

Vous pouvez discuter entre vous des exercices mais la rédaction des copies doit être faite individuellement. Celles et ceux qui souhaitent que leur rédaction soit évaluée m'enverront avant le 8 mars 2021 un fichier PDF unique dont le nom aura la forme <nom>_<prenom> -nonarch.pdf comportant la solution de tout ou partie de ces exercices.

EXERCISE 1

Let K be a field which is complete for some nontrivial absolute value. Let $f \in K[T]$ be a nonzero polynomial. The Newton method for solving f starts from $a_0 \in K$ and defines the sequence (a_n) by the recurrence relation

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)},$$

at least while $f'(a_n) \neq 0$.

- 1 Let *a* ∈ K be a root of *f* such that $f'(a) \neq 0$. Prove that there exists r > 0 such that for every starting point $a_0 \in K$ such that $|a_0 a| < r$, the Newton method converges to *a*. In the sequel, we assume that K is nonarchimedean and let R be its valuation ring; we also assume that *f* ∈ R[T].
- **2** For $a \in \mathbb{R}$, prove that there is a unique polynomial $h \in \mathbb{R}[\mathbb{T}]$ such that $f(\mathbb{T}) = f(a) + (\mathbb{T} a)f'(a) + (\mathbb{T} a)^2h(\mathbb{T})$.
- 3 Let $a_0 \in \mathbb{R}$ be such that $|f(a_0)| < |f'(a_0)|^2$. Let $c = |f(a_0)|/|f'(a_0)|^2$. One considers the outcome (a_n) of the Newton method starting from a_0 . Establish the inequalities $|a_1 - a_0| \le c |f'(a_0)|$, $|f'(a_1)| = |f'(a_0)|$ and $|f(a_1)| \le c^2 |f'(a_1)|^2$.
- 4 Prove that there exists a unique root $a \in K$ of $f |a a_0| \leq c |f'(a_0)|$ and that the Newton method starting from a_0 converges to it.

EXERCISE 2

Let K be a nonarchimedean valued field and let R = K[T] be the ring of polynomials in one indeterminate with coefficients in K.

- **1** Let *a* ∈ K. Prove that *f* \mapsto |*f*(*a*)| is a multiplicative seminorm *p*_{*a*} on R that defines an element of $\mathcal{M}(R)$. Prove that the map *j* : *a* \mapsto *p*_{*a*} is a homeomorphism onto its image. Is it surjective?
- 2 Assume that K is algebraically closed and that its valuation is nontrivial. Prove that the image of *j* is dense in $\mathcal{M}(\mathbb{R})$.

3 Assume that $K = Q_p$ is the field of *p*-adic numbers. Prove that the image of *j* is closed in $\mathcal{M}(\mathbb{R})$.

EXERCISE 3

Let $f = 3T_1^2 + 5T_1T_2 - 6T_2^2 + 8T_1 - T_2 + 9 \in \mathbf{Q}[T_1, T_2]$. Fix a prime number p and consider the field of rational numbers endowed with the p-adic valuation v_p .

- **1** Draw the Newton polytope of *f*.
- 2 Suppose $p \ge 7$.
 - *a*) Determine the initial forms $in_x(f)$ according to the value of $x \in \mathbf{R}^2$.
 - *b*) Determine the (non archimedean) amoeba of *f*. Make a figure.
- **3** Redo the preceding question with p = 3.

EXERCISE 4

1 Let (a_n) be a sequence of real numbers such that $a_{m+n} \leq a_m + a_n$. Prove that the sequence (a_n/n) converge to $\inf_{n \geq 1} (a_n/n)$.

Let R be a ring.

2 Let *p* be a nonarchimedean seminorm on R.

a) Prove that the formula $p^*(x) = \lim_n p(x^n)^{1/n}$ defines a nonarchimedean seminorm on R.

b) Prove that p^* is the largest radical nonarchimedean seminorm on R such that $p^* \le p$. *c*) Let S be a multiplicative submonoid of R, let $a \in S$ and let *c* be a real number such that $p(ax) \ge cp(x)$ for all $x \in S$; prove that $p^*(ax) \ge cp^*(x)$ for all $x \in S$.

3 Let *p* be a nonarchimedean radical seminorm on R. Let $a \in R$ be such that $p(a) \neq 0$. *a*) Prove that the formula $p_a(x) = \lim_n p(xa^n)/p(a)^n$ defines a radical nonarchimedean seminorm on R such that $p_a \leq p$ and $p_a(ax) = p_a(a)p_a(x)$ for all $x \in R$.

b) Let S be a multiplicative submonoid of R, let $a \in S$ and let *c* be a real number such that $p(ax) \ge cp(x)$ for all $x \in S$; prove that $p_a(ax) \ge cp_a(x)$ for all $x \in S$.

4 Let p be a nonarchimedean seminorm on R. There exists a nonarchimedean multiplicative seminorm p^* on R such that

$$p(x) \ge p^*(x) \ge \inf_{a \in \mathbb{R}} \frac{p(ax)}{p(a)}$$

for all $x \in \mathbb{R}$.

(Consider the family of all seminorms on R of the form $p_{a_1,a_2,...,a_n}^*$ and use the fact that the product space $\prod_{a \in \mathbb{R}} [0; p(a)]$ is compact.)

- 5 Let *p* be a nonarchimedean seminorm on R, let S be a multiplicative submonoid of R. Assume that p(1) = 1 and that for every $a, b \in S$, one has p(ab) = p(a)p(b) ("*p* is multiplicative on S"). Prove that there exists a nonarchimedean multiplicative seminorm p^* on R such that $p^* \leq p$ and $p^*(a) = p(a)$ for every $a \in S$.
- **6** Let *p* be a nonarchimedean multiplicative seminorm on R, let S be a multiplicative submonoid of R and let I be an ideal of R. One assumes that there does not exist $s \in S$ and $a \in I$ such that p(a s) < p(a) = p(s). Prove that there exists a nonarchimedean multiplicative seminorm p^* on R such that $p^* \leq p$, p(a) = 0 for every $a \in I$ and $p^*(a) = p(a)$ for every $a \in S$.