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CHAPTER 3

NONARCHIMEDEAN AMOEBAS

3.1. Seminorms

Definition (3.1.1). — Let R be a ring. A seminorm on R is a map
p : R — Ry satisfying the following properties:

(i) One has p(0) = 0and p(1) < 1;

(ii) For every a,b € A, one has p(a —b) < p(a) + p(b);

(iii) For every a,b € A, one has p(ab) < p(a)p(b).

One says that the seminorm p is radical or power-multiplicative if,
moreover, it satisfies

(iv) Foreverya € Aandn € N, one has p(a") = p(a)".

One says that the seminorm p is multiplicative if:

(v) Forevery a,b € A, one has p(ab) = p(a)p(b).

One says that the seminorm p is a norm, or an absolute value, if
p(a) = 0 implies a = 0.
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One has p(a) < p(a)p(1) foralla € R; if p # 0, this implies 1 < p(1)
hence p(1) = 1.

Taking a = 0 in (ii), one has p(-b) < p(b), hence p(-b) = p(b) for
all b. Consequently, p(a +b) < p(a) + p(b) for all a,b € R.

Example (3.1.2). — Let Rbe a ring and let p be a seminorm on R. Let
P={a eR; p(a) =0}. Leta,b € P; then p(a + b) < p(a) + p(b) =0,
hence p(a +b) = 0and a+b € P. Leta € Rand b € P; then
p(ab) < p(a)p(b) = 0, hence ab € P. This proves that P is an ideal
of R.

For every a € R and every b € P, one has p(a + b) < p(a), and
p(a) =p((a+b)-b) < p(a+b),sothat p(a+b) = p(a). Consequently,
p passes to the quotient and defines a seminorm on R/P.

If p is radical, then P is a radical ideal. Letindeed a € Rand n € N
be such that a” € P; then p(a)" = p(a”) = 0, hence p(a) = 0 and
a eP.

Assume that p is multiplicative and p # 0, and let us show that P
is a prime ideal. Since p # 0, one has P # R. Let also 4,b € R be
such that ab € P; then p(ab) = p(a)p(b) = 0, hence either p(a) = 0
and a € P,or p(b) =0and b € P.

Example (3.1.3). — Let R be a ring, let S be a multiplicative subset
of R, let Rs be the associated fraction ring. Let p be a multiplica-
tive seminorm on R such that p(s) # O for every s € S. There
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exists a unique map p’: Rs — R such that p’(a/s) = p(a)/p(s)
for every a € A and every s € S. (Indeed, if a/s = b/t, for
a,b € Rand s,t € S, there exists u € S such that atu = bsu; then
p(a)p(t)p(u) = p(b)p(s)p(u), hence p(a)/p(s) = p(b)/p(t).) It is clear
that p’ is multiplicative: p’((a/s)(b/t)) = p’(ab/st) = p(ab)/p(st) =
(p(a)/p(s)) - (p(b)/p(t)). Moreover, let a,b € R and s,t € S; then
(a/s)+ (b/t) = (at + bs)/st, so that

at + bs p(at + bs)

, 4 by, B
i e Y
Pa) +pls) pla)  pb)
p(st) p(s)  p(®)
b
=P+ ),

In particular, any absolute value on an integral domain extends
uniquely to an absolute value on its field of fractions.

Definition (3.1.4). — Let R be a ring and let p be a seminorm on R. One
says that the seminorm p is nonarchimedean, or ultrametric, if one has

p(a +b) < sup(p(a), p(b)) for every a, b € R.

The terminology ultrametric refers to the property that p satisfies an
inequality stronger than the triangular inequality. The terminology
nonarchimedean alludes to the fact that it implies that p(na) < p(a)
for every n € N: no matter how many times one adds an element,
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it never gets higher than the initial size. The following example
explains the relations between these two properties.

Lemma (3.1.5). — Let R be a ring and let p be a seminorm on R.

a) If p is nonarchimedean, then p(na) < p(a) for every n € Z and every
aeR

b) Conversely, let us assume that p is radical and that p(n) < 1 for every
n € N. Then p is nonarchimedean.

Proof. — The first assertion is proved by an obvious inductive argu-
ment. Let us prove the second one. Leta,b € R. For every n € N,
one has

pa+b)" = p((@a+b)") < p() (Z)akb”‘k)
k=0

n

<) P((Z))P(a)kp(b)”_k <> p@fpey
k=0

k=0
< (n+1)sup(p(a), p(b))".

As a consequence, one has
p(a+b) < (n+ 1)V sup(p(a), p(b)).

When#n — +00, we obtain the upperbound p(a+b) < sup(p(a), p(b));
this proves that p is nonarchimedean. O
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Example (3.1.6). — A theorem of Ostrowski describes the multiplica-
tive seminorms on the field Q of rational numbers.

a) The usual absolute value |-|, and its powers |-|" for r € ]0;1];

b) For every prime number p, the p-adic absolute value [|,, and
its powers |-|;, for all r € ]0; +o0];

c) The trivial absolute value |-|p defined by [0]p = 0 and |a|p = 1
for all a € Q*.

3.1.7. — Let K be a nonarchimedean valued field, that is, a field
endowed with a nonarchimedean absolute value.

Let R be the set of a € K such that |a| < 1. Then R is a subring
of K, and K is its fraction field. More precisely, for every a € K,
then either a € R (if |[a| < 1), or 1/a € R (when |a| > 1), which means
that Ris a valuation ring. It is called the valuation ring of K.

An element a € R is invertible in R if and only if [a| = 1. Asa
consequence, the ring R is a local ring and the set M of all 2 € R such
that |a| < 1is its unique maximal ideal. The field k = R/M is called
the residue field of K.

If the absolute value of K is trivial, then R = K, M = 0 and k = K.

In this context, the map from K* to the ordered abelian group R
given by v:a — —log(|a|) is a group morphism which satisfies
the property v(a + b) > inf(v(a),v(b)) for all a,b € K such that
a,b,a +b # 0; in other words, v is a valuation on K. In this context,
one also defines v(0) = +c0.
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3.1.7. — Let K be a nonarchimedean valued field, that is, a field V<
endowed with a nonarchimedean absolute value. ( ( \
Let R be the set of a € K such that || < 1. Then R is a subring ﬂ —_ o e K - —
Pl

of K, and K is its fraction field. More precisely, for every a € K,
then either @ € R (if |a| < 1), or 1/a € R (when |a| > 1), which means
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consequence, the ring Ris a local ring and the set M of all 2 € R such - ;
that [a| < 11is its unique maximal ideal. The field k = R/M is called

the residue field of K. ! 4
If the absolute value of K is trivial, then R = K, M =0 and k = K. ( /L

In this context, the map from K* to the ordered abelian group R MA'
given by v: a — —log(|a]) is a group morphism which satisfies
the property v(a + b) > inf(v(a), v(b)) for all a,b € K such that

a,b,a+ b # 0; in other words, v is a valuation on K. In this context,
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The minus sign in the definition of v is sometimes annoying, at
least it creates confusion, so that some authm[s\ define/jan abstract

valuation on a field K as a mOIPMKX to an ordered
abelian group I such that A(a + b) < sup(A(a), A(b)) for all a,b € K
such that a,b,a + b # 0. In this context, one also sets A(0) to be an
additional element smaller than any element of I'.

Conversely, let K be a field and let R be a valuation ring of K. For
a,b € K*, write a < b if there exists u € R such that a = bu; this
is a preordering relation on K* and it induces an ordering relation
on the quotient abelian group K*/R* and the canonical morphism
A K* — K*¥/R* is a valuation. Indeed, let a,b € K* be such th
a+b #0andsetu =b/a;ifu e R, thenb =auanda+b = a(l+u),
that (a + b) < a; otherwise,v =1/u € R,a=bvanda +b = b(1 + q)
so that (a + b) < b; in both cases, we have shown that A(a + b)
sup(A(a), A(D)).

Example (3.1.8). — Let K be a nonarchimedean valued field and let
R be its valuation ring. It follows from the property of a valuation
ring that for every a,b € R, either a € bR or b € aR, according to
whether [a| < |b] or |b| < |a]. In particular, every finitely generated
ideal of R is principal.

If M is finitely generated, then M is a principal ideal. Let m € M
be such that M = nR; one has || < 1; moreover, for a € R, either
la| < |m|, or |a] = 1. Let a € R—{0}; there exists a largest integer n €

a
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Example (3.1.8). — Let K be a nonarchimedean valued field and let
R be its valuation ring. It follows from the property of a valuation
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N such that |a|] < |#]". One thus has || < |a/n"| < 1, so that
|a/m"| =1 and there exists u € R* such that a = un".

As a consequence, all ideals of R are of the form 7"R, for some
unique 7 € N. In particular, R is a principal ideal domain. The
map v: KX — Z given by v(a) = n if and only if aR = n"R is a
(normalized) discrete valuation on K.

Proposition (3.1.9). — Let K be a field endowed with a nonarchimedean
absolute value |-| and let r = (r4, . .., ry) be a family of strictly positive real
numbers. There is a unique absolute value p, on K(T+, ..., T,) such that
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pr(f):rsg\}?nkmlrfl...rn . z‘dﬁ\k"';) CZZ/‘( ;J fc/g(g)

Its restriction to K[Ty, ..., T,] is the largest absolute value such that
pr(T;) = rjfor j € {1,...,n} and which restricts to the given absolute
value on K.

Proof. — To prove the first assertion, it suffices to prove that the
given formula defines an absolute value on K[Tj, ..., T,], because
it then extends uniquely to its fraction field K(Ty, ..., T,). One has
pr(0) = 0; conversely, if f = 3¢, T" is such that p,(f) = 0, then
lcm| = 0 for all m, hence f = 0. One also has p,(1) = 1.

Let f = > ¢, T" and g = 3. d,,T™ be two polynomials.

(21, l51=1 =53]
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Then f + g = >.(cim + dim)T"; for every m,

my my

|Cm‘|'dm|7’1n1 Tyt S (Sup(|Cm|, |dm|)7/1n1 cee Ty ) < sup(p:(f), pr(g)),

so that p(f + &) < sup(p/(f), pr(g))-
Moreover, fg = 2., (2p+q=m Cpdq)T". For every m, one has

Z Cpdy

p+g=m

r'’ sup ICPquIT’pT’q < Pr(f)pr(g)/

p+q=m

so that p.(fg) < p.(f)pr(g). This shows that p, is a norm
on K[Tjy, ..., T,], and it remains to prove that p, is multiplicative.
Let P be the convex hull of the set of all p € N” such that p,(f) =
lcp|r?, and let Q be the convex hull of the set of all 4 € N" such that
pr(g) = |dy|r7. Let m be a vertex of P+Q; then there is a vertex a of P,
and a vertex b of Q such that m = a + b. In particular, if m = p + g,
forp € Pand q € Q, then p = a and g = b, so that the coefficient
of T" in fg is the sum of c,d, and of other elements c,d;, where
either |c,|rT < [c,|r”, or |dg|rT < |dp|7? (or both) This implies that

Z Cpdg

p+g=m

r'™ = cadp|r™ = [cqlr” |db|rb = pr(f)pr(g)-

Consequently, p,(fg) = pr(f)pr(g) and p, is a multiplicative semi-
norm on K[Tq,...,T,]. O
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3.1.10. — Let K be a field endowed with an absolute value. The
map (a,b) — |a — b| is a distance on K.

Let K be the completion of K for this distance. Let us recall its
definition. One starts from the ring S of all Cauchy sequences in K
and the subset M of all Cauchy sequences which converge to 0. It
is obvious that M is an additive subgroup of M; since a Cauchy se-
quence is bounded, it is an ideal of S, and K is the quotient ring S/M.
Let j : K — K be the map such that j(a) is the class of the constant
sequence with value a; it is a morphism of rings.

Fora,b € K, one has

|lal = 1bl| < |a - b].

This implies that for every Cauchy sequence (a,) in K, the sequence
(lan|) is a Cauchy sequence in R; in particular, it converges. Itinduces
amap || : K — R which is a multiplicative seminorm on K such that
|j(a)| = |a| for every a € K.

Let a = (a,) be a Cauchy sequence in K which does not converge
to 0; by definition, there exists ¢ > 0 and arbitrarily large integers n
such that |a,| > €. Since (a,) is a Cauchy sequence, there exists
an integer p such that |a, — a,| < ¢/2 for all integers m,n > p.
Taking m > p such that |a,| > ¢, it follows that |a,| > ¢/2 for all
integers n > p. In particular, one has |a| > ¢/2. Consequently, the
seminorm on K is an absolute value.
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Setb, =0forn < pand bn =1/a, for n > p. The inequalities

aml

o o] = 2 anlan] < 2

|an - aml;
22

for m,n > p, imply that b = (b,) is a Cauchy sequence. Moreover,
ab converges to 1, hence the equality [4][b] = j(1) in K. This proves
that K is a field.

Assume that the initial absolute value of K is nonarchimedean.
The obtained absolute value on K is then nonarchimedean as well.
Moreover, with the previous notation, we have |a,| = |a,,]| for all
integers m,n > p: if the Cauchy sequence (a,) does not converge
to 0, then the sequence (|a,|) is eventually constant. In particular,
the value group of K is the same as that of K.

Example (3.1.11). — Let K be a nonarchimedean valued field. It is
known that the absolute value of K extends to an absolute value on
any algebraic extension of K.

More precisely, if K is complete, then for every algebraic exten-
sion L of K, there exists a unique extension absolute value on L that
extends the absolute value of K. I refer to@heorem 5.1, for a de-
tailed proof. Let us just mention that whenthe extension K — L is
finite, the absolute value of L is given by the formula

|blr = |Nk(b)|V/IHE

)
—
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for every b € L.
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3.2. The analytic spectrum of a ring

Definition (3.2.1) (?) — Let K be a field endowed with a nonarchimedean
absolute value and let R be a K-algebra. The analytic spectrum of R is the
set of all multiplicative seminorms on R which restrict to the given absolute
value on K, endowed with the coarsest topology for which the maps from R
toR, f +— p(f), are continuous, for every f € R. It is denoted by 4 (R).

If R is the ring of an affine K-scheme X, hence X = Spec(R), then the
analytic spectrum of R is also called the (Berkovich) analytification
of X, and is denoted by X®".

Let J be a ideal of R and let 7/(J) be the subset of .#(R) consisting
of all seminorms p such that p(f) = 0 for every f €]. Itis a closed
subset of ./#(R), For each f € R, the set of all seminorms p on R
such that p(f) = 0 is closed, as the preimage of the closed set {0}
by the continuous map f — p(f) on #(R). Therefore, 7(]) is the
intersection of a family of closed subsets of .Z(R), hence is closed.

If X = Spec(R), the following proposition shows that 7/(J) identi-
fies with the analytification of V(J) = Spec(R/]).

Proposition (3.2.2). — Let K be a field endowed with nonarchimedean
absolute value.

a) If ¢ : R — S is a morphism of K-algebras, then the map ¢*: p
p © @ is a continuous map from M(S) to M (R).
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Definition (3.2.1) (?) — Let K be a field endowed with a nonarchimedean
absolute value and let R be a K-algebra. The analytic spectrum of R is the
set of all multiplicative seminorms on R which restrict to the given absolute
value on K, endowed with the coarsest topology for which the maps from R
toR, f + p(f), are continuous, for every f € R. It is denoted by 4 (R).

If R is the ring of an affine K-scheme X, hence X = Spec(R), then the
analytic spectrum of R is also called the (Berkovich) analytification
of X, and is denoted by X*". -
“Let ] be a ideal of R and let 7(J) be the subset of .#(R) consisting
of all seminorms p such that p(f) = 0 for every f € J. It is a closed
subset of .#(R), For each f € R, the set of all seminorms p on R
such that p(f) = 0 is closed, as the preimage of the closed set {0}
by the continuous map f + p(f) on #(R). Therefore, 7'(]) is the
intersection of a family of closed subsets of .#(R), hence is closed.

If X = Spec(R), the following proposition shows that 7/(]) identi-
fies with the analytification of V(J) = Spec(R/]).
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Let ] be a ideal of R and let 77(J) be the subset of .#(R) consisting
of all seminorms p such that p(f) = 0 for every f € J. Itis a closed
subset of /(R), For each f € R, the set of all seminorms p on R
such that p(f) = 0 is closed, as the preimage of the closed set {0}
by the continuous map f + p(f) on #(R). Therefore, 7'(]) is the
intersection of a family of closed subsets of .#(R), hence is closed.

If X = Spec(R), the following proposition shows that 7°(J) identi-
fies with the analytification of V(J) = Spec(R/]).

Proposition (3.2.2). — Let K be a field endowed with nonarchimedean
absolute value.

a) If ¢ : R — S is a morphism of K-algebras, then the map ¢*: p —
p o @ is a continuous map from 4 (S) to #(R).
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b) If @ is surjective, then ¢* induces a homeomorphism from M (S) to
its image, which is a closed subset of M (R).

Proof. — a) To prove that ¢* is continuous, it suffices, by the def-
inition of the topology of .#(R), to prove that for every f € R, the
map p — @*(p) = p o p(f) from (S) to R is continuous. But this
follows from the fact the definition of the topology of .Z(S).

b) Assume that ¢ is surjective and let ] = Ker(¢). Multiplicative
seminorms on S then correspond, via ¢, to multiplicative seminorms
on R which vanish on ]J. Consequently, ¢* is injective and its image
is the closed subset 7'(J) of #(R) consisting of all seminorms p
such that p(f) = 0 for every f € J. Let us prove that the inverse
bijection, (¢*)™': 7(J) — (S), is continuous. By the definition
of the topology of . (S), it suffices to prove that for every f € S,
the map from 7'(]) to R given by p — (¢*)"'(p)(f) is continuous.
Let ¢ € R be such that f = @(g). For every g € (S), one has
¢*(q) = q 0 ¢, hence ¢*"(9)(g) = g 0 p(g) = q(f); it p = ¢*(q) € 7(),
one thus has g = (¢*)"!(p) and (¢*)"X(p)(f) = p(g). By definition of
the topology of ./#(R), the map p — p(g) is continuous on .#(R), so
that the requested map is continuous on 7'(J), as the restriction of a
continuous map. O

Theorem (3.2.3). — Let R be a finitely generated K-algebra and let f =
(f1,-.., fn) be a generating family. The continuous map M (R) to R"



Theorem (3.2.3). — Let R be a finitely generated K-algebra and let f =
(fi,..., fu) be a generating family. The continuous map #(R) to R"

given by p = (p(f1), ..., p(fu)) is proper. In particular, 4 (R) is a locally
compact topological space.

Proof. — Let ¢ : K[Ty,...,T,] — R be the unique morphism of K-
algebras such that ¢(T;) = f; forall j € {1,...,n}. Sinceit induces a
closed embedding of .#(R) into 4 (K[T4, ..., T,]), it suffices to treat
the case where R = K[Ty, ..., Ty]and f; =T, for all j.

For r € R, the set V, of all p € .Z(R) such that p(T;) < r for all j is
open in /(R) and the union of all V, is equal to .Z(R). Moreover,
the closure of V, is contained in the set W, of all p € /#(R) such
that p(T;) < r for all j. Consequently, to prove that .Z(R) is locally
compact, it suffices to prove that W, is compact.

The map j: #(R) — RE given by p — (p(f)) is continuous, by
definition of the topology of .#(R) and of the product topology. It
is injective, by the definition of a seminorm. Moreover, its image is
the subset of R® defined by the relations in the definition of a mul-
tiplicative seminorm, each of them defining a closed subset of R}
since it involves only finitely many elements of R. Finally, j is a
homeomorphism onto its image. Indeed, the inverse bijection asso-
ciates to a family ¢ = (cs) the multiplicative seminorm f > cf. To
prove that j~! is continuous, it suffices to prove that for every f € R,
the composition ¢ — j71(c)(f) = ¢ # is continuous, which is true by
the definition of the product topology.
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