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As a consequence, one has

pla+b)<(n+ 1)1/’1 sup(p(a), p(b)).

Whenn — 400, we obtain the upperbound p(a+b) < sup(p(a), p(b));

this proves that p is nonarchimedean.

Example (3.1.6). — A theorem of Ostrowski describes the multiplica-
tive seminorms on the field Q of rational numbers.

a) The usual absolute value ||, and its powers |-|" for r € ]0;1];

b) For every prime number p, the p-adic absolute value ||,, and
its powers |-[},, for all r € ]0; +oo[;

¢) The trivial absolute value |-|o defined by [0|p = 0 and |a]p = 1
for all 2 € Q*.

rExample (3.1.7). — Let % be an ultrafilter on N that contains the
Fréchet filter: % is a 7€t of B(N) satisfying the following properties,
for A,B C N: “wo ,

(i) If CA is finite, then A € %;
(i) f AcBand A € %, thenB € %;
(iii) If A,Be %,then ANB € %;
_(ivyo¢%.
> (v) If A ¢ %, then CA € %;
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In more elementary terms, elements of % are the subsets of N which
are almost sure with respect to some 0/1-valued finitely additive
probability, and for which finite sets have probability 0.

The existence of ultrafilters follows from Zorn’s theorem, the set

(of subsets of P(N) satisfying (i)-(iv) being inductive with respect to

inclusion.

Members of a chosen (ultra)filter are sorts of neighborhoods of
infinity. In particular, one can define the notion of convergence along %
for a sequence (a,): lim, %(a,) = a if for every neighborhood V of g,

valued in a compact (Hausdorff) topological space has a unique limi

the set of n € N such that a,, € V belongs to %. Every sequence w1’7

along %.
Fix a sequence t = (t,) of strictly positive real numbers converging
to +o0. wom

Let By, resp. Z;, be the set of all sequences (a,) € CN such that
hmn%ﬂanvt < oo, resp. lim ll?{]anl/tn = 0. The set B; is a subring of
the product ring CN and Z; is a maximal ideal of B;. The quotient C-
algebra K; = B;/Z; is an algebraically closed tield. The map (a,) —
lim, 9|a,|/t. gives rise to an absolute value on K; which restricts to
the trivial absolute value on C. In particular, it is nonarchimedean.

The study of the logarithmic limit set of a complex variety amounts
more or less to the study of the nonarchimedean amoeba of the
associated K;-variety.
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that the requested map is continuous on 7'(J), as the restriction of a
continuous map. m|

Theorem (3.2.7). — Let R be a finitely generated K-algebra and let f =
(fi,.--, fu) be a generating family. The continuous map M(R) to R"
given by p — (p(f1), ..., p(fn)) is proper. In particular, #(R) is a locally
compact topological space.

Proof. — Let ¢ : K[Ty,...,T;] — R be the unique morphism of K-
algebras such that ¢(T;) = f; forallj € {1,...,n}. Since it induces a
closed embedding of .#(R) into 4 (K[T1, ..., T,]), it suffices to treat
the case where R = K[Ty, ..., T,] and f; = T; for all ;.

For r € R, the set V, of all p € ./#(R) such that p(T;) < r for all j is
open in ./ (R) and the union of all V, is equal to .#(R). Moreover,
the closure of V, is contained in the set W, of all p € #(R) such
that p(T;) < r for all j. Consequently, to prove that .#(R) is locally
compact, it suffices to prove that W, is compact.

The map j: #(R) — R® given by p — (p(f)) is continuous, by
definition of the topology of .#(R) and of the product topology. It
is injective, by the definition of a seminorm. Moreover, its image is
the subset of R} defined by the relations in the definition of a mul-
tiplicative seminorm, each of them defining a closed subset of R}
since it involves only finitely many elements of R. Finally, j is a
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homeomorphism onto its image. Indeed, the inverse bijection asso-
ciates to a family ¢ = (cs) the multiplicative seminorm f — cy. To
prove that j~! is continuous, it suffices to prove that for every f € R,
the composition ¢ +— j~}(c)(f) is continuous; since this map is the
restriction of the projection ¢ ¢y, this is indeed the case, by the
definition of the product topology.

For f € R, set ||f||r = sup,, |cm|r™!, where f = ¥ ¢,,T" € R and
lm| = my + -+ + m,. For every p € W,, one has p(f) < ||f ./ SO
that j(W;) € [1¢exl0; ] f ||r]. According to Tikhonov’s theorem, the

latter set is compacf. as a product of comnact sets: conseaunentlv.

J , _ fekem uwmyzaa(\
@ ;hﬁ TT Uﬂo, el ] (Tchnrs
FELLT)

A —> (/9(15)5 v I/

W, is homeomorp] Corollary (3.2.8). — Let X = Spec(K[TZL, ..., T#1)).  The map I ﬁ /[( - /yu7 [Con] ™
compact. A X — R" given by p +— (log(p(Th)),..., log(p(T,))) is sur- A m
By what precede jective and proper. In particular, for every ideal 1 of KT ranay T o @ -7 Chm T

by the map p — (f M7 (D) isa closed subset of R". T e
are locally compact, this implies that this map is proper (Boursaxi ‘
(1971), chap 1, §10, n° 3, prop. 7). O Csn L”U’ t . ]3 — P (¥ 3 G L"VUM

Corollary (3.2.8). — Let X = Spec(K[Tf!,..., T#']).  The map
A X" — R" given by p — (log(p(T1)),...,log(p(Ty))) is sur-
jective and proper. In particular, for every ideal T of K[T{', ..., TE],
M7 (1)) is a closed subset of R".
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Corollary (3.2.8). — Let X = Spec(K[T%!,...,T#l])).  The map
A: X — R" given by p +— (log(p(Ty)),..., log(p(T,))) is sur-
jective and proper. In particular, for every ideal 1 of K[TE!,..., TZ1],
A7 (1)) is a closed subset of R".

Proof. — Let x € R”" and let v, be the Gauss absolute value
of K(Ty, ..., Ty) such that v,(T;) = e for all j. One has A(vy) = x,
so that A is surjective.

By theorem 3.2.7, the map

p = (log(p(T1)), . .., log(p(Tn)), log(p(T7 ), log(p(T, 1))

from X3 — R?" is continuous and proper. Its image is contained in
the closed subspace L of R?" defined by the equations x1 = xy+1, X2 =
Xn+2, Xn = X251, 50 that A induces a continuous and proper map
from X" to L. The corollary follows from the fact that the linear
projection (x1,...,x2,) = (x1,...,x,) from R*" to R” induces an
homeomorphism from L to R". O

3.2.9. — TheschemeX = Spec(K[TI—’l, ..., T£1])is the n-dimensional
torus over K, the algebraic-geometry analogue of the complex man-
ifold (C*)". The map A is then the analogue of the tropicalization
map (C*)" — R", (z1,...,2zx) = (log(|z1]),...,log(|zx|)) studied in
chapter 2.

If Tis an ideal of K[T#?, ..., T£!], then the closed subscheme V(I)
of X has a Berkovich analytification 7'(I), naturally a closed subspace
of Xa" = ./ (K[Tfl, ..., T£1]), and its image A(7 (1)) is the tropicaliza-
tion of V(I).

In the algebraic geometry of schemes, one makes a careful distinc-
tion between the scheme X (or its closed subscheme V(I)) and its set
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of points X(K) with values in a given field. One has a natural iden-
tification of X(K) with (K*)", an n-tuple (z1, ..., z,) € (K¥)" being
identified with the images of Ty, . . ., T), by a morphism of K-algebras
from K[Tiﬂ, ..., T3] to K; more generally, for any K-algebra L, the
set X(L) identifies with (L*)". Then, the set V(I)(L) identifies with
the set of elements (z1,...,z,) € (LX)" such that f(z1,...,2z4) =0
forall f €L

Similarly, a point in K[Tiﬂ, ..., T*l]isa multiplicative seminorm p
on this K-algebra. Its kernel J, = {f; f(p) = 0} is a prime ideal of
K[T#!, ..., T#] and p induces a multiplicative norm on the quotient
K-algebra K[Tiﬂ, I il /]», and then on its field of fractions L,
which is a an extension of K endowed with an absolute value that
extends the absolute value on K. The field L, is generated by
the images z1,...,z, of Tq,..., T, by the morphism of K-algebras
K[Ti—“l, R ) [ L,, and the condition p € 7(I) is equivalent
to the condition I C J,, or to the condition f(z1,...,z,) = 0 for
all f € I. Conversely, any valued extension L of K and any fam-
ily (z1,...,zn) € (L*)" such that f(z1,...,z4) = O forall f €1
gives rise to a point in 7'(I), given by the multiplicative seminorm
flf(zi,...,zo)lonK[T{, ..., T

Consequently, the tropicalization of V(I) is the set of all x € R"
for which there exists a valued extension L of K and a family
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(z1,...,2zn) € (LX)" such that f(z1,...,z,) = 0 for all f € I and
(log(|z1l), - .., log(1zul)) = (x1, ..., xu)-

3.3. Nonarchimedean amoebas of hypersurfaces

3.3.1. — LetKbe a field endowed with a nonarchimedean absolute
value. Let R be the valuation ring of K, let k its residue field and
red : R — k the reduction morphism; it maps the maximal ideal to 0
and induces a morphism of groups from R* to k*.

The map from v : K* to R given by a — —log(|a|) is a morphism
of groups. Let I be its image. One says that the given valued field K
is split if we are given a section of the surjective map v. Such a
section does not exist in general, but it does exist in the following
two important cases: 2 Z

— Assume that{K is discretely valued. IThen R is a discrete valu-
ation ring. If t is a given generator of its maximal ideal, one has

I'=Zlog and the map n log(|t|) — t" is a section as required.
— If|K is algebraically closed,then such a section also exists, by
an abstract homological algebra argument. Indeed, in this case,

R* is a divisible abelian group, hence an injective Z-module. In a
more elementary way, one can also use the fact that I is a uniquely
divisible abelian group, hence a Q-vector space. It then suffices to
choose, in a compatible manner, nth roots of a given element of K*.
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Let y € I' and let a € K* be such that log(|a|]) = y. Let us choose
inductively elements a4, € K* such that a1 = a and (a,)" = a,-1 for
all integers n > 2. In particular (a,)" = a for all n > 1. Moreover,
if m > n, then n divides m! and we see by induction that (@)™ =
(ay)™" = (a,)"V". Then there is a unique morphism of groups
from Qy to K* that maps 2y to (a,)""~V" for all m, n € Z such that
n>1.

If K is a split valued field, then we can extend the morphism of
groups red : R* — k* to a morphism of monoids p: K — k, by ¥
setting p(a) = red(at~*™). Note that p restricts to a morphism of /ﬂf? ( t ’ = })/
groups from K* to k*. ?j

Definition (3.3.2). — Let f € K[T%},..., T#'] be a Laurent polynomial; é}

writef =2 cn T, R R vﬂpa \a’ '
A ﬁa/waﬂ/w\ a) The tropical polynomial associated with f is the map \F 3 2 - |
(¥
1% LT (LES]C“J*(“"”)
\/

7 :R" > R, x> sup (log(lew|) + (m, x)) .
m

b) The tropical hypersurface defined by f is the subset Ty of all x € R" 2’@ 3 | Ch @™ )
such that there exist two distinct elements m € Z" such that t¢(x) =
10g(|cm|)+<m/x>' %‘* o GLL%)\ L > %
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c) (Assuming that the valued field K is split.) For x € R", the initial
form of f at x is the Laurent polynomial

2o
in(f) = >, p(cn)T".
t7(x)=log(|cm|)+(m,x)

W€ S of)

Recall that the support of a Laurent polynomial f = }; ¢,/ T™ is the
setS(f) of all m € Z" such that c,, # 0, and that the Newton polytope
of f is the convex hull NP of S(f) in R".

We will occasionally define Sy(f) to be the subset of S(f) consisting
of those m such that 7¢(x) = log(|c|) + (m, x); this is the support of
the initial form iny(f); its convex hull is then a sub-polytope NP o
of NPy.

With this notation, the tropical hypersurface 7 is the set of all
x € R" such that S,(f) has at least two elements, equivalently, NP .
is not a point. When K is a split valued field, this is also equivalent
to the property that in,(f) is not a monomial (or zero).

Remark (3.3.3). — Let ¢: GmI"< — Gmi be a monomial morphism,
given at the level of Laurent polynomials by a morphism of K-
algebras ¢": K[T{,..., T3'] — K[T;',..., T3] of the form T; —
a;jT%, whereay, ..., a, € K*andey,...,e, € Z". If Lis an extension
of K, this morphism ¢ maps a point z = (z1,...,z,) € (L¥)" to the
point ¢(z) = (a1z%, ..., a,z).
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This morphism gives rise to an affine map ¢.: R”™ — R?, given

by x = (x1,...,xn) (log(|a1|) + (e1,x),...) and to monomial
morphism ¢, : Gy — Gn glven by z — (@124, ,z;”), where
a1 = p(a1), ..., ap = plap).

Let f € K[T', ..., T;']; write f = 3,cz0 ¢ T" s0 that

( P = T cnalh .l Tms e,

meZp

If the rank of (eq, ...
mieq + - -

,ep) € My, ,(Z) is equal to p, then all exponents
+ mpe, are pairwise distinct. This implies that

Tge(f)(x) = sup (IOg(Icml) +my log(|a1]) + - - - + my log(lap|)

+ (myey + -+ mpey, x))

= sup (log(lcml) +mi(log(|a1]) + e, x)) +

+ my(log(lapl) + (ep, x)))

= sup (log(lcm|) +myr 4+ mpyp),

where y; = log(|a;|) + (e;, x)) for j € {1,..., p}. This shows that

To*(f) = Tf © Pr-

Remark (3.3.3). — Let ¢ : Gy — GmK be a monomial morphism,
given at the level of Laurent polynomials by a morphism of K-
algebras ¢" : K[Til ...,T;l] — K[T#, ..., T of the form Ty i
a;T%, wherea,...,ap € K*andey,..., e, € Z". If L is an extension
of K, this morphism @ maps a point z = (21, ...,24) € (LX)" to the
point ¢(z) = (m1z%, ..., apz%).
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If K is a split valued field, we obtain similarly that

iny(¢*(f)) = Z plem)al™...a

mPTml eyt Fimpe, _
» =

P p(ing.(x)(f))-

Lemma (3.3.4). — Let f,g € K[T#!, ..., T£!] be nonzero Laurent poly-
nomials and let h = f g. For every x € R", one has the following relations:
(@) wn(x) = 1p(x) + 1g(x); _— Ni NP
(ii) NPy = NPf, + NP, ,; N a = ,()f ) &
(iii) If K is a split valued field, then iny(h) = in,(f) % in.(g).

Proof. — Write f = Y a TW §=2bgTTand h =X c,T". Let ube
a vertex of NPj, » and let & eR"be SUC‘TI that (m, &) < (u, &) for every
m € NPy, , such that m # p. Form € Z", one has ¢,y = Xpy g dpby,
hence

log(lewml) + (m, x) < sup (log(lap|) + (p, x)) + (log(lby) + (g, x})

ptq=m
< sup(log(lap) + (p, x)) + sup(log(lcq]) + (4, x))
14 q

= 77(x) + Tg(x).
This proves that 7;,(x) < T7(x) + T¢(x).

On the other hand, if p € NPf, and g € NPg . are such that
p+q=u, wehave (p, &) +(q,&) = (u, &), so that the face of NPy, »
defined by ¢ contains the Minkowski sum of the faces of NPy »
and NP, , defined by &. This implies that these faces are vertices:

frg=r
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there exists a unique decomposition u = p + g, where p and g are
vertices of NP , and NPg , respectively. In the formula for ¢,
the term a,b,; has absolute value given by log(|a,|) + log(|b,|) =
T¢(x) + 14(x) — {1, x), while the absolute value of all other terms is
strictly smaller. This shows that log(|c,|) = T¢(x) + T4(x) — (u, x),
hence 7;(x) = T7(x) + T¢(x).

This also shows that NP}, , is equal to the Minkowski sum of NPy
and NP, . The arguments of the first part of the proof prove that
NPy, » € NPy, + NPg x, while the second part of the proof shows
that every vertex of NP}, x belongs to the latter sum.

Let m € Z". If log(|cm]|) + (m, x) < ti(x), then the monomial T
does not appear in iny(h).

Otherwise, since 74(x) = 77(x) + T4(x), one has log(|a,|) +
log(|bg|) < log(lcu|) for every pair (p,q) such that p + g9 = m,
and equality is achieved for at least one pair. In other words,
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v(ap) + v(by) > v(cy), with some pairs achieving equality. Conse-
quently,

toene,, = 7 N ab,
p+g=m

— Z t—v(ap)apt—v(bq)bq

p+q=m
PESx(f)
7€5x(8)
+ Z tU(ap)+U(bq)—U(Cm)t—v(”p)apt_v(aq)bq’

other terms

a relation between elements of R. The reduction of the left hand side
modulo the maximal ideal is the coefficient p(c;,) of T™ in in,(h).
Similarly, if p € Sx(f), then the reduction of t‘v(“P)ap is p(ap); if
g € Sx(g), then the reduction of t‘v(bq)bq is p(b;). On the other hand,
if v(ap) + v(by) > v(cw), then the reduction of corresponding term
on the right hand side is zero. Consequently,

plew)= ). playplby).
ptq=m
peSx(f)
7€5x(g)

Since iny(f) = 2pess(f) p(ay)TP and in,(g) = 22€5:(2) p(by)T1, this
proves the coefficient of T” in in,(h) is equal to the coefficient
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of T in the product of in,(f) and iny(g). Consequently, in,(h) =
iny(f)in,(g), as claimed. |

Proposition (3.3.5). — Let f € K[T#!, ..., T2 be a Laurent polynomial.
The associated tropical hypersurface T is a closed I'-strict polyhedral subset
of R", purely of dimension n — 1. More precisely, there exists a I-strict
polyhedral decomposition of R" the (n — 1)-dimensional polyhedra of which
T is the union.

Proof. — Write f = 3’ ¢, T™; let S(f) be the support of f; for x € R",
let Sy (f) be the set of all m € S(f) such thatlog(|cy|)+(m, x) = T¢(x).

For every m € S(f), let P, be the the set of x € R" such that
m € Sy(f). Since P, is defined in R" by the affine inequalities
log(|cql) + (g, x) < log(lcu|) + (m, x) for all g € S(f), it is a convex
polyhedron. The slopes of these affine forms are integers, and their
constant terms are elements of the value group I' = log(|K*|) of K;
consequently, P, is a WBy construction,
these polyhedra cover R".!

If Sx(f) is reduced to an element m, then then there exists an
open neighborhood V of x such that S,(f) = {m} forall y € V;
in particular, V is is disjoint from the other polyhedra P, and it is
contained in the interior of P,,.

1Vérifier la terminologie sur les polyedres stricts

megx/f) & x P,

Sp (V= Ams-

wpgesEr o blqlie

< %Jckhévﬂ,*)

4@@%@5 sb etz f{mﬂz ey

\%[j].f%WH
= x € [t (P )



Ao SO 01,7, 1Y) — RM )
7 ~— L f)( T
3.3. NONARCHIMEDEAN AMOEBAS OF HYPERSURFACES CL ) 137
Z —

On the other hand, for two distinct elements m,q of S(f), the
polyhedron P, N P, is contained in the hyperplane defined by the
nontrivial affine equation log(|c,|) + (m, x) = log(|c,4|) + (g, x), so
that P, N P, is disjoint from the interior of P,,. In particular, if
Card(Sx(f)) > 2, then x does not belong to the interior of P,,.

This proves that R" is the union of those polyhedra P, which have
dimension 7, and that the union of their interiors is the set of all
x € R" such that Sx(f) is reduced to one element.

Consequently, the tropical hypersurface J%, which is its comple-
mentary subset, is the union of the (n —1)-dimensional faces of these
polyhedra P,,, and they are I'-strict convex polyhedra. m|

Theorem (3.3.6) (Kapranov). — Let f € K[T#!,...,T£!] be a Laurent

polynomial. The following four subsets of R" coincide:

(i) The tropical hypersurface T5; H“T CJ{

(ii) Assuming that the valued field K is split, the set of all x € R" such )
that in,(f) is not a monomial;

(iii) Theset of all x € R" such that there exists a valued extension L of K
and a point z € (L*)" such that f(z) = 0 and x @

WWWJ& S| ) The image of 7/(f) in M(K[T3', ..., T;']) by the tropicalization
Y L&"V;Jf\ map /\': /%(K[Tfl,.. O - (leg(p(Tl)), smip log(;?(T,l))). N

& B If L is an algebraically closed extension of K, endowed with a nontrivial

absolute value extending that of K, they also coincide with the set:
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L (v) The closure of the set of all x € R" such that there exists a point
Sz € (LX)" such that f(z) = 0and x = A(z).
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(v) The closure of the set of all x € R" such that there exists a point
z € (L*)" such that f(z) = 0and x = A(z).

Proof. — Let S1 = J%,52,53,54,55 be these subsets. Write f =
> cm T,

Let x € R". Let m € Z"; the monomial T" appears in in,(f) if
and only if log(|cy|) + (m,x) = 7¢(x). Consequently, in,(f) is a
monomial if and only if the supremum defining 7¢(x) is reached
only once. This proves that S; = S,.

The equality Sz = S, follows from the discussion in §3.2.9.

Let L be a valued extension of K, let z € (L*)" be a point such
that f(z) = 0 and let x = A(z). One has };¢,z™ = 0. Since the
absolute value is nonarchimedean, the supremum of all |¢,,z™| must
be attained twice. Since A(c,z™) = log(|cm|) + (m, x), this shows
that there exist two distinct elements m, g € Z" such that log(|cm|) +
(m,x) = 1¢(x). In other words, x belongs to the hypersurface 7.
This proves that one has S3 C 5.

By definition, the set Ss is the closure of a subset of S3; since S; is
closed, one also has S5 C S;.

By the corollary to the lifting proposition below, one has 7y NI €
Ss. Since K is algebraically closed and its valuation is nontrivial, the
group I is a non zero Q-subspace of R; in particular, it is dense in R.
On the other hand, since 7 is a I'-strict polyhedral subspace of R”",

Q&M —k%«%
/’T"i
Sr\ CS
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its subset 7y NI is dense in J. Since J7 is closed in R", this implies
thatS; = egf C Ss.

Using Gauss absolute values (proposition 3.1.10) and exam-
ple 3.1.12, there exists an algebraically closed valued extension L
of K whose value group I'l, contains the coordinates of x. By the
corollary of the lifting proposition, there exists z € (L*)" such that
f(z) =0and A(z) = x; in other words, one has x € S3. Consequently,
S1 € Ss. This concludes the proof of the theorem. O

Proposition (3.3.7) (Lifting). — Assume that K is an algebraically closed
valued field with residue field k. Let f € K[T3', ..., T£'] be a Laurent
polynomial. We assume that the coefficients of f belong to the valuation
ring of K and that its reduction ¢ € k[T£!, ..., T£'] is nonzero.

For every o € (k*)" such that o(f) = 0, there exists a € (R*)" such that
p(a) = aand f(a) = 0. Moreover, if f is irreducible, then the set of such a
is Zariski dense in the closed subscheme V(f) of Gmy.

Proof. — We do the proof by induction on .

Let us first assume that n = 1. Since K is algebraically closed, we
may write f = cT™ Hj:1(T —a;), for some c € KX, m € Z, g € N and
a,...,ag € KX If laj| > 1, wewrite T —a; = —a;(1 - a]._lT), so that

f=c||Gapm [[a-a'D [ | T-ap.

laj|>1 laj|>1 laj|<1
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Letc’ = ¢ ]_[|aj|>1(—a]-). If |¢’| < 1, then this formula shows that f
reduces to 0 in k[T*!], contradicting the stated hypothesis that ¢ # 0.
If |c’| > 1, the coefficients of (c’)~! f belong to the maximal ideal of
the valuation ring of K, so that the reduction of (c’)7} f is zero; on the
other hand, we see that this reduction is equal to T [1]| aj|<1(T —aj).
then the relation (c’)~!'f and the hypothesis Consequently, |¢’| = 1
and ¢ = p(c’)Tm(]_[|aj|<1 T) ]_[|aj|=1(T — p(a;)). Since ¢ vanishes at «,
there must exist j € {1,...,q} such that |a;| = 1 and p(a;) = a. This
proves the proposition in this case.

To do the induction step, we first perform a multiplicative Noether
normalization theorem to reduce to the case where the map m — my
from the support S(f) of f to Z is injective. To see that it is possi-
ble, we make an invertible monomial change of variables T — Ty,
T, » LT ... T, — Tn_szn_z,Tn — TnT;]”_1 for some integer g,
chosen to be large enough so that g > |m; — m]’.| for all m, m’ € S(f)
and all j € {1,...,n}. This change of variables transforms the Lau-
rent polynomial f into the polynomial

fr= > cnT{™MTy2. Ty,
mes(f)

where

p(m) =my + qmy + q2m3 + -+ q”‘lmn.
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Let m, m’ € S(f) be such that m # m’; let k € {1,...,n} be such that
mj = m; for j > k and my # my; then one has

n k-1
()= p(m) = Y g7 mj=mj) = " g7 () =my)+q* (] ).
j=1 j=1

In absolute value, the last term is at least qk‘l, because ml’{ # My; on
the other hand, the first one is bounded from the above by

k=1 qk—l 1
2= = -D—=—=¢""-1,
= 1

hence |p(m’) — p(m)| > 1.

Assume that this property holds. In other words, if f is written as
a Laurent polynomial in Tq, with coefficients Laurent polynomials
in Ty, ..., T,, then all of these coefficients are monomials.

Then fix any lifting a’ = (az, ..., a,) € (R*)" L of & = (aa, ..., an).
The polynomial f is not a monomial; otherwise ¢ would be a mono-
mial and would not vanish at a. Thanks to the property imposed on
the exponents of f, the one-variable Laurent polynomial f(T,a’) is
not a monomial either; its reduction is ¢(T, @’) and vanishes at a;.
By the n = 1 case, there exists a1 € R* such that p(a;) = a; and
f(ay,a’) =0.

To prove the density, we let Z be the Zariski closure in Gy of the
set of these elements a € (R*)" such that f(a) = 0 and p(a) = a. By
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definition, the ideal .#(Z) of Z is the set of all Laurent polynomials
h € K[Ti—“l, ..., T¥!] such that h(a) = 0 for all these a. One has f €
J (Z) by construction, hence (f) € #(Z). To prove that Z = 7'(f), it
suffices to prove that #(Z) = (f).

Let g € J(Z)—=(f). Since K[Tiﬂ, ..., T#!] is a unique factoriza-
tion domain and f is irreducible in K[Tiﬂ, ..., T#1], Gauss’s theo-
rem shows that f is either a unit, or irreducible in the one-variable
polynomial ring K(T», ... ,Tn)[Tl,Ti—Ll]. Since g does not belong
to (f), the polynomials f and g are coprime in this principal ideal
domain and there exist polynomials u,v € K(T,... ,Tn)[Tl,Ti—Ll]
such that uf + vg is a nonzero element of K(T», ..., T,). Multiply-
ing by a common denominatorz, this furnishes a nonzero element h
of (f,g)N K[T;Ll, ..., T, Let a’ € (R¥)""! be such that p(a’) = a’.
By what precedes, there exists a € R” of the form a = (¢, a’) such that
f(t,a’) = 0and p(a) = a; by assumption, g(a) = 0, hence h(a’) = 0.
This contradicts the fact that these elements a’ are Zariski-dense
in Gml’z_l (lemma 3.3.8 below). O

Lemma (3.3.8). — Let K be a field, let Ay, ..., A, be subsets of K and let
A=Ay X - XAy Let f €K[Ty,...,T,]. If Card(A;) > degTj(f)for
all j, then there exists a € A such that f(a) # 0.

In particular, if Aq, ..., A, are infinite, then A is Zariski dense in A",
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Proof. — If n = 1, this amounts to the fact that a polynomial in
one variable has no more roots than its degree. We then prove the
result by induction on n, writing f = fo + ATy +--- + f, T7", for
fo, -, fm € K[Ty,...,T,], where m = deng(f), hence f,, # 0. By in-
duction, there exists ap € Ay, ...,a, € A, such that f,,(ay,...,a,) #
0. This implies that the polynomial f(T,ay,...,a,) has degree m.
Since Card(A1) > degy (f) = m, there exists a1 € A; such that
f(ay,az,...,a,) # 0, as was to be shown. O

Corollary (3.3.9). — Assume that K is an algebraically closed split valued
field and let x € T'". Then, for every a € (k*)" such that iny(f)(a) = 0,
there exists a € (KX)" such that A(a) = x and f(a) = 0. Moreover, if f is
irreducible, then the set of such a is Zariski dense in 7'(f).

Proof. — By assumption, there exists b € (K*)" such that A(b) = x.
Let ¢ € (R*)" be such that p(c) = p(b). Since A(c) = 1, we then
have A(bc™?) = A(b) = x and p(bc™!) = p(b)p(c)™! = 1. Replac-
ing b by bc™!, we now assume that A(b) = x and p(b) = 1. Let
g(T) = f(1Ty,..., b,Ty); writing f = 3,,c5(5) cnT™, we have g =
Zmes(f) cmb™T™. Consequently, for every z € R", one has

14(z) = sup(log([cm|) + (m, x + z)) = 1¢(x + 2).
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This also shows that S;(g) = Sx+z(f) and that
in.(g)= > plend™T" = > plen)T" = ingia(f).

meS;(g) MESy+z(f)

In particular, x € J7 if and only if 0 € T, iny(f)(a) = 0 if and
only if ing(g)(a) = 0, and g(a) = 0 if and only if f(ab) = 0, where
ab = (a1by, ..., a,by).

By the lifting proposition, there exists 2 € (R*)" such that p(a) = a
and g(a) = 0; then ab € (K*)" satisfies p(ab) = a and f(ab) = 0.

Moreover, if f is irreducible, then g is irreducible as well, the set
of such elements a is Zariski dense in 7°(g), hence the set of such
elements ab is Zariski dense in 7'(f). O

Beware:

The definition of the nonarchimedean amoebas has been modified
so as to be more consistent with the definition in the archimedean
case. 1 made the necessary corrections up to here, but there are
certainly inconsistencies below.

3.4. Monomial ideals

Definition (3.4.1). — An ideal of K[T1, ..., T,] is said to be monomial
if it is generated by a set of monomials.



