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Remark (6.3.6). — There should be a projection formula of the form
u(S Nt u*(S)) = u.(S) Nt S’

if u : L — L’ is a morphism of free finitely generated abelian groups.

If u is surjective, thenL ~ L’ X L”, and u*(S") =S’ m L".

Otherwise, one can/needs to define u* by stable intersection, say u*(S") = p.(I'y Ns (L ® S’)), where
I'y, = (id Xu).(V) is the graph of u and p : V X V' — V is the first projection.

6.4. Comparing algebraic and tropical intersections

6.4.1. — Let X and Y be subvarieties of Gn", respectively defined by ideals Iand J of K[T#!, ..., T£!. Their
intersection X N'Y is the subvariety of Gn," with ideal I +]J.

Note that in general, X N'Y might not be integral. It may have multiple component. It also may be
non-reduced, for example if Y is a hyperplane tangent to X at some point a: the tangency will then be
reflected by the fact that the local ring Oxny,, contains non-trivial nilpotent elements.

By a general inequality in algebraic geometry, one has

dim,(XNY) > dim,(X) + dim,(Y) — n,
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for every a € X N'Y. This inequality is an equality in certain cases, for example when X and Y are smooth
at a, and T, X + T,Y = T,Gn" (then, we say that the intersection is transverse around a). But the strict
inequality may hold, for example in the trivial case where X =Y, but also in less obvious cases.

We are interested in computing the tropicalization of XN'Y. How does it compare to the intersection Ix N
v, beyond the obvious inclusion? This guess is however often too large, for example if Ix = Jy? Then
how does it compare to the stable intersection 9x Nst 7y? While that second guess is often too small, it is
indubitably better, since we will show that it suffices to translate “generically” Y in Gn,", without changing
its tropicalization, to make it correct.

We start with the case of transversal tropical intersections, where the picture is particularly nice.

Lemma (6.4.2). — Let X, Y be subvarieties of Gp," .
a) Let x € R". If Ix and Iy meet transversally at x, then
Stary(Ixny) = Starx(Ix Nst Ty).

b) If 9x and Ty intersect transversally everywhere, then

IXnY = Ix Nst Ty - ( \5¥ ?O N ?)OV

Mh »
Proof. — Let1,] be the ideals of X, Y in K[T#!, ..., T#!]. By assumption, there ex1sts po f/ﬂhedra Cand C'

of the Grobner polyhedral decompositions of 9x and Jy respectively such that x € C n ¢’; moreover,
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dim(C + C’') = n. In particular, W = Star,(9x) and W’ = Star,(Jy) are vector spaces, with a constant
multiplicity is constant, and W + W/ = R". Let p = dim(W), g = dim(W’); let W’ = W N W’, so
that ¥ = dim(W”) = p + g — n. Choose a rational basis of R" as follows, starting from a basis of W”,
and extending it to rational bases of W and W’. This shows that there exists a rational isomorphism
@ : R" — R" such that (W”) = R" x {0} x {0}, (W) = R" X RP™" x {0} and p(W’) = R" x {0} x R7™".
We may also assume that ¢(Z") c Z". Let then f : Gn," — Gp" be the morphism of tori whose action on

cocharacters is given by ¢. It is finite and surjective. |
Let X’ = f(X) and Y’ = f(Y); by proposition 3.7.1, one ha Iy = p.(Fy) and Ixny =

@+(Ixny). Since . is a linear isomorphism, we may assume, for proving the lemma, that ¢ is the identity.
D

Iﬁﬂx:Iﬂkﬂﬁhp.”T#]mwjx:]ﬂkﬂjhp.”T?}Bybnmm384xmehm1:y-HTfP.Jand
multg, (C’) = codim(Jy); similarly, J =], - k[Ti—Ll, ... ] and multx (C’) = codim(Jy).
We now observe that
iny(I +]) = ing(I) + iny(J),
and that

ing(I+7) N k[TE!

+17 _
r+1/°°°/T:1- ] _IX+]X/

GOops! That proposition says nothing about multiplicities. . .
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so that
KITEL, .o T (L + Jx) = (k[T;ﬂl, TN/ @ (K[TE, -, T35 /1)

has dimension multg (C) mults (C’). The same result holds for every other point in C N C’. This shows
that CNC’ € Ixny contains a polyhedron of the Grobner decomposition of XN'Y, and that its multiplicity
is the product of the multiplcities of C and C’. This concludes the proof of the first assertion of the lemma,
and the second follows directly from it. O

6.4.3. — Let K be a valued field. Let L = K(s) be the field of rational functions in one indeterminate s
with coefficients in K, endowed with the Gauss absolute value. LetI C L[Tfl, el Tﬁl] be an ideal and let
X =V(D. @ssume that X is equidimensional and let d = dim(X).

Consider K(s) as the field of functions of the affine line A!. The Zariski closure & of X in Gmgl is defined
by the ideal .¥ = K[s][T*'] N 1. For every point a € K, or rather in a valued extension K’ of K, we can then
consider the ideaﬁa/of K’[T*!] deduced from I by setting s = a and the subscheme %, = V(.%;) of Gmk-

The relations between X and the schemes 2, its specializations, are well-studied in algebraic geometry.
In fact,  is a flat Al-scheme, and 2 is its fiber. In particular, the schemes &, are equidimensional if X is,
with the same dimension.

We first prove that, up to finitely many obstructions, the schemes 2, have the same tropicalization as X

provided v(a) = v(s) = 0. . 2 | N =
/fﬂ ?&< @W)VLU) % f% C /)\’67( (Bh/\)/{ Z?g@ ;%\q/
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All this should be rewritten replacing Al with A", possibly even any integral variety V; the outcome is an analytic
domain containing a given Zariski-dense point of V"

Proof. — Let us consider the homogeneization I" ¢ K(s)[To, ..., Tu] of I. Let ( fi,..., me—/M (T ﬁ)_‘é( ’;{ﬁj/ S, (£ 9
homogeneous polynomials in I" which is a universal Grébner basis, i.e., at every x € R"*;we may assume ”
that it is contained in .#" = K[s][T, ..., T.] N I".
a) The family (fi, . . ., fu) generates the ideal I"in K(s)[Ty, . .., T,]. Since K[s][T, . .., T»] is a noetherian
ring, the homogeneous ideal 7" has a finite basis (g1, .. ., gp) consisting of homogeneous polynomials.
For every j € {1,..., p}, there exist homogeneous polynomials k; 1, ..., k. € K(s)[To, ..., T,] such that
gj = p ki,ifi. Let h € K[s] be a non-zero pol nomial such that hka € K[ 1[To,..., Ty] for all i, j. We
then obtain inclusions th hc(h,.. fm) c 71 of homogeneous ideals O{f K[s][To, ..., Ty]. In particular,
for every a in a valued extension K" of K such that h(a) # 0, the ideal .7, of K'[T, ..., T,] coincides with
the ideal generated by f1(a;T),..., fu(a; T). We define B c K as the set of roots of h.
b) Let f € K[s][T, . ..\T%];write f= Zmes(f) fm(s)emIT™, where ¢, € KX and f,, € K[s] is a polynomial
of Gauss-norm 1. The reductions f, of the polynomials f,, are non-zero polynomials in k[s]. Let 7 be

Tl(gj‘%m/( W(QQFUWW\{ < my X

v (¢ \f(@ »7
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_ 9 D Dl
their product. By construction, for every a in a valued extension K’ of k such that v(a) = 0 and hs(a) # 0, * df m/ s
one has v(fu(a)) = 0 for all m € S(f). It follows that for every such a, one has 7(f) = 7.(f(a;T)) and
ine(f)(@;T) = ing(f(a;T)) for all x € R"*L. e v ESe ()
c) Let 1" be the product of the polynomials /5, and let C; C k be the set of roots of 1.

For x € R"™1, set], = in,(I"); note that there are only finitely many ideals of the form J,, when x € R"*L.

Let % =Jx Nk[s][To, ..., Tu]; for b in an extension k’ of k, let % j, be the image of % in k'[Ty, ..., T,]. VW) (f[ﬁ/’ T))
For x € R, the ideal ], is generated by (in,( fQ, ..., iny(fm)), by definition of a universal Grobner basis. —
It follows that there exists a finite subset C, of k such that for every b in an extension k’ of k such that = 2 f“’“ ( z j i T 8
b & Cy, one has 7 = (inx(f1)(b; T), ..., inx(fm)(; T)). "
Let a be an element of a valued extension K’ of K such thata ¢ B, v(a) =0 and a ¢ C; U C,. Then one “"AC‘SX ( f(q, )
has iny(fj(a; T)) = iny(f;)(@; T), so that 7 7 = (inx(f1)(@;T), ..., inx(fm)(ﬁ;T))QC iny(J7). l
T _7/3 _§ « By flatness of K[s][To, ..., Tx]/-# over K[s], the homogeneous ideals .7, and I'have the same Hilbert < (
function. Similarly, the homogeneous ideals % ; and ], have the same Hilbert function. Moreover, by z Ug ) = g 9”(4; /j

same Hilbert function; similarly, the homogenous ideals #! ¢ K'[Ty, ..., T,] and iny (7)) C kK'[To, ..., Tu]

A _have the same Hilbert function. It follows that the inclusion % ; C in,(.#]) is an equality:
o @ ‘—j-ﬂ}j %a > d) These equalities imply that the Grébner decompositions of R"*! associated with the-homogeneous

ideals I" and .#" coincide, for W Let x € R" and let ¥’ = (0, x) € R"*!; we know that x € Jx

/ &7 ) wé(ﬂ &)heorem 3.4.12, the homogeneous ideals I" € K(s)[To, ..., Tu] and J, = in (") c k(s)[Ty, ..., T,] have the
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if and only if in,(I) # (1), if and only if in,(I") contains no monomials. Similarly, x € J EA if and only if
in (%) # (1), if and only if mx(f 1) contains no monomial.
For good a as above, this already implies thdt Tz, @t indeed x € R"=9x and let " = (0, x). Then
Jv = iny(I") contains a monomial; it then belo\ﬁgs to %, so that in,/ (J ) = fv ;7 contains a monomial as
well. Consequently, x ¢ Jg,. A
The converse inclusion will require to put an additional restriction on the set of good a. Let %, C GmZ[S]

be the closed subscheme defined by the ideal J%. Its image V, in éLiJSpec(k[s]) is the set of points a
of Al such that %, , # @ By a theorem of Chevalley, it is a constructible subset of Ai. Since Ai has
dimension 1, there are only two possibilities: either V, is a strict closed subset, or V, is a dense open
subset and its complement is finite. The first case happens if and only if the generic point of A} does not
belong to Vy,, i.e., if ], contains 1, that is, if and only if x ¢ Jx. Let C3 be the set of points in k which do not
belong to those Vy, for x € Ix. Since there are only finitely many ideals of the form J,, the set C3 is finite.

Let a be an element of a valued extension K’ of K such that a ¢ B, v(a) = 0 and ¢ G UG @ By
construction, if a point x € R” belongs to I, then % ; # @, hence iny(.%;) # (1) and x € Jg,.

This proves the equality Ix = g, for all such a. We also saw above the coincidence of the Grébner
polyhedral decompositions of this polyhedral subset of R” respectively associated with the ideals I and .7,.

e) It remains to prove the equality of multiplicities. Let x € R" and let C be a polyhedron of these
Grobner decompositions. Up to a monomial change of variable, we may assume that the affine span of C
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Lj_;{ /M/L l \

\
is x + R? x {0}. Then one has VE J(s) z/

multg, (C) = dim(k(s)[ Ty, - -, Ti 1T N k() Ty, -, Ti'D) ) — >

\ . 0(,
and - A IS
multg, (C) = &im(K'[T%L ..., T/ 7z N KT, ..., TEM). %%
Let o be the finitely generated k[s]-algebra k[s][Tj}Ll, L, TEN 7N k[s][Tj}Ll, L TE] T isy j{
construction, and its generic fiber & ®[s] k(s) is a finite k(s)-algebra of rank multg (C). Consequently, o/ (Q .
is finite over(k[s]) of constant rank. In particular, - JJ S U
L multg, (C) = dimy(/ @51 ') = multg (C). Y
U - ! e
This concludes the proof. O do—e .

Lemma (6.4.5). — Let I c K[T+', ..., T5'] and let x € R"™! x {0}. One has the foll(yving equality of ideals in

k(s)[Tfl, N - =T
inJC(IK(S) +(Ty —s)) = iﬂx(Dk(s) +(Ty —s). /ﬁ\ CS/ \;—j}/

Recall that the field K(s) is endowed with the Gauss absolute value; in particular, v(s) = 0.
Proof. — One has iny(I)s) = iny(Ix(s)) and ing (T, — s) = T;, — s since x,, = 0. This implies the inclusion

inx(I)k(s) +(Ty—s) C inx(IK(s) +(Ty = 5)).
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Conversely, let I € Ix() + (Ty, — s) and let us prove that iny (1) € iny(I)x) + (Ty —s). Up to multiplying
by a non-zero element of K[s], we may assume that there exist p € K[s], f el and g € K[s][TI—rl, ., T
such that h = pf + (T, — s)g. Writing s = T, — (T — s), there exists a polynomial g € k[s][T%, ..., T¢']
such that p = p(T,) + (T, —s)g. We thenwrite h = pf + (T, —s)g = p(Ty)f + (T —s)(g + g). This allows
to assume that p = 1.

Observe that 7,((T,—s)g) = 7x(T;,—s)+1x(g) = 7x(g) since x, = 0and v(s) = 0; moreover, in,((T,—s)g) =
(Ty — s)iny ().

If To(f) < ©x((Tn — 8)g), then T (h) = T2(f + (Tn — 8)g) = T2(f) and iny(h) = inx(f).

Similarly, if 7,(f) > ©((Tn — 5)g), then 7:(h) = 7,((T, — 5)g) = 74(g) and iny(h) = in,((T, —5)g) =
(Ty — s)inx ().

Assume finally that 7,(f) = 7:((T4 — s)g). Since deg,(in.(f)) = 0 and deg (in,((T, — 5)g)) > 1, one
has in,(f) + in,((T, — s)g) # 0. Consequently, 74(h) = 74(f) and in,(h) = iny(f) + inye (T, — 5)g) =
in,(f) + (T — 5)in(g).

In these three cases, this proves that iny(h) € Ixs) + (T, —s). This concludes the proof of the lemma. O

Proposition (6.4.6) ( ( )). — Let 1 be an ideal of K[Ti—rl, .., TE, let X = V(). Let H =

d(sup(x,,0)) € R" — the hyperplane defined by x, = 0 with multiplicity 1. Let ] = Ix) + (T —s) C

K(s)[TF, ..., T and let Y = V(). One has the equality of tropiealizations A atd Jms\v}gy@v oy
Iy = Ix Nt H.
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Proof. — Let us prove that the following five assertions, for x € R", are equivalent.

(i) One has x € 9x Nt H;

(ii) One has 7, (1) ¢ H;

(iii) One has in,(I) N k[T, T,,!] = (0);
(iv) One has in,(I)x) + (T =) # (1);
(v) One has x € Jy.

(i)e(ii). One has Stary(Ix) = Fv(in,1))-

If Fvin, ) € H, then a generic deplacement by a vector v such that v, # 0 shows that the stable
intersection is empty; in particular, x ¢ Jyin, 1) Nst H, hence x ¢ Ix Ns; H.

Otherwise, there exists a polyhedral convex cone Q C Jyin, 1) such that that x € Q and Q ¢ H. The
polyhedral convex cone Q + H has dimension . If we perform a generic deplacement by a vector v € Q+H
such that v, > 0, we obtain a strictly positive contribution of (Q, H) to the intersection Fyin, 1) Nst H. In
particular, x € Ix Ngt H.

(ii)e(ii). Letp : Gm" — G be the projection to the last factor; similarly, let 7 : R” — Rbe the projection
to the last factor. One has Star,(9x) = Jy(in, 1)) and n(Starx(9x)) = Fv(,), where I, = in,(I) N K[T%!], since
p(V(iny(I))) = V(I,,). The inclusion Jyin, 1)) C His equivalent to 71(Fyin,1))) = {0}, hence to Fy,) = {0}. It
implies that I, # (0) (otherwise, V(I,,) = G and Jy1,) = R). Conversely, if I,, # (0), then V(I,) is a finite
subscheme of G, 7(Star,(9x)) is finite; since it is a fan, it is then reduced to 0.
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~ _(ii)e(@iv). — Let f € k[T%!] be a non-zero Laurent polynomial. Since s is transcendental, one has

N\\V\\ﬁ ﬂ\ wf}s) # 0 and the ideal (f,T, — s) of k(s)[Tt!] contains 1. If, moreover, f € iny(I), this implies that
ing (D) + (Tn —5) = (1). Assume conversely that in,(I)x) + (T,) = (1) and let us consider a relation

,\(\\\\of the form 1 = X gjiny(f;) + (T, — s)h, where f; € 1, g; € k(s) and h € k(s)[Tfl,...,T;—rl]. Let p € k[s]

2\ WV be a non-zero polynomial such that pg; € k[s] for all j, and ph € k[s][T;',..., TE!]. In the relation
\gb\ «ﬁ\ p = 2 pgjiny(f;) + (T, — s)ph we substitute T, to s. We obtain p(T,) = Z]-(E&ﬁn)inx(fj), which proves
RN =
L)

th%gp(Tn) € iny(I) N k[T%]. =

The equivalence (iv)%(v) follows-from the preceding lemma. Indeed, x € Fy if and only if in,(J) # (1),
which is then equivalent tq iny(I)xs) #(Tn —s) # (1).

It remains to explain compare the multiplicities. W (T \ =\ LL} \Q[O O
a (D

6.5. A tropical version of Bernstein’s theorem
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