TOPICS IN TROPICAL GEOMETRY

Antoine Chambert-Loir

CHAPTER 3

NONARCHIMEDEAN AMOEBAS

3.1. Seminorms

Definition (3.1.1). — Let R be a ring. A seminorm on R is a map $p: R \to \mathbf{R}_+$ satisfying the following properties:

- (i) One has p(0) = 0 and $p(1) \le 1$;
- (ii) For every $a, b \in A$, one has $p(a b) \le p(a) + p(b)$;
- (iii) For every $a, b \in A$, one has $p(ab) \leq p(a)p(b)$.

One says that the seminorm p is radical or power-multiplicative if, moreover, it satisfies

(iv) For every $a \in A$ and $n \in N$, one has $p(a^n) = p(a)^n$.

One says that the seminorm p is multiplicative *if*:

(v) For every $a, b \in A$, one has p(ab) = p(a)p(b).

One says that the seminorm p is a norm, or an absolute value, if p(a) = 0 implies a = 0.

$$|a + b| \le |a| + |b|$$
 $|a + b| \le |a| + |b|$
 $|a + b| \le |a| + |b|$

valeur als solve.

$$\begin{cases} |a|.|b| = |ab| \\ |1| = 1 \end{cases}$$

corps value' - corps + valour absolu

One has $p(a) \le p(a)p(1)$ for all $a \in \mathbb{R}$; if $p \ne 0$, this implies $1 \le p(1)$ hence p(1) = 1.

Taking a = 0 in (ii), one has $p(-b) \le p(b)$, hence p(-b) = p(b) for all b. Consequently, $p(a + b) \le p(a) + p(b)$ for all $a, b \in \mathbb{R}$.

Example (3.1.2). — Let R be a ring and let p be a seminorm on R. Let $P = \{a \in R; p(a) = 0\}$. Let $a, b \in P$; then $p(a + b) \leq p(a) + p(b) = 0$, hence p(a + b) = 0 and $a + b \in P$. Let $a \in R$ and $b \in P$; then $p(ab) \leq p(a)p(b) = 0$, hence $ab \in P$. This proves that P is an ideal of R.

For every $a \in \mathbb{R}$ and every $b \in \mathbb{P}$, one has $p(a+b) \leq p(a)$, and $p(a) = p((a+b)-b) \leq p(a+b)$, so that p(a+b) = p(a). Consequently, p passes to the quotient and defines a seminorm on \mathbb{R}/\mathbb{P} .

If p is radical, then P is a radical ideal. Let indeed $a \in \mathbb{R}$ and $n \in \mathbb{N}$ be such that $a^n \in \mathbb{P}$; then $p(a)^n = p(a^n) = 0$, hence p(a) = 0 and $a \in \mathbb{P}$.

Assume that p is multiplicative and $p \neq 0$, and let us show that P is a prime ideal. Since $p \neq 0$, one has P \neq R. Let also $a, b \in$ R be such that $ab \in$ P; then p(ab) = p(a)p(b) = 0, hence either p(a) = 0 and $a \in$ P, or p(b) = 0 and $b \in$ P.

Example (3.1.3). — Let R be a ring, let S be a multiplicative subset of R, let R_S be the associated fraction ring. Let p be a multiplicative seminorm on R such that $p(s) \neq 0$ for every $s \in S$. There

3.1. SEMINORMS

111

exists a unique map $p': R_S \to \mathbf{R}_+$ such that p'(a/s) = p(a)/p(s) for every $a \in A$ and every $s \in S$. (Indeed, if a/s = b/t, for $a,b \in R$ and $s,t \in S$, there exists $u \in S$ such that atu = bsu; then p(a)p(t)p(u) = p(b)p(s)p(u), hence p(a)/p(s) = p(b)/p(t).) It is clear that p' is multiplicative: $p'((a/s)(b/t)) = p'(ab/st) = p(ab)/p(st) = (p(a)/p(s)) \cdot (p(b)/p(t))$. Moreover, let $a,b \in R$ and $s,t \in S$; then (a/s) + (b/t) = (at + bs)/st, so that

$$p'(\frac{a}{s} + \frac{b}{t}) = p'(\frac{at + bs}{st}) = \frac{p(at + bs)}{p(st)}$$

$$\leq \frac{p(at) + p(bs)}{p(st)} = \frac{p(a)}{p(s)} + \frac{p(b)}{p(t)}$$

$$= p'(\frac{a}{s}) + p'(\frac{b}{t}).$$

In particular, any absolute value on an integral domain extends uniquely to an absolute value on its field of fractions.

Definition (3.1.4). — Let R be a ring and let p be a seminorm on R. One says that the seminorm p is nonarchimedean, or ultrametric, if one has $p(a + b) \leq \sup(p(a), p(b))$ for every $a, b \in R$.

The terminology *ultrametric* refers to the property that p satisfies an inequality stronger than the triangular inequality. The terminology *nonarchimedean* alludes to the fact that it implies that $p(na) \le p(a)$ for every $n \in \mathbb{N}$: no matter how many times one adds an element,

(La théorie des reminames (multiplicates)

re ravire à celle des mons.

11 sem voire sur R

P-La E R | 1a1 20 S

idéal de R

M) nave quoteel a R/P.

(multiplicates) Pest un

idéal promier

l p annéar unte gre

sour Frac (R/P)

it never gets higher than the initial size. The following example explains the relations between these two properties.

Lemma (3.1.5). — Let R be a ring and let p be a seminorm on R.

- a) If p is nonarchimedean, then $p(na) \le p(a)$ for every $n \in \mathbb{Z}$ and every $a \in \mathbb{R}$.
- b) Conversely, let us assume that p is radical and that $p(n) \le 1$ for every $n \in \mathbb{N}$. Then p is nonarchimedean.

Proof. — The first assertion is proved by an obvious inductive argument. Let us prove the second one. Let $a, b \in \mathbb{R}$. For every $n \in \mathbb{N}$, one has

$$p(a+b)^{n} = p((a+b)^{n}) \le p(\sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k})$$

$$\le \sum_{k=0}^{n} p(\binom{n}{k}) p(a)^{k} p(b)^{n-k} \le \sum_{k=0}^{n} p(a)^{k} p(b)^{n-k}$$

$$\le (n+1) \sup(p(a), p(b))^{n}.$$

As a consequence, one has

$$p(a + b) \le (n + 1)^{1/n} \sup(p(a), p(b)).$$

When $n \to +\infty$, we obtain the upper bound $p(a+b) \le \sup(p(a), p(b))$; this proves that p is nonarchimedean.

Example **(3.1.6)**. — A theorem of Ostrowski describes the multiplicative seminorms on the field **Q** of rational numbers.

- a) The usual absolute value $|\cdot|$, and its powers $|\cdot|^r$ for $r \in [0,1]$;
- b) For every prime number p, the p-adic absolute value $|\cdot|_p$, and its powers $|\cdot|_p^r$, for all $r \in]0; +\infty[$;
- c) The trivial absolute value $|\cdot|_0$ defined by $|0|_0 = 0$ and $|a|_0 = 1$ for all $a \in \mathbb{Q}^{\times}$.
- **3.1.7.** Let K be a nonarchimedean *valued field*, that is, a field endowed with a nonarchimedean absolute value.

Let R be the set of $a \in K$ such that $|a| \le 1$. Then R is a subring of K, and K is its fraction field. More precisely, for every $a \in K^{\times}$, then either $a \in R$ (if $|a| \le 1$), or $1/a \in R$ (when $|a| \ge 1$), which means that R is a valuation ring. It is called the *valuation ring* of K.

An element $a \in R$ is invertible in R if and only if |a| = 1. As a consequence, the ring R is a local ring and the set M of all $a \in R$ such that |a| < 1 is its unique maximal ideal. The field k = R/M is called the *residue field* of K.

If the absolute value of K is trivial, then R = K, M = 0 and k = K. In this context, the map from K^{\times} to the ordered abelian group R given by $v: a \mapsto -\log(|a|)$ is a group morphism which satisfies the property $v(a + b) \ge \inf(v(a), v(b))$ for all $a, b \in K$ such that $a, b, a + b \ne 0$; in other words, v is a *valuation* on K. In this context, one also defines $v(0) = +\infty$.

non-résérences:

Evate-Prestel Valuations

Ribentoin —

Bourbaki , Alg commutative.

l'aspect Valuation générale »

st privilégiée

K cops + valeur abolhe non archimedura R=da EK, |a| \le 1\righter sous or ear dek a,b \(\in \mathbb{R} \) |a+b| \(\in \mathbb{m}(|a|, |b|) \) \(\in \) |a| \(\in \) 3.1.7. — Let K be a nonarchimedean valued field, that is, a field R=haEK ty la(515 anneau de valuation endowed with a nonarchimedean absolute value. de K Let R be the set of $a \in K$ such that $|a| \le 1$. Then R is a subring of K, and K is its fraction field. More precisely, for every a ∈ K[×], ideal de R then either $a \in \mathbb{R}$ (if $|a| \le 1$), or $1/a \in \mathbb{R}$ (when $|a| \ge 1$), which means M = La E K tg |a| < 15 that R is a valuation ring. It is called the valuation ring of K. annear local An element $a \in R$ is invertible in R if and only if |a| = 1. As a consequence, the ring R is a local ring and the set M of all $a \in R$ such unique idéal maximal: $M = R - P^{\times}$ that |a| < 1 is its unique maximal ideal. The field k = R/M is called the residue field of K. If the absolute value of K is trivial, then R = K, M = 0 and k = K. In this context, the map from K^{\times} to the ordered abelian group R given by $v: a \mapsto -\log(|a|)$ is a group morphism which satisfies the property $v(a + b) \ge \inf(v(a), v(b))$ for all $a, b \in K$ such that R=R/M est un corps $a, b, a + b \neq 0$; in other words, v is a valuation on K. In this context, one also defines $v(0) = +\infty$. cops résiduel de T. | a| = 1 pour tout a E RX R = K, M = 0; R = K. v(a) = -log(|a|) Théore additie morphisme de monoides v: K -> 1RUL+00} $(K, \times) \rightarrow (R \cup \{+\infty\}, +)$ Exercice · v(ab) = ~(a)+ v(b) . & lal \$ |b| , alors v(1) = 0 $v(0) = +\infty$ [a+b(= sup(|a|, 161) v(atb) > inf(v(a), v(b))

les élévents de grante valuation sont jets

. si v(a) + v(b), along

10 (a+b) - inf (v(a), v(b))

Valuation générale

T groupe absétien ordonné, additivent

v: K -> T v {+ 00} = Tx monorde

(+ 00 > Y ET) (+ 00, y = +0) morphism de monoides v(ab) = v(a) + v(b)végaleté triangulaire. V(a+b) > inf(v(a), v(b))(RHuber) Normalisation peut être plus naturelle v K -> TUhos

6 K Y HYET nuté multiplicational
voire additivement morphise de monoide 5(a+5) < mp (v(a), v(5))

2. Huber

The minus sign in the definition of ν is sometimes annoying, at least it creates confusion, so that some authors defined an abstract valuation on a field K as a morphism λ from K^{\times} to an ordered abelian group Γ such that $\lambda(a+b) \leq \sup(\lambda(a),\lambda(b))$ for all $a,b \in K$ such that $a,b,a+b \neq 0$. In this context, one also sets $\lambda(0)$ to be an additional element smaller than any element of Γ .

Conversely, let K be a field and let R be a valuation ring of K. For $a, b \in K^{\times}$, write $a \leq b$ if there exists $u \in R$ such that a = bu; this is a preordering relation on K^{\times} and it induces an ordering relation on the quotient abelian group K^{\times}/R^{\times} and the canonical morphism $\lambda: K^{\times} \to K^{\times}/R^{\times}$ is a valuation. Indeed, let $a, b \in K^{\times}$ be such that $a+b \neq 0$ and set u = b/a; if $u \in R$, then b = au and a+b = a(1+u), so that $(a+b) \leq a$; otherwise, $v = 1/u \in R$, a = bv and a+b = b(1+v) so that $(a+b) \leq b$; in both cases, we have shown that $\lambda(a+b) \leq \sup(\lambda(a), \lambda(b))$.

Example **(3.1.8)**. — Let K be a nonarchimedean valued field and let R be its valuation ring. It follows from the property of a valuation ring that for every $a, b \in R$, either $a \in bR$ or $b \in aR$, according to whether $|a| \le |b|$ or $|b| \le |a|$. In particular, every finitely generated ideal of R is principal.

a

If M is finitely generated, then M is a principal ideal. Let $\pi \in M$ be such that $M = \pi R$; one has $|\pi| < 1$; moreover, for $a \in R$, either $|a| \le |\pi|$, or |a| = 1. Let $a \in R - \{0\}$; there exists a largest integer $n \in R$

Rannéau devaluation de la [VaEK*, a ER ou 1/a ER] a d b et b d c =) a d c (a=b1, b= (s =) a=b(5)

I wighte triangulare $a, b \in K \times v(a+b) \leq m_{\mu}(v(a), v(b))$ n = a/b $v(a) \leq v(b)$ $v(a) \leq v(b)$ $v(a) \leq v(b)$ $v(a) \leq v(b)$ $v(a) \leq v(b) \leq v(a)$ $v(a+b) \leq v(a)$ $v(a+b) \leq v(a)$ $v(a+b) \leq v(a)$ $v(a+b) \leq v(a)$ $v(a) = v(b) \leq v(b)$

Example (3.1.8). — Let K be a nonarchimedean valued field and let R be its valuation ring. It follows from the property of a valuation ring that for every $a,b \in R$, either $a \in bR$ or $b \in aR$, according to whether $|a| \leq |b|$ or $|b| \leq |a|$. In particular, every finitely generated ideal of R is principal. (Trail for the answer devaluation)

If M is finitely generated, then M is a principal ideal. Let $\pi \notin M$ be such that $M = \pi R$; one has $|\pi| < 1$; moreover, for $a \in R$, either $|a| \le |\pi|$, or |a| = 1. Let $a \in R - \{0\}$; there exists a largest integer $n \in R$

uriformisante luniformizer

N such that $|a| \le |\pi|^n$. One thus has $|\pi| < |a/\pi^n| \le 1$, so that $|a/\pi^n| = 1$ and there exists $u \in \mathbb{R}^\times$ such that $a = u\pi^n$.

As a consequence, all ideals of R are of the form $\pi^n R$, for some unique $n \in \mathbb{N}$. In particular, R is a principal ideal domain. The map $v : \mathbb{K}^{\times} \to \mathbb{Z}$ given by v(a) = n if and only if $aR = \pi^n R$ is a (normalized) discrete valuation on K.

la valuation et esentiellent R -> N u Th ->

· Rest un arreau principal

Carneau de valuatos descrète

a, $b \in R$ $v(a) \in v(b)$ aR + bR = aR n $v(b) \in v(a)$ = bR n $v(a) \in v(b)$ = bR n $v(a) \in v(b)$. If y a desanneaux de valuation non nethiners.

methintus. $\pi \in R$ by $M = \pi R$. $|\pi| < 1$ $|\pi| < 1$ $|\pi| < 1$ $|\pi| = 1$

 $a \in R$ n maximal l_{q} $|a| > |\pi|^{n}$ = 7 $|a| = |\pi|^{n}$ = 7 $|\alpha| = |\pi|^{n}$ = 7 $|\alpha| = |\pi|^{n}$ = 7 $|\alpha| = |\pi|^{n}$

 $n = (\alpha_1, \alpha_2, \dots)' = \alpha_i = \pi' u_i'$ $= (\pi^n) \qquad n = \inf(n_1, n_2, \dots)$ re de sallinos

N such that $|a| \le |\pi|^n$. One thus has $|\pi| < |a/\pi^n| \le 1$, so that $|a/\pi^n| = 1$ and there exists $u \in \mathbb{R}^\times$ such that $a = u\pi^n$.

As a consequence, all ideals of R are of the form $\pi^n R$, for some unique $n \in \mathbb{N}$. In particular, R is a principal ideal domain. The map $v : K^{\times} \to \mathbb{Z}$ given by v(a) = n if and only if $aR = \pi^n R$ is a (normalized) discrete valuation on K.

Proposition (3.1.9). — Let K be a field endowed with a nonarchimedean absolute value $|\cdot|$ and let $r = (r_1, \ldots, r_n)$ be a family of strictly positive real numbers. There is a unique absolute value p_r on $K(T_1, \ldots, T_n)$ such that for every polynomial $f = \sum c_m T^m$, one has

$$p_r(f) = \sup_{m \in \mathbf{N}^n} |c_m| r_1^{m_1} \dots r_n^{m_n}.$$

Its restriction to $K[T_1,...,T_n]$ is the largest absolute value such that $p_r(T_j) = r_j$ for $j \in \{1,...,n\}$ and which restricts to the given absolute value on K.

Proof. — To prove the first assertion, it suffices to prove that the given formula defines an absolute value on $K[T_1, ..., T_n]$, because it then extends uniquely to its fraction field $K(T_1, ..., T_n)$. One has $p_r(0) = 0$; conversely, if $f = \sum c_m T^m$ is such that $p_r(f) = 0$, then $|c_m| = 0$ for all m, hence f = 0. One also has $p_r(1) = 1$.

Let $f = \sum c_m T^m$ and $g = \sum d_m T^m$ be two polynomials.

If = sup I cont si f = Ecm Th soi la valuation de Kest descrète

f \in R L T \in T \

ct (f) = pgcd (cm) $|ct(\beta)| = |f|$ Th (Gavs) $f,g\in RCT$ ct(f)=ct(5)=) ct(fg)=1

/f/,/g/=1 ⇒ |fg/=)

→ multiplication te

de f#/f/

Then $f + g = \sum (c_m + d_m) T^m$; for every m,

$$|c_m+d_m|r_1^{m_1}\dots r_n^{m_n} \leq (\sup(|c_m|,|d_m|)r_1^{m_1}\dots r_n^{m_n}) \leq \sup(p_r(f),p_r(g)),$$

so that $p_r(f + g) \leq \sup(p_r(f), p_r(g))$.

Moreover, $fg = \sum_{m} (\sum_{p+q=m} c_p d_q) T^m$. For every m, one has

$$\left|\sum_{p+q=m} c_p d_q \right| r^m \leq \sup_{p+q=m} |c_p| |d_q| r^p r^q \leq p_r(f) p_r(g),$$

so that $p_r(fg) \le p_r(f)p_r(g)$. This shows that p_r is a norm on $K[T_1, ..., T_n]$, and it remains to prove that p_r is multiplicative.

Let P be the convex hull of the set of all $p \in \mathbb{N}^n$ such that $p_r(f) = |c_p|r^p$, and let Q be the convex hull of the set of all $q \in \mathbb{N}^n$ such that $p_r(g) = |d_q|r^q$. Let m be a vertex of P+Q; then there is a vertex a of P, and a vertex b of Q such that m = a + b. In particular, if m = p + q, for $p \in P$ and $q \in Q$, then p = a and q = b, so that the coefficient of T^m in f g is the sum of $c_a d_b$ and of other elements $c_p d_q$, where either $|c_p|r^q < |c_a|r^a$, or $|d_q|r^q < |d_b|r^b$ (or both) This implies that

$$\left| \sum_{p+q=m} c_p d_q \right| r^m = |c_a d_b| r^m = |c_a| r^a |d_b| r^b = p_r(f) p_r(g).$$

Consequently, $p_r(fg) = p_r(f)p_r(g)$ and p_r is a multiplicative seminorm on $K[T_1, ..., T_n]$.

117

3.1.10. — Let K be a field endowed with an absolute value. The map $(a, b) \mapsto |a - b|$ is a distance on K.

Let \widehat{K} be the completion of K for this distance. Let us recall its definition. One starts from the ring S of all Cauchy sequences in K and the subset M of all Cauchy sequences which converge to 0. It is obvious that M is an additive subgroup of M; since a Cauchy sequence is bounded, it is an ideal of S, and \widehat{K} is the quotient ring S/M. Let $j: K \to \widehat{K}$ be the map such that j(a) is the class of the constant sequence with value a; it is a morphism of rings.

For $a, b \in K$, one has

$$||a| - |b|| \le |a - b|.$$

This implies that for every Cauchy sequence (a_n) in K, the sequence $(|a_n|)$ is a Cauchy sequence in **R**; in particular, it converges. It induces a map $|\cdot|: \widehat{K} \to \mathbf{R}$ which is a multiplicative seminorm on \widehat{K} such that |j(a)| = |a| for every $a \in K$.

Let $a=(a_n)$ be a Cauchy sequence in K which does not converge to 0; by definition, there exists $\varepsilon>0$ and arbitrarily large integers n such that $|a_n| \ge \varepsilon$. Since (a_n) is a Cauchy sequence, there exists an integer p such that $|a_n-a_m| \le \varepsilon/2$ for all integers $m,n \ge p$. Taking $m \ge p$ such that $|a_m| \ge \varepsilon$, it follows that $|a_n| \ge \varepsilon/2$ for all integers $n \ge p$. In particular, one has $|a| \ge \varepsilon/2$. Consequently, the seminorm on \widehat{K} is an absolute value.

Deux cutros construction

* conflétien

* lôture algébrique

n) distance su K d(a,b)=la-b.

Récompletion de K K cops valué anneare S={suits. de Couchy dans (x)

M={mits qui convergent vers 0} $a=(a, b=(b_n) ab=(a, b_n)$ $N \rightarrow S a \mapsto (a, a, a, a, ...)$

Idéal maximal : a = (an) qui ne tend pas rers o . JESO ty lant >, E pour une infinité d'entiers n. . Ontère de carby $\{J_p\}$ pour m, n > p $|a_m - a_n| \leq \epsilon/2$ $=) \quad |a_{m}| \; ? \quad |a_{m}(-|a_{m}-a_{n}|) \; ? \; \epsilon (2 \quad m \mid |a_{m}|) \; ? \; \epsilon / 2 \\ m_{n} ? P$ $b_n = \frac{1}{a_n} = \frac{n}{n} = \frac{n}{n} = \frac{n}{n} = \frac{1}{a_n} = \frac{1}$ b=(5n) $b\in R$ $ab-1 \in M$ => M est un idéal maximal R/M est un conjus. | |a|-|b|| \le |a-b| \rightarrow n a \(\xi \) les suit (|an|) ist me trile

de Cauchy don IR, done convey

s seminone 1.1 son 5 son valeen absolve on K = S(M). M = Ker (seminone)Si Kest non archinédien: * Raum * $a \in S$, $|m, n \ge p = 1$ $|am - a_n| \le \varepsilon/2$ $|am| \ge \varepsilon$ pour une infinité de m $|a_m| \ge$ $\Rightarrow |a_n| = |a_m|$ $|a_m - a_n| \le \varepsilon/2$ $\Rightarrow |a_n| = |a_m|$ $\Rightarrow |a_m| = |a_m|$ les valeurs de la valeur absolve en l'E sont les mines que alle son t.

Set $b_n = 0$ for n < p and $b_n = 1/a_n$ for $n \ge p$. The inequalities

 $|b_m - b_n| = \frac{|a_n - a_m|}{|a_m||a_m|} \le \frac{4}{\varepsilon^2} |a_n - a_m|,$ for $m, n \ge p$, imply that $b = (b_n)$ is a Cauchy sequence. Moreover, ab converges to 1, hence the equality [a][b] = j(1) in \widehat{K} . This proves that \widehat{K} is a field. Assume that the initial absolute value of K is nonarchimedean. The obtained absolute value on \widehat{K} is then nonarchimedean as well. Moreover, with the previous notation, we have $|a_n| = |a_m|$ for all integers $m, n \ge p$: if the Cauchy sequence (a_n) does not converge to 0, then the sequence $(|a_n|)$ is eventually constant. In particular, the value group of \hat{K} is the same as that of K. Example (3.1.11). — Let K be a nonarchimedean valued field. It is known that the absolute value of K extends to an absolute value on any algebraic extension of K. More precisely, if K is complete, then for every algebraic extension L of K, there exists a unique extension absolute value on L that extends the absolute value of K. I refer to?, theorem 5.1, for a detailed proof. Let us just mention that when the extension $K \to L$ is finite, the absolute value of L is given by the formula $|b|_{L} = |N_{L/K}(b)|^{1/[L:K]},$ for every $b \in L$.

= / N_1/1(1)/ CL:h)

Il reste à prome que cette formule $|5|_{L} = |N_{LM}(5)|^{N_{LK}}$ convient Cutilize $\frac{1}{2}$ multiplicated $\frac{1}{2}$ \frac pol banacaté nitique de b $f = T + a_1 T' + a_n = TT (T - b_j)$ n = (C.R) $N_{Lin}(b) = (-1)^n a_n$ f we'dulth on prome que n $|a_n| \leq 1$, alors $|a_1|$, $|a_{n-1}| \leq 1$. pare l'absurde non el existe <math>i by $|a_i| > |a_j|$ if i minimal i minimal i minimal i $\frac{t}{a_i} = \frac{1}{a_i} + \frac{a_i}{a_i} + \frac{a_i}{a_i} + \frac{n-i}{1-T} + \frac{a_n}{a_i} \in \mathbb{R}[T]$ modulo M $\frac{f}{a_i} = T^{n-i} + \cdots + \frac{q_n}{a_i}$ factorisation approché de f $f = g R (\bar{g}, \bar{h}) \times (1 + a_L T^{i})$ $= 1 \quad \text{can } \bar{h} = 1$

without de Newton l'emre de Hensel fournit une factorisetra exacte f = g' h' g = g' mod M h = h' mod M with factorisation contredit l'une duchbolite de f.

bEL*, |Nexpelb) | \(\) le pol mind de 5 apparted à RCT)

=> le pol can faurn

 $| N_{UR}(1+b) = \pm \qquad f(-1) \in \mathbb{R} \\
 | N_{UR}(1+b)| \leq 1$

3.2. The analytic spectrum of a ring

Definition **(3.2.1) (?)** — Let K be a field endowed with a nonarchimedean absolute value and let R be a K-algebra. The analytic spectrum of R is the set of all multiplicative seminorms on R which restrict to the given absolute value on K, endowed with the coarsest topology for which the maps from R to \mathbf{R} , $f \mapsto p(f)$, are continuous, for every $f \in \mathbf{R}$. It is denoted by $\mathcal{M}(\mathbf{R})$.

If R is the ring of an affine K-scheme X, hence $X = \operatorname{Spec}(R)$, then the analytic spectrum of R is also called the (Berkovich) *analytification* of X, and is denoted by X^{an} .

Let J be a ideal of R and let $\mathcal{V}(J)$ be the subset of $\mathcal{M}(R)$ consisting of all seminorms p such that p(f) = 0 for every $f \in J$. It is a closed subset of $\mathcal{M}(R)$, For each $f \in R$, the set of all seminorms p on R such that p(f) = 0 is closed, as the preimage of the closed set $\{0\}$ by the continuous map $f \mapsto p(f)$ on $\mathcal{M}(R)$. Therefore, $\mathcal{V}(J)$ is the intersection of a family of closed subsets of $\mathcal{M}(R)$, hence is closed.

If X = Spec(R), the following proposition shows that $\mathcal{V}(J)$ identifies with the analytification of V(J) = Spec(R/J).

Proposition (3.2.2). — Let K be a field endowed with nonarchimedean absolute value.

a) If $\varphi : R \to S$ is a morphism of K-algebras, then the map $\varphi^* : p \mapsto p \circ \varphi$ is a continuous map from $\mathcal{M}(S)$ to $\mathcal{M}(R)$.

Analogue non archemédien de la tropicalisation

(CX)^n -> |R^n (2,1,2,1)

(log 120) Si Kest ur rops value non archenéder Pout wial: $\left(\begin{array}{c} \mathcal{K}^{\times} \right)^{n} \longrightarrow \mathbb{R}^{n} \quad (a_{1}, a_{n})$ $\mapsto (\log |a_j|)$ ne suffit pas par exemple * parce que K n'est pas forcement alg clos * log |aj| peut être dans

Mr cos grorpe shict de R

(K = Rp, Ap, | K* |= P,

ou na) et on ne peut pas esperer Horre ognaraite des ens-polyé draux

Rapranor (- Einsiedle-Lind)

prennert une adhérence dans R

on perd le caracter intrité an moment opportun-Spectre analytique traduit le fait que on pert voulor regarder tous les cops values qui contiennet K schéma Baneau R ~ Spec (R) = Lidéaux premiers de RS $R = K[T_n, T_n]/(f_n-, f_m)$ Spec (R) = {idéaex premen de K (T, vi, Th) qu'i contiennet les f} du système (F) =0)

A'iquatro

A'iquatro

A'iquatro

Le sopr des fraction = Frac (RIP)

Adams le sopr n(P)

Lars des T.

Fie P $f_0(a_1, a_n) = 0$ down $\kappa(P)$

Definition **(3.2.1) (?)** — Let K be a field endowed with a nonarchimedean absolute value and let R be a K-algebra. The analytic spectrum of R is the set of all multiplicative seminorms on R which restrict to the given absolute value on K, endowed with the coarsest topology for which the maps from R to \mathbf{R} , $f \mapsto p(f)$, are continuous, for every $f \in \mathbf{R}$. It is denoted by $\mathcal{M}(\mathbf{R})$.

If R is the ring of an affine K-scheme X, hence $X = \operatorname{Spec}(R)$, then the analytic spectrum of R is also called the (Berkovich) *analytification* of X, and is denoted by X^{an} .

Let J be a ideal of R and let $\mathcal{V}(J)$ be the subset of $\mathcal{M}(R)$ consisting of all seminorms p such that p(f) = 0 for every $f \in J$. It is a closed subset of $\mathcal{M}(R)$, For each $f \in R$, the set of all seminorms p on R such that p(f) = 0 is closed, as the preimage of the closed set $\{0\}$ by the continuous map $f \mapsto p(f)$ on $\mathcal{M}(R)$. Therefore, $\mathcal{V}(J)$ is the intersection of a family of closed subsets of $\mathcal{M}(R)$, hence is closed.

If $X = \operatorname{Spec}(R)$, the following proposition shows that $\mathcal{V}(J)$ identifies with the analytification of $V(J) = \operatorname{Spec}(R/J)$.

Us,
$$f = \{p \mid p(f) \in \Omega \}$$

point $f \in \mathbb{R}$
 $1 \leq C \leq R \quad \text{ouvert}$
 $X = Spec(R) \quad M(R) = X^{an}$

 $\mathcal{M}(R) = \{ p: R \rightarrow R + 1 \}$ $\mu(0) = 0$, $\mu(1) = 1$, $\mu(ab) = \mu(a) \mu(b)$ $\mu(a+b) \in \text{wh}(p(a), p(b))$ un point de $\mathcal{K}(R)$ est une seminorie. Évaluation $f \in R$ ev $\mathcal{M}(R) \longrightarrow \mathcal{R}_{+}$ $\mathcal{R} \longmapsto n(l)$ $p \mapsto p(f)$ Topologie su M(R): la mois fine telle que touts es applications dévaluation sont continues. Pour qu'une application d'un emac topologine X

dans 16(R)

dans 16(R)

port continue, il faut et il suffit

que pour faut f E R,

que pour faut f E R,

l'aylication x +> p(x) (f)

nont continue.

evro f. K (umlet olg . dos) (J. Poinder la géméhiede pro coli) R = KET] $p_a: f \longrightarrow |f(a)|$ semi nous: a E K Gauss $\mathcal{L} \in \mathbb{R}_+$ $\int_{a}^{b} f = \sum_{m}^{c} c_m (T-a)^m$ $a \in \mathcal{K}$ $\int_{a, 2}^{m} (f | = \sup_{m} |c_m| 2^m$ (il y en a parfois d'antre). es Continu ut continue $\begin{array}{ccc}
ca & 52 & \longrightarrow & & & & & & & & & & \\
f_{0,2}(f) = & & & & & & & & & \\
f = & & & & & & & & & \\
\end{array}$ Po,1 - P110 $n \mapsto p_{1,n}$ Po,2 - P1,2 (=) 2 >, 1 10,0 = po ho,0 (f)= |f(0)|

Let J be a ideal of R and let $\mathcal{V}(J)$ be the subset of $\mathcal{M}(R)$ consisting of all seminorms p such that p(f) = 0 for every $f \in J$. It is a closed subset of $\mathcal{M}(R)$, For each $f \in R$, the set of all seminorms p on R such that p(f) = 0 is closed, as the preimage of the closed set $\{0\}$ by the continuous map $f \mapsto p(f)$ on $\mathcal{M}(R)$. Therefore, $\mathcal{V}(J)$ is the intersection of a family of closed subsets of $\mathcal{M}(R)$, hence is closed.

If $X = \operatorname{Spec}(R)$, the following proposition shows that $\mathcal{V}(J)$ identifies with the analytification of $V(J) = \operatorname{Spec}(R/J)$.

Proposition (3.2.2). — Let K be a field endowed with nonarchimedean absolute value.

a) If $\varphi : R \to S$ is a morphism of K-algebras, then the map $\varphi^* : p \mapsto p \circ \varphi$ is a continuous map from $\mathcal{M}(S)$ to $\mathcal{M}(R)$.

{ p | p(f |= 0 } st me parthe ferree de XIR) $f \in R$ V(J)= dp/p(g)=0 +f=J) st fermée JCR irle'al raminous meltiplicables sur R ty PC51=0 UfEJ es semi vous multipliatue nuR/J. $\mathcal{K}(R) \supset \mathcal{V}(J) \xrightarrow{\sim} \mathcal{K}(RlJ)$ home'ony

preux exercice de toplogre produit-

- b) If φ is surjective, then φ^* induces a homeomorphism from $\mathcal{M}(S)$ to its image, which is a closed subset of $\mathcal{M}(R)$.
- *Proof.* a) To prove that φ^* is continuous, it suffices, by the definition of the topology of $\mathcal{M}(R)$, to prove that for every $f \in R$, the map $p \mapsto \varphi^*(p) = p \circ \varphi(f)$ from $\mathcal{M}(S)$ to **R** is continuous. But this follows from the fact the definition of the topology of $\mathcal{M}(S)$.
- b) Assume that φ is surjective and let $J = Ker(\varphi)$. Multiplicative seminorms on S then correspond, via φ , to multiplicative seminorms on S which vanish on S. Consequently, φ^* is injective and its image is the closed subset $\mathscr{V}(J)$ of $\mathscr{M}(R)$ consisting of all seminorms p such that p(f) = 0 for every $f \in J$. Let us prove that the inverse bijection, $(\varphi^*)^{-1} : \mathscr{V}(J) \to \mathscr{M}(S)$, is continuous. By the definition of the topology of $\mathscr{M}(S)$, it suffices to prove that for every $f \in S$, the map from $\mathscr{V}(J)$ to S given by S by S continuous. Let S be such that S

Theorem (3.2.3). — Let R be a finitely generated K-algebra and let $f = (f_1, \ldots, f_n)$ be a generating family. The continuous map $\mathcal{M}(R)$ to \mathbf{R}^n

Theorem (3.2.3). — Let R be a finitely generated K-algebra and let $f = (f_1, \ldots, f_n)$ be a generating family. The continuous map $\mathcal{M}(R)$ to \mathbf{R}^n

given by $p \mapsto (p(f_1), \dots, p(f_n))$ is proper. In particular, $\mathcal{M}(R)$ is a locally compact topological space.

Proof. — Let $\varphi: K[T_1, \ldots, T_n] \to R$ be the unique morphism of K-algebras such that $\varphi(T_j) = f_j$ for all $j \in \{1, \ldots, n\}$. Since it induces a closed embedding of $\mathcal{M}(R)$ into $\mathcal{M}(K[T_1, \ldots, T_n])$, it suffices to treat the case where $R = K[T_1, \ldots, T_n]$ and $f_j = T_j$ for all j.

For $r \in \mathbf{R}$, the set V_r of all $p \in \mathcal{M}(R)$ such that $p(T_j) < r$ for all j is open in $\mathcal{M}(R)$ and the union of all V_r is equal to $\mathcal{M}(R)$. Moreover, the closure of V_r is contained in the set W_r of all $p \in \mathcal{M}(R)$ such that $p(T_j) \le r$ for all j. Consequently, to prove that $\mathcal{M}(R)$ is locally compact, it suffices to prove that W_r is compact.

The map $j: \mathcal{M}(\mathbb{R}) \to \mathbf{R}_+^{\mathbb{R}}$ given by $p \mapsto (p(f))$ is continuous, by definition of the topology of $\mathcal{M}(\mathbb{R})$ and of the product topology. It is injective, by the definition of a seminorm. Moreover, its image is the subset of $\mathbf{R}_+^{\mathbb{R}}$ defined by the relations in the definition of a multiplicative seminorm, each of them defining a closed subset of $\mathbf{R}_+^{\mathbb{R}}$ since it involves only finitely many elements of \mathbb{R} . Finally, j is a homeomorphism onto its image. Indeed, the inverse bijection associates to a family $c = (c_f)$ the multiplicative seminorm $f \mapsto c_f$. To prove that j^{-1} is continuous, it suffices to prove that for every $f \in \mathbb{R}$, the composition $c \mapsto j^{-1}(c)(f) = c_f$ is continuous, which is true by the definition of the product topology.

(m(filing p(fil) , R= HCT] $M(R) \rightarrow R, p \mapsto p(T)$ cette application est propre - universellement fermée - unage réa proque d'un compact est conpacte M(R) est localement compact R= K[T1 , Tn = 1] annuar do pot $\lambda: \mathcal{N}(R) \longrightarrow \mathbb{R}^n$ $p \mapsto \left(\log p(T_1), \ldots, \log p(T_1)\right)$ continue et propu

 $f \in K(T_n^{II}, T_n^{\pm I}) = R$ V(f) c M(R)= Gm l'ambe non archimédienne de f sera $A_f : \lambda (V(g)) \subset \mathbb{R}^n$ (Ropranov) On va démontre que c'est un ensemble polyédral. et le muni de cliucture nyplémentaires (poids) vérifiant des relatros remarquables (condition d'équilibre) les avec Bien-gaves via l'avalyse non Handard.