(i!X)→ 0.

Proof. — a) _e ûrst part follows from proposition 4.3.7.
Let X,Y ∈CU. One has bifunctorial isomorphisms

C ( ȷ̃!X, ȷ̃!Y) ≃D(τ⩾0 j!X, τ⩾0 j!Y) ( j! is right t-exact)
≃D( j!X, τ⩾0 j!Y) (by adjunction of (τ⩾0, ⋅))
≃DU(X, j∗τ⩾0 j!Y) (by adjunction of ( j!, j∗))
≃DU(X, τ⩾0 j∗ j!Y) (by t-exactness of j∗)
≃DU(X, τ⩾0Y) (because id ≃ j∗ j!)
≃D(X,Y) ≃C (X,Y),

underwhich amorphism f ∈C (X,Y) correspondswith ȷ̃! f ∈C ( ȷ̃!X, ȷ̃!Y). _is
proves that the functor ȷ̃! is fully faithful.

One proves similarly that the functor ȷ̃∗ is fully faithful.
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Let then X,Y ∈CF. Since the functor i∗ is t-exact, its restriction to CF coin-
cides with the functor ı̃∗. Since i∗ is fully faithful, the functor ı̃∗ is fully faithful
as well.
b) _e three equalities follow from corollary 4.3.6 and the fact that j∗ and i∗

are both le� (or right) t-exact, that i∗ and j! are both right t-exact, and that j∗
and i! are both le� t-exact.
c) Let X ∈C and let us apply the functor H0 to the canonical distinguished

triangle
j! j∗X→ X→ i∗i∗X→ Σ j! j∗X.

One obtains an exact sequence

H−1(X)→ H−1(i∗i∗X)→ H0( j! j∗X)→ H0(X)→ H0(i∗i∗X)→ H1( j! j∗X).

Since X ∈ C , one has H0(X) = X and H−1(X) = 0. Since j∗ and j! are both
right t-exact, one has H0( j! j∗X) = ȷ̃! ȷ̃∗X. Since i∗ and i∗ are both right t-exact,
one has H0(i∗i∗X) = ı̃∗ ı̃∗X andH−1(i∗i∗X) = i∗H−1(i∗X) = ı̃∗H−1(i∗X). Finally,
ΣX ∈D⩽−1; since j! and j∗ are both right t-exact, this implies j! j∗X ∈D⩽0, hence
Σ j! j∗X ∈D⩽−1 andH0(Σ j! j∗X) = 0. _is furnishes the desired exact sequence

ı̃∗H−1(i∗X)→ ȷ̃! ȷ̃∗X→ X→ ı̃∗ ı̃∗X→ 0.

_e second exact sequence is established similarly, by applying the functor H0

to the distinguished triangle i∗i!X→ X→ j∗ j∗X→ Σi∗i!X.

Proposition (4.4.9). — _e truncation structure on D is nondegenerate if and
only if the given truncation structures on DU andDF are nondegenerate.

Proof. — Let us assume that the given truncation structures on DU and DF
are nondegenerate, and let us prove that the truncation structure (D⩽0,D⩾1) is
nondegenerate as well.

Let X ∈ ⋂D⩽n. Consequently, j∗X ∈D⩽n
U and i∗X ∈D⩽n

F for every integer n,
so that j∗X = 0 and i∗X = 0. _e distinguished triangle j! j∗X → X → i∗i∗X →
Σ j! j∗X then proves that X = 0.

Similarly, let X ∈ ⋂n D⩾n. _is implies that j∗X ∈ ⋂n D
⩾n
U and i!X ∈ ⋂n D

⩾n
F ,

so that j∗X = 0 and i!X = 0. _e distinguished triangle i∗i!X → X → j∗ j∗X →
Σi∗i!X then proves that X = 0.
Conversely, let us assume that the truncation structure onD is nondegenerate.
It follows from the fact that the functor i∗ is t-exact and fully faithful that the

truncation structure on DF is nondegenerate. Let indeed X ∈ ⋂D⩽n
F . Since i∗ is
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t-exact, one has i∗X ∈D⩽n
F , hence i∗X = 0. Since X ≃ i∗i∗X, one has X = 0. Let

then X ∈ ⋂D⩾n
F . Since i∗ is t-exact, one has i∗X ∈ D⩾n

F , hence i∗X = 0. Since
X ≃ i∗i∗X, one has X = 0. _is proves that the truncation structure on DF is
nondegenerate, as claimed.

Using that the functor j! is right t-exact and fully faithful, one proves that
⋂D⩽n

U = 0. Using that the functor j∗ is le� t-exact and fully faithful, one
proves that ⋂D⩾n

U = 0. _is shows that the truncation structure on DF is
nondegenerate.

Example (4.4.10). — Let us start with a given truncation structure (DF,D⩾1
F )

on DF but with the degenerate truncation structure (DU, 0) on DU and let us
consider the resulting truncation structure on D .

Let τF⩽0 ∶ D →D⩽0 be the corresponding truncation functor, right adjoint to
the inclusion of the subcategoryD⩽0 whose objects X are characterized by the
condition i∗X ∈D⩽0

F .
Let us go back to the proof of theorem 4.4.6, especially part d). With the

notation of that proof, we have τ>0 j∗X = 0 (because of the choice of the trun-
cation structure on DU), hence Y = X, f = id; moreover, A = τF⩽0X. Also, h is
an isomorphism (two out of three arrows deûning themorphism of horizontal
triangles are isomorphisms), so that B ≃ i∗τ>0i∗Y. _en, the second horizontal
distinguished triangle of the octahedron furnishes the canonical truncation
triangle of X:

τF⩽0X→ X→ i∗τ>0i∗X→ ΣτF⩽0X.
Finally, for every X ∈D , one has

H0(X) = τF⩽0τ⩾0X = τF⩽0i∗τ⩾0i∗X = i∗H0(i∗X),

since i∗ is t-exact.

Example (4.4.11). — Still starting with the truncation structure (D⩽0
F ,D⩾1

F )
on DF, let us consider the degenerate truncation structure (0,DU) on DU.

In that case, an object X ofD belongs to D⩾1 if and only if i!X ∈D⩾0
F . Let us

denote by τF⩾0 the le� adjoint of the inclusion functor D⩾0 →D . For every ob-
ject X, the canonical truncation triangle of X relative to this truncation structure
writes

i∗τ<0i!X→ X→ τF⩾0X→ Σi∗τ<0i!X,
and the cohomological functor is computed as H0(X) = i∗H0(i!X).
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Example (4.4.12). — Let us now start with the degenerate truncation structure
(DF, 0) on DF and with the given truncation structure (D⩽0

U ,D⩾0
U ) on DU. An

object X ofD belongs to D⩽0 if and only if j∗X ∈ D⩽0
U . We denote by τU

⩽0 be
the associated truncation functor, right adjoint of the inclusion D⩽0 →D . _e
canonical truncation triangle associated with an object X writes

τU
⩽0X→ X→ j∗τ>0 j∗X→ ΣτU

⩽0X,

and the cohomological functor is given by H0X = j∗H0 j∗X.

Example (4.4.13). — Finally, we start with the degenerate truncation structure
(0,DF) on DF and with the given truncation structure (D⩽0

U ,D⩾0
U ) on DU. An

object X ofD belongs to D⩾0 if and only if j∗X ∈D⩾0
U . Let us denote by τU

⩾0 the
associated truncation functor, le� adjoint of the inclusion D⩾0 →D . For every
object X ofD , the canonical truncation functor writes

j!τ<0 j∗X→ X→ τU
⩾0X→ Σ j!τ<0 j∗X,

and the cohomological functor is given by H0X = j!H0( j∗X).

Remark (4.4.14). — _e four truncation structures on D described in exam-
ples 4.4.10, 4.4.11, 4.4.12 and 4.4.13 can be used to describe the truncation struc-
ture given by theorem 4.4.6. Indeed, one has the formulas

τ⩽0 = τF⩽0τU
⩽0 and τ⩾0 = τF⩾0τU

⩾0.

To prove the ûrst formula, let us go back to the octahedron drawn in the course
of the proof of theorem 4.4.6. In that diagram, the ûrst vertical distinguished
triangle identiûes with the canonical truncation triangle associated with the
truncation structure of example 4.4.12, so that Y = τU

⩽0X. _en τ⩽0X = A =
τF⩽0Y = τF⩽0τU

⩽0X.
_e other formula is deduced from that one by passing to the opposite cate-

gories (and exchanging i! and i∗ on the one hand, and j∗ and j! on the other
hand).

4.5. Extensions

We retain the notation of the previous section, as given in §4.4.2.

Deûnition (4.5.1). — Let Y ∈DU. An extension of Y is an object X ofD endowed
with an isomorphism u ∶ j∗X ∼Ð→ Y.
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Let (X, u) be an extension of Y. By the adjunction ( j∗, j∗), the datum of
the morphism u is equivalent with that of a morphism u♯ ∈ D(X, j∗Y). On
the other hand, the morphism u−1 ∶ Y → j∗X corresponds with a morphism
u♭ ∈D( j!Y,X) under the adjunction ( j!, j∗). _is furnishes a diagram

j!Y
u♭Ð→ X u♯Ð→ j∗Y

whose composition is the element ofD( j!Y, j∗Y) ≃DU(Y, j∗ j∗Y) ≃DU(Y,Y)
corresponding to idY.
A�er translation and identifying j∗X with Y, the canonical distinguished

triangle i∗i!X→ X→ j∗ j∗X→ Σi∗i!X furnishes a distinguished triangle:

(4.5.1.1) X u♯Ð→ j∗Y→ i∗i!ΣX→ ΣX.

Applying the functor i∗ to this triangle and using the isomorphism of functors
i∗i∗

∼Ð→ id, we obtain another distinguished triangle:

(4.5.1.2) i∗X
i∗(u♯)
ÐÐÐ→ i∗ j∗Y→ i!ΣX→ Σi∗X.

4.5.2. — If (X, u) and (X′, u′) are two extensions of Y, amorphism of exten-
sions from X to X′ is an element f ∈D(X,X′) that makes the following diagram
commutative

j∗X

Y,

j∗X′

←

→
u←

→

j∗( f )

← →
u′

in other words, such that u′ ○ j∗( f ) = u.
_is furnishes the commutative diagram

X

j!Y j∗Y

X′

←

→

f

←

→
u♯

←

→u′ ♭

← →u♭

← →
u′ ♯

Conversely, amorphism f ∶ X→ X′ is amorphism of extensions if and only if
f ○ u♭ = u′ ♭, if and only if u′ ♯ ○ f = u♯.
Extensions of a given object Y ∈DU form a category.
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Example (4.5.3). — Let Y be an object ofDU. _e object j!Y, endowed with the
isomorphism εY ∶ Y

∼Ð→ j∗ j!Y, unit of the adjunction ( j!, j∗), is an extension of Y.
_e object j∗Y, endowed with the isomorphism ηY ∶ j∗ j∗Y

∼Ð→ Y, counit of the
adjunction ( j∗, j∗), is an extension of Y. Moreover, the canonical morphism
j!Y→ j∗Y is amorphism of extensions.

Example (4.5.4). — Let Y be an object ofDU, let p be an integer and let X =
τF⩾p j!Y.

Let us apply the functor j∗ to the canonical distinguished triangle i∗τ<pi! j!Y→
j!Y

vÐ→ τF⩾p j!Y→ Σi∗τ<pi! j!Y; since j∗i∗ = 0, we get a distinguished triangle 0→

j∗ j!Y
j∗(v)
ÐÐ→ j∗τF⩾p j!Y→ 0, so that j∗(v) is an isomorphism. Letting u = j∗(v)○εY

be its composition with the unit εY ∶ Y
∼Ð→ j∗ j!Y, this furnishes an extension

(X, u) of Y.
More precisely, let (X′, u′) be another extension of Y, where X′ is isomorphic

to X as an object of D . Let us show that there exists at most one morphism
f ∶ X→ X′ such that u = u′ ○ j∗( f ), in other words, at most one an morphism of
extensions from (X, u) to (X′, u′), and that, in this case, f is an isomorphism.
Indeed, let us complete themorphism u′ ♭ ∶ j!Y→ X to a distinguished triangle
Z→ j!Y

u′ ♭Ð→ X→ ΣZ and consider a partial morphismof distinguished triangles:

i∗τ<pi! j!Y j!Y X Σi∗τ<pi! j!Y

Z j!Y X′ ΣZ.

←→

←→g

←→u♭

⇐⇐ ←→ f

←→

←→ Σg

← → ←→u′ ♭ ← →

Relative to the truncation structure onD of example 4.4.13, the object i∗τ<pi! j!Y
is < p, and X′ ≃ τF⩾p j!Y is ⩾ p, hence Σ−1X′ is ⩾ p as well. Consequently,
D(i∗τ<pi! j!Y, Σ−1X′) = 0. It then follows from corollary 2.2.6 that there ex-
ists at most one isomorphism of extensions.
Consequently, we will allow ourselves to say that an extension of Y “is” iso-

morphic to τF⩾p j!Y.

Example (4.5.5). — Let Y be an object ofDU, let p be an integer, and let X =
τF⩽p j∗Y. Applying j∗ to the canonical distinguished triangle τF⩽p j!Y

vÐ→ j!Y →
i∗τ>0i∗Y → ΣτF⩽p j!Y, we obtain that j∗(v) is an isomorphism. _en u = ηY ○
j∗(v) ∶ j∗X→ Y is an isomorphism, so that (X, u) is an extension of Y.
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By duality, one deduces from the preceding example that if (X′, u′) is an exten-
sion of Y such that X′ is isomorphic to X, as an object ofD , there exists a unique
morphism of extensions f from (X, u) to (X′, u′), and it is an isomorphism.

_eorem (4.5.6). — Let Y be an object of DU. Let p be an integer. _en X =
τF<p j∗Y = τF>p j!Y is the unique extension of Y such that i∗X ∈D<p

F and i!X ∈D>p
F .

Proof. — Let (X, u) be an extension of Y and let u♭ ∶ j!Y→ X and u♯ ∶ X→ j∗Y.
be the morphisms deduced by adjunction. Let us prove that the following
properties are equivalent:

(i) i∗X ∈D<p
F and i!X ∈D>p

F ;
(ii) i!X ≃ τ>p(i∗ j∗Y);
(iii) i∗X ≃ τ<p(i∗ j∗Y);
(iv) X ≃ τF<p j∗Y;
(v) X ≃ τF>p j!Y.

Precisely, in (ii), wemean that themorphism i∗ j∗Y → i!ΣX appearing in the
distinguished triangle (4.5.1.2) factors through an isomorphism τ⩾p(i∗ j∗Y)→
i!ΣX. Similarly, in (iii), wemean that themorphism i∗(u♯) factors through an
isomorphism i∗Y→ τ<p(i∗ j∗Y).

If condition (i) holds, then the distinguished triangle (4.5.1.2) writes i∗ j∗Y as
an extension of the object i∗X ∈D<p

F by the object i!X ∈D>p
F . By uniqueness of

the truncation triangles associated with a truncation structure (proposition 4.1.7,
d)), one has i∗X ≃ τ<pi∗ j∗Y and i!X ≃ τ>pi∗ j∗Y. _is shows the implications
(i)⇒(ii) and (i)⇒(iii).

(ii) implies that i!X ∈ D
>p
F and that τ⩾pi∗X = 0, hence (i). Similarly, (iii)

implies that i∗X ∈D<p
F and that τ⩾pi!ΣX = 0, hence (i).

Assume (iv). By assumption, one has i∗X ∈ D
<p
F . On the other hand, the

uniqueness of amorphism of extensions X ≃ τF<p j∗Y implies that i∗i!ΣX belongs
to the ⩾ p-part of the truncation structure of example 4.4.10, that is, i!i∗i!ΣX ∈
D

⩾p
F and j∗i∗i!ΣX = 0. _is implies (i).
Conversely, if (i) holds, then j∗i∗i!ΣX = 0, so that in the distinguished trian-

gle (4.5.1.1), the objet X belongs to the < p-part and the object i∗i!ΣX belongs
to the ⩾ p-part of the truncation structure of example 4.4.10. _is implies that
X = τF<p j∗Y, hence (iv).

_e proof of the equivalence (i)⇔(v) is analogous.
_is concludes the proof of the theorem.
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Proposition (4.5.7). — a) _e functor ȷ̃∗ ∶ C →CU identiûes the abelian cate-
goryCU with the quotient of the abelian categoryC by the essential imageC F of
the functor ı̃∗.
b) For every object X ofC , ı̃∗ ı̃∗X is the largest quotient of X that belongs toC F,

and ı̃∗ ı̃!X is the largest subobject of X that belongs to C F.

Proof. — a) Let us ûrst show that the categoryC F is the kernel of the func-
tor ȷ̃∗ ∶ C → CU. _e relation ȷ̃∗ ı̃∗ = 0 implies that C F ⊂ Ker( ȷ̃∗). Conversely,
let X ∈C be such that ȷ̃∗X = 0. _e exact sequences of corollary 4.4.8, c), show
that ı̃∗ ı̃∗X ≃ X ≃ ı̃∗ ı̃!X; in particular X belongs toC F. Consequently, the func-
tor ȷ̃∗ factors uniquely through a functor T ∶ C /C F →CU. Let S ∶ CU →C /C F
be the composition of the functor ȷ̃! with the canonical functor C → C /C F.
_e isomorphism ȷ̃∗ ○ ȷ̃! ≃ id implies that T ○ S ≃ id. On the other hand, the the
ûrst exact sequence of corollary 4.4.8,c), implies that S ○T ≃ id. Consequently, T
is an equivalence of categories, as claimed.
b) LetX be an object ofC . By corollary 4.4.8, c), the canonical morphismX→

ı̃∗ ı̃∗X is an epimorphism. Conversely, let v ∶ X→ ı̃∗Y be an epimorphism fromX
to an object ofC F. Since the pair (ı̃∗, ı̃∗) is adjoint, themorphism v corresponds
to amorphism v♭ ∶ ı̃∗X → Y, and v♭ = ηY ○ ı∗(v), where η ∶ ı̃∗ ○ ı̃∗

∼Ð→ id is the
counit (it is an isomorphism because ı̃∗ is fully faithful). _en v = ı̃∗(v♭) ○ εX
factorizes uniquely through ı̃∗ ı̃∗X.

Similarly, the canonical morphism ı̃∗ ı̃!X→ X is amonomorphism. Let then
w ∶ ı̃∗Z→ X be amonomorphism from an object ofC F to X. Let w♯ ∶ Z→ ı̃!X
be themorphism associated with w by the adjunction (ı̃∗, ı̃!). If η ∶ ı̃∗ ○ ı̃!

∼Ð→ id
is its counit, then w = ηX ○ ı̃∗(w♯) is the unique factorization of w through ı̃∗ ı̃!X,
as claimed.

4.5.8. — Let Y ∈ CU. Since the functor j! is right t-exact, one has j!Y ∈ D⩽0,
and ȷ̃!Y = τ⩾0 j!Y. Since the functor j∗ is le� t-exact, one has ȷ̃∗Y = τ⩽0 j∗Y.
Moreover, there exists a uniquemorphism ũ ∶ ȷ̃!Y→ ȷ̃∗Y such that ȷ̃∗(ũ) is the
composition of the counit ȷ̃∗ ȷ̃∗ → id and the unit id→ ȷ̃∗ ȷ̃! associated with the
adjoint pairs ( ȷ̃∗, ȷ̃∗) and ( ȷ̃!, ȷ̃∗). _is leads to a canonical diagram

j!Y ȷ̃!Y ȷ̃∗Y j∗Y,←→← →u

←→ũ ←→

where u ∶ j!Y→ j∗Y is the canonical morphism.



144 CHAPTER 4. TRUNCATION STRUCTURES

Deûnition (4.5.9). — Let Y ∈CU. One deûnes ȷ̃!∗ = Im( ȷ̃!Y→ ȷ̃∗Y). It is called
themiddle extension of Y.

_emiddle extension ûts naturally in a diagram

j!Y ȷ̃!Y ȷ̃!∗Y ȷ̃∗Y j∗Y.←→← →
u

←→ ←→ ←→

When one applies the functor j∗ to this diagram, the ûrst term j∗ j!Y and the
last term j∗ j∗Y are isomorphic to Y via the unit of the adjunction ( j!, j∗) and
the counit of the adjunction ( j∗, j∗) respectively, and all morphisms are isomor-
phisms. In this way, ȷ̃!∗ is naturally an extension of Y.

Proposition (4.5.10). — Let Y ∈CU. One has the following relations:

a) X = ȷ̃!Y = τF>−1 j!Y = τF<−1 j∗Y is the only extension of Y in D such that
i∗X ∈D<−1

F and i!X ∈D>−1
F ;

b) X = ȷ̃!∗Y = τF>0 j!Y = τF<0 j∗Y is the only extension of Y in D such that
i∗X ∈D<0

F and i!X ∈D>0
F ;

c) X = ȷ̃∗Y = τF>1 j!Y = τF<1 j∗Y is the only extension ofY inD such that i∗X ∈D<1
F

and i!X ∈D>1
F .

Proof. — All these assertions follow from theorem 4.5.6, except for the identiû-
cation of ȷ̃!Y, ȷ̃!∗Y and ȷ̃∗Y with the indicated extensions.
a) One has j∗ j!Y ≃ Y ∈CU; consequently, ȷ̃!Y = τ⩾0 j!Y = τF⩾0τU

⩾0 j!Y = τF⩾0 j!Y.
c) One has j∗ j∗Y ≃ Y ∈ CU; consequently, ȷ̃∗Y = τ⩽0 j∗Y = τF⩽0τU

⩽0 j∗Y =
τF⩽0 j∗Y.
b) Let X = τF>0 j!Y = τF<0 j∗Y; let us ûrst show that X ∈C . Since i∗X ∈D<0

F and
j∗X ≃ Y ∈ CU, one has X ∈ D⩽0; since i!X ∈ D>0

F and j∗X ≃ Y ∈ CU, one has
X ∈D⩾0; consequently, X ∈C , as claimed.

_e cohomology functor associated with the truncation structure of exam-
ple 4.4.10 is i∗H0i∗. Consequently, the canonical morphism τF<−1 j∗Y→ τF<0 j∗Y
can be completed to a distinguished triangle

τF<−1 j∗Y→ τF<0 j∗Y→ Σi∗H−1i∗ j∗Y→ ΣτF<−1 j∗Y.

By a), we have τF<−1 j∗Y = ȷ̃!Y. By rotation, the preceding triangle gives the
following distinguished triangle:

i∗H−1i∗ j∗Y→ ȷ̃!Y→ X→ Σi∗H−1i∗ j∗Y.
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Since the three vertices of this triangle belong to C , the diagram

0→ i∗H−1i∗ j∗Y→ ȷ̃!Y→ X→ 0

is an exact sequence, as claimed.
By duality, the canonical morphism τF>−1 j!Y → τF>1 j!Y furnishes an exact se-

quence
0→ X→ ȷ̃∗Y→ i∗H1i! j!Y→ 0.

_is proves that X is the image of the canonical morphism ȷ̃!Y→ ȷ̃∗Y, hence
X = ȷ̃!∗Y, as was to be shown.

Corollary (4.5.11). — Let Y ∈ CU. _en X = ȷ̃!∗Y is the unique extension of Y
in C which has no non-trivial subobject and no non-trivial quotient in C F.

Proof. — Let X ∈C be an extension of Y. By proposition 4.5.7, b), the largest
quotient of X that belongs to CF is ı̃∗ ı̃∗X. One has i∗X ∈D⩽0

F , because i∗ is right
t-exact, hence ı̃∗X = H0i∗X. Since ı̃∗ is exact and fully faithful, this quotient
vanishes if and only if i∗X ∈D<0

F .
Similarly, the largest subobject of X that belongs to CF is ı̃∗ ı̃!X. Since i! is

le� t-exact, one has i!X ∈ D⩾0
F , hence ı̃!X = H0i!X. It vanishes if and only if

i!X ∈D>0
F .

_e corollary thus follows from proposition 4.5.10.

Corollary (4.5.12). — _e functor ȷ̃!∗ ∶ CU →C if fully faithful and respects epi-
morphisms andmonomorphisms. It induces an equivalence of categories from CU
to the full subcategory ofC consisting of objects X such that ı̃∗X = ı̃!X = 0.

However, the functor ȷ̃!∗ is not exact in themiddle in general, see (deCataldo
&Migliorini, 2009, p. 562).

Proof. — Let f ∶ Y→ Z be amorphism inCU. _emorphisms ȷ̃!( f ) and ȷ̃∗( f )
ût in a diagram

ȷ̃!Y ȷ̃!∗Y ȷ̃∗Y

ȷ̃!Z ȷ̃!∗Z ȷ̃∗Z.

←→ȷ̃!( f )

←↠

←→ ȷ̃!∗( f )

↩→

←→ ȷ̃∗( f )

←↠ ↩→

Assume that f is amonomorphism. Since ȷ̃∗ is le� exact, themorphism ȷ̃∗( f )
is amonomorphism, and one reads on the preceding diagram that ȷ̃!∗( f ) is a
monomorphism as well.
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Similarly, assume that f is an epimorphism. Since ȷ̃! is right exact, themor-
phism ȷ̃!( f ) is then an epimorphism. _is implies that ȷ̃!∗( f ) is an epimorphism
as well.

Since ȷ̃∗ ○ ȷ̃!∗ = id, the functor ȷ̃!∗ is faithful. On the other hand, let f ∶ ȷ̃!∗Y→
ȷ̃!∗Z be amorphism in C , and let

g = f − ȷ̃!∗ ○ ȷ̃∗( f ) ∶ ȷ̃!∗Y→ ȷ̃!∗Z.

One has ȷ̃∗(g) = 0; consequently, Ker(g) is a subobject of ȷ̃!∗Y such that
ȷ̃∗(Ker(g)) = Y, because ȷ̃∗ is exact. _is implies that ȷ̃!∗Y/Ker(g) belongs to the
subcategoryC F, hence is zero, by corollary 4.5.11. Consequently, Ker(g) = ȷ̃!∗Y,
hence g = 0 and f = ȷ̃!∗ ○ ȷ̃∗( f ). Consequently, the functor ȷ̃!∗ is fully faithful.

Let Y be an object of CU and let X = ȷ̃!∗Y. By proposition 4.5.10, one has
i∗X ∈D<0

F , hence ı̃∗X = H0(i∗X) = 0. Similarly, one has ı̃!X = 0. Conversely, let
X be an object ofC such that ı̃∗X = ı̃!X = 0. Let Y = ȷ̃∗X. By construction, X is
an extension of Y inC . By proposition 4.5.7, b), ı̃∗ ı̃∗X = 0 is the largest quotient
of X that belongs to CF, and ı̃∗ ı̃!X = 0 is the largest subobject of X that belongs
toCF. By corollary 4.5.11, X is isomorphic to ȷ̃!∗Y. _is concludes the proof.

Corollary (4.5.13). — _e simple objects of the categoryC are the objects ȷ̃!∗S, for
S ∈CU simple, and the objects ı̃∗T, for T ∈CF simple.

Proof. — a) Let us ûrst prove that for every object S ∈ CU, ȷ̃!∗S is simple if
and only if S is simple.
Assume that ȷ̃!∗S is simple. Necessarily, S is nonzero; let S′ → S be a nonzero

subobject. _en ȷ̃!∗S′ → ȷ̃!∗S is a subobject as well, because ȷ̃!∗ preserves
monomorphisms, and ȷ̃!∗S′ is nonzero, since its image under ȷ̃∗ is S′. Conse-
quently, ȷ̃!∗S′ → ȷ̃!∗S is an isomorphism, and applying ȷ̃∗, we conclude that
S′ → S is an isomorphism. _is shows that S is simple.
Conversely, let us assume that ȷ̃!∗S is not simple and let us prove that S is not

simple. If ȷ̃!∗S ≃ 0, then S ≃ ȷ̃∗ ȷ̃!∗S ≃ 0. Let us thus assume that ȷ̃!∗S /≃ 0 and let
T→ ȷ̃!∗S be a subobject which is neither 0, nor an isomorphism; let ȷ̃!∗S→ T′ be
its cokernel, so that we have an exact sequence 0 → T → ȷ̃!∗S → T′ → 0. Since
ȷ̃∗ is exact and ȷ̃∗ ȷ̃!∗ ≃ id, we have an exact sequence 0 → ȷ̃∗T → S → ȷ̃∗T′ → 0.
Since ȷ̃!∗S has no nonzero subboject in C F, one has ȷ̃∗T ≠ 0; similarly, one has
ȷ̃∗T′ ≠ 0. _is proves that S is not simple.
b) Since ȷ̃∗ ȷ̃!∗ ≃ id, if, for two objects S and S′ ofCU, the objects ȷ̃!∗S and ȷ̃!∗S′

ofC are isomorphic, then S and S′ are isomorphic.
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c) Since the functor ı̃∗ is exact and fully faithful, for every object T in CF, the
object ı̃∗T ofC is simple if and only if T is simple. Moreover, if T and T′ are
two objects ofCF such that ȷ̃!∗T and ȷ̃!∗T′ are isomorphic in C , then T and T′

are isomorphic.
d) To conclude the proof, it suõces to prove that a simple object X ofC is

either of the form ȷ̃!∗S for some object S ∈CU, or of the form ı̃∗T for some object
T ∈CF. _ere are two cases. If X has a nonzero subobject, or a nonzero quotient,
in C F, then X is isomorphic to that object since it is simple. Otherwise, the
relation ȷ̃∗○ ȷ̃!∗ ≃ id inCU shows thatX is an extension of ȷ̃∗X; since this extension
has neither a nonzero subobject, nor a nonzero quotient in C F, corollary 4.5.11
implies that X ≃ ȷ̃!∗ ȷ̃∗X.





CHAPTER 5

PERVERSE SHEAVES

5.0.1. — In this chapter, we only consider topological spaces which are locally
compact and ûnite dimensional. If X is such a space, we write D(X) for its
derived category of sheaves of abelian groups.
We recall that every continuous map f ∶ Y → X of such topological spaces

induces functors f!, f∗ ∶ D(X)→D(Y) and f ∗, f ! ∶ D(Y)→D(X), related by
adjunctions ( f ∗, f∗) and ( f!, f !).

5.1. Stratiûed spaces

Deûnition (5.1.1). — Let X be a topological space. A stratiûcation S of X is a
ûnite partition of X into nonempty locally closed subsets, called strata, such that
the closure of a stratum is a union of strata.

Example (5.1.2). — Let n be an integer. _e projective space Pn (considered as
a complex manifold) admits a standard stratiûcation (S0, . . . , Sn) such that for
every i, the stratum Si is an aõne space Ci of (complex) dimension i, and its
closure Si = S0 ∪ ⋅ ⋅ ⋅ ∪ Si is a projective subspace Pi .

Example (5.1.3). — LetG be a complex reductive algebraic group, letB be a Borel
subgroup of G and let W be aWeyl group associated to themaximal torus of B.
For example, onemay take forG the linear groupGL(n,C), forBbe the subgroup
of upper triangular matrices and forW be the subgroup of permutation matrices.
_e Bruhat decomposition G = BWB induces a stratiûcation B = (BwB)w∈W
of G.

Example (5.1.4). — Let p and n be integers such that 1 ⩽ p ⩽ n and let X =
Gr(p, n) be the Grassmann varieties of p-dimensional subspaces of Cn. By
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linear algebra, every such subspace V can be represented by a unique p × n
matrix AV in row reduced echelon form, the p row vectors of which form a basis
of V. _e pivot indices of this matrix AV form a strictly increasing sequence
i = (i1, . . . , ip) of integers, characterized by the relations

dim(V ∩Cm × {(0, . . . , 0)}) ⩾ d ⇔ id ⩾ m.

_e row reduced matrices associated with such a sequence i form an aõne
space Si of dimension

(i2 − i1 − 1) + 2(i3 − i2 − 1) + ⋅ ⋅ ⋅ + (p − 1)(ip − ip−1 − 1) + p(n − ip))

= 1
2
(2n − p + 1)p − (i1 + ⋅ ⋅ ⋅ + ip).

_is furnishes a stratiûcation of theGrassmann variety in (open) “Schubert cells”
which are complex aõne spaces.
When p = 1, the Grassmann manifold Gr(1, n) is the projective space of

dimension n − 1, and for i ∈ {1, . . . , n}, the aõne space Si has dimension n − i.
One recovers (up to the indexing) the stratiûcation of Pn−1.

5.1.5. — Let X be a topological space and let S be a stratiûcation of X.
Let S ∈ S . By deûnition of a locally closed subset, S is open and dense in S. By

deûnition of a stratiûcation, S S is a union of strata, each of them has empty
interior in S.

_e relation “S ⊂ T” is an ordering on S . Since it is equivalent to “S ⊂ T”, it
is re�exive and transitive. By the remark above, if S = T, then S and T are both
dense in S, hence S = T.

Lemma (5.1.6). — Let X be a topological space and let S be a stratiûcation of X.
Let S ∈ S and let U be the union of all strata T such that S ⊂ T. _en U is a
neighborhood of S in which S is closed.

Proof. — Let us ûrst show that U is a neighborhood of S. Assume otherwise
and let F be an ultraûlter containing X U that converges to a point s ∈ S. Since
S is ûnite, there exists a stratum T ∈ S such that T ∈ F . By the deûnition ofU,
S is not contained in T, a contradiction.

Let us then show that S is closed in U. Let F be an ultraûlter containing S
that converges to a point s of U, and let us show that s ∈ S. Assume otherwise
and let T ≠ S be the stratum of S that contains s; by the deûnition of U, we
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have S ⊂ T. _en S ⊂ T T, which is closed in T. Consequently, s ∈ T T, a
contradiction.

Lemma (5.1.7). — Let X be a topological space and let S be a stratiûcation of X.
Assume thatCard(S ) ⩾ 2. _en there exists a closed subset F of X such that F ≠ ∅
and F ≠ X, which is a union of strata.

Proof. — Let S ∈ S be a stratum such that S ≠ X. By deûnition of a stratiûcatino,
S is a union of strata, as well as S S; moreover, S S is closed in S. If S = X,
then we take F = S S. Otherwise, we take F = S.

5.2. Perverse sheaves

Deûnition (5.2.1). — LetX be a topological space and letS be a stratiûcation ofX.
A function p ∶ S → Z is called a perversity on X relative to the stratiûcation S .

Deûnition (5.2.2). — Let X be a topological space and p be a perversity on X
relative to a stratiûcation S .

Let pD(X)⩽0 be the full subcategory ofD(X) whose objects A are characterized
by the property

(5.2.2.1) Hn(i∗SA) = 0 for all S ∈ S and all n > p(S).

Similarly, let pD(X)⩾0 be the full subcategory of D(X) whose objects A are
characterized by the property

(5.2.2.2) Hn(i!SA) = 0 for all S ∈ S and all n < p(S).

For every integer n, we also set pD(X)⩽n = Σ−npD(X)⩽n and pD(X)⩾n =
Σ−npD(X)⩾n.

Example (5.2.3) (Constant perversity). — Assume that p is constant with
value a ∈ Z; let us prove that pD(X)⩽0 =D(X)⩽a and pD(X)⩾0 =D(X)⩾a.

Since the functor i∗S on sheaves is exact, for every S ∈ S , one has D(X)⩽a ⊂
pD(X)⩽0. Conversely, let A ∈ pD(X)⩽0 and let us prove that A ∈D(X)⩽a. Since
the standard truncation structure onD(X) is nondegenerate, it suõces to prove
that Hn(A) = 0 for every integer n such that n > a. Let n be such an integer.
By exactness of i∗S , one has i∗SHn(A) = Hn(i∗SA) = 0 for every S ∈ S . Since the
subspaces S, for S ∈ S , cover X, this implies that all stalks of Hn(A) are zero,
henceHn(A) = 0.
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Let A ∈ D(X)⩾a. Let S ∈ S be a stratum. Since iS is an immersion, the
functor (iS)! on sheaves admits a right adjoint (iS)!, which is thus le� exact,
and of which i!S is the right derived functor. Consequently, i!SA ∈D(S)⩾a and
Hn i!SA = 0 for every integer n such that n < a. _is proves that A is an object
of pD(X)⩾0.
Conversely, let A ∈ pD(X)⩾0 and let us prove that A ∈D(X)⩾a. Let us apply

the triangulated functor i!S, composed with the cohomological functor H0, to
the (distinguished) truncation triangle τ<aA→ A→ τ⩾aA→ Στ<aA. We obtain
an exact sequence

Hn−1i!Sτ⩾aA→ Hn i!Sτ<aA→ Hn i!SA→ Hn i!Sτ⩾aA.

Since τ⩾aA ∈D(X)⩾a, we haveHn i!Sτ⩾A = 0 for n < a, hence the previous exact
sequence gives an isomorphism Hn i!Sτ<aA

∼Ð→ Hn i!SA. Consequently, τ<aA ∈
pD(X)⩾0. Replacing A by τ<aA, wemay moreover assume that A ∈D(X)<a; let
us then prove that A = 0. For every stratum S ∈ S , we have Hn(i!SA) = 0 if
n < a, because A ∈ pD(X)⩾0, and Hn(i!SA) = 0 if n ⩾ a, because A ∈ D(X)<a;
consequently,Hn(i!SA) = 0 for every integer n, hence, i!SA = 0.

Let us prove that i∗SA = 0 for every stratum S ∈ S . We argue by induction,
assuming the result true for every stratum T such that S ⊂ T and S ≠ T. Let U be
the union of all strata T such that S ⊂ T; by lemma 5.1.6, it is a neighborhood
of S in which S is closed. By the induction hypothesis, the support of A∣U is
contained in S; consequently i∗SA = i!SA = 0, as claimed.

SinceS covers X, we have A = 0, as was to be shown.

Example (5.2.4). — Let p and q be two perversities relative to the stratiûca-
tion S such that p ⩽ q. It follows from the deûnitions that pD(X)⩽0 ⊂ qD(X)⩽0
and pD(X)⩾0 ⊃ qD(X)⩾0.

In particular, if a is an integer such that p ⩾ a, then D(X)⩽a ⊂ pD(X)⩽0
and pD(X)⩾0 ⊂ D(X)⩾a. Similarly, if b is an integer such that p ⩽ b, then
pD(X)⩽0 ⊂D(X)⩽b andD(X)⩾b ⊂ pD(X)⩾0.

_eorem (5.2.5). — LetX be a topological space and p be a perversity onX relative
to a stratiûcation S . _e pair (D(X)⩽p,D(X)⩾p+1) is a truncation structure
on D(X).

Proof. — We prove the result by induction on the cardinality of S . If
Card(S ) = 0, then X = ∅,D(X) = 0, and the result is obvious. Assume that
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Card(S ) = 1, so that S = {X} and p is constant. It then follows from exam-
ple 5.2.3 that the pair (D(X)⩽p,D(X)⩾p+1) is the standard truncation structure,
shi�ed by −p(X). Let us assume that Card(S ) ⩾ 2; let F be a closed subset
of X which is a union of strata, and such that F ≠ ∅ and F ≠ X (lemma 5.1.7);
let U = X F. By induction, (D(U)⩽p,D(U)⩾p+1) and (D(F)⩽p,D(F)⩾p+1)
are truncation structures on D(U) and D(F) respectively. It remains to
observe that (D(X)⩽p,D(X)⩾p+1) is the truncation structure on D(X) which
is deduced by glueing from these two truncation structures.

Deûnition (5.2.6). — LetX be a topological space, letS be a stratiûcation ofX and
let p be a perversity relative to S . _e truncation structure (pD(X)⩽0, pD(X)⩾1)
on D(X) is called the p-perverse truncation structure. Its heart is denoted by
M (X)p; objects ofM (X)p are called p-perverse sheaves.

Let us introduce the following notation: D(X)⩽p = pD(X)⩽0 andD(X)⩾p =
pD(X)⩾p. By example 5.2.3, it is consistent with the case of a constant perversity.
It is also consistent with the intuitive understanding When p and q are two
perversities such that p ⩽ q, it gives an intuitive explanation to the inclusions of
example 5.2.4.

Similarly, the truncation functors associated with the p-perverse truncation
structures will be denoted by τ⩽p and τ⩾p, and the p-perverse cohomology
functor will be denoted by Hp.

5.2.7. — Let X be a topological space, let S be a stratiûcation of X and let p
be a perversity relative to S . Let U ⊂ X be an open subset which is a union
of strata, let j ∶ U → X be the inclusion; let F = X U be the complementary
subset and let i ∶ F → X be the inclusion. We have adjoint triples of functors
(i∗, i∗, i!) and ( j!, j∗, j∗) relating the triangulated categories D(U),D(X) and
D(F), giving rise to a glueing context: the p-perverse truncation structure
on D(X) is obtained by glueing the p-perverse truncation structures on D(U)
andD(F). We also have their variants on hearts (ı̃∗, ı̃∗, ı̃!) and ( ȷ̃!, ȷ̃∗, ȷ̃∗). We
also have the intermediate extension functor ȷ̃!∗.

_e functors j!, i∗ are right t-exact; the functors j∗ and i∗ are t-exact; the
functors j∗ and i! are le� t-exact. _e functors ȷ̃!, ı̃∗ are right exact; the functors
ȷ̃∗ and ı̃∗ are exact; the functors ȷ̃∗ and ı̃! are le� exact.



154 CHAPTER 5. PERVERSE SHEAVES

More generally, there are such functors associated with the immersion j ∶ U→
U′, whereU andU′ are two open subsets of X which are union of strata, etc. _e
various functors satisfy the expected transitivity properties.

Proposition (5.2.8). — Let A ∈M (U)p.

a) _e object ȷ̃!A ofM (X)p is the unique extension B of A in D(X) such that
for every stratum S ⊂ F, we have Hn i∗SB = 0 for n ⩾ p(S) − 1 and Hn i!SB = 0 for
n ⩽ p(S) − 1.
b) _e object ȷ̃!∗A ofM (X)p is the unique extension B of A inD(X) such that

for every stratum S ⊂ F, we have Hn i∗SA = 0 for n ⩾ p(S) and Hn i!SA = 0 for
n ⩽ p(S).
c) _e object ȷ̃∗A ofM (X)p is the unique extension B of A in D(X) such that

for every stratum S ⊂ F, we haveHn i∗SA = 0 for n ⩾ p(S) + 1 andHn i!SA = 0 for
n ⩽ p(S) + 1.

Proposition (5.2.9). — Let us assume that p(S) ⩾ p(T) for any two strata S and T
such that S ⊂ T. For every n ∈ N, let Fn be the union of all strata S such that
p(S) < n and let Un be the union of all strata S such that p(S) ⩽ n; let jn be the
inclusion of Un into Un+1. _en Fn is closed and Un is open. Moreover, for every
p-perverse sheaf A ∈ M (Un) and every integer a such that p ⩽ a and a ⩾ n, one
has

ȷ̃!∗A = τ⩽a ja,∗ . . . τ⩽n jn,∗A.

Proof. — _e condition on p implies that for every stratum T such that T ⊂ Fn

and every stratum S such that S ⊂ T, one has p(S) ⩾ p(T) ⩾ n, hence S ⊂ Fn.
_is implies that Fn is closed. Consequently, Un = X Fn is open.

To prove the desired formula by induction, it suõces to check that ȷ̃n,!∗A =
τ⩽n jn,∗A. Let F = Un+1 Un. For every stratum S ∈ S such that S ⊂ F, we have
p(S) = n+ 1, so that the p-perverse truncation structure ofD(F) is the standard
one shi�ed by −(n + 1). We have

ȷ̃n,!∗A = τF<0 jn,∗A = τF,st⩽n jn,∗,

where τF,st⩽n is the partial truncation functor relative to the standard truncation
structure on D(F). On Un, we have p ⩽ n, so that A ∈D⩽n(Un). Consequently,
the canonical morphism

τF,st⩽n jn,∗A→ τ⩽n jn,∗A
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is mapped to an isomorphism a�er applying j∗n; it is also mapped to an isomor-
phism a�er applying i∗F , where iF is the inclusion of F in Un+1. Consequently, it
is an isomorphism, and this concludes the proof of the proposition.
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