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CHAPTER 1

CATEGORIES

1.1. Sets, universes and categories

1.1.1. — We wish to work within the classical framework of set theory, as formal-
ized by the zrc axioms: Zermelo-Fraenkel with choice. However, the inexistence
of a “set of all sets” makes this framework not really adequate to consider the usual
categories or functors. We thus complement this theory with Grothendieck’s
concept of universes.

Definition (1.1.2). — An universe is a set U satisfying the following properties:

a) For every set x € U and every element y € x, one has y € U;

b) Forevery x,y € U, one has {x, y} € U;

c) Forevery x € U, one has P(x) € U;

d) Foreveryle U and every family (x;) 1 of elements of U, one has U, x; € U;
e) The set N belongs to U.

1.1.3. — In some precise sense, an universe can be seen as a model of set theory:
the axioms of a universe precisely guarantee that all classical operations of sets
do not leave a given universe. For example, if x, y are elements of a universe U,
then the pair (x, y), defined a la Kuratowski by (x, y) = {{x}, {x, y}} belongs
to U. Then the product set x x y, a subset of PB(*P(x U y)) belongs to U, as well
as all of its subsets, so that the graphs of all functions from x to y belong to U.
In particular, if f is surjective, then any retraction (whose existence is asserted
by the axiom of choice) belongs to U.

Consequently, existence of universes does not follow from the axioms of zrc —
this would indeed contradict Godel’s second incompleteness theorem — and
zrC has to be supplemented by an axiom such as the following.

Axiom (1.1.4). — For every set x, there exists an universe U such that x € U.
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One checks readily that the intersection of a non-empty family of universes
is a universe. Consequently, under axiom 1.1.4, for every set x, there exists a
smallest universe U containing x.

Definition (1.1.5). — A category C' is the datum of two sets ob( C') and mor(C),
whose elements are respectively called its objects and its morphisms, of two maps
0,t: mor(C') - ob( C) (origin and target) and of a partial composition map:
mor(C') x mor(C) — C, denoted (f,g) — g o f satisfying the following prop-
erties, where f, g, h € mor(C):

a) the composition go f is defined ifand only if t(f) = 0(g); one has o(go f) =
o(f) and t(go ) = H(g);

b) the composition is associative: if t(f) = 0(g) and t(g) = o(h), then ho (go
f)=(hog)of;

c) for every object X € ob( C'), there exists a morphism idx € mor(C') such
that o(idx) = t(idx) = X, idx of = f for every f € mor( C') such that t(f) =X,
and g o idx = g for every g € mor( C') such that o(g) = X.

If f € C, the objects o(f) and t( f) are called the origin and the target of f.
For any two objects X, Y in a category C, one writes C(X,Y), or Hom¢(X,Y)
to be the subset of mor( C') consisting of all morphisms f with origin X and
target Y.

Example (1.1.6). — Let C be a category. Its opposite category, denoted by C°,
has the same objects and the same morphisms, but the origin/target maps are
exchanged, and the order of composition is switched.

When one writes down a general construction/theorem from category theory
both in C' and in the opposite category C°, one obtains two related statements,
one being obtained from the other by “reversing the arrows”

Example (1.1.7). — Let A be a set and let < be a preordering relation on A, that
is, a binary relation on A which is reflexive and transitive. From (A, <), one
defines a category A as follows: one has ob(A) = A and mor( A) is the set of
pairs (a, b) € A x A such that a < b, the maps o and ¢ being the first and second
projection respectively, the composition is defined by (b, ¢) o (a,b) = (a, ¢) for
every a, b, c € A.
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Example (1.1.8). — All classical mathematical objects, such as sets, abelian
groups, topological spaces, k-modules (where k is a ring), k-algebras, etc., give
rise to categories.

Since there is no set of all sets, we need to fix a universe U. The category
Sety of U-sets has for objects the elements of U and for morphisms the maps
between those sets, the composition being given by the usual composition of
maps. Similarly, the abelian groups whose underlying set belongs to U are the
objects of a category A by, the morphisms of this category being the morphisms
of abelian groups between them. One defines analogously categories Top; or
Ring; whose objects are the topological spaces, or the rings, with underlying
set an element of U. Or, if k is an object of Ringy, one defines categories
Mod(k)y or Alg(k)y of k-modules, or of k-algebras, whose underlying set
belongs to U.

In practice, one can often work within an universe U which is fixed once and
for all and talk about the category Set of sets, etc.

Definition (1.1.9). — Let U be a universe.

a) One says that a category C is a U-category if ob( C') and mor( C') belong
to U.

b) One says that a set X is U-small if there exists a bijection f : X — X' with an
element of U.

c) One says that a category C'is U-small if ob( C') and mor( C') are U-small.

d) One says that a category C is locally U-small if for every objects X,Y ¢
ob(C), the set C(X,Y) is U-small.

Let U be a universe and C be a category. Since ob( C') can be identified with
the subset of mor( C') of all identities, we observe that if mor( C') belongs to U,
then ob( C') belongs to U as well.

For example, the category Sety of U-sets is locally U-small, but not U-small.
However, if V is an universe such that U € V, then Sety is a V-category.

1.1.10. — LetX,Yeob(C)and f e C(X,Y).

One says that f is left-invertible if there exists g € C' (Y, X) such that go f = idx;
any such element g is called a left-inverse of f.

One says that g is right-invertible if there exists h € C'(Y,X) such that fo h =
idy, and every such element g is called a right-inverse of g.
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One says that f is invertible, or an isomorphism if it is both left- and right-
invertible. In this case, any left-inverse g and any right-inverse 4 of f coincide,
since g = goidy = go(foh) =(go f)oh =idxoh = h, and this element is
simply called the inverse of f.

The definitions of a left-invertible morphism and of a right-invertible are
deduced one from the other by passing to the opposite category.

1111 — LetX,Yeob(C)and fe C(X,Y).

One says that f is a monomorphism if for every object Z € ob( C') and every
h,h' e C(Z,X), the equality f o h = f o h’ implies that h = h'.

If f is left-invertible, then f is a monomorphism. Let indeed h, h' € C(Z,X)
be such that f o h = f o h/; for every left-inverse g of f, one then has

h=(gof)oh=go(foh)=go(foh')=(gof) o =I.

One says that f is an epimorphism if for every object Z € ob( C') and every
g,8'€ C(Y,Z), theequality go f = ¢’ o f implies that g = ¢'.

If f is right-invertible, then f is an epimorphism. Let indeed g, ¢’ € C(Y,Z)
be such that go f = ¢’ o f; for every right-inverse h of f, one then has

g=g8o(foh)=(gof)oh=(g'of)oh=¢g"o(foh)=¢.

The definitions of a monomorphism and of an epimorphism are deduced one
from the other by passing to the opposite category.

The reader will take care that a morphism can be both a monomorphism and
an epimorphism, without being an isomorphism (exercise 1.7.2).

Definition (1.1.12). — Let C and D be two categories. A functor F from C to D
is the datum of two maps ob(F) : ob(C') — ob(D) and mor(F) : mor(C) —
mor( D) satisfying the following properties:

a) For every f € mor(C'), one has o(mor(F)(f)) = ob(F)(o(f)) and
t(mor(F)(f)) = ob(F)(¢(f));

b) Foreverypair (f,g) inmor(C) such that t(f) = o(g), one has mor(F)(go

f) = mor(F)(g) o mor(F)(f);
c) For every object X € ob( C'), one has mor(F)(idx) = idqp(ry(x)-

In practice, the maps mor(F) and ob(F) associated with a functor F are simply
denoted by F.
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Definition (1.1.13). — Let C and D be two categories, and let F, G be two functors
from C to D. A morphism of functors «: F - G isa map a: ob(C) —
mor (D) satisfying the following properties:
a) ForeveryX € ob(C), the morphism a(X) has source F(X) and target G(X);
b) For every X,Y € ob(C') and every f € C(X,Y), one has a(Y) o F(f) =
G(f) o a(X).

Morphisms of functors are composed in the obvious way, turning the set
Fun(C, D) of functors from C to D into a category.

Let U be a universe. If C and D are U-categories, then Fun(C, D) is a
U-category.

1.2. Limits, colimits, adjunctions

1.2.1. — A quiver Q is the datum of a set V (vertices), of a set A (arrows), and
of two maps o, t: V - Q (origin and target).

Let Q = (V,A,o0,t) be a quiver.

Let C be a category. A Q-diagram in C is given by a family (X, ),ey of
objects of C' and of a family (f;)4ca of arrows of C' such that o(f,) = X,(,) and

t(fa) = Xt(a)-

1.2.2. — Let C bea categoryand let D = ((X,), (f,)) be a Q-diagram in C.
A cone on the diagram D is the datum of an object X of C and of a family
(py)vev satistying the following properties:

a) For everyv €V, p, is a morphism in C with origin X and target X,;

b) For every a € A, one has f; 0 p,(a) = Pi(a)-

One says that a cone (X, (p,)) on a diagram D = ((X,), (f,)) is a limit of
the diagram D if for every cone D’ = (X', (p/,)) on D, there exists a unique
morphism ¢ € C (X', X) such that p, o ¢ = p!, for every v € V.

Let (X, (py)) and (X', (p},)) be two limits on D. Since X is a limit and X' is a
cone on D, there exists a unique morphism ¢ € C(X’,X) such that p, o ¢ = p/,
for every v € V. Since X' is a limit and X is a cone on D, there exists a unique
morphism ¢’ € C(X,X') such that p, = p/, o ¢’ for every v € V. Then p, =
pLo@ =p,0@oq for every v € V; since X is a limit, one has ¢ o ¢’ = idx.
Similarly, pi, = p, o ¢ = p, 0 ¢’ 0 ¢, for every v € V; since X' is a limit, one has
¢’ o ¢ = idyx.. Consequently, ¢ and ¢’ are isomorphisms, inverse one to the other.
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1.2.3. — By passing to the opposite category, one defines the notions of a cocone
on a diagram D and of a colimit of D. Explicitly, a cocone on the diagram D is
the datum of an object X of C' and of a family (p, ),ev satisfying the following
properties:

a) For everyv eV, p, is a morphism in C with origin X, and target X;
b) For every a € A, one has py,) o fu = Po(a)-

One says that a cocone (X, (p,)) on a diagram D = ((X,), (f,)) is a colimit of
the diagram D if for every cocone D’ = (Y, (g,)) on D, there exists a unique
morphism ¢ € C(Y,X) such that g o p, = g, forevery v e V.

If (X, (p!)) is another colimit of the diagram D, then there exists a unique
morphism ¢: X — X’ such that ¢ o p, = p! for every v € V, and ¢ is an
isomorphism.

Example (1.2.4). — a) Let Q be the empty quiver — no vertex and no arrow.
There exists a unique corresponding Q-diagram D in C': it is empty — no object,
no morphism. A cone on D is just an object of C'; a limit of D is an object X
such that for every object X" in C, there exists a unique morphism ¢ : X’ - X
in C. Such an object is called a terminal object of C. Passing to the opposite
category, a colimit of D is called an initial object: this is an object X such that for
every object X’ € C, there exists a unique morphism ¢ : X - X'in C.

In the case of the category of sets, the empty set is an initial object, and terminal
objects are sets with one element; in the case of the category of k-modules, the
initial and the terminal objects are the zero module; in the case of the category
of groups, the initial and the terminal objects are the groups reduced to the unit
element. In the category of rings, the ring Z is an initial object, and the zero ring
is a terminal object. The category of fields has no initial object and no terminal
object.

b) Let Q = (V, A, 0, t) be a quiver with no arrows. A Q-diagram in C'is just
a family (X, ),cv of objects, indexed by the set V of vertices of Q. A limit of D is
called a product of the family (X, ); a colimit of D is called a coproduct of the
family (X, ).

In the case of the category of sets, one gets the product, resp. the disjoint
union; in the case of the category of k-modules, one gets the product, resp. the
direct sum; in the case of the category of groups, one gets the product, resp. the
free product. In the category of rings, the product is a product, and the tensor
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product furnishes a coproduct. In the category of fields, products or coproducts
rarely exist.

c) Let Q be a quiver with two vertices a, b and two arrows both with origin a
and target b. A Q-diagram is given by two objects A, B in C' and two morphisms
f,g: A — B. Alimit of this diagram is called an equalizer of the pair (f, g); a
colimit is called a coequalizer of the pair (f, g).

In the case of the category of sets, the equalizer of (f, g) is the subset of A
consisting of those elements a € A such that f(a) = g(a). In fact, the same
formula works for the categories of groups, of k-modules, of rings, of fields, etc.,
the set-theoretical equalizer is a subobject of A and is the equalizer in the given
category. In the category of k-modules, f — g is a morphism, and the equalizer
of (f, g) is also the kernel of f - g.

In the category of sets, the coequalizer of (f, g) is the quotient of B by the
finest equivalence relation in B that identifies f(a) and g(a), for every a € A.
However, in the category of groups, of k-modules, of rings, of fields, one needs to
consider the finest equivalence relation in B which identifies f(a) and g(a), for
every a € A, and which moreover is compatible with the given laws. This gives
the same set in the category of k-modules, or of rings, but not in the category
of groups, where the coequalizer of (f, g) is the quotient of B by the smallest
normal subgroup of B that contains f(a)g(a)™, for every a € A.

Definition (1.2.5). — Let C and D be categoriesandletG: C - D andF: D —
C be functors. An adjunction for the pair (G, F) is the datum of a pair (7, €) of
functors : idg - Fo Gand e: G o F — idp satisfying the relations

5G(x) o G(I’]x) = idG(x) and F(Sy) o 7’]F(y) = idp(y) .

hold for every x € ob( C') and every y € ob(D). The morphism 1 is called the
counit of the adjunction, and the morphism ¢ is called its unit.

If the pair (G, F) possesses an adjunction, then one says One says that (G, F) is
an adjoint pair, or that G is a left adjoint to F, or that F is a right adjoint to F, and
one writes G < F.

Proposition (1.2.6). — Let C and D be categories and let G: C — D and
F: D — C be functors. The following datas are equivalent:

a) An adjunction (n, €) for the pair (G, F).
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b) A morphism of functors n: idc — F o G such that for every x € ob(C)
and every y € ob(D), the map D(G(x),y) - C(x,F(y)) given by g — g" =
F(g) o #y is bijective.

c) A morphism of functors e: G o F — idp such that for every x € ob(C)
and every y € ob(D), the map C(x,F(y)) - D(G(x), y) given by f — fi =
g, 0 G(f) is bijective,

d) For every object x of C and every object y of D, a bijection f — f! from
C(x,F(y)) to D(G(x), y), with inverse g — g°, such that for any objects x, x'
of C, any objects y, y' of D, any morphisms u € C(x',x) andv € D(y, y"), any
morphism f € D(G(x), y) and any morphism g € C(x,F(y)), one has

(vogoG(u)) =F(v)ogou and vofloG(u)=(F(v)ofou).
In their presence, one has moreover the relations:

g =F(g)ons
fﬂ =&, 0G(f)
fx = (idg(x))’

8), = ld%(y) .

Proof. — To pass from d) to b), we just set 77, = (idg(y))’ for every object x of C.
One observes that for every morphism g € D(G(x), y), one has F(g) o 7, =
F(g)o idbG(x) = ¢’. Then, for every morphism u € C(x,x’), one has

FoG(u)on,=G(u) =neou.

Consequently, the morphisms 7, : x = F o G(x) define a morphism of functors
from id¢ to Fo G.

Conversely, if b) holds, we just need to check that the asserted bijection g — g
satisfies the given formulae of d). Indeed, for u € C(x’,x) andv € C(y, '),
one has

(vogoG(u))" = E(v)oE(g)o(FoG) () on = E(v)oF(g)on,ou = F(v)oghou,

which proves the second formula. The other follows.
The equivalence between datas c) and d) is proved similarly, or by considering
opposite categories.
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Let us now pass from d) to a). We already dispose of two morphisms of
functors #: idg - FoGand ¢: Go F — idp. Moreover, one has

e6(x) © G(11x) = 1k = idg(n)
and
F(ey) © 1r(y) = & = idr(y) -
Finally, let us pass from a) to d). For g € D(G(x), y), we set g’ = F(g) o 5, €
C(x,F(y));for f e C(x,F(y)), weset fi =&,0G(f) e D(G(x), y). For every
feC(x,F(y)) and every g € D(G(x), y), we then have

(fﬂ)I7 = (ey © G(f))l7 = F(sy) o(Fo G)(f) O Nx = F(ey) © NE(y) of =f

and

(&)= (F(g)ons)t =ey0(GoF)(y) o G(1y) = g0 eG(x) © G1x) = &

so that the defined maps f — f#and g — f* are bijections, inverse one of the
other. The remaining formulas follow, as in the passage from b) and ¢) to a). [

Remark (1.2.7). — Let C and D be categories and let F: D — C be a functor,
and let G,G’: C' — D be two functors which are both left adjoint to F. Then G
and G’ are isomorphic.

More precisely, let (7, ¢) and (#’, ') be adjunctions for the pairs (G, F) and
(G/, F) respectively. For every x € ob(C'), every y € ob(D), we obtain a
bijection

D(G(x),y) = C(x,F(y)) = D(G'(x), ),
given explicitly by

g~ §=¢€,0(G'oF)(g) oG (nx) = g0 &gy ° G (1x) = go bx,
where 6, = £, 0 G’ (nx) € D(G'(x), G(x)). This implies that 8, is an isomor-
phism, for every x € ob( C'). Moreover, the family 0 = (60,) is an isomorphism
of functors from G’ to G.

Similarly, if F,F': C - D and G: D — C are functors such that G is left
adjoint both to F and F’, then F and F’ are isomorphic.

Proposition (1.2.8). — Let C and D be categories and let G: C — D and
F: D — C be functors. Let (&, 1) be an adjunction for the pair (G, F).

a) The functor G is faithful if and only if n, is a monomorphism for every
object x of C;
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b) The functor G if full if and only if n, is right invertible, for every object x
of C;
c) The functor G is fully faithful if and only if n is an isomorphism of functors.

a') The functor F is faithful if and only if &, is an epimorphism for every object y
of D;

b’) The functor F if full if and only if ¢, is left invertible, for every object y of D;

c’) The functor F is fully faithful if and only if € is an isomorphism of functors.

Proof. — a) Let us assume that 7, is a monomorphism, for every object x
of C, and let us prove that G is faithful. Let x, x’ be objects of C and let u and v/’
be elements of C(x’, x) such that G(u) = G(u'). Then

fxou=(FoG)(u)ony = (FoG)(u') o = s 0,

hence u = u'. Conversely, let us assume that G is faithful and let u, u’ € C'(x’, x).
One has (7 o u)! = eg(x) © G(11x) © G(u) = G(u), and (7, o u')} = G(u').
Consequently, if eta, o u = 17, o u/, then G(u) = G(u'), hence u = v/, since G is
faithful. This proves a).

b) Let us assume that 7, is right invertible. Let x, x” be objects of C' and let
ve D(G(x"),G(x)). Let 0, € C(F o G(x),x) be such that 7, 0 0, = idp.g(x)-
Let us set u = 0, o F(v) o #,s; this is an element of C'(x', x). Moreover, #, o u =
F(v) o5, =v", so that v = (1, o u)! = G(u). This proves that G is full.

Conversely, let us assume that G is full, let x be an object of C and let us
choose a morphism 6, € C'(F o G(x), x) such that G(0,) = (idp.g(x))!. Then
(115 0 0x)t = G(0y) = (idpog(x))" s0 that 77, 0 0, = idgeg(y). This proves that 7,
is right invertible.

c) Let us assume that G is fully faithful. Let x € ob( C'); then 7, has a right
inverse 0y, by b). It follows that 7, o 6, o 17, = 7, hence 0, o 1, = idp.g (),
because 7, is a monomorphism, by a). Consequently, #, is an isomorphism.
This implies that # is an isomorphism of functors.

Conversely, let us assume that # is an isomorphism of functors. In particular,
1x is an isomorphism for every object x of C'. Then the functor G is faithful,
by a), and is full, by b); it is thus fully faithful.

The primed assertions follow from what has just been proved, by passing to
the opposite category. []
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Proposition (1.2.9). — Let C and D be categories and let G: C — D and
F: D — C be functors. Assume that (G, F) is an adjoint pair.

a) The functor F preserves limits and sends monomorphisms to monomorphisms;
b) The functor G preserves colimits and sends epimorphisms to epimorphisms.

Proof. — Let (&, 1) be an adjunction for the pair (G,F). Let Q = (V,A) be a
quiver and let D = ((y,), (g,)) be a Q-diagram in D, with limit y; let g = (g,)
be the canonical family of morphisms, where g, € D(y, y,) for every v € V.
Then E(D) = ((E(y)), (F(ga))) is a Q-diagram in C, and (E(y), (F(g.))) isa
cone on F(D). Let us show that it is a limit. Let (x, (f,)) be a cone on F(D): for
every v € V, one has f, € C(x,F(y,)); for every edge a € A with origin v and
term v/, one has f,, = F(g,) o f,. For every v € V, one has f! ¢ D(G(x), y,); for
every edge a € A with origin v and term v/, one has f}, = (F(g,) o fy)! = ga o f}.
Consequently, (G(x), (f})) is a cone on D; by definition of a limit, there exists
a unique morphism g € D(G(x), y) such that f} = g, o g for every v € V. Let
f=g"€C(x,F(y));foreveryv e V,onehas (F(g,)of)=g,0ft=g,0g=fl,
so that F(g,) o f = f,. Conversely, if f' € C(x,F(y)) satisfies F(g,) o f' = f,
for every v € V, then f} = g, o (f')!, hence (f')! = g and, finally, f’ = f. This
concludes the proof that the cone (F(y), (F(g,))) is a limit of the diagram F(D).

Let v: € D(y,y') be a monomorphism and let us prove that F(v) is a
monomorphism. Let u,u’ € C(x,F(y)) be such that F(v) o u = F(v) o .
Then v o id' oG(u) = (B(v) o u)! = v 0 id* oG(u/). Since v is a monomorphism,
we get id' oG(u) = id' oG(u'), hence uf = (u/)}, hence u = u’. This proves that
F(v) is a monomorphism, as claimed.

The other assertion follows by passing to the opposite categories. O]

(1)

1.3. Additive categories

1.3.1. — Let C be a category. A zero object in C is an object o which is both
initial and terminal. Then for every pair (X, Y) of objects in C, there exists a
unique morphism in C(X,Y) which factors through o; it is denoted by o.

()To be added: examples, (co)limits as adjoint?
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Definition (1.3.2). — Let C be a category. One says that C' is semi-additive if
the following conditions are satisfied:

a) C admits finite products and finite coproducts;

b) There exists an object of C, denoted by o, which is both initial and terminal;

c) Let (X,,X,) be a pair of objects of C, let (X, uX,, (1, j.)) be a coproduct,
let (X, x X,, (p1, p»)) and let ¢: X, uX, — X, x X, be a morphism such that
pac€ojp=idx, ifa = b, and o otherwise. Then ¢ is an isomorphism.

Let us detail the third condition a little bit. By definition of a coproduct, the
map f — (foj,, foj,)isabijection from C(X,uX,,X,;xX,)to[T;_, C(Xp, X, x
X, ). Similarly, for every b € {1,2}, the definition of a product implies that the
map g — (p, 0 g, p,o g) is abijection from C(X;,X; xX,) to [T5., C(Xp, X,).
Consquently, the map f + (pa © €0 jp)(ap)e(s,2)> IS a bijection from C(X, u
X,, X, x X,) to [12 -, C(Xp,X,). Consequently, there there exists a unique
morphism ¢ as stated, and the assertion is that ¢ is an isomorphism.

Lemma (1.3.3). — Let C be a semi-additive category. For every pair (X,,X,) of
objects of C and every pair f, g e C(X,,X,), let f + g be the unique element of
C (X,,X,) such that

X, 25 X, 0 X, L X, x X, S X, X, 25 X,

where dx, is the unique morphism whose composition with the two canonical
morphisms X, xX; - X, isidx , and 8x, is the unique morphism whose composition
with the two canonical morphisms X, — X, uX, is idx,. Then the composition law
(f,g) ~ f+gon C(X,,X,) is commutative, associative, the zero morphism is a
neutral element.

Moreover, for every triple (X,,X,,X;) of objects of C, the composition map
C(X,,X,) x C(X,,X;) > C(X,,X;) given by (f, g) — go f is bi-additive: for
f,fe C(X,,X,)and g, g’ € C(X,,X;), one has

go(f+f)=(gof)+(gof) and (g+g)of=(gof)+(g )
Proof. — To be done. ]

Definition (1.3.4). — One says that a semi-additive category C' is additive if its
semi-groups of morphisms C(X,,X,) are abelian groups.
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Example (1.3.5). — a) Let k bearing; the category of k-modules is an additive
category.

b) Let X be a topological space and let & be a sheaf of rings on X; the category
of 0-modules is an additive category.

c) The category of complex Banach spaces, with continuous linear maps for
morphisms, is an additive category.

d) The opposite category to a (semi-)additive category is again a (semi-)additive
category.

1.3.6. — Let C be an additive category. Let (X,Y) be a pair of objects of C
and let f € C(X,Y) be a morphism. An equalizer of the pair (f,0) is called a
kernel of f, and is denoted by Ker( f); a coequalizer of the pair (f,0) is called a
cokernel of f, and is denoted by Coker( f). If f is a monomorphism, then o is a
kernel of f; if f is an epimorphism, then o is a cokernel of f.

LetKer(f) beakernelof f,andleti: Ker(f) — Xbe the canonical morphism.
By definition of a kernel, the map C(Z,Ker(f)) - C(Z,X) givenby g iog
is injective. In other words, i is a monomorphism.

By passing to the opposite category, one deduces that the canonical morphism
p:Y — Coker(f) is an epimorphism.

1.4. Abelian categories

Definition (1.4.1). — One says that an additive category C' is an abelian category
if the following properties hold:

a) Every morphism has a kernel and a cokernel;
b) Every monomorphism is a kernel;
c) Every epimorphism is a cokernel.

Example (1.4.2). — a) Let k be a ring. The category of k-modules is an
abelian category. Epimorphisms are surjective morphisms, monomorphisms
are injective morphisms; kernel and cokernels coincide with the usual notions.

A theorem of Mitchell asserts that for every abelian category C, there exists a
ring k and an exact fully faithful functor of C into a category of k-modules. In
particular, kernels and cokernels are preserved by this embedding. For certain
arguments, this allows to pretend objects of C' are k-modules and play with
their “elements”
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b) Let X be a topological space and let &’ be a sheaf of rings on X. The category
of &-modules is an abelian category. Monomorphisms, resp. epimorphisms,
are the morphisms which induce injective, resp. surjective, morphisms on all
stalks. Consequently, monomorphisms are injective morphisms. However, not
every epimorphism is surjective (see exercise 3.10.1). Kernels are defined naively;
however, the cokernel of a morphism ¢ of &-modules is the sheaf associated
with the presheaf U — Coker(¢y).

c) Let A be an abelian category. The additive category C'(A) of complexes
in A is an abelian category. Kernels and cokernels are computed termwise and a
morphism of complexes f : X — Y is a monomorphism (resp. an epimorphism,
resp. an isomorphism) if and only if so is f”: X" — Y", for every integer n € Z.

d) The category of Banach spaces is not an abelian category. Indeed, in this cat-
egory, monomorphisms are the injective continuous morphisms, while kernels
are monomorphisms with closed image.

Proposition (1.4.3). — Let f : X - Y be a morphism in an abelian category C.
a) The morphism f is a monomorphism if and only if Ker(f) = o;
b) The morphism f is an epimorphism if and only Coker( f) = o;
c) The morphism f is an isomorphism if and only it is both a monomorphism
and an epimorphism.

Proof. — a) The conditions “f is a monomorphism” and “Ker(f) = 0” are
both equivalent to the statement that for every object Z, the zero morphism is
the only morphism h € C(Z,X) such that f o h = o.

b) Similarly, the conditions “f is an epimorphism” and “Coker( f) = 0” are
both equivalent to the statement that for every object Z, the zero morphism is
the only morphism g € C(Y,Z) such that go f = o.

c) If f is an isomorphism, then it is both an epimorphism and a monomor-
phism. Let us assume, conversely, that f is both an epimorphism and a monomor-
phism. Since f is a monomorphism, it is the kernel of a morphism g: Y - Z.
In particular, one has go f = 0 = o o f. Since f is an epimorphism, one has
g = o. Since f: X — Y is a kernel of o, the relation o o idy = o implies the
existence of a unique morphism 4 : Y — X such that idy = f o h. In particular,
f is right-invertible. By passing to the opposite category, one proves that f is
left-invertible. Consequently, f is an isomorphism, as was to be shown. []

Lemma (1.4.4). — Let C be an abelian category.
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a) Every monomorphism is a kernel of its cokernel;
b) Every epimorphism is a cokernel of its kernel.

Proof. — a) Leti: X — Y be a monomorphism. Let p: Y — Coker(i) be a
cokernel of i and let j: Ker(p) — Y be a kernel of p. Since g o i = o, there exists
a unique morphism u : Ker(f) - Ker(q) such that i = j o u. Let us prove that
u is an isomorphism.

By definition of an abelian category, there exists a morphism f: Y - Z
such that i is a kernel of f. Since f o i = o, there exists a (unique) mor-
phism w : Coker(i) - Z such that f =w o q.

M?V\ f/ :%W
i / . |
Ker(q) Coker(1)

Since f o j=woqo j= o0, there exists a morphism v : Ker(g) - Ker(f) such
that j = i o v. Since i and j are kernels, they are monomorphisms. Then the
relations i = jou =iovouand j=iov = jouovimply thatvou = idge(f)
and u o v = idger(q). In particular, u is an isomorphism.

The proof of assertion b) is similar, and follows from a) by passing to the
opposite category. []

Proposition (1.4.5). — Let C be an abelian category and let f: X — Y be a
morphism in C. Let i: Ker(f) — X be a kernel of f and let p: Y - Coker( f)
be a cokernel of f. Let q: X — Coker(i) be a cokernel of i and let j: Ker(p) - Y
be a kernel of p. There exists a unique morphism f : Coker(i) — Ker(f) such
that f = jo f o q, and f is an isomorphism.

A kernel of p is called an image of f and is denoted by Im( f); a cokernel of j
is called a coimage of f is denoted by Coim( f). The proposition thus says that
any morphism f induces a canonical isomorphism from its image to its coimage.
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This is represented by the following diagram:

Ker(f) — 4+ >x —7J Ly _*

I ]
Coim( f) ——;—> Im(f)

Observes that when one passes to the opposite category, kernels and cokernels

are switched, as are images and coimages.
As an intermediate step, the proof of the proposition uses a result which can
be seen as corollary.

Lemma (1.4.6). — a) There exists a unique morphism f,: X - Im(f) such
that f = jo f,.

b) For every factorization f = j' o f/, where j': T - Y is a monomorphism
and f]: X — T is a morphism, there exists a unique morphism u: Im(f) - T
such that f/ =uo fiand j = j o u.

c) The morphism f, is an epimorphism.

Proof. — a) By definition, Im(f) is a kernel of p: Y — Coker(f), so that
p o f = o. Consequently, the assertion follows from the definition of a kernel.

b) Letp’: T — Coker(j') bea cokernel of j'. Since p’o f = p’oj'o f/ = o, there
exists a unique morphism u’: Coker(f) — Coker(j') such that p’ = u’op. Then
p'oj=u'opoj=o0,so thatthere exists a unique morphism u : Ker(p) — T such
that j= j/ou. Then j/o f/ = f = f o fy = j'ou o f;; since j' is a monomorphism,
one has f/ =uo f,.

c) Lets: Ker(p) — S be a morphism such that s o f; = o0; let us prove that
s =o0. Let k: Ker(s) - Ker(p) be a kernel of s; there exists a unique morphism
fl: X - Ker(s) such that f, = ko f/. Then f = jo f=(jok)o f/. Since jo k
is a monomorphism, part b) of lemma 1.4.6 asserts that there exists a unique
morphism u : Ker(p) — Ker(s) such that f/ =uo f,and j= jo k o u. Since j is
a monomorphism, this implies that k o u = idjy ). Finally, s =sokou =0. []

Proof of proposition 1.4.5. — Since p o f = o, there exists a unique morphism
f,: X > Ker(p) such that f = jo f;; by lemma 1.4.6, f; is an epimorphism. Then
jofici= foi=o,hence f,oi = o, because jis a monomorphism. Consequently,
there exists a unique morphism f: Coker(i) - Ker(p) such that f, = f o q.
One then has f = jo f o g. If f’ is a second morphism such that f = jo f' o g,
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one has f' o g = f o g, because j is a monomorphism, hence f' = f, because g is
an epimorphism.

Since f, = f o q is an epimorphism, f is an epimorphism as well. By passing
to the opposite category, we see that f is a monomorphism. Consequently, f is
an isomorphism, as claimed. []

1.4.7. — (1957) introduced additional conditions on an abelian
category, pertaining to the existence of arbitrary limits or colimits and their
property. Let A be an abelian category. One defines the following axioms:

(AB;) The category A admits arbitray colimits (one says that it is cocomplete);
it is equivalent to the property that it admits arbitrary coproducts.

(AB,) The category A satisfies the axiom AB, and the coproduct of a family
of monomorphisms is a monomorphism; this implies that coproducts are exact.

(AB;) The category A satisfies the axiom AB, and colimits are exact: a colimit
of a family of monomorphisms is a monomorphism.

The axioms (AB}), (AB}), (AB;) are defined similarly by replacing colimits,
cocomplete, coproducts and monomorphisms by limits, complete, products and
epimorphisms; they amoint to the initial axioms in the opposite category A°.

Of course, the axiom (AB;) and its dual should have been stated with more
care: for example, assuming that U is a universe such that C' (X, Y) belongs to U,
for every pair (X, Y) of objects, one should restrict to limits or colimits defined
by quivers in U.

One says that a family (P;);q of objects of C' is generating (resp. is cogener-
ating) if, for every nonzero object X of C, there exists an index i € I such that
C(P;,X) = o (resp. C(X,P;) = 0). When the family (P;); is reduced to a
single object P, one says that P is a generator (resp. a cogenerator).

One says that an abelian category C is a Grothendieck category if it satisfies
the axiom (AB;) (existence and are exactness of colimits) and if it admits a
generator P. Then for every object X of C, there exists a set J, a family (i;) ¢
and an epimorphism f: @y P;; —> X.

Example (1.4.8). — a) Let k be a ring; the category Mod (k) is an abelian
category which satisfies the axioms (AB;), (AB,), (AB;), (AB;) and (AB}), but
does not satisfy (AB;).

Moreover, the ring k (viewed as a k-module) is a generator. Consequently, the
category Mod (k) is a Grothendieck category.
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b) Let X be a topological space and let &’ be a sheaf of rings on X. The category
Mod(0') of 0-modules on X satisfies the axioms (AB;), (AB,), (AB;), (AB;),
but not (AB}).

For every open subset, let &y be the extension by zero of the ring sheaf &y
The family (Oy)y is generating.

Definition (1.4.9). — Let C be an abelian category.

a) An object 1 of C is said to be injective if for every monomorphism j: X -Y
and every morphism f: X — 1, there exists a morphism g: Y — I such that
f=80°]

b) An object P of C is said to be projective if for every epimorphism p: X - Y
and every morphism f: P — Y, there exists a morphism g: P — X such that

f=pog

In other words, an object I is injective if and only if the left-exact functor
C (-, 1) is exact; an object P is projective if and only if the left-exact functor
C(P,-) is exact.

Theorem (1.4.10) (Grothendieck). — Let C be a Grothendieck abelian category.
For every object X of C, there exists an injective object 1 of C' and a monomorphism
f:X->L

For the proof, see ( , , théoreme 1.10.1).

When the conclusion of the theorem holds, one says that C admits enough
injectives.

(2)

1.5. Complexes in additive categories

Let A be an additive category.

(*)To be added: representability of a contravariant additive functor from an abelian category admitting a
generator to the category of abelian groups.
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1.5.1. — A complexin A is a sequence (d" : X" — X"*1), .z of morphisms in A
such that d"** o d" = o for every n € Z. These morphisms d" are called the
differentials of this complex. One generally denotes such a complex by the
letter X, remembering of the objects rather than the differentials, which may
then be denoted by dy, writing the name X of the complex as a subscript to avoid
possible confusions.

Let X and Y be complexes in A. A morphism of complexes f : X — Y is a family
f = (f")nez where, foreveryn e Z, f" € A(X",Y"), such that

d?ofn :fn-‘rl o d}f’é+1

for every n € Z. Morphisms of complexes are composed in the obvious way.
The complexes in C' form an additive category C'(A): products and coprod-
ucts are computed termwise.
One also considers finite or semi-infinite complexes involving sequences in-
dexed by an interval in Z. They amount to extending the sequence of differentials
by zero morphisms to/from zero objects.

1.5.2. — Let X be a complex in an additive category A. Let m € Z. The mth shift
of X is the complex "X defined by: (2"X)" = X"*" and d}, = (-1)"d{™"
for every n € Z. For m = 1, one simply writes XX; this is the complex obtained
by shifting X one step to the left.

If f: X - Y is a morphism of complexes in A, the morphism X" f : ¥"X —
EMmY is defined by (2™ f)" = fm*" for every n € Z.

In this way, the assignment (X — 2"X, f — X" f) gives rise to a functor X of
the category C'(A) onto itself.

One has X° = id and X™*P = ¥™ o XP for every m, p € Z. In particular, the

functors ™ are isomorphisms of categories.

1.5.3. — Let f,g: X = Y be two morphisms of complexes in an additive cate-
gory A. A homotopy with origin f and target g is a sequence 0 = (0"),,z where,
for everyn € Z, 0" € A(X",Y" ) such that,

fl’l _gi’l — d?—lo 61’1 + 9n+lod)}’é.

Let h: Y - Z be a morphism of complexes; then the family ho 8 = (h" 0 6")
is a homotopy with origin /1 o f and target h o g.

Let k : Z — X be a morphism of complexes; then the family 8 o k = (6" o k")
is a homotopy with origin f o k and target g o k.
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1.5.4. — Let X and Y be complexes in the additive category A; for every n € Z,

let f7 € A(X",Y"). We define as follows the cone of f, denoted by C: For every

n € Z, one sets C7 = Y" & X"*', and one defines a morphism dgf G > 7 by
)

o —-d§

Observe that dg;jl o dgf is given by the product of matrices

(dg-ﬁ-l fn+2 ) (dg fn+1 ) _ (O d{;ﬂf”ﬂ _fn+2d)ré+1)

o -d{?J\o -d¢" o) o)

the block-matrix (

so that Cy is a complex if and only if f is a morphism of complexes.

Let us assume that f is a morphism of complexes. The canonical morphisms
af: Y" = Ch=YreXr define a morphism of complexes as : Y — Cy. Similarly,
the canonical morphisms /3}’5*1 1Cp =Y e X - X define a morphism of
complexes B7: Cy — ZX. One has B0 af = o.

For every n € Z, let 6?, X" > YT e X = G be the canonical morphism.
One has

n-—1i n n+i1 o n _ dg_l fn 0 Y n
ac," o 07 + O dX‘( o -d;;) (idxn)+(idxn+1)dx

Consequently, the family 6 = (9?) is a homotopy with origin a s o f and target o.

Conversely, let g¢: Y — Z be a morphism of complexes and let # be a homotopy
with origin g o f and target o. Then the family (y") given, for every n € Z, by
y" = (¢" ¢") is the unique morphism of complexes y : C¢ — Zsuch thatyoas = g
andyo 0 =y.

In other words, the triple (Cy, ar, 0¢) solves the universal problem of mak-
ing as o f the origin of a homotopy 0y with target o.

For every n € Z,let 9% : Cf - Y" = (2Y)"* be the canonical morphism. One
has

di’l n+1
diy o g+ gftode, = ~df (idy: o) + (idy )( _fdgﬂ)
— (—d{} o) + (d{} fn+1) — (o fn+1)
:ZfO/J)f,

so that the family ¢ = (q);‘[) is a homotopy with origin X/ o 8+ and target o.
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1.5.5. — Let f,g: X = Y be two morphisms of complexes and let ¢ be a homo-
topy with origin f and target g. For everyn € Z, let A" : Y" & X" — Y" @ X"*!
be given by the block-matrix (!} ¢""). The family A = (1") is an isomorphism
of complexes from C; to C, which makes the diagram

X Loy -2, ¢ 2 sx
I A
X Yy 2, ¢, 1 sx
commutative.
1.5.6. — Let X,Y be complexes in an additive category A. Two morphisms

of complexes f, g: X — Y are said to be homotopic if there exists a homotopy
with origin f and target g. This is an equivalence relation, compatible with the
group structure on C'(A)(X,Y). Morphisms homotopic to o are called null
homotopic; they form a subgroup C'(A)(X,Y), of C(A)(X,Y). Define

K(A)(X,Y) = C(A)XY)/C(A)(X,Y)o.

Passing to the quotients, the composition maps in C'(A) induce composition
maps
K(AXY)xK(A)(Y,Z) > K(A)(X,Z).
These maps define a category K (A), called the homotopy category of the additive
category A.
It is an additive category. The functors X, for m € Z, extend to K (A).

1.6. Complexes in abelian categories

1.6.1. — Let us assume that A an abelian category. Let X be a complex in A.
Let n € Z. We want to define the nth cohomology object of X. When A is the
category of modules over a given ring k, this object is classically defined by
H"(X) = Ker(dg)/I(dZ™). In the abstract framework of abelian categories, a
few other descriptions are available, none of them is obviously preferable to the
other.

Since d§ o d¢' = o, the canonical monomorphism Im(d}™) - X" factors
uniquely through Ker(d"”) — X". Let H"*(X) be a cokernel of the induced
morphism ¢% : Im(d} ™) - Ker(d%).
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The consideration of the opposite category furnishes a different descrip-
tion: the canonical morphism X" — Im(dy) factors uniquely through
X" - Coker(dl™); let H"(X) be a kernel of the resulting epimorphism
vy Coker(dy™) — Im(dyg).

Im(di™) RSN Ker(dy) — H"(X)

e\ /

(1.6.1.1) Xn+1

N/

H"(X) — Coker(d!™) M, Coim(dy)

Let u: Ker(d}) — Coker(d{ ") be the composition of the two canonical
morphisms indicated on the diagram.

Since u o g% = o, the morphism ¢} factors uniquely through Ker(u). Since
the following composition of canonical monomorphisms

Im(d§ ') = Ker(u) = Ker(X" - Coker(di™)) - Im(d{™)

is the identity, these monomorphisms are isomorphisms; in particuliar, the
morphism ¢ induces an isomorphism Im(d%™) — Ker(u).

Since y% o u = o, the morphism % factors uniquely through Coker(u); one
checks as above that it induces an isomorphism Coker(u) — Coim(dZ)
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Using the canonical identification Coim(u) — Im(u), one then gets canonical
isomorphisms
Coim(u) ~ Coker(Ker(u) - Ker(dy))
~ Coker(Im(d§™) — Ker(dy))
~ Coker(X"™ — Ker(d%))
~ H"(X)
~ Im(u) ~ Ker(Coker(dy ™) — Coker(u))
~ Ker(Coker(dy ™) - Coim(dg))
~ Ker(Coker(d§ ™) - X"™)
~ H"(X)
Once identified via these isomorphisms, any of these objects will be called the
nth cohomology object of the complex X, and denoted by H"(X).
One says that the complex X is acyclic, or exact at X" if H*(X) = o. By what
precedes, this is equivalent to any of the (equivalent) conditions:
u=o0
Coim(dy™) — Ker(dZ)
X"t - Ker(dg)
Coker(dy™) — Im(d%)
Coker(di™) = X"

If the complex X is exact at X", for every n € Z, then one says that X is acyclic,
or exact.

Lemma (1.6.2). — Let A be an abelian category and let X be a complex in A;
let n € Z. With the notation of the diagram (1.6.1.1), consider the following mor-
phisms: (i) the morphism H"(X) — Coker(d§ ) deduced from the canonical mor-
phism of the diagram and the canonical isomorphism H"(X) — H*(X); (ii) the
canonical morphism Coker(d} ™) — X"*1) factors uniquely through a morphism
Coker(dy™) — Ker(d%™); (iii) the canonical morphism Ker(d3™) - H"(X).
These morphisms induce an exact sequence:

(111)

0 — H”(X) LA Coker(d§~ 1) W, Ke r(df™) — H""(X) - o.
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Proof. — Composed with d{™ on the left, and with the canonical epimorphism
X" — Coker(d}™) on the right, the morphism Coker(d}™) - X"*') becomes
equal to d{od} = o. Consequently, Since X" — Coker(d%™) is an epimorphism,
this implies that the morphism Coker(dy ™) — X"*! factors through Ker(d%™),
hence the existence of the morphism labeled (ii).

Exactness at H?(X) follows from the fact that the morphism (i), H*(X) —
Coker(dy™), is a monomorphism. Similarly, exactness at H"*1(X) follows from
the fact that the morphism (iii), Ker(d¢™) - H"*1(X), is an epimorphism.

Let us show exactness at Coker(d§ *): the kernel of the morphism (ii) coin-
cides with that of y%, because the morphism Coim(dy) - X"*! is a monomor-
phism, that is, with Im(u), that is with the image of H"(X).

Let us finally show exactness at Ker(d{™): by construction, the kernel of
the morphism (iii) is the image of d¥, which coincides with the image of the
morphims (ii). ]

1.6.3. — The cohomology objects are functorial: any morphism of complexes
f: X =Y induces morphisms of cohomology objects H"( f) : H"(X) - H"(Y)
in such a way that H"(g o f) = H"(g) o H"(f) and H"(idx) = idy»(x). These
functors are also additive.

If H"( f) is an isomorphism for every n € Z, then one says that f is a homolo-
gism, or a quasi-isomorphism. We also say that two complexes are homologous,
or quasi-isomorphic, if there exists a homologism from one to another. (This is
not an equivalence relation in general.)

Lemma (1.6.4). — Let A be an abelian category.

a) Let f,g: X = Y be morphisms of complexes in A. If f and g are homotopic,
then H"(f) = H"(g) for every n € Z.

b) Let f: X = Y be a morphism of complexes in A. If f induces an isomorphism
in the homotopy category K (A), then f is a homologism.

c) Let X be a complex in A. If the identity morphism idx is null homotopic,
then the complex X is acyclic.

Proof. — a) Let (0"),cz be a family of morphisms, where for every n, 0" €
A(X",Y"1), such that g" — f" = d{™ 0 0" + 0" o df for every n € Z. The
morphism H"(g) - H*(f) : H*(X) - H"(Y) decomposes as the sum of two
morphisms respectively induced by d™* o 6" and 0"** o d}. The first one is
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zero, because it factors through the image of d{ ™ in H"(Y), which is zero by
construction. The second one is zero as well, since d§ annihilates Ker(d%).
Consequently, H"(g) = H"(f).

b) Let g: Y - X be a morphism of complexes such that f o gand g o f are
homotopic to identity. Then H"( f) oH"(g) = id and H"(g) o H"( f) = id, hence
H"(f) is an isomorphism, for each n € Z. In other words, f is a homologism.

¢) Assume that idx is null homotopic. Then one has idy»(x) = H"(idx) =
H"(0) = o, for every n € Z. Consequently, H"(X) = o for every n, and X is
acyclic. []

1.6.5. — Let
o—>Xi>Y£>Z—>o

be an exact sequence of complexes in an abelian category A. For every n € Z,
the morphisms f" and g" give rise to an exact sequence

o—>X”£>Y”g—n>Z”—>o
in A.

Let Cf be the cone of f,let ay: Y - C;and B;: C; - XX be the canonical
morphisms, and let 6 : C; — X7'X be the canonical homotopy such that aso f =
dcf o Qf-l- 9f0 dx.

Since g o f = o, the null homotopy g o f ~ o induces a unique morphism of
complexes h: Cy — Z such that ho ay = gand h o 8¢ = o. Explicitly, af = ()
and 0 = (o1),sothath = (g0).

Lemma (1.6.6). — a) The morphisms f, az, B¢ induce a long exact sequence
of objects in A:
HB) D, pyn(xy 2, ), H"(Y) H"(ay) H"(C,) H"(Br) o (x) 2 L

b) The morphism h: C¢ — Z is a homologism.
c) The morphism f is a homologism if and only if Cy is acyclic, if and only if Z
is acyclic.

Proof. — For this proof, we shall pretend that the abelian category A is a cate-
gory of modules.
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a) Since afo f is null homotopic, one has H" (as) oH"(f) = o. Since Boas =
0, one has H"(f) o H*(as) = o. Since Zf o B/ is null homotopic, one has
H1(f) o H(By) = o

Let x € X" be such that dx(x) = o and such that H"(f)([x]) = o in H"(Y).
Let y € Y"™ be such that f(x) = dy(y); letz = (7); one has dc,(z) = 0 and
Bf(z) = x. This proves exactness at H"(X).

Let y € Y" be such that dy(y) = o and such that H" (af)([y]) = o;let z € ci

be such that () = dc,(z); write z = (i:) One has d(y') + f(x') = y and
d(x") = o, hence [y] = [f(x")] = H*(f)([x']). This proves exactness at H"(Y).

Let z € H"(Cy) be such that dc,(z) = o and H"(ff)([2]) = o in H""*(X);
write z = (7). One has d(y) + f(x) = o and d(x) = o; moreover, there exists
x'" € X" such that x = d(x"). Consequently, d(y + f(x’)) = o and

2= () - (1) = (7) - de,((2)

so that [z] = H"(as)([y + f(x")]). This proves exactness at H"(Cy).

b) Letn € Z. Let z € C% be such that d(z) = o and H"(h)([z]) = o. Let
z' € 7" be such that h(z) = dz(2'); write z = (7). Then d(y) + f(x) = o,
d(x) =oand d(z’') = g(y). Since g"*: Y"* — Z" is surjective, there exists
y' € Y such that 2/ = g(y'); then d(z’) = dz(g(»")) = g(dy(y")), so that
g(y—dy(y")) = o; consequently, there exists x € X" such that y —dy(y’) = f(x).
We thus have z = (40)+/() ) = d(( 7)), so that [z] = o. This proves that H" (h)
is injective.

Let now z € Z" be such that d(z) = o. Since g" is surjective, there exists y € Y”
such that z = g"(y), hence o = d;(g"(y)) = £"(d%(y)). Consequently, there ex-
ists x € X" such that dj(y) = f"*(x). One has f*(d}*(x)) =di(f**(x)) =
0, hence dx(x) = o since f" is injective. Letz' = ( 2, ) € C§™. One hasd(z') = o
and h(z') = g(y) = z, so that H"(h)([2']) = [z]. This proves that H*(h) is
surjective.

c) If H*(Cy) = o, the exact sequence of a) shows that H"(f) is an epimor-
phism and H"*!(f) is a monomorphism. Consequently, if C is acyclic, then
H"(f) is an isomorphism for every #, so that f is a homologism.

Conversely, if H"(f) is an epimorphism, then H"(ats) = o, while if H"(f)
is a monomorphism, then H**(f¢) = o. In particular, if f is a homologism,
then H”(ay) = o and H*(Bs) = o for every n. Then, o = Im(H"(ay)) =
Ker(H"(Bs)) = H"(Cy) for every n, so that Cy is acyclic. ]
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1.7. Exercises

Exercise (1.7.1). — Let C be the category of sets.

a) Prove monomorphisms, epimorphisms, and isomorphisms coincide respec-
tively with injective, surjective, and bijective maps.

b) Show that the empty set is the initial object, while singletons are terminal
objects.

c) Observe that every morphism to the initial object is an isomorphism, while
not every morphism from the terminal object is an isomorphism. Conclude that
the category of sets is not equivalent to its opposite category.

d) Compute equalizers, coequalizers, products and coproducts in C'. More
generally, prove that “all” limits (resp. colimits) exist in C'.

Exercise (1.7.2). — In the category of rings, let f: Z — Q be the inclusion
morphism. Show that f is both a monomorphism and an epimorphism but is
not an isomorphism.

Exercise (1.7.3). — a) Let C be a category, let I be a set and, for every i €I, let
fi € C(x;, y;) beamorphism in C. Assume that the products x = [T, x; and
y = [1iq yi existin C and let f € C(x, y) be the corresponding morphism. If
fi is a monomorphism, for every i € I, then f is a monomorphism.

b) State the analogous property for coproducts of epimorphisms.

¢) Assume that C'is an additive category. Prove that products of finite families
of epimorphisms are epimorphisms, and that coproducts of finite families of
monomorphisms are monomorphisms.

Exercise (1.7.4). — Let C be a category.

a) One says that a morphism u € C(x, y) is an extremal epimorphism if,
for every factorization u = m o v, where m is a monomorphism, then m is an
isomorphism. Prove that an extremal epimorphism is an epimorphism.

b) A morphism which is both an extremal epimorphism, and a monomor-
phism is an isomorphism.

¢) One says that a morphism u € C(x, y) is a regular epimorphism if there
exists an object t and two morphisms f, g € C(t, x) of which u is a coequalizer
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f
(thatis, a colimit of the diagram t ——= x ). Prove thata regular epimorphism
g

is an extremal epimorphism.

Exercise (1.7.5). — Let A be an abelian category satisfying both axioms (AB;)
and (AB;).
a) Let X be and let I be a set. Let (X;) ;e be the family in A where X; = X for

every i € 1. Show that the canonical morphism X(I) — X! from the coproduct of
the family (X; )¢ to its product is an isomorphism.

b) Prove that X is a zero object in A.



CHAPTER 2

TRIANGULATED CATEGORIES

2.1. Triangulated categories

Let C be an additive category endowed with an automorphism X of C' (trans-
lation).

Definition (2.1.1). — A triangle in C' is a complex T such that d7"> = £d% for
every n € Z. A morphism of triangles f : T — T’ is a morphism of complexes such
that f"+3 = X f" for every n € Z.

Concretely, a triangle only depends on three consecutive objects and mor-
phisms, and is represented as follows:

X—=Y—>7Z-—2X

the next differential being Zu : £X — XY, etc. Conversely, a sequence (u, v, w)
of three composable morphisms gives rise to a triangle if and only if v o u = o,
wov =o0and Xu ow = o. The datum of a morphism from such a triangle to a
similar triangle

XLy Lz Y vx

is equivalent to the datum of three morphisms f: X - X', g: Y - Y’ and
h:Z— 7 suchthatu'o f=gou,v og=hovandw/ oh=2Xfow.

Morphisms of triangles are composed in the obvious way, and triangles in C
form a category.

Triangles are complexes in C, hence can be shifted; observe that a shift of a
triangle is a triangle. However, to avoid confusion with the automorphism X
of C, we shall not use the letter X to indicate shifts of triangles.
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2.1.2. — Since trianglesin C are complexes, a morphism of triangles ¢ : T — T’
gives rise to a cone C,,. Let us explicit the description of this cone. Let us thus
consider a morphism of triangles, as represented by the diagram:

X 25>y —“ts7 Y ,¥X

T

X Lty Yz ¥, ¥X,

By definition, its cone is the complex

way B8 o) (CF)
Y —— Y oL——> 722X — 2X' 0 2Y.

There is also a natural notion of homotopy between morphisms of triangles. If
two morphisms of triangles F = (f, g, h) and F' = (f', ¢’, h') are homotopic, the
choice of a homotopy # = (0, ¢, y) with origin (f, g, h) and target (f’, g, h')
gives rise to a morphism of triangles A : Cg — Cp, explicitly given by the diagram

(¥ %) (4 1) (v )

CGc = XoY —Yo0Z —7Zo02X —2X'02Y
| e ey [(z9) |(2)
Cpp = Xo0Y —Yo®Z —7Z 22X — X' ®2Y

(5] (5 5,) (")

This morphism A is an isomorphism.
Finally, one says that a triangle T is contractible if idt is null homotopic.

Definition (2.1.3). — A triangulated category is an additive category C endowed
with an automorphism X and a set 7 of triangles such that the following properties
hold:

(2.1.3.1) A triangle isomorphic to a triangle in 7 belongs to 7 ;

(21.3.2) A triangleX 5> Y 5 Z 5 X in C belongs to 7 if and only if the
triangle Y —> 7 > 3X =y belongs to 7 ;

(2.1.3.3) For every object, the triangle X 9 X > 03X belongs to 7 ;

(2.1.3.4) Forevery morphism u: X — Y in C, there exists a triangle X LY
Z - XX in I;

(2135) Let X > Y > Z 5 =X and X' LN Y’ i Z L 2X' be triangles
of . Forevery f € C(X,X") and every g € C(Y,Y') such thatu'o f = gou,
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there exists a morphism h € C(Z,Z') such that (f, g, h) induces a morphism of
triangles:

X 2ty YLtz Y, 3X

whose cone belongs to 7.

Let us say that a triangle in C is a distinguished triangle if it belongs to .7,
and that a morphism of triangles is a distinguished morphism if its cone is a
distinguished triangle.

The axioms a triangulated category thus claim that triangles isomorphic to
distinguished triangles are distinguished (2.1.3.1), as well as their shifts (2.1.3.2);
they assert the existence of distinguished triangles (2.1.3.3), (2.1.3.4); they finally
allow to construct distinguished morphisms between distinguished triangles
with two prescribed arrows (2.1.3.5).

Given two morphisms of triangles which are homotopic, if one of them is
distinguished, then so is the other.

If one relaxes axiom (2.1.3.5) by only requiring the existence of a morphism #,
one gets the weaker notion of a pretriangulated category.

2.1.4. — Let (C,%,.7) be a (pre)triangulated category. Let us endow the
opposite category C° with the translation functor 2. Observe that a triangle
in C, when viewed as a complex in C°, is again a triangle, so that .7° = .7 isa
set of triangles in C.

Let us prove that (C°,X7,.7°) is a (pre)triangulated category. Ax-
ioms (2.1.3.1) and (2.1.3.2) follow formally from their analogue in C.

Let Xbe an objectin C' Shifting the distinguished triangle ¥7'X Hox, sax o
o - X in C, we obtain the distinguished triangle 27X - 0 - X “%% X. In the
opposite category, this triangle rewrites as X 9% X - 0 > 27X, Since it is
isomorphic to the triangle X i X - 0 - 27X, axiom (2.1.3.3) holds in C"°.

A similar argument shows that axioms (2.1.3.4) and (2.1.3.5) hold as well.

Example (2.1.5). — Let C be an additive category and let K ( C') be the homo-
topy category of complexes in C. We have seen how the cone of a morphism of
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complexes f : X — Y sits in a diagram

xLy%c osx,

where a o f is homotopic to o, By o ay = o and Zf o B¢ is homotopic to o.
Consequently, these diagrams give rise to triangles in the homotopy category.
We shall prove below (theorem 2.4.3) that the category K ( C'), endowed with
the triangles isomorphic to such a cone triangle, is a triangulated category.

Definition (2.1.6). — Let C be a (pre)triangulated category. An additive functor
H: C — A to an abelian category is said to be cohomological if the complex
H(T) in A is exact for every distinguished triangle T.

Let H: C - A be a cohomological functor. For every integer m € Z, set

H™ = H o ™. By definition, every distinguished triangle
X5Y5Z 53X

gives rise to a long exact sequence

H°(u) H°(v)

H°(W) H' (u)

s H(Z) 2 pox) B, goyy Y, goz) I i (xy

On the other hand, a shifting argument shows that to verify that an additive
functor is cohomological, it suffices to prove that for every distinguished triangle
as above, the complex H(X) — H(Y) — H(Z) is exact at H(Y).

Lemma (2.1.7). — Let C be a (pre)triangulated category and let A be an object
of C. The functor C(A,-): C — Ab is a cohomological functor.

Proof. — Let X 5 Y 5 Z 5 X be a distinguished triangle and let us show
that the complex

C(A,X) = C(A,Y) = C(A,2)

is exact in the middle, where u, and v, are the group morphisms deduced from
composition with u and v respectively.

First of all, we recall that v, o u, = o; indeed v, o u, maps every f € C(A,X)
tovouo f=o.

Let then f € C(A,Y) be such that v.(f) = v o f = 0. By axioms (2.1.3.3)

1d2A

and (2.1.3.2), the triangle A - o - XA —— XA is distinguished; by ax-
iom (2.1.3.2), the triangle Y oz % oeX 2 sy s distinguished. By ax-

iom (2.1.3.5), there exists a morphism h, ¢ C(ZU, 2X) making the following
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diagram

—idzA

A o TA A

|

|
lf l I lzf
Yy .7 W, yX ZEL 3y

commutative. In particular, Yu o h, = Xf, so that f = u o Z7'h, belongs to
Im(u,). O

2.2. Decent cohomological functors, and applications

Definition (2.2.1). — Let A be an abelian category satsfying the axiom (AB)):
products exist, and a product of exact sequences is exact. A cohomological functor
H: C — A is said to be decent if it respects products.

For example, for every object A € ob( C'), the functor C(A,-), from C to the
category Ab of abelian groups, is a decent cohomological functor.

Definition (2.2.2). — A triangle T in C'is said to be decent if the complex H(T)
is exact for every decent cohomological functor H.

In particular, a distinguished triangle is decent.

In this definition, we should take care about universes. In practice, we will only
use decent cohomological functors of the form C(A,-), where A is an object of
the (pre)triangulated category C. Consequently, if U is a universe containing
C(X,Y) for every X, Y € ob( C), it suffices to consider cohomological functors
with values in Aby. (Check!)

Proposition (2.2.3). — Let C be a (pre)triangulated category. Let us consider a
morphism

X %2>y —“‘t->57--",573X

bk b b

!/ 4 /

X >y Ltz Y, 3X.

of decent triangles.

a) The cone triangle of this morphism is a decent triangle.
b) If f and g are isomorphisms, then h is an isomorphism, so that this morphism
of triangles is an isomorphism.
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Proof. — a) By definition, the triangle cone of this morphism is the triangle

(¢ ¢) (%) (v 3
XeoY25YeZ 573X — 53X @Y.

Let us prove that it is decent. Let H: C' — A be a decent cohomological functor
and let us show that the induced diagram

Cooom(s)y o w(yny o oE(n A ,
H(X'®Y) ——> H(Y'®Z) H(Z' ®X) H(ZX' ©XY).

is an exact sequence in the abelian category A. Since H respects products, we
have HX' @ Y) = H(X') @ H(Y), etc,, so that this diagram is the cone of the
morphism of complexes in A obtained by applying the functor H to the initial
morphism of triangles. By assumption, these complexes are acyclic, so that the
resulting complex is acyclic as well (lemma 1.6.6; a morphism between acyclic
complexes must be a homologism!). This proves that the given morphism of
triangles is decent, as was to be shown.

b) Let A be an object of C' and let us apply the functor C'(A,-); we obtain
the diagram of abelian groups

C(A,X) 25 C(A,Y) 5 C(A,Z) 25 C(AZX) 25 C(A,ZY)

bk

C(A,X") — C(AY) — C(A,Z) — C(A,2X") 7 C(AXY)

whose two rows are exact sequences. The two left vertical morphisms are induced
by f and g, hence are isomorphisms, as well as the two right vertical morphisms,
which are induced by Z f and Zg. By the five lemma, the morphism h: Z - 7/
induces an isomorphism C(A,Z) - C(A,Z’). Since this holds for every
object A, it then follows from the Yoneda lemma that % is an isomorphism. [

Corollary (2.2.4). — Let C be a (pre)triangulated category and let u: X - 'Y
be a morphismin C. Let T: X 5> Y - Z - XX andT': X > Y - 7' -
2X be distinguished triangles. There exists a morphism of triangles of the form
(idx, idy, h); moreover, for every such morphism, the morphism h: Z — 7' is an
isomorphism.
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This corollary furnishes a kind of “uniqueness” to the axiom (2.1.3.4), in the
sense that any two triangles extending a given morphism are isomorphic. How-
ever, there is no canonical such isomorphism. This is in fact one of the defects
of the theory of triangulated categories that it does not functorially complete
morphisms into triangles.

Proof. — The existence of such a morphism of triangles follows from ax-
iom (2.1.3.5). Since a distinguished triangle is decent, proposition 2.2.3 implies
that h is an isomorphism. []

Corollary (2.2.5). — Let C be a (pre)triangulated category. Let f : X - Y be a

morphism in C. The triangle X Ly o — XX is distinguished if and only if f
is an isomorphism.

Proof. — We consider the morphism of triangles:

X 9 x o X
f
X Y o X

in which the top triangle is distinguished by construction, and in which two
out of three vertical morphisms are isomorphisms. If f is an isomorphism,
then this morphism of triangles is an isomorphism, so that the bottom triangle
is distinguished as well. Conversely, if both triangles are distinguished, then

proposition 2.2.3 (after a shift of the diagram) implies that f is an isomorphism.
O

Corollary (2.2.6). — Let us consider the following diagram of distinguished trian-
gles (in which the dashed arrows are not supposed to exist):
X —— Y —— 7 —— 33X
| | |
| | |
V ls ) W
X/ Y’ VA 2X.

Ll, V' W’

a) The following conditions are equivalent: 1) One hasv' o g o u = o; 2) There
exists f : X — X' such that u' o f = gou; 3) There exists h: Z — Z' such that
hov =v"o g; 4) There exists a morphism of triangles (f, g, h).
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b) If they hold, and if C(X,X7Z'") = o, then such morphisms f and h are
uniquely determined.

Proof. — Let us prove that 1)=>2). Applying the decent functor C (X, ) to the
bottom triangle, one obtains an exact sequence

C(X,2Z) - C(X,X) % C(XY) L C(X,Z).

Since v'o(gou) = o, there exists a morphism f € C (X, X") such that gou = u'of.
If, moreover, C (X, X7Z’) = o, there exists exactly one such morphism f.

Conversely, the existence of a morphism f: X - X’ such that u’o f = gou
implies that v/ o gou = v/ o u’ o f = o. This shows that 1) and 2) are equivalent.

The proof of the equivalence 1)<3) follows by passing to the opposite
(pre)triangulated category.

The implications 4)=2) and 4)=3) are obvious.

Finally, if 2) holds, the existence of a morphism of triangles as in 4) follows
from axiom (2.1.3.5), so that 2)=4). The proof of the implication 3)=4) is
analogous.

When these conditions hold and C(X,X7'Z’) = o, the uniqueness of the
morphisms f and / has been established during the proof of their equivalence.

[]

Corollary (2.2.7). — Let X 5 Y 5 Z 5 3X be a distinguished triangle. Assume
that C(X,X7Z) = o. Then:

a) The morphism w is the unique morphism 0 such that the triangle X = Y 2>
7% X is distinguished;

b) For every distinguished triangle of the form X = Y 7N >X, there exists
a unique morphism of triangles of the form (idx, idy, h), and it is an isomorphism.

Proposition (2.2.8). — Let C' be a (pre)triangulated category.

a) A product (resp. a coproduct) of a family of distinguished triangles is a
distinguished triangle.

b) A triangle which is a direct factor of a distinguished triangle is a distinguished
triangle.

Proof. — a) Let (X; Sy, Loz 5 2X;)ia be a family of distinguished
triangles. Assume that the products X = [[,qX;, Y = [1;q Yiand Z = [];q Z;
exist. Since X is an automorphism of the category C, it commutes with products,
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and XX is a product of the family 2X;. Let u : X - Y be the unique morphism
pY ou=u; o p¥, for every i; define v and w similarly. Then X = Y - Z = =X
is a triangle, and the claim is that this triangle is distinguished.

We first prove that it is a decent triangle. To that aim, let A be an object of C
and let us apply the cohomological functor C'(A, ) to this triangle. We get a
complex

(Z w;)

C(A, Hz 7)) —— C(A,Hxi)ﬂ

C(A, HY) C(A HZ) C(A Hzx)

which, by definition of products in a category, identifies with the product of the
complexes

Zw,

C(A,27Z) =5 C(A, X)) = C(A,Y;)) = C(A,Z) = C(A,ZX;),

for i € I. Since each of these complexes of abelian groups is exact (lemma 2.1.7),
the initial complex is exact as well.
Let us now complete the morphism u : X — Y into a distinguished triangle

/ ’
X5YS 7275 X, For every i € I, there exists a morphism h; : Z' - Z; which
gives rise to a morphism of distinguished triangles:

/ /

X ‘2ts>y——~->5>77 253X

lPT lhi lzpi(

Yi i Zi n ZXI .

U;

X

Let h: Z/ - Z = [];q Z; be the morphism (};). It fits in a morphism of decent
triangles

X —“ L,y Y,z ¥ ,5x
u v wi
X Y Z >X;.

Since two out of three morphisms are isomorphisms (they are identities!), so
is h. Consequently, the initial triangle X 5> Y 5 Z % %X is distinguished, as
was to be proved.

The case of coproducts follows by considering the opposite triangulated cate-

gory.
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b) Let T: X 5>Y 5 Z 5 3Xand T/: X' 5 Y/ 5 7/ 25 IX be two triangles
whose direct sum

LﬁlY@YﬂLilZ@ZE—ﬁL

XX >X o XX

is a distinguished triangle. Let us prove that T is a distinguished triangle.
First of all, it is decent. Indeed, for every object A € C, applying the functor
C (A, ") to the triangle T & T’ furnishes the exact sequence

(5™ )

C(A,27'Z2)e C(A,27Z) —"5 C(A,X)e C(AX) -

(" w) (")

~ "L cAY)e CAY)—15 C(AZ)e C(AZ) —

(WW’)

— C(AZX) @ C(A, ZX').
Consequently, the complex
C(A,2Z) 2% C(AX) % C(AY) S C(A,Z) 5 C(A, 2X)

is exact, which proves that the triangle T is decent.

Let us now complete the morphism u : X — Y into a distinguished triangle
X5Y5Z5 35X Leth: Z - Zand h': Z - Z' be morphisms that fit in a
morphism of distinguished triangles:

X u Y 7 7 i >X
4| [ [ [
XX — YooY — ZoZ —— XX XX .

[E R P I
Composing with the projections, we obtain a morphism of decent triangles:

v w

X —% Y 7z >X
[N R U
X *25Y Z >X

14 w

where two vertical arrows out of three are isomorphisms. Consequently, the
remaining arrow A is an isomorphism; the triangle T is isomorphic to the top
triangle, which is distinguished, hence T is a distinguished triangle. O]
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Example (2.2.9). — Let X and Y be objects of a (pre)triangulated category. The
canonical morphisms X - X@®Yand X®Y —» Y fitina triangle X - X®Y —
Y 2 EX. This triangle is distinguished.

id
Indeed, it is the direct sum of the triangles X —> X - 0 — Zx and 0 —
id
Y =5 Y — o. The first one is distinguished, by axiom (2.1.3.3). The second one

—id
is isomorphic to the triangle 0 - Y —> Y — o which is a shift of the distin-

guished triangle Y Yoo >Y, hence is distinguished by axioms (2.1.3.1)
and (2.1.3.2).

Proposition (2.2.10). — Let C' be a (pre)triangulated category.

a) A contractible triangle is distinguished.
b) A morphism between distinguished triangles which is null homotopic is

distinguished.

Proof. — a) Let T bea contractible triangle. Let us first prove that it is decent.
Let A be an object of C and let us apply the functor C'(A,-). We obtain a
complex C'(A,T) of abelian groups. Let h: T — T[-1] be a homotopy with
origin idr and target o; then C'(A, k) is a homotopy with origin id ¢,y and
target 0. Consequently, the complex C' (A, T) is exact.

Let X 5 Y 5 Z % EX be this triangle and let

X 2ty “ts7 Y5 53X
| A 0 A4
X— Y — 27— 3X

be a homotopy with origin idy and target o, so that

idy=0ou+X (woy)
idy =¢pov+uob
idz=yow+vog.
Since v o u = o, this implies
u=@ovou+uobou=uofBou=u+uoX(wouy),

sothat uo X7'(woy) =0, hence Zuo (woy) =o. Let us complete u: X - Y
into a distinguished triangle

X4y L7z Y osx
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and let us apply the cohomological functor C' (XX, -); one gets an exact sequence

C(zX,7)) 5 C(2X,2X) 24 C(5X, 2Y).

consequently, there exists ' € C'(2X,Z’) such that w o ¢/ = woy. Let A =
Vv ow+v'og:Z— 7' onehas

w'O/\:w'ow’ow-i-w'ov’O(P:wowowzw—wovoq):W
Aov=y'owov+v opov=v'-vouof=v"

Consequently, the diagram

X ——Y——72—3X
]
X ——Y— 7 — 3X

depicts a morphism of triangles. Since these triangles are decent and two out of
three vertical morphisms are isomorphisms, it is an isomorphism of triangles.
In particular, the initial triangle is distinguished.

b) Since homotopical morphisms of triangles give rise to isomorphic cones
(§2.1.2), it suffices to show that the null morphism between two distinguished
triangles

Xty ‘Ytz Y ,3¥X

[

X — > Y —— 7 — X
u v w

is a distinguished morphism. By definition, the cone of this morphism of trian-
gles is the triangle

(")

XeoY—YaoZ

(") (" su)

7' ®3X X' @Y.

It is isomorphic to the direct sum of the two triangles

XSy L7z Y 5X and Y5725 5X 2 sy,
the first one is distinguished by hypothesis, and the second one by axiom (2.1.3.2).
Thus, proposition 2.2.8 implies that this cone triangle is distinguished, as was to
be shown. O
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2.3. The octahedral axiom
Let (C, X, .7) be a triangulated category.

Definition (2.3.1). — One says that a commutative square

f

Y — Z

|k

f

Y — Z
is homotopically cartesian if there exists a morphism h: Z' — XY in C so that

g
YLilW@Z£i£LZKZZY

is a distinguished triangle.

the diagram

Observe that the composition of the first two arrows vanished, since
(rg)e(ff)=gof-fog=o,
We leave to the reader to check that if the above square is homotopically

cartesian, witnessed by a morphism 4 : Z’ - XY, then the morphism -/ shows
that the square

is homotopically cartesian as well.

Lemma (2.3.2). — a) Let
f

Y — Z

|k

fl

Y — 7
be a homotopically cartesian commutative square and let

f

Y — 7

|l

?

Y —— P
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be a commutative square in C. There exists a morphism h: Z' — P such that
hog' =y andho f' = ¢’

b) LetY,Y',Z be objects of C andlet f: Y - Z and g: Y — Y' be morphisms.
There exist an object Z' and morphisms ¢g': Z — 7 and f': Y' — Z' such that the
diagram

f

Y —Z

|

vy L,z
is a homotopically cartesian square.
c) Moreover, if Z'" is an object of C and g'"': Z - 7", f":Y" — Z' are mor-
phisms in C such that

f

Y — Z

gl l o

f

Y/ s Z/I

is homotopically cartesian, there exists an isomorphism h: Z' — Z" such that

hOf'Zf"al/ldhOgIZg".

Proof. — a) The functor Hom(-, P) is a cohomological functor on the oppo-
site triangulated category. Applying it to the distinguished triangleY - YY®Z —
Z! — XY, we obtain an exact sequence

Cc(z,p)-C(Y'&ZP) - C(Y,P).

The image of the morphism ¢’ — y"is ¢’ 0 g — y’ o f = 0. Consequently, there
exists a morphism h € C'(Z',P) such that ¢’ =ho f'andy’' = ho g

b) It suffices to complete the morphism ( _gf) :Y - Y' & Zin a distinguished
triangle.

c) This follows from the uniqueness property of corollary 2.2.4.
O]

Lemma 2.3.2 provides “homotopy push-outs” in triangulated categories; by pass-
ing to the opposite category, one deduces the following lemma which provides

“homotopy pull-backs”.
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Lemma (2.3.3). — a) Let
f

Y — Z

|k

fl

Y/ 5 Z/
be a homotopically cartesian commutative square and let

Q-7

|k

Yl L) Z/
be a commutative square in C. There exists a morphism h: Q — Y such that
foh=¢andgoh=y.
b) Let Y',Z,Z' be objects of C and let f':Y' — Z' and ¢g': Z — Z' be mor-
phisms. There exist an object Y and morphisms f:Y - Zand g: Y — Y' such
that the diagram

f

Y —Z

|

f

Y — 7

is a homotopically cartesian square.
¢) Moreover, if Y is an object of C and §: Y = Y, f: Y — Y are morphisms
in C such that
S
l¢
f/

Y
|
Yl
is homotopically cartesian, there exists an isomorphism h: Y — Y such that
foh=fandgoh=4g.

Lemma (2.3.4). — Let

X 4ty 77 2, 5X
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be a distinguished morphism of distinguished triangles. Then the triangle

(%)

Yyt g g U, g Zuew

XY

is distinguished. In particular, the square

Yy VY7

is homotopically cartesian.

Proof. — By hypothesis, the cone C of this this morphism of triangle,

(58) o 55 o sl )

XY — YoZ —— Z X —="2ZX oY,

is a distinguished triangle. Observe that the diagram

(% %) (5 %) (6 34)

XY — YoZ — ZaZX —="2Xa XY’
(29 ]] [rs e
XY — YoZ — 2XoZ —— XX XY’

%) (%3] (" s’

is commutative. Indeed,
1 o)\(w 1 ~ w'! 1y [ -w' -1

Su 1)J\o -Zu)] \Zuow' o) Suow' 1 o)’

-w' 1\ (v h ~

1 o)\o —-w]

u' g) (o g\[1

o —v] \o —v]\u

Since the vertical morphisms are isomorphisms, it is an isomorphism of triangles
from C to the bottom triangle, which is therefore distinguished. On the other
hand, the bottom triangle is the direct sum of the triangle T of interest and the
triangle X - 0 - 2X — XX. Consequently, the triangle T is a direct factor of a
distinguished triangle, hence is distinguished. ]
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Lemma (2.3.5). — Let

be a homotopically cartesian square, and let 0 : Z' — XY be such that

(%)

Y—>Y'€BZM>

7' % sy

is a distinguished triangle. Let

be a distinguished triangle. There exists a distinguished triangle

gty oy ¥ sy

such that the diagram

! 1/

4 8 4

Y Y/ yr £, 3y
O O
z vZ y” 57

h h/ hl/

is commutative. Moreover, d = g'" o h'.

45

Proof. — Letk:Z' — Y" be a morphism such that the morphism of triangles

g 4
Y(‘—”)>Y'eaz W) g0, sy
]| [eor e
Y G 7 SY

!/ "
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is a distinguished morphism (axiom (2.1.3.5)), so that its cone C is a distinguished
triangle. Let us consider the diagram:
gll 1
. i

g k
YoYeoZ "V Nyegy Q Y'e3Y > 24 SYeIY @37

o) 10e) 2 %) I3

YoY®Z —— oY ®Z —— YooY —— 2Y® XY @ XZ

(") (o) (° 2vee)

Its first line is the triangle C; its bottom line is the direct sum of the three triangles

Y >0-3Y XY
Y 5Y 50-3Y

h k Zvog”
Z—>Z'—>Y”—g>ZZ;

the vertical morphisms are isomorphisms. Let us check that is is commutative:

vo—1 —v/og h]\-v o 1
-g" —-1Y[o o 0O o o ol\fo
o o]llr o=l o o]=|1 o 0
-1 o J\v -1 -g' -k vo—1 k
1 g” 1 1 _g// 1
2g 1 o -2g|= 0 o o
-2v o 1J\o ZXv 2vogl]\ -1 o

Consequently, the bottom triangle is distinguished; in particular, the triangle

Z o I’
Z LN 7' LY yr 28 574 distinguished. Set Z"” = Y", h' = kand h" = Zv o g';

one has hov =v' o g, by hypothesis; onehas d = g" ok = g" o h’and h' o v' =
k ov' = g, by definition of k; and one has v o g” = h”” by definition of h”. This
concludes the proof of the lemma. ]
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Theorem (2.3.6) (Verdier’s “octahedral axiom”). — Let
U; V3 ws
X, =X, = Z, — 22X,
X, = X; = Z, 253X,
X, =X, > Z, = 35X,

be three distinguished triangles, where u, = u, o u,. There exist two morphisms
m,: Zy, — Z, and m;: Z, - Z, such that

m, ms Zvsow,
ZS_>ZZ_)ZI—>ZZS

is a distinguished triangle, fitting in a commutative diagram

X, ——> X, ——» 7, —2» ¥X,
T
U, Vs \L w,

X, X, Z, zX,
V1 imS

v
Z, Z,
w, Zvyow,

Zu, 2y, —Zw,
22X, — 22X, —— 2Z, —— 22X,

Proof. — By axiom (2.1.3.5) of triangulated categories (definition 2.1.3), there
exists a morphism m, : Z, - Z, fitting in a distinguished morphism of distin-
guished triangles

X, — X, —» 7, —2» ¥X,
T
u V. ‘If w
X, — X, —— Z, — XX,.
By lemma 2.3.4, the commutative square
V3
X, — Z,

X, —— 7,
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is homotopically cartesian, and the triangle

( _uvl3 ) (vom,) Zuzow,

X, —5 X, 8 Z, Z, sX,

is distinguished. Lemma 2.3.5 then furnishes a morphism m, : Z, — Z, giving
rise to a morphism of distinguished triangles

X, —— Z,

[

V3
U,
2

l<

X, A

Z1—_21

v
wy lZv3ow1

v
X, —>> Z,.

ms

This concludes the proof of the theorem. ]

Remark (2.3.7). — The name of this axiom comes from a particular way of repre-
senting its final diagram as an octahedron. Indeed, if one identifies the vertex X;
and its shift XX;, for each i, as well as the two vertices of an identity morphisms,
one gets a figure with eight triangles: four of them are the distinguished triangles,
and the four other are the commutative triangles.
The reader shall find in ( ) (1982),

( ), or in ( ) alternative representations of the diagram, which s-he
may find more appealing.

Remark (2.3.8). — Verdier’s definition of a triangulated category amounts to a
pretriangulated category satisfying the octahedral axiom (theorem 2.3.6). Con-
versely, theorem 1.8 of ( , ) proves that a triangulated category in
Verdier’s sense is a triangulated category according to definition 2.1.3.

To conclude this section, let us quote a strengthening of the octahedral axiom,
refering to ( , , prop. 1.1.11) for its proof.
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Proposition (2.3.9) (“3 x 3 lemma”). — Every commutative square

X —25Y

f| s

X 2% sy — 57 —* 35X

f g h sf
X 4y Yz v sy

f ¢ W 5f
X oy Y g M, s

f” ¢ () |

X 2, yy X, y7 X, vy

where the rows and columns are distinguished triangles, with commutative squares
except for the right bottom one which is (—1)-commutative.

2.4. The homotopy category of an additive category

2.4.1. — Let A be an additive category and let K ( A) be its homotopy cate-
gory; recall that the objects of K (A) are complexes in A, and morphisms are
homotopy classes of morphisms of complexes. It is an additive category. Let £
be the translation functor of K (A).

For every morphism f: X — Y of complexes in A, we have constructed
in §1.5.4 its cone Cy which is a complex, together with morphisms of complexes
ar: Y - Cp, Br: C; - ZX, such that af o f, froarand Zf o ay are null
homotopic. In the homotopy category K (A), this construction gives rise to a

triangle:

x Ly %sx.

We have also proved in §1.5.5 that two homotopic morphisms f, g: X — Y give
rise to isomorphic triangles.

Definition (2.4.2). — Let 7 be the set of all triangles in K (A) which are isomor-
phic to the cone triangle of a morphism of complexes.



50 CHAPTER 2. TRIANGULATED CATEGORIES

Theorem (2.4.3). — Let A be an additive category. Together with its translation
automorphism, and its set of triangles 7, the homotopy category K(A) is a
triangulated category.

Let us say that a triangle is distinguished if it belongs to .7

Proof. — 1) By definition, a triangle which is isomorphic to a distinguished
triangle is distinguished.
2) Let us consider a distinguished triangle T and let us prove that the shift of T

is distinguished as well. We may assume that T is the triangle X Lys Cr 5 ex

(where g = ay and h = f8¢), so that its shift is the triangle Y = £ hosx 2

2Y. By definition, C_, = C FOZY=YoIXaY, endowed with the differential

dY Zf 1
dC_g = (dcf -8 ) =10 —ZdX 0
o o —X2dy

(o}

Let u :( 1 ):ZX—> C_gletv = (010):C_, - XX. Observe that u is a

-3
morphism of complexes because

dy 2Zf 1 o) o)

dc,ou=|o -Zdx o 1 | =] -2Zdx |,
) o —Xdy]\-Xf SdyoXf
o o)
uo dzx = - 1 de = —ZdX
-2f Xf oXdx

andXfoXdyx = ZdyoXf,since f : X — Y is a morphism of complexes. Similarly,
dsxov = —deo(o 1 o) = (o —Xdx o),

dY Zf 1
voZdC_g:(o 1 o) o —-2dx o :(o —Xdx o),
o o —X2dy

hence v is a morphism of complexes. One has

0}
VOM:(O 1 O) 1 =1.

_Zf
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On the other hand,
0 o o 0 1 0 O
uov=\| 1 (o 1 o): o 1 o |=id-]lo o o
-2f o -Zf o= o Xf 1
Let 0: C_; —» Z7'C_, be defined by the matrix (o 0 ) One has
100
dY Zf 1 o
dc_g9+0dc_g: o —-2dx o o
o) o -2dyJ\1 o o
0] dY Zf 1
+ o} o —-Xdx o
1 o ofJ\o o —2dy
1 0 O O 0 o 1 0 O
=] o o o|l+|lo o o]l=]lo o o
->dy o o dy Zf 1 o Xf 1

=id-uow.

Consequently, u o v — id is null homotopic. This proves that u induces an isomor-

phism from Cy to C_; in the homotopy category, with inverse isomorphism v
Let us now prove that the diagram

y =%, ¢, s sx = sy
Y —— Cf — Cy —— Y

-8
is commutative. Indeed, one has

Vo g = (O 1 O)

o ~ O

0

o= (1 o) = Br.

1

We have proved that the triangle XT is isomorphic do the cone triangle of C_;
it is thus distinguished.

One proves similarly, or by considering the opposite category of C, that Z'T
is distinguished as well.
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3) Let X be a complex and let f: o - X be the unique morphism. One
has Cy = X, ay = id, and 87 = o. This leads to a distinguished triangle o - X RN
X — o. This triangle is isomorphic to the triangle 0 - X — X — o, which is
therefore distinguished. Since a shift of a distinguished triangle is distinguished,

this proves that the triangle X - X — o - 2X is distinguished.

4) For every morphism f: X — Y, the cone triangle X ER Yy C f LN 2Xis

distinguished, by definition.

5) Let us finally prove axiom (2.1.3.5): given two distinguished triangles and
a partial morphism between them, we need to show that it can be completed
into a distinguished morphism of distinguished triangles in K (A). We may
assume that the two given triangles are cone triangles, and choose representatives
in C(A). Let thus consider a diagram of complexes in A:

Bu

Xy

X —25Y C, >X
fl lg r lzf
4
Xy Mo, B s

where u, v/, f, g are morphisms of complexes such that g o u is homotopic to
u'of;let0: X - Z1Y’ be a homotopy such that gou —u’o f = d0 + 0d. Let us
show the existence of a morphism h: Y @ XX — Y’ ® XX’ such that the triangle

(% %)

' B xf
u' g
X’@YMY’@(Y@ZX) (Y’@ZX’)@ZX(O_Z”) X'eoXY

is distinguished. We set h = (‘g 22*}9 ) Then

A

Sfof-Boh=2f(o 1)-(o 1)(<§ zz—}e):(o 2f)-(o Zf)=o,

so that the preceding diagram is indeed a morphism of distinguished triangles.
To prove that its cone is a distinguished morphism, we shall show that there
exists morphisms of complexes ¢ and vy, as represented by the diagram below,
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that give rise to isomorphisms, inverse one of the other:

u'g 1g 0
(53) 38 (2:4)
XY 25YoYdIX 22 YVeIX oIX —2274, X' XY

| | ’[]7 |

XoY —YoYo2X — YoYoZXe2X'0XY — X' ®&2Y

00010

u-g é(l)g 0O0O0O01
0 —1 001
0 o 000
00O
Set

(1 o 0\

o0 o 1 0 0 0O

p=|lo o -1| and yw=|g o o 1 0

o1 f 0 f -1 00
\o 0 -uj

Write A, B, C for the matrices of the first row, and A’, B/, C’ for those of the
second row. One has

/

vA'=A, B9o=B, wog=id.

Moreover,
(1 ¢ 0 0 o) (0 g 00 0)
O 0 O O -1 00 O
pog= 010 =id+|o o o o o
0O 0010 O 0 00 O
\oouoo) \o uo—1)
Let
/o 0O 0 O o\
0O 00 OO
H=]o o0 0 0 0o|: Y®Y®e:XXeXX XY -2 YaeX'YoXaeX aY.
0O 00 0O
\o 1 0 O o)
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The differential of the cone Y @ Y ® XX @ ZX' @ ZX is given by

(d o o u g)

od u o -1
o-d o o],
o o -d o
1 0 O —d}

\ O
and one checks that SH+HJ = poy—id. Consquently, ¢ and y are isomorphisms
in the homotopy category, inverse one of the other. Consequently, the first row
is isomorphic to the bottom row, which is a cone, hence it is is a cone.

This concludes the proof of the theorem. ]

2.5. Localization

Definition (2.5.1). — Let C, D be triangulated categories. A functor F: C - D
is called a triangulated functor if it is additive, commutes with translations, and if
it maps a distinguished triangle in C' to a distinguished triangle in D.

2.5.2. — Let C be a triangulated category. A subcategory D of C is called a
triangulated subcategory if the following properties hold:

(i) Every object of C' which is isomorphic to an object of D belongs to D;

(ii) For every objects X,Y of D, one has D(X,Y) = C(X,Y);

(iii) The subcategory D is stable under the translation functor of C' and under
finite coproducts;

(iv) For every morphism f: X — Y in D, there exists a distinguished triangle

XLYgziZXin C, and Z is an object of D.

These axioms imply that D is a triangulated category when endowed with the
restriction of the translation functor X and the set of triangles of C' whose
vertices belong to D, and that the inclusion functor is a fully faithful triangulated
functor.

Moreover, in a distinguished triangle X - Y — Z — XX, if two objects out
of three belong to D, then so does the third one. This holds by hypothesis if X
and Y belong to D, and the two other cases follow by considering translated
triangles.
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The triangulated subcategory D is said to be thick if for every objects Y, Y’
of C such that Y @ Y’ is an object of D, then Y, Y’ € ob(D).

Lemma (2.5.3). — Let F: C — D be a triangulated functor. Let Ker(F) be the
full subcategory of C whose objects are the objects X € ob( C') such that F(X) ~ o.
Then Ker(F) is a thick triangulated subcategory.

Proof. — a) Let X € ob(Ker(F)); then F(X) ~ o, hence F(£X) = Z(F(X)) ~
0, so that £X € ob(Ker(F)). One proves similarly that if X € ob(Ker(F)), then
>7X € ob(Ker(F)) too.

b) Let X,Y € ob(C') be such that X ~ Y; if F(X) ~ o, then F(Y) ~ F(X) ~ 03

c) LetY,Y eob(C);if Y® Y € Ker(F), theno~F(Y® Y') ~F(Y) @ F(Y'),
hence F(Y) ~ o and Y € Ker(F);

d) Let X - Y - Z - ZX be a distinguished triangle in C; assume that
X,Y € ob(Ker(F)), so that F(X) ~ F(Y) ~ o; theno - 0 - F(Z) - oisa
distinguished triangle in D, so that F(Z) ~ o, hence Z € ob(Ker(F)). O]

The following theorem asserts that every thick triangulated subcategory ap-
pears in this way.

Theorem (2.5.4) (Verdier). — Let C be a triangulated category and let N be
a triangulated subcategory of C. There exist a triangulated category D and a
triangulated functor F: C — D such that:

a) N c Ker(F);

b) If¥': C — D' is a triangulated functor such that N c Ker(F'), there exists
a unique triangulated functor G: D — D’ such that F' = Go F.

Moreover, Ker(F) is the smallest thick triangulated subcategory of C contain-
ing N.

The proof of the theorem will occupy the rest of the section. We consider
throughout a triangulated category C' and a triangulated subcategory V.

Definition (2.5.5). — Onesays that amorphism f : X - Y in C is an isomorphism

(mod NN ) if there exists a distinguished triangle X LY 75 35X in C such
that Z € ob(INV).

By corollary 2.2.4, this implies that Z € ob(N') for every such distinguished
triangle.
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Lemma (2.5.6). — a) If a morphism in C' is an isomorphism, then it is an
isomorphism (mod N );

b) Let f: X = Y and g: Y — Z be morphisms in C; if two morphisms among
f, g and g o f are isomorphisms (mod N ), then so is the third one;

c) Let f: X > Y be a morphism in C. Then f is an isomorphism (mod N ) if
and only if 2 f is an isomorphism (mod N ).

As a consequence, there exists a unique subcategory S of C whose set of
morphisms is the set of isomorphisms (mod IN). Its set of objects is the set of
objects of C.

Proof. — a) Indeed, if f is an isomorphism, then the triangle X Lysoos
>X is distinguished, and o € N.
b) Let us consider an octahedral diagram

X Y U sX

]| g |(

X &, 7 v sX
We—— W

SX Y SU $2X.

By definition, f, resp. g, resp. g o f, is an isomorphism (mod IV) if and only if
U, resp. W, resp. V, is an object of IN. Since NN is a triangulated subgcategory
of N, if, in the distinguished triangle U - V - W — XU, two objects out of
three belong to IV, then so does the third one. This implies the claim.

c) Let us assume that f is an isomorphism (mod N') and let X Ly&zh

XX be a distinguished triangle, where Z € ob(IN). Translating this triangle
-y -3 _
three times, one obtains a distinguished triangle ¥X sy 2wy 22X,

) > -
which is isomorphic to the triangle >X sy 2 57 2 52X Since 37 is

an object of N, this shows that X g is an isomorphism (mod N). The other
direction is analogous. ]
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2.5.7. — Let X, Y be objects of C. Let D(X,Y) be the set of triples (Z, f, g)
where Z € ob(C), f € S(Z,X) is an isomorphism (mod N) and g€ C(Z,Y);
we represent such a triple by the diagram

X‘f/ZYY

Let ~ be the relation in D(X,Y) defined as follows: (Z’, f', ¢") ~ (Z", f", g")
if there exists a triple (Z, f,g) € D(X,Y) and isomorphisms (mod N) u' €
S(Z,Z")andu" € S(Z,Z") suchthat f = f'ou’ = f"ou""and g = g'ou’ = g"ou’".
We represent this by the diagram:

Z/

Lemma (2.5.8). — a) Let

Yy Y > 7

q |

YIL)ZI

be a homotopically cartesian square. Then v € mor(S) if and only if v/ € mor(S);
and g € mor(S) if and only if h € mor(S).

b) The relation ~ in D(X,Y) is an equivalence relation.

c) Let (W, f,4) € D(X,Y) and (W,, f,, g,) € D(Y, Z); there exists a triple
(W, f, g) € D(W,, W,) such that the square

w2, w,
fl lfz
W, _8 Ly

is commutative; for such (W, f, g), the triple (W, f,o f, g,0 g) belongs to D(X, Z)
and its equivalence class of only depends on the equivalence classes of the triples
(Wh _fl) gl) and (Wz) f2> gz)
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Proof. — a) With the notation of lemma 2.3.5, the morphism g is an isomor-
phism (mod N) if and only if Y’ € ob(N), if and only if 4 is an isomorphism
(mod IN). The other assertion follows by symmetry.

b) It is obvious that the given relation is reflexive and symmetric; let us es-
tablish that it is transitive. Let (Z, f, ), (Z', f', ¢'), (Z", f", g") be elements
of D(X,Y) such that (Z, f,g) ~ (Z', f',¢') and (Z', f', ¢') ~ (Z", ", g"); by
definition, there exist two diagrams

v 7!
X W y and x W Y
X“’l % f\l 4
7! 7"

as above, where u, u’, v/, v" are isomorphisms (mod IV ). By lemma 2.3.3, there
exists an object W” and morphisms w € C(W"”, W) and w’ ¢ C(W", W') that
give rise to a homotopically cartesian square

W//L)W

b

W —Y s 7.
By a), the morphisms w and w’ belong to mor(.S). Consequently, the diagram
4

I

X e— W' —— Y

3
f/l tz g/l

ZII

uow

proves that (Z, f, g) ~ (Z", f", g"), as was to be shown.

It then follows from the definition of ~ that it is the equivalence relation gen-
erated by the relation given by (Z, f, g) ~ (Z/, f', ¢') if there exists a morphism
ueS(Z',Z)suchthat f'= fouand g’ = gou.
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c) Bylemma 2.3.3, there exists a homotopically cartesian commutative square:

w2 w,

fl |

w, —& v,

By a), the morphism f is an isomorphism (mod IN), so that (W, f,g) «
D(W,, W,). This proves that D(W,, W,) is not empty.

Let (W, f, g) be any element of D(W,, W,); observe that f, o f € S(W,X),
so that (W, f, o f, g, o g) belongs to D(X, Z). Let us now show that for every
such triple (W, f, g), the equivalence class of (W, f, o f, g, o g) modulo ~ only
depends on the equivalence classes of (W, f,, ) and (W,, f5, £,)-

More generally, let (W', f/, ¢g/) e D(X,Y) and (W., f], g%) € D(Y, Z) be equiv-
alent to (W, f,, £,) and (W,, f,, g,) respectively. Let us choose (W, f, g’) €
D(W!, W’) such that g/ o f’ = f! o ¢’ and let us prove that the elements (W', f/ o
f',glog")and (W, fio f, g, 0 g) of D(X, Z) are equivalent. By the definition of
the equivalence relation ~, we may assume that there exists u, € S(W/, W,) and
u, € S(W,,W,) such that f, o u, = f/ and g o u, = g/ on the one side, and that
faou, = f/and g, o u, = g} on the other side.

By lemma 2.3.3, there exists a morphism 4 : W — W such that foh =u, o f’
and go h = u, o g, so that the following diagram is commutative:

g
! !
w '
“h o\ 8
s g g
f W — W, =57
f fa

Recall that f, f', u, are isomorphisms (mod V). By lemma 2.5.6, b), u, o f’ is an
isomorphism (mod V'), so that f o h is an isomorphism (mod N). Applying
lemma 2.5.6, b), again, we conclude that & is an isomorphism (mod V).
Consequently, (W, f, o f, g, 0 g) is equivalent to (W', fio fo h,g, 0 goh)
which is equal to (W, f/ o f', gl o g"). O
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Proposition (2.5.9). — a) There exists a unique category D such that ob(D) =
ob(C), D(X,Y) =D(X,Y)/~ for every objects X, Y, and such that the composi-
tion of the classes of triples (W, f,,€) € D(X,Y) and (W,, f,,g,) e D(Y,Z) is
the class of a triple (W, fio f, g,0g) where (W, f, ) is any element of D(W,, W,)
suchthat g o f = f,og.

b) There exists a unique functor F: C' — D such that for every morphism
f:X = Y in C, the morphism F(f) is the equivalence class of the triple
(X, idx, f).

c) For every morphism f € S(X,Y), B(f) is an isomorphism in D, and its in-
verse is the class of the triple (X, f,idx). Moreover, for every triple o = (W, f, g) €
D(X,Y), one has F([¢]) = F(g) o F(f)™

d) Let D' be a category, let F': C — D' be a functor such that ¥'(f) is in-
vertible, for every morphism f € mor(S). Then there exists a unique functor
G: D — D'suchthat F' = GoF.

Proof. — a) The set of objects, the set of morphisms and the composition law
are prescribed; it thus remains to prove that the composition law is associative
and the existence of neutral elements at each object.

Let X, Y, Z, T be objects of C,letu e D(X,Y),v e D(Y,Z) and w e D(Z, T);
write [u] for the class of u in D(X,Y), etc. We build objects P, Q, R as depicted
by the diagram, all of whose vertical arrows are isomorphisms (mod IV ):

IR
|

By construction, [v] o [u] is the class of the triple (P,P - X,P - Z), hence
[w] o ([v] o [u]) is the class of the triple (R,R = X,R — T). Similarly, [w] o [v]
is the class of the triple (Q,Q - Y, Q — T), hence ([w] o [v]) o [u] is the class
of the triple (R,R - X, R — T). The composition law is thus associative.
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Let us show that the class ex of the triple (X, idx, idx) is an identity at X. Let
¢ = (W, f,g) e D(X,Y). By construction, the diagram

W—Ww .Y
fl s

X —— X

X

shows that the composition [¢]o[ex] is represented by ¢, so that [@]o[ex] = [¢].
One proves similarly that [ey] o [¢] = [¢]-

b) For f € C(X,Y), the origin of F(f) is X, and the target of F(f) is Y.
Consequently, there exists at most one such functor, and the map on objects has
to be the identity.

By construction, F(idx) = ex. Let f € C(X,Y) and g € C (Y, Z); the diagram

X 1.y -2,z
i
}]i{

and the definition of the composition law show that F(g o f) = F(g) o F(f).
Consequently, F is a functor.
c) Let f € S(X,Y); let ¢ be the class of (X, f,idx). The diagram
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proves that F(f) o [¢] is represented by (X, f, f) and that (X, f, f) is equivalent
to (Y,idy,idy). Consequently, F(f) o [¢] = ey. One proves similarly that

[l o F(f) = ex.
Finally, if ¢ = (W, f,g) € D(X,Y), the diagram

W—Ww .Y
W — W

f|

X

shows that F(g) o F(f)™" is represented by (W, f, ¢), hence [¢] = F(g) o F(f)™.

d) Necessarily, G(X) = F/(X) for every object X of C. Moreover, for every
triple ¢ = (W, f, g), one has [¢] = F(g) o F(f) ™ so that necessarily, G([¢]) =
F'(g)™ o F'(f). It remains to show that these formulae define a functor G such
that GoF = F'.

Let ¢ = (W, f,g) and (W', f’, ¢') be equivalent triples; let us show that
F'(g)oF(f)™*=F(g')oF(f')". By the definition of the equivalence relation
on D(X,Y), we may assume that there exists h € S(W, W’) such that f = f'o h
and g = g’ o h. Then

F'(g) = F'(g')oF (k) = F'(g")oF'(f') "oF'(f')oF (k) = F'(g')oF'(f') "oF'(f),
hence F'(g) o F/(f)™ = F'(g’) o F'(f')™*. Consequently, G is well defined. One
has F' = G o F by construction.

To prove that G is a functor, we need to check that it maps unit elements to
unit elements, and that it is compatible with composition. Since ex = F(idx),

one has G(ex) = F/(idx) = idp(x). Let then ¢ = (W,, f;,£) € D(X,Y) and
v=(W, f,,2)eD(Y,Z);let (W, f,g) e D(W,,W,) besuch that g,o f = f,o0g.
By definition, [y] o [¢] is the class of the triple (W, f, o f, g, o ¢). Consequently,
G([y]elo]) = G(I(W, fio f. 8.0 8)])

=F(g08)oF(fiof)™

=F(g) o F'(f2) " o F(f) o F(g) o F(f) " o F(f1)™

=G([y]) o F(faog) o F'(f) o F(f)™

= G([y]) o F'(g) o F'(f)™ = G([y]) o G([9]),
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hence G is a functor.
This concludes the proof of the proposition. O]

Remark (2.5.10). — The universal property stated in part d) of proposition 2.5.9
is preserved by passing to the opposite categories, so that the category D° is
canonically isomorphic to the category obtained by this construction by starting
from C° and its triangulated subcategory IN°.

Proposition (2.5.11). — a) Let f,g: X = Y be morphisms in C. The following
conditions are equivalent:
(i) B(f) =F(g);
(ii) There exist an isomorphism h (mod N ) such that f o h = g o h;
(iii) There exists an isomorphism h (mod N ) such thatho f=ho g;
(iv) The morphism f — g factors through an object of N .

b) Let f: X — Y be a morphism in C'. The following conditions are equivalent:
(i) F(f) is an isomorphism;
(ii) There exists morphisms g: W — Xand h: Y — Z such that f o g and
ho f are isomorphisms (mod N );

(iii) For every distinguished triangle X LY 575 5Xin C, there exists
an object Z' € C such thatZ & Z' € N;

(iv) There exists a distinguished triangle X EN Y - Z - 2Xin C and an
objectZ' € C suchthatZ&7Z' ¢ N.

Proof. — a) (i)=(ii). By hypothesis, the triples (X, idx, f) and (X, idx, g) in
D(X,Y) are equivalent; there exist a triple (W, ', ¢’) in D(X, Y) and morphisms
ue S(W,X)andve S(W,Y)suchthatu = f'=vand fou=g¢'"=gov. In
particular, the morphism f’ is an isomorphism (mod IV).

The implication (i)=(iii) follows from the same argument by passing to the
opposite category.

The implications (ii)=-(i) and (iii)=>(i) hold, because F(#) is an isomorphism.

Let us prove that (ii)=(iv). Let h : W — X be an isomorphism (mod ') such
that f o h = g o h; by definition of S, we may complete 4 into a distinguished

triangle W % X 5 N > W, where N € N. Let us apply the cohomological
functor C'(-,Y) on C°: this gives an exact sequence

cNY) S cx, )5S cw,Y).
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By assumption, h*(f-g) = (f—g)oh = o; consequently, there exists a morphism
j: N = Y such that f — g = j o h: the morphism f — g factors through an object
of N.

Conversely, assume that (iv) holds and let us consider an object N of N and a
factorization f — g = vou,whereu ¢ C(X, N)andv € C(N,Y). There exists a
distinguished triangle X - N — W 5 EX, hence, by translation, a distinguished
triangle X7'W WX SN s W, Consequently, Z7'w ¢ S(Z7W,X).
Moreover, (f — g) o 2w = v o u o Zw = o. This proves (ii).

b) (i)=(ii). Let (W, s, g) € D(Y, X) be a triple whose equivalence class is an
inverse of F( f). By definition of the composition, (W, s, f o g) is equivalent
to (Y, idy, idy). Consequently, there exists a triple (Z, h, k) and isomorphisms
(mod N), u:Z - Wandv:Z - Y,suchthatsou = h, fogou =k,
h =idyov = vand k = idyov = v. Then, h = k = v and u are isomorphisms
(mod N)and (fog)ou=k,sothat f o gisanisomorphism (mod V). The
other part of (ii) follows by passing to the opposite category.

(ii))=(i). These assumptions imply that F(f) is left-invertible and right-
invertible; consequently, F( f) is invertible.

(ii)=(iii). Let h: Y — T be such that k o f is an isomorphism (mod ). By
the implication (ii)=(i), F(f) is an isomorphism, as well as F(4 o f), so that
F(h) is an isomorphism as well. The commutative diagram

f

X Y - Z >X
hofl l(ﬁ) ]' lzhozf
T2 Tez 1.7 >T,

(o) (01) °

corresponds to a morphism of distinguished triangles; since its bottom row is
a contractible triangle, this morphism is distinguished (proposition 2.2.10, b)),
hence the commutative square

Xx —L .y
hof )
T — ToZ

(o)

is homotopically cartesian (lemma 2.3.4).
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Since h o f is an isomorphism (mod N), so is (/). Let then
p:(é)'T-)T@Z and q:(lo):TeaZ%T'

One has
ho o
(1) of=(1f)=(")=po(hof).
Since F(f), F((")) and F(h o f) are isomorphisms in D, this shows that F(p)
is an isomorphism in D. One has g o p = idr, so that F(q) is the left-inverse
of F(p). Consequently, it is also its right-inverse and the image of po g = (&3
by F coincides with that of id.

By a), there exists an isomorphism (mod N),§ = (}) : W - T @ Z, such that
(99) 03§ =o0. Consequently, t = 0. Let W = T — N - W be a distinguished
triangle; its coproduct with the distinguished triangle o0 — Z — Z — o is the
distinguished triangle

WMTEBZeNEBZ»ZW,
so that N @ Z is an object of IV, as was to be shown.

The implication (iii)=(iv) is obvious since there exists a distinguished triangle
of the formXL Y- Z- 32X

Let us finally prove that (iv)=(ii). Consider a distinguished triangle X L Y -
Z — ¥X. Since 0 - Z' = 7' — o is a distinguished triangle, the triangle

()
X—->YoZ -Za07Z - 3X
is distinguished. Since Z & Z’ is an object of N, by assumption, the morphism
(/) : X > Y®Z is an isomorphism (mod N).Let g=(3) : X > Y& Z'. One
has ({; ) = g o f, which proves the first part of (ii). The second one is proved

analogously.
O

Corollary (2.5.12). — Let X be an object of C. The object F(X) is isomorphic to o
if and only if there exists an object Y of C such that X &Y € ob(INV).

Proof. — Apply part b) of the proposition to the zero morphism f € C(o,X).
Then F(X) ~ o if and only if F( f) is an isomorphism. Given the distinguished
triangle o - X - X — o, the corollary follows from the equivalence (i)« (iii).

[l
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Proposition (2.5.13). — The category D is an additive category and the functor F
is an additive functor.

Proof. — a) Let us show that o is both an initial and a terminal object in D.
We thus need to show that for every object X of C, the sets D(X, 0) and D(o, X)
have exactly one equivalence class.
Let (V, f,£),(V', f',g') e D(X, 0); since o is a terminal object in C, one has
g=g" =o.Let
W ——V

‘| s

\% 5 X
be an homotopically cartesian square (lemma 2.3.3). Since f and f’ are iso-
morphisms (mod N), so are u and u’ (lemma 2.5.8). The triple (W, f o u, 0)
and the morphisms u, u’ imply that (V, f, g) ~ (V’, f', g’), as was to be shown.
Consequently, o is a terminal object in D. By considering the opposite category,
o is an initial object in D.

b) LetX,Y be objects of C, and let us show that X@Y is a product of X and Y in
the category D. Leti: X - X®Y,j: Y - X@Y,p: X0oY - Xandgq: XY - Y
be the canonical morphisms. Given an object P and two morphisms ¢: P - X
and y: P - Y in D, we need to show that there exists a unique morphism
6:P - X @Y such that F(p) o § = ¢ and F(q) o 0 = y. The morphisms
@,  are represented by triples (W, f, ¢) € D(P,X) and (W', f',h) € D(P,Y).
Considering a homotopically cartesian square

WII 5 WI

b

W -—P

we reduce to the case where W = W/ and f = f'. Letk = (‘Z) and let 0 ¢
D(P,X @ Y) be the class of the triple (W, f, k). One has F(p) o 8 = ¢ and
F(q)o 0 =vy.Let0' ¢ D(P,X®Y) beamorphism such that F(p) o 6’ = ¢ and
F(q) o 6" = y. Up to replacing W, we may assume that 0’ is represented by a
triple of the form (W, f, k"), where k' = (ﬁ: ) Then (W, f, g) and (W, f, g') are
equivalent, so that, in particular, F(g) = F(g’); by proposition 2.5.11, a), there
exists an isomorphism (mod N), u: U - W, such that g o u = ¢’ o u. Similarly,
there exists an isomorphism (mod N), v: V — W, such that gov = g’ o v.
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Considering a homotopy pull-back of u and v, we may assume that U = V and
u =v. Then k o u = k" o u, hence F(k) = F(k').

Similarly, one proves that X @ Y is a product.

c) By the two preceding paragraphs, the category D is semi-additive, and the
functor F is additive. It remains to prove that every morphism ¢ € D(X,Y) has
an opposite. Let (W, f, g) be a triple representing ¢ and let ¢’ = [(W, f,-g)].
One checks that ¢ + ¢’ = [(W, f,0)] = o. This concludes the proof that the
category D is additive. ]

2.5.14. — If f is an isomorphism (mod IN), then so are X f and 7' f; conse-
quently, there exists unique endofunctors of D, stil denoted by X and X7, such
that > oF=FoXand X 'oF=Fo X7 Onehas X o X0 = F =idp oF, so that
Y o X' = idp; similarly, 7' o ¥ = idp. In particular, X is an automorphism of
the category D.

Lemma (2.5.15). — Any diagram of distinguished triangles in C

X “*t>y ‘Y7z " 55X

R

4 ! !

X ‘tsy YLtz Y, 3X

where f, g are isomorphisms (mod IN') can be extended to a morphism of triangles,
where h is an isomorphism (mod N ).

Proof. — Let us complete the morphism u' o f: X — Y’ to a distinguished

/ ” ”
v

triangle X e, Y’ 5 77 25 3X. We then decompose the given diagram as the
composition of two diagrams of distinguished triangles:

X “*t>y ‘Y,z Y ,3X
|
[ TR .
X Ly g sy
|
poo L
X Yy Y sy
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Starting with the first two triangles, let us now apply the octahedral axiom:

X 5>y ‘s> 7 Y ,53X
|
l| e
X Ly v g sX
:
!
N ——N
:
|
v
ZX >u Y >y Z 2w ZZX

Since g is an isomorphism (mod IV ), the object N belongs to IV; consequently,
h" is an isomorphism (mod INV') as well.

We then apply the octahedral axiom in the opposite category to the last two
triangles, after having shifted them to the left:

! /

soyr 2V sy D2 oWy

|
|
J
N/ N
i
" A —w" _Zu’ozf
Y’ 7z X £ vy
| vy |
! ¥ ! A
Y — ¥V Ly W L yxr 22y

Again, since the morphism X f is an isomorphism (mod IV ), the object N’
belongs to N, so that k' is an isomorphism (mod V). Finally, we may let
h = h' o h"; it is an isomorphism (mod V). O

Theorem (2.5.16). — Let .7 be the set of triangles in D which are isomorphic to the
image under F of a distinguished triangle of C. The category D is a triangulated
category, when endowed with its endofunctor X and the set 7 of triangles, and
the functor F: C' — D is a triangulated functor.

Let us remark that the given set of distinguished triangles in D is the small-
est possible one for which F is a triangulated functor. Indeed, this condition
implies that the image of a distinguished triangle is again distinguished, and
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axiom (2.1.3.1) of a triangulated category imposes that the triangles in .7 be
distinguished.

Proof. — 1) By construction, a triangle which is isomorphic to a distin-
guished triangle is distinguished.

2) It follows from the definition and the analogous property for the triangu-
lated category C thatif T is a triangle in D, then the shift of T is distinguished
if and only if T is distinguished.

3) For every object X, the triangle X - X - o — XX in D is the image
under F of the “same” triangle in C', hence is distinguished.

4) Let ¢ : X — Y beamorphism in D; let it be represented by a triple (W, s, f),

where s is an isomorphism (mod V). Let W Ly 5 7% sWbe a distin-

guished triangle in C. The diagram in D

W E(f) % F(g) 7 E(h) SW
1R R R,
X 9 Y F(g) ZZF(s)oF(h)ZX

shows that the bottom triangle is distinguished.
5) Let us consider a partial diagram of distinguished triangles in D:

X 25>y ——~Ls7-",3X

E g

/

X — Y —— 7 2 3X
u 1%

and let us show that there exists a morphism h: Z — Z' in D that gives rise to a
distinguished morphism of distinguished triangles.

We may assume that both horizontal triangles are images by F of distinguished
triangles in C.

Let us show that the leftmost commutative square is isomorphic to the image of
a commutative square in C'. Let (U, s,,u,) e D(X,Y) and (V, t,4) € D(Y,Y')
be representatives of u and g. Let (W, t,,u,) € D(U, V) be a triple built from
a homotopy pull-back of u, and ¢,. Similarly, let (U’, ¢/, f;) € D(X,X’) and
(V',s!,ul) e D(X',Y’) be representatives of f and g’. Let (W', s., f,) be a triple
built from a homotopy pull-back of f, and s!. Let finally (P, s;, t;) € D(W, W’) be
a triple built from a homotopy pull-back of ¢ o s} and s, o t,. These constructions
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are summarized by the diagrams:

WLy Sy WL vy

3 | q Js P . w
U_—“,y UL x ssl lslotz
s 4 w1, X

X X

Moreover, t,, s/, s, and t; are isomorphisms (mod IV ).

Let us complete u, o t, : P — V into a distinguished triangle P - V - Q — 2P
in C; let us complete u]: V' — Y’ into a distinguished triangle V' - Y’ - Q' —
2V’ in C. This furnishes the diagram of distinguished triangles in C"

X *“*t>y—‘tsz7z -2 ,53X

A
s t r : s
|
P A\ Q 2P
[
s ¢ P zf
v
V — Y/ Ql AV
s’ '[ i v s’
, v
u

Xy Vg Y vxe

where s, t,s' are morphisms in S such that f = F(s’) o F(f’) o F(s)™ and
¢ = F(g’) o F(t)™. Let us choose a morphism h’: Q — Q' that gives rise to a
distinguished morphism of distinguished triangles in C'. By lemma 2.5.15, there
exist morphisms 7: Q - Zand r': Q' — Z' in § that give rise to isomorphisms
of triangles in D. The morphism & = F(r')oF(h')oF(r)™: Z - Z'in D induces
a distinguished isomorphism of distinguished triangles.

This shows that the category D satisfies the five axioms of a triangulated
category. By construction, the functor F is triangulated. ]

Proof of theorem 2.5.4. — We have constructed a triangulated category D and a
triangulated functor F: C' — D such that N c Ker(F). Letnow F': C - D'be
any triangulated functor to a triangulated category D’ be such that N c Ker(F).
Let f: X — Y be an isomorphism (mod IN) and let X Ly sz sx
be a distinguished triangle in C; by definition, Z is an object of N. Then
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F/(X) LACIA F/(Y) - o - ZF/(X) is a distinguished triangle, because F’ is a
triangulated functor and N c Ker(F’). By corollary 2.2.5, the morphism F'( f)
is an isomorphism.

By proposition 2.5.9, there exists a unique functor G: D — D’ such that
F'=GoF.

The functor G is additive: let indeed ¢,y : X — Y be morphisms in D; there
exists an object W, an isomorphism (mod V), s: W — X, and morphisms
f,g: W - Yin C such that ¢ = F(f) o F(s) and v = F(g) o F(s)™. Then,
¢+ v =F(f+g)oF(s)™? hence

Glg+¥) = G(E(f + ) o F(5) ™) = G(E(f + £)) 0 G(E(s))
SF(f+g)oF(s) = F(f) o F(s) " +F(g) o F(s)”
= G() +G(y),

as was to be shown.

The functor G is triangulated. Indeed, if T is a distinguished triangle in D,
it is isomorphic to the image by F of a distinguished triangle T, in C. Then
G(T) = G(F(T,)) = F/(T,) is a distinguished triangle, because F’ is a triangu-
lated functor.

Finally, it follows from corollary 2.5.12 that Ker(F) is the smallest thick tri-
angulated subcategory of C containing IN. This concludes the proof of theo-
rem 2.5.4. [

Proposition (2.5.17). — We keep the notation of theorem 2.5.4. For an object Y
in C, the following assertions are equivalent:

(i) One has C(X,Y) = o for every object X € N ;
(ii) For every diagram

w

in C, where s € S is an isomorphism (mod N ), there exists a unique morphism
g:X—=>Yin C suchthat gos = f;

(iii) For every object X in C, the functor F induces an isomorphism C(X,Y) —
D(F(X),F(Y));
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(iv) For every object Z in C' and every morphism f : Y — Z which is an isomor-
phism (mod IN), there exists a morphism g: Z — Y such that g o f = idy.

We leave to the reader to state the analogous statement in the opposite category.

Proof. — (i)=(ii). Let

be a diagram in C, where s is an isomorphism (mod N). Let W = X - Z —
EW be a distinguished triangle in C'; since s is an isomorphism (mod IN), the
object Z belongs to IN. Applying the (contravariant) cohomological functor
C(-,Y), we obtain an exact sequence

C(Z,Y) - C(X,Y) > C(W,Y) - C(Z7Z,Y).

Since Z and X7'Z belong to N, one has C(Z,Y) = C(X7Z,Y) = o. Conse-
quently, the morphism s induces an isomorphism C(X,Y) - C(W,Y). In
particular, there exists a unique morphism ¢g: X - Y in C such that gos = f.

(ii)=(iii). By definition of morphisms in D, assertion (ii) implies that the
canonical morphism C(X,Y) - D(X,Y) is surjective. On the other hand,
let ¢ € C'(X,Y) be such that h(g) = o. By proposition 2.5.11, there exists a
morphism s: W — X in S such that gos = o in C. Assertion (i) applied
with f = o then implies that g = o.

(iii)=(iv). Let f: Y — Z be an isomorphism (mod IN'). Since it induces
an isomorphism in D), assertion (iii) implies that there exists a morphism g €
C(Z,Y) such that h(g) = h(f)™. One has h(g o f) = idy. By (iii) again,
go f=idyin C(Y,Y), as was to be shown.

(iv)=(i). Let X be an object in N and let f : X - Y be a morphism in C'. Let

)
xLy&zosx be a distinguished triangle. The triangle Y 7 55x 2

YY is distinguished as well, so that g is an isomorphism (mod ). By (iv),
there exists a morphism h: Z — Y such that h o g = idy in C. Consequently,
f=idyof =hogo f=o0in C. This proves that C(X,Y) = o, as claimed. [J

Corollary (2.5.18). — Let IN* be the subcategory of C consisting of objects Y such
that C(X,Y) = o for every X € N. Then N* is a thick triangulated subcategory
of C the restriction to which the functor F induces a fully faithful functor to D.
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Proof. — 'The subcategory IN* is stable under translation. Let X - Y - Z —
2X be a distinguished triangle, where X and Z belong to N*. Let W be an
object in IN. Applying the cohomological functor C' (W, -), we obtain an exact
sequence

C(W,X) — C(W,Y) — C(W,Z)
of abelian groups. Consequently, C(W,Y) = o. This proves that Y ¢ N*.

Consequently, the full subcategory IN* is stable under forming distinguished
triangles. In particular, it is stable under forming finite coproducts, hence it is
an additive subcategory.

Finally, let X and Y be objects in C such that X® Y € IN*. For every object
We N,onehaso= C(W,X®Y)=C(W,X)® C(W,Y), so that C(W,X) =
C(W,Y) = o. Consequently, X and Y belong to N*.

This shows that N * is a thick triangulated subcategory.

The last assertion follows from proposition 2.5.17. O]

2.6. Derived categories

2.6.1. — Let A be an abelian category and let K ( A) be its homotopy category.
By lemma 1.6.6, the cohomology functors H" : K(A) — A are cohomological
functors, for all n € Z. One has H" = H° o X7,

Lemma (2.6.2). — Let N be the full subcategory of K (A) whose objects are the
acyclic complexes.

a) The subcategory N is a thick triangulated subcategory of K (A).
b) Let f : X = Y be a morphism of complexes in A. Then f is an isomorphism
mod N) if and only if its cone Cy is acyclic, if and only if f is a homologism.
Y fisacy Y 4

Proof. — a) First of all, N is an additive subcategory of K (A), invariant
under the translation automorphism. Let then X, Y be acyclic complexes and
u: X - Y be a morphism in K (A); let us extend it to a distinguished triangle
X5 Y5 Z25 5Xin K(A). We need to show that Z is acyclic as well. By
definition of the distinguished triangles of K (A ), we may assume that Z is the
cone of a morphism of complexes representing u. Since X and Y are acyclic, u is
a homologism. By lemma 1.6.6, Z is acyclic.
b) This follows from lemma 1.6.6.
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Definition (2.6.3). — Let A be an abelian category. The derived category D(A)
is the triangulated category quotient of the homotopy category K (A) by its thick
triangulated subcategory of acyclic complexes.

There are canonical functors
A C(A)S KA D D(A).

The functor A — C(A) considers an object X of A as the unique complex
such that X" = o for n # 0 and X° = X, all differentials being o. It is fully faithful.

Let f be a morphism in K (A). By lemma 2.5.11, b), the morphism h(f) is an
isomorphism if and only if f is a homologism. More generally,if H: K(A) - B
is a functor, there exists a functor G: D(A) — B such that H = Goh ifand only
if H maps homologisms to isomorphisms. The necessity of the condition is clear,
by what precedes, and the converse assertion follows from proposition 2.5.9, d).
If, moreover, the functor H is additive (resp. a cohomological functor), then so
is G.

2.6.4. — Let A be an abelian category and let C be a triangulated category. A
d-functor F: A — C is an additive functor endowed, for every exact sequence
S=(o>X—->Y —>Z - o) in A, with a morphism 9(S) : F(Z) - ZF(X),
satisfying the following properties:

a) For every exact sequence S = (0 - X = Y - Z — 0), the diagram

u v )
FX) 2, my) 22 p(z) 29 sR(x)

is a distinguished triangle;

b) For every morphism of exact sequences

S o) X Y Z o)
| I N
N o) X’ Y Z 0,
the diagram
a(s)
FZ) =2, sR(x)
)| =70

F(z') -2 sR(X)

1s commutative.
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Lemma (2.6.5). — The functor A — D(A) is a o-functor, when, with every exact
sequence o - X Y 5> Z — o, one associates the composition in D(A) of the
canonical morphism 3, : C, — ZX and of the inverse of the canonical homologism
C, — Z (see lemma 1.6.6).

Proof. — []

2.6.6. — Let X be a complex in an abelian category A. The naive (or stupid)
truncations of X are obtained by replacing X™ by zero outside of a given range,
for example:

ocn(X)= > X" X"50—>...

There is a canonical morphism from X to o¢,(X), induced by the identity maps
X™M — X™ for m < n, and by the zero maps otherwise. This morphism induces
isomorphisms H"™(X) — H™(0¢,(X)) for m < n; for m = n, one gets the
morphism

H"(X) = Ker(dy)/Im(dx™) - X"/Im(dx™") = H" (0c(X))
which is not an epimorphism unless df = o. Moreover, homologous complexes

may have non-homologous stupid truncations.
The correct truncations of X are the following complexes:(*)

)=+ X ek 020
2 (X) = > X" 5 X o Im(d) > 0 ...
,(X)=--->0->Im(d{") > X" > X" > ...
T5,(X) =+ > 0 —> 0 - Coker(d§ ') - X" - ...

There are canonical morphisms of complexes
Ten(X) = 76, (X) = X = 73,,(X) > 7 (X),

of which non-obvious morphisms are induced by the differential.

The morphisms 7¢,(X) - 75,(X) and 7¢,(X) - 17,(X) are homologisms,
hence they induce isomorphisms in the derived category D(A).

The morphism 7,(X) — X induces an isomorphism H(7¢,(X)) — H/(X)
for every integer i such that i < n, while one has H(7,,(X)) = o for i > n. The
similar property holds for the morphism 7, (X) - X.

(1)There still are mistakes there...
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The morphism X — 72, (X) induces an isomorphism H(X) — H/(7,,(X))
for every integer i such that i > n, and one has H'(7,,(X)) = o for i < n. The
similar property holds for the morphism X — 7,,(X).

Moreover, the diagrams

(2.6.6.1) 0 - T, (X) = 7¢n(X) » Z"H"(X) > 0
(2.6.6.2) 0 - X"H"(X) » 15,(X) = 7¢,,,(X) = 0
(2.6.6.3) 0> Ten(X) > X - 1,,,(X) >0
(2.6.6.4) 0> T, (X) > X = 75y1(X) - 0

are exact sequence of complexes.
These exact sequences of complexes induce distinguished triangles in the
homotopy category K (A) and in the derived category D(A):

(2.6.6.5) Tey1(X) = 1764(X) = Z7"H"(X) - 27,,_,(X)
(2.6.6.6) TTH(X) - (X)) - ,,,(X) - Z7"H"(X)
(2.6.6.7) Ten(X) » X = 14,,,(X) = Z7¢,(X)
(2.6.6.8) T, (X) = X = 150 (X) = 270, (X).

Every morphism of complexes f : X — Y induces in an obvious way a mor-
phism of complexes 7¢,(f) : 7¢,(X) = 7¢,(Y), and 7, defines a functor from
the category C'(A) to itself. If f is null homotopic (resp. a homologism), then
s0 is T¢,(f). Consequently, the functor 7¢, extends to an endofunctor of the
homotopy category K (A) (resp. of the derived category D(A)).

Similar properties hold for the other truncations.

The diagrams (2.6.6.1-2.6.6.4), the distinguished triangles (2.6.6.5-2.6.6.8),
are functorial.

2.6.7. — By imposing the vanishing of appropriate cohomology objects, we
can define various full subcategories of K (A):

- K?>%(A), whose objects X satisfy H"(X) = o for n < a;

- K*(A) = U,z K>*(A), whose objects X satisty H"(X) = o for n smaller
than some integer (depending on X);

- K<%(A), whose objects X satisfy H"(X) = o for n > a;

- K~ (A) = Usz K<(A), whose objects X satisfy H*(X) = o for n larger
than some integer (depending on X);
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- K®(A) = K*(A)n K-(A), whose objects X satisfy H"(X) = o outside
of some bounded interval (depending on X).

Their images in D (A) are denoted by D>%( A), etc.

The categories K~ (A), K*(A) and K°(A) are triangulated subcategories
of K (A) containing the subcategory of acyclic objects in K ( A). The categories
D~(A), D*(A) and D"(A) are triangulated subcategories of D ( A); they can
also be defined as the localization of the corresponding subcategories of K (A)
under their subcategory of acyclic objects.

The categories K<¢(A) and K>%( A) are not triangulated subcategories of
K (A); they are not even stable under translation.

Remark (2.6.8). — Let X ¢ K<°(A) and Y € K?°(A). The cohomological
functor H°: D(A) — A induces an isomorphism

D(A)(X,Y) - A(H(X), H°(Y)).

To begin with, an object of D(X,Y) is a triple (Z, f, g), where f and g are
homotopy classes of an homologism f : Z — X and of a morphism of complexes
¢: Z — Y, which, by abuse, we still denote by the same letter. Then Z ¢ K<°(A),
so that the canonical morphism 7¢,(Z) — Z maps to isomorphisms under all
functors H"(-); consequently, it is an isomorphism. Similarly, the canonical
morphism Y — 75,(Y) is an isomorphism. We may thus assume that Z" = o
for n > 0 and that Y” = o for n < o. In particular, one has H°(Z) = Coker(d,")
and H°(Y) = Ker(d$). Then all components g" vanish, for n # o, so that g is
given by a single morphism g°: Z° — Y°, subject to the conditions g° o di' = o
and dy o g° = o. Consequently, the datum of g is equivalent to that of the
morphism H°(g) : H°(Z) — H°(Y). Composed with the isomorphism f: Z —
X in D(A)(Z,X), this implies the claim.

In particular, the canonical functor A - D(A) is fully faithful.

Definition (2.6.9). — Let X be a complex in an abelian category A. One says that
X is homotopically injective if K (A)(N,X) = o for every acyclic complex N.

By definition, this notion only depends on the isomorphism class of X in the
homotopy category K (A).

Proposition (2.6.10). — Let Y be a complex in an abelian category A. The follow-
ing assertions are equivalent:
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(i) The complexY is homotopically injective;
(ii) For every diagram

of morphisms of complexes, where s is a homologism, there exists a unique mor-
phism g: X - Y in K(A) such that g o s is homotopic to f;

(iii) Forevery complexX, the functor h induces an isomorphism K (A)(X,Y) —
D(A)(X,Y);

(iv) For every complex Z and every homologism f:Y — Z, there exists a
morphism g: Z — Y such that g o f is homotopic to idy.

Proof. — 'This is a particular case of proposition 2.5.17. O]

Proposition (2.6.11). — Homotopically injective complexes form a thick triangu-
lated subcategory I of K (A) and the restriction to I of the localization functor
K(A) - D(A) is fully faithful.

Proof. — 'This follows from corollary 2.5.18. ]

Theorem (2.6.12). — If A is a Grothendieck abelian category (see $1.4.7), then
every complex is homologous to a homotopically injective complex.

This theorem is due to ( ) in the particular case where A
is the category of abelian sheaves on a topological space. His methods have
then be extended to reach the result in this form by
( ) and ( ). More precisely, these authors show that the func-
torh: K(A) - D(A) admits a right adjoint.

Corollary (2.6.13). — Let A be a Grothendieck abelian category and let I be
the thick triangulated category of K (A) consisting of all homotopically injective
complexes. The triangulated functor I — D( A) is an equivalence of triangulated
categories.

Corollary (2.6.14). — Let A be a Grothendieck abelian category. If U is an uni-
verse such that A is locally U-small, then D (A) is locally U-small.
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Example (2.6.15). — Let U be a universe, let k be a ring whose underlying set
belongs to U and let Mod (k)y be the category of k-modules whose underlying
set belongs to U. For every objects X, Y of Mod(k)y, one has Hom(X,Y) € U,
so that the category Mod (k)y is locally U-small. Consequently, the derived
category D (Mod(k)y) is locally U-small.

Proposition (2.6.16). — Let Y be a complex in an abelian category.

a) Assume that Y" = o for n # o. Then Y is homotopically injective if and only
if Y° is an injective object of A.

b) Assume that Y" = o for n < o and that Y" is an injective object of A for
n > o. Then Y is homotopically injective.

Proof. — a) Let us assume that Y is homotopically injective and let us show
that Y° is injective. Let j: X’ — X be a monomorphism in A4, let f': X’ - Y° be
a morphism; we need to show that there exists f : X - Y° such that fo j = f'.

Let k: X — X" be a cokernel of j, so that N = (o - X' Lx&xr 0)
is an acyclic complex in A (we put the term X' in degree o). Morphisms of
complexes u: N — Y correspond to morphisms #°: X’ — Y°; a morphism
is null homotopic if and only if extends to X. Since K(A)(N,Y) = o, the
morphism f’ extends to X, as claimed.

The converse assertion follows from b).

b) Let us now assume that Y” = o for n < o and that Y" is injective for
n > o, and let us prove that Y is homotopically injective. Let N be an acyclic
complex and let f : N — X be a morphism of complexes. In order to show that
f is null homotopic, we will construct morphisms 6”: N"*** — Y" such that
f"=0"0d{+d{ 00", by induction on n. If n < o, it suffices to define 6" = o.
We then assume that 6™ is constructed for m < n and proceed to defining 6.
Consider the diagram

dn—l dﬂ

Nl’l—l 5 Nl/l—l Nl’l N}’H—l

fn—zl %ﬂf:—ll Gn_lfnl k///;n J/fn+1

YH—Z 3 Yi’l—l = Yi’l T Yl’l+1

One has
ff’l o dII;lI—l — d?-l of?’l—l — d?-l(en—l o g]-l + dg—l o 91’1—2) — d?-l o 071—1 o KI—I,
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hence f" — dy7'6"': N" — Y" factors through N"/Im(d{;"). Since N
is acyclic, Im(dy™) = Ker(d}). The morphism d}} induces a monomor-
phism N”/Ker(d{;) - N"*.. Since Y" is injective, there exists a morphism
0" : N"** — Y" such that f" — d{7'0"* = 0" o d{{. This provides the required
morphism.

This shows that the morphism f is null homotopic and concludes the proof of
the proposition. []

Proposition (2.6.17). — Let A be a Grothendieck abelian category and let I be
its additive full subcategory of injective objects. Let X € C(A) be a complex, let
p € Z be such that H"(X) = o for every integer n < p.

a) There exists a complex Y € C(I) such that Y" = o for every n < p and a
homologism f: X - Y.

b) If, moreover, X" = o for n < p, then one can moreover choose Y and f in
such a way that " is a monomorphism for every n € ZL.

Proof. — We first observe that asssertion a) follows from b). Indeed, by hypoth-
esis, the canonical morphism X — 7,,(X) is a homologism, and the complex
T5p(X) satisfies the hypothesis of b), so that X is homologous to a complex
in C>P(I).

Let us now prove b). We shall construct the complex Y and the morphism
i: X = Y by induction, degree by degree, in such a way that for every integer n €
N, the induced morphism X — ¢,,(Y) induces isomorphisms H”(X) - H"(Y)
for m < n, and a monomorphism H"(X) — Coker(d}™).

For n < p, we take Y” = o, the morphisms i” and dy are taken equal to zero.
Assuming that Y” and i" are defined for m < n, and that d{’ is defined for
m < n —1, let us define Y"1, i"*1: X" — Y"*tand df: Y" — Y"*'. We first
define

VAR COker(dQ_l) 69Coker(d)’}“) Ker(df?l)

so to have a cartesian diagram

Coker(d}™) —— Ker(dg™)

| l

Coker(dy™) ——— Zm.
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This furnishes a commutative diagram

o — H"(X) — Coker(d§ ") — Ker(dg™) — H""(X) — o

| l l

o — H*(X) — Coker(d}{") —— 2" —— H""(X) — o

in which the first line is the exact sequence from lemma 1.6.2.

Let us prove that the second line is exact as well. The morphism H"(X) —
Coker(dy™) is a monomorphism, by the induction hypothesis, and the mor-
phism from Z"** to H""(X) is an epimorphism by construction of Z"**. To
prove the remaining two other exactness properties, we pretend that A is a
category of modules.

Let us consider the class y in Coker(dy™) of an element y in Y" which is
mapped to o in Z"*; by construction, the element (y,0) of Coker(dy™) @
Ker(d{™) belongs to the submodule Coker(dy ): there exists an element x € X"
such that (y,0) = (x,-x), so that x € Ker(d}™) and y comes from the class
of x in H"(X).

Let us then prove exactness at Z"*'. Let y € Coker(d{™) and x € Ker(d%™)
such that the class z of (y,x) in Z"** is mapped to o in H""(X). This means
that x belongs to Im(d), so that there exists x’ € X" such that x = d{(x’). In
the right hand side of the equality (y,x) = (y+i"(x),0) - (i"(x), -dg(x’)), the
class in Z"*1 of the first term comes from Coker(d%™), while that of the second
term is zero. Consequently, z comes from Coker(d}™), as was to be shown.

Let now Y"*! be an object of I and j: Z"*! < Y"*! be a monomorphism; these
exist, since A is a Grothendieck abelian category. We then define d§: Y" — Y"*!
to be the compositions with j of the canonical morphisms Y” — Coker(d?™) —

Z"*, Similarly, we consider the composition Ker(d}*) — Z"* 2 Y since
Y"*1 is injective, this morphism can be extended to a morphism i"**: X"*1 —
Yl’l+1.
TO BE FINISHED
O

As a corollary, we have the following partial result in the direction of theo-
rem 2.6.12.
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Corollary (2.6.18). — Let A be an abelian category possessing enough injec-
tives, for example, a Grothendieck abelian category. Then the canonical functor
K+ (I)— D*(A) is an equivalence of triangulated categories.

Proof. — By proposition 2.6.17, every complex in C*(A) is homologous to
a complex in K*([I). Such a complex is homotopically injective, by proposi-
tion 2.6.16. The corollary follows from that. [

2.7. Derived functors

2.7.1. — Let A, B be abelian categories and let F: A — B be an additive
functor. The functor F induces an additive functor on complexes, F: C(A) —
C (B); since it preserves homotopies, it also induces a triangulated functor on
F: K(A) - K(B) between the associated homotopy categories. However,
if X is an acyclic complex in A, the complex F(X) may not be acyclic (unless
F is exact) so that this functor F: K(A) — K (B) does not induce a natural
triangulated functor between the corresponding derived categories.

The theory of right (resp. left) derived functors aims at associating with F a
functor RF (resp. LF) between the corresponding derived categories which
reflects the properties of the initial functor F.

We assume that A is a Grothendieck category and let I be the thick trian-
gulated subcategory of K ( A) of homotopically injective complexes. Then the
functor I - D( A) is an equivalence of triangulated categories (corollary 2.6.13).
The derived functor RF is defined as the composition of a (chosen) quasi-inverse
of this equivalence, the functor F, and the canonical functor to D (B). This is
depicted by the diagram

I — K(A) —Y— K(B)

L I

D(A) 5, D(B)

in which, we insist, the square is usually not commutative! Explicitly, given
a complex X € K (A), the “recipe” to compute RF(X) consists in taking the
chosen homotopically injective resolution of X, namely a homologism ¢: X — I
to a homotopically injective complex I, and defining RF(X) = F(I). Moreover,
RF(X) is endowed with a canonical morphism F(¢) : F(X) - RF(X) in K (B).
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Let f: X —» X’ be a morphism in K(A), let ¢’: X’ — I’ be the chosen ho-
motopically injective resolution of X'. Since I is homotopically injective, there
exists a unique morphism f’: I —1"in K (A) such that f’ o e = f o & (proposi-
tion 2.6.10); let us define RF(f) = F(f') : F(I) — F(T).

These maps define a functor K(A) - D(B).

If f: X — X'is a homologism, then the morphism f’: I — I constructed
above is an isomorphism in K (A) (proposition 2.6.10), so that RF(f) is an
isomorphism. Consequently, the functor we have just defined extends to a
functor

REF: D(A) — D(B),
called the right derived functor of F.

Remark (2.7.2). — a) For every object X of K(A) and every homologism
¢ : X - I, where I is homotopically injective, the morphism F(e¢) : F(X) — F(I) =
RF(X) in K (B) satisfies an universal property: for every object Y of K (B),
the canonical morphism F(¢) : h(F(X)) — RF(X) induces an isomorphism
colim K (A)(Y,F(X')) = D(B)(h(Y), RE(X)).
X—X'
(In fact, the system (F(X'))x_sx is “eventually constant”.)

This universal property of the right derived functor RF is also formulated by
saying that RF is a left Kan extension of the functor h o K (F) with respect to
the localization functorh: K(A) - D(A).

b) If we remove the hypothesis that the abelian category A is a Grothendieck
category, then the right derived functor RF may not exist. However, the left
hand side of this formula furnishes a definition, for every object X, of a “functor
RF(X)” on the category D(B). One then may say that F is right derivable
at X if this “functor RF(X)” is representable and denote by RF(X) an object
that represents it. The previous construction shows that the functor F is right
derivable at every object that admits a homotopically injective resolution.

Lemma (2.7.3). — Let F: A — B be an additive functor between abelian cate-
gories; assume that A is a Grothendieck abelian category. Let X € D*(A) and let
acl.
a) If X e D>*(A), then RF(X) € D>*(B). In particular, RF(X) € D*(B);
b) For every integer n such that n < a, the canonical morphism 1¢,(X) - X
induces an isomorphism H' ( RF(71¢,(X))) - H (RF(X)).
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Proof. — a) The construction of a homotopically injective resolution of X is a
complex I such that I = o for n < a. Consequently, RF(X) = F(I) is a complex
whose terms of degree < a vanish. This implies that H*( RF(X)) = H"(F(I))) =
o for n < a. Consquently, RF(X) € D>%(B). The second assertion follows
readily since there exists an integer a such that X € D>%(A).

b) Let us consider the distinguished triangle 7¢,(X) - X - 7.,(X) —
27¢,(X) in D(A). Applying the triangulated functor RF and a shift, we obtain
a distinguished triangle

S RE(1:4(X)) > RF(74,(X)) - RF(X) > RF(7.,(X)).

Let n be an integer and let us apply the cohomological functor H”: we obtain an
exact sequence

H"(RE(7:4(X))) - H"(RF(7(X))) - H'(RF(X)) - H"(RF(74(X))).

The complex 7.,(X) belongs to D>%( A), hence its image by RF belongs to
D>%(B), by a). If n < a, then the extreme terms of this exact sequence vanish,
so that the considered morphism

H"(RF(1<,(X))) - H"(RF(X))

is an isomorphism. []

2.7.4. — Assume that the functor F is left exact. For every integer n, let
R"F: A - B be the composition of the inclusion functor A - D(A), of RF,
and of H". Every exact sequenceo - X - Y - Z — o in A gives rise to a
distinguished triangle X - Y - Z — XX in D*( A). Applying the triangulated
functor RF and the cohomology functor H” = H o X", we obtain to a long exact
sequence

> R"F(Z) - R"(F(X)) > R"F(Y) - R"F(Z) - R""F(X) - ...

Let X be an object in A. Viewing X as a complex concentrated in degree o, we
already know that RF(X) € D>°(X). Consequently, R" F'(X) = o for n < o.

Let us then choose an injective resolution ¢ : X — I of X, where I is a complex
with injective terms such that I” = o for n < o. Since F is left exact, the exact
sequence o — X — [° — I* gives rise to an exact sequence o - F(X) - F(I°) —
F(I*), which shows that the morphism F(¢) : F(X) — F(I) = RF(X) induces
an isomorphism F(X) ~ R°F(X).
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Definition (2.7.5). — Let F: A — B be a left exact additive functor between
abelian categories. One says that a full additive subcategory A, of A is injective
with respect to F, or is F-injective, if the following conditions hold:

(i) Every object of A admits a monomorphism into an object of A;

(ii) For every exact sequenceo - X - Y - Z — o in A, where X and Y are
objects of A,, the object Z belongs to A,;

(iii) For every exact sequence o - X - Y — Z — o in A, with objects in A,,
the complex o - F(X) - F(Y) — F(Z) - o is exact.

Example (2.7.6). — If the category A has enough injectives, then the full sub-
category of injectives objects of A is F-injective for every left-exact functor F.

Assertion (i) is the definition of having enough injectives. Let o - X Ly4
Z — o be an exact sequence of objects in A, where X and Y are injective objects.
Since X is an injective object, the identity idx extends along the monomorphism
j: X — Y, hence there exists a morphism r: Y - X such that r o j = idx;
consequently, the morphism (7, p): Y - X & Z is then an isomorphism and
the given exact sequence is split. It first follows that Z, a direct summand of an
injective object, is injective as well, and then that the image of the given exact
sequence under any additive morphism is again exact.

Proposition (2.7.7). — Let F: A — B be a left exact additive functor between
abelian categories. Let A, be an F-injective subcategory of A.

a) For every complex Y € K*(A) with terms in A,, the canonical morphism
F(Y) - RF(Y) in D*(B) is an isomorphism;

b) For every complex X € K*(A), there exists a complexY ¢ K*(A,) and a
homologism e: X - Y in K*(A).

In particular, one can define RF(X) by considering an arbitrary F-injective
resolution of X.

Proof. — ]

Remark (2.7.8). — Let F: A — B be a left-exact functor between abelian cate-
gories. Let A, be an F-injective subcategory of A. Then, every object X of A,
satisfies R"F(X) = o for n > o — one says that X is F-acyclic.
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2.7.9. — Let A, B, C be Grothendieck abelian categories, let F: A - B and
G: B - C be additive functors, so that the three derived functors RF, RG
and R(G o F) are defined. Let us construct a canonical morphism of functors

R(GoF)—> RGo RF

Let X be any object in K (A) and let e: X — I be a homologism from X to a
homotopically injective object I. By construction, RF(X) = F(I) and R(G o
F)(X) = (G o F)(I). Let ] be a homotopically injective object in K (B) and let
7: F(I) - J be a homologism, so that RG(F(I)) = G(J). Evaluated at X, the
canonical morphism

R(GoF)(X) > RGo RF(X)
is then the morphism
G(n): R(GoF)(X) = (GoF)(I) » G(J) = RG(E(I)) = RG o RF(X).

We leave to the reader to check that this construction furnishes a morphism of
functors.

Corollary (2.7.10). — Let A, B, C be Grothendieck categories andletF: A — B
and G: B — C be left exact functors. Let A, be an F-injective subcategory of A
and let B, be an G-injective subcategory of B such that F(X) € ob(B,) for every
object X of A,. Then the canonical morphism of functors

R(GoF)—> RGo RF, D"(A) - D" (C),

is an isomorphism.

Proof. — Let X be any object in K*(A) and let ¢: X — I be a homologism
from X to a homotopically injective object I. We may assume that X is a bounded
below complex, with terms in A,. Since A, is F-injective, the morphism
F(e): F(X) - F(I) in K*(B) is a homologism and induces an isomorphism
in D(B) from F(X) to F(I) = RF(X). Moreover, one has R(Go F)(X) = (Go
F)(I). Let ] be a homotopically injective object in K*(B) and let 57: F(I) - ]
be a homologism, so that RG(F(I)) = G(J). On the other hand, since F(X)
belongs to K *(B,), the morphism G(#) : G(F(X)) - G(J) is an isomorphism,
because B, is an F-injective subcategory of B, as was to be shown. ]
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2.8. Exercises

Exercise (2.8.1). — Let C be an abelian category and let X be a complex in C.
One says that X is contractible if idx is null homotopic.

a) Prove that X is contractible if and only if it is acyclic and if the exact sequence
o - Ker(dy) - X" - Im(dy) — o is split, for every integer n € Z.
b) Let k be a ring and let C' be the category of k-modules. Assume that X is

an acyclic complex such that X" is a free k-module, for every n € Z.
Prove that X is contractible if, moreover, k is a field or a principal ideal domain.

c) Prove that X is contractible if, moreover one has X" = o for every n < o.

d) Let k = Z/4Z and X" = Z/4Z for every n € Z, let d} be given by the
multiplication by 2. Prove that X is acyclic but not contractible.

Exercise (2.8.2). — Let X & Y 5 Z 5 ¥X be a distinguished triangle in a
(pre)triangulated category. Establish the equivalence of the following conditions:
(i) u is an isomorphism; (ii) v = o; (iii) w = o. If they hold, prove that Z = o.

Exercise (2.8.3). — (From ( , , Exercise III.4.1).) Let A
be an abelian category and let f: X — Y be a morphism of complexes in A.
Consider the four following statements: (i) f =oin C(A); (ii) f =oin K(A);
(iii) f = oin D(A); (iv) H"(f) = o for every n € Z.

a) Establish the following implications: (i)=(ii)=(iii) = (iv).

b) Give examples where (ii) holds but not (i), and (iii) holds but not (ii).

c) Let A = Ab be the category of abelian groups and let f be given by the
following morphism of complexes

. —>0 —> 7 257 o — ...

R

.—> 0 —>Z —>Z[3Z — o0 — ...

where the horizontal maps are induced by multiplication by 2, while the vertical
maps are the canonical ones. Prove that H"(f) = o for all n € Zbut that f # o
in D(A).






CHAPTER 3

COHOMOLOGY OF SHEAVES

3.1. General topology

3.1.1. — Let X be a topological space. We say that X is separated (equivalently,
Hausdorff) if any two distinct points admit disjoint neighborhoods.

We say that X is compact if it is separated and if it satisfies the Borel-Lebesgue
covering property: if a family of open subsets covers X, then a finite subfamily
already covers X.

We say that X is locally compact if it is separated and if every point of X has a
compact neighborhood.

Let X be a topological space and let A be a subset of X. One says that A is
locally closed if for every point a € A, there exists a neighborhood U of a in X
such that A n U is a closed subset of U.

Lemma (3.1.2). — Let X be topological space and let A be a subset of X.

a) Assume that A is locally closed in X. The union U of all open subsets V of X
such that ANV is a closed subset of V is an open subset of X of which A is a closed
subset, and it is the largest such open subset.

b) The following properties are equivalent: (i) The set A is locally closed in X;
(ii) There exist an open subset U and a closed subset Z of X such that A = U n Z;
(iii) The set A is open in its closure A.

c) Assume that X is locally compact. Then A is locally closed in X if and only if
it is locally compact for the induced topology.

Proof. — a) The set U is open in X, because it is the union of a family open
subsets of X. By definition of a locally closed subset of X, one has A c U. Let us
prove that A is closed in U. Let x € U= A; by construction of U, there exists a
open subset V of X, containing x, such that ANV is closed in V; then V=(ANnV)
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is an open neighborhood of x in U, which proves the claim. Any open subset V
of X of which A is a closed subset is a member of the family of which U is the
union, so that U is indeed the largest such open subset of X.

b) (i)=(ii). By a), there exists an open subset U of X of which A is a closed
subset. By definition of the induced topology of U, there exists a closed subset Z
of X such that A = Z n U, as was to be shown.

(ii)=(iii). Under the assumptions of (ii), the relation U=A =U=(Un2Z)
shows that A is closed in U, so that An U = A. By definition of the induced
topology of A, this proves that A is open in A.

(iii)=(i). Let V be an open subset of X such that A = V n A. One observes
that for every a € A, the set V is an open neighborhood of a such that AnV = A
is closed in V. Consequently, A is locally closed in X.

c) Firstassume that A is locally closed in X and let U be an open subset of X of
which A is a closed subset. Then U is locally compact, hence A is locally compact
as well, because open subsets and closed subsets of a locally compact space are
locally compact. Let us now assume that A is locally compact. Let a € A and
let W be a compact neighborhood of a in A which is compact, hence closed
because X is separated (being locally compact). Let V be a closed neighborhood
of a in X such that W = A n V. Since W is compact, it is closed in V; then V is
an open neighborhood of g in X and

AnV=(AnV)nV=WnV

is closed in V. This proves that A is locally closed in X.
O

Definition (3.1.3). — A continuous map f : X - Y is separated if for every pair
(x,x") of points of X such that f(x) = f(x') and x # x/, there exist disjoint open
subsets U and U’ of X such that x € U and x’ € U'.

If X is separated, then every continuous map with origin X is separated.

Definition (3.1.4). — A continuous map f: X — Y is closed if f(A) is a closed
subset of Y, for every closed subset A of X. It is proper if it is universally closed,
that is, if the map f xidz: X x Z = Y x Z is closed, for every topological space Z.

Proposition (3.1.5). — Let f: X = Y be a continuous map; let us assume that X
is separated.
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a) The map f is proper if and only if f=(y) is compact, for every y € Y.
b) If X and Y are locally compact (in particular, separated), the map f is proper
if and only if f~1(A) is a compact subset of X, for every compact subset A of Y.

Proposition (3.1.6). — Let f : X - Y be a continuous map.

a) Assume that f is proper (resp. separated). Then for every subspace A of Y,
the map fa: f(A) - A induced by f by restriction is proper (resp. separated).

b) Assume that f is proper (resp. separated). Then for every closed subspace Z
of X, the map f|z: Z — Y is proper (resp. separated).

c) Assume that there exists an open covering ¥ of V such that for every Ve ¥V,
the map fv: f(V) — V is proper (resp. separated). Then f is proper (resp.
separated).

Definition (3.1.7). — A topological space X is paracompact if for every open
covering % of X, there exists an open covering V' of X satisfying the following
properties:

a) ForeveryV e ¥, there exists U € % such that V c U (the covering V" refines
the covering % );

b) Every point of X has an open neighborhood A such that the set of V € ¥ such
that ANV # & is finite.

A compact topological space is paracompact; a metrizable topological space
is paracompact; every subspace of a cellular space is paracompact.

Lemma (3.1.8). — Let X be a locally compact topological space.

a) For every open subset U of X and every point a € U, there exists an open
neighborhood V of a such that V c U.

b) Let (U,,...,U,) be a finite family of open subsets of X, let U = U,u---uU,
and let A be a compact subset of X which is contained in U. There exists a family
(Vi,...,V,) of open subsets of X such that A c V,u---uV, and V; c U; for
everyi€{1,...,n}.

c) Inparticular, for every compact subset A of X and every open neighborhood U
of A, there exists an open neighborhood V of A such that V c U.

Proof. — a) By definition of a locally compact topological space, the point a
admits a compact neighborhood C. Replacing U by U n C, we may assume that
U is compact. Let then A = 9(U) = U=U; it is a compact subset of X which does



92 CHAPTER 3. COHOMOLOGY OF SHEAVES

not contain the point a. Since X is separated, there exists, for every point x € A,
an open neighborhood V, of a and an open neighborhood W, of x such that
V. n W, =@. Since A is compact, there exists a finite family S of A such that
the W, for x € S, cover A; let then W = U,s W, and V = U NNy Vy. By
construction, W is an open neighborhood of A, V is an open neighborhood of a
contained in U, and V n W = @. Moreover,

VcUn(\V,cU={JW,cU.
x€S x€S

b) For every a € A, let V, be a compact neighborhood of a which is contained
in U. When a € A, the interiors V, form an open covering of A; since A is
compact, there exists a finite subset S of A such that A c U, V,. The latter set
is an open neighborhood V of A; since S is finite, V ¢ U,es V, ¢ U,

c) Foreverya € A, letus chooseanindex i(a) € {1,...,n} such thata € U;(,
and an open neighborhood W, of a such that W, c Uj;(,,). The family (W, ) gea
of open subsets of X covers A; consequently, there exists a finite subset S of A
such that the family (W) s covers A. For every i € {1,...,n}, let V; be the
union of the open sets W, for a € S such that i = i(a); it is an open subset of X

such that V; = U 4es W, ¢ U;. Moreover, U;q V; = Uyes W, is a neighborhood
i(a)=i
of A in X. []

3.2. Abelian categories of abelian sheaves

3.2.1. — Let X be a topological space. The set Op(X) of open subsets of X is
ordered by inclusion; we consider the associated category Op(X).

Let C be a category (for instance, the category of sets, or the category of
abelian groups). A C-presheaf on X is a contravariant functor .# from Op(X)
to the category C'. A morphism of presheaves is a morphism of functors.

It the category C' admits limits (resp. colimits), then the category of C-
presheaves on X admits limits (resp. colimits), which are computed pointwise.

3.2.2. — Let U be an open subset of X and let %/ be an open covering of U. To
these data, we attach a quiver whose vertices are the pairs {V, V’} of elements
of 7 , this vertex being the target of two arrows of respective origins {V} and
{V'}. Every C-presheaf .# defines a diagram, with value .# (V n V') at the
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vertex {V, V'}, and with morphisms induced by the inclusions VNV’ c V (resp.
VnaV cV), forV,V' e Y.

One says that a C'-presheaf is a sheaf if for every open subset U of X, and
every open covering % of U, the cone (% (U) - Z (VN V'))y vy is a limit.

3.2.3. — Assume that the category C' admits limits. Then the natural functor
from the category of sheaves on X to the category of presheaves admit a left
adjoint .# — .#1, inducing, for every presheaf .# and every sheaf ¢, a bijection

Hom(.Z#',4) = Hom(%,%9)).

Let us consider a diagram of sheaves. Viewed as a diagram of presheaves, its
limit is a sheaf, and is its limit in the category of sheaves.

However, the presheaf-colimit of this diagram is usually not a sheaf; the
associated sheaf furnishes a colimit in the category of sheaves.

3.2.4. — We denote by Ab(X) the category of sheaves of abelian groups on X.
If O is sheaf of rings on X, we denote by Mod ( 0% ) the category of Ox-modules
on X. Let k be an abelian group (resp. a ring); we write kx for the constant sheaf
on X associated with k. One has Mod(Zx) = Ab(X).

These categories admit limits and colimits. Limits (for example products or
equalizers), are computed as presheaves. Colimits, for example coproducts or
coequalizers, require to consider the sheaf associated with the colimit-presheaf.

Theorem (3.2.5). — Let X be a topological space and let O be a sheaf of rings
on X. The category Mod(C) of sheaves of O-modules on X is a Grothendieck
abelian category. In particular, the category Ab(X) of abelian sheaves on X is a
Grothendieck abelian category.

As a consequence, these categories have enough injective objects (theo-
rem 1.4.10).

3.2.6. — Assume that O is a sheaf of commutative rings. Then the category of
Ox-modules admits an internal Hom bifunctor Hom(-,-), and a tensor product.
These are additive functors.
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3.2.7. — Let x € X. The fiber of a an abelian sheaf .7 at a point x is the colimit

F = colim .Z (U).
Usx

The functor Ab(X) — Ab given by .# — .7, is exact.

3.2.8. — Let f: X - Y be a continuous map. For every open subset V of Y,
f(V) is an open subset of X. Consequently, f induces a functor Op(Y) —
Op(X).

By composition, every presheaf .# on X induces a presheaf f..# on Y. If .% is
a sheaf, then f..Z is a sheaf as well.

The mapping .# ~ f..# gives rise to a functor f.: Ab(X) - Ab(Y).

This functor has a left adjoint, denoted f*, which can be defined as fol-
lows. For every sheaf ¢ on Y and every open subset U of X, let f;.%(U) =
colimy, () ¢ (V). The universal maps endow f;.% with the structure of a
presheaf on Y. Let f*¥ be the associated sheaf.

For every open subset V of Y, one has f(f*(V)) c V. The canonical mor-
phism (V) — colimy¢(+(wy) 9 (W) = fred(f(V)). furnishes a mor-
phism of sheaves ¢4 : ¢ — f, f*%. This morphism is functorial in ¥.

On the other hand, for every open subset U of X and every open subset V of Y
containing f(U), one has U c f~*(V); then, the canonical map f;.(f.#)(U) =
colimy ¢y f+# (V) = colimy- ¢y F (f(V)) = % (U) defines a morphism
of presheaves f,.(f..7) - .7, hence a morphism of sheaves ez : f*(f.7) —
# . This morphism is functorial in .%.

The morphisms ¢. and #. are the unit and the counit of an adjunction f* 4 f,,
and furnish functorial bijections:

Homx(f*Y, %) ~ Homy(¥Y, f..%)

for every sheaf .# on X and every sheaf 4 on Y.

At the level of fibers, one has functorial isomorphisms (f*%). ~ %), for
every x € X. This implies in particular that the functor f*: Ab(Y) - Ab(X) is
exact.

3.2.9. — When C is the category of sets, sheaves have an alternative, topo-
logical, definition in terms of étale spaces over X, that is, a topological space E
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endowed with a continuous map p : E — X which is a local homeomorphism (ev-
ery point of E has an open neighborhood U such that p|y is a homeomorphism
from U to an open subset of X).

To every étale space p: E — X is associated its sheaf .# of continuous sections.
The fiber .%, is identified with p~*(x). Conversely, given a sheaf .%, one endowes
the set Ez = [],x -#x with a topology so that the projection Ez — X is étale
and its sheaf of continuous sections identifies with ..

In the setting of étale spaces, the functor f* corresponds to the fiber product
of topological spaces.

3.2.10. — Let.# be an abelian sheaf on X. Let U be an open subset of X and
let s € 7 (U). By the sheaf property of .%, if 7 is a family of open subsets of U
with union V, such that s|y = o for every W € ¥, then s|y = o. The support of s,
supp(s), is the intersection of all closed subsets Z of U such that s|y_z = 0. Itisa
closed subset of U, and the restriction of s to its complement is 0; consequently,
it is the smallest such closed subset.

Morphisms of sheaves respect supports. Precisely, let u: .# — ¢ be a mor-
phism of abelian sheaves on X. For every open subset U of X and every sec-
tion s € % (U), one has supp(u(s)) c supp(s). Indeed, the restriction of s to
U —supp(s) is the zero section, so that the restriction of #(s) to U=—supp(s) is
zero as well.

Theorem (3.2.11). — Let.% be sheafonX, let A be a subspace of X andlet j: A - X
be the canonical inclusion. Let us make one of the following hypotheses:

(i) The subspace A admits a basis of paracompact neighborhoods;
(ii) The space X is paracompact and A is closed;

(iii) The space X is metrizable;

(iv) The space X is separated and A is compact.

Then the canonical morphism of presheaves ji...7 — j*F induces a bijection

N NP
cgljlinc/(U) J"F(A).

For the proof, I refer to ( , , théoréeme 3.3.1, p. 150) or ( ,

, L, p. 37, théoréme 2).

Corollary (3.2.12). — Let X and Y be topological spaces and let f: X - Y be
a continuous map. Let & be a sheaf on X. Let y € Y and write X, = f7'(y).
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The restriction maps T(f(V), #) — I'(X,, #|x,), when V ranges over all open
neighborhoods of y define a map (f..7), — I'(X,, F|x,). If f is proper and X is
separated, then this map is a bijection.

Proof. — Since f is proper, the set X, is compact. By case (iv) of theorem 3.2.11,
the canonical map

. o or
eolimI(U, ) ~ T(X,, Zlx,)

is bijective, where U ranges over all open neighborhoods of X, in X.

Let U be an open neighborhood of X, in X. Since f is proper, it is closed,
hence f(X=U) is a closed subset of Y; since it does not contain y, there exists
an open neighborhood V of y in Y such that f(X—=U) c Y—=V. Consequently,
f7(V) c U. Neighborhoods of X, of the form f~'(V) are thus cofinal in the
ordered set of all neighborhoods of X,, and the canonical map

o _ : -1 oL — : or
(feF)y = cQim I (f(V), F) cggl;gynF(UJ)

is bijective. This implies the corollary. ]

3.3. Extensions by zero

3.3.1. — Let j: W — X be the inclusion of a locally closed subset of X. Let .7
be a sheaf on W. For every open subset U of X, let j.% (U) be the subset of
j+#(U) = #(WnU) consisting of all sections s whose support (which is closed
in Wn U) is closed in U. This is a sub-presheaf of j,.#, actually a subsheaf.
Moreover, the construction j, gives rise to a functor Ab(W) - Ab(X).

Lemma (3.3.2). — a) Foreveryx e X=W, one has j,(.-% ), = o.
b) For every x € W, the canonical morphism (j..% ), — F induces an isomor-
phism (jyF ), - F.

Proof. — a) Letx € X=W. Let U be an open subset of X such that x € U and
lets € #(WnU) be an element of j.% (U). By hypothesis, one has supp(s) c W,
so that x ¢ supp(s), hence there exists an open neighborhood V of x such that
V c U and s|ly = o. This implies that the germ s, of s at x is 0. We thus have
(j1F)x =o.
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b) Let x € W. Since W is locally closed, there exists an open neighborhood V
of x in X such that WnV is closed in V. For every an open subset U of V and every
s€ j. 7 (U) = F(WnU), the support supp(s) of x is closed in WnU, hence in U,
because WnU is closed in U. Consequently, j;.%# (U) = j..%# (U) for every such U.
In particular, the inclusion j.%# — j..# induces an isomorphism (j,.# )|y —
(j«Z)|u. In particular, the canonical morphisms (ji# ), = (j«.% )y - F, are
isomorphisms.

[l

Proposition (3.3.3). — Let X be a topological space and let j: W — X be the
inclusion of a locally closed subset of X. The functor j, is exact and fully faithful.
It induces an equivalence of categories from Ab(W) to the full subcategory of
Ab(X) consisting of abelian sheaves ¢ such that 9, = o for every x e X=W. On
that subcategory, the functor j* induces a quasi-inverse.

Proof. — At the level of fibers, the functor ji induces the identity functor, or
the zero functor; it is in particular exact.

Let% be an abelian sheaf on X such that ¥4, = o for every x € X=W. Let us show
that the canonical morphism ¢ : ¢ — j,. j*¥ factors through j j*¢. Let indeed
U be an open subset of X. Then j,j*¢(U) = j*4(W n U) and the morphism
1y (U): 4(U) - 79 (W n U) factors through the morphism s — (s|y)v from
94 (U) to j5d (W U) = colimy-wnu 4 (V) = colimy-v-wauy 4 (V). Moreover,
for every s € 4 (U), the support of s is closed in U, hence the support of s|y
is closed in V, for every open subset V of X such that U > V > W n U. This
implies that the image of s belongs to j,j*¢(U). The resulting morphism of
sheaves, 4 — j,j*%, induces an isomorphism on fibers: this is tautological for
x € W, and follows from the fact that ¢, = o otherwise. This morphism is thus
an isomorphism.

Let then .# be an abelian sheaf on W. The canonical morphism € : j*j..# —
# induces a morphism j* ji.# — .#. Let O be an open subset of X containing W
such that W is closed in O. Let V be an open subset of W. The canonical
morphisms

P Al _ . . o o . . o
]pre]“/ (V) = CSIDI\I;II]!J (U) x g(s)%jlgl\}]u/’ (U)

: N7 _ : or o
— 8%1?\1/]*J (U) = 82%11?\1/J (WnU) - .Z(V)
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are isomorphisms. They induce an isomorphism from the presheaf j; . j1 %
to the sheaf .#, so that the corresponding morphism from j*j.%# to .# is an
isomorphism as well.

Let .# and ¢ be abelian sheaves on W and let v : j,.%# — ji¥ be a morphism
of abelian sheaves. There exists a a unique morphism of sheaves u : .# — ¢ the
diagram

. v
J T —— 9

F - 9.

Since jiu induces the morphism v, on the fibers at x, one then has jiu = v.
This concludes the proof of the proposition. ]

3.3.4. — We still consider the inclusion j: W — X of a locally closed subset
of X. Let ¢ be a sheaf on X. For every open subset U of X, let I'y(¥¢)(U) be
the set of all sections s € ¢ (U) such that supp(s) c W. This is a subsheaf of ¥;
moreover, the construction 4 — I'w (%) is functorial.

Let x € X="W, let U be an open neighborhood of x and let s € I'\w(¥). By
assumption, x ¢ supp(s); by definition of the support, there exists an open
neighborhood V of x which is contained in U such that s|y = o. This shows that
Tw(¥). = 0. Moreover, if 4, = o for every x ¢ X=W, then 'y (¥) = 9.

Let us define j'¢ = j*Tw(%). This construction defines a functor Ab(X) —
Ab(W). The morphisms

F >y F =i T
and
1Y - Tw(9) -9

are the unit and the counit of an adjunction (ji, j*): they provide functorial
isomorphisms

Homyx(j1.%,%) ~ Homy (%, j'9)

for every abelian sheaf .# on W and every abelian sheaf ¢ on X.

3.3.5. — If Wis closed in X, then j, = j..
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3.3.6. — Let us assume that Wisopenin X;letZ=X—=W andleti: Z - X be
the inclusion.

Let ¢ be an abelian sheaf on X. For every open subset U of W and every section
s € 9(U), the support of s is closed in U, hence Ty (¥ )|w = ¢. Consequently,
one has the equality j' = j* of functors from Ab(X) to Ab(W).

We now show that the diagram

(3.3.6.1) 0—>jijf¥9 -9 —>i.i"9—>o

is an exact sequence, where the morphisms are induced by the counit of the adjunc-
tion ji - j* and the unit of the adjunction i* 4 i,. It is called the glueing exact
sequernce.

We first show that the map jij*% — ¢ is injective. Let indeed U be an open
subset of X and let s € jj*4(U). By definition, s is a section of j*¥4(U) =
/(W n U) whose support is closed in U, and the counit is induced by the
identity map, hence it is injective.

The image of s in i,i*¥%(U) = i*4(Zn U) is the germ of s along Z n U; since
supp(s) is a closed subset of U contained in W n U, it does not meet Z n U, and
this germ is zero. Conversely, let s € 4(U) be a section whose germ along Z n U
vanishes. This implies that there exists an open neighborhood Vof ZnUin U
such that s|y = 0. Consequently, the support of s is contained in U=V, hence is
closed in U, so that s is induced by a section of j;j*¥4(U).

Finally, let U be an open subset of X and let s € i,.i*¥4(U) = i*4(Zn U). By
construction, Zn U is covered by open subsets V of U on which s is induced by a
section ¢ of ¢ (V). This proves the surjectivity of the unit morphism ¢ — i,i*¥.

On the level of fibers, the glueing exact sequence (3.3.6.1) induces the exact
sequences

0—>% —-% —o0—o, for x e W,

0o—->0—->% -9 — o, for x € Z.

3.3.7. — We keep the same context. Let X be a topological space, let j: W - X
be the inclusion of an open subset W of X, and let i : Z — X be the inclusion of
the complementary closed subset Z = X = W.
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Between the categories of abelian sheaves on X, Z, and W, we have six functors:
i*, 1., iy, j1, j*, j« forming four adjoint pairs i* — i,, i, =4 ', ji 4 j* and j* — j.:

it J!

‘/I\ L/J_\
Ab(Z) — i — Ab(X) — j* — Ab(W).
‘\l/ ‘\l/

i Js

Moreover, one has j* o i, =0,i* o ji=oand i' o j, = 0.

The functor i, is fully faithful. In fact, the counit of the pair (i*, i, ) and the
unit of the pair (i.,i') are isomorphisms.

Moreover, the functors j, and j. are fully faithful: the counit of the pair (j*, j.)
and the unit of the pair (j), j*) are isomorphisms.

3.3.8. — Every sheaf .# on X furnishes a sheaf j*.# on W, a sheaf i*.# on Z,
and a morphism of sheaves i*15: i*# — i*j.(j*.%) on Z. The assignment
F — (j*F,i*#,i*ny) induces a functor from the category Ab(X) to the
category of triples (-Z,-%z, ¢) of triples consisting of an abelian sheaf .Fy
on W, an abelian sheaf .%; on Z, and of a morphism of abelian sheaves ¢ : .%, —
i*j..#w. Let us show that this functor is an equivalence of categories.

We first show that it is fully faithful. Let indeed .#,% be sheaves on X and
let us consider v: i*.% — i*4 and w: j*.% — j*¢ be morphisms of sheaves
making the diagram

) e ...
i*F —— i T

o

g N e g

commutative. Let U be an open subset of X and let s € .# (U); let us show that
there exists a unique section u(s) € ¢ (U) such that u(s)|znu = v(s|z~v) and
u(s)|wnu = w(slwnu). These conditions impose u(s), = v,(sy) for x € Z, and
u(s)y = wy(sy) for x € W, so that there is at most one such section u(s).

Conversely, let t = v(s|znu ). For every point x € Z n U, there exists an open
neighborhood V* of x in U and a section t* € ¢ (V) such that t*|7~v« = t|zqy=.
Observe that we have the following equalities in i*%(Z n U):

i"jow o i*nz(s|zau) = (jow o i'n.z(slu))|zav = j«w(slwnu)|zau
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where j.w(s|wnu) is just the section w(s|ynw) € 4(W n U), but considered as
a section of j,%(U). Then, the commutation of the above diagram implies that

tx|ZmVx = i*ﬂ%(ﬂZmVX)
="y o v(s|zav~)
= 1" j.w 0 i 1.7 (8|zav~)

Jsw(slwavs)

ZnV*

in i*j,j*9(Z n V*). Consequently, there exists an open neighborhood U*
of Zn V* in V* such that t*|wnus = w(s|wnu= ). Up to replacing V* by U*, we
thus assume that t*|wnayx = w(s|wnv+) for every x € Z. This shows that t* satisfies
v+ ). By the uniqueness property, t*
and t¥ coincide on V¥ n V7, for all x, y € Z; and t* coincides with v(slwnu)
on W n V*, by construction. Consequently, there exists a section u(s) € 4(U)
such that u(s)|y~ = t* for every x € Z, and u(s)|wnu = v(s|wnu)- It satisfies the
desired requirements, and this concludes the proof that the considered functor
is fully faithful.

We now prove that it is essentially surjective. Let (Fw, %z, ¢) be a triple
consisting of a sheaf .7 on W, a sheaf .%; on Z, and of a morphism of sheaves

the properties of the required section u(s

¢: Fz — i*j,.Zw. For every open subset U of X, one defines .% (U) as set set of
pairs (s, t), where s € #w(WnU), t € #2(ZnU) satisfy ¢(t) = i*s. In fact, F
is the kernel of the morphism of sheaves

juFw X iuFz = i juFws (s,t) > i*(s) — (t).

It is thus a sheaf on .2, and one checks readily that it maps to the given triple
by the considered functor. This concludes the proof.

3.4. Direct images

3.4.1. — Let X and Y be topological spaces, let f: X — Y be a continu-
ous map. The functor f.: Ab(X) - Ab(Y) is left exact, as is the functor
[: Ab(X) —» Ab. As usual, we denote by Rf,: D(Ab(X)) - D(Ab(Y))
and RT: D(Ab(X)) - D(ADb) their derived functors.

For n € Z, we also denote by R"f,: Ab(X) - Aband H": Ab(X) - Ab
the functors H" o Rf, and H" o RT.
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Remark (3.4.2). — Let .# be a sheaf on X and let n be an integer.

Let ¢ : #to.#* be an injective resolution of .#. By definition, one has R".¥ =
Ker(d",)/Im(d";"). It follows from the definition of kernels, images and quo-
tients in the category of sheaves that R".# is the sheaf associated with the
presheaf V > Ker(d',|v)/Im(d""|v) = H*(f(V), F).

Consequently, the sheaf R".# on X. is the sheaf associated with the presheaf
Ve H'(f(V), Z).0

Proposition (3.4.3). — Let f : X = Y be a continuous map of topological spaces
and let F be a sheaf of abelian groups on X. If the sheaf .7 is injective, then so is
foZ.

Proof. — 'This follows from the fact that the functor f. has a left adjoint which
is exact. Explicitly, let u : .# — .4 be a monomorphism of abelian sheaves on Y
and let ¢ : .4 — f..# be a morphism of abelian sheaves on Y. Let u’: f*.# —
f* A and ¢': f*. M — F be the corresponding morphism of abelian sheaves
on X. Since f* is exact, the morphism u’ is a monomorphism. Since .7 is
injective, there exists a morphism v: f*.#" — % such that v o u® = ¢". Let
vh: A — f,.Z be the morphism of sheaves on Y corresponding to v. One has
viou = ¢. Consequently, .% is injective. ]

Corollary (3.4.4). — Let f: X - Y and g: Y — Z be continuous maps of topolog-
ical spaces. The canonical morphism of functors R(go f). - Rg. o Rf. from
D*(Ab(X)) to D*(Ab(Z)) is an isomorphism.

Proof. — Consider an element of D*( Ab(X)), represented by a complex .%#* in
K+ (Ab(X)) with injective terms. Then the canonical morphisms (go f)..#* —
R(go f).#* and f..#* — Rf..#* are homologisms. Since .%/ is injective
for every j, so is f..%#7; consequently, the canonical morphism g.(f..#*) —
Rg.(f..7*) is an isomorphism. The corollary follows. O

Theorem (3.4.5). — ) Let f: X = Y be a map of topological spaces; assume that
X is separated and that f is proper. Let y € Y and let X, = f7(y).

a) For every sheaf # on X, the canonical map (f..7 ), - I'(X,, F|x,) is an
isomorphism;

() Trouver une formulation correcte.
(2)Pas correctement énoncé; ajouter la preuve.
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b) This isomorphism extends uniquely to an isomorphism of cohomological
functors (R/f.-), ~ RIT(X,,"x,) on D*(Ab(X)).

Definition (3.4.6). — One says that a sheaf . on X is flasque if for every open
subset U of X, the restriction map % (X) — % (U) is surjective.

Lemma (3.4.7). — Let % be a flasque sheaf on X.

a) The sheaf F |y is flasque, for every open subset U of X;
b) Let f: X = Y be a continuous map. The sheaf f..7 is flasque.

Proof. — a) Let V be an open subset of U and let s € .# (V). Since % is
flasque, there exists s’ € % (X) such that s'|y. Then t = §'|y is an element
of .# (U) such that t|y = s. This proves that .% |y is flasque.

b) Let U be an open subset of Y and let s € f,.%# (U). By definition, s is a
section t of .7 (f*(U)). Since . is flasque, there exists a section ¢’ € .# (X)
such that t'| () = t. Then t' can be viewed as a section s" of .# (Y) and t'|y = t.
This proves that f..# is flasque.

O

Example (3.4.8). — If X is discrete, every section of an étale space is continuous,
so that a sheaf .# on X is flasque if and only if its fibers .%, are non-empty, for
all x € X. Indeed, In particulier, every abelian sheaf on X is flasque in this case.

Let X9 be the set X endowed with the discrete topology. The identity p: X% - X
is continuous. For every abelian sheaf .# on X, one lets G(.-#) = p.p*.#. This
is a flasque sheaf on X, and the unit 7 : .% - G(%) is a monomorphism.
Explicitly, one has G(.#)(U) = [l,cuZx, for every open subset U of X, the
restriction morphisms are the morphisms [,y %y = [liev %, for V.c U
which are not only surjective, but have a section.

Example (3.4.9). — An injective sheaf .F on X is flasque.

Let indeed U be an open subset of X and let s € % (U). Let j: U — X be the
canonical inclusion; let f : jiZy — .# be the unique morphism corresponding
to the morphism Zy — j*.% which maps 1 to s. The canonical morphism
u: jiZy — Zx is injective; since .# is injective, there exists a unique morphism
g: Zx —» % such that g o u = f; it corresponds to a section t € .% (X) such that
t|u = s. Consequently, the restriction morphism .7 (X) - .% (U) is surjective,
as as to be shown.
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Proposition (3.4.10). — Let .# be a sheaf on X. Assume that for every open
subset U of X and every s € % (U), there exists an open covering V of X such
that for every V € ¥/, there exists ty € % (V) such that ty|uav = sluny. Then F is

flasque.

Proof. — Let U be an open subset of X and let s € .% (U). Let us show that there
exists t € . (X) such that t|y = s. Let Z be the set of pairs (V, t), where V is
an open subset of X and t € .# (V). The relation < defined by (V, ) < (V', t)
if and only if V ¢ V' and '|y = ¢ is an ordering relation on %; moreover,
the ordered set # is inductive. By Zorn’s lemma, we may consider a maximal
element (W, t) of #Z such that (U,s) < (W, t); let us show that W = X. By
hypothesis, there exists an open covering 7" of X and, for every V € ¥/, an
element ty € % (V) such that ty|unw = tlwnv. If W # X, there exists an open
subset V € ¥ such that V ¢ W; then, there exists a unique section t' € (WU V)
which restricts to t on W and to ty on V. In particular, (W UV, ¢') is an element
of Z such that (W, t) < (W uV, t'), contradicting the hypothesis that (W, t)
were maximal. O

Corollary (3.4.11). — Let . be a sheaf on X. Assume that there exists an open
covering ¥ of X such that F|y is flasque, for every V € .Z. Then .Z is flasque.

Proof. — Indeed, the condition of the proposition is satisfied: since .Z|y is
flasque, there exists ¢ € .% (V) which restricts to s|yay. O

Proposition (3.4.12). — Leto — . %' - % — F#" — o be an exact sequence of
abelian sheaves. Assume that #' is flasque.

a) For every open subset U of X, the sequence o - #'(U) - F(U) —
F'"(U) - o is exact.
b) If 7 is flasque, then F" is flasque as well.

Proof. — () It is a general fact that the sequence 0 - .Z/(X) » Z(X) —
F'"(X) - o is exact, except possibly at F"(X).

Let s € #"(X). Let us show that there exists ¢ € . (X) with image s. Let Z be
the set of pairs (V, t), where V is an open subset of X and ¢ € .% (V) maps to s|y
in Z#"(V). The relation < defined by (V,t) < (V’,¢') ifand only if V c V' and
t'|y = t is an ordering relation on %; moreover, the ordered set Z is inductive.

(3)This seems to be another instance of the same reasoning. Find a unifying statement?
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By Zorn’s lemma, we may consider a maximal element (W, t) of %; let us show
that W = X. By hypothesis, there exists an open covering #" of X and, for every
V € ¥, an element ty € .% (V) which maps to sly in #” (V). If W # X, there
exists an open subset V € ¥ such that V ¢ W. Then the elements t|y~w and
tv|vaw of . (V n W) both map to s|y~w in .#"(V n W); consequently, their
difference belongs to .#'(V n W). Since .%" is flasque, there exists u € .7"(X)
such that tlyaw — tvlvew = Ulvaw. In other words, the elements t € % (W)
and ty + uly € (V) agree on V n W; consequently, there exists a unique
section ¢/ € (W u V) which restricts to  on W and to ty + u|y on V; it maps to
slwov in F/(W u V). In particular, (W U V, t') is an element of &% such that
(W, t) < (WuV,t'), contradicting the hypothesis that (W, t) were maximal.

Let U be an open subset of X. By restriction to U, the initial exact sequence of
sheaves on X furnishes an exact sequence of sheaves on U, and .#|y is flasque.
By the case already treated, the diagram o - .%#'(U) - .%(U) - .#"(U) - o
is exact.

Assume now that .# is flasque as well; let us show that .#" is flasque. Let
U be an open subset of X and let s € .#"(U). By what precedes, there exists
t € # (U) which maps to s. Since .Z is flasque, there exists ¢’ € % (X) such that
t'|y = t. Then the image s’ of ¢’ in .7 " (X) satisfies s’|y = s. Consequently, Z" is
flasque. []

Corollary (3.4.13). — Let f: X = Y be a continuous map of topological spaces.
The full subcategory of Ab(X) consisting of flasque sheaves is injective with respect
to the functor f..

In particular, the category of flasque sheaves on X is injective with respect to the
global sections functor T' (X, ).

As a consequence, if .7 * is a complex in K *( Ab(X)) such that .77 is flasque,
for every j, then the canonical morphism f,.#°* - Rf,.#* is a homologism of
complexes of abelian sheaves, hence it induces an isomorphism in D*( Ab(Y)).

Proof. — We need to check the three properties of definition 2.7.5:

(i) Every abelian sheaf on X embeds in a flasque sheaf.
(ii) For every exact sequence o - .#' - . % — .#'" — o of abelian sheaves
on X, where .7 and .#" are flasque, the sheaf %" is flasque.
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(iii) For every exact sequence o - .#' - % — " — o of flasque abelian
sheaves on X, the diagram o - f,.%' —» f..# — f..#" — o of abelian sheaves
on Y is exact.

The first property follows from example 3.4.8, and the second one follows
from proposition 3.4.12, b). Let us finally prove the last one. Let V be an open
subset of Y. Taking sections on V, the given diagram induces a diagram o —
o Z' (V) » L F (V) - f.#"(V) — o of abelian groups, which identifies
with the diagram o - Z#'(f(V)) - Z(f(V)) - #"(f(V)) - o. By
proposition 3.4.12, the latter diagram is exact. In particular, the initial diagram
is exact, as was to be shown. ]

3.5. Cohomology with compact support

3.5.1. — Let f: X - Ybeacontinuous map. Let .# be an abelian sheaf on X. For
every open subset V of Y, let fi.% (V) be the set of all sections s € 7 (f(V))
whose support is proper and separated over V, that is, such that the map f
induces by restriction a proper and separated map flsypp(s) : supp(s) = f*(V).
This is a subgroup of f..% (V).

Proposition (3.5.2). — Let f: X — Y be a continuous map. For every abelian
sheaf F on X, fi.# is an abelian subsheaf of f.. 7.

Proof. — Let V be an open subset of Y. The support of the zero section of f..7#
is empty, hence is proper over V. Let then s, s" € . (f(V)); consider them as
elements the support of the element s + s is contained in the union supp(s) U
supp(s’); it is proper over V; consequently, s + s’ € f£i.# (V). Similarly, the
support of —s is equal to the support of s, so that —s € (.7 (V) if s € fi.7 (V).
This shows that fi.% (V) is a subgroup of f..# (V).

Let U, V be open subsets of Y such that V c U. Let s € f..% (U) = Z(f(U)).
One has supp(s|-(vy) = supp(s) n f7*(V). Consequently, supp(s) is proper
over U, then supp(s|s(v)) is proper over V. Consequently, the restriction
morphism f,.#(U) - f..%# (V) maps fi.% (U) into f.% (V). In other words,
fi-# is a sub-presheaf of f..#.

Let finally U be an open subset of Y, let 7" be an open covering of U and let
(sv)vey be a family, where sy € fi.7(V), such that sy|vaw = sw|vaw for every
V, W € 7. Viewing the section sy as an element of f,.% (V), for every V € 7,
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we see that there exists a unique element s € f..#(U) such that s|y = sy for
every V € 7; indeed, f..# is a sheaf. Then, for every V € 7, the intersection
supp(s) n f*(V) is proper over V; consequently, supp(s) is proper over U,
hence s € f1.% (U). This proves that f.7 is a subsheaf of f,.#, and concludes
the proof of the proposition. O]

3.5.3. — Let f: X = Y be a continuous map of topological spaces.

Let u:.# — ¢ be a morphism of abelian sheaves on X. For every open
subset V of Y, the morphism f,(u): f..# (V) — £.49(V) maps fi.# (V) to
fi9 (V). Indeed, the image f.(u)(s) of a section s € f.% (V) is the section u(s)
of £, (f~(V)); its support is a closed subset of the support of s, hence is proper
over V.

Consequently, the maps .# — fi.# and u — fi(u) define a functor from the
category Ab(X) to the category Ab(Y).

Lemma (3.5.4). — The functor f, is a left-exact additive functor. (4)

Proof. — It follows from its definition that the functor f, is additive.

Leto - #' - . — 7" be an exact sequence of abelian sheaves on X and let
us show that the diagram o - fi.%' - fi.# — fi.#" of abelian sheaves on Y is
an exact sequence.

Let V be an open subset of Y and let s € £,.%#'(V) map to o in f,.% (V). Then
s, viewed as an element of .Z#'(f*(V)), maps to o in .% (f*(V)). Since the
morphism from .#’ to .% is a monomorphism, one has s = o. This shows that
the morphism fi.#’ — fi.# is a monomorphism.

Let then s € £,.# (V) map to o in f,.#" (V). Again, the section s, when viewed
as an element of .Z (f7*(V)) maps to o in .#"(f*(V)). By definition of the
exactness of the sequence 0 -~ ' - F# — Z”, there exists a unique sec-
tion s’ € #'(f*(V)) which maps to s. Since the morphism .’ - .% is a
monomorphism, the support of s is equal to the support of s, hence is proper
over V, since s € fi.% (V). This proves that the section s of f,.% (V) is the image
of a section of f.#'(V), as was to be shown. O

3.5.5. — By the general theory of derived functors, the functor f;, for a contin-
uous map f: X — Y, gives rise to a functor Rf,: D(Ab(X)) - D(Ab(Y)).

(4)Prove the general commutation with filtered colimits, as well as commutation with arbitrary coproducts.
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When f is the canonical map from X to a point, the functor f; identifies with
the functor I of sections with compact support.

3.5.6. — To be able to compute conveniently cohomology with compact sup-
port, it is important to find a suitable category of abelian sheaves which is adapted
to these functors and is as large as possible. On locally compact topological
spaces, a convenient category is that of soft sheaves.

Definition (3.5.7). — Let X be a locally compact topological space. An abelian
sheaf F is soft’s) if for every compact subspace A of X, the canonical morphism
F(X) = F|a(A) is surjective.

Example (3.5.8). — Every flasque sheaf on a locally compact topological space is
soft.

Let indeed X be a locally compact topological space and let .# be a flasque
sheaf on X. Let A be a compact subset of X and let s € T'(A,.%|4). By the
extension theorem 3.2.11, there exists an open neighborhood U of A and a
section s’ € ['(U, .%) such that s’|y = s. By the definition of a flasque sheaf, there
exists t € ['(X, %) such that t|y = s’. Then t|5 = (t|y)|a = s'|a = s. This proves
that .7 is soft.

Example (3.5.9). — Let X be a locally compact topological space. The sheaf 6¢x
of continuous functions on X is soft.

Let indeed A be a compact subset of X and let f € @x|s(A). The sheaf @x|a
is the sheaf of germs of continuous functions on a neighborhood of A, but the
extension theorem 3.2.11 implies that f is induced by a continuous function f’
defined on an open neighborhood W of A. We may assume that W is compact. By
Urysohn’s theorem (which is valid on compact spaces), there exists a continuous
function h: W — [0;1] such that & = 1 in a neighborhood of A and h = 0 on
OW. Let g: X — R be defined by g(x) = h(x) f'(x) for x € W and g(x) = o for
x € X = W. Its restriction to W is continuous; since X =W and Wisa covering
of X by closed subsets, the function g is continuous. By construction, it coincides
with f’ on neighborhood of A, so that the section g|s of k|4 (A) is equal to f.

A similar argument shows that the sheaf of 4"*°-functions on a closed subset X
of a manifold is soft.

(5)In the book of ( , ), which considers general support conditions, this notion is called
c-soft.
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Lemma (3.5.10). — Let .% be a soft abelian sheaf on a locally compat topological
space X. For every locally compact'S) subspace W of X, the sheaf F |w is soft

Proof. — Let A be a compact subset of W and let s € (% |w|a)(A) = Z|a(A).
Then A is a compact subset of X, hence there exists t € .7 (X) such that t|, = s.
Then t|w is a section of % |w (W) which restricts to s on A. O

Proposition (3.5.11). — Let X be a locally compact topological space and let F
be a soft abelian sheaf on X. Let A be a compact subset of X and let U be an
open neighborhood of A. The canonical morphism I.(U, F) — T'(A, F|a) is
surjective.

Proof. — Let V be an open neighborhood of A such that V is compact and
contained in U. Let s € T(A,.%|a). Let B= AU dV;since An dV = @, there
exists a unique section s’ of % |g(B) whose restriction to A is equal to s and whose
restriction to dV is zero. Since .# is soft, there exists a section ¢’ € I'(X, %)
such that #'|4 = s and |3y = 0. There exists an open neighborhood W’ of oV
such that #'|yy = 0; let W = W/ U (X =V). Then there exists a unique section
t € Z#(X) such that t|y = t" and t|w = 0; indeed, WnV = W' nV and ¢'|yynv = 0.
By construction, the support of ¢ is contained in X—=W c V. Since V is compact
and contained in U, so is the support of . ]

Corollary (3.5.12). — Let O be a soft sheaf of rings on a locally compact topological
space X, then any sheaf of O’-modules on X is soft.

Proof. — Let indeed .# be a sheaf of &-modules on X and let A be a compact
subset of X. Let s € T'(A, #|s). By the extension theorem 3.2.11, there exists
a neighborhood U of A and a section s’ € T'(U,.%) such that s’|[y = s. Let
f € I.(U, 0) be any section with compact support such that f|s = 1. The
section fs' € I'(U,.#) has compact support, hence can be extended by zero to a
section t € T'(X, .%#). By construction, one has t[5 = f|ss[s = s. O

Proposition (3.5.13). — Let X be a locally compact topological space and let o —
F'' > F - F" — o be an exact sequence of abelian sheaves on X Assume that
F' is soft.

(6)Recall from lemma 3.1.2 that a subset W of a locally compact space is locally compact if and only if it is
locally closed.
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a) For every open subset U of X, the sequence o — I'.(U, #') - I (U, F) -
I.(U, #") > ois exact.
b) If, moreover, .7 is soft, then " is soft as well.

Proof. — By left-exactness of the functor I'(U, -), the given sequence is exact
except possibly at I'(U,.Z#"), so that we just need to prove the surjectivity of the
morphism I'(U,.%#) - T'(U, #").

Let us first prove this surjectivity in the case where U = X is compact.

Let s” € .#"(X). There exists a finite covering (U;),<i<, of X and a family (s;),
where s; € .% (U;) for every i, such that s; lifts s”|y.. Let (V;),<i<» be an open
covering of X such that V; c U; for every i (lemma 3.1.8). For m € {1,...,n}, let
W,, =V,U---UV,,. Let us show by induction on m that s”|y, lifts to a section
of Z. For m = 1, the section sy, lifts s”|w,. Let s € % (W,,) be a section that
lifts s”|w, ; the restrictions of s and s,,,, to W,, n V,,,, both lift s”|w, qv, .., S0
that their differences belong to .#'(W,, N V,,.,). Since .#" is soft, there exists
a section s’ € #/(X) such that s|w_rv, . — Smelw,v,.. = $'|w,nv,... Thens
and s, + §'ly,,,, coincide on W,, n'V,,.,,, hence can be glued to a section of
F (W 4y ) that lifts s”|yy . This proves the desired surjectivity when U = X is
compact.

Let now U be an open subset of X and let us prove that the morphism
I.(U,.%) - I(U, #") is surjective. Let s" € [.(U, #") and let V be an open
neighborhood of s” such that V is compact. Since .# |5 is soft and V is compact,
the section s” lifts to a section s € .% (V). The restriction s|3y maps to o in
F'"(0V), hence belongs to .#'(dV). Since .#' is soft, there exists a section
t € Z'(V) such that t|3y = s|sv. The section s — t € Z (V) lifts s”|; and restricts
to o on dV. Consequently, its extension by o is an element of .% (U) which lifts s”;
moreover, its support is contained in V, hence is compact. This concludes the
proof of a).

Let us finally assume moreover that .% is soft and let us prove that .7 is soft
as well. Let A be a compact subset of X and let s” € T'(A, . #"|4). Let V be an
open neighborhood of A such that V is compact and s is induced by a section of
Z" on V; we still denote it by s”. Since .7 [; is soft, there exists s € .% (V) that
lifts s”. Since .7 is soft, there exists t € [(X,.# ) that extends s. The image t”
of t in I.(X, .#") extends s”. That concludes the proof of the proposition. [
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Corollary (3.5.14). — Let f : X = Y be a continuous map of topological spaces.
Assume that X is locally compact. Then the functor fi: Ab(X) - Ab(Y) is
left exact and the full subcategory of Ab(X) consisting of soft abelian sheaves is
injective with respect to f,.

In particular, this subcategory is injective with respect to the functor I.(X,-) of
global sections with compact support.

Proof. — Every abelian sheaf can be embedded into a flasque sheaf, hence into a
soft sheaf. Leto - .#' - .# — .#" — o be an exact sequence of abelian sheaves
on X, where .#' and .# are soft; by the proposition, the sheaf .7 is soft as well,
so that we just need to prove that the sequence o - f.%' - f.% - f.F" - o
of abelian sheaves on Y is exact. By left exactness of the functor f,, it suffices
to prove the surjectivity of the morphism f,.# — fi.#". By proposition ??, its
fiber at a point y € Y identifies with the morphism I'.(X,, #[x,) - T(X,, 9)’(; ).
The sequence o — F'|x, - F|x, - F"|x, - o is exact, and Fx, is flasque.
Consequently, the sequence obtained by applying the functor I'.(X,, -) is exact,
as was to be shown. ]

Corollary (3.5.15). — Let j: U — X be the inclusion of an open subset. There exists
a unique isomorphism of o-functors RI.(U,-) - RI.(X,-) o j) which extends
the isomorphism of functors T.(U,-) — T.(X, ji(+)).

Proof. — The functor j is exact, because it induces either the identity, or o, on
the fibers. Consequently, the composition RI(X, ) o j, is indeed a 0-functor.
Moreover, applying the functor j, to an injective resolution ¢, — ... of %, one
gets a soft resolution of j.#. Applying the functor I'.(X,-), we obtain the the
desired isomorphism.(7) []

Corollary (3.5.16). — Let X be a locally compact topological space. Let ¥ be an
abelian sheaf on X. The following properties are equivalent:

(i) The abelian sheaf 7 is soft;
(ii) One has H.(U,.%) = o for every open subset U of X and every integer j > 1;
(iii) One has H.(U,.#) = o for every open subset U of X.

(7)Uniqueness?
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Proof. — 'The implication (i)=(ii) follows from the preceding corollary, and
the implication (ii)=>(iii) is obvious. Let us thus assume that H:(U, .%) = o for
every open subset U of X and let us prove that .# is soft.

Let now A be a compact subset of X, let i: A - X and j: X=A — X be the
inclusions. Let us consider the long exact sequence of cohomology with compact
supports associated with the canonical exact sequence

0= jj'F - F - i,i"F >o0;
we obtain
0> (X=A,F|y) > T(X, %) > T(A, F|s) > H.(X=A, Z|y).
The assumption (iii) implies that the canonical morphism I.(X,.o/) —

T (A, .Z|a) is surjective. This proves that .7 is soft. O

3.5.17. — To be added: f; of soft is soft; composition (g o f); = g o fi, and
similarly after derivation.

Theorem (3.5.18). — (&) Let f: X — Y be a continuous map of topological spaces

and let & be a sheafon X. Let y € Y and let X, = f~'(y). By restriction, the canon-

ical map (fo.7 )y —» T(X,, F|x,) induces a bijection (fi.F), — I.(X,, Z|x,).
Moreover, one has isomorphisms of o-functors (R" fi(+)), - HZ(X,, ()|x,)-

3.6. Tensor products

3.7. Verdier duality

3.8. The six operations
3.9. Constructible sheaves
3.10. Exercises

Exercise (3.10.1). — Let X be a complex manifold, for example X = C, and let O
be the sheaf of holomorphic functions on X. By associating with a holomorphic
function f on an open subset U of X the (non-vanishing) function exp(f), one
defines a morphism of sheaves ¢ : Ox - 0%.

(®)Donner un énoncé plus précis, et la preuve.
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a) Prove that if U is simply connected (say, contractible), then the induced
morphism ey : Ox(U) - O%(U) is surjective.
b) Prove that the morphism ¢ is surjective.

¢) Let X = Cand U = C*. Prove that the function z € 0% (C*) does not belong
to the image of ¢y.

Exercise (3.10.2). — Let X be a topological space.
a) Let U and V be open subsets of X; compute Hom(Zy, Zy).

b) Let % be a family of open subsets of X and let .% be the sheaf @y.y Zy
on X. If 7 is a covering of X, construct an epimorphism of sheaves fy : F4 —
Zx.

c) Let (%,,) be a sequence of open coverings of X such that, for every n € N,
the covering %, refines %, and such that the empty set is the only open
subset U of X which is finer that every %,. Let f,, : .#,, — Zx be the epimorphism
constructed in the preceding question. Prove that the corresponding product
morphism, f: [].%#, — [ Zx, is not an epimorphism.






CHAPTER 4

TRUNCATION STRUCTURES

4.1. Definition of truncation structures

Definition (4.1.1). — Let D be a triangulated category. A truncation structure,
in short t-structure, on D is the datum of two full subcategories D<° and D' of
D satisfying the following conditions:

(i) Every object isomorphic to an object of D<° (resp. of D<°) belongs to D<°
(resp. of D<°);

(ii) One has D(X,Y) = o for every X € ob(D<°) and every Y € ob(D>');

(iii) One has X D<° c D<° and D*' c X D>}

(iv) For every object X € ob( D), there exists a distinguished triangle A - X —
B — XA in D, where A € ob(D<°) and B € ob(D*).

Remark (4.1.2). — Let (D<°, D>*) be a truncation structure on the triangulated
category D. We introduce the notation D<" = X" D<° and D>"*1 = ¥-" D>,
for every integer n.

Condition (iii) of the definition can thus be written D<° c D<'and D*' c D>°,
In fact, for every pair (m, n) of integers such that m < n, one has D™ c D<"
and D>" c D>™,

Example (4.1.3). — Let (D<°, D>') be a truncation structure on the triangulated
category D. For every integer n, the pair (D<", D>"*1) is a translation structure
on D, called the translation structure deduced by translation.

Example (4.1.4). — Let (D<°, D>') be a truncation structure on the triangu-
lated category D. Then (D>%°, D<°°) is a truncation structure on the opposite
triangulated category D°.



116 CHAPTER 4. TRUNCATION STRUCTURES

Example (4.1.5). — Let D be a triangulated category. Then the pairs (D, 0)
and (o, D) are “degenerate” truncation structures on D.

Example (4.1.6). — () Let A be an abelian category and let D(A) be its derived
category. Let n € Z. Recall that Ds"(A) is the full subcategory of D(A) con-
sisting of complexes X such that H/(X) = o for j > o, while D>"**'( A) is the full
subcategory of D( A) consisting of complexes Y such that H/(Y) = o for j < o.
Given a complex X € D( A), recall that 7., X € DS°(A), 75,X € D*'( A), and that
there is a distinguished triangle 7, X - X — 15,X - X7, X. This shows that
the pair (D<°(A),D?*'(A)) is a truncation structure on D( A ). Moreover, for
every integer n, one has DS"(A) = E"D<°(A) and D>""'(A) = 2 "D*'(A).

Proposition (4.1.7). — Let (D<°, D*) be a truncation structure on the triangu-
lated category D.

a) The inclusion D<° — D admits a right adjoint T, with counit n;

b) The inclusion D>* - D admits a left adjoint 75, with unit &;

c) For every object X of D, there exists a unique morphism 0x : 75, X = XT¢ X
such that the triangle T, X Hox = T5, X ke 21X is distinguished.

d) Let A € ob(D<°), B € ob(D*') andlet A - X — B — 2 A be a distinguished
triangle. There exists a unique morphism of distinguished triangles

A X B TA
| ]' | |
! " ) Lo !
ToX X —— 15,X —— I1 X

Proof. — a) We need to find, for every object Y € ob(D), an object 7¢, of
D<°, a morphism 7y : 7¢<,Y — Y in D inducing bi-functorial isomorphisms
D(X,Y) ~ D(X,7,Y), for X € ob(D<°). Let A > Y - B — XA be a distin-
guished triangle, where A € D<° and B € D*'. Applying the cohomological
functor D (X, ) to the translated distinguished triangle ¥'B - A - Y — B, we
obtain an exact sequence

D(X,27B) > D(X,A) > D(X,Y) - D(X,B).

(1) preuve incompleéte
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Since X7'B € D?' and B € D*, the two extreme groups vanish, so that the
morphism A — Y induces an isomorphism D(X,A) - D(X,Y) for every
X € ob(D<°).

For every object Y in D, let us choose a distinguished triangle A = Y — B —
YA andletusset 7(,Y = Aand yy = u. Let f : Y - Z be a morphism in D. By
what precedes, the morphism #z induces an isomorphism D (7Y, 7¢,Z) —
D(7.,Y,Z). Let then 7¢,(f) : T<ocY — T<,Z be the unique morphism such that
Nz° Two(f) = fony.

One checks readily that 7, is a functor and that the morphisms 7y, for Y €
ob(D), are the counits of an adjunction, making 7, a right adjoint of the
inclusion of D<° in D.

b) This is proved analogously to a), or can be deduced from a) by passing to
the opposite category and shifting. In fact, one may choose for every object Y a
distinguished triangle A - Y - B — XA as above and set 7,,Y = B.

c) Let Y be an object of D. By construction, the counit 7y of the adjunction
(-, T<o ) and the unit ey of the adjunction (7s,, -) stand in a distinguished triangle

ny &y )
TSOY — Y — T>1 — zTgoY.

Since D(7¢Y,75,Y) = o, the uniqueness of the differential 9 follows from
corollary 2.2.6.

d) Let Y be an object of D, let A = Y 2> B > 3A be a distinguished triangle,
where A € D<° and B € D*. Let us show that there exist a unique morphism of
distinguished triangles of the form ( f, idy, h):

Since A € ob(D<°) and 7,Y € ob(D?'), one has ey oidyou € D(A, 1:,Y) = o,
by definition of a truncation structure. Consequently, the assertion follows from
corollary 2.2.6. ]

Corollary (4.1.8). — a) Let X € ob(D). The following properties are equiva-
lent: 1) One has T<,X = 0; 2) One has D (A, X) = o for every object A € ob(D<°);
3) The morphism nx : X — 15, X is an isomorphism; 4) One has X € ob(D>").
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b) The category D*' is a thick additive subcategory of D; it is stable under
products and under extensions (if X - Y — Z — XX is a distinguished triangle
and X,Z € ob(D*'), then Y € ob(D>')).

Proof. — a) Assume that 7,,X = 0; by adjunction of (-, ¢, ), one then has
D(A,X) ~ D(A,1,X) = o. Assume conversely that D(A, 7,,X) = 0. By
adjunction of (-, 7¢, ), onehas 0 = D (7, X, X) = D(7¢X, 7, X), so thatid,_x =
o and 7, X = o. This proves that 1)<>2).

1)=3). Assume that 7, X = 0. The canonical distinguished triangle o - X X
75, X — o then implies that ex is an isomorphism.

3)=4). If ex is an isomorphism, it follows from the definition of a truncation
structure that X € ob(.D>').

4)=1). Finally, let us assume that X € ob(D?'). One thus has o =
D(71,,X,X) = D(1¢X, T<,X), hence 7¢,X = o.

b) The characterization 2)<>4) implies that it is stable under products. More
precisely, for every family (X; ) with product X and for every object A € D<°,
the isomorphism D(A,X) ~ [[; D(A,X;) implies that X € D> if and only if
X; € D> for every i. In particular, D> is a thick additive subcategory of D.

Let X - Y - Z — XX be a distinguished triangle, where X and Z belong
to D> Let A € D<°; let us apply the cohomological functor D(A,-) to this
triangle. This furnishes an exact sequence D(A,X) - D(A,Y) - D(A,Z).
Since D(A,X) = D(A,Z) = o, we thus have D(A,Y) = o, hence Y € ob(D**)

by a).
Recall that if Y ~ X ® Z, then there exists a distinguished triangle X - Y —
Z — ZX; in particular Y belongs to D! if both X and Z do. O

Either by a similar reasoning, or by passing to the opposite category, one has
the following corollary.

Corollary (4.1.9). — a) Let X € ob(D). The following properties are equiva-
lent: 1) One has 15,X = 0; 2) One has D (X, B) = o for every object A € ob(D?>');
3) The morphism nx : T<cX — X is an isomorphism; 4) One has X € ob(D<°).

b) The category D<° is a thick additive subcategory of D; it is stable under
coproducts and under extensions (if X - Y — Z — XX is a distinguished triangle
and X,Z € ob(D<°), then Y € ob(D<°)).
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4.1.10. — In category theory, an adjoint is only unique up to a canonical iso-
morphism, and the construction of the functors ¢, and 73, involved the choice
of a distinguished triangle A - X — B — XA, for every object X € D, where
A e D<and Be D> _

If X € D<°, we may assume that the chosen distinguished triangle is X x,
X — o = ZX, where o is a zero object, chosen to be X if X ~ o. In this case, one
has 7, X = X for every object X € D<°, and rx = idx.

Similarly, if X € D*!, we assume that the chosen distinguished triangle is
0> XX Yo, where o is a zero object chosen to be X if X ~ o, so that
75, X = X and ey = idy.

When X € D<°n D>, it is a zero object and the two chosen distinguished
triangles coincide.

4.1.11. — Let n be an integer. The functor 7, = 277, 2" is a right adjoint of
the inclusion functor D<" — D. The functor 75,., = Z7"15, X" is a left adjoint
of the inclusion functor D>"*' — D.

The functors are called the truncation functors associated with the given trun-
cation structure on D.

To simplify the notation, we also let 7., = 7¢,_, and 7., = 75,4, for every
integer n. In particular, an object X of D belongs to D<" if and only if 7.,X = o;
it belongs to D>" if and only if 7.,X = o.

4.1.12. — Let a, b be integers such that a < b. One has D<¢ ¢ D<?, Given our
construction of the functors 7¢,, we thus have 7, o 7¢, = T¢,. On the other hand,
the composition 7¢, o 7, is a right adjoint of the inclusion of D<“ into D, so
that there is a canonical isomorphism of functors 7¢, ~ T¢}, © T¢,.

Similarly, we have 7544, © Topiy = Topir © Topir © Toam

4.113. — Let a, b be integers and let X € ob(D<?). Then one has 7.,7,,X ~
T5aTspX = 0, hence 75,X € D<,
Similarly, if X € D9, then 7,X € D>? as well.

Proposition (4.1.14). — Let a and b be integers such that a < b. For every object
X € D, there exists a unique morphism fx : Ts, 0 T¢pX = T¢p © T3, X such that the
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following diagram is commutative

X e
TSbX X T}aX
Sngx‘[ Tﬂ?;ax
T>aT<pX R > T¢pTsaX
X

Moreover, the morphisms fx give rise to an isomorphism of functors f : Ts,0 T¢, —

T<b © Tza-

Proof. — Since 174, X € D<b, the morphism &% o 1% factors uniquely through
T¢pTsqX: there exists a unique morphism fy : 7, X — 7, 7:,X such that WI;;“X o
fx = n% o . As we have seen, one has 7,75,X € D> consequently, the
morphism fy factors uniquely through 7.,7¢,X: there exists a unique morphism
Jx: ToaTahX = TopToaX such that fx o €7 ¢ = fy. The morphism fx satisfies

b a _ b /! _ .a b
Nz,.x © fxo €rXx = N, x © fx = ex o nx-

The uniqueness of such a morphism is established by the same argument, re-
versed: the relation 2y o (fxo &l x) = & ° n% implies that fx o &l x = fx>and
this in turns characterizes fx.

Let us show that fx is an isomorphism. We build an octahedron

sa

Tgbx
TeaX — 74X —2 s 1.,1X —— S1.,X

|

x l

a-1 a v

nx &x
T<aX X T;aX _ ZT<aX

|

S)b(ﬂ :

v

TopX =——= T X
|
\

2T g X —— 27X — 2ZT5,Tp X —— 227,X

where both horizontal triangles are the canonical truncation triangles, as well as
the left vertical triangle. This furnishes a distinguished triangle

ToaTpX = T X = TopX = 2T, T X
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One has 7,7, X € D< and 1.,X € D>?, so that there exists a unique isomor-
phism of distinguished triangles

ToaTpX — Ty X ——— T, X —— XT3, T X

- | l

TpTraX —> TpaX —> TopTpaX —> LT TxaX.

The left vertical morphism is equal to fx. Indeed, the morphism
’7?%)( 0 fX ! ToaT<hpX = T54X

is the only one that makes the middle upper square of the octahedron commute,
and u = fx is the only morphism such that ’7[r)>ux ou= ni’mx o fx. Consequently,
fx is an isomorphism. / /

Finally, one deduces from the characterization of the morphism fx that it
induces an isomorphism of functors. ]

4.2. The heart of a truncation structure

Definition (4.2.1). — Let D be a triangulated category. The heart of a truncation
structure (D<°, D>) on D is the full subcategory D<° n D>°.

Theorem (4.2.2). — Let D be a triangulated category and let C' be the heart of a
truncation structure (D<°, D>') on D.

a) The category C' is an abelian category; as a subcategory of D, it is thick and
stable under finite products and extensions.

b) Acomplexo - X =Y 5> Z — oin C is an exact sequence if and only if there
exists a morphism w: Z — X such that X = Y - Z 5 X is a distinguished
triangle in D.

c) The functor H® = 1,,7¢, : D — C' is a cohomological functor.

Proof. — a) First of all, the category C' is a thick additive subcategory of D,
because both D<° and D>° are themselves thick additive subcategories of D.

Let us show that any morphism in C admits a kernel and a cokernel. Let
thus u: X — Y be a morphism in C and let us choose a distinguished triangle
X 5 Y 5 25 2Xin D. The vertices Y and =X of the translated triangle
Y - Z - XX - XY belong to D<° and to D>7', hence Z € D<° n D>
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Let us then prove that the composition v/ = ¢z o v: Y — 75,7 is a cokernel
of u. One has v/ ou = gz ov ou = o. Let moreover f: Y - W be a morphism
in C such that f o u = o; applying the (contravariant) cohomological functor
D (-, W) to the previous distinguished triangle, we obtain an exact sequence

DEX W)Y D(Z,W) 5 D(Y, W) S DX, W).

Since 2X € D<'and W € D>°, one has D (XX, W) = o. Since u*(f) = fou = o,
there exists a unique morphism g’ € D(Z, W) such that f = v*(g’) = g’ o v.
Since W € D?>°, there exists a unique morphism ¢ € D(75,Z, W) such that
g’ = g o &z. The morphism g satisfies f = g'ov =goezov = gov', anditis the
unique such morphism.

In a similar manner, we show that the composition w’ = Z'woys-z: 17, 27'Z —
X is a kernel of f.

Retaining the notation, let us moreover assume that u is a monomorphism.
Then its kernel vanishes, one has 7.~ 7Z = o, hence £7'Z € D?', hence Z € D>°,
Since we had Z € D<°, this shows that Z € C. The preceding construction then
shows that u: X - Y is a kernel of v.

Similarly, if u is an epimorphism, its cokernel vanishes, hence 75,Z = o. This
implies that Z € D' n D>, hence £7'Z ¢ C. The preceding construction
shows that u is the cokernel of the morphism X 7'w: 27'Z - X.

We have shown that C' is an additive category in which every morphism
admits a kernel and a cokernel, such that every monomorphism is a kernel, and
every epimorphism is a cokernel. Consequently, C' is an abelian category.

b) By definition, a complex 0 - X > Y = Z — o in C is an exact sequence if
and only if u is a monomorphism and v: Y — Z is its cokernel. The description
of the cokernel of v shows that there exists a morphism w : Z — XX such that
the diagram X = Y %> Z 5 X is a distinguished triangle. Conversely, given
such a distinguished triangle with vertices in C, the construction of the kernel
and cokernel of u proves that o - X = Y 5> Z — o is an exact sequence.

o LetX5Y5Sz5 ZX be a distinguished triangle. Let us show that the
induced complex H°(X) LEONST (Y) —> o, H°(Z) is exact at H°(Y).

1) Let us first assume that X belongs to D<° and prove that H°(X) ——
He(Y) T, H°(Z) — o is exact.

In fact, we first begin by treating the particular case where all of X, Y, Z belong
to D<o,

°(u)
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Let T € C. Applying the (contravariant) cohomological functor D (-, T) to
the given triangle, we obtain an exact sequence of abelian groups:

D(EX,T) % D(z,T) 5 D(Y,T) > D(X,T).

Since XX € D<*and T € D?°, one has D(ZX, T) = o. On the other hand, since
T € D>°, the morphism &5 : Z — 75,Z induces an isomorphism D(75,Z, T) —
D(Z,T). Since T € D<°, the morphism 7., 7 T<oT30Z — T3,Z induces an
isomorphism D(715,Z,T) — D(H°(Z),T). In this way, the previous exact
sequence rewrites as the exact sequence
o He(v)* o HO(u)* o
o—- C(H°(Z),T) —— C(H°(Y),T) —— C(H°(X), T),

since H°(X), H°(Y), H°(Z) belong to C'. Since this holds for every object T
of C, the initial diagram is exact.

We now return to the general case where only X is assumed to belong to D<°.

Let us first prove that the morphism 7,,v € D(71,Y, 75,7) is an isomorphism.
Let T € D*'; applying the contravariant cohomological functor D (-, T) to the
initial distinguished triangle furnishes an exact sequence

DEXT) S Dz, T) S DY, T) S D(X,T).

Since X € D<°, one has X € D<° as well, and D(ZX,T) = D(X,T) = o,

because T € D?>'. Consequently, the morphism v*: D(Z,T) - D(Y,T)

is an isomorphism. Making use of the adjunction (73,,-), we obtain that

75,(v)*: D(15,Z,T) - D(7,Y,T) is an isomorphism. Since this holds for

every object of D>, we finally deduce that 75,v is an isomorphism, as claimed.
Let us now build an octahedron

X — 1Y U >X
|

| n = |
v

X 4 Y Y Z >X
(A i
2

T?lY T>1Y

:
)

XX —— 27, Y —— 2U —— 22X
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where the left vertical distinguished triangle is the truncation triangle associated
with Y. Let us consider the right vertical distinguished triangle U - Z —
75,Y — 2U. The morphism Z — 7,Y is precisely the composition of the
unit Z — 75,7 and of the inverse of the isomorphism 73,v. Consequently, the
object U is isomorphic to 7¢,Z, and this distinguished triangle is isomorphic to
the canonical truncation triangle of Z. The top horizontal distinguished triangle
then identifies with the triangle

T<oV

X5 TooY — Tl = ZX,

where 1’ is the unique morphism such that ey o 4’ = u. The three objects
X, T<o Y, T<oZ belong to D<°; applying the case already established, we obtain
the desired exact sequence.
2) One proves similarly (or by passing to the opposite category), thatif Z € D>°,
then the diagram o - H°(X) —— LEON Ho(Y) — ),
3) Let us finally establish the general case. We begin with an octahedron

H°(Z) is an exact sequence.

TgoX X T>1X ZTQOX
u |
v
ToX ——— Y U ST X
|
v |
A4
7 ———17
]
T1oX X S, X —— 221 X,

in which the left vertical triangle is the initially given distinguished triangle.
Since 1¢,X € D<°, the second horizontal distinguished triangle furnishes an
exact sequence

HO(X) HO(Y) H°(U) - o.
Since 75,X € D*', one has 27,,X € D>° and the the second vertical distinguished
triangle (shifted once) furnishes an exact sequence

o - H°(U) - H°(Z) - H°(Z7:,X).
The composition of the epimorphism H°(Y) — H°(U) and of the monomor-

phism H°(U) — H°(Z) is the morphism H°(v); we thus have established the
exactness of H°(X) - H°(Y) — H°(Z) at the middle object.
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This concludes the proof of c), hence of the theorem. ]

4.2.3. — If X e D<°, then H°(X) = 75,T¢cX = T5,X = 0. Similarly, if X € D>°,
then 7¢,X = 0 hence H°(X) = o.

For every integer n and every object X of D, we set H"(X) = H°(Z"X). With
this notation, any distinguished triangle X - Y - Z - X in D gives rise to a
long exact sequence

.- >H"'(Z) > H"(X) -~ H"(Y) - H"(Z) > H"(X) - ...

in C.
Observe that H*(X) = 215, 7¢,X. If X € D<" or X € D>", then H*(X) = o.
Let m be an integer and let #x : 7¢, X — X be the canonical morphism. For
every integer n > m, one has H"(7¢,,X) = o, since 7¢,, X € DX c D<"X. On
the other hand, if n < m, then H"(#x) : H"(7¢,X) - H"(X) is an isomorphism;

indeed,

Hﬂ
Hn(Tng) = T}nTgnTng ﬂ) T}nTan = HH(X)

Similarly, one has H"(73,,X) = o for n < m, while the canonical morphism
ex : X = T5,,X induces an isomorphism H"(X) — H"(75,,X) for n > m.

Definition (4.2.4). — A truncation structure (D<°, D>*) on D is said to be non-
degenerate if N, D>" and N, D" are reduced to zero objects.

The canonical truncation structure on the derived category D( A ) of an abelian
category (example 4.1.6) is nondegenerate. Indeed if X € N, D(A)>", then
H/(X) = o for every j € Z, so that the zero morphism o - X is a homologism.

However, the “degenerate” truncation structures of example 4.1.5 are not non-
degenerate.

Proposition (4.2.5). — Let (D<°, D>') be a nondegenerate truncation structure
on D. Then the following properties hold:

a) An object X € D is zero if and only if H/(X) = o for every integer j;

b) An object X € D belongs to D" if and only if H/(X) = o for every integer j
such that j > n;

c) An object X € D belongs to D>" if and only if H/(X) = o for every integer j
such that j < n;

d) Amorphismu: X — Yin D isanisomorphismifand only if H/(u) : H/(X) —
HI(Y) is an isomorphism for every integer j.
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Proof. — a) If X = o, then H/(X) = o for every j, because H/ is an additive
functor. Conversely let X be an object of D such that H/(X) = o for every
integer j.

First assume that there exists an integer n such that X € D<". Then o =
H"(X) = 75,(X), so that X € D<"'. By induction, one has X € ,, DX =
{o}. Similarly, if there exists an integer n such that X € D?>", then one has
o = H"(X) = 7¢,(X), hence X € D>"** and, by induction, X € N,, D" = {o}.

In the general case, let us consider the canonical triangle 7, X - X - 7, X —
21, X. Applying the functor H°, it induces a long exact sequence

L H'"Y(X) > H"(15,X) > H"(1¢X) > H*(X) —>

so that H*'(7,,X) ~ H"(1¢,X) for every integer n. Let n € Z; if n > o, we have
H"(7¢,X) = o; otherwise, one has n < o, then H"(7¢,,X) ~ H"(75,X) = 0
since n — 1 < 0. Since T¢, X € D<°, the particular case already treated shows that
T<oX = 0. One proves similarly that 7,X = o. Then, the distinguished triangle
o - X - 0 — o proves that X = o.

b) We already know that if X € D<", then H/(X) = o for every integer j > n.
Conversely, let X be an object of D such that H/(X) = o for every integer j > n.
Then the object 73,,,X satisfies H/(X) = o for every j € Z. By assertion a), one
has 75,.,X = 0, hence X € D", by corollary 4.1.9.

c¢) This is analogous: one proves that H/(7¢,_,X) = o for every integer j, hence
T<n X = 0, hence X € D",

d) If u is an isomorphism, then so is H" (1) for every integer n. Let us assume,
conversely, that H" (1) is an isomorphism for every integer n. Let us complete u
into a distinguished triangle X 5 Y 5 Z % X. Applying the functor H°, we
obtain a long exact sequence:

H" 1(W) ”(u) ) ”(W)

in C. Using that H"(u) is an isomorphism for every n, one deduces H"(Z) = o
for every n. By a), this implies that Z = o. Consquently, u is an isomorphism. [

4.3. t-exact functors

Definition (4.3.1). — Let D and D' be triangulated categories endowed with
truncation structures and let F: D — D’ be a triangulated functor. One says that
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F is right t-exact if F(D<°) c D'<°, and that it is left t-exact if F(D>') c D",
One says that F is t-exact if it is both left t-exact and right t-exact.

4.3.2. — Assume that F is left t-exact. By translation, one observes that
F(D>"*1) c D">"* for every integer n.

Let moreover X € D, let 7., X —» X 5 X - 2T, X be the canonical

triangle. Applying F, we obtain a distinguished triangle F(7¢,X) - F(X) ),

F(7.0X) = ZF(7,X) in D’. By assumption, F(71.,X) € D"°; consequently,
the morphism F(¢): F(X) - F(7.,X) factors through a unique morphism
T5oF(X) = F(750X).

4.3.3. — Assume that F is right t-exact. By translation, one observes similarly
that F(D<") c D'<" for every integer n.

Moreover, for every object, the morphism F(#) : F(7¢,X) - F(X) factors
through a unique morphism F(7,X) - 7¢,F(X), where 7: 7,,X - X is the
canonical morphism.

4.3.4. — Let F: D — D' be a triangulated functor between triangulated cate-
gories endowed with truncation structures. Let C and C’ be their hearts, and
letF=HCoF: C — C';itis an additive functor.

Proposition (4.3.5). — a) IfF is left t-exact, then Fis left exact.

Moreover, for every object X € D>°, the canonical morphism nx : T¢cX - X
induces an isomorphism H° o F(ny) : F(H°(X)) ~ H°(F(X)).

b) IfF is right t-exact, then F is right exact.

Moreover, for every object X € D<°, the canonical morphism ex: X — 75,X
induces an isomorphism He o F(ex) : HO(F(X)) — F(H°(X)).

Proof. —  a) Let us assume that F is left t-exact. Leto - X =Y - Z —» o
be an exact sequence in C'. By theorem 4.2.2, there exists a morphism w: Z —

»X such that X & Y 5 Z & X is a distinguished triangle. Applying the

triangulated functor F, we obtain a distinguished triangle F(X) W), F(Y) )

F(Z) ), 2F(X) in D’. Since F is left t-exact and X, Y, Z belong to D>, their

images F(X), F(Y), F(Z) belong to D">°; in particular, H*(F(Z)) = o. The long
exact sequence associated with the previous triangle and the cohomological
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functor H° give rise to an exact sequence

H° (u)

0~ HO(E(X)) T HO(F(Y)) > HO(F(2)).

This proves that the functor H® o F is left exact.

Let then X € D?>°, so that 7,,X = H°(X). Applying as above triangulated
functor F and the cohomological functor H°, the canonical triangle 7(,X LN
X = 1,,X - X7, X leads to an exact sequence

0 = HOF(1c,X) 2, HOR(X) — HOF(1,,X).
Since 7.,X € D*, the left t-exactness of F implies that F(7,,X) € D'**, hence
H°(F(1.,X)) = o. Consequently, the morphism H° o F(#x): F(H°(X)) =
HCF(H°(X)) - H°F(X) is an isomorphism, as claimed.
b) The case of a right t-exact functor is treated similarly. []

Corollary (4.3.6). — Let D, D’, D" be triangulated categories endowed with
truncation structures. Let F: D — D' and G: D' — D" be triangulated functors.

a) If F and G are left t-exact, then G o F is left t-exact and the morphism of
functors H°G(n) : G o F — G o F is an isomorphism, where 1: T¢, — id is the
counit of the adjunction (-, T¢,) in D.

b) IfF and G are right t-exact, then G o F is right t-exact and the morphism
of functors H°G(&) : G o F — G o F is an isomorphism, where : id — Ts, is the
unit of the adjunction (7s,,-) in D.

Proof. — a) Assume that F and G are left t-exact. Then G o F(D?') c
G(D") c D", so that G o F is left t-exact as well.

Let then X ¢ C. By definition, G o F(X) = H°(G(F(X))). Let Y = F(X); since
F is left t-exact, Y € D">°, and F(X) = H°(Y). Consequently, the morphism
H°G(7x) : G(E(X)) = H°G(Y) = G o F(X) is an isomorphism.

b) The case of right t-exact functors is analogous. ]

Proposition (4.3.7). — Let D and D’ be triangulated categories endowed with
truncation structures. Let G: D - D' and F: D' - D be triangulated functors.
Assume that F is right adjoint to G.

Then, F is left t-exact if and only if G is right t-exact. If these properties hold,
then F is right adjoint to G.
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Proof. — Let us assume that F is left t-exact and let us prove that G is right
t-exact. Let X be an object of D<° and let us prove that G(X) € D'<°. We use the
criterion of corollary 4.1.9;let Y € D"*%; since F is left t-exact, one has F(Y) € DY
consequently, D’(G(X),Y) ~ D(X,F(Y)) = o; this proves that G(X) € D<°.

Conversely, these arguments prove that if G is right t-exact, then F is left
t-exact.

Let X be an object of C’" and Y be an object of C'. Since F(Y) € D>°, one has
F(Y) = Ho(F(Y)) = 1 F(Y); similarly, G(X) = H(G(X)) = 75,G(X).

The adjunction (G, F) furnishes a bifunctorial isomorphism D (X, F(Y)) ~
D'(G(X),Y). Since X € D<°, the adjunction (-, 7¢,) furnishes a bifunctorial
isomorphism C(X,F(Y)) ~ D(X,F(Y)). Similarly, the adjunction (7,")
furnishes a bifunctorial isomorphism C’(G(X),Y) ~ D'(G(X),Y).

The composition of these isomorphisms is a bifunctorial isomorphism
C(X,E(Y)) ~ C'(G(X),Y). In particular, F is right adjoint to G. O

4.4. Glueing truncation structures

Proposition (4.4.1). — Let D be a triangulated category, let M, N be two full
triangulated subcategories such that every object isomorphic to an object of M
(resp. N ) belongs to M (resp. N ). We make the following hypotheses:

(i) Forevery A e M and every B e N, one has D(A,B) = o;

(ii) For every object X € D, there exists a distinguished triangle A - X - B —
XA, where Ae M andBe N.
LetQpr: D - D/M and Qn : D — D/ N be the localization functor from D
to its quotients by the subcategories M and N respectively.

a) The functor Qp|n : N — D/ M is an equivalence of categories. It admits
a quasi-inverse whose composition with Qg is a left adjoint T of the inclusion
N - D.

b) The functor Qn|pr: M — D/ N is an equivalence of categories. It admits

a quasi-inverse whose composition with Q is a right adjoint Tpr of the inclusion
M - D.

We shall sum up the conclusion of the proposition by saying that the diagrams
o>M->D N o and 0o>N->D Mo

are exact sequences of triangulated categories.
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Proof. — 'The two statements are obtained one from another by passing to the
opposite category, so that we only prove the first one.

Let us observe that (M, IV ) is a truncation structure on D. By corollaries 4.1.8
and 4.1.9, an object X of D belongs to N if and only if D(A,X) = o for every
object A of M, and an object X of D belongs to M if and only if D(X,B) = o
for every object B of IN. Moreover, the subcategories M and N are thick.

Let X,Y be objects of N. By proposition 2.5.17, the localization func-
tor Qpr: D - D/ M induces an isomorphism

N(X,Y) = D(X,Y) > (D/M)(Q(X), Q(Y)),

so that the functor Qy is fully faithful.

Lettpr: D - M and 7y : D — N be the truncation functors associated with
this truncation structure. Let X be an object of D; in the canonical distinguished
triangle 7y X - X - 78X = 73X, the morphism X - 75X induces an
isomorphism in D /N, by construction of the quotient category, because 75X €
M . Consequently, Qn (X) =5 Q ~ (7 X). This proves that the functor Qy is
essentially surjective.

We then observe that the functor 7p7: D — M is a right adjoint of the
inclusion functor M < D. By what precedes, it induces a quasi-inverse of the
functor Qx. []

4.4.2. The general context of glueing. — We fix some notation which will
remain in force in the following sections; the motivation for this situation will
be explained in example 4.4.3.

We assume given three triangulated categories D, Dy, Dy and six triangulated

functors:
it Ji
Dr D Dy

We also make the following hypotheses:

(i) The two pairs (i*, i,) and (i., i') are adjoint.

(ii) The two pairs (ji, j*) and (j*, j.) are adjoint. In each case, the corre-
sponding units will be denoted by a letter ¢, the corresponding counits by a
letter 7.
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(iii) The functors i., j and j, are fully faithful. Equivalently, the counits
i*i, - id and j*j. — id are isomorphisms, as well as the units id - i'i, and
id —» j*j!.

(iv) One has j*i. = 0. As a consequence, its left adjoint i* j; = o, and its right
adjoint i'j, = 0. Moreover, for X € Dg and Y € Dy, one has D(Y,i.X) =
Dy(Y, j*i.X) = oand D(i.X, j.Y) = Dy(j*i.X,Y) = o.

(v) For every object X € D, there exists distinguished triangles

X5 XS0 X > "X
and
X5 X5, X > 20X

By corollary 2.2.7, the unlabeled arrows of these triangles are uniquely deter-
mined and these triangles are functorial in X.

Observe the symmetry: passing to the opposite categories interchanges i'
and i* on the one hand, and j, and j. on the other hand.

As a consequence of these hypotheses, we note the following functorial iso-
morphism, for every Y € Dy:

Dy(jiY, j.Y) = Dy(Y. j*j.Y) = Dy(Y. Y).

Example (4.4.3). — The important example of such a glueing context, and the
motivation for the notation, comes from topology.(*) Then, D, Dy and Dy, are
the derived categories D(Ab(X)), D(Ab(U)) and D(Ab(F)) of the categories
of abelian sheaves on a topological space X, an open subset U, and the closed
complement subset F = X=U. Let i : F - X and j: U - X be the inclusions.

(i) The extension by zero functor i, = i, : Ab(F) - Ab(X) is exact, and
induces a functor, still denoted i., from Dg to D. The functor of restriction
to F, i*: Ab(X) - Ab(F), is also exact, and induces a triangulated functor
i* D — Dk. The functor i, does not admit a right adjoint at the level of categories
of sheaves, but Verdier duality provides a right adjoint i' : D — Dy at the level
of derived categories.

(2)What follows is not strictly true; one should rather assume that X, U, F are moderate topological
spaces and restrict to the subcategories of the indicated derived categories consisting of complexes with
constructible cohomology. This will hopefully be cleaned up once the sections on Verdier duality and
constructible sheaves are written.
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(ii) Similarly, the extension by zero functor j;: Ab(U) - Ab(X) is exact
and fully faithful and induces a functor j;: Dy - D.

The functor of restriction to U, j*: Ab(X) - Ab(U), is exact as well, and
induces a functor j*D — Dy.

On the other hand, the functor j.: Ab(U) - Ab(X) is only left exact and
we denote by j. : Dy — D its right derived functor.

(iii) The full faithfulness of i., j; and j. holds at the level of categories of
sheaves, it remains true at the level of derived categories.

(iv) The relation j*i, = o holds at the level of categories sheaves, and remains
true at the level of derived categories.

(v) Every abelian sheaf .# on X gives rise to an exact sequence

0—>jj ' F - F - i i"F —o.

Applied to every term of complex C of abelian sheaves on X, these exact se-
quences furnish an exact sequences of complexes of abelian sheaves, hence,
passing to the homotopy category K (Ab(X)), a distinguished triangle

1jfC—>C—i,i"C— XjjC.
The second required distinguished triangle is deduced from this one by apply-
ing the duality functor.

For every Y € Dy, the identity morphism idy € Dy(Y,Y) corresponds, via
the isomorphism D (Y, j.Y) ~ Dy(Y,Y) to a morphism /Y — j,Y. At the
level of sheaves, this morphism is nothing but the fact that the sheaf j.% is a
subsheaf of j.. 7.

Proposition (4.4.4). — With the hypotheses of §4.4.2, one has the following three
exact sequences of triangulated categories:

it Ji
O—>DF<—D<—Du—>O
i J
O—>DF—>D—>DU—>O
i Jx
o0—> Dy~ D <+ Dy - o.

Proof. — Since the triangulated functors i, : D - D and j,: Dy - D are
tully faithful, they induce equivalences of triangulated categories from Dy and
Dy to their images. The hypothesis (iv) and the first distinguished triangle (v)
of §4.4.2 allow us to apply proposition 4.4.1 to the triangulated category D and
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to its pair (i, Dg, j1Dy) of triangulated subcategories. It furnishes two exact
sequences of triangulated categories

*

o—>DFi>D]—>DU—>o and o—>DU£>Di—*>DF—>o.
Indeed, with the notation of that proposition, the two functors 7p, and 7p, are
induced by the distinguished triangle (v), hence are given by 7p,X = jij*X and
Tp.X = i,i*X; finally, we have identified Dy and Dy as a subcategory of D via
the functors j, and i, respectively.
The same argument applied to the second distinguished triangle of §4.4.2 (V)

furnishes two exact sequences of triangulated categories:

*

i* J j* i!
o—->Dfr— D — Dy—o and o— Dy— D — Dg — o.

The second exact sequence is the one that was missing. []

Definition (4.4.5). — Let (D§°, D{') and (Dg°, Dg") be truncation structures
on Dy and Dk respectively. Let D<° and D> be the full subcategories of D whose
objects are given by

(4.4.5.1) ob(D*°) = {Xeob(D); j*X € D andi*X € D°}
(4-4.5.2) ob(D*') = {Xeob(D); j*X € D' andi'X € D'},

Theorem (4.4.6). — The pair (D<°, D>") given by definition 4.4.5 is a truncation
structure on D.

We say that this truncation structure of D is obtained by glueing the given
truncation structures on Dy and Dk.

Proof. — We check the axioms of a truncation structure.

a) By construction of the categories D<° and D>°, they contain any object
of D which is isomorphic to one of their objects.

b) Let X € ob(D<°) and let Y € ob(D*'). Applying the contravariant coho-
mological functor D(-,Y) to the distinguished triangle j,j*X - X — i,i*X —
> j1j*X, we obtain an exact sequence

D(i.i*X,Y) - D(X,Y) > D(jij*X, Y).

By adjunction of the pair (i,,i'), one has D(i,i*X,Y) ~ Dg(i*X,i'Y) = o,
since i*X € Dg° and i'Y € Dg'. Similarly, the pair (ji, j*) is adjoint, hence
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D(jij*X,Y) ~ Dy(j*X, j*Y) =~ o, since j*X € D§° and j*Y € D{'. Conse-
quently, D(X,Y) = o.

¢) The inclusions 2 D<° c D<° and X' D?' c D> follow from the fact that
the functors i*, j* and i' are triangulated.

d) Let X be an object of D; let us construct a distinguished triangle A - X —
B - XA, where A € D<° and B € D~

Let g: X = j,T.,j*X be the unique morphism whose image under the ad-
junction isomorphism D (X, j.75,j*X) ~ Dy(j*X, 75,j*X) is the canonical
morphism ¢j:x : j*X — 7,,j*X. We complete g into a distinguished triangle

YL X & 00X > 5Y.

Similarly, letv: Y — i,7,,i*Y be the unique morphism whose image under the
adjunction isomorphism D(Y, i,7.0i*Y) ~ Dg(i*Y, 75,i*Y) is the canonical
morphism ¢;+y: i*Y - 7.,i*Y. Let us complete v to a distinguished triangle
ASY S 100" > ZA.

Let us then build an octahedron:

A 4 Y Y 1 Tooi’Y —— A

| f : |
fou w
A X B A
14 k
j*T>oi*X e j*T>oi*X

A “ >Y Y Yi.Tooi’Y —— 22A.

It suffices to prove that A € D<° and B € D>
Applying the functor j* to the second vertical triangle, we obtain a distin-
guished triangle

% h % k
! ( ) ]*B ! ( ) j*jx-T>oj*X—> Zj*i*T>oi*Y.

J Tl Y

Since j*i. = o, the morphism j*(k) is an isomorphism. Composed with the
counit 7 : j*j, — id (which is an isomorphism, because j, is fully faithful), we
obtain an isomorphism 7, jx © j*(k) : j*B = 7,,j*X. In particular, j*B € D7
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Similarly, applying the functor i' to this second vertical triangle, we obtain the
distinguished triangle

i'(h i'(k)
()ilB (k) .r.

.. . . .l .. .
Fi,Tsol’Y I eTsol X = Zii,Tsoi Y.

Since i'j, = o, the morphism i'(/) is an isomorphism. Composed with the unit
e: id = i'i, (which is an isomorphism, because i, is tully faithful), we obtain
an isomorphism i'(h) o &,y : T50i*Y — i'B. Consequently, i'B € DZ".

Let us now apply j* to the second horizontal triangle; we obtain a distinguished
triangle

j*(fou) j*(w)

jTA i'X j'B = Zj A.
Observe that &, j+x 0 j*(k) o j*(w) = &, jox 0 j*(kow) = &-»x 0 j*(g) = €jx.
Consequently, we have a distinguished triangle

jA UM, e T L X s SfA
Equivalently, the morphism j*( f o u) factors uniquely through an isomorphism
j*A = T¢j*X. In particular, j*A € D5°.
Let us apply i* to the first horizontal triangle; this furnishes a distinguished

triangle

A W, ey

The counit # : i*i, — id is an isomorphism, because i, is fully faithful, and one

(v)

"1, Tsoi Y = Zi"A.

has 77, _;+y 0 i*(v) = i*Y. Consequently, there exists a distinguished triangle of

the form
i*(u) | ni*Y
i

Tsol Y = Zi"A.
This implies that the morphism i*(u) factors uniquely through an isomorphism
i*A = T¢i*Y. In particular, i*A € Dg°.

We thus have proved that A € D<° and B € D>, as claimed.

Consequently, (D<°, D>') is a truncation structure on D. O]

Proposition (4.4.7). — a) The functors j, and i* are right t-exact;
b) The functors j* and i, are t-exact;
c) The functors j. and i' are left t-exact.

Proof. — If X € D<°, then j*X € D° and i*X € D;°; consequently, j* and i*
are right t-exact. If X € D>', then j*X € D} and i*X € D;'; consequently, j* and
i* are left t-exact.
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By proposition 4.3.7, the functor j is right t-exact and the functor j, is left
t-exact, because j is a left adjoint of j*, and j. is a right adjoint of j*.

Since it is a right adjoint of i* and a left adjoint of i*, proposition 4.3.7 implies
that the functor i, is t-exact. [

Corollary (4.4.8). — Let Cy and Cy denote the hearts of the given truncation
structures on Dy and Dy, and let C' be the heart of the truncation structure on D
which is obtained by glueing. For each of the six functors F € {i.,i',i*, j*, ji, j« |
we let F = H° o F the corresponding functors between the hearts:

a) The adjoint pairs (ji, j*), (j*, j«), (i*,i.) and (i.,i') give rise to adjoint
pairs (ji, 7*), (%> j«), (i*,i.) and (i, 1"). Moreover, the functors i., j and j, are

fully faithful.
b) One has j* o i, =o0,i" 0 jy=o0andi' o j, =o. Forevery object X € Cr and

every object Y € Cy, one has C(i.X,j.Y) = C(jY,i.X) = o.
c) For every object X € C, there are exact sequences

o->L,H'(i"X) > jjjX>X->Li"X—>0

and
0—i.iX—>X->7jX - .H(i'X) - o.

Proof. — a) The first part follows from proposition 4.3.7.

Let X, Y € Cy. One has bifunctorial isomorphisms
C(7HX, 1Y) = D(750jiX, T50/1Y) (jy is right t-exact)

~ D(jiX, T50j1Y) (by adjunction of (75,,-))
~ Dy(X, j 150/1Y) (by adjunction of (i, j*))
~ Dy(X, 750 1Y) (by t-exactness of j*)
~ Dy(X, 75,Y) (because id ~ j*j))

~ D(X,Y) ~ C(X,Y),

under which a morphism f € C'(X,Y) corresponds with j, f € C (7 X, j1Y). This
proves that the functor j is fully faithful.
One proves similarly that the functor j. is fully faithful.
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Let then X, Y € Ck. Since the functor i, is t-exact, its restriction to Cy coin-
cides with the functor 7. Since i. is fully faithful, the functor i, is fully faithful
as well.

b) The three equalities follow from corollary 4.3.6 and the fact that j* and i,
are both left (or right) t-exact, that i* and j, are both right t-exact, and that j,
and i' are both left t-exact.

c) Let X € C and let us apply the functor H° to the canonical distinguished
triangle

QX > X > i,i'X > Zjj*X.
One obtains an exact sequence
H(X) - H'(i,i*X) - H°(jij*X) » H°(X) - H°(i,i*X) - H'(jij*X).

Since X € C, one has H°(X) = X and H*(X) = o. Since j* and j, are both
right t-exact, one has H°(jj*X) = 7,j*X. Since i, and i* are both right t-exact,
one has H°(i,i*X) = i,i*X and H*(7,i*X) = i, H*(i*X) = 7,H*(i*X). Finally,
2X e Ds 7 since jy and j* are both right t-exact, this implies j,j*X € D<°, hence
Yjij*X e DSt and H°(X,7*X) = o. This furnishes the desired exact sequence

LH'(i"X) » 17X > X > i,i"X - o.

The second exact sequence is established similarly, by applying the functor H°
to the distinguished triangle i,i'X - X - j, j*X - Zi,.i'X. O

Proposition (4.4.9). — The truncation structure on D is nondegenerate if and
only if the given truncation structures on Dy and Dy are nondegenerate.

Proof. — Let us assume that the given truncation structures on Dy and Dy
are nondegenerate, and let us prove that the truncation structure (D<°, D) is
nondegenerate as well.

Let X € N D<". Consequently, j*X € D§" and i*X € Dg" for every integer n,
so that j*X = o and i*X = o. The distinguished triangle j;j*X - X - i, i*X —
2 jij*X then proves that X = o.

Similarly, let X € N,, D>". This implies that j*X € N, D" and i'X € N, D7,
so that j*X = o0 and i'X = o. The distinguished triangle i,i'X - X - j,j*X —
Yi,i'X then proves that X = o.

Conversely, let us assume that the truncation structure on D is nondegenerate.

It follows from the fact that the functor i, is t-exact and fully faithful that the
truncation structure on Dy is nondegenerate. Let indeed X € N Dg". Since i, is
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t-exact, one has i.X € D5", hence i,X = o. Since X ~ i*i, X, one has X = o. Let
then X € N Dg". Since i, is t-exact, one has i.X € D;", hence i,X = o. Since
X ~ i*i, X, one has X = o. This proves that the truncation structure on Dk is
nondegenerate, as claimed.

Using that the functor ji is right t-exact and fully faithful, one proves that
N D" = o. Using that the functor j, is left t-exact and fully faithful, one
proves that N D" = o. This shows that the truncation structure on Dk is
nondegenerate. ]

Example (4.4.10). — Let us start with a given truncation structure ( D, DE Y
on Dg but with the degenerate truncation structure (Dy, 0) on Dy and let us
consider the resulting truncation structure on D.

Let 7€, : D — D<° be the corresponding truncation functor, right adjoint to
the inclusion of the subcategory D<° whose objects X are characterized by the
condition i*X € Dg°.

Let us go back to the proof of theorem 4.4.6, especially part d). With the
notation of that proof, we have 7.,j*X = o (because of the choice of the trun-
cation structure on Dy), hence Y = X, f = id; moreover, A = £ X. Also, h is
an isomorphism (two out of three arrows defining the morphism of horizontal
triangles are isomorphisms), so that B ~ i, 7,,i*Y. Then, the second horizontal
distinguished triangle of the octahedron furnishes the canonical truncation
triangle of X:

15 X > X = i, 1501 X > 215 X,

Finally, for every X € D, one has
HO(X) = 15, 150X = 15,1, T50i X = 1. H(i*X),
since i, 1s t-exact.

Example (4.4.11). — Still starting with the truncation structure (Dg°, D)
on Dy, let us consider the degenerate truncation structure (o, Dy) on Dy.

In that case, an object X of D belongs to D>' if and only if i'X € DZ°. Let us
denote by 7%, the left adjoint of the inclusion functor D>° — D. For every ob-
ject X, the canonical truncation triangle of X relative to this truncation structure
writes

1. Teoi' X > X > 15 X = i, 701X,

and the cohomological functor is computed as H(X) = i, H°(i'X).
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Example (4.4.12). — Let us now start with the degenerate truncation structure
(Dr, 0) on Dr and with the given truncation structure (Dg°, D;°) on Dy. An
object X of D belongs to D<° if and only if j*X € D§°. We denote by 77, be
the associated truncation functor, right adjoint of the inclusion D<° — D. The
canonical truncation triangle associated with an object X writes

19X > X = juTsoj X > 212X,
and the cohomological functor is given by H°X = j.H°j*X.

Example (4.4.13). — Finally, we start with the degenerate truncation structure
(0, Dg) on Dy and with the given truncation structure (Dg°, D{°) on Dy. An
object X of D belongs to D>° if and only if j*X € D{°. Let us denote by 73, the
associated truncation functor, left adjoint of the inclusion D>° — D. For every
object X of D, the canonical truncation functor writes

jiTeof X > X > 15X > jiTojX,
and the cohomological functor is given by H°X = jH°(j*X).

Remark (4.4.14). — The four truncation structures on D described in exam-
ples 4.4.10, 4.4.11, 4.4.12 and 4.4.13 can be used to describe the truncation struc-
ture given by theorem 4.4.6. Indeed, one has the formulas

F _U F _U
T<o = TeoT<o and Tso = T30 T50-

To prove the first formula, let us go back to the octahedron drawn in the course
of the proof of theorem 4.4.6. In that diagram, the first vertical distinguished
triangle identifies with the canonical truncation triangle associated with the
truncation structure of example 4.4.12, so that Y = TEOX. Then 7, X = A =

The other formula is deduced from that one by passing to the opposite cate-
gories (and exchanging i* and i* on the one hand, and j,. and j, on the other

hand).

4.5. Extensions
We retain the notation of the previous section, as given in §4.4.2.

Definition (4.5.1). — LetY € Dy. An extension of Y is an object X of D endowed
with an isomorphism u: j*X — Y.
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Let (X, u) be an extension of Y. By the adjunction (j*, j.), the datum of
the morphism u is equivalent with that of a morphism u! € D(X, j,Y). On
the other hand, the morphism u™*: Y — j*X corresponds with a morphism
u’ € D(jY,X) under the adjunction (ji, j*). This furnishes a diagram

ub uu
7Y - X — .Y
whose composition is the element of D (Y, j.Y) ~ Dy(Y, j*j.Y) ~ Dy(Y,Y)
corresponding to idy.

After translation and identifying j*X with Y, the canonical distinguished
triangle i, i'X - X — j, j*X — Zi,i'X furnishes a distinguished triangle:

i
(4.5.1.1) X5 .Y - i, i'2X > =X,

Applying the functor i* to this triangle and using the isomorphism of functors
i*i, — id, we obtain another distinguished triangle:

% i*(”n) ex . .1 %
(4.5.1.2) "X —i"j.Y > i'ZX - Zi*X.

4.5.2. — If (X, u) and (X', u’) are two extensions of Y, a morphism of exten-
sions from X to X’ is an element f € D (X, X") that makes the following diagram

commutative
J X

i*(f) Y,

j*X!

in other words, such that u’ o j*(f) = u.
This furnishes the commutative diagram

Y f 7Y

Conversely, a morphism f: X — X’ is a morphism of extensions if and only if
fou'=u't ifand onlyifu't o f = ul,
Extensions of a given object Y € Dy form a category.



4.5. EXTENSIONS 141

Example (4.5.3). — Let Y be an object of Dy. The object jY, endowed with the
isomorphism ey : Y — j*Y, unit of the adjunction ( j, j*), is an extension of Y.
The object j, Y, endowed with the isomorphism 7y : j*j.Y — Y, counit of the
adjunction (j*, j. ), is an extension of Y. Moreover, the canonical morphism
7Y = j.Y is a morphism of extensions.

Example (4.5.4). — Let Y be an object of Dy, let p be an integer and let X =
Tgpj!Y.

Let us apply the functor j* to the canonical distinguished triangle i.7.,i' i)Y —
e Tgpj!Y — Xi.T,i'jiY; since j*i, = o, we get a distinguished triangle o —

Y EAUA j*75,j1Y = o, so that j*(v) is an isomorphism. Letting u = j*(v)oey
be its composition with the unit ey: Y — j*j,Y, this furnishes an extension
(X,u) of Y.

More precisely, let (X', u") be another extension of Y, where X’ is isomorphic
to X as an object of D. Let us show that there exists at most one morphism
f: X = X'such that u = u’ o j*(f), in other words, at most one an morphism of
extensions from (X, u) to (X', u’), and that, in this case, f is an isomorphism.
Indeed, let us complete the morphism u’*: j;Y — X to a distinguished triangle

u't
Z - jyY — X — XZ and consider a partial morphism of distinguished triangles:

b

i Tpi' )Y — jY —— X DiTepi' Y
|
gi ]' :f iZg
v " ¥ v
7 — jYy — X >Z.

Relative to the truncation structure on D of example 4.4.13, the object i, 7' j1Y
is < p, and X' =~ TEP 1Y is > p, hence 27X’ is > p as well. Consequently,
D(i.7,i'jiY,27X’) = o. It then follows from corollary 2.2.6 that there ex-
ists at most one isomorphism of extensions.

Consequently, we will allow ourselves to say that an extension of Y “is” iso-
morphic to 75 ,jiY.

Example (4.5.5). — Let Y be an object of Dy, let p be an integer, and let X =
7¢,j+Y. Applying j* to the canonical distinguished triangle 7£,j;Y LY -
1 Tsoi*Y — ngpj!Y, we obtain that j*(v) is an isomorphism. Then u = #y o
j*(v): j*X > Y is an isomorphism, so that (X, u) is an extension of Y.
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By duality, one deduces from the preceding example that if (X', u’) is an exten-
sion of Y such that X’ is isomorphic to X, as an object of D, there exists a unique
morphism of extensions f from (X, u) to (X', u’), and it is an isomorphism.

Theorem (4.5.6). — Let Y be an object of Dy. Let p be an integer. Then X =
18,7 Y = 15,7 is the unique extension of Y such that i*X € Dg¥ and i*X e D*.

Proof. — Let (X, u) be an extension of Y and let u’: ;Y - X and u!: X - ..
be the morphisms deduced by adjunction. Let us prove that the following
properties are equivalent:

(i) i*X e D;¥ and i'X € D;%;

(ii) X~ 1,,(i*5.Y);

(i) X = 7, (i*].Y);

(iv) X ~ TEpj*Y;

(v) X = 7E, .

Precisely, in (ii), we mean that the morphism i*j,Y — i'2X appearing in the
distinguished triangle (4.5.1.2) factors through an isomorphism 7,(i*j.Y) —
i'>X. Similarly, in (iii), we mean that the morphism i*(u!) factors through an
isomorphism i*Y — 7.,(i*j.Y).

If condition (i) holds, then the distinguished triangle (4.5.1.2) writes i*j.Y as
an extension of the object i*X € Dy’ by the object i'X € D.”. By uniqueness of
the truncation triangles associated with a truncation structure (proposition 4.1.7,
d)), one has i*X ~ 7.,i*j,Y and i'X =~ 7,,i*j.Y. This shows the implications
(i)=(ii) and (i)=(iii).

(i) implies that i'X € D;” and that 7,i*X = o, hence (i). Similarly, (iii)
implies that i*X € D;p and that 75,i'XX = o, hence (i).

Assume (iv). By assumption, one has i*X ¢ D;p . On the other hand, the
uniqueness of a morphism of extensions X « 7£,,j. Y implies that 7. i'XX belongs
to the > p-part of the truncation structure of example 4.4.10, that is, i'i,i'2X €
D;p and j*i,i'2X = o. This implies (i).

Conversely, if (i) holds, then j*i.i'ZX = o, so that in the distinguished trian-
gle (4.5.1.1), the objet X belongs to the < p-part and the object i, i'2X belongs
to the > p-part of the truncation structure of example 4.4.10. This implies that
X = 1£,7.Y, hence (iv).

The proof of the equivalence (i)<(v) is analogous.

This concludes the proof of the theorem. O]
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Proposition (4.5.7). — a) The functor j* : C' — Cy identifies the abelian cate-
gory Cy with the quotient of the abelian category C by the essential image C'y of
the functor i..

b) For every object X of C, i.i*X is the largest quotient of X that belongs to C',
and 1.1'X is the largest subobject of X that belongs to Cf.

Proof. — a) Let us first show that the category CF is the kernel of the func-
tor j*: C — Cy. The relation j*i, = o implies that Cr c Ker(j*). Conversely,
let X € C be such that j*X = o. The exact sequences of corollary 4.4.8, c), show
that 7,7*X ~ X ~ 7,7'X; in particular X belongs to C’z. Consequently, the func-
tor j* factors uniquely through a functor T: C /EF - Cy.LetS: Cy - C /EF
be the composition of the functor j; with the canonical functor C - C/Cp.
The isomorphism j* o j ~ id implies that T o S ~ id. On the other hand, the the
first exact sequence of corollary 4.4.8,c), implies that So T ~ id. Consequently, T
is an equivalence of categories, as claimed.

b) Let Xbean object of C. By corollary 4.4.8, c), the canonical morphism X —
1,1*X is an epimorphism. Conversely, let v: X — 7, Y be an epimorphism from X
to an object of C'’. Since the pair (i*, 7, ) is adjoint, the morphism v corresponds
to a morphism v : i*X — Y, and v’ = y o 1*(v), where #: i* 0 i, — id is the
counit (it is an isomorphism because i, is fully faithful). Then v = 7, (v") o ex
factorizes uniquely through 7,7*X.

Similarly, the canonical morphism 7,7'X — X is a monomorphism. Let then
w: i,Z - X be a monomorphism from an object of Cy to X. Let w!: Z - 'X
be the morphism associated with w by the adjunction (i.,#'). If : i, o i' — id
is its counit, then w = #x o i, (w!) is the unique factorization of w through 7..i'X,
as claimed. []

4.5.8. — Let Y € Cy. Since the functor j is right t-exact, one has j|Y € D<°,
and /)Y = 75,j1Y. Since the functor j. is left t-exact, one has j,Y = 74j.Y.
Moreover, there exists a unique morphism i : 7Y — .Y such that j*(i) is the
composition of the counit j*j, — id and the unit id — j*j, associated with the
adjoint pairs (j*, j.) and (j;, j*). This leads to a canonical diagram

jiY BY — Y —— Y,

u

where u: j)Y — j,.Y is the canonical morphism.
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Definition (4.5.9). — Let Y € Cy. One defines ji. = Im(j)Y — j.Y). It is called
the middle extension of Y.

The middle extension fits naturally in a diagram

j!Y j‘Y j!*Y > _]N*Y . ]*Y

u

When one applies the functor j* to this diagram, the first term j*j|Y and the
last term j*j,Y are isomorphic to Y via the unit of the adjunction (ji, j*) and
the counit of the adjunction (j*, j. ) respectively, and all morphisms are isomor-
phisms. In this way, ji. is naturally an extension of Y.

Proposition (4.5.10). — Let Y € Cy. One has the following relations:

a) X = 1Y = tt_jiY = £ j.Y is the only extension of Y in D such that
i*X e Dt and i'X € DY

b) X = j.Y = £ i)Y = 1£, j.Y is the only extension of Y in D such that
i*X € Dg° and i'X € Dg°;

c) X=7.Y=154Y =1L .Y isthe only extension of Y in D such that i*X € D'
and i'X € D

Proof. — All these assertions follow from theorem 4.5.6, except for the identifi-
cation of /1Y, ji.Y and j.Y with the indicated extensions.

a) One has j*jiY ~ Y € Cy; consequently, i)Y = 750iY = 75,75 1Y = 75 71Y.

c¢) One has j*j.Y ~ Y € Cy; consequently, j.Y = 7¢,j.Y = 75,72 j.Y =
LY.

b) Let X = 7£ Y = 7£,j.Y; let us first show that X € C'. Since i*X € D;° and
j*X ~Y € Cy, one has X € D<°; since i'X € Dg° and j*X ~ Y € Cy, one has
X € D?°; consequently, X € C, as claimed.

The cohomology functor associated with the truncation structure of exam-
ple 4.4.10 is i, H°i*. Consequently, the canonical morphism 7t_ ;.Y — 7£ j.Y
can be completed to a distinguished triangle

Y- Y- Zi. H" .Y - 25 j.Y.

By a), we have 7f_j.Y = j|Y. By rotation, the preceding triangle gives the
following distinguished triangle:

iH'i" .Y - Y - X = Zi, H"i"}.Y.
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Since the three vertices of this triangle belong to C, the diagram
o-i,H'i"jL,Y=>jY>X—>0

is an exact sequence, as claimed.
By duality, the canonical morphism 7f_,j;Y — 7£, Y furnishes an exact se-
quence
o—-X-7Y-iHijY-o.
This proves that X is the image of the canonical morphism /Y — j.Y, hence
X = ji. Y, as was to be shown. [

Corollary (4.5.11). — Let Y € Cy. Then X = }.Y is the unique extension of Y
in C which has no non-trivial subobject and no non-trivial quotient in C’.

Proof. — Let X € C be an extension of Y. By proposition 4.5.7, b), the largest
quotient of X that belongs to Cy is 7.7*X. One has i*X € Ds°, because i* is right
t-exact, hence i*X = H°i*X. Since 1. is exact and fully faithful, this quotient
vanishes if and only if i*X € Dg°.

Similarly, the largest subobject of X that belongs to Cr is 7.i'X. Since i' is
left t-exact, one has i'X € DZ°, hence i'X = H°i'X. It vanishes if and only if
i'X e Dg°.

The corollary thus follows from proposition 4.5.10. ]

Corollary (4.5.12). — The functor j.: Cy — C' if fully faithful and respects epi-
morphisms and monomorphisms. It induces an equivalence of categories from Cy
to the full subcategory of C' consisting of objects X such that i*X = i'X = o.

However, the functor j). is not exact in the middle in general, see (
, , p- 562).
Proof. — Let f:Y — Zbe a morphism in Cy. The morphisms j(f) and j.(f)
fit in a diagram
j!Y —> ]N!*Y D j*Y
i) o o
JZ ——> JuZ —— J.Z.
Assume that f is a monomorphism. Since J. is left exact, the morphism j, ( f)

is a monomorphism, and one reads on the preceding diagram that j,.(f) is a
monomorphism as well.
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Similarly, assume that f is an epimorphism. Since j; is right exact, the mor-
phism j,( f) is then an epimorphism. This implies that j,.(f) is an epimorphism
as well.

Since j* o jj. = id, the functor j. is faithful. On the other hand, let f: 7,.Y —
J1+Z be a morphism in C, and let

g=f—Jjuoj (f): juY ~ juZ.

One has j*(g) = o0; consequently, Ker(g) is a subobject of j,Y such that
7*(Ker(g)) =Y, because j* is exact. This implies that j,. Y/ Ker(g) belongs to the
subcategory C'y, hence is zero, by corollary 4.5.11. Consequently, Ker(g) = j..Y,
hence g = o and f = ji. o j*(f). Consequently, the functor j. is fully faithful.

Let Y be an object of Cy and let X = j.Y. By proposition 4.5.10, one has
i*X € Dg°, hence i*X = H°(i*X) = o. Similarly, one has I'X = 0. Conversely, let
X be an object of C' such that i*X = i'X = 0. Let Y = j*X. By construction, X is
an extension of Y in C'. By proposition 4.5.7, b), 1.7*X = o is the largest quotient
of X that belongs to Cr, and 7, i'X = o is the largest subobject of X that belongs
to Cg. By corollary 4.5.11, X is isomorphic to j,. Y. This concludes the proof. []

Corollary (4.5.13). — The simple objects of the category C are the objects .S, for
S € Cy simple, and the objects 1. T, for T € Cr simple.

Proof. — a) Let us first prove that for every object S € Cy, j..S is simple if
and only if S is simple.

Assume that j,..S is simple. Necessarily, S is nonzero; let S’ — S be a nonzero
subobject. Then j.S" — j..S is a subobject as well, because j,, preserves
monomorphisms, and .S’ is nonzero, since its image under j* is §’. Conse-
quently, j.S’ - .S is an isomorphism, and applying j*, we conclude that
S’ — S is an isomorphism. This shows that S is simple.

Conversely, let us assume that j..S is not simple and let us prove that S is not
simple. If ji.S ~ o, then S ~ j*j,.S ~ o. Let us thus assume that j,.S # o and let
T — j..S be a subobject which is neither o, nor an isomorphism; let 7,.S - T’ be
its cokernel, so that we have an exact sequence o - T — .S - T’ — o. Since
7* is exact and j*ji. ~ id, we have an exact sequence o - *T - S - j*T’ — o.
Since 7S has no nonzero subboject in C’y, one has j*T # o; similarly, one has
7*T" # o. This proves that S is not simple.

b) Since j*j). ~1id, if, for two objects S and S’ of Cvy, the objects .S and .S’
of C' are isomorphic, then S and S’ are isomorphic.
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c) Since the functor 7, is exact and fully faithful, for every object T in C¥, the
object 7T of C is simple if and only if T is simple. Moreover, if T and T’ are
two objects of Cr such that j,, T and j,,' T’ are isomorphic in C, then T and T’
are isomorphic.

d) To conclude the proof, it suffices to prove that a simple object X of C'is
either of the form j,..S for some object S € Cy, or of the form 7. T for some object
T € Cg. There are two cases. If X has a nonzero subobject, or a nonzero quotient,
in CF, then X is isomorphic to that object since it is simple. Otherwise, the
relation j*oj;, ~idin Cy shows that X is an extension of j*X; since this extension
has neither a nonzero subobject, nor a nonzero quotient in Chr, corollary 4.5.11
implies that X ~ j;, 7*X. [






CHAPTER 5

PERVERSE SHEAVES

5.0.1. — In this chapter, we only consider topological spaces which are locally
compact and finite dimensional. If X is such a space, we write D(X) for its
derived category of sheaves of abelian groups.

We recall that every continuous map f: Y — X of such topological spaces
induces functors f;, . : D(X) - D(Y) and f*, f': D(Y) - D(X), related by
adjunctions (f*, f.) and (fi, f*).

5.1. Stratified spaces

Definition (5.1.1). — Let X be a topological space. A stratification . of X is a
finite partition of X into nonempty locally closed subsets, called strata, such that
the closure of a stratum is a union of strata.

Example (5.1.2). — Let n be an integer. The projective space P” (considered as
a complex manifold) admits a standard stratification (S,, ..., S,) such that for
every i, the stratum S; is an affine space C' of (complex) dimension i, and its
closure S; =S, U -+ U S; is a projective subspace P,

Example (5.1.3). — Let G be a complex reductive algebraic group, let B be a Borel
subgroup of G and let W be a Weyl group associated to the maximal torus of B.
For example, one may take for G the linear group GL(#, C), for B be the subgroup
of upper triangular matrices and for W be the subgroup of permutation matrices.
The Bruhat decomposition G = BWB induces a stratification 4 = (BwB),,cw
of G.

Example (5.1.4). — Let p and n be integers such that1 < p < nandlet X =
Gr(p, n) be the Grassmann varieties of p-dimensional subspaces of C". By
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linear algebra, every such subspace V can be represented by a unique p x n
matrix Ay in row reduced echelon form, the p row vectors of which form a basis
of V. The pivot indices of this matrix Ay form a strictly increasing sequence
i=(i5...,ip,) of integers, characterized by the relations

dim(VnC" x{(o,...,0)})>d < iz>m.

The row reduced matrices associated with such a sequence i form an affine
space S; of dimension

(=i —1)+2(iy—,—1)+-+(p—1)(ip—ipy —1) + p(n—1i,))

:i(zn—p+1)p—(i1+---+ip).

»

This furnishes a stratification of the Grassmann variety in (open) “Schubert cells
which are complex affine spaces.

When p = 1, the Grassmann manifold Gr(1, n) is the projective space of
dimension n — 1, and for i € {1,...,n}, the affine space S; has dimension n — i.
One recovers (up to the indexing) the stratification of P"~*.

5.1.5. — Let X be a topological space and let . be a stratification of X.

Let S € .. By definition of a locally closed subset, S is open and dense in S. By
definition of a stratification, S=S is a union of strata, each of them has empty
interior in S.

The relation “S c T” is an ordering on .. Since it is equivalent to “S c T” it
is reflexive and transitive. By the remark above, if S = T, then S and T are both

dense in S, hence S = T.

Lemma (5.1.6). — Let X be a topological space and let . be a stratification of X.
Let S € .7 and let U be the union of all strata T such that S c T. Then U is a
neighborhood of S in which S is closed.

Proof. — Let us first show that U is a neighborhood of S. Assume otherwise
and let .# be an ultrafilter containing X —U that converges to a point s € S. Since
7 is finite, there exists a stratum T € .# such that T € .#. By the definition of U,
S is not contained in T, a contradiction.

Let us then show that S is closed in U. Let .# be an ultrafilter containing S
that converges to a point s of U, and let us show that s € S. Assume otherwise
and let T # S be the stratum of .# that contains s; by the definition of U, we
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have S ¢ T. Then S c¢ T =T, which is closed in T. Consequently, s € T=T, a
contradiction. O

Lemma (5.1.7). — Let X be a topological space and let . be a stratification of X.
Assume that Card(.) > 2. Then there exists a closed subset F of X such that F + &
and F # X, which is a union of strata.

Proof. — LetS € . beastratum such that S # X. By definition of a stratificatino,
S is a union of strata, as well as S —S; moreover, S—S is closed in S. If S = X,
then we take F = S—=S. Otherwise, we take F = S. []

5.2. Perverse sheaves

Definition (5.2.1). — Let X be a topological space and let . be a stratification of X.
A function p: . — Z is called a perversity on X relative to the stratification .7 .

Definition (5.2.2). — Let X be a topological space and p be a perversity on X
relative to a stratification ..

Let PD (X)<° be the full subcategory of D (X) whose objects A are characterized
by the property

(5.2.2.1) H"(iA) =0 forallSe. andalln > p(S).

Similarly, let PD(X)>° be the full subcategory of D(X) whose objects A are
characterized by the property

(5.2.2.2) H"(iiA) =0 forallSe.” andalln < p(S).

For every integer n, we also set 2D (X)¥" = £772D(X)¥ and 2D (X)>" =
s-nPD(X)>".

Example (5.2.3) (Constant perversity). — Assume that p is constant with
value a € Z; let us prove that 2D (X)<° = D(X)%* and D (X)?>° = D(X)>4.

Since the functor i§ on sheaves is exact, for every S € ., one has D (X)<* c
PD(X)<°. Conversely, let A € PD(X)<° and let us prove that A € D (X)<“. Since
the standard truncation structure on D (X) is nondegenerate, it suffices to prove
that H”(A) = o for every integer n such that n > a. Let n be such an integer.
By exactness of i§, one has i{H"(A) = H"(i{A) = o for every S € .. Since the
subspaces S, for S € .7, cover X, this implies that all stalks of H”(A) are zero,
hence H"(A) = o.
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Let A € D(X)>*. LetS € . be a stratum. Since ig is an immersion, the
functor (is), on sheaves admits a right adjoint (is)', which is thus left exact,
and of which i is the right derived functor. Consequently, i{A € D(S)>* and
H"i{A = o for every integer n such that n < a. This proves that A is an object
of 2D (X)?>°.

Conversely, let A € D (X)?° and let us prove that A € D(X)>%. Let us apply
the triangulated functor iy, composed with the cohomological functor H®, to
the (distinguished) truncation triangle 7.,A - A - 7,,A - X7_,A. We obtain
an exact sequence

—1 .l .l .l .|
H""ig15,A - H"igt ;A — H"igA - H"ig15,A.

Since 75,A € D(X)>%, we have H"i{7:4 = o for n < a, hence the previous exact
sequence gives an isomorphism H”i!ST<aA — H”igA. Consequently, 7.,A ¢
PD(X)>°. Replacing A by 7.,A, we may moreover assume that A € D (X)<%; let
us then prove that A = o. For every stratum S € .7, we have H"(i{A) = o if
n < a, because A € PD(X)*°, and H"(i{A) = o if n > a, because A € D (X)<%;
consequently, H"(i{A) = o for every integer n, hence, i A = o.

Let us prove that i{A = o for every stratum S € .. We argue by induction,
assuming the result true for every stratum T such that S c T and S # T. Let U be
the union of all strata T such that S c T; by lemma 5.1.6, it is a neighborhood
of S in which S is closed. By the induction hypothesis, the support of Ay is
contained in S; consequently i{A = igA = o, as claimed.

Since . covers X, we have A = o, as was to be shown.

Example (5.2.4). — Let p and g be two perversities relative to the stratifica-
tion . such that p < g. It follows from the definitions that 2D (X)<° c 4D (X)<°
and 2D (X)?° 5 1D (X)>°.

In particular, if a is an integer such that p > a, then D(X)$* c PD(X)<°
and ?D(X)>° ¢ D(X)>%. Similarly, if b is an integer such that p < b, then
PD(X)%° c D(X)s? and D(X)?? c PD(X)>°.

Theorem (5.2.5). — Let X be a topological space and p be a perversity on X relative
to a stratification .#. The pair (D (X)st, D(X)?P*) is a truncation structure
on D(X).

Proof. — We prove the result by induction on the cardinality of .. If
Card(.¥) = o, then X = @, D(X) = o, and the result is obvious. Assume that
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Card(.”) =1, so that . = {X} and p is constant. It then follows from exam-
ple 5.2.3 that the pair (D (X)<?, D(X)>P*) is the standard truncation structure,
shifted by —p(X). Let us assume that Card(.’) > 2; let F be a closed subset
of X which is a union of strata, and such that F #+ @ and F # X (lemma 5.1.7);
let U = X —F. By induction, (D(U)st, D(U)?**) and (D(F)<?, D(F)>P*)
are truncation structures on D(U) and D(F) respectively. It remains to
observe that (D (X)<?, D(X)?P*) is the truncation structure on D(X) which
is deduced by glueing from these two truncation structures. ]

Definition (5.2.6). — Let X be a topological space, let ./ be a stratification of X and
let p be a perversity relative to .. The truncation structure (D (X)<°,?D(X)**)
on D(X) is called the p-perverse truncation structure. Its heart is denoted by
M (X)?; objects of M (X)? are called p-perverse sheaves.

Let us introduce the following notation: D (X)<? = 2D (X)<° and D (X)?? =
PD (X)?P. By example 5.2.3, it is consistent with the case of a constant perversity.
It is also consistent with the intuitive understanding When p and g are two
perversities such that p < g, it gives an intuitive explanation to the inclusions of
example 5.2.4.

Similarly, the truncation functors associated with the p-perverse truncation
structures will be denoted by 7, and 7,, and the p-perverse cohomology
functor will be denoted by H?.

5.2.7. — Let X be a topological space, let . be a stratification of X and let p
be a perversity relative to .. Let U c X be an open subset which is a union
of strata, let j: U — X be the inclusion; let F = X = U be the complementary
subset and let i : F — X be the inclusion. We have adjoint triples of functors
(i*,i.,1') and (ji, j*, j.) relating the triangulated categories D (U), D(X) and
D (F), giving rise to a glueing context: the p-perverse truncation structure
on D (X) is obtained by glueing the p-perverse truncation structures on D (U)
and D (F). We also have their variants on hearts (i*,1,,1') and (ji, j*, j.). We
also have the intermediate extension functor ji...

The functors jj, i* are right t-exact; the functors j* and i, are t-exact; the
functors j, and i' are left t-exact. The functors j,, i* are right exact; the functors
j* and i, are exact; the functors j, and 7' are left exact.
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More generally, there are such functors associated with the immersion j: U —
U’, where U and U’ are two open subsets of X which are union of strata, etc. The
various functors satisfy the expected transitivity properties.

Proposition (5.2.8). — Let A e M (U)P.

a) The object j)A of M (X)? is the unique extension B of A in D (X) such that
for every stratum S c F, we have H"i{B = o for n > p(S) — 1 and H"igB = o for
n<p(S)—1

b) The object ji. A of M (X)? is the unique extension B of A in D (X) such that
for every stratum S c F, we have H"i{A = o for n > p(S) and H"i{A = o for
n < p(S).

c) The object j.A of M (X)? is the unique extension B of A in D (X) such that
for every stratum S c F, we have H"i{A = o for n > p(S) + 1 and H"i{A = o for
n<p(S)+1

Proposition (5.2.9). — Let us assume that p(S) > p(T) for any two strata S and T
such that S c T. For every n € N, let F,, be the union of all strata S such that
p(S) < nand let U, be the union of all strata S such that p(S) < n; let j, be the
inclusion of U,, into U,,,,. Then F, is closed and U,, is open. Moreover, for every
p-perverse sheaf A € .# (U,) and every integer a such that p < a and a > n, one
has

j'*A = Tsaja,* cc Tgnjna*A'

Proof. — The condition on p implies that for every stratum T such that T c F,,
and every stratum S such that S c T, one has p(S) > p(T) > n, hence S c F,..
This implies that F,, is closed. Consequently, U, = X =F, is open.

To prove the desired formula by induction, it suffices to check that j, . A =
T<njn+A. Let F = U, ,, = U,. For every stratum S € .% such that S c F, we have
p(S) = n+1, so that the p-perverse truncation structure of D (F) is the standard
one shifted by —(# + 1). We have

~ F . F,st -
T = Toofns A = Ty o

where 7_:" is the partial truncation functor relative to the standard truncation
structure on D(F). On U, we have p < n, so that A € D<"(U,,). Consequently,
the canonical morphism

F st - .
Ty Jne A = Tnjn A
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is mapped to an isomorphism after applying j; it is also mapped to an isomor-
phism after applying i, where ir is the inclusion of F in U,,,,. Consequently, it
is an isomorphism, and this concludes the proof of the proposition. ]
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