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(z1,...,2n) € (L*)" such that f(z1,...,z,) = 0 for all f € I and
(log(|z1l), . .., log(|znl)) = (x1,. .., xn).

3.3. Nonarchimedean amoebas of hypersurfaces

3.3.1. — Let Kbe a field endowed with a nonarchimedean absolute
value. Let R be the valuation ring of K, let k its residue field and
red : R — k the reduction morphism; it maps the maximal ideal to 0
and induces a morphism of groups from R* to k*.

The map from v : K* to R given by a — —log(|a|) is a morphism
of groups. Let I be its image. One says that the given valued field K
is split if we are given a section of the surjective map v. Such a
section does not exist in general, but it does exist in the following
two important cases:

— Assume that K is discretely valued. Then R is a discrete valu-
ation ring. If t is a given generator of its maximal ideal, one has
I' = Zlog(|t]) and the map n log(|t|) — t" is a section as required.

— If K is algebraically closed, then such a section also exists, by
an abstract homological algebra argument. Indeed, in this case,
R* is a divisible abelian group, hence an injective Z-module. In a
more elementary way, one can also use the fact that I' is a uniquely
divisible abelian group, hence a Q-vector space. It then suffices to
choose, in a compatible manner, nth roots of a given element of K*.
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Let y € I and let a € K* be such that log(|a|) = y. Let us choose
inductively elements a,, € K* such that a; = a and (a,)" = a,_ for
all integers n > 2. In particular (a,)" = a for all n > 1. Moreover,
if m > n, then n divides m! and we see by induction that (@p)™/" =
(a,)™" = (a,)"~V". Then there is a unique morphism of groups
from Qy to K* that maps 2y to (a,)"~V"" for all m, n € Z such that
n>1.

If K is a split valued field, then we can extend the morphism of
groups red : R* — k* to a morphism of monoids p: K — k, by
setting p(a) = red(a/|a|). Note that p restricts to a morphism of
groups from K* to k*. Moreover, the map a — (—log(|al|), p(a)) is a
group isomorphism from K* to I’ x k*.

Definition (3.3.2). — Let f € K[T%,..., TE'] be a nonzero Laurent
polynomial; write f = }, c,, T™.

a) The tropical polynomial associated with f is the map

7 :R" > R, x> sup (log(lem]) + (m, x)).

b) The tropical hypersurface defined by f is the subset 5y of all x € R"
such that there exist two distinct elements m € Z" such that t¢(x) =

log(lcml) + (m, x).
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c) (Assuming that the valued field K is split.) For x € R", the initial
form of f at x is the Laurent polynomial

. i +1
in(f)= D, plew)T" c4CT

T (x)=log(|cm|)+(m,x)

Recall that the support of a Laurent polynomial f = }’ ¢, T" is the
setS(f)ofallm € Z" such that ¢, # 0, and that the Newton polytope
of f is the convex hull NP of S(f) in R".

For x € R", we will often denote by S,(f) the subset of S(f) consist-
ing of those m such that 7¢(x) = log(|cx|) +(m, x); this is the support
of the initial form in,(f); its convex hull is then a sub-polytope NPy ,
of NP f-

With this notation, the tropical hypersurface 5 is the set of all
x € R" such that Sy(f) has at least two elements, equivalently, NPy .
is not a point. When K is a split valued field, this is also equivalent
to the property that in,(f) is not a monomial.

The preceding concepts make sense when f = 0: one has S(f) =
@ (no nonzero monomials), 7¢(x) = —oco (supremum of an empty
family), and in,(f) = 0, but the tropical variety ¢ should be defined
as R".

Remark (3.3.3). — Let ¢ : G — Gmi be a monomial morphism,
given at the level of Laurent polynomials by a morphism of K-
algebras ¢": K[T7,..., T3] — K[Ty,..., T#'] of the form T;
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On the other hand, for two distinct elements m,q of S(f), the
polyhedron P,, N P, is contained in the hyperplane defined by the
nontrivial affine equation log(|c,|) + (m,x) = log(|cy]) + (g, x), so
that P,, N P, is disjoint from the interior of P;,. In particular, if
Card(Sx(f)) > 2, then x does not belong to the interior of P,.

This proves that R" is the union of those polyhedra P;, which have
dimension 7, and that the union of their interiors is the set of all
x € R" such that S,(f) is reduced to one element.

Consequently, the tropical hypersurface 7¢, which is its comple-
mentary subset, is the union of the (n —1)-dimensional faces of these
polyhedra P,,, and they are I'-strict convex polyhedra. O

Theorem (3.3.6) (Kapranov). — Let f € K[T$!,..., T£!] be a Laurent
polynomial. The following four subsets of R" coincide:

(i) The tropical hypersurface Iy;

(ii) Assuming that the valued field K is split, the set of all x € R" such
that iny(f) is not a monomial;

(iii) The set of all x € R" such that there exists a valued extension L of K
and a point z € (L*)" such that f(z) = 0 and x =¥z); s (EA )

(iv) The image of 7'(f) in M (K[TI—“l, ..., TEY]) by the tropicalization
map A : ﬂ(K[TI—“l, o, TE), p > (log(p(Ty)), - - ., log(p(Ty))).

If L is an algebraically closed extension of K, endowed with a nontrivial
absolute value extending that of K, they also coincide with the set:
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(v) The closure of the set of all x € R" such that there exists a point
z € (LX)" such that f(z) = 0 and x = A(2).

(Vi) w F:/Rut(/wt%%il»w}wfv{vs) {x}g%écay

Proof. — Let S1 = J5,52,53,54,55 be these subsets. Write f =
o

Let x € R". Let m € Z"; the monomial T" appears in iny(f) if
and only if log(|c|) + (m,x) = 17(x). Consequently, in,(f) is a
monomial if and only if the supremum defining 77(x) is reached
only once. This proves that S; = S;.

The equality S3 = S4 follows from the discussion in §3.2.9.

Let L be a valued extension of K, let z € (L*)" be a point such
that f(z) = 0 and let x = A(z). One has },c¢,z™ = 0. Since the
absolute value is nonarchimedean, the supremum of all |¢,,z™| must
be attained twice. Since A(c,z™) = log(|cm|) + (m, x), this shows
that there exist two distinct elements m, g € Z" such that log(|c,|) +
(m,x) = t7(x). In other words, x belongs to the hypersurface 7.
This proves that one has S3 C S;.

By definition, the set Ss is the closure of a subset of S3; since Sy is
closed, one also has S5 C Sj.

By the corollary to the lifting proposition below, one has 7y NI" €
Ss. Since K is algebraically closed and its valuation is nontrivial, the
group I'is a non zero Q-subspace of R; in particular, it is dense in R.
On the other hand, since 77 is a I'-strict polyhedral subspace of R",

Lol fa=eS
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its subset 7y NI is dense in J;. Since J7 is closed in R", this implies
thatS; = 97]( C Ss.

Using Gauss absolute values (proposition 3.1.10) and exam-
ple 3.1.12, there exists an algebraically closed valued extension L
of K whose value group I'L contains the coordinates of x. By the
corollary of the lifting proposition, there exists z € (L*)" such that
f(z) = 0and A(z) = x; in other words, one has x € S3. Consequently,
S1 € S3. This concludes the proof of the theorem. O

’_Proposition (3.3.7) (Lifting). — Assume that K is an algebraically closed
valued field with residue field k. Let f € K[T$', ..., T£] be a Laurent
polynomial. We assume that the coefficients of f belong to the valuation
ring of K and that its reduction ¢ € k[TF, ..., T£'] is nonzero.

For every a € (k*)" such that efpg¥£0sthere exists a € (RX)" such that
p(a) = aand f(a) = 0. Moreover, if f is irreducible, then the set of such a
is Zariski dense in the closed subscheme V(f) of Gmy.

Proof. — We do the proof by induction on .

Let us first assume that n = 1. Since K is algebraically closed, we
may write f = ¢T" Hj=1(T —a;), for some c € KX, m € Z, g € N and
ay, ..., a0 € K. If |aj| > 1, we write T —a; = —a;(1 - a].‘lT), so that

f=c ]—[ (—a;)T" ]—[ (1- a].‘lT) ]—[ (T —ay).
lajI>1 |aj|>1 lajl<1

C/
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Let ¢’ = ¢ H|aj|>1(—a]-). If |¢’| < 1, then this formula shows that f
reduces to 0 in k[T*!], contradicting the stated hypothesis that ¢ # 0.
If |c’| > 1, the coefficients of (c’)™ f belong to the maximal ideal of
the valuation ring of K, so that the reduction of (/)" f is zero; on the
other hand, we see that this reduction is equal to T™ [T, aj|<1(T - aj).
then the relation (c’)™! f and the hypothesis Consequently, || = 1
and ¢ = p(c’)Tm(H|a].|<1 T) H|a],|:1(T — p(a;)). Since ¢ vanishes at a,
there must exist j € {1,...,q} such that |a;| =1 and p(a;) = a. This
proves the proposition in this case.

To do the induction step, we first perform a multiplicative Noether
normalization theorem to reduce to the case where the map m +— m;
from the support S(f) of f to Z is injective. To see that it is possi-
ble, we make an invertible monomial change of variables T; — Ty,
Ty, — TZTZ, o, Ty — Tn_leH,Tn — Tann_1 for some integer g,
chosen to be large enough so that g > |m; — m;| for all m, m” € S(f)
and all j € {1,...,n}. This change of variables transforms the Lau-
rent polynomial f into the polynomial

fr= D eIy Ty,
mes(f)

where

(P(m) =my +qgmy+ q2m3 44 qn—lmn.
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To do the induction step, we first perform a multiplicative Noether
normalization theorem to reduce to the case where the map m +— m
from the support S(f) of f to Z is injective. To see that it is possi-
ble, we make an invertible monomial change of variables T1 — T,

n-1

T, — Tle’, s dipe] = T,,_1T‘17" 2,T,, — T,,T‘ll for some integer ¢,
chosen to be large enough so that g > [m; — m]’,| for all m, m’ € S(f)
and all j € {1,...,n}. This change of variables transforms the Lau-
rent polynomial f into the polynomial

fq - Z CmTw("')thnz T"n
= 1 sl
meS(f)

where

@(m) =my +qmy + q2m3 +oee q"’lm,,.
Let m, m" € S(f) be such that m # m’; let k € {1,...,n} be such that

m; = m; for j > k and my # m,’\,; then one has

n k-1
@(m’y—q@(m) = Z qf'l(m]’.— m;) = Z qf'l(rn; - mj)+qk'1(m,'\, —my).
=1 =1

In absolute value, the last term is at least qk ‘1, because m,’\, # My, on
the other hand, the first one is bounded from the above by

k-1

k-1
Zq"‘l(q—l)=(q—1)q =g -1,
= g=l

hence |p(m’) — @(m)| > 1.
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Let m, m’ € S(f) be such that m # m’;letk € {1,...,n} be such that
mj = m; for j > k and my # m;; then one has

n k-1
o(m')—qp(m) = > g/ m—mj) = > g/ (m) = mj)+ q* (m, — m).
j=1 j=1

In absolute value, the last term is at least qk_l, because m; # my; on
the other hand, the first one is bounded from the above by

k-1 k=1

> -1 =g -1

j=1

g-1

— qk—l _ 1’

hence |p(m’) — p(m)| > 1.

Assume that this property holds. In other words, if f is written as
a Laurent polynomial in T;, with coefficients Laurent polynomials
inT,,...,T,, then all of these coefficients are monomials.

Then fix any lifting a’ = (az,...,a,) € R¥)" Lof o’ = (az,..., an).
The polynomial f is not a monomial; otherwise ¢ would be a mono-
mial and would not vanish at . Thanks to the property imposed on
the exponents of f, the one-variable Laurent polynomial f(T, a’) is
not a monomial either; its reduction is ¢(T, @’) and vanishes at a;.
By the n = 1 case, there exists a1 € R* such that p(a1) = a1 and
f(ay,a’)=0.

To prove the density, we let Z be the Zariski closure in G,y of the
set of these elements a € (R*)" such that f(a) = 0 and p(a) = a. By
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definition, the ideal .#(Z) of Z is the set of all Laurent polynomials
h € K[T$', ..., T£'] such that i(a) = 0 for all these a. One has f €
J(Z) by construction, hence (f) ¢ #(Z). To prove that Z = 7'(f), it
suffices to prove that .#(Z) = (f).

Let ¢ € J(Z) = (f). Since K[TZ!,..., T#'] is a unique factoriza-
tion domain and f is irreducible in K[T*,...,T$1], Gauss’s theo-
rem shows that f is either a unit, or irreducible in the one-variable
polynomial ring K(T, ... ,Tn)[Tl,Ti—Ll]. Since ¢ does not belong
to (f), the polynomials f and g are coprime in this principal ideal
domain and there exist polynomials u,v € K(Ty,..., Tn)[Ty, T¥]
such that u f + vg is a nonzero element of K(Ty, ..., T,). Multiply-
ing by a common denominator, this furnishes a nonzero element h
of (f,g) NK[TL, ..., TE. Leta’ € (RX)"! be such that p(a’) = &’
By what precedes, there exists a € R" of the form a = (t, a’) such that
f(t,a’) = 0and p(a) = a; by assumption, g(a) = 0, hence h(a’) = 0.
This contradicts the fact that these elements a’ are Zariski-dense
in Gml’z_l (lemma 3.3.8 below). O

Lemma (3.3.8). — Let K be a field, let Ay, ..., Ay, be subsets of K and let
A=A X---xAy Let f €K[Ty,...,Ty]. If Card(Aj) > degTj(f)for
all j, then there exists a € A such that f(a) # 0.

In particular, if A1, ..., A, are infinite, then A is Zariski dense in A".
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Proof. — If n = 1, this amounts to the fact that a polynomial in
one variable has no more roots than its degree. We then prove the
result by induction on n, writing f = fo + AT1 +--- + f, T], for
fo, .-, fm €K[T2,...,Ty], where m = deng(f), hence f;; # 0. By in-
duction, there exists ay € Ay, ..., a, € A, such that fy,(az,...,a,) #
0. This implies that the polynomial f(T,ay,...,a,) has degree m.
Since Card(A1) > degr,(f) = m, there exists a1 € A; such that
f(ay,az,...,a,) # 0, as was to be shown. O

e £ Gime (v )
Corollary (3.3.9). — Assume that K is an algebraically closed split valued
field and let x € T". Then, for every a € (k*)" such that in,(f)(a) = 0,
there exists a € (K*)" such that A(a) :\xd@—f' (a) = 0. Moreover, if f is
irreducible, then the set of such a is Zariski dense in 7°(f).

Proof. — By assumption, there exists b € (K*)" such that A(b) = x.
Let ¢ € (R*)" be such that p(c) = p(b). Since A(c) = 1, we then
have A(bc™) = A(b) = x and p(bc™!) = p(b)p(c)™! = 1. Replac-
ing b by bc~!, we now assume that A(b) = x and p(b) = 1. Let
g(T) = f(biTy,...,b,Ty); writing f = Zmes(f) cmI™, we have ¢ =
2imes(f) cmb™T™. Consequently, for every z € R", one has

T¢(z) = sup(log(|cm|) + (m, x + z)) = 1¢(x + z).
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This also shows that S;(g) = Sy+z(f) and that

in.(g) = Z plenb™T" = Z p(en)T™ = ing,,(f).
meS;(g) meSyiz(f)
In particular, x € 9% if and only if 0 € F, iny(f)(a) = 0 if and
only if ing(g)(a) = 0, and g(a) = 0 if and only if f(ab) = 0, where
ab = (a1by, ..., a,by).
By the lifting proposition, there exists a € (R*)" such that p(a) = «
and g(a) = 0; then ab € (KX)" satisfies p(ab) = a and f(ab) = 0.
Moreover, if f is irreducible, then g is irreducible as well, the set
of such elements a is Zariski dense in 7°(g), hence the set of such
elements ab is Zariski dense in 7/(f). O

3.4. Monomial ideals

Definition (3.4.1). — An ideal of K[Ty, ..., T,] is said to be monomial
if it is generated by a set of monomials.

Observe thatif anideal I is generated by a family ( f;) of monomials,
then a monomial f belongs to Lif and only if it is divisible by some f;.

Lemma (3.4.2). — Let 1 be an ideal of K[Ty,...,T,]. The following
properties are equivalent:

(i) The ideal 1 is monomial;
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(ii) For every polynomial f € 1, every monomial that appears in f
belongs to 1.

If I is an ideal of K[Tj, ..., T,], we shall sometimes consider the
ideal J generated by all monomials which belong to I it is the largest
monomial ideal contained in I.

Proof. — (i)=(ii). Assume that I is monomial. Let f € I, we may
write f = Y70, figi, where f; is a monomial in a given generating
famﬂjl ofland g; € K[T4, ..., T,]. Let cT™ be a (nonzero) monomial
that appears in f. There exists i € {1,...,m} such that m belongs to
the support of f;g;; since every monomial of f;g; is divisible by the
monomial f;, this implies that f; divides T™, hence ¢T™ € (I).
(ii)=(i). Let (f;) be a generating family of I. By assumption, all
the monomials of the f; belong to I. The family consisting of all
of these monomials generates an ideal which is contained in I by
assumption, and which contains I since it contains all of the f;. O

Example (3.4.3). — The ideal generated by a subfamily (T;);es of
the indeterminates is a monomial ideal. It is also prime, since the
quotient ring, isomorphic to the polynomial ring K[(T;)ies] in the
other indeterminates, is an integral domain.

Conversely, all prime monomial ideals are of this form. Let indeed
I be a prime monomial ideal of K[T4, ..., T,] and let S be the set of
alli € {1,...,n} such that T; € I; let us prove that I = ((T;);es). The
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inclusion ((T;)ies) C Iis obvious. Conversely, let f € I and let us
prove that f € ((T;);es). Since all monomials of f belong to I, we may
assume that f is a monomial; write f = ¢T” = ¢T;" ... T,”. If none
of the indeterminates that appear in f belong to I, then neither does
their product, by definition of a prime ideal. Consequently, there
exists i € Ssuch that m; > 1,and f € (T;) C ((Ti)ies)-

Proposition (3.4.4). — a) The sum and the intersection of a family of
monomial ideals is a monomial ideal.

b) The radical of a monomial ideal is a monomial ideal.

c) Every monomial ideal has a primary decomposition which consists of
monomial ideals. In particular, the prime ideals associated with a monomial
ideal are monomial ideals.

Proof. — a) The case of a sum follows directly from the definition.
Let (Ij) be a family of monomial ideals and let I = ;1. Let f €1
and let ¢cT™ be a monomial that appears in f. Fix an index j; since
f € I; and I; is a monomial ideal, we have cT™ € I;. Consequently,
cT™ € 1. This proves that I is a monomial ideal.

b) Let I be a monomial ideal and let ] = VL let us prove that J is a
monomial ideal. Let f € J and let us prove that every monomial of f
belongs to J. Subtracting from f its monomials that belong to J, we
may assume that no monomial of f belongs to J; assume, arguing
by contradiction, that f # 0 and write f = ), c,,T™. Letm € N" be a
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vertex of the Newton polytope of f, so that ¢, # 0 and T" ¢ J. Then
for every integer s > 1, the exponent sm is a vertex of the Newton
polytope of f°,because NPs = sNPy, and the coefficient of T*" in f°*
is equal to cj,. Since I is a monomial ideal, one has c;,T°" € I; by the
definition of the radical, one has T € ], a contradiction.

c) Let I be a monomial ideal and let us consider a primary decom-
position I = (1,1, of I. For every a, let P, be the radical of I, let ],
be the largest monomial ideal in I,.

Let Q, be the radical of J,. It is the largest monomial ideal con-
tained in P,. Indeed, if a monomial T belongs to P,, then there
exists s > 1 such that T*"* € 1, hence T°"" € J,, hence T € Q,.

Let us prove that Q, is a prime ideal. It is contained in P,, hence
is not equal to (1). Let f, g € K[Ty,...,T,] be such that fg € Q,;
subtracting from f and g all of their monomials that belong to Q,,
we may assume that they have no monomial in Q,; assuming that
f # 0, we need to prove that ¢ belongs to Q,. We may assume that
g # 0. The Newton polytope of f ¢ is equal to the Minkowski sum
of the Newton polytopes and f and g. Considering a vertex of the
Newton polytope of fg, we get two monomials ¢, T" of f,and d,T4
of g, such that their product c,,d,T""7 is a monomial of f g, and their
power (cydq) T*("*) is a monomial of (fg)°, for every integer s > 1.
Since Q, is the radical of J,, there exists s such that (fg)° € Ju;
since J, is a monomial ideal, one then has T("+%) ¢ J, c 1,, hence
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T"*9 € P,. The monomial T" does not belong to P,, hence TY € P,
hence T7 € Q,.

We now prove that ], is a Q,-primary ideal. Similarly, we consider
f,g € K[Ty,...,Ty] such that fg € J, and f ¢ Q,, and prove
that ¢ € J,. Subtracting from f and g all monomials that belong
to Q, and ], respectively, we reduce ourselves to the case where no
monomial of f belongs to Q,, and no monomial of g belongs to J,.
Assume that f, ¢ # 0; as above, there are monomials ¢, T" of f and
d,T7 of g such that c,,d,T"" is a monomial of fg. Since ], is a
monomial ideal, one has T"*1 € J, c I,. Since T" ¢ Q, and T™ is
a monomial, one has T" ¢ P,. Since I, is P,-primary, one then has
T7 € I,, hence T € J,, a contradiction.

Let us now prove that I = (1, ]J,. One has J, C I, for all a, hence
NaJa € Nala =L To prove the other inclusion, let f € I and let us
prove that f € J, for all a. Since I is a monomial ideal, it suffices
to treat the case where f is a monomial. Then for every «, one has
f €1y, hence f € ], since f is a monomial. Consequently, f € (1, Ja-

O

Theorem (3.4.5) ( ; ). — Let K be a field and let F be an
infinite set of monomial ideals in K[Ty,...,T,]. There exists a strictly
decreasing sequence of elements of F.
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Proof. — The set of monomial prime ideals is finite. Considering
minimal primary decompositions consisting of monomial ideals an
successively extracting infinite subsets, we reduce to the case where
all ideals in & are primary with respect to the same prime ideal,
(Tq,...,Tm). Replacing K by the field K(T;41,...,Ts), we are r
duced to the case where all ideals in & are primary with respect
the maximal ideal (T4, ..., T,).

For every monomial ideal I, let M(I) be the set of m € N" such thatJ
" ¢ 1.

If I € &, there exists an integer N > 1 such that (T,..., T)) c I,
so that the set M(I) is contained in [0; N]"; in particular, M(I) is finite.

Observe that the inclusion I C ] is equivalent to the inclusion
M(J) ¢ M(I). We will first prove by contradiction that there are
ideals I,] € # such thatI C ]J. Assume otherwise.

Let Jo be the intersection of all ideals in & and choose I; € #.
For every I € & such that I # I;, one h@at there exists
m € M(Iy) such that T € I. Since & is infint d M(Iy) is finite,
there exists an infinite subset %1 of ¥ and a nonempty subset M;
of M(I;) such that for allI € #; and all m € N", m € M; if and only
if m € M(Iy) and T € I; let then J; be the intersection of all ideals I,
forI € #. One has Jy C J1, by construction. On the other hand, if
m € My, then T" € I for every I € #, but T" ¢ I, so that T" € J;
and T™ ¢ Jo, so that Jo € J;.

Tey L¢T,
o o At L I, Frm
1_76)_‘ F/\ﬁ exifle m € M(L,)

IO LE Ty = V'Mé(ﬁ/LJ
é ’V"‘iC‘ (:E,\Ocl‘g c/ ) W*r@ T
\J
e d, = T, e,
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Iterating this construction, we construct a strictly increasing se-
quence (Jx) of ideals in K[T7y, ..., T,]. This contradicts the fact that
this ring is noetherian.

Consequently, in any infinite set of monomial ideals which are
primary with respect to the maximal ideal, we can find two ideals
which are contained one in another.

Let us now construct a strictly decreasing sequence of ideals in
such a set #. Since the ring K[Tj, ..., T,] is noetherian, the set #
has finitely many maximal elements; for one of them, say I;, the
set #1 of ideals I € # such that I ¢ I; is infinite. Applying this
construction with % instead of %, we obtain an ideal I, € % such
thatl; ¢ I, and an infinite subset of %, consisting of ideals contained
in #. Iterating this construction, we obtain the desired decreasing
sequence. O

3.5. Initial ideals and Grobner bases

Let K be a valued field, let R be its valuation ring and let k be its
residue field. It will be important below to admit the case where
the valuation of K is trivial; in fact, we will apply the theory to
polynomials with coefficients in k, when viewed as a trivially valued
field.

Let I' = log(|K*|) be the value group of K; it is a subgroup of R.
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We assume implicitly that the valued field K is split, denoting by
y +— t7 a morphism of groups from I' to K*; one has log(|t”|) = y
for all y € I'. We also write p : KX — k* for the group morphism
given by a +— red(at~'08(l),

e o)

3.5.1. — To a polynomial f € K[Ty,...,T,], we have attached a
tropical polynomial 74 : R"*! — R as well as, for every x € R"*!, an
initial form iny(f) € k[To, ..., Tx]. The exponents of the monomials
of iny(f) are exponents of monomials of f; in particular, if f is
homogeneous of degree d, then so is in,(f).

Definition (3.5.2). — Let 1 be an ideal of K[T, ..., T]| and let x € R"1,
The initial ideal of I at x is the ideal of k[Ty, ..., T,] generated by all
initial forms iny(f), for f € L It is denoted by in,(I).

Lemma (3.5.3). — Let 1 be an ideal of K[Ty, ..., T,] and let x € R+ If
L is a homogeneous ideal, then in,(I) is a homogeneous ideal.

Proof. — Let ] be the ideal of k[T, ..., T,] generated by the initial
forms iny(f), for all homogeneous polynomials f € I; one has ] C
iny(I), and ] isa homogeneous ideal. Let f € Iand let f = ;N fa be
its decomposition as a sum of homogeneous polynomials, f; being
of degree d. Since I is a homogeneous ideal, one has f; € I. By
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C,
definition of the tropical polynomial, one has f
tf(x) = sup(f,(x)). ~
deN

Let D be the set of all 4 € N such that f; # 0 and 7¢(x) = 7/,(x). By
definition of in,(f), one then has

deD

\mx(f>=2m3@/, nxlt) e

because of the exponents of the monomials appearing in the polyno-

mials f; are —E_airwise distinct. In particular, in,(f) € J. This proves

that{in,(I) = J is a homogeneous ideal. m|

3.5.4. — The initial ideal at 0, ing(I), is the image in k[Ty, ..., T,] of
the ideal INR[Ty, ..., T,] by the reduction morphism. Let indeed ]
be this ideal. For every f € I, writtenas f = ) ¢,,T", one has 7¢(0) =
sup, log(|c,u|) and ing(f) is the image of the element ft~%® e 1N
R[Ty, ..., Ty], so that ing(f) € J. On the other hand, if f € I N
R[Ty, ..., Ty], then either 7¢(0) < 0, in which case the image of f in
k[To, ..., Ty]is zero, or 7¢(0) = 0, in which case ing(f) is the image
of f. This proves that ] = iny(I).

Moreover, R[Ty,...,T,]/(I N R[Typ,...,T,]) is a torsion free
R-module, hence is flat, because R is a valuation ring. In the
case where I is a homogeneous ideal, this says that the family
Proj(R[To, ..., T,]/ANR[Ty, ..., T,])) — Spec(R) is a flat morphism
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of projective schemes; its generic fiber is Proj(K[ Ty, . .., T, ]/I) = V(I),
and its closed fiber is Proj(k[Ty, ..., T,]/ing(I)) = V(ing(I)). This
flatness has the following important consequences:?

— The Hilbert functions of I and ing(I) coincide. Explicitly, for
every integer d, one has

dimg ((K[To, ..., Tn]/Da) = dimi((k[To, . . ., T ]/ino(I))a);

— If V(I) is integral, then V(iny(I)) is equidimensional, of the same
dimension.

3.5.5. — Letx € R""; let us assume that the coordinates of x belong
to the value group I'. For every j € {0, ...,n}, fix a; € KX such that
log(|aj|) = xj; let also aj = p(a;) for every j.

Forevery f = 3 ¢,,T" € K[Ty, ..., Tn],onehas f(aT) = 3 ¢;pa™T",
so that

T4(a1)(0) = sup(log(lcm) + (m, x)) = 7¢(x),
m

as well as

ing(f(aT) = ) plewa™T" = > plcn)a™ " = ing(f)(aT).

meSy(x) meSg(x)

Let ¢, be the K-algebra automorphism of K[Ty, ..., T,] given by
©a(f) = f(agTo,...,a,T,)andlet ), be the k-algebra automorphism

2Maybe write an appendix with material from commutative algebra and algebraic geom-
etry that is used in the notes.
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of k[Ty, ..., T,] givenby ¢,(f) = f(aoT,..., a,T). By the preceding
computation, we have ¢,(iny(I)) = ing(¢p,(I)) is the image of the
ideal ¢,(I) N R[To, ..., T,]in k[To, ..., Ty].

This change of variables will allow to reduce properties of the
initial ideal in,(I) to the case of x = 0. In particular, it immediately
implies the following lemma.

Lemma (3.5.6). — Let I bea homogeneous ideal of K[ Ty, ..., T,] and let
x € R be such that its coordinates belong to the value group of K.

{a»x SN a) The initial ideal in,(I) is the set of all iny(f), for f € L;
“© A A’; c w b) If V(1) is integral, then V(in,(l)) is equidimensional, of the same

imension;
c) The Hilbert functions of I and in,(I) coincide. Explicitly, for every
infeger d, one has

dlmK((K[TO, sy TVI]/I)d) = dlmk((k[TOI sy Tn]/lnx(I))d)

N
e

One of the goals of the theory that we develop now is to extend
these properties to an arbitrary x € R"*1.

Remark (3.5.7). — Let x1, x2 € Rbenonzero real numbers, Q-linearly

QN independent, such that (Qx1+Qx) NGEK*) = 0. LetI = (Ty, T2). One
has in,(I) c (T, T2), and the relations in,(T7) = T1 and in,(T;) = T
imply that in,(I) = (T1, T2).
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On the other hand, let f € K[Ty, Tz], written ¢, T", and let
m,n € N? be elements such that log(|c,|) + (x,m) = log(|c,|) +
(x,n) = 1¢(x). Then log(|cy/cul) + x1(m1 — n1) + x2(m2 — n2) = 0, so
that ¢ /cn € RX, m1 = n1 and my = np; this proves that iny(f) is a
monomial. In that case, the set of polynomials of the form in,(f), for
f €1,isnot anideal of I. In particular, the statement of Lemma 2.4.2
in ( ) is incorrect (this is signaled in the
errata of that reference).

The next lemma is a weakening of the expected property.

Beware:

The definition of the nonarchimedean amoebas has been modified
so as to be more consistent with the definition in the archimedean
case. 1 made the necessary corrections up to here, but there are
certainly inconsistencies below.

Lemma (3.5.8). — Let 1 be a homogeneous ideal of K[Ty, ..., T,]| and let
x € R,

\/ a) Every element of iny (1) is the sum of polynomials of the form iny(f),
for f €L
b) Let f, g € L. Ifthe supports of iny(f) and iny(g) are not disjoint, then
there exists h € 1 such that in,(h) = iny(f) +iny(g). If T7(x) = 14(x),
one may even take h = f + g;



