Année 2019/2020

Master 2^e année GÉOMÉTRIE TROPICALE, 1 A. CHAMBERT-LOIR Exam of Thursday, February 20nd, 2020 (3 hours)

You may write your answers to the three problems in English or in French.

EXERCISE 1

1 Let *P* be a polyhedron in a finite dimensional **R**-vector space *V*. Let $x \in P$.

a) Justify the existence of a unique minimal face F_x of P such that $x \in F_x$.

Let P_x be the set of vectors $v \in V$ for which there exists $\delta > 0$ such that $x + tv \in P$, for any $t \in [0; \delta[$.

b) Prove that P_x is a convex polyhedral cone.

c) Let $V_x = P_x \cap (-P_x)$. Prove that V_x is a vector subspace of *V*, that $F_x \subset x + V_x$ and that $\dim(F_x) = \dim(V_x)$.

One assumes in the sequel that *P* is the polytope of bistochastic matrices in \mathbf{R}^{n^2} : $n \times n$ real matrices $A = (a_{i,j})$ with positive coefficients and such that the sums $\sum_{j=1}^{n} a_{i,j}$ of each row and the sums $\sum_{i=1}^{n} a_{i,j}$ of each column are all equal to 1.

- **2** Prove that the vertices of *P* are the permutation matrices (given, for $\sigma \in \mathfrak{S}_n$, by $a_{i,j} = 1$ if $j = \sigma(i)$, and $a_{i,j} = 0$ otherwise).
- **3** Let $\sigma \in \mathfrak{S}_n$ be a permutation distinct from id and let *x* be the midpoint of the two associated permutation matrices A_{id} and A_{σ} . Compute the space V_x . Prove that the segment $[A_{id}, A_{\sigma}]$ is an edge (a 1-dimensional face) of *P* if and only if σ has only one nontrivial cycle.

EXERCISE 2

Let $f = \sum c_m T^m \in \mathbb{C}[T_1^{\pm 1}, ..., T_n^{\pm 1}]$ be a Laurent polynomial. We denote by $\mathcal{V}(f) \subset (\mathbb{C}^*)^n$ the complex hypersurface it defines and by \mathscr{A}_f its amooeba. Let us also denote by \mathbb{NP}_f the Newton polytope of f and $V(\mathbb{NP}_f)$ the set of its vertices. One says that the amoeba \mathscr{A}_f is *solid* if the order of each connected component of its complementary subset is a vertex of the Newton polytope \mathbb{NP}_f .

1 *a*) Let *m* be a vertex of the Newton polytope of *f* and let *E* be the unique conneceted component of $\mathbf{R}^n - \mathscr{A}_f$ with order *m*. Prove that the Ronkin function of *f* is given by $R_f(x) = \log(|c_m|) + \langle m, x \rangle$ on *E*.

b) Suppose that the amoeba \mathcal{A}_f is solid. Prove that the Passare-Rullgård function coincides with the tropical polynomial, that is,

$$S_f(x) = \sup_{m \in V(\mathrm{NP}_f)} \left(\log(|c_m|) + \langle m, x \rangle \right)$$

for every $x \in \mathbf{R}^n$.

Let $(a_{j,k})$ be a real symmetric $n \times n$ matrix whose coefficients satisfy the inequality $0 < |a_{j,k}| < 1$ for every pair (j, k) such that $j \neq k$. Then pose

$$f(T_1,\ldots,T_n) = \sum_{J \subset \{1,\ldots,n\}} \prod_{j \in J} (z_j \prod_{k \notin J} a_{j,k}).$$

2 *a*) Determine the Newton polytope of f. Deduce that the amoeba \mathscr{A}_f is solid.

b) Prove that $f(T_1, ..., T_n) = T_1 ... T_n f(T_1^{-1}, ..., T_n^{-1})$.

- *c*) Prove that the amoeaba of *f* is symmetric: $\mathscr{A}_f = -\mathscr{A}_f$.
- **3** *a*) Prove that the origin 0 belongs to the spine of \mathscr{A}_f . More precisely, prove that in a neighborhood of 0, the spine of \mathscr{A}_f coincides with the hyperplane with equation $x_1 + \cdots + x_n = 0$.
- 4 We will prove by induction on *n* that $\mathbf{R}^n_+ \cap \mathscr{A}_f = \{0\}$.
 - *a*) Let *t* be a real number such that t > 0. Prove that $(0, ..., 0, t) \notin \mathscr{A}_{f}$.
 - b) Prove that $\mathbf{R}^n_+ \cap \mathscr{A}_f = \{0\} = (-\mathbf{R}^n_+) \cap \mathscr{A}_f = \{0\}.$

c) Deduce that the complex zeroes of the polynomial f(T, T, ..., T) in the indeterminate *T* all have absolute value 1 (*theorem of Lee–Yang*).

EXERCISE 3

Let $f = 3T_1^2 + 5T_1T_2 - 6T_2^2 + 8T_1 - T_2 + 9 \in \mathbf{Q}[T_1, T_2]$. Fix a prime number p and consider the field of rational numbers endowed with the p-adic valuation v_p .

- **1** Draw the Newton polytope of *f*.
- **2** Suppose $p \ge 7$.
 - *a*) Determine the initial forms $in_x(f)$ according to the value of $x \in \mathbf{R}^2$.
 - *b*) Determine the (non archimedean) amoeab of *f*. Make a figure.
- **3** Redo the preceding question with p = 3.