TOPICS IN TROPICAL GEOMETRY

CONTENTS

givialts ->

Introduction	1
Introduction	1
1. Polyhedral geometry	3
1.1. Algebraic setting	3
1.2. The Farkas lemmas	6
1.3. Polyhedra and polytopes	11
1.4. Linear programming	18
1.5. Faces, facets, vertices	22
1.6. Vertices, extremal rays	27
1.7. Rational polyhedra	33
1.8. Polyhedral subspaces, fans	35
1.9. The normal fan of a polyhedron	40
2.1. The tropicalization map	43 43 45
2.3. The amoeba of a hypersurface	49
	52
I J	58
	63
2.7. Missing	67
3. Nonarchimedean amoebas	69
3.1. Seminorms	69
3.2. Nonarchimedean amoebas of hypersurfaces	76
3.3. Monomial ideals	83

(Z) 2) P) (log (Z)),)

V C (C*)

2 ins def

A (V) amide de V

2 ins def

A (V) Amide de V

2 ins def

A (V)

be a c c de R - A f sont convex s

paramétres par un rous enselle

de NP nZ

pto nec (E) = N (NP f)

l pto nec (E) = N (NP f)

iv CONTENTS

/ 3.5.	The Gröbner polyhedral decomposition associated with an	
	ideal	96
3.6.	Tropicalization of algebraic varieties	99
3.7.	Dimension of tropical varieties	108
3.8.	Multiplicities	110
3.9.	The balancing condition	117
4. To	ric varieties	119
4.1.	Tori, characters and graduations	119
4.2.	Toric varieties	124
4.3.	Affine toric varieties and cones	129
4.4.	Normal toric varieties and fans	133
4.5.	Toric orbits and cones	138
4.6.	The extended tropicalization associated with a toric variety .	142
5. Ma	atroids and tropical geometry	147
	Hyperplane arrangements	
	N f = (1	1 - 1

Conversely, let $x \in E$ and let $\xi \in \mathbf{R}^n$ be such that $x + \mathbf{R}_+ \xi \subset E$. Then $x + \mathbf{R}_{+} \xi \subset \mathbf{E}'$, with the notation of the proof, and we have seen how this implies that $\xi \in N_{\nu^E}(NP_f)$. This concludes the proof.

2.6. The logarithmic limit set of a variety

Definition (2.6.1). — Let V be an algebraic subvariety of $(\mathbf{C}^*)^n$. The logarithmic limit set of V is the set of points $x \in \mathbb{R}^n$ such that there exists sequences $(x_k) \in \lambda(V)$ and $(h_k) \in \mathbf{R}_+^*$ such that $h_k \to 0$ and $h_k x_k \to x$. We denote it by $\lambda_{\infty}(V)$.

This set has been introduced by Bergman (1971) who gave a description of the set when V is a hypersurface. His work has been completed by Bieri & Groves (1984).

It is also called the *asymptotic cone* of $\lambda(C)$, and can be defined as the limit of the closed subsets $h\lambda(V)$, when $h \to 0$ (restricted to h > 0) for the topology defined by the Hausdorff distance on compact sets.

In this section, we describe $\lambda_{\infty}(V)$ when $V = \mathcal{V}(f)$ is defined by a nonzero Laurent polynomial in $C[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$.

Lemma (2.6.2). — Let V be a nonempty closed algebraic subvariety of $(\mathbf{C}^*)^n$. Then its logarithmic limit set $\lambda_{\infty}(V)$ is a closed conic subset of $I\!\!R^n$.

Proof. — Since V is nonempty, one has $\lambda(V) \neq \emptyset$; one then may choose x_k to be equal to a given element of $\lambda(V)$ and $h_k = 1/k$; this shows that

Let $x \in \lambda_{\infty}(V)$; write $x = \lim h_k x_k$, with $x_k \in \lambda(V)$ and $(h_k) \to 0$. For every t > 0, one has $tx = \lim(th_k)x_k$, and $th_k \to 0$, so that $tx \in \lambda_\infty(V)$. This proves that $\lambda_\infty(V)$ is a cone. Let us prove that it is closed.

Let $(x^{(m)})$ be a sequence of points of $\lambda_{\infty}(V)$ that converges to a point $x \in$ \mathbf{R}^n and let us prove that $x \in \lambda_{\infty}(V)$. For every m, choose a point $x_m \in \lambda(V)$ and a real number h_m such that $0 < h_m < 1/m$ and $\|x^{(m)} - h_m x_m\| < 1/m$. Then $\|x - h_m x_m\| < \|x - x^{(m)}\| + 1/m$, so that $x = \lim h_m x_m$, hence $x \in \lambda_{\infty}(V)$. This proves that $\lambda_{\infty}(V)$ is closed.

Definition (2.6.3). — Let $f \in C[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ be a nonzero Laurent polynomial and let $S \subset \mathbf{Z}^n$ be its support. The tropical variety defined by f is the

eventhe limite byquithm vision à grande durtaires paper les logs de V C ((T*)" $\lambda(\vee)$

= 2 lim hr xr)

(zr) svite dand(v)

o hr ~ 0

sno a néhique (X,d) - s côre os ynptotique $\begin{array}{c}
\text{a lim} (\times, \varepsilon d) \\
\varepsilon \to 0
\end{array}$

f=T1+T2-1

 $V \subset (C^{\times})^{n}$. ridéal de V = D(V) Edfe Cltination fly = 0 5 . I C Q (T, E) , T, E) V(I) variété de I ={2/ f(2)=0 YZEI}

The des zens de Hilbert (Nullstellensatz)

$$\begin{array}{lll}
.0(J(\checkmark)) &=& \lor \\
.0(I(\checkmark)) &=& \lor I \\
&=& (IJ), I, fell \\$$

set of all points $x \in \mathbb{R}^n$ such that $\sup_{m \in \mathbb{S}} \langle x, m \rangle$ is attained for at least two values of $m \in V$. We denote it by \mathcal{T}_f .

It follows from the definition of \mathcal{T}_f that it is a closed **Q**-rational cone

(non convex, in general). In general, if V is a closed subvariety of $(C^*)^n$, one defines its *tropi*cal variety \mathcal{T}_V as the intersection of all \mathcal{T}_f , for $f \in \mathcal{F}(V) = \{0\}$, where $\mathcal{F}(V)$ is the ideal of V, namely the ideal of all Laurent polynomials $f \in \mathbb{C}[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ such that $f|_{\mathbb{V}} \equiv 0$.

If $V \subset W$, one has $\mathcal{F}(W) \subset \mathcal{F}(V)$, hence $\mathcal{T}_V \subset \mathcal{T}_W$.

The tropical variety \mathcal{T}_V is a closed conic subset of \mathbf{R}^n , as an intersection of a family of such subsets.

Lemma (2.6.4). — Assume that $V = \mathcal{V}(f)$ is a hypersurface defined by a nonzero Laurent polynomial $f \in \mathbf{C}[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$. Then $\mathcal{T}_V = \mathcal{T}_f$. In particular, \mathcal{T}_V is a **Q**-rational polyhedral set.

Proof. — It suffices to prove that $\mathcal{T}_f \subset \mathcal{T}_{fg}$ for every nonzero Laurent polynomial g. One has NP $_{fg} = \text{NP}_f + \text{NP}_{g'}$ indeed, if $m \in \mathbf{Z}^n$ is a vertex of NP $_{fg'}$ it must be a vertex of both NP $_f$ and NP $_g$. In other words, if a linear form defines a nonpunctual face of NP $_f$, then it defines a nonpunctual face of NP_{fg} ; this means exactly that $\mathcal{T}_f \subset \mathcal{T}_{fg}$.

Using Gröbner bases and the notion of nonarchimedean amoebas, we shall prove in the next chapter (remark 3.6.7) a conjecture put forward by $\underline{B_{\text{ERGMAN}}}$ (1971) and proved by $\underline{B_{\text{IERI}}}$ & Groves (1984) that there is a finite family (f_i) of Laurent polynomials such that $\mathcal{T}_{\underline{V}} = \bigcap_i \mathcal{T}_{f_i}$. In particular, \mathcal{T}_V is a Q-rational polyhedral set. The motivation for the work of Bieri & Groves (1984) came from the following consequence regarding the logarithmic limit set of an algebraic variety

Theorem (2.6.5) (Bieri & Groves, 1984). — For every closed subvariety V of $(\mathbf{C}^*)^n$, the tropical variety of V coincides with its logarithmic limit set: $\mathcal{F}_V = \lambda_{\infty}(V)$. _ wastinative

For the moment, we need to content ourselves with the weakest result.

f - 2 cm Tm = 2 cm Tm S = supp(f) = dm/ cm + o) polysise tropal ancé i f

x ~> + <= olgèbre

+ ~> sup (max, +)

TIT; = T ~> < x, m) = Z m; x;

T (x) = sop < z, m)

m E S

governo affine par morceur m 12°, convexe. [of déf de l'épire] Of = {x | Tf what pas approx a wis dex} = {x |] n' + m" ES

hypersuface tropicale (Q -rationalle)

Lemma (2.6.4). — Assume that $V = \mathcal{V}(f)$ is a hypersurface defined by a nonzero Laurent polynomial $f \in \mathbf{C}[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$. Then $\mathcal{T}_V = \mathcal{T}_f$. In particular, \mathcal{T}_V is a Q-rational polyhedral set.

Proof. — It suffices to prove that $\mathcal{T}_f \subset \mathcal{T}_{fg}$ for every nonzero Laurent polynomial g. One has $NP_{fg} = NP_f + NP_g$ indeed, if $m \in \mathbb{Z}^n$ is a vertex of NP_{fg} , it must be a vertex of both NP_f and NP_g . In other words, if a linear form defines a nonpunctual face of NP_f , then it defines a nonpunctual face of NP_{fg} , this means exactly that $\mathcal{T}_f \subset \mathcal{T}_{fg}$. □

NP fg = Mp + NPg. f = \(\Sigma_{pp} \tau_{p} \tau_{pp} \)

n n est un som vet de NP lepa x extréval en m (h, m) = (h, p) + (h, g)

>> Supply C Sym(f) + sym(g) NP, g = NP, + NPg -

réun fine de polyèdres. $\mathcal{E}_{V} = \bigcap_{k \in \mathcal{D}(V)} \mathcal{E}_{R} = \bigcap_{k \in \mathcal{D}(V)} \mathcal{E}_{R}$ $\mathcal{D}(V) = \sqrt{f} = \{k \mid \exists w > 1\}$ $\exists g$

le dont êxtre extrende en pret quinteg

C NP + NPg

An mois dans le cas V= V(f)

Pv = Eq est une hyperciface tropicale

- we intersector finie d

f= Icm The S= sup (f)

x & Be my (x, m)

est attent on un

rent point µES

m ES - {µ}

«x m > < (x, µ >

<

 $x \in U$ $(x) \in U$

 $x = \lim_{k \to \infty} \int_{\mathbb{R}} \langle k \rangle = \lim_{k \to \infty} \int_{\mathbb{R}} \langle k \rangle = 0$

Theorem (2.6.6) (Bergman, 1971). — Let V be a closed subvariety such that \mathcal{T}_V is a \mathbf{Q} -rational polyhedral set. Then $\mathcal{T}_V = \lambda_\infty(V)$. In particular, for every non zero Laurent polynomial $f \in \mathbf{C}[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$, one has $\mathcal{T}_f = \lambda_\infty(\mathcal{V}(f))$.

We split the proof of this equality as two inclusions. The proof of the first one is relatively elementary, the second will require a bit of algebraic geometry.

Proposition (2.6.7). — One has $\lambda_{\infty}(V) \subset \mathcal{T}_V$.

Proof. — It suffices to prove that $\lambda_{\infty}(\mathcal{V}(f)) \subset \mathcal{T}_{\Lambda}$ for every non zero Laurent polynomial f. Fix $x \in \mathbb{R}^n$. Let S be the support of f and write $f = \sum_{m \in S} c_m T^m$; let S_x be the set of $m \in S$ such that $\langle x, m \rangle = \sup_{m \in S} \langle x, m \rangle$. By definition, $x \in \mathcal{T}_f$ if and only if $Card(S_x) \geqslant 2$. Let us assume that $x \notin \mathcal{T}_f$, that is, $Card(S_x) = 1$, and let us prove that $x \notin \mathcal{L}_\infty(\mathcal{V}(f))$. We argue by contradiction, assuming that there is a sequence (z_k) in $\mathcal{V}(f)$ and a sequence (h_k) of strictly positive real numbers such that $h_k \to 0$ and $h_k \lambda(z_k) \to x$. Let $\mu \in S$ be the unique element such that $S_x = \{\mu\}$. By assumption, one has $(x, m) < (x, \mu)$ for every $m \in S - \{\mu\}$. Let $\varepsilon > 0$ be such that $\langle x, m \rangle < \langle x, \mu \rangle - \varepsilon$ for every $m \in S - \{\mu\}$; by continuity, this inequality holds in a neighborhood U of x. For k large enough such that $h_k \lambda(z_k) \in U$, one then has

$$\log(z_k^{m-\mu}) = \langle \lambda(z_k), m - \mu \rangle = h_k^{-1} \langle h_k \lambda(z_k), m - \mu \rangle \leq -h_k^{-1} \varepsilon$$

for all $m \in S - \{\mu\}$. Since h_k tends to 0, this shows that $\log(|z_k^{m-\mu}|$ converges to $-\infty$, hence $|z_k^{m-\mu}|$ converges to 0. From the equality $f(z_k) = 0$, we deduce that

$$1 = -\sum_{m \in S - \{\mu\}} \frac{c_m}{c_{\mu}} z_k^{m-\mu}.$$

By the preceding estimate, the right hand side of the previous equality converges to 0, whence the desired contradiction. $\ \Box$

Lemma (2.6.8). — Let $t \in \mathbf{R}_+$ and let $x = (0, \dots, 0, -t)$; if $x \in \mathcal{T}_V$, then $x \in \lambda_{\infty}(V)$.

Proof. — The result is obvious if x = 0. Since both \mathcal{T}_V and $\lambda_\infty(V)$ are invariant by multiplication by a positive real number, we may assume that $x = (0, \dots, 0, -1)$.

. Too (V) CEV arro étémentere. By C Tas (V) demande en plu de géométric elsébrique.

$$\begin{array}{cccc}
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f} \\
f \in \mathcal{D}(V)
\end{array}$$

$$\begin{array}{cccc}
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f} \\
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f}
\end{array}$$

$$\begin{array}{cccc}
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f} \\
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f}
\end{array}$$

$$\begin{array}{cccc}
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f} \\
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f}
\end{array}$$

$$\begin{array}{cccc}
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f}
\end{array}$$

$$\begin{array}{ccccc}
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f}
\end{array}$$

$$\begin{array}{cccc}
\mathcal{E}_{V} &= \bigcap \mathcal{E}_{f$$

 $x \in \mathbb{R}^{r}$ on raisonne la l'abord $x \notin \mathbb{P}_{+}$ let $x \in \lambda_{+}(v(x))$ this inequality holds in a neighborhood U of x. For k large enough such that $h_k\lambda(z_k)\in {\sf U}$, one then has

$$\log(z_k^{m-\mu}) = \left< \lambda(z_k), m - \mu \right> = h_k^{-1} \left< h_k \lambda(z_k), m - \mu \right> \le -h_k^{-1} \varepsilon$$

for all $m \in S - \{\mu\}$. Since h_k tends to 0, this shows that $\log(|z_k^{m-\mu}|$ converges to $-\infty$, hence $|z_k^{m-\mu}|$ converges to 0. From the equality $f(z_k) = 0$, we deduce that

$$1 = -\sum_{m \in \mathbb{S} - \{\mu\}} \frac{c_m}{c_\mu} z_k^{m-\mu}.$$

By the preceding estimate, the right hand side of the previous equality converges to 0, whence the desired contradiction.

((ZR)=0

 $\sum_{m \neq \mu} \frac{c_m}{c_{\mu}} = -1$

 $x = \lim_{k \to \infty} h_k \lambda(z_k)$ $\lim_{k \to \infty} \lambda(z_k) \in V$ $\lim_{k \to \infty} \lambda(z_k) \in V$ $\lim_{k \to \infty} \lambda(z_k) = 0$ $\lim_{k \to \infty} \lambda(z_k) = 0$

Z Cm ZR - Cp ZR M

contradiction.

 $\begin{array}{c} \text{V C } \left(\begin{array}{c} \text{C}^{\star} \right)^{n} & \text{V C } \left(\begin{array}{c} \text{C}^{\star} \right)^{n-1} \times \text{C} \\ \text{adheren a poin} \\ \text{Let } R_0 = C[T_1^{\pm 1}, \dots, T_{n-1}^{\pm 1}], \text{ let } R = R_0[T_n^{\pm 1}] \text{ and } R' = R_0[T_n]; \text{ let } \\ \varphi : R' \to R_0 \text{ be the unique morphism of } R_0 \text{-algebras such that } \varphi(T_n) = 0. \\ \text{These rings } R, R' \text{ and } R_0 \text{ are respectively viewed as the rings of functions on the algebraic varieties } (\mathbf{C}^{\circ})^{n}, (\mathbf{C}^{\circ})^{n-1} \times \mathbf{C} \text{ and } (\mathbf{C}^{\circ})^{n-1} \times \{0\}. \text{ Let } \mathbf{I} = \mathcal{F}(V) \text{ be the ideal of V in } R; \text{ let } I' = I \cap R' \text{ and let } I_0 = \varphi(I'). \text{ Geometrically, } I' \text{ is the ideal of the Zariski closure } V' \text{ of V in } (\mathbf{C}^{\circ})^{n-1} \times \mathbf{C}, \text{ and } I_0 \text{ is the ideal of } V_0 = V' \cap (\mathbf{C}^{\circ})^{n-1} \times \{0\}. \text{ Let us prove that } I_0 \neq \{1\}. \text{ Otherwise, there exists } f \in I' = I \cap R' \text{ such } I' \text{ and } I' \text{$ I'=InR' 2(v)= I V'-U(I')

>> Vo C(() x 105 V'n(C*) x {0}φ R/ → Ro T, 1 → O

 $T_{s} = \varphi(I')$

Let us prove that $I_0 \neq (1)$. Otherwise, there exists $f \in I' = I \cap R'$ such that $\varphi(f) = 1$; let S be the support of f and write $f = \sum_{m \in S} c_m T^m$, so

$$\varphi(f) = \sum_{\substack{m \in S \\ m_n = 0}} c_m T_1^{m_1} \dots T_{n-1}^{m_{n-1}}.$$

Since $f \in I'$, one has $S \subset \mathbf{Z}^{n-1} \times \mathbf{N}$, so that $\langle x, m \rangle = -m_n \leq 0$ for all $m \in S$. From the equality $\varphi(f) = 1$, we see that there exists $m \in S$ such that $m_n = 0$ and $(m_1, \ldots, m_{n-1}) = 0$, that is, $0 \in S$. In particular, $\sup_{m \in \mathbb{S}} \langle x, m \rangle = 0.$

Since $x \in \mathcal{T}_f$, there are at least two distinct elements $m, m' \in S$ such that $0 = \langle x, m \rangle = \langle x, m' \rangle$, that is, $m_n = m'_n = 0$. Then $(m_1, \dots, m_{n-1}) \neq 0$ (m'_1,\ldots,m'_{n-1}) , hence $\varphi(f)$ is not a monomial, contrary to the hypothesis $\varphi(f)=1$. Consequently, $V_0\neq\varnothing$. Let $z\in (\mathbf{C}^*)^{n-1}$ be a point such that

 $\varphi(f) = 1. \text{ Consequently, } v_0 \neq \emptyset. \text{ Let } z \in (C), \text{ Suppose the proof of t$ and $u_k \to 0$. In particular, $\lambda(z_k) \to \lambda(z)$ and $\lambda(u_k) \to -\infty$; For k large enough, one thus has $log(u_k) < 0$; removing a few terms, we assume that $\log(u_k) < 0$ for all k; setting $h_k = -1/\log(u_k)$, the sequence (h_k) converges to 0 and consists of strictly positive real numbers. Then, $h_k\lambda(z_k')=(h_k\lambda(z_k),h_k\lambda(u_k))$ converges to (0,-1)=x. This proves that

Lemma (2.6.8). — Let $t \in \mathbb{R}_+$ and let x = (0, ..., 0, -t); if $x \in \mathcal{T}_V$, then $x \in \lambda_{\infty}(V)$

Proof. — The result is obvious if x = 0. Since both \mathcal{T}_V and $\lambda_\infty(V)$ are invariant by multiplication by a positive real number, we may assume

construit une limite en géométre algébrique des transhes $V \cap (T_n = E)$ quand $E \rightarrow 0$ se, there exists $f \in I' = 1 \cap R'$ such of f and write $f = \sum_{m \in S} c_m T^m$, so f and write $f = \sum_{m \in S} c_m T^m$, so f and write $f = \sum_{m \in S} c_m T^m$, so f and write $f = \sum_{m \in S} c_m T^m$, so f and fLet us prove that $I_0 \neq (1)$. Otherwise, there exists $f \in I' = I \cap R'$ such that $\varphi(f) = 1$; let S be the support of f and write $f = \sum_{m \in S} c_m T^m$, so $\varphi(f) = \sum_{m \in S \atop m \in S} c_m \mathbf{T}_1^{m_1} \dots \mathbf{T}_{n-1}^{m_{n-1}}.$ Since $f \in I'$, one has $S \subset \mathbb{Z}^{n-1} \times \mathbb{N}$, so that $\langle x, m \rangle = -m_n \leq 0$ for all $m \in S$. From the equality $\varphi(f) = 1$, we see that there exists $m \in S$ such that $m_n = 0$ and $(m_1, \ldots, m_{n-1}) = 0$, that is, $0 \in S$. In particular, $\sup\nolimits_{m\in S}\langle x,m\rangle=0.$ Since $x \in \mathcal{T}_f$, there are at least two distinct elements $m, m' \in S$ such that $0 = \langle x, m' \rangle = \langle x, m' \rangle$, that is, $m_n = m'_n = 0$. Then $(m_1, \dots, m_{n-1}) \neq (m'_1, \dots, m'_{n-1})$, hence $\varphi(f)$ is not a monomial, contrary to the hypothesis $\varphi(f) = 1$. Consequently, $V_0 \neq \varnothing$. Let $z \in (\mathbf{C}^*)^{n-1}$ be a point such that $(z,0) \in V_0$. $m \neq m \in S$ deny m = 0 menó $m \in C(f)$

that

 $\varphi(f)=1$. Consequently, $V_0\neq\varnothing$. Let $z\in (\mathbf{C}^*)^{n-1}$ be a point such that $(z,0)\in V_0$.

By definition, V is a dense open subset of V' for the Zariski topology. It is therefore an open subset of V' for the classical topology. Moreover, a basic but nontrivial result of algebraic geometry asserts it is also dense; see, for example, $(\mathbf{M}_{\mathsf{LMMFORD}}, 1994)$, p. 58, theorem 1. Consequently, there is a sequence (z_k') of points of V such that $z_k \to (\overline{z}, 0)$. If one writes $z_k' = (z_k, u_k)$, with $z_k \in (\mathbf{C}')^{n-1}$ and $u_k \in \mathbf{C}'$, this means that $z_k \to z$ and $u_k \to 0$. In particular, $\lambda(z_k) \to \lambda(z)$ and $\lambda(u_k) \to -\infty$; For k large enough, one thus has $\log(u_k) < 0$; removing a few terms, we assume that $\log(u_k) < 0$ for all k; setting $h_k = -1/\log(u_k)$, the sequence (h_k) converges to 0 and consists of strictly positive real numbers. Then, $h_k\lambda(z_k') = (h_k\lambda(z_k), h_k\lambda(u_k))$ converges to (0, -1) = x. This proves that $x \in A_\infty(V)$.

(Z,0) = lim = 2/2

(4E 70)

(2R14R)=ZREY

be a point such that

(z_0) $\in V_0 = (C_1^n)^n \times \{0\}$. $\cap V'$ (v_0) v_0 v_0 (v_0) v_0 (v_0)

panage de x=(0,...,0,-1)
à x & b, abitaire

2.7. MISSING

Proposition (2.6.9). — Assume that \mathcal{T}_V is a Q-rational polyhedral subset of \mathbb{R}^n . Then $\mathcal{T}_V \subset \lambda_{\infty}(V)$.

Proof. — Since \mathcal{T}_V is a Q-rational conic polyhedral subset of \mathbf{R}^n , its rational points $\mathbf{Q}^n\cap\mathcal{T}_V$ are dense in \mathcal{T}_V . Since $\lambda_\infty(V)$ is closed in \mathbf{R}^n , it thus suffices to prove that every point of $\mathbf{Q}^n\cap \mathcal{T}_V$ belongs to $\lambda_\infty(V).$ Let $x \in \mathbf{Q}^n \cap \mathcal{T}_V$. If x = 0, then $x \in \lambda_\infty(V)$; let us then assume that $x \neq 0$. By the classification of matrices over **Z**, there exists $A \in GL_n(\mathbf{Z})$ such that $A^{-1}x = (0, ..., 0, -t)$, where $t \in \mathbf{Q}$. Performing the monomial change of variables given by A, we are reduced to the case of x = (0, ..., 0, -1). The proposition follows from the preceding lemma.

2.7. Missing

Following Forsberg, Passare & Tsikh (2000); Passare & Rullgård (2004); Passare & Tsikh (2005):

- The connected components of the complement of the amoeba are maximal open sets on which the Ronkin function is affine.

- (Limit of the amoebas is the tropical hypersurface, it is purely (n-1)dimensional;) maybe explain the balancing condition, at least the local concavity, maybe not.

by = U Pr Pi polyèdres a rationnels => Pina" = Pi il suffit de prover 94 7, nQ (V)

x E E, n Q"

change t de bour c of EGL (Z)

x = Ax = (0, 10, -1)

c) changement de variable monomial dans ([T] --) T.]

Ti = Sdi di EZ 2) Sj = Tb;

Fi & Z

& vouite WC() ouprès charget de variable.

(0,,0,-1) ← XW onc — ∈ λω(W)

no you d'un seminare se R NONARCHIMEDEAN AMOEBAS la | |a| = 0 } = Ker (p) idéal de R pradicale

est un idéal radical

CHAPTER 3

3.1. Seminorms

Definition (3.1.1). — Let R be a ring. A seminorm on R is a map $p: R \to \mathbf{R}_+$ satisfying the following properties:

- (i) One has p(0) = 0 and $p(1) \le 1$;
- (ii) For every $a, b \in A$, one has $p(a b) \le p(a) + p(b)$; (iii) For every $a, b \in A$, one has $p(ab) \le p(a)p(b)$.
- One says that the seminorm p is radical or power-multiplicative if, moreover, it satisfies
 - (iv) For every $a \in A$ and $n \in N$, one has $p(a^n) = p(a)^n$.
 - One says that the seminorm p is multiplicative if: (v) For every $a, b \in A$, one has p(ab) = p(a)p(b). One says that the seminorm p is a norm if p(a) = 0 implies a = 0.

One has $p(a) \le p(a)p(1)$ for all $a \in \mathbb{R}$; if $p \ne 0$, this implies $1 \le p(1)$ hence p(1) = 1.

Taking a = 0 in (ii), one has $p(-b) \le p(b)$, hence p(-b) = p(b) for all b. Consequently, $p(a + b) \le p(a) + p(b)$ for all $a, b \in \mathbb{R}$.

Example (3.1.2). — Let R be a ring and let p be a seminorm on R. Let $P = \{a \in R; p(a) = 0\}. \text{ Let } a, b \in P; \text{ then } p(a+b) \le p(a) + p(b) = 0, \text{ hence}$ p(a+b)=0 and $a+b\in P$. Let $a\in R$ and $b\in P$; then $p(ab)\leqslant p(a)p(b)=0$, hence $ab \in P$. This proves that P is an ideal of R.

For every $a \in \mathbb{R}$ and every $b \in \mathbb{R}$, one has $p(a + b) \leq p(a)$, and $p(a) = p((a+b) - b) \le p(a+b)$, so that p(a+b) = p(a). Consequently, ppasses to the quotient and defines a seminorm on R/P.

Noverforminorms sur un anreau $a \mapsto |a| = |b| = 0$ |a| + |b| = |a| + |b| |ab| = |ab| = |a| |ab| = |a| + |b| |ab| = |a| |a| < |a| 11| | |a| < |a| = 0 | |a| = 0

CHAPTER 3. NONARCHIMEDEAN AMOEBAS

If p is radical, then P is a radical ideal. Let indeed $a \in \mathbb{R}$ and $n \in \mathbb{N}$ be such that $a^n \in \mathbb{P}$; then $p(a)^n = p(a^n) = 0$, hence p(a) = 0 and $a \in \mathbb{P}$.

Assume that p is multiplicative and $p \neq 0$, and let us show that P is a prime ideal. Since $p \neq 0$, one has P \neq R. Let also $a, b \in R$ be such that $ab \in P$; then p(ab) = p(a)p(b) = 0, hence either p(a) = 0 and $a \in P$, or p(b) = 0 and $b \in P$.

Example **(3.1.3).** — Let R be a ring, let S be a multiplicative subset of R, let R_S be the associated fraction ring. Let p be a multiplicative seminorm on R such that $p(s) \neq 0$ for every $s \in S$. There exists a unique map p': R_S → R₊ such that p'(a/s) = p(a)/p(s) for every $a \in A$ and every $s \in S$. (Indeed, if a/s = b/t, for $a,b \in R$ and $s,t \in S$, there exists $u \in S$ such that atu = bsu; then p(a)p(t)p(u) = p(b)p(s)p(u), hence p(a)/p(s) = p(b)/p(t). It is clear that p' is multiplicative: $p'((a/s)(b/t)) = p'(ab/st) = p(ab)/p(st) = (p(a)/p(s)) \cdot (p(b)/p(t))$. Moreover, let $a,b \in R$ and $s,t \in S$; then (a/s) + (b/t) = (at + bs)/st, so that

$$\begin{split} p'(\frac{a}{s} + \frac{b}{t}) &= p'(\frac{at + bs}{st}) = \frac{p(at + bs)}{p(st)} \\ &\leq \frac{p(at) + p(bs)}{p(st)} = \frac{p(a)}{p(s)} + \frac{p(b)}{p(t)} \\ &= p'(\frac{a}{s}) + p'(\frac{b}{t}). \end{split}$$

Definition (3.1.4). — Let R be a ring and let p be a seminorm on R. One says that the seminorm p is nonarchimedean, or ultrametric, if one has $p(a+b) \leqslant \sup(p(a),p(b))$ for every $a,b \in R$.

The terminology *ultrametric* refers to the property that p satisfies an inequality stronger than the triangular inequality. The terminology *nonarchimedean* alludes to the fact that it implies that $p(na) \leqslant p(a)$ for every $n \in \mathbf{N}$: no matter how many times one adds an element, it never gets higher than the initial size. The following example explains the relations between these two properties.

Lemma (3.1.5). — Let R be a ring and let p be a seminorm on R.

Al reminere for R -1

Seminere for R -1

Seminere for R -1

Wellphicabe

condition: Isl \$ > n & ES

S n Kar (III) = \$

a) If p is nonarchimedean, then $p(na) \le p(a)$ for every $n \in \mathbf{Z}$ and every

b) Conversely, let us assume that p is radical and that $p(n) \leqslant 1$ for every $n \in \mathbb{N}$. Then p is nonarchimedean.

Proof. — The first assertion is proved by an obvious inductive argument. Let us prove the second one. Let $a,b\in \mathbb{R}$. For every $n\in \mathbb{N}$, one

$$\begin{aligned} p(a+b)^n &= p((a+b)^n) \le p(\sum_{k=0}^n \binom{n}{k} a^k b^{n-k}) \\ &\le \sum_{k=0}^n p(\binom{n}{k}) p(a)^k p(b)^{n-k} \le \sum_{k=0}^n p(a)^k p(b)^{n-k} \\ &\le (n+1) \sup(p(a), p(b))^n. \end{aligned}$$

As a consequence, one has

$$p(a+b) \le (n+1)^{1/n} \sup(p(a), p(b)).$$

When $n \to +\infty$, we obtain the upper bound $p(a + b) \le \sup(p(a), p(b))$; this proves that p is nonarchimedean.

Proposition (3.1.6). — Let K be a field endowed with a nonarchimedean absolute value $|\cdot|$ and let $r=(r_1,\ldots,r_n)$ be a family of strictly positive real numbers. There is a unique absolute value p_r on $K(T_1,\ldots,T_n)$ such that for every polynomial $f = \sum c_m T^m$, one has

$$p_r(f) = \sup_{m \in \mathbf{N}^n} |c_m| r_1^{m_1} \dots r_n^{m_n}.$$

Its restriction to $K[T_1, ..., T_n]$ is the largest absolute value such that $p_r(T_j) = r_j$ for $j \in \{1, ..., n\}$ and which restricts to the given absolute value

Proof. — To prove the first assertion, it suffices to prove that the given formula defines an absolute value on $K[T_1, \ldots, T_n]$, because it then extends uniquely to its fraction field $K(T_1, ..., T_n)$. One has $p_r(0) = 0$; conversely, if $f = \sum c_m T^m$ is such that $p_r(f) = 0$, then $|c_m| = 0$ for all m, hence f = 0. One also has $p_r(1) = 1$. Let $f = \sum c_m T^m$ and $g = \sum d_m T^m$ be two polynomials.

$$|a+b|^{n} = \sum_{k=0}^{n} \binom{n}{k} a b^{n-k}$$

$$|a+b|^{n} | \leq \sum_{k=0}^{n} \binom{n}{k} a b^{n-k}$$

$$\leq \sum_{k=0}^{n} |a|^{k} |b|^{n-k}$$

$$\leq (n+1) \operatorname{sup}(|a|, |b|)^{n}$$

$$|a+b|^{n} = |(a+b)^{n}|$$

$$|a+b| \leq (n+1) \operatorname{sup}(|a|, |b|)$$

$$|a+b| \leq (n+1) \operatorname{sup}(|a|, |b|)$$

$$|a+b| \leq (n+1) \operatorname{sup}(|a|, |b|)$$

Then $f + g = \sum (c_m + d_m) T^m$; for every m,

$$|c_m + d_m| r_1^{m_1} \dots r_n^{m_n} \le (\sup(|c_m|, |d_m|) r_1^{m_1} \dots r_n^{m_n}) \le \sup(p_r(f), p_r(g)),$$

so that $p_r(f + g) \leq \sup(p_r(f), p_r(g))$.

Moreover, $fg = \sum_{m} (\sum_{p+q=m} c_p d_q) T^m$. For every m, one has

$$\left|\sum_{p+q=m}c_pd_q\right|r^m\leq \sup_{p+q=m}|c_p||d_q|r^pr^q\leq p_r(f)p_r(g),$$

so that $p_r(fg) \le p_r(f)p_r(g)$. This shows that p_r is a norm on $K[T_1, \ldots, T_n]$, and it remains to prove that p_r is multiplicative.

Let P be the convex hull of the set of all $p \in \mathbb{N}^n$ such that $p_r(f) = |c_p|r^p$, and let Q be the convex hull of the set of all $q \in \mathbb{N}^n$ such that $p_r(g) = |d_q|r^q$. Let a and b be vertices of P and Q respectively, defined by linear forms φ and ψ on \mathbb{R}^n ; let m = a + b. Then m is a vertex of the polytope P + Q, defined by the linear form $\varphi + \psi$, so that the coefficient of \mathbb{T}^m in fg is the sum of c_ad_b and of other elements c_pd_q , where $|c_p|r^q < |c_a|r^a$ and $|d_q|r^q < |d_b|r^b$. This implies that

$$\left| \sum_{p+q=m} c_p d_q \right| r^m = |c_a d_b| r^m = |c_a| r^a |d_b| r^b = p_r(f) p_r(g).$$

Consequently, $p_r(fg) = p_r(f)p_r(g)$ and p_r is a multiplicative seminorm on $K[T_1, ..., T_n]$.

Example (3.1.7). — A theorem of Ostrowski describes the multiplicative seminorms on the field \mathbf{Q} of rational numbers.

- a) The usual absolute value $|\cdot|$, and its powers $|\cdot|^r$ for $r \in]0;1]$;
- b) For every prime number p, the p-adic absolute value $|\cdot|_p$, and its powers $|\cdot|_p^r$, for all $r \in]0; +\infty[$;
 - c) The trivial absolute value $|\cdot|_0$ defined by $|0|_0=0$ and $|a|_0=1$ for all

 $\int_{0}^{\infty} |r|_{r} = 1/r$ $\int_{0}^{\infty} |n|_{p} = 1$ $\int_{0}^{\infty} |n|_{p} = 1$