TOPICS IN TROPICAL GEOMETRY

Antoine Chambert-Loir

3.1. SEMINORMS

113

As a consequence, one has

$$p(a + b) \le (n + 1)^{1/n} \sup(p(a), p(b)).$$

When $n \to +\infty$, we obtain the upper bound $p(a+b) \le \sup(p(a), p(b))$; this proves that p is nonarchimedean.

Example **(3.1.6)**. — A theorem of Ostrowski describes the multiplicative seminorms on the field \mathbf{Q} of rational numbers.

- a) The usual absolute value $|\cdot|$, and its powers $|\cdot|^r$ for $r \in]0;1]$;
- b) For every prime number p, the p-adic absolute value $|\cdot|_p$, and its powers $|\cdot|_p^r$, for all $r \in]0; +\infty[$;
- c) The trivial absolute value $|\cdot|_0$ defined by $|0|_0 = 0$ and $|a|_0 = 1$ for all $a \in \mathbf{O}^{\times}$.

Example (3.1.7). — Let \mathcal{U} be an ultrafilter on N that contains the Fréchet filter: \mathcal{U} is a set of $\mathfrak{P}(N)$ satisfying the following properties, for $A, B \subset N$:

- (i) If $\bigcap A$ is finite, then $A \in \mathcal{U}$;
- (ii) If $A \subset B$ and $A \in \mathcal{U}$, then $B \in \mathcal{U}$;
- (iii) If $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$;
- _ (iv) Ø ∉ \(\mathcal{U} \).
- \rightarrow (v) If $A \notin \mathcal{U}$, then $CA \in \mathcal{U}$;

L'en entre sombles archinédiennes et ambes non archinédiennes

Bieni govs on a admis temporarement que Ev (tropicalisation) était Un ens. polyédral Q-rationnel.

Ex. 3.1.7 coms de complex s « non standard» avec me valeur absolve non archinédiense qui reflete la géométre « à quande destance».

A & U > A COV « grande? A & U « petite? In more elementary terms, elements of \mathcal{U} are the subsets of \mathbf{N} which are almost sure with respect to some 0/1-valued finitely additive probability, and for which finite sets have probability 0.

The existence of ultrafilters follows from Zorn's theorem, the set of subsets of $\mathfrak{P}(\mathbf{N})$ satisfying (i)–(iv) being inductive with respect to inclusion.

Members of a chosen (ultra)filter are sorts of neighborhoods of infinity. In particular, one can define the notion of *convergence along* \mathcal{U} for a sequence (a_n) : $\lim_{n,\mathcal{U}}(a_n) = a$ if for every neighborhood V of a, the set of $n \in \mathbb{N}$ such that $a_n \in \mathbb{V}$ belongs to \mathcal{U} . Every sequence with valued in a *compact* (Hausdorff) topological space has a unique limit along \mathcal{U} .

Fix a sequence $t = (t_n)$ of strictly positive real numbers converging to $+\infty$.

Let B_t , resp. Z_t , be the set of all sequences $(a_n) \in \mathbb{C}^N$ such that $\lim_{n,\mathcal{U}} |a_n|/t_n < \infty$, resp. $\lim_{n,\mathcal{U}} |a_n|/t_n = 0$. The set B_t is a subring of the product ring \mathbb{C}^N , and Z_t is a maximal ideal of B_t . The quotient \mathbb{C} -algebra $K_t = B_t/Z_t$ is an algebraically closed field. The map $(a_n) \mapsto \lim_{n,\mathcal{U}} |a_n|/t_n$ gives rise to an absolute value on K_t which restricts to the trivial absolute value on \mathbb{C} . In particular, it is nonarchimedean.

The study of the logarithmic limit set of a complex variety amounts more or less to the study of the nonarchimedean amoeba of the associated K_t -variety.

A EU => M(A)=) A & U > M(A)=0 P = T + & T + + + + + + & \(\mathcal{K}_{\psi}(\bar{1}) \) $\alpha = d(\alpha^{(5)}) \qquad \alpha^{(5)} \in \mathbb{B}_{\ell}$ that the requested map is continuous on $\mathcal{V}(J)$, as the restriction of a continuous map. \Box

Theorem (3.2.7). — Let R be a finitely generated K-algebra and let $f = (f_1, \ldots, f_n)$ be a generating family. The continuous map $\mathcal{M}(R)$ to \mathbf{R}^n given by $p \mapsto (p(f_1), \ldots, p(f_n))$ is proper. In particular, $\mathcal{M}(R)$ is a locally compact topological space.

Proof. — Let $\varphi: K[T_1, \ldots, T_n] \to R$ be the unique morphism of K-algebras such that $\varphi(T_j) = f_j$ for all $j \in \{1, \ldots, n\}$. Since it induces a closed embedding of $\mathcal{M}(R)$ into $\mathcal{M}(K[T_1, \ldots, T_n])$, it suffices to treat the case where $R = K[T_1, \ldots, T_n]$ and $f_j = T_j$ for all j.

For $r \in \mathbf{R}$, the set V_r of all $p \in \mathcal{M}(R)$ such that $p(T_j) < r$ for all j is open in $\mathcal{M}(R)$ and the union of all V_r is equal to $\mathcal{M}(R)$. Moreover, the closure of V_r is contained in the set W_r of all $p \in \mathcal{M}(R)$ such that $p(T_j) \le r$ for all j. Consequently, to prove that $\mathcal{M}(R)$ is locally compact, it suffices to prove that W_r is compact.

The map $j: \mathcal{M}(R) \to \mathbf{R}_+^R$ given by $p \mapsto (p(f))$ is continuous, by definition of the topology of $\mathcal{M}(R)$ and of the product topology. It is injective, by the definition of a seminorm. Moreover, its image is the subset of \mathbf{R}_+^R defined by the relations in the definition of a multiplicative seminorm, each of them defining a closed subset of \mathbf{R}_+^R since it involves only finitely many elements of \mathbf{R} . Finally, j is a

UV2 = 50 (KCT)1

homeomorphism onto its image. Indeed, the inverse bijection associates to a family $c=(c_f)$ the multiplicative seminorm $f\mapsto c_f$. To prove that j^{-1} is continuous, it suffices to prove that for every $f\in R$, the composition $c\mapsto j^{-1}(c)(f)$ is continuous; since this map is the restriction of the projection $c\mapsto c_f$, this is indeed the case, by the definition of the product topology.

For $f \in \mathbb{R}$, set $||f||_r = \sup_m |c_m|r^{|m|}$, where $f = \sum c_m T^m \in \mathbb{R}$ and $|m| = m_1 + \cdots + m_n$. For every $p \in W_r$, one has $p(f) \leq ||f||_r$, so that $j(W_r) \subset \prod_{f \in \mathbb{R}} [0; ||f||_r]$. According to Tikhonov's theorem, the latter set is compact, as a product of compact sets: consequently.

W_r is homeomorp] Corollary (3.2.8). — Let $X = \text{Spec}(K[T_1^{\pm 1}, \dots, T_n^{\pm 1}])$. The map compact. $\lambda: X^{\text{an}} \to \mathbb{R}^n$ given by $p \mapsto (\log(p(T_1)), \dots, \log(p(T_n)))$ is surjective and groups. In particular for grown ideal Left $K[T^{\pm 1}]$.

By what precede jective and proper. In particular, for every ideal I of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$, by the map $p \mapsto (p \lambda(\mathcal{V}(I)))$ is a closed subset of \mathbb{R}^n .

are locally compact, this implies that this map is proper (BOURBAKI (1971), chap 1, §10, n° 3, prop. 7). □

Corollary (3.2.8). — Let $X = Spec(K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}])$. The map $\lambda : X^{an} \to \mathbf{R}^n$ given by $p \mapsto (log(p(T_1)), \ldots, log(p(T_n)))$ is surjective and proper. In particular, for every ideal I of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$, $\lambda(\mathcal{V}(I))$ is a closed subset of \mathbf{R}^n .

Wr = 2p/ PCT) En to I compad The map continuli p ~ p (x) 5 famille (G)

Corollary (3.2.8). — Let $X = \operatorname{Spec}(K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}])$. The map $\lambda : X^{\operatorname{an}} \to \mathbf{R}^n$ given by $p \mapsto (\log(p(T_1)), \ldots, \log(p(T_n)))$ is surjective and proper. In particular, for every ideal I of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$, $\lambda(\mathcal{V}(I))$ is a closed subset of \mathbf{R}^n .

Proof. — Let $x \in \mathbb{R}^n$ and let v_x be the Gauss absolute value of $K(T_1, \ldots, T_n)$ such that $v_x(T_j) = e^{x_j}$ for all j. One has $\lambda(v_x) = x$, so that λ is surjective.

By theorem 3.2.7, the map

$$p \mapsto (\log(p(T_1)), \dots, \log(p(T_n)), \log(p(T_1^{-1})), \log(p(T_n^{-1})))$$

from $X^{an} \to \mathbb{R}^{2n}$ is continuous and proper. Its image is contained in the closed subspace L of \mathbb{R}^{2n} defined by the equations $x_1 = x_{n+1}, x_2 = x_{n+2}, x_n = x_{2n}$, so that λ induces a continuous and proper map from X^{an} to L. The corollary follows from the fact that the linear projection $(x_1, \ldots, x_{2n}) \mapsto (x_1, \ldots, x_n)$ from \mathbb{R}^{2n} to \mathbb{R}^n induces an homeomorphism from L to \mathbb{R}^n .

3.2.9. — The scheme $X = \operatorname{Spec}(K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}])$ is the n-dimensional torus over K, the algebraic-geometry analogue of the complex manifold $(\mathbf{C}^*)^n$. The map λ is then the analogue of the tropicalization map $(\mathbf{C}^*)^n \to \mathbf{R}^n$, $(z_1, \ldots, z_n) \mapsto (\log(|z_1|), \ldots, \log(|z_n|))$ studied in chapter 2.

If I is an ideal of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$, then the closed subscheme V(I) of X has a Berkovich analytification $\mathcal{V}(I)$, naturally a closed subspace of $X^{an} = \mathcal{M}(K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}])$, and its image $\lambda(\mathcal{V}(I))$ is the *tropicalization* of V(I).

In the algebraic geometry of schemes, one makes a careful distinction between the scheme X (or its closed subscheme V(I)) and its set

 $M(K(T_1^{\pm 1}, T_n^{\pm 1})) \longrightarrow \text{hyperbole}(P_1P_{n+1}^{\pm 1}) \stackrel{E}{\longrightarrow} \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ $= X_n \neq X_{2n}$ = 0 $\mathbb{R}^n \times \mathbb{R}^n$ $= X_n \neq X_{2n}$ = 0

I c $KT_1^{\Sigma_1}, T_n^{\Sigma_1}$ ridéd

tropicalesation $\lambda(V(I))$ fermé dans R^n plus intéresaite et plus naturelle que, par exemple, $\lambda(\log |Z_1|, \log |Z_n|)$ $\lambda(\log |Z_1|, \log |Z_n|)$ mê ne $\lambda(R^n)$ N $\lambda(L)$ me ne $\lambda(R^n)$ A $\lambda(L)$ we ne $\lambda(R^n)$ A $\lambda(L)$ we ne $\lambda(R^n)$ A $\lambda(L)$ A $\lambda(L)$ A $\lambda(L)$ Me ne $\lambda(R^n)$ A $\lambda(L)$ A $\lambda(L$

of points X(K) with values in a given field. One has a natural identification of X(K) with $(K^{\times})^n$, an n-tuple $(z_1, \ldots, z_n) \in (K^{\times})^n$ being identified with the images of T_1, \ldots, T_n by a morphism of K-algebras from $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ to K; more generally, for any K-algebra L, the set X(L) identifies with $(L^{\times})^n$. Then, the set V(I)(L) identifies with the set of elements $(z_1, \ldots, z_n) \in (L^{\times})^n$ such that $f(z_1, \ldots, z_n) = 0$ for all $f \in I$.

Similarly, a point in $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ is a multiplicative seminorm p on this K-algebra. Its kernel $J_p = \{f : f(p) = 0\}$ is a prime ideal of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ and p induces a multiplicative norm on the quotient K-algebra $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]/J_p$, and then on its field of fractions L_p which is a an extension of K endowed with an absolute value that extends the absolute value on K. The field L_p is generated by the images z_1, \ldots, z_n of T_1, \ldots, T_n by the morphism of K-algebras $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}] \to L_p$, and the condition $p \in \mathcal{V}(I)$ is equivalent to the condition $I \subset J_p$, or to the condition $f(z_1, \ldots, z_n) = 0$ for all $f \in I$. Conversely, any valued extension L of K and any family $(z_1, \ldots, z_n) \in (L^{\times})^n$ such that $f(z_1, \ldots, z_n) = 0$ for all $f \in I$ gives rise to a point in $\mathcal{V}(I)$, given by the multiplicative seminorm $f \mapsto |f(z_1, \ldots, z_n)|$ on $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$.

Consequently, the tropicalization of V(I) is the set of all $x \in \mathbb{R}^n$ for which there exists a valued extension L of K and a family

 $(z_1,...,z_n) \in (L^{\times})^n$ such that $f(z_1,...,z_n) = 0$ for all $f \in I$ and $(\log(|z_1|),...,\log(|z_n|)) = (x_1,...,x_n)$.

3.3. Nonarchimedean amoebas of hypersurfaces

3.3.1. — Let K be a field endowed with a nonarchimedean absolute value. Let R be the valuation ring of K, let k its residue field and red : $R \rightarrow k$ the reduction morphism; it maps the maximal ideal to 0 and induces a morphism of groups from R^{\times} to k^{\times} .

The map from $v: K^{\times}$ to \mathbf{R} given by $a \mapsto -\log(|a|)$ is a morphism of groups. Let Γ be its image. One says that the given valued field K is split if we are given a *section* of the surjective map v. Such a section does not exist in general, but it does exist in the following two important cases:

- Assume that K is discretely valued. Then R is a discrete valuation ring. If t is a given generator of its maximal ideal, one has $\Gamma = \mathbf{Z} \log(|t|)$ and the map $n \log(|t|) \mapsto t^n$ is a section as required.
- If K is algebraically closed, then such a section also exists, by an abstract homological algebra argument. Indeed, in this case, R^{\times} is a divisible abelian group, hence an injective **Z**-module. In a more elementary way, one can also use the fact that Γ is a uniquely divisible abelian group, hence a **Q**-vector space. It then suffices to choose, in a compatible manner, nth roots of a given element of K^{\times} .

r= @-W

wps + valen absolve non archimeden ig R= Latk, la1515 anneau de valuation = idéal maximal stal la/<1) la = R/M como résiduel v voluation : a H - log(la) v(a+6) 7, w (v(a), v(b)) T groupe de valeurs de R

= log(IK*1) CR

mage de r

a H log(Ial)

Let $\gamma \in \Gamma$ and let $a \in K^{\times}$ be such that $\log(|a|) = \gamma$. Let us choose inductively elements $a_n \in K^{\times}$ such that $a_1 = a$ and $(a_n)^n = a_{n-1}$ for all integers $n \geq 2$. In particular $(a_n)^{n!} = a$ for all $n \geq 1$. Moreover, if $m \geq n$, then n divides m! and we see by induction that $(a_m)^{m!/n} = (a_n)^{n!/n} = (a_n)^{(n-1)!}$. Then there is a unique morphism of groups from $\mathbb{Q}\gamma$ to K^{\times} that maps $\frac{m}{n}\gamma$ to $(a_n)^{(n-1)!m}$ for all $m, n \in \mathbb{Z}$ such that $n \geq 1$.

If K is a split valued field, then we can extend the morphism of groups red: $R^{\times} \to k^{\times}$ to a morphism of monoids $\rho: K \to k$, by setting $\rho(a) = \operatorname{red}(at^{-v(a)})$. Note that ρ restricts to a morphism of groups from K^{\times} to k^{\times} .

Definition (3.3.2). — Let $f \in K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ be a Laurent polynomial; write $f = \sum c_m T^m$.

a) The tropical polynomial associated with f is the map

$$\tau_f: (\mathbb{R}^n \to \mathbb{R}, \quad x \mapsto \sup_m (\log(|c_m|) + \langle m, x \rangle).$$

b) The tropical hypersurface defined by f is the subset \mathcal{T}_f of all $x \in \mathbf{R}^n$ such that there exist two distinct elements $m \in \mathbf{Z}^n$ such that $\tau_f(x) = \log(|c_m|) + \langle m, x \rangle$.

(log 1 cm 1 + Cm , x >)

/2 hangements
Le myres

form of f at x is the Laurent polynomial

set S(f) of all $m \in \mathbb{Z}^n$ such that $c_m \neq 0$, and that the Newton polytope of f is the convex hull NP_f of S(f) in \mathbb{R}^n .

of those m such that $\tau_f(x) = \log(|c_m|) + \langle m, x \rangle$; this is the support of the initial form $in_x(f)$; its convex hull is then a sub-polytope $NP_{f,x}$ of NP_f .

 $x \in \mathbb{R}^n$ such that $S_x(f)$ has at least two elements, equivalently, $NP_{f,x}$ is not a point. When K is a split valued field, this is also equivalent to the property that $in_x(f)$ is not a monomial (or zero).

Remark (3.3.3). — Let $\varphi: \mathbf{G}_{\mathbf{m}_{\mathbf{K}}}^{n} \to \mathbf{G}_{\mathbf{m}_{\mathbf{K}}}^{p}$ be a monomial morphism, given at the level of Laurent polynomials by a morphism of Kalgebras $\varphi^* : K[T_1^{\pm 1}, \dots, T_p^{\pm 1}] \to K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ of the form $T_i \mapsto$ $a_i \mathbf{T}^{e_i}$, where $a_1, \ldots, a_p \in \mathbf{K}^{\times}$ and $e_1, \ldots, e_p \in \mathbf{Z}^n$. If L is an extension of K, this morphism φ maps a point $z = (z_1, \dots, z_n) \in (L^{\times})^n$ to the point $\varphi(z) = (a_1 z^{e_1}, \dots, a_p z^{e_p}).$

S(f) $\begin{cases} f = \sum_{n=1}^{\infty} c_n \\ f = \sum_{n=1}^{\infty} c_n \\ f = \sum_{n=1}^{\infty} c_n \end{cases} + C_m(x) = T_f(x) \end{cases}$ 3.3. NONARCHIMEDEAN AMOEBAS OF HYPERSURFACES c) (Assuming that the valued field K is split.) For $x \in \mathbb{R}^n$, the initial $m_{z}(f) = \sum_{k} p(c_{m}) T^{m} \in k L T^{t}$ $\operatorname{in}_{x}(f) = \sum_{\substack{\tau_{f}(x) = \log(|c_{m}|) + \langle m, x \rangle \\ \mathbf{m} \in \mathcal{S}_{\lambda}(f)}} \widehat{\rho(c_{m})} \mathbf{T}^{m}.$ Recall that the *support* of a Laurent polynomial $f = \sum c_m T^m$ is the $NP_{f,z} = conv (S(f))$ $NP_{f,z} = conv (S_{x}(f))$ We will occasionally define $S_x(f)$ to be the subset of S(f) consisting m_x(x) est un monôme (x) (x) est un monôme (x) (x) st un vingle hou With this notation, the tropical hypersurface \mathcal{T}_f is the set of all X & PL

This morphism gives rise to an affine map $\varphi_{\tau}: \mathbf{R}^m \to \mathbf{R}^p$, given by $x = (x_1, \dots, x_n) \mapsto (\log(|a_1|) + \langle e_1, x \rangle, \dots)$ and to monomial morphism $\varphi_{\rho}: \mathbf{G}_{\mathbf{m}_k}^n \to \mathbf{G}_{\mathbf{m}_k}^p$ given by $z \mapsto (\alpha_1 z^{e_1}, \dots, z_p^{e_p})$, where $\alpha_1 = \rho(a_1), \dots, \alpha_p = \rho(a_p)$.

Let
$$f \in K[T_1^{\pm 1}, \dots, T_p^{\pm 1}]$$
; write $f = \sum_{m \in \mathbb{Z}^p} c_m T^m$ so that
$$\left(\varphi^*(f) = \sum_{m \in \mathbb{Z}^p} c_m a_1^{m_1} \dots a_p^{m_p} T^{m_1 e_1 + \dots + m_p e_p} \right).$$

If the rank of $(e_1, \ldots, e_p) \in M_{n,p}(\mathbf{Z})$ is equal to p, then all exponents $m_1e_1 + \cdots + m_pe_p$ are pairwise distinct. This implies that

$$\tau_{\varphi^*(f)}(x) = \sup_{m} \left(\log(|c_m|) + m_1 \log(|a_1|) + \dots + m_p \log(|a_p|) + \langle m_1 e_1 + \dots + m_p e_p, x \rangle \right)$$

$$= \sup_{m} \left(\log(|c_m|) + m_1 (\log(|a_1|) + \langle e_1, x \rangle) + \dots + m_p (\log(|a_p|) + \langle e_p, x \rangle) \right)$$

$$= \sup_{m} \left(\log(|c_m|) + m_1 y_1 + \dots + m_p y_p \right),$$
where $y_j = \log(|a_j|) + \langle e_j, x \rangle$ for $j \in \{1, \dots, p\}$. This shows that
$$\boxed{\tau_{\varphi^*(f)} = \tau_f \circ \varphi_\tau}.$$

Remark (3.3.3). — Let $\varphi: \mathbf{G_{mK}}^n \to \mathbf{G_{mK}}^p$ be a monomial morphism, given at the level of Laurent polynomials by a morphism of K-algebras $\varphi^*: K[T_1^{\pm 1}, \dots, T_p^{\pm 1}] \to K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ of the form $T_j \mapsto a_j T^{e_j}$, where $a_1, \dots, a_p \in K^{\times}$ and $e_1, \dots, e_p \in \mathbf{Z}^n$. If L is an extension of K, this morphism φ maps a point $z = (z_1, \dots, z_n) \in (L^{\times})^n$ to the point $\varphi(z) = (a_1 z^{e_1}, \dots, a_p z^{e_p})$.

If K is a split valued field, we obtain similarly that

$$\operatorname{in}_{x}(\varphi^{*}(f)) = \sum_{m} \rho(c_{m}) \alpha_{1}^{m_{1}} \dots \alpha_{p}^{m_{p}} T^{m_{1}e_{1} + \dots + m_{p}e_{p}} = \varphi_{\rho}^{*}(\operatorname{in}_{\varphi_{\tau}(x)}(f)).$$

Lemma (3.3.4). — Let $f, g \in K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ be nonzero Laurent polynomials and let h = fg. For every $x \in \mathbb{R}^n$, one has the following relations:

(i)
$$\tau_h(x) = \tau_f(x) + \tau_g(x);$$

(ii) $NP_{h,x} = NP_{f,x} + NP_{g,x};$ $\left(NP_{R} = NP_{f,x} + NP_{g,x} \right)$

(iii) If K is a split valued field, then
$$in_x(h) = in_x(f) + in_x(g)$$
.

Proof. — Write $f = \sum a_m T^m$, $g = \sum b_m T^m$ and $h = \sum c_m T^m$. Let μ be a vertex of $NP_{h,x}$ and let $\xi \in \mathbf{R}^n$ be such that $\langle m, \xi \rangle < \langle \mu, \xi \rangle$ for every $m \in NP_{h,x}$ such that $m \neq \mu$. For $m \in \mathbf{Z}^n$, one has $c_m = \sum_{p+q=m} a_p b_q$, hence

$$\log(|c_m|) + \langle m, x \rangle \leq \sup_{p+q=m} (\log(|a_p|) + \langle p, x \rangle) + (\log(|b_q|) + \langle q, x \rangle)$$

$$\leq \sup_{p} (\log(|a_p|) + \langle p, x \rangle) + \sup_{q} (\log(|c_q|) + \langle q, x \rangle)$$

$$= \tau_f(x) + \tau_g(x).$$

This proves that $\tau_h(x) \leq \tau_f(x) + \tau_g(x)$.

géneralise

=dof(8/+dof(9))

On the other hand, if $p \in NP_{f,x}$ and $q \in NP_{g,x}$ are such that $p + q = \mu$, we have $\langle p, \xi \rangle + \langle q, \xi \rangle = \langle \mu, \xi \rangle$, so that the face of $NP_{h,x}$ defined by ξ contains the Minkowski sum of the faces of $NP_{f,x}$ and $NP_{g,x}$ defined by ξ . This implies that these faces are vertices:

m nowhet do
$$NP_{R,X} = conv(S_X/R)$$
.

 $C_m = \sum_{p+q=m} a_p b_q$
 $|c_m| \le p_p |a_p| |b_q|$
 $|c_m| \le p_p |a_p| |b_q|$
 $|c_m| \le p_p |a_p| |b_q|$
 $|c_m| \le p_p |a_p| |c_p| |c_p|$
 $|c_m| \le p_p |a_p| |c_p| |c_p| |c_p|$
 $|c_m| \le p_p |a_p| |c_p| |c_p| |c_p|$
 $|c_m| \le p_p |a_p| |c_p| |$

$$= log |c_m| + (m, x)$$

$$= log |ap| + (p,x) - t_f(x)$$

$$= log (|a| + (f,x)) t_g(x)$$

 $f' = Z_{qm} T^m$ $m \notin S_{x}(f)$ f = f' + f'' $f' = \sum_{m \in S_{\chi}(f)} a_m T^m$ g = g - + g = h = fg + (twis auto land)
coefficient plus petits.

gui ne comptent pas pour ER,
s'il n'y a pas de comper dans le premier l'ern primet de supposer $S(f) = S_x(f)$ et $S(g) = S_x(g)$ NP(h) c NP(f) \neq NP(g) S(f) C S(f) + S(g) Provon l'égalité $g \in \mathbb{R}^n$ qui définit un sommité $g \in \mathbb{R}^n$ $g \in \mathbb{R}^n$ face de S(f) de frince par ξ F S(g) = ξ NP(h) > F+G m f+G, & st maximus m = p + q. Fi G c face Lmsunique de comp sor tron =) F=leps G=lq), Cm = apbg

there exists a unique decomposition $\mu = p + q$, where p and q are vertices of $NP_{f,x}$ and $NP_{g,x}$ respectively. In the formula for c_{μ} , the term a_pb_q has absolute value given by $\log(|a_p|) + \log(|b_q|) = \tau_f(x) + \tau_g(x) - \langle \mu, x \rangle$, while the absolute value of all other terms is strictly smaller. This shows that $\log(|c_{\mu}|) = \tau_f(x) + \tau_g(x) - \langle \mu, x \rangle$, hence $\tau_h(x) = \tau_f(x) + \tau_g(x)$.

This also shows that $NP_{h,x}$ is equal to the Minkowski sum of $NP_{f,x}$ and $NP_{g,x}$. The arguments of the first part of the proof prove that $NP_{h,x} \subset NP_{f,x} + NP_{g,x}$, while the second part of the proof shows that every vertex of $NP_{h,x}$ belongs to the latter sum.

Let $m \in \mathbf{Z}^n$. If $\log(|c_m|) + \langle m, x \rangle < \tau_h(x)$, then the monomial T^m does not appear in $\operatorname{in}_x(h)$.

Otherwise, since $\tau_h(x) = \tau_f(x) + \tau_g(x)$, one has $\log(|a_p|) + \log(|b_q|) \le \log(|c_m|)$ for every pair (p,q) such that p+q=m, and equality is achieved for at least one pair. In other words,

 $v(a_v) + v(b_a) \ge v(c_m)$, with some pairs achieving equality. Consequently,

$$t^{-v(c_m)}c_m = t^{-v(c_m)} \sum_{p+q=m} a_p b_q$$

$$= \sum_{\substack{p+q=m \\ p \in S_x(f) \\ q \in S_x(g)}} t^{-v(a_p)} a_p t^{-v(b_q)} b_q$$

$$+ \sum_{\text{other terms}} t^{v(a_p)+v(b_q)-v(c_m)} t^{-v(a_p)} a_p t^{-v(a_q)} b_q,$$

a relation between elements of R. The reduction of the left hand side modulo the maximal ideal is the coefficient $\rho(c_m)$ of T^m in $\text{in}_x(h)$. Similarly, if $p \in S_x(f)$, then the reduction of $t^{-v(a_p)}a_p$ is $\rho(a_p)$; if $q \in S_x(g)$, then the reduction of $t^{-v(b_q)}b_q$ is $\rho(b_q)$. On the other hand, if $v(a_v) + v(b_a) > v(c_m)$, then the reduction of corresponding term on the right hand side is zero. Consequently,

$$\rho(c_m) = \sum_{\substack{p+q=m\\p \in S_x(f)\\q \in S_x(g)}} \rho(a_p)\rho(b_q).$$

Since $\operatorname{in}_x(f) = \sum_{p \in S_x(f)} \rho(a_p) T^p$ and $\operatorname{in}_x(g) = \sum_{q \in S_x(g)} \rho(b_q) T^q$, this proves the coefficient of T^m in $in_x(h)$ is equal to the coefficient

$$c_{m} = \sum_{i=1}^{n} a_{i} b_{i}$$

$$t^{-v(c_{m})} c_{m} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j} t^{-v(b_{1})} t^{-v(b_{1})}$$

$$= \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$= \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f = \sum_{j=1}^{n} t^{-v(b_{1})} b_{j}$$

$$p \in S_{x}(f) \quad f \in S_{x}(f)$$

$$\dot{u}_{x}(h) = \dot{u}_{x}(f) \dot{u}_{x}(g)$$

of T^m in the product of $in_x(f)$ and $in_x(g)$. Consequently, $in_x(h) = in_x(f)in_x(g)$, as claimed.

Proposition (3.3.5). — Let $f \in K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ be a Laurent polynomial. The associated tropical hypersurface \mathcal{T}_f is a closed Γ -strict polyhedral subset of \mathbf{R}^n , purely of dimension n-1. More precisely, there exists a Γ -strict polyhedral decomposition of \mathbf{R}^n the (n-1)-dimensional polyhedra of which \mathcal{T}_f is the union.

Proof. — Write $f = \sum c_m T^m$; let S(f) be the support of f; for $x \in \mathbf{R}^n$, let S_x(f) be the set of all $m \in S(f)$ such that log($|c_m|$)+ $\langle m, x \rangle = \tau_f(x)$. For every $m \in S(f)$, let P_m be the set of $x \in \mathbf{R}^n$ such that $m \in S_x(f)$. Since P_m is defined in \mathbf{R}^n by the affine inequalities log($|c_q|$) + $\langle q, x \rangle \leq \log(|c_m|) + \langle m, x \rangle$ for all $q \in S(f)$, it is a convex polyhedron. The slopes of these affine forms are integers, and their constant terms are elements of the value group Γ = log($|\mathbf{K}^\times|$) of K; consequently, P_m is a Γ-strict convex polyhedron. By construction, these polyhedra cover \mathbf{R}^n .

If $S_x(f)$ is reduced to an element m, then then there exists an open neighborhood V of x such that $S_y(f) = \{m\}$ for all $y \in V$; in particular, V is is disjoint from the other polyhedra P_q , and it is contained in the interior of P_m .

 $m \in S_{\times}(f) \iff \times \in P_{m}$ $S_{\times}(f) = \{m\}_{-}$ $m \neq 9 \in S(f) \Rightarrow log | cg| + \langle g, z \rangle$ $= log | cg| + \langle g, z \rangle$ = log |

des niprot de l'épire

mène

¹Vérifier la terminologie sur les polyèdres stricts

On the other hand, for two distinct elements m, q of S(f), the polyhedron $P_m \cap P_q$ is contained in the hyperplane defined by the nontrivial affine equation $\log(|c_m|) + \langle m, x \rangle = \log(|c_q|) + \langle q, x \rangle$, so that $P_m \cap P_q$ is disjoint from the interior of P_m . In particular, if $Card(S_x(f)) \ge 2$, then x does not belong to the interior of P_m .

This proves that \mathbf{R}^n is the union of those polyhedra P_m which have dimension n, and that the union of their interiors is the set of all $x \in \mathbf{R}^n$ such that $S_x(f)$ is reduced to one element.

Consequently, the tropical hypersurface \mathcal{T}_f , which is its complementary subset, is the union of the (n-1)-dimensional faces of these polyhedra P_m , and they are Γ -strict convex polyhedra.

Theorem (3.3.6) (Kapranov). — Let $f \in K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ be a Laurent polynomial. The following four subsets of \mathbb{R}^n coincide:

(i) The tropical hypersurface \mathcal{T}_f ;

géonihie tropicale

- (ii) Assuming that the valued field K is split, the set of all $x \in \mathbb{R}^n$ such that $\operatorname{in}_x(f)$ is not a monomial;
- (iii) The set of all $x \in \mathbb{R}^n$ such that there exists a valued extension L of K and a point $z \in (L^{\times})^n$ such that f(z) = 0 and $x \in v(z)$;
- (iv) The image of $\mathcal{V}(f)$ in $\mathcal{M}(K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}])$ by the tropicalization map $\lambda : \mathcal{M}(K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]), p \mapsto (\log(p(T_1)), \ldots, \log(p(T_n))).$

If L is an algebraically closed extension of K, endowed with a nontrivial absolute value extending that of K, they also coincide with the set:

(v) The closure of the set of all $x \in \mathbb{R}^n$ such that there exists a point $z \in (\mathbb{L}^{\times})^n$ such that f(z) = 0 and $x = \lambda(z)$.

 $S_1 = S_2$ car $x \in \mathcal{C}_f \bigoplus_{x \in \mathcal{X}_x(f)} \mathcal{C}_x(f) = \mathcal{C}_f \bigoplus_{x \in \mathcal{X}_x(f)} \mathcal{C}_x(f)$

$$S_{3} = S_{4} : p \in V(R)$$

$$F_{r}(k(T_{1}^{\Sigma I}, T_{n}^{\pm 1}) / ke_{1}p) = L$$

$$a_{i} \in L^{\times} \text{ done de } T_{i}$$

$$g_{i} = f(E)$$

alors
$$f(x) = 0$$
.
$$S_3 \subset S_4 \qquad f \mapsto |f(3)|$$

semi nave met.

NOV
$$S_4 \subset S_1$$
 $f = \sum c_m T f$ deux monous m

approche Sylve Maclogan Sylve Maclogan Sylves

approche or goes which (v) The closure of the set of all $x \in \mathbb{R}^n$ such that there exists a point $z \in (\mathbb{L}^{\times})^n$ such that f(z) = 0 and $x = \lambda(z)$.

Proof. — Let $S_1 = \mathcal{T}_f, S_2, S_3, S_4, S_5$ be these subsets. Write $f = \sum c_m T^m$.

Let $x \in \mathbf{R}^n$. Let $m \in \mathbf{Z}^n$; the monomial T^m appears in $\operatorname{in}_x(f)$ if and only if $\log(|c_m|) + \langle m, x \rangle = \tau_f(x)$. Consequently, $\operatorname{in}_x(f)$ is a monomial if and only if the supremum defining $\tau_f(x)$ is reached only once. This proves that $S_1 = S_2$.

The equality $S_3 = S_4$ follows from the discussion in §3.2.9.

Let L be a valued extension of K, let $z \in (L^{\times})^n$ be a point such that f(z) = 0 and let $x = \lambda(z)$. One has $\sum c_m z^m = 0$. Since the absolute value is nonarchimedean, the supremum of all $|c_m z^m|$ must be attained twice. Since $\lambda(c_m z^m) = \log(|c_m|) + \langle m, x \rangle$, this shows that there exist two distinct elements $m, q \in \mathbb{Z}^n$ such that $\log(|c_m|) + \langle m, x \rangle = \tau_f(x)$. In other words, x belongs to the hypersurface \mathcal{T}_f . This proves that one has $S_3 \subset S_1$.

By definition, the set S_5 is the closure of a subset of S_3 ; since S_1 is closed, one also has $S_5 \subset S_1$.

By the corollary to the lifting proposition below, one has $\mathcal{T}_f \cap \Gamma^n \in S_5$. Since K is algebraically closed and its valuation is nontrivial, the group Γ is a non zero **Q**-subspace of **R**; in particular, it is dense in **R**. On the other hand, since \mathcal{T}_f is a Γ -strict polyhedral subspace of \mathbf{R}^n ,

Show to the constant of the co

its subset $\mathcal{T}_f \cap \Gamma^n$ is dense in \mathcal{T}_f . Since \mathcal{T}_f is closed in \mathbf{R}^n , this implies that $S_1 = \mathcal{T}_f \subset S_5$.

Using Gauss absolute values (proposition 3.1.10) and example 3.1.12, there exists an algebraically closed valued extension L of K whose value group Γ_L contains the coordinates of x. By the corollary of the lifting proposition, there exists $z \in (L^{\times})^n$ such that f(z) = 0 and $\lambda(z) = x$; in other words, one has $x \in S_3$. Consequently, $S_1 \subset S_3$. This concludes the proof of the theorem.

Proposition (3.3.7) (Lifting). — Assume that K is an algebraically closed valued field with residue field k. Let $f \in K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ be a Laurent polynomial. We assume that the coefficients of f belong to the valuation ring of K and that its reduction $\varphi \in k[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ is nonzero.

For every $\alpha \in (k^{\times})^n$ such that $\varphi(f) = 0$, there exists $a \in (\mathbb{R}^{\times})^n$ such that $\rho(a) = \alpha$ and f(a) = 0. Moreover, if f is irreducible, then the set of such a is Zariski dense in the closed subscheme V(f) of $\mathbf{G}_{m_{\mathbf{K}}}^n$.

Proof. — We do the proof by induction on n.

Let us first assume that n = 1. Since K is algebraically closed, we may write $f = cT^m \prod_{j=1}^q (T - a_j)$, for some $c \in K^\times$, $m \in \mathbb{Z}$, $q \in \mathbb{N}$ and $a_1, \ldots, a_q \in K^\times$. If $|a_j| > 1$, we write $T - a_j = -a_j(1 - a_j^{-1}T)$, so that

$$f = c \prod_{|a_j| > 1} (-a_j) \mathbf{T}^m \prod_{|a_j| > 1} (1 - a_j^{-1} \mathbf{T}) \prod_{|a_j| \le 1} (\mathbf{T} - a_j).$$

$$f = \sum_{i=1}^{n} \sum_{m=1}^{m} |c_{m}| = 1$$

$$\varphi = \sum_{i=1}^{n} \sum_{m=1}^{m} |c_{m}| = 1$$

$$\varphi \in (\mathbb{R}^{\times})^{m} \qquad \varphi(\alpha) = 0$$

$$\Rightarrow f = \mathbb{R}^{\times m} \qquad |a_{1}| = 1$$

$$= f(\alpha) = 0$$

$$q_{1} = \alpha_{1} \qquad f(\alpha) = 0$$

Let $c' = c \prod_{|a_j| > 1} (-a_j)$. If |c'| < 1, then this formula shows that f reduces to 0 in $k[T^{\pm 1}]$, contradicting the stated hypothesis that $\varphi \neq 0$. If |c'| > 1, the coefficients of $(c')^{-1}f$ belong to the maximal ideal of the valuation ring of K, so that the reduction of $(c')^{-1}f$ is zero; on the other hand, we see that this reduction is equal to $T^m \prod_{|a_j| \leq 1} (T - \overline{a_j})$. then the relation $(c')^{-1}f$ and the hypothesis Consequently, |c'| = 1 and $\varphi = \rho(c')T^m(\prod_{|a_j| < 1} T)\prod_{|a_j| = 1} (T - \rho(a_j))$. Since φ vanishes at α , there must exist $j \in \{1, \ldots, q\}$ such that $|a_j| = 1$ and $\rho(a_j) = \alpha$. This proves the proposition in this case.

To do the induction step, we first perform a multiplicative Noether normalization theorem to reduce to the case where the map $m \mapsto m_1$ from the support S(f) of f to \mathbf{Z} is injective. To see that it is possible, we make an invertible monomial change of variables $T_1 \to T_1$, $T_2 \to T_2 T_1^q, \ldots, T_{n-1} \to T_{n-1} T_1^{q^{n-2}}, T_n \to T_n T_1^{q^{n-1}}$ for some integer q, chosen to be large enough so that $q > |m_j - m_j'|$ for all $m, m' \in S(f)$ and all $j \in \{1, \ldots, n\}$. This change of variables transforms the Laurent polynomial f into the polynomial

$$f_q = \sum_{m \in S(f)} c_m T_1^{\varphi(m)} T_2^{m_2} \dots T_n^{m_n},$$

where

$$\varphi(m) = m_1 + q m_2 + q^2 m_3 + \cdots + q^{n-1} m_n.$$

Let $m, m' \in S(f)$ be such that $m \neq m'$; let $k \in \{1, ..., n\}$ be such that $m_j = m'_j$ for j > k and $m_k \neq m'_k$; then one has

$$\varphi(m') - \varphi(m) = \sum_{j=1}^{n} q^{j-1}(m'_j - m_j) = \sum_{j=1}^{k-1} q^{j-1}(m'_j - m_j) + q^{k-1}(m'_k - m_k).$$

In absolute value, the last term is at least q^{k-1} , because $m'_k \neq m_k$; on the other hand, the first one is bounded from the above by

$$\sum_{j=1}^{k-1} q^{j-1}(q-1) = (q-1)\frac{q^{k-1}-1}{q-1} = q^{k-1}-1,$$

hence $|\varphi(m') - \varphi(m)| \ge 1$.

Assume that this property holds. In other words, if f is written as a Laurent polynomial in T_1 , with coefficients Laurent polynomials in T_2, \ldots, T_n , then all of these coefficients are monomials.

Then fix any lifting $a' = (a_2, \ldots, a_n) \in (\mathbb{R}^\times)^{n-1}$ of $\alpha' = (\alpha_2, \ldots, \alpha_n)$. The polynomial f is not a monomial; otherwise φ would be a monomial and would not vanish at α . Thanks to the property imposed on the exponents of f, the one-variable Laurent polynomial f(T, a') is not a monomial either; its reduction is $\varphi(T, \alpha')$ and vanishes at α_1 . By the n = 1 case, there exists $a_1 \in \mathbb{R}^\times$ such that $\rho(a_1) = \alpha_1$ and $f(a_1, a') = 0$.

To prove the density, we let Z be the Zariski closure in $G_{m_K}^n$ of the set of these elements $a \in (\mathbb{R}^{\times})^n$ such that f(a) = 0 and $\rho(a) = \alpha$. By

definition, the ideal $\mathcal{I}(Z)$ of Z is the set of all Laurent polynomials $h \in K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ such that h(a) = 0 for all these a. One has $f \in \mathcal{I}(Z)$ by construction, hence $(f) \subset \mathcal{I}(Z)$. To prove that $Z = \mathcal{V}(f)$, it suffices to prove that $\mathcal{I}(Z) = (f)$.

Let $g \in \mathcal{F}(Z)$ — (f). Since $K[T_2^{\pm 1}, \ldots, T_n^{\pm 1}]$ is a unique factorization domain and f is irreducible in $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$, Gauss's theorem shows that f is either a unit, or irreducible in the one-variable polynomial ring $K(T_2, \ldots, T_n)[T_1, T_1^{\pm 1}]$. Since g does not belong to (f), the polynomials f and g are coprime in this principal ideal domain and there exist polynomials $u, v \in K(T_2, \ldots, T_n)[T_1, T_1^{\pm 1}]$ such that uf + vg is a nonzero element of $K(T_2, \ldots, T_n)$. Multiplying by a common denominator, this furnishes a nonzero element h of $(f,g) \cap K[T_2^{\pm 1}, \ldots, T_n^{\pm 1}]$. Let $a' \in (R^{\times})^{n-1}$ be such that $\rho(a') = \alpha'$. By what precedes, there exists $a \in R^n$ of the form a = (t,a') such that f(t,a') = 0 and $\rho(a) = \alpha$; by assumption, g(a) = 0, hence h(a') = 0. This contradicts the fact that these elements a' are Zariski-dense in G_m^{n-1} (lemma 3.3.8 below).

Lemma (3.3.8). — Let K be a field, let $A_1, ..., A_n$ be subsets of K and let $A = A_1 \times \cdots \times A_n$. Let $f \in K[T_1, ..., T_n]$. If $Card(A_j) > deg_{T_j}(f)$ for all j, then there exists $a \in A$ such that $f(a) \neq 0$.

In particular, if A_1, \ldots, A_n are infinite, then A is Zariski dense in \mathbf{A}^n .

Proof. — If n=1, this amounts to the fact that a polynomial in one variable has no more roots than its degree. We then prove the result by induction on n, writing $f=f_0+f_1T_1+\cdots+f_mT_1^m$, for $f_0,\ldots,f_m\in K[T_2,\ldots,T_n]$, where $m=\deg_{T_1}(f)$, hence $f_m\neq 0$. By induction, there exists $a_2\in A_2,\ldots,a_n\in A_n$ such that $f_m(a_2,\ldots,a_n)\neq 0$. This implies that the polynomial $f(T,a_2,\ldots,a_n)$ has degree m. Since Card(A₁) > $\deg_{T_1}(f)=m$, there exists $a_1\in A_1$ such that $f(a_1,a_2,\ldots,a_n)\neq 0$, as was to be shown. □

5, n Tz = S5

Corollary (3.3.9). — Assume that K is an algebraically closed split valued field and let $x \in \Gamma^n$. Then, for every $\alpha \in (k^{\times})^n$ such that $\operatorname{in}_x(f)(\alpha) = 0$, there exists $a \in (K^{\times})^n$ such that $\lambda(a) = x$ and f(a) = 0. Moreover, if f is irreducible, then the set of such a is Zariski dense in $\mathcal{V}(f)$.

Proof. — By assumption, there exists $b \in (K^{\times})^n$ such that $\lambda(b) = x$. Let $c \in (\mathbb{R}^{\times})^n$ be such that $\rho(c) = \rho(b)$. Since $\lambda(c) = 1$, we then have $\lambda(bc^{-1}) = \lambda(b) = x$ and $\rho(bc^{-1}) = \rho(b)\rho(c)^{-1} = 1$. Replacing b by bc^{-1} , we now assume that $\lambda(b) = x$ and $\rho(b) = 1$. Let $g(T) = f(b_1T_1, \ldots, b_nT_n)$; writing $f = \sum_{m \in S(f)} c_m T^m$, we have $g = \sum_{m \in S(f)} c_m b^m T^m$. Consequently, for every $z \in \mathbb{R}^n$, one has

$$\tau_g(z) = \sup(\log(|c_m|) + \langle m, x + z \rangle) = \tau_f(x + z).$$

horganet de variables. $x \in \Gamma^n \Rightarrow \exists b \in (\mathbb{C}^{\times})^n \begin{cases} \lambda(b) = x \\ \rho(b) = 1 \end{cases}$ $f(a) = 0 \quad (b) \quad g(b|a) = 0$ g(T) = f(bT) $décele \quad To(g) = T_x(g)$ $in o |g) = in_x(f)$ on applique a f(g) = f(g) f(g) = f(g) = f(g)on applique a f(g) = f(g) f(g) = f(g)

This also shows that $S_z(g) = S_{x+z}(f)$ and that

$$\operatorname{in}_{z}(g) = \sum_{m \in S_{z}(g)} \rho(c_{m}b^{m}) \mathbf{T}^{m} = \sum_{m \in S_{x+z}(f)} \rho(c_{m}) \mathbf{T}^{m} = \operatorname{in}_{x+z}(f).$$

In particular, $x \in \mathcal{T}_f$ if and only if $0 \in \mathcal{T}_g$, $\operatorname{in}_x(f)(\alpha) = 0$ if and only if $\operatorname{in}_0(g)(\alpha) = 0$, and g(a) = 0 if and only if f(ab) = 0, where $ab = (a_1b_1, \ldots, a_nb_n)$.

By the lifting proposition, there exists $a \in (\mathbb{R}^{\times})^n$ such that $\rho(a) = \alpha$ and g(a) = 0; then $ab \in (\mathbb{K}^{\times})^n$ satisfies $\rho(ab) = \alpha$ and f(ab) = 0.

Moreover, if f is irreducible, then g is irreducible as well, the set of such elements a is Zariski dense in $\mathcal{V}(g)$, hence the set of such elements ab is Zariski dense in $\mathcal{V}(f)$.

Beware:

The definition of the nonarchimedean amoebas has been modified so as to be more consistent with the definition in the archimedean case. I made the necessary corrections up to here, but there are certainly inconsistencies below.

3.4. Monomial ideals

Definition (3.4.1). — An ideal of $K[T_1, ..., T_n]$ is said to be monomial if it is generated by a set of monomials.