Vous pouvez discuter entre vous des exercices mais la rédaction des copies doit être faite individuellement. Celles et ceux qui souhaitent que leur rédaction soit évaluée m'enverront avant le 8 mars 2021 un fichier PDF unique dont le nom aura la forme <nom>_<prenom> -nonarch.pdf comportant la solution de tout ou partie de ces exercices.

EXERCISE 1

Let K be a field which is complete for some nontrivial absolute value. Let $f \in \mathrm{~K}[\mathrm{~T}]$ be a nonzero polynomial. The Newton method for solving f starts from $a_{0} \in \mathrm{~K}$ and defines the sequence $\left(a_{n}\right)$ by the recurrence relation

$$
a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)},
$$

at least while $f^{\prime}\left(a_{n}\right) \neq 0$.
1 Let $a \in \mathrm{~K}$ be a root of f such that $f^{\prime}(a) \neq 0$. Prove that there exists $r>0$ such that for every starting point $a_{0} \in K$ such that $\left|a_{0}-a\right|<r$, the Newton method converges to a.
In the sequel, we assume that K is nonarchimedean and let R be its valuation ring; we also assume that $f \in \mathrm{R}[\mathrm{T}]$.
2 For $a \in \mathrm{R}$, prove that there is a unique polynomial $h \in \mathrm{R}[\mathrm{T}]$ such that $f(\mathrm{~T})=f(a)+(\mathrm{T}-$ a) $f^{\prime}(a)+(\mathrm{T}-a)^{2} h(\mathrm{~T})$.

3 Let $a_{0} \in R$ be such that $\left|f\left(a_{0}\right)\right|<\left|f^{\prime}\left(a_{0}\right)\right|^{2}$. Let $c=\left|f\left(a_{0}\right)\right| /\left|f^{\prime}\left(a_{0}\right)\right|^{2}$.
One considers the outcome $\left(a_{n}\right)$ of the Newton method starting from a_{0}. Establish the inequalities $\left|a_{1}-a_{0}\right| \leqslant c\left|f^{\prime}\left(a_{0}\right)\right|,\left|f^{\prime}\left(a_{1}\right)\right|=\left|f^{\prime}\left(a_{0}\right)\right|$ and $\left|f\left(a_{1}\right)\right| \leqslant c^{2}\left|f^{\prime}\left(a_{1}\right)\right|^{2}$.
4 Prove that there exists a unique root $a \in \mathrm{~K}$ of $f\left|a-a_{0}\right| \leqslant c\left|f^{\prime}\left(a_{0}\right)\right|$ and that the Newton method starting from a_{0} converges to it.

EXERCISE 2

Let K be a nonarchimedean valued field and let $\mathrm{R}=\mathrm{K}[\mathrm{T}]$ be the ring of polynomials in one indeterminate with coefficients in K .
1 Let $a \in K$. Prove that $f \mapsto|f(a)|$ is a multiplicative seminorm p_{a} on R that defines an element of $\mathscr{M}(\mathrm{R})$. Prove that the map $j: a \mapsto p_{a}$ is a homeomorphism onto its image. Is it surjective?
2 Assume that K is algebraically closed and that its valuation is nontrivial. Prove that the image of j is dense in $\mathscr{M}(\mathrm{R})$.

3 Assume that $\mathrm{K}=\mathbf{Q}_{p}$ is the field of p-adic numbers. Prove that the image of j is closed in $\mathscr{M}(\mathrm{R})$.

EXERCISE 3

Let $f=3 \mathrm{~T}_{1}^{2}+5 \mathrm{~T}_{1} \mathrm{~T}_{2}-6 \mathrm{~T}_{2}^{2}+8 \mathrm{~T}_{1}-\mathrm{T}_{2}+9 \in \mathbf{Q}\left[\mathrm{~T}_{1}, \mathrm{~T}_{2}\right]$. Fix a prime number p and consider the field of rational numbers endowed with the p-adic valuation v_{p}.
1 Draw the Newton polytope of f.
2 Suppose $p \geqslant 7$.
a) Determine the initial forms $\operatorname{in}_{x}(f)$ according to the value of $x \in \mathbf{R}^{2}$.
b) Determine the (non archimedean) amoeba of f. Make a figure.

3 Redo the preceding question with $p=3$.

EXERCISE 4

1 Let $\left(a_{n}\right)$ be a sequence of real numbers such that $a_{m+n} \leqslant a_{m}+a_{n}$. Prove that the sequence $\left(a_{n} / n\right)$ converge to $\inf _{n \geqslant 1}\left(a_{n} / n\right)$.
Let R be a ring.
2 Let p be a nonarchimedean seminorm on R .
a) Prove that the formula $p^{*}(x)=\lim _{n} p\left(x^{n}\right)^{1 / n}$ defines a nonarchimedean seminorm on R.
b) Prove that p^{*} is the largest radical nonarchimedean seminorm on R such that $p^{*} \leqslant p$.
c) Let S be a multiplicative submonoid of R, let $a \in S$ and let c be a real number such that $p(a x) \geqslant c p(x)$ for all $x \in \mathrm{~S}$; prove that $p^{*}(a x) \geqslant c p^{*}(x)$ for all $x \in \mathrm{~S}$.
3 Let p be a nonarchimedean radical seminorm on R . Let $a \in \mathrm{R}$ be such that $p(a) \neq 0$.
a) Prove that the formula $p_{a}(x)=\lim _{n} p\left(x a^{n}\right) / p(a)^{n}$ defines a radical nonarchimedean seminorm on R such that $p_{a} \leqslant p$ and $p_{a}(a x)=p_{a}(a) p_{a}(x)$ for all $x \in \mathrm{R}$.
b) Let S be a multiplicative submonoid of R , let $a \in \mathrm{~S}$ and let c be a real number such that $p(a x) \geqslant c p(x)$ for all $x \in \mathrm{~S}$; prove that $p_{a}(a x) \geqslant c p_{a}(x)$ for all $x \in \mathrm{~S}$.
4 Let p be a nonarchimedean seminorm on R .
There exists a nonarchimedean multiplicative seminorm p^{*} on R such that

$$
p(x) \geqslant p^{*}(x) \geqslant \inf _{a \in \mathrm{R}} \frac{p(a x)}{p(a)}
$$

for all $x \in \mathrm{R}$.
(Consider the family of all seminorms on R of the form $p_{a_{1}, a_{2}, \ldots, a_{n}}^{*}$ and use the fact that the product space $\prod_{a \in \mathrm{R}}[0 ; p(a)]$ is compact.)
5 Let p be a nonarchimedean seminorm on R , let S be a multiplicative submonoid of R . Assume that $p(1)=1$ and that for every $a, b \in \mathrm{~S}$, one has $p(a b)=p(a) p(b)$ (" p is multiplicative on $\left.S^{\prime \prime}\right)$. Prove that there exists a nonarchimedean multiplicative seminorm p^{*} on R such that $p^{*} \leqslant p$ and $p^{*}(a)=p(a)$ for every $a \in \mathrm{~S}$.
6 Let p be a nonarchimedean multiplicative seminorm on R, let S be a multiplicative submonoid of R and let I be an ideal of R . One assumes that there does not exist $s \in \mathrm{~S}$ and $a \in \mathrm{I}$ such that $p(a-s)<p(a)=p(s)$. Prove that there exists a nonarchimedean multiplicative seminorm p^{*} on R such that $p^{*} \leqslant p, p(a)=0$ for every $a \in \operatorname{I}$ and $p^{*}(a)=p(a)$ for every $a \in S$.

