Remark **(6.3.6)**. — There should be a projection formula of the form

$$u_*(S \cap_{\operatorname{st}} u^*(S')) = u_*(S) \cap_{\operatorname{st}} S'$$

if $u : L \to L'$ is a morphism of free finitely generated abelian groups.

If *u* is surjective, then $L \simeq L' \times L''$, and $u^*(S') = S' \boxtimes L''$.

Otherwise, one can/needs to define u^* by stable intersection, say $u^*(S') = p_*(\Gamma_u \cap_{st} (L \boxtimes S'))$, where $\Gamma_u = (id \times u)_*(V)$ is the graph of u and $p : V \times V' \to V$ is the first projection.

6.4. Comparing algebraic and tropical intersections

6.4.1. — Let X and Y be subvarieties of G_m^n , respectively defined by ideals I and J of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$. Their intersection $X \cap Y$ is the subvariety of G_m^n with ideal I + J.

Note that in general, $X \cap Y$ might not be integral. It may have multiple component. It also may be non-reduced, for example if Y is a hyperplane tangent to X at some point a: the tangency will then be reflected by the fact that the local ring $\mathcal{O}_{X \cap Y, a}$ contains non-trivial nilpotent elements.

By a general inequality in algebraic geometry, one has

$$\dim_a(X \cap Y) \ge \dim_a(X) + \dim_a(Y) - n$$

for every $a \in X \cap Y$. This inequality is an equality in certain cases, for example when X and Y are smooth at a, and $T_aX + T_aY = T_aG_m^n$ (then, we say that the intersection is transverse around a). But the strict inequality may hold, for example in the trivial case where X = Y, but also in less obvious cases.

We are interested in computing the tropicalization of $X \cap Y$. How does it compare to the intersection $\mathcal{T}_X \cap$ \mathcal{T}_Y , beyond the obvious inclusion? This guess is however often too large, for example if $\mathcal{T}_X = \mathcal{T}_Y$? Then how does it compare to the stable intersection $\mathcal{T}_X \cap_{st} \mathcal{T}_Y$? While that second guess is often too small, it is indubitably better, since we will show that it suffices to translate "generically" Y in G_m , without changing its tropicalization, to make it correct.

We start with the case of transversal tropical intersections, where the picture is particularly nice.

Lemma (6.4.2). — Let X, Y be subvarieties of G_m^n .

a) Let $x \in \mathbb{R}^n$. If \mathcal{T}_X and \mathcal{T}_Y meet transversally at x, then

$$\operatorname{Star}_{x}(\mathcal{T}_{\mathsf{X}\cap\mathsf{Y}})=\operatorname{Star}_{x}(\mathcal{T}_{\mathsf{X}}\cap_{\operatorname{st}}\mathcal{T}_{\mathsf{Y}}).$$

b) If \mathcal{T}_X and \mathcal{T}_Y intersect transversally everywhere, then

$$\mathcal{T}_{X\cap Y} = \mathcal{T}_X \cap_{st} \mathcal{T}_Y.$$
 (exemblisherment)

 $\mathcal{T}_{X\cap Y} = \mathcal{T}_X \cap_{\operatorname{st}} \mathcal{T}_Y. \qquad \text{(examples terms)} \qquad \mathcal{T}_X \cap \mathcal{T}_Y$ with finite fields of X, Y in K[T₁^{±1},...,T_n^{±1}]. By assumption, there exists polyhedra C and C' of the Gröbner polyhedral decompositions of \mathcal{T}_X and \mathcal{T}_Y respectively such that $x \in \mathring{\mathbb{C}} \cap \mathring{\mathbb{C}}'$; moreover,

 $\dim(C + C') = n$. In particular, $W = \operatorname{Star}_x(\mathcal{T}_X)$ and $W' = \operatorname{Star}_y(\mathcal{T}_Y)$ are vector spaces, with a constant multiplicity is constant, and $W + W' = \mathbf{R}^n$. Let $p = \dim(W)$, $q = \dim(W')$; let $W'' = W \cap W'$, so that $r = \dim(W'') = p + q - n$. Choose a rational basis of \mathbf{R}^n as follows, starting from a basis of W'', and extending it to rational bases of W and W'. This shows that there exists a rational isomorphism $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ such that $\varphi(W'') = \mathbf{R}^r \times \{0\} \times \{0\}$, $\varphi(W) = \mathbf{R}^r \times \mathbf{R}^{p-r} \times \{0\}$ and $\varphi(W') = \mathbf{R}^r \times \{0\} \times \mathbf{R}^{q-r}$. We may also assume that $\varphi(\mathbf{Z}^n) \subset \mathbf{Z}^n$. Let then $f : \mathbf{G_m}^n \to \mathbf{G_m}^n$ be the morphism of tori whose action on cocharacters is given by φ . It is finite and surjective.

Let X' = f(X) and Y' = f(Y); by proposition 3.7.1, one has $\mathcal{T}_{X'} = \varphi_*(\mathcal{T}_X)$, $\mathcal{T}_{Y'} = \varphi_*(\mathcal{T}_Y)$ and $\mathcal{T}_{X'\cap Y'} = \varphi_*(\mathcal{T}_{X\cap Y})$. Since φ_* is a linear isomorphism, we may assume, for proving the lemma, that φ is the identity.

Let $I_x = I \cap k[T_{p+1}^{\pm 1}, \dots, T_n^{\pm 1}]$ and $J_x = J \cap k[T_{r+1}^{\pm 1}, \dots, T_p^{\pm 1}]$. By lemma 3.8.4, one has $I = I_j \cdot k[T_1^{\pm 1}, \dots]$ and $\text{mult}_{\mathcal{T}_Y}(C') = \text{codim}(J_x)$; similarly, $J = J_x \cdot k[T_1^{\pm 1}, \dots]$ and $\text{mult}_{\mathcal{T}_Y}(C') = \text{codim}(J_x)$.

We now observe that

$$\operatorname{in}_{x}(I+J) = \operatorname{in}_{x}(I) + \operatorname{in}_{x}(J),$$

and that

$$\operatorname{in}_{x}(I+J) \cap k[T_{r+1}^{\pm 1}, \ldots, T_{n}^{\pm 1}] = I_{x} + J_{x},$$

 $[\]overline{^5\textsc{Oops!}}$ That proposition says nothing about multiplicities. . .

so that

$$k[T_{r+1}^{\pm 1}, \dots, T_n^{\pm 1}]/(I_x + J_x) \simeq (k[T_{p+1}^{\pm 1}, \dots, T_n^{\pm 1}]/I_x) \otimes_k (k[T_{r+1}^{\pm 1}, \dots, T_p^{\pm 1}]/J_x)$$

has dimension $\operatorname{mult}_{\mathcal{T}_X}(C)\operatorname{mult}_{\mathcal{T}_Y}(C')$. The same result holds for every other point in $\mathring{C} \cap \mathring{C}'$. This shows that $C \cap C' \subset \mathcal{T}_{X \cap Y}$ contains a polyhedron of the Gröbner decomposition of $X \cap Y$, and that its multiplicity is the product of the multiplcities of C and C'. This concludes the proof of the first assertion of the lemma, and the second follows directly from it.

6.4.3. — Let K be a valued field. Let L = K(s) be the field of rational functions in one indeterminate s with coefficients in K, endowed with the Gauss absolute value. Let $I \subset L[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ be an ideal and let X = V(I). Assume that X is equidimensional and let d = dim(X).

Consider K(s) as the field of functions of the affine line A^1 . The Zariski closure \mathcal{X} of X in $G_{\mathbf{m}_{\mathbf{A}^1}}^n$ is defined by the ideal $\mathcal{I} = K[s][T^{\pm 1}] \cap I$. For every point $a \in K$, or rather in a valued extension K' of K, we can then consider the ideal \mathcal{F}_a of K'[T^{±1}] deduced from I by setting s = a and the subscheme $\mathcal{X}_a = V(\mathcal{F}_a)$ of $\mathbf{G}_{mK'}^n$.

The relations between X and the schemes \mathcal{X}_a , its specializations, are well-studied in algebraic geometry. In fact, \mathcal{X} is a flat \mathbf{A}^1 -scheme, and \mathcal{X}_a is its fiber. In particular, the schemes \mathcal{X}_a are equidimensional if \mathcal{X} is, with the same dimension.

We first prove that, up to finitely many obstructions, the schemes \mathcal{X}_a have the same tropicalization as X

0-0

revenir plus fand

All this should be rewritten replacing $\mathbf{A}^1_{\mathcal{S}}$ with \mathbf{A}^n , possibly even any integral variety V; the outcome is an analytic domain containing a given Zariski-dense point of V^{an} .

Proposition (6.4.4). — There exists a finite subset B of \bar{K} , a finite subset C of \bar{k} such that for every a in a valued extension K' of K (with residue field k') such that $a \notin B$, v(a) = 0, and $\bar{a} \notin C$, the variety \mathcal{X}_a has the same tropicalization than X: one has an equality of weighted polyhedra $\mathcal{T}_X = \mathcal{T}_{\mathcal{X}_a}$.

K-7R

Proof. — Let us consider the homogeneization $I^h \subset K(s)[T_0, \ldots, T_n]$ of I. Let (f_1, \ldots, f_m) be a finite set of homogeneous polynomials in I^h which is a universal Gröbner basis, *i.e.*, at every $x \in \mathbb{R}^{n+1}$, we may assume that it is contained in $\mathcal{F}^h = K[s][T_0, \ldots, T_n] \cap I^h$.

mx (Ih) fingfa), in (fr)

- a) The family (f_1, \ldots, f_m) generates the ideal I^h in $K(s)[T_0, \ldots, T_n]$. Since $K[s][T_0, \ldots, T_n]$ is a noetherian ring, the homogeneous ideal \mathcal{F}^h has a finite basis (g_1, \ldots, g_p) consisting of homogeneous polynomials. For every $j \in \{1, \ldots, p\}$, there exist homogeneous polynomials $k_{j,1}, \ldots, k_{j,m} \in K(s)[T_0, \ldots, T_n]$ such that $g_j = \sum_{i=1}^m k_{j,i} f_i$. Let $h \in K[s]$ be a non-zero polynomial such that $hk_{j,i} \in K[s][T_0, \ldots, T_n]$ for all i, j. We then obtain inclusions $h\mathcal{F}^h \subset (f_1, \ldots, f_m) \subset \mathcal{F}^h$ of homogeneous ideals of $K[s][T_0, \ldots, T_n]$. In particular, for every a in a valued extension K' of K such that $h(a) \neq 0$, the ideal \mathcal{F}_a of $K'[T_0, \ldots, T_n]$ coincides with the ideal generated by $f_1(a;T), \ldots, f_m(a;T)$. We define $B \subset K$ as the set of roots of h.
- b) Let $f \in K[s][T_0, ..., T_n]$; write $f = \sum_{m \in S(f)} f_m(s) c_m T^m$, where $c_m \in K^{\times}$ and $f_m \in K[s]$ is a polynomial of Gauss-norm 1. The reductions \overline{f}_m of the polynomials f_m are non-zero polynomials in k[s]. Let h_f be

$$v\left(\int_{m}(a)\right) \geq 0 \qquad a \in \mathbb{R}$$

$$f_{m}(a) = \int_{m}(a)$$

$$f_{m}(a) = \int_{m}(a)$$

their product. By construction, for every a in a valued extension K' of k such that v(a) = 0 and $h_f(\overline{a}) \neq 0$, one has $v(f_m(a)) = 0$ for all $m \in S(f)$. It follows that for every such a, one has $\tau_x(f) = \tau_x(f(a;T))$ and $\operatorname{in}_x(f)(\overline{a};T) = \operatorname{in}_x(f(a;T))$ for all $x \in \mathbb{R}^{n+1}$.

c) Let h' be the product of the polynomials h_{f_i} and let $C_1 \subset \bar{k}$ be the set of roots of h'.

For $x \in \mathbb{R}^{n+1}$, set $J_x = \operatorname{in}_x(I^h)$; note that there are only finitely many ideals of the form J_x , when $x \in \mathbb{R}^{n+1}$. Let $\mathcal{J}_x = J_x \cap k[s][T_0, \dots, T_n]$; for b in an extension k' of k, let $\mathcal{J}_{x,b}$ be the image of \mathcal{J}_x in $k'[T_0, \dots, T_n]$.

For $x \in \mathbb{R}^{n+1}$, the ideal J_x is generated by $(\operatorname{in}_x(f_1), \dots, \operatorname{in}_x(f_m))$, by definition of a universal Gröbner basis. It follows that there exists a finite subset C_2 of \bar{k} such that for every b in an extension k' of k such that $b \notin C_2$, one has $\mathcal{J}_{x,b} = (\operatorname{in}_x(f_1)(b;T), \dots, \operatorname{in}_x(f_m)(b;T))$.

Let a be an element of a valued extension K' of K such that $a \notin B$, v(a) = 0 and $\bar{a} \notin C_1 \cup C_2$. Then one has $\operatorname{in}_x(f_j(a;T)) = \operatorname{in}_x(f_j)(\bar{a};T)$, so that $\mathcal{J}_{x,\bar{a}} = (\operatorname{in}_x(f_1)(\bar{a};T), \ldots, \operatorname{in}_x(f_m)(\bar{a};T)) \subset \operatorname{in}_x(\mathcal{J}_a)$.

By flatness of K[s][T₀,...,T_n]/ \mathscr{F} over K[s], the homogeneous ideals \mathscr{F}_a and I have the same Hilbert function. Similarly, the homogeneous ideals $\mathscr{F}_{x,\bar{a}}$ and J_x have the same Hilbert function. Moreover, by theorem 3.4.12, the homogeneous ideals I^h \subset K(s)[T₀,...,T_n] and J_x = in_x(I^h) \subset k(s)[T₀,...,T_n] have the same Hilbert function; similarly, the homogeneous ideals $\mathscr{F}_a^h \subset$ K'[T₀,...,T_n] and in_x(\mathscr{F}_a^h) \subset k'[T₀,...,T_n] have the same Hilbert function. It follows that the inclusion $\mathscr{F}_{x,\bar{a}} \subset$ in_x(\mathscr{F}_a^h) is an equality: $\mathscr{F}_{x,\bar{a}} =$ in_x(\mathscr{F}_a^h).

d) These equalities imply that the Gröbner decompositions of \mathbf{R}^{n+1} associated with the homogeneous ideals \mathbf{I}^h and \mathcal{I}_a^h coincide, for every such a. Let $x \in \mathbf{R}^n$ and let $x' = (0, x) \in \mathbf{R}^{n+1}$; we know that $x \in \mathcal{T}_X$

 $in_{n}(f) = \sum_{s} f_{n}(s) \approx \int_{m}^{m} \int_{m}$

 $\lim_{x} (f(a,T)) \\
= \sum_{m} f_{m}(\bar{a}) c_{m} T^{m} \\
m \in S_{x} (f(a,T))$

 $S_{x}(f)=S_{x}(f(a))$

if and only if $\text{in}_x(I) \neq (1)$, if and only if $\text{in}_x(I^h)$ contains no monomials. Similarly, $x \in \mathcal{T}_{\mathcal{X}_g}$ if and only if $\operatorname{in}_{x}(\mathcal{I}_{a}) \neq (1)$, if and only if $\operatorname{in}_{x}(\mathcal{I}_{a}^{h})$ contains no monomial.

For good a as above, this already implies that $\mathcal{T}_{\mathcal{X}_a} \subset \mathcal{T}_X$. Let indeed $x \in \mathbb{R}^n - \mathcal{T}_X$ and let x' = (0, x). Then $J_{x'} = \inf_{x'}(I^h)$ contains a monomial; it then belongs to $\mathcal{J}_{x'}$, so that $\inf_{x'}(\mathcal{J}_a^h) = \mathcal{J}_{x',\bar{a}}$ contains a monomial as well. Consequently, $x \notin \mathcal{T}_{\mathcal{X}_a}$.

The converse inclusion will require to put an additional restriction on the set of good a. Let $\mathcal{Y}_x \subset \mathbf{G}_{\mathfrak{m}_{k[s]}^n}^n$ be the closed subscheme defined by the ideal \mathcal{J}_x . Its image V_x in $A_k^1 = \operatorname{Spec}(k[s])$ is the set of points α of A^1 such that $\mathcal{Y}_{x,\alpha} \neq \emptyset$. By a theorem of Chevalley, it is a constructible subset of A^1_k . Since A^1_k has dimension 1, there are only two possibilities: either V_x is a strict closed subset, or V_x is a dense open subset and its complement is finite. The first case happens if and only if the generic point of A_k^1 does not belong to V_x , *i.e.*, if J_x contains 1, that is, if and only if $x \notin \mathcal{T}_X$. Let C_3 be the set of points in \bar{k} which do not belong to those V_x , for $x \in \mathcal{T}_X$. Since there are only finitely many ideals of the form J_x , the set C_3 is finite.

Let a be an element of a valued extension K' of K such that $a \notin B$, v(a) = 0 and $\bar{a} \notin C_1 \cup C_2 \vee C_3$. By construction, if a point $x \in \mathbb{R}^n$ belongs to \mathcal{T}_X , then $\mathcal{Y}_{x,\bar{a}} \neq \emptyset$, hence $\operatorname{in}_x(\mathcal{F}_a) \neq (1)$ and $x \in \mathcal{T}_{\mathcal{X}_a}$.

This proves the equality $\mathcal{T}_X = \mathcal{T}_{\mathcal{X}_a}$ for all such a. We also saw above the coincidence of the Gröbner polyhedral decompositions of this polyhedral subset of \mathbb{R}^n respectively associated with the ideals I and \mathcal{I}_a .

e) It remains to prove the equality of multiplicities. Let $x \in \mathbb{R}^n$ and let C be a polyhedron of these Gröbner decompositions. Up to a monomial change of variable, we may assume that the affine span of C

(p(yx)) contest le part given que (T) in (T) (

Théorème de constructibilité de Chevalley. A come (algebra is ross vouley)

X var. alge/k (schera (f.))

Parties constructibles de X plus petile sons alge de Boole de 3(x)

qui contrect les ouvents

I contrect les flivies F= CU

I ouvet, F feine 7 — Ulinfi Bx= { Un Fi , Un C X ounts }.

Fin C X ounts } th. (f: X -> / murphisme de van alg.

F(X) ex constructible dans /. $f(t_{x}) = t_{y}$

Tout repose ou on résultat d'algèbre commutative, plus ou moires équivalent au théorème des zées de Hilbert: The year B un morphisme myschif de k-algerty integres

Pour fout $b \in B - lois$, il existe $a \in A - lois$ Upe in $f : A - p \mid K$ is the morphisme is raleure down

une extension to the k

(algebre)

1 0 B-A(b,., bm) recurrence on m B=A[b] > b trawardat b algébrique il existe $g:B \to K$ tel que $\int g/A = f$ $g/b \neq 0$ P-an T+- + ao op: Spec(b) -> Spec(A)

y mych! of (X) est dense dan Y- mposer f (an) 70 Solt a ty f(x) se produge a g(x) g(x)

is
$$x + \mathbf{R}^d \times \{0\}$$
. Then one has

$$J_{\chi}=im_{\chi}(I)$$

$$\text{mult}_{\mathcal{T}_X}(C) = \dim(k(s)[T_{d+1}^{\pm 1}, \dots, T_n^{\pm 1}]/J_x \cap k(s)[T_{d+1}^{\pm 1}, \dots, T_n^{\pm 1}])$$

and

$$\text{mult}_{\mathcal{I}_{x_a}}(C) = \dim(k'[T_{d+1}^{\pm 1}, \dots, T_n^{\pm 1}]/\mathcal{J}_{x,\bar{a}} \cap k'[T_{d+1}^{\pm 1}, \dots, T_n^{\pm 1}]).$$

Let \mathscr{A} be the finitely generated k[s]-algebra $k[s][T_{d+1}^{\pm 1},\ldots,T_n^{\pm 1}]/\mathscr{J}_x\cap k[s][T_{d+1}^{\pm 1},\ldots,T_n^{\pm 1}]$. It is flat, by construction, and its generic fiber $\mathcal{A} \otimes_{k[s]} k(s)$ is a finite k(s)-algebra of rank mult $\mathcal{T}_{x}(C)$. Consequently, \mathcal{A} is finite over/k[s], of constant rank. In particular,

$$\operatorname{mult}_{\mathscr{T}_{x_a}}(\mathsf{C}) = \dim_{k'}(\mathscr{A} \otimes_{k[s]} k') = \operatorname{mult}_{\mathscr{T}_{\mathsf{X}}}(\mathsf{C}).$$

This concludes the proof.

Lemma (6.4.5). — Let $I \subset K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ and let $x \in \mathbb{R}^{n-1} \times \{0\}$. One has the following equality of ideals in $k(s)[T_1^{\pm 1},\ldots,T_n^{\pm 1}]$:

$$\operatorname{in}_{x}(I_{K(s)} + (T_{n} - s)) = \operatorname{in}_{x}(I)_{k(s)} + (T_{n} - s).$$

Recall that the field K(s) is endowed with the Gauss absolute value; in particular, v(s) = 0.

Proof. — One has $\operatorname{in}_{x}(I)_{k(s)} = \operatorname{in}_{x}(I_{K(s)})$ and $\operatorname{in}_{x}(T_{n} - s) = T_{n} - s$ since $x_{n} = 0$. This implies the inclusion $in_{x}(I)_{k(s)} + (T_{n} - s) \subset in_{x}(I_{K(s)} + (T_{n} - s)).$

hek(s) - 20%.

Conversely, let $h \in I_{K(s)} + (T_n - s)$ and let us prove that $in_x(h) \in in_x(I)_{k(s)} + (T_n - s)$. Up to multiplying h by a non-zero element of K[s], we may assume that there exist $p \in K[s]$, $f \in I$ and $g \in K[s][T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ such that $h = pf + (T_n - s)g$. Writing $s = T_n - (T_n - s)$, there exists a polynomial $q \in k[s][T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ such that $p = p(T_n) + (T_n - s)q$. We then write $h = pf + (T_n - s)g = p(T_n)f + (T_n - s)(g + q)$. This allows to assume that p = 1.

Observe that $\tau_x((T_n - s)g) = \tau_x(T_n - s) + \tau_x(g) = \tau_x(g)$ since $x_n = 0$ and v(s) = 0; moreover, $\operatorname{in}_x((T_n - s)g) = (T_n - s)\operatorname{in}_x(g)$.

If $\tau_x(f) < \tau_x((T_n - s)g)$, then $\tau_x(h) = \tau_x(f + (T_n - s)g) = \tau_x(f)$ and $\operatorname{in}_x(h) = \operatorname{in}_x(f)$.

Similarly, if $\tau_x(f) > \tau_x((T_n - s)g)$, then $\tau_x(h) = \tau_x((T_n - s)g) = \tau_x(g)$ and $\operatorname{in}_x(h) = \operatorname{in}_x((T_n - s)g) = (T_n - s)\operatorname{in}_x(g)$.

Assume finally that $\tau_x(f) = \tau_x((T_n - s)g)$. Since $\deg_s(\operatorname{in}_x(f)) = 0$ and $\deg_s(\operatorname{in}_x((T_n - s)g)) \ge 1$, one has $\operatorname{in}_x(f) + \operatorname{in}_x((T_n - s)g) \ne 0$. Consequently, $\tau_x(h) = \tau_x(f)$ and $\operatorname{in}_x(h) = \operatorname{in}_x(f) + \operatorname{in}_x((T_n - s)g) = \operatorname{in}_x(f) + (T_n - s)\operatorname{in}_x(g)$.

In these three cases, this proves that $\text{in}_x(h) \in I_{k(s)} + (T_n - s)$. This concludes the proof of the lemma. \square

Proposition (6.4.6) (Jensen & Yu (2016)). — Let I be an ideal of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$, let X = V(I). Let $H = \partial(\sup(x_n, 0)) \subset \mathbb{R}^n$ — the hyperplane defined by $x_n = 0$ with multiplicity 1. Let $J = I_{K(s)} + (T_n - s) \subset K(s)[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ and let Y = V(J). One has the equality of tropicalizations

$$\mathcal{T}_{Y} = \mathcal{T}_{X} \cap_{\mathrm{st}} H.$$

H-8 1170-1)

サニスのソイトのカラ ちょう ちょう

C_X

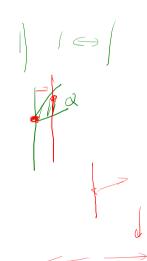
Proof. — Let us prove that the following five assertions, for $x \in \mathbb{R}^n$, are equivalent.

- (i) One has $x \in \mathcal{T}_X \cap_{st} H$;
- (ii) One has $\mathcal{T}_{\text{in}_{\tau}(I)} \not\subset H$;
- (iii) One has $in_x(I) \cap k[T_n, T_n^{-1}] = (0)$;
- (iv) One has $in_x(I)_{k(s)} + (T_n s) \neq (1)$;
- (v) One has $x \in \mathcal{T}_Y$.
- (i) \Leftrightarrow (ii). One has $Star_x(\mathcal{T}_X) = \mathcal{T}_{V(in_x(I))}$.

If $\mathcal{T}_{V(in_x(I))} \subset H$, then a generic deplacement by a vector v such that $v_n \neq 0$ shows that the stable intersection is empty; in particular, $x \notin \mathcal{T}_{V(in_x(I))} \cap_{st} H$, hence $x \notin \mathcal{T}_X \cap_{st} H$.

Otherwise, there exists a polyhedral convex cone $Q \subset \mathcal{T}_{V(in_x(I))}$ such that that $x \in Q$ and $Q \not\subset H$. The polyhedral convex cone Q + H has dimension n. If we perform a generic deplacement by a vector $v \in \mathring{Q} + H$ such that $v_n > 0$, we obtain a strictly positive contribution of (Q, H) to the intersection $\mathcal{T}_{V(in_x(I))} \cap_{st} H$. In particular, $x \in \mathcal{T}_X \cap_{st} H$.

(ii) \Leftrightarrow (iii). Let $p: \mathbf{G_m}^n \to \mathbf{G_m}$ be the projection to the last factor; similarly, let $\pi: \mathbf{R}^n \to \mathbf{R}$ be the projection to the last factor. One has $\operatorname{Star}_x(\mathcal{T}_X) = \mathcal{T}_{V(\operatorname{in}_x(I))}$ and $\pi(\operatorname{Star}_x(\mathcal{T}_X)) = \mathcal{T}_{V(I_n)}$, where $I_n = \operatorname{in}_x(I) \cap K[T_n^{\pm 1}]$, since $\overline{p(V(\operatorname{in}_x(I)))} = V(I_n)$. The inclusion $\mathcal{T}_{V(\operatorname{in}_x(I))} \subset H$ is equivalent to $\pi(\mathcal{T}_{V(\operatorname{in}_x(I))}) = \{0\}$, hence to $\mathcal{T}_{V(I_n)} = \{0\}$. It implies that $I_n \neq (0)$ (otherwise, $V(I_n) = \mathbf{G}_{mk}$ and $\mathcal{T}_{V(I_n)} = \mathbf{R}$). Conversely, if $I_n \neq (0)$, then $V(I_n)$ is a finite subscheme of \mathbf{G}_m , $\pi(\operatorname{Star}_x(\mathcal{T}_X))$ is finite; since it is a fan, it is then reduced to 0.



$$f(s) = f \quad \text{mod} \quad T_n - s)$$

(iii) \Leftrightarrow (iv). — Let $f \in k[\mathsf{T}_n^{\pm 1}]$ be a non-zero Laurent polynomial. Since s is transcendental, one has $f(s) \neq 0$ and the ideal (f,T_n-s) of $k(s)[\mathsf{T}_n^{\pm 1}]$ contains 1. If, moreover, $f \in \mathsf{in}_x(\mathsf{I})$, this implies that $\mathsf{in}_x(\mathsf{I})_{k(s)} + (\mathsf{T}_n-s) = (1)$. Assume conversely that $\mathsf{in}_x(\mathsf{I})_{k(s)} + (\mathsf{T}_n) = (1)$ and let us consider a relation of the form $1 = \sum g_j \mathsf{in}_x(f_j) + (\mathsf{T}_n-s)h$, where $f_j \in \mathsf{I}$, $g_j \in k(s)$ and $h \in k(s)[\mathsf{T}_1^{\pm 1}, \ldots, \mathsf{T}_n^{\pm 1}]$. Let $p \in k[s]$ be a non-zero polynomial such that $pg_j \in k[s]$ for all j, and $ph \in k[s][\mathsf{T}_1^{\pm 1}, \ldots, \mathsf{T}_n^{\pm 1}]$. In the relation $p = \sum pg_j \mathsf{in}_x(f_j) + (\mathsf{T}_n-s)ph$ we substitute T_n to s. We obtain $p(\mathsf{T}_n) = \sum_j (pg_j)(\mathsf{T}_n)\mathsf{in}_x(f_j)$, which proves that $p(\mathsf{T}_n) \in \mathsf{in}_x(\mathsf{I}) \cap k[\mathsf{T}_n^{\pm 1}]$.

The equivalence (iv) \rightleftharpoons (v) follows from the preceding lemma. Indeed, $x \in \mathcal{T}_Y$ if and only if $\text{in}_x(J) \neq (1)$, which is then equivalent to $\text{in}_x(I)_{k(s)} + (T_n - s) \neq (1)$.

It remains to explain compare the multiplicities.

 $W_{\chi}(I_{K(S)}) = W_{\chi}(I)_{K(S)}$

6.5. A tropical version of Bernstein's theorem

fried EKUTI, The Pi = NP(fi) polytope

X(=V(fi) Z= X1 n... n Xn. C Gm

The Chenstein : So les well de fi cont "générique" (à pol de Newton fixé)

alors Z et fivi et card (Z) = V (P1, -..., Pn) on!

a volume mixter, well de az.... an

des volume mixter, well de az.... an

des volume mixter coeff de az.... an

Version tropicale (Tehser-Yu, Maclagan-Stumfels) Ovserman-Payne, ---) Si le M. sont générques — sous change le puslytopes de Newton, mi le valeur absolus de coeff, $V_{Z} = V_{X_1} V_{S_1} V_{S_2} V_{S_3}$ en fin de points avec multiplicates de gré total - V (P1, ..., Pn)-On retrouve en plus du th- de bernstein un information son la vallen doolve de points de Z-