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2.6. THE LOGARITHMIC LIMIT SET OF A VARIETY 63

Conversely, let x € E and let & € R" be such that x + R.& C E. Then
x+R.¢& C E, with the notation of the proof, and we have seen how this
implies that & € N, e(NPy). This concludes the proof. o

BN

2.6. The logarithmic limit set of a variety

Definition (2.6.1). — Let V be an algebraic subvariety of (C*)". The logarith-
mic limit set of V is the set of points x € R" such that there exists sequences
(xk) € A(V) and (hk) € R, such that hx — 0 and hxxx — x. We denote it
by Aeo(V).

This set has been introduced by Bercrian (1971) who gave a descrip-
tion of the set when V is a hypersurface. His work has been completed
by Bier: & Groves (1984).

It is also called the asymptotic cone of A(C), and can be defined as the
limit of the closed subsets hA(V), when h — 0 (restricted to h > 0) for
the topology defined by the Hausdorff distance on compact sets.

In this section, we describe Ao(V) when V = 7°(f) is defined by a
nonzero Laurent polynomial in C[T#, ..., T!].

Lemma (2.6.2). — Let V be a nonempty closed algebraic subvariety of (C*)".
Then its logarithmic limit set A(V) is a closed conic subset of R".

Proof. — Since V is nonempty, one has A(V) # @; one then may choose
Xk to be equal to a given element of A(V) and hy = 1/k; this shows that
0 € An(V).

Let x € Ao(V); write x = lim hyxg, with x; € A(V) and (hx) — 0. For
every t > 0, one has tx = lim(thy)xg, and thy — 0, so that tx € (V).

This proves that A.(V) is a cone. Let us prove that it is closed.

Let (x(™) be a sequence of points of 1(V) that converges to a point x €
R" and let us prove that x € A,(V). For every m, choose a point x,, €
A(V) and a real number h,, such that0 < h,, < 1/m and”x("’) - h,,,xm” <
1/m. Then ||x — hyxy|| < ||x - x("’)” +1/m, so that x = lim h,x,,, hence
X € Aoo(V). This proves that A,(V) is closed. u]

Definition (2.6.3). — Let f € C[T5!, ..., T#"] be a nonzero Laurent polyno-
mial and let S C Z" be its support. The tropical variety defined by f is the
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64 CHAPTER 2. ARCHIMEDEAN AMOEBAS

set of all points x € R" such that sup,, o(x,m) is attained for at least two
values of m € V. We denote it by T.

It follows from the definition of 7y that it is a closed Q-rational cone
(non convex, in general).

In general, if V is a closed subvariety of (C*)", one defines its tropi-
cal variety Fv as the intersection of all Jy, for f € (V) = {0}, wher@
F(V) is the ideal of V, namely the ideal of all Laurent polynomi-
als f € C[Tfl, ..., T#'] such that f|y = 0.

If V.c W, one has .7 (W) c .7(V), hence Iy C Tw.

The tropical variety Jv is a closed conic subset of R"”, as an intersection
of a family of such subsets.

Lemma (2.6.4). — Assume that V = 7/(f) is a hypersurface defined by a
nonzero Laurent polynomial f € C[Tf,..., T£]. Then v = 7. In
particular, Iy is a Q-rational polyhedral set.

Proof. — It suffices to prove that 7y C Jy, for every nonzero Laurent
polynomial ¢. One has NPy = NP +NP,; indeed, if m € Z" is a vertex
of NPy, it must be a vertex of both NPy and NP;. In other words,
if a linear form defines a nonpunctual face of NPy, then it defines a
nonpunctual face of NP,; this means exactly that 7y € Jy,. o

Using Grobner bases and the notion of nonarchimedean amoebas, we
shall prove in the next chapter (remark 3.6.7) a con]ecture put forward
(1971) and proved by Bier: & Gre (1¢
a finite famlly (f;) of Laurent polynomials such that 7y = N; 7.
partlcular Iy is a Q-rational polyhedral set. The motivation for the
work of Bizrr & Groves (1984) came from the following consequence
regarding the logarlthmlc limit set of an algebraic variety.

Theorem (2.6.5) (B1 Groves, 1984). — For every closed subvariety V
of (C)", the tropzcal wmety of V coincides with its logarithmic limit set:
—
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Lemma (2.6.4). — Assume that V. = 7/(f) is a hypersurface defined by a
nonzero Laurent polynomial f € C{Tfl,.H,Tﬁl], Then 9v = J¢. In
particular, Iy is a Q-rational polyhedral set.

Proof. — Tt suffices to prove that 7y C J¢, for every nonzero Laurent % € ‘0 /V ) ﬁ 66[]’17
13
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2.6. THE LOGARITHMIC LIMIT SET OF A VARIETY 65

Theorem (2.6.6) (Bercrvian, 1971). — Let V be a closed subvariety such that

anrvy ¢ (oo
A (W)l e
o 4
M - v is a Q-rational polyhedral set. Then Iy = A(V). In particular, for every
£ 3¢, S=ryp (f) |
S

) gou C A&*’ [\/) a{_},mawﬂ&/%
o ds of o bric Aty

non zero Laurent polynomial f € C[TTI\,‘i .., T£], one has Tr = Aol 7 (f))-

me We split the proof of this equality as two inclusions. The proof of

the first one is relatively elementary, the second will require a bit of
Igebrai try.
~x 4 ?;? . /YV7L (7) w> algebraic geometry.
weS Proposition (2.6.7). — One has A(V) C Iy.
- N Jj o Un Proof. — Itsuffices to prove thaor every non zero Lau- _ (\ /\g
b atle & - ,

rent polynomial f. Fix x € R". Let'S be the support of f and write f =

/ye,wﬁ r”m WE’ /ULG 5 Y mes cmT™; let S, be the set of m € S such that (x, m) = sup,,.s(x, m). Fé‘ﬁ (V)

By definition, x € J if and only if Card(Sy) > 2. Let us assume that
'J E( x ¢ Iy, that is, Card(Sy) = 1, and let us prove that x ¢ Ae(7'(f)). We 2 ;] (v ) C ?f( 5 ‘F € 9[\/5
m € S - /u argue by contradiction, assuming that there is a sequence (zx) in 7/(f) - i
¢ and a sequence (/) of strictly positive real numbers such that iy — 0 \/ C U C 7C )
<K ) > < 2// /u‘ > and fA(z;) — x. Let u € S be the unique element such that Sy = {u}.
. By assumption, one has (x, m) < (x, u) for every m € S—{u}. Lete > 0 }r ])( \)
/‘ijz J o jmc da‘ X be such that (x, m) < (x,u) — ¢ for every m € S—{u}; by continuity, ;l o cv \ c » / 7C
oAl WA O~ ) ) this inequality holds in a neighborhood U of x. For k large enough such
¢ J/( <C . that hiA(zx) € U, one then has ~
W e
U“AWJ: log(z:"“) = (AMzx),m —p) = h;l<hk/\(zk),m —u) < —h;ls X é W\ Sw ro—£°

A& U for all m € S={u}. Since Ji tends to 0, this shows that log(|z; | ) ( ﬁ(L - é ’p
[IQ e ( } m £ ( Ub) |\L ) - £ converges to —oo, hence |z:’7“| converges to 0. From the equality f (ZAA.) = f O Q C‘LK“ x —F
j /

0, we deduce that ) s ‘ {/{* X 6 ?\w (U (\f))
Wy eu -3

By the preceding estimate, the right hand side of the previous equality

converges to 0, whence the desired contradiction. [a]
T é /)V“ (V {f\ Lemr\na((éiﬁ.Sl — Lett € Ry and let x = (0,...,0,-t); if x € Fy, then
fat s, v N

_ ’ /R ,)l Proof. — The result is obvious if x = 0. Since both Jy and A« (V) are
K - 4&/\/» R’ % oo > f

invariant by multiplication by a positive real number, we may assume
6 L&\, —> O 2 A\
A L€ L)

thatx =(0,...,0,-1).
fex )70
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this inequality holds in a neighborhood U of x. For k large enough such £ 5o
that hxA(zx) € U, one then has /£ ;\ ( u > -
Aone 2 2o ) €

log(zy ") = (Alzi), m — ) = I A (zi), m — py < ~hile

for all m € S—{u}. Since hy tends to 0, this shows that lo (|z;("_"| < ﬂ, ;)(2 > > ‘£
b S £ LAy o < KA

converges to —co, hence IZZH‘\ converges to 0. From the equality f(zy) =

0, we deduce that
o o owe S - AP
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66 CHAPTER 2. ARCHIMEDEAN AMOEBAS

Let Ry = C[Tf!,..., T ], let R = Ro[T;'] and R' = Ro[T,]; let
¢ : R” = Robe the unique morphism of Ry-algebras such that ¢(T,) = 0.
These rings R, R” and Ry are respectively viewed as the rings of func-
tions on the algebraic varieties (C*)", (C*)"~! x C and (C*)"~! x {0}. Let
I=.7(V)betheideal of VinR;letI' =INR’ and let Iy = ¢(I'). Geomet-
rically, I’ is the ideal of the Zariski closure V’ of V in (C*)"~! x C, and Iy
)n is the ideal of Vo = V' n (C*)"~1 x {0}.

Let us prove that Ip # (1). Otherwise, there exists f € I' = IN R’ such
) that ¢(f) = 1; let S be the support of f and write f = },,,cscwT™, s0
that

My
AL

o(f) = Z cm Ty ..

meS
mp=0

Since f € I', one has S c Z"1 x N, so that {(x,m) = —m, < 0 for all
m € S. From the equality ¢(f) = 1, we see that there exists m € S
such that m, = 0 and (m1, ..., my-1) = 0, thatis, 0 € S. In particular,
sup,, .g{x,m) =0.

Since x € Jy, there are at least two distinct elements m,m’ € S such
that 0 = (x,m) = (x,m’), thatis, m,, = m}, = 0. Then (my,...,m,_1) #
(mf,...,m;_,) hence ¢(f)is nota monomial, contrary to the hypothesis
@(f) = 1. Consequently, Vo # @. Let z € (C*)"~! be a point such that
(z,0) € Vo.

By definition, V is a dense open subset of V"’ for the Zariski topology. It
is therefore an open subset of V’ for the classical topology. Moreover, a
basic but nontrivial result of algebraic geometry asserts it is also dense;
see, for example, (Munirorn, 1994), p. 58, theorem 1. Consequently,
there is a sequence (z}) of points of V such that zx — (z, 0). If one writes
z = (zk, ug), with z; € (C')"~! and uy € C', this means that z; — z
and ux — 0. In particular, A(zx) — A(z) and A(ux) — —oo; For k large
enough, one thus has log(ux) < 0; removing a few terms, we assume
that log(ux) < 0 for all k; setting hx = —1/log(ux), the sequence ()
converges to 0 and consists of strictly positive real numbers. Then,
hiA(z) = (hiA(zk), A (ug)) converges to (0, -1) = x. This proves that
X € Aeo(V). =]

I

Lemma (2.6.8). — Let t € Ry and let x = (0,...,0,-t); if x € Fy, then
X € Awo(V).

Proof. — The result is obvious if x = 0. Since both Jv and Aw(V) are
invariant by multiplication by a positive real number, jWe may assume

thafx = (0,...,0,-1). X & F\/ => ’ff'qu,[\/)

{ oz, eV

Jf Q(zk\e/a(.,,alq’
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Let us prove that Ip # (1). Otherwise, there exists f € I’ = INR’ such
that ¢(f) = 1; let S be the support of f and write f = 3}, cscuT", so
that

ORI N v
meS,
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Since f € I’, one has S C Z"1 X N, so that (x,m) = —m, < 0 for all
m € S. From the equality ¢(f) = 1, we see that there exists m € S
such that m, = 0 and (m, ..., my-1) = 0, thatis, 0 € S. In particular,

sup,, .g{x, m) =0.

Since x € Jy, there are at least two distinct elements m,m’ € S such
that 0 = (x,m) = (x,m’), that is, m, = mj, = 0. Then (m, ..., My—1) #
(my,..., m; _,), hence ¢(f)is nota monomial, contrary to the hypothesis
@(f) = 1. Consequently, Vo # @. Let z € (C*)"! be a point such that
(z,0) € Vo.
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q)(}) =1 ”C(;r\sequently, Vo # @. Let z € (C")""! be a point such that
(z,0) € Vo.

By definition, V is a dense open subset of V"’ for the Zariski topology. It
is therefore an open subset of V' for the classical topology. Moreover, a
basic but nontrivial result of algebraic geometry asserts it is also dense;
see, for example, (Mumrorp, 1994), p. 58, theorem 1. Consequently,
there is a sequence (z}) of points of V such that zx — (z, 0). If one writes
zi, = (zx, uy), with z; € (C)"! and u; € C*, this means that z; — z
and u; — 0. In particular, A(zx) — A(z) and A(uy) — —oo; For k large
enough, one thus has log(u;) < 0; removing a few terms, we assume
that log(ux) < O for all k; setting /ix = —1/log(uy), the sequence (/)
converges to 0 and consists of strictly positive real numbers. Then,
hiMzp) = (hkM(zk), hiA(uk)) converges to (0,—1) = x. This proves that
X € Aao(V).
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/r‘ Proposition (2.6.9). — Assume that Iy is a Q-rational polyhedral subset 1|
s —_————_—_——————
€A & ]f of R". Then Fy C Awo(V).

x ) . . . ) P M 7{ g @ nz [/1‘0 w v\EL
Proof. — Since Jy is a Q-rational conic polyhedral subset of R", its - -
M ~ M rational points Q" N Jy are dense in Jy. Since A (V) is closed in R”, it C
thus suffices to prove that every point of Q" N Fy belongs to Aw(V). Let ~ _ P
x € Q"NIy. If x =0, then x € Awo(V); let us then assume that x # 0. By _/7 P . n @’ —_ Y
the classification of matrices over Z, there exists A € GL,(Z) such that
Alx =(0,...,0,—t), where t € Q. Performing the monomial change

of variables given by A, we are reduced to the case of x = (0,...,0,-1). \E (LL W q L(
The proposition follows from the preceding lemma. o
BN
2.7. Missing /270 } ( \/ )
| [ 0@ gy

Following ForsBerG, Passare & TsikH (2 );
(2004); Passare & Tsikn (2005): N
w ( — The connected components of the complement of the amoeba are ")( 6 /lg J n <Q
maximal open sets on which the Ronkin function is affine. -
— (Limit of the amoebas is the tropical hypersurface, itis purely (1—1)- (j{:
dimensional;) maybe explain the balancing condition, at least the local Corle < ot N

concavity, maybe not.
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Lo | \ek= 03 (o)
\M J«Q O\.L R 3.1. Seminorms

Definition (3.1.1). — Let Rbearing. AseminormonRisamapp: R — R, N
satisfying the following properties: \ a \

N (i) One has p(0) = 0and p(1) < 1;
Jr\« b A' ('JL (ii) For every a,b € A, one has p(a —b) < p(a) + p(b); /)
(iii) For every a,b € A, one has p(ab) < p(a)p(b).
=) MM ( 1‘«\ One says that the seminorm p is radical or power-multiplicative if, more-
. d_oi J na (}‘} (AQ over, it satisfies
um

(iv) For everya € Aand n € N, one has p(a") = p(a)".

One says that the seminorm p is multiplicative if: 7“ # 0 {/b
L(v) For every a,b € A, one has p(ab) = p(a)p(b).
One says that the seminorm p is a norm if p(a) = 0 implies a = 0.

Lk

One has p(a) < p(a)p(1) for all a € R; if p # 0, this implies 1 < p(1)
hence p(1) = 1.

Taking a = 0 in (i), one has p(=b) < p(b), hence p(-b) = p(b) for all b.
Consequently, p(a + b) < p(a) + p(b) for alla,b € R.

Example (3.1.2). — Let R be a ring and let p be a seminorm on R. Let
P={ae€R; pa) =0}. Leta,b € P;thenp(a+b) < p(a)+p(b) = 0, hence
p(a+b) =0anda+b € P. Leta € Rand b € P; then p(ab) < p(a)p(b) =0,
hence ab € P. This proves that P is an ideal of R.

For every a € R and every b € P, one has p(a + b) < p(a), and
p(a) = p((a +b) —b) < p(a +b), so that p(a +b) = p(a). Consequently, p
passes to the quotient and defines a seminorm on R/P.
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If p is radical, then P is a radical ideal. Let indeed 2 € Rand 1 € N be
such that a” € P; then p(a)" = p(a") = 0, hence p(a) =0and a € P.

Assume that p is multiplicative and p # 0, and let us show that Pis a
prime ideal. Since p # 0, one has P # R. Letalso a,b € R be such that
ab € P; then p(ab) = p(a)p(b) = 0, hence either p(a) = 0and a € P, or

p(b)=0and b € P.

Example (3.1.3). — Let R be a ring, let S be a multiplicative subset
of R, let Rg be the associated fraction ring. Let p be a multiplica-
tive seminorm on R such that p(s) # 0 for every s € S. There exists
a unique map p’: Rs — Ry such that p’(a/s) = p(a)/p(s) for every
a € A and every s € S. (Indeed, if a/s = b/t, for a,b € R and
s,t € S, there exists u € S such that atu = bsu; then p(a)p(t)p(u) =
p(b)p(s)p(u), hence p(a)/p(s) = p(b)/p(t).) It is clear that p’ is mul-
tiplicative: p'(a/s)(b/t) = p(ab/st) = p(ab)/p(st) = (p(@)/p(s)) -
(p(b)/p(t)). Moreover, let a,b € R and s,t € S; then (a/s) + (b/t) =

(at + bs)/st, so that

,a b ,at +bs (at + bs)
pCrD=p ) s EE

st T (st
Plat) +pbs) _ pla)  p(b)
pen pe) " p)
b
=P O +p (R

Definition (3.1.4). — Let R be a ring and let p be a seminorm on R. One
says that the seminorm p is nonarchimedean, or ultrametric, if one has

pla+b) < sup(p(a), p(b)) for every a,b € R.
-

The terminology ultrametric refers to the property that p satisfies an
inequality stronger than the triangular inequality. The terminology

nonarchimedean alludes to the fact that it implies that p(na)

< p(a) for

every 1 € N: no matter how many times one adds an element, it never
gets higher than the initial size. The following example explains the

relations between these two properties.

Lemma (3.1.5). — Let R be a ring and let p be a seminorm on R.



Lemma (3.1.5). — Let R be a ring and let p be a seminorm on R. 7

a) If p is nonarchimedean, then p(na) < p(a) for every n € Z and every
a€R

b) Conversely, let us assume that p is radical and that p(n) < 1 for every
n € N. Then p is nonarchimedean.

Proof. — The first assertion is proved by an obvious inductive argu-
ment. Let us prove the second one. Leta,b € R. For every n € N, one
has

pla+b)' = pla+b)") < p(> (:)”kbn—k)
k=0

n

<2 p((Z))p(a)ka)”*k < piarpert

< (n+1)sup(p(a), p(b))".

As a consequence, one has
pla+b) < (n+ 1Y sup(p(a), p(b)).

When 1 — +00, we obtain the upper bound p(a + b) < sup(p(a), p(b));
this proves that p is nonarchimedean. [u}

Proposition (3.1.6). — Let K be a field endowed with a nonarchimedean ab-
solute value |-| and let r = (r1,...,r,) be a family of strictly positive real
numbers. There is a unique absolute value p, on K(Ty, ..., T,) such that for
every polynomial f = 3, ¢, T", one has
pr(f) = sup culry .1y
meN"

Its restriction to K[Ty,...,T,] is the largest absolute value such that
pe(Tj) = rjfor j € {1,...,n} and which restricts to the given absolute value
on K.

Proof. — To prove the first assertion, it suffices to prove that the given
formula defines an absolute value on K[Tj,...,T,], because it then
extends uniquely to its fraction field K(Ty, ..., T,). One has p,(0) = 0;
conversely, if f = Y, ¢,, " is such that p,(f) = 0, then |c,,| = 0 for all m,
hence f = 0. One also has p,(1) = 1.

Let f = X ¢,y T" and g = X, d,,T" be two polynomials.
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Then f + ¢ = X.(cp + dy)T™; for every m,
lem + dmlr{™ g™ < (sup(leml, |dm)r™ .. ry™) < sup(pr(f), pr(8)),

so that p,(f + ) < sup(p+(f), pr(8))-
Moreover, f§ = 3.,(3p+q=m ¢pdq)T™. For every m, one has

Z cpdy

p+q=m

r™ < sup [cplldglrPrT < pr(f)pr(8),

p+q=m

sothatp,(fg) < p,(f)p,(g). Thisshows thatp,isanormonK[Ty, ..., T,],
and it remains to prove that p, is multiplicative.

Let P be the convex hull of the set of all p € N” such that p.(f) =
[cp|r?, and let Q be the convex hull of the set of all 4 € N" such that
pr(g) = ldg|r?. Let a and b be vertices of P and Q respectively, defined
by linear forms ¢ and i on R"; let m = a + b. Then m is a vertex
of the polytope P + Q, defined by the linear form ¢ + ¢, so that the
coefficient of T in f ¢ is the sum of c,d, and of other elements c,d,,
where |c,|rT < |cq|r® and |dy|rT < |dp|r?. This implies that

Z cpdy

p+q=m

1™ = |cadplr™ = calr |ds]r? = pr(f)p:(8)-

Consequently, p-(fg) = p,(f)p,(g) and p, is a multiplicative seminorm
on K[Ty,...,T,]. O

Example (3.1.7). — A theorem of Ostrowski describes the multiplicative
seminorms on the field Q of rational mumbers.

a) The usual absolute value |-|, and its powers |-|" for r € ]0;1];
b) For every prime number p, the p-adic absolute value ||, and its
powers |-[5, for all 7 € ]0;+co[; _—

¢) The trivial absolute value |-|o defined by |0]op = 0 and |a|o = 1 for all



