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b; € I'. Each face of P is defined by adding inequalities of the form
—f; <0, for j in some subset I of J; this shows that they are rational.
Similarly, the recession cone of P is defined by the linear inequalities
@; < 0; it is thus Q-rational. The lineality space is defined by the
equalities @; = 0, for j € J, hence is Q-rational. Finally, since the
affine span of P is defined by all the implicit equalities f; = 0 in the
given system, it is (Q, I')-rational as well. m

Example (1.7.5). — Let C be a Q-rational cone.

Assume that dim(C) = 1. In this case, affsp(C) = C — C. Since
affsp(C) is a Q-rational line, there exists v € Q" such that affsp(C) =
Ro. Up to replacing v by —v, one then has C = R, 0.

In the general case, the extremal rays of C are themselves Q-
rational cones, hence of the form R,v for some v € Q". Given
proposition 1.6.4, this implies that C is the polyhedral convex cone
generated by a finite family of vectors in Q".

1.8. Polyhedral subspaces, fans

Definition (1.8.1). — Let V be a finite dimensional R-vector space and let
S be a subspace of V.

a) One says that S is a polyhedral subspace of V if it is a finite union
of polyhedra in V;
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b) A polyhedral decomposition of S is a finite set € of polyhedra
satisfying the following properties:
(i) The union of all polyhedra in € is equal to S;
(ii) Every face of a polyhedron in € belongs to €;
(iii) The intersection of every two polyhedra P,Q in € is either
empty, or a face of both of them. o

The set S is also called the support of the polyhedral decomposition €, and
is denoted by |€|.
c) A fan is a polyhedral decomposition all of which polyhedra are cones.

Remark (1.8.2). — a) If a finite union of polyhedral cones is a con-
vex cone, then it is a polyhedral cone. In other words, a convex cone
is a polyhedral subset if and only if it is a polyhedral cone, so that
the terminology is not ambiguous.

b) A polyhedral decompositionis determined by its maximal poly-
hedra, all other are faces of them. Since a face of a cone is a cone, a
polyhedral decomposition is a fan if and only if its maximal polyhe-
dra are cones.

c) Let € be a polyhedral decomposition of a polyhedral sub-
space S. For every x € S and every polyhedron P € € such that
x € P, either x belongs to a facet of P, or x belongs to the relative
interior of P, bot not simultaneously. Consequently, the relative in-
teriors of the polyhedra in € are pairwise disjoint, and their union
is S.
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T"*9 € P,. The monomial T" does not belong to P,, hence TY € P,
hence T7 € Q,.

We now prove that ], is a Q,-primary ideal. Similarly, we consider
f,g € K[Ty,...,Ty] such that fg € J, and f ¢ Q,, and prove
that ¢ € J,. Subtracting from f and g all monomials that belong
to Q, and ], respectively, we reduce ourselves to the case where no
monomial of f belongs to Q,, and no monomial of g belongs to J,.
Assume that f, ¢ # 0; as above, there are monomials ¢, T" of f and
d,T7 of g such that c,,d,T"" is a monomial of fg. Since ], is a
monomial ideal, one has T"*1 € J, c I,. Since T" ¢ Q, and T™ is
a monomial, one has T" ¢ P,. Since I, is P,-primary, one then has
T7 € I,, hence T € J,, a contradiction.

Let us now prove that I = (1, ]J,. One has J, C I, for all a, hence
NaJa € Nala =L To prove the other inclusion, let f € I and let us
prove that f € J, for all a. Since I is a monomial ideal, it suffices
to treat the case where f is a monomial. Then for every «, one has
f €1y, hence f € ], since f is a monomial. Consequently, f € (1, Ja-

O

Theorem (3.4.5) ( ; ). — Let K be a field and let F be an
infinite set of monomial ideals in K[Ty,...,T,]. There exists a strictly
decreasing sequence of elements of F.
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Proof. — The set of monomial prime ideals is finite. Considering
minimal primary decompositions consisting of monomial ideals and
successively extracting infinite subsets, we reduce to the case where
all ideals in & are primary with respect to the same prime ideal,
(Ty,...,Tw). Replacing K by the field K(Ty41,...,Ts), we are re-
duced to the case where all ideals in & are primary with respect to
the maximal ideal (T4, ..., T,).

For every monomial ideal I, let M(I) be the set of m € N" such that
" ¢ 1.

If I € &, there exists an integer N > 1 such that (TY, ..., TY) c I,
so that the set M(I) is contained in [0; N"; in particular, M(I) is finite.

Observe that the inclusion I C ] is equivalent to the inclusion
M(J) ¢ M(I). We will first prove by contradiction that there are
ideals I,] € & such thatI ¢ J. Assume otherwise.

Let Jo be the intersection of all ideals in &% and choose I; € %.
For every I € &# such that1 # I;, one has I; ¢ I, so that there exists
m € M(Iy) such that T” € 1. Since ¥ is infinite and M(I,) is finite,
there exists an infinite subset #; of % and a nonempty subset M;
of M(I;) such that for all I € % and all m € N, m € M; if and only
if m € M(I;) and T™ € I; let then J; be the intersection of all ideals I,
for I € #. One has ]y C J;, by construction. On the other hand, if
m € M, then T" e I for every I € &, but T" ¢ I;, so that T" € J;
and T™ ¢ Jo, so that Jy < J1.
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Iterating this construction, we construct a strictly increasing se-
quence (Jx) of ideals in K[Ty, ..., T,]. This contradicts the fact that
this ring is noetherian.

Consequently, in any infinite set of monomial ideals which are
primary with respect to the maximal ideal, we can find two ideals
which are contained one in another.

Let us now construct a strictly decreasing sequence of ideals in
such a set #. Since the ring K[Ty, ..., T,] is noetherian, the set &
has finitely many maximal elements; for one of them, say Ij, the
set #1 of ideals I € & such that I € Ij is infinite. Applying this
construction with % instead of %, we obtain an ideal I, € % such
thatl; ¢ I and an infinite subset of %> consisting of ideals contained
in #. Iterating this construction, we obtain the desired decreasing
sequence. O

3.5. Initial ideals and Grobner bases

Let K be a valued field, let R be its valuation ring and let k be its
residue field. It will be important below to admit the case where
the valuation of K is trivial; in fact, we will apply the theory to
polynomials with coefficients in k, when viewed as a trivially valued
field.

Let I' = log(|K*|) be the value group of K; it is a subgroup of R.
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We assume implicitly that the valued field K is split, denoting by
y — t7 a morphism of groups from I' to K*; one has log(|t”|) = y
for all y € I'. We also write p: K* — k* for the group morphism
given by a > red(at 108D,

3.5.1. — With a polynomial f € K[Ty, ..., T,], we have associated a
tropical polynomial 75 : R"*! — R as well as, for every x € R"*!, an
initial form iny(f) € k[To, ..., Ts]. The exponents of the monomials
of iny(f) are exponents of monomials of f; in particular, if f is
homogeneous of degree d, then so is iny(f).

Definition (3.5.2). — Let 1 be an ideal of K[Ty, ..., Tn] and let x € R,
The initial ideal of I at x is the ideal of k[T, ..., T,] generated by all
initial forms iny(f), for f € 1. It is denoted by in,(I).

Lemma (3.5.3). — Let 1 be an ideal of K[Ty, ..., T,] and let x € R"*., If
I is a homogeneous ideal, then iny(I) is a homogeneous ideal.

Proof. — Let J be the ideal of k[Ty, ..., T,] generated by the initial
forms in(f), for all homogeneous polynomials f € I; one has J C
iny(I), and ] is a homogeneous ideal. Let f € Iand let f = } ;N fa be
its decomposition as a sum of homogeneous polynomials, f; being
of degree d. Since I is a homogeneous ideal, one has f; € I. By
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definition of the tropical polynomial, one has

Tf(x) = Z‘:E(de(x))-

Let D be the set of all 4 € N such that f; # 0 and 7¢(x) = 75,(x). By
definition of iny(f), one then has

iny(f) = > in(fa),
deD
because of the exponents of the monomials appearing in the polyno-
mials f; are pairwise distinct. In particular, in,(f) € J. This proves
that in,(I) = J is a homogeneous ideal. O

3.5.4. — The initial ideal at 0, ing(I), is the image in k[T, ..., T,] of
the ideal INR[Ty, ..., T,] by the reduction morphism. Let indeed ]
be thisideal. For every f € I, writtenas f = }, ¢, T", one has 74(0) =
sup,, log(|ci|) and ing(f) is the image of the element ft~* ®e1n
R[Ty, ..., Tyn], so that ing(f) € J. On the other hand, if f € IN
R[To, ..., Tul, then either 7¢(0) < 0, in which case the image of f in
k[To, ..., Tu] is zero, or 7£(0) = 0, in which case iny(f) is the image
of f. This proves that ] = iny(I).

Moreover, R[Ty,...,T,]/(I N R[Ty,...,T,]) is a torsion free
R-module, hence is flat, because R is a valuation ring. In the
case where I is a homogeneous ideal, this says that the family
Proj(R[To, ..., T,]/ANR[Ty,...,T,])) — Spec(R) is a flat morphism
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of projective schemes; its generic fiber is Proj(K[ Ty, . .., T, ]/I) = V(I),
and its closed fiber is Proj(k[Ty, ..., T,]/ing(I)) = V(ing(I)). This
flatness has the following important consequences:?

— The Hilbert functions of I and ing(I) coincide. Explicitly, for
every integer d, one has

dimg ((K[To, ..., Tn]/Da) = dimi((k[To, . . ., T ]/ino(I))a);

— If V(I) is integral, then V(iny(I)) is equidimensional, of the same
dimension.

3.5.5. — Letx € R""; let us assume that the coordinates of x belong
to the value group I'. For every j € {0, ...,n}, fix a; € KX such that
log(|aj|) = xj; let also aj = p(a;) for every j.

Forevery f = 3 ¢,,T" € K[Ty, ..., Tn],onehas f(aT) = 3 ¢;pa™T",
so that

T4(a1)(0) = sup(log(lcm) + (m, x)) = 7¢(x),
m

as well as

ing(f(aT) = ) plewa™T" = > plcn)a™ " = ing(f)(aT).

meSy(x) meSg(x)

Let ¢, be the K-algebra automorphism of K[Ty, ..., T,] given by
©a(f) = f(agTo,...,a,T,)andlet ), be the k-algebra automorphism

2Maybe write an appendix with material from commutative algebra and algebraic geom-
etry that is used in the notes.
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y ‘Mtr

of k[To, ..., T,] givenby ¢,(f) = f(aoT, ..., a,T). By the preceding
computation, we have ¢,(iny(I)) = ing(¢@,(I)) is the image of the
ideal ¢,(I) N R[Ty, ..., T,]in k[T, ..., T,].

This change of variables will allow to reduce properties of the
initial ideal in,(I) to the case of x = 0. In particular, it immediately
implies the following lemma.

Lemma (3.5.6). — Let 1 be a homogeneous ideal of K[Ty, ..., T,] and let
x € R"™! be such that its coordinates belong to the value group of K.

a) The initial ideal iny() is the set of all iny(f), for f € I;
b) If V(1) is integral, then V(in.(I)) is equidimensional, of the same
dimension;
¢) The Hilbert functions of I and iny(I) coincide. Explicitly, for every

ob Q(QTL }\1/ \lntegerd one has
T
- AK(KCT ")e

-

dimy((K[To, ..., Tu]/Da) = dimg((k[To, ..., Tn]/inx(1))a).

/3 ") One of the goals of the theory that we develop now is to extend

these properties to an arbitrary x € R"*1.

Remark (3.5.7). — Letx1, x» € Rbenonzero real numbers, Q-linearly
independent, such that (Qx1+Qx2)ﬂv(KX) = etl = (Tq, Tp). One
has in,(I) c (T1,T2), an = T1 and iny(Ty) =
imply that in,(I) = (Ty, T2). n

I < K LT,
x €K

re

ntl

n+y

_1:\] A'ﬂaﬂél\mw \H)
V;}((L) c B(T. — T

‘_(Wx(gf)/ ‘D/Gl§
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On the other hand, let f € K[Ty, T2], written } ¢, T", and let
m,n € N? be elements such that log(|c,|) + (m, x) = log(|c,|) +
(x,n) = 1¢(x). Then log(|cm/cul) + x1(m1 — n1) + x2(mz — n2) = 0, so
that ¢,y /cn € RX, my = ny and my = ny; this proves that in,(f) is a
monomial. In that case, the set of polynomials of the form in(f), for
f €1, isnotanideal of I. In particular, the statement of Lemma 2.4.2
in ( ) is incorrect (this is signaled in the
errata of that reference).

The next lemma is a weakening of the expected property.

Lemma (3.5.8). — Let I be a homogeneous ideal of K[ Ty, ..., T, ] and let
x € R*1,

a) Every element of in,(I) is a sum of polynomials of the form in,(f),
for f €L

b) Let f, g € L. Ifthe supports of iny(f) and iny(g) are not disjoint, then
there exists h € 1 such that in,(h) = iny(f) +iny(g). If 77(x) = T4(x)
and iny(f) + in.(g) # O, then one may even take h = f + g.

c) Let m € N"*L if T™ € in,(I), then there exists f € 1 such that

T = in,(f).

Proof. — a)Let f € I, let « € k* and let m € N"*L  TLet
a € R* be such that p(a) = a. One has 1, ¢(x) = 7¢(x) + (m, x)
and in,(aT"f) = aT™in,(f) (this is an elementary instance of
lemma 3.3.4). This proves that the set of initial forms is stable under
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multiplication by a monomial. In particular, the additive monoid it
generates in k[To, ..., T,] is an ideal of k[T, ..., T,].

b) Write f = Y, ¢, T", ¢ = X d,T" and let u € N**! be a com-
mon point of the supports of in,(f) and of in,(g). This means that
log(lcul) + (u, x) = t¢(x) = sup,,(log(|cu|) + (m, x)) and log(|d,|) +
(u,x) = 14(x) = sup,,(log(|dul) + (m,x)). In particular, 7¢(x) -
To(x) = log(|cu/dyl). Replacing f by ft~1080%D and ¢ by gt~1o8(duD

does not change in, and in,(g) and allows us to assume that
lcul = |du] = 1 and m (U, x).
I in () ¥ ing(g) = 0, then we take 1 = 0.

Let us now assume that)in,(f) + iny(g) # Oand let h = f + ¢ =
2(cm +dy)T™. For all m, one has log(|c,|) + (m,x) < 7¢(x) and

log(|dm|) + (m, x) < 14(x) = T¢(x), so that log(|cy + d|) + (m, x) <
Tr(x) andirh(x) < 17(x)- I
Letm € N+,

—

Let us assume that m € Sy(f) = Sx(g). Then log(|ey|) + (m, x) =
T¢(x) butlog(|d|)+(m, x) < T4(x) = 1¢(x); we then have |dy,| < |cnl,
hence [c;y+d| = |cm| and log(|cy+dm|)+{m, x) = T¢(x). Thisimplies
that 7,(x) = t¢(x). Moreover, p(cy + dm) = p(cm) is the coefficient
of T in iny(f) + iny(g) and in in, (k).

Similarly, if m € Sy(g) = Sx(f), then [c;y + dw| = |du| > lcml,
h(x) = 17(x), and p(cw + diw) = p(dwm) is the coefficient of T" in
iny(f) +iny(g) and in iny(h).
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If m € Sy(f)NSx(g) and p(cm)+ p(dm) # 0, thenlog(|cm|)+(m, x) =
Tr(x) = 1¢(x) = log(|dn|) + (m, x), so that [cy| = |dy| and

0+ p(cm) L P(dm)
— red(cmt—log(lcml)) o red(dmt—log(|cm|))
= red((cy + dyy )t~ 108Ucml)y,

so that |c;y + d| = |cwm|. Then ti(x) = 76(x) and p(cm + dm) =
p(cm) + p(dm) is the coefficient of T in in,(f) + iny(g) and in in, (k).

Since iny(f) +iny(g) # 0, by assumption, at least one of these three
cases appears. This already proves that 7;(x) = 77(x).

Two possibilities remain for m € N"*1.

If m ¢ Sx(f)USx(g), thenlog(|cy|)+ (m, x) < 7¢(x) and log(|dy|) +
(m, x) < 1¢4(x), so thatlog(|cy + dm|) + (m, x) < t7(x) = p(x). Then
m does not appear in iny(f), in,(g) or iny(h).

Let us finally assume that m € Sy(f)NSx(g) and p(cm) + p(dm) = 0.
As above, one has |c;;| = |dn| and p(cy) + p(dy) is the reduction of
(¢ + dpy)t~108Uenl) This implies that |c,, +dy| < |cm|, hence T™ does
not appear in iny (%), and neither does it appear in iny(f) + in,(g).

c) Let ¢ € in,(I) and let (fi)i1<i<p be a finite family of minimal
cardinality of elements of Isuch that ¢ = 3)_ iny(f;). By minimality
of p, one has iny(f;) # 0 for all i. Applying b), we deduce from the
minimality of p that for all i # j, the supports of in,(f;) and in,(f;)
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are disjoint. The support of their sum, }};in(f;) = ¢, is then the
union of their supports, hence it has at least p elements.

If ¢ is a monomial, this implies that p = 1, so that there exists f € I
such that ¢ = in,(f). o

Definition (3.5.9). — Let 1 be an ideal of K[To, ..., T, ] and let x € R"1,
A finite family (f1, ..., fu) of elements of 1 is called a Grobner basis for 1
at x if the initial forms iny(f;) at x generate the initial ideal in,(I) of I at x.

Since the initial ideal in,(I) is generated by the polynomials of the
form in,(f), for f € I, the existence of a Grobner basis follows from
the noetherian property of thering k[ Ty, ..., T, ] (aka, Hilbert’s finite
basis theorem).

Assume, moreover, that I is homogeneous and let (f3, ..., fu) be
a Grobner basis for I at a point x. For every j|in,(f;) is)the sum of
the initial forms of the homogeneous compone j, as we saw
in the proof of lemma 3.5.3. This implies that the homogeneous]
components of the f; constitute a Grobner basis for I at x.

In the next lemma, we consider initial forms of polynomials of
k[To, ..., T,]; this means that the field k is considered as a valued
field, for the trivial absolute value.

Lemma (3.5.10). — Let x € R and let f € K[To, ..., Ty]. Thereexists
a strictly positive real number & such that for every y € R"* such that

|ly|| < &, one has inyy(f) = iny(inx(f)) and T4(x + y) = Tin (1) (y)-

PN
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Proof. — Write f = >, ¢,,T"; let S(f) be its support and let Sy(f) be
the set of all m € S(f) such that

log(leml) + (m, x) = ¢(x) = sup(log(lcm|) + (m, x)),

so that one has inx(f) = Xues,(r) p(cm)T". Let then Sy (f) be the
set of all m € Sy(f) such that

(m,y) = sup (m,y) = Tin(nH)(Y),
meSy(f)

so that in, (inx(f)) = Zmesx,y(f) plem)T™.

Let ¢ be a strictly positive real number such thatlog(|c,.|)+(m, x) <
T¢(x) — & for m € S(f) =Sx(f). Letalso 6 > 0 be such [(m,y)| < ¢/2
for every m € S(f) and every y € R"*! such that ||y|| < 6. For every

such y and every m € S, ,(f), one then has
\-

log(leml)+(m, x+y) = (log(|cm[)+(m, x))+{m, y) = T¢(x)+Tin, (1) (y)-

In particular, one has 7¢(x + y) > Tin,(r)(y)- lf m € S(f) =Sy(f), one
has

< Q/L
— —
log(cml) + (x + m,y) = (Llog(lem|) + (m, x)) + (m, y)
<1s(x) — e+ {(m,y)

< T(X) + Tiny (1) (Y)-
\
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(Indeed, Tin,(f)(y) > —¢/2 and (m, y) < £/2.) On the other hand, if DWM

m € Sx(f)=Sx,y(f), then
log(leml) + (x +m, y) = (log(lcml) + (m, x)) + (m, y)
M J
‘s

= 74(x) + (m, y) M = M, =
) (Ndc J

< TH(X) + Tiny(1)(Y)-

This proves that 7¢(x + ) = T7(x) + Tin,()(y) and that —> W ( T ) _ M
inx+y(f) = Z P(Cm)Tm = iny(mx(f))~ 8/ &
meSy,y(f)
O
Beware:

The definition of the nonarchimedean amoebas has been modified
so as to be more consistent with the definition in the archimedean
case. I made the necessary corrections up to here, but there are
certainly inconsistencies below.

Proposition (3.5.11). — Let I be a homogeneous ideal of K[Ty, ..., T,].
Forany y € R"*1, let M, be the largest monomial ideal contained in in,(I).

a) Let y € R"*! be such that My is maximal among the ideals of this\k

form. Then\in,(I) = My, — in particular, in,(I) is a monomial ideal.
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b) Assume, moreover that the valuation of K is trivial. Then there exists
6 > 0 such that for every z € R" such that ||z|| < 0, one has one has
iny.| () = in,(I) =
c) Let x € R”*l. Let y € R"1 be such that in,(ing(1)) is maximal
among the ideals of this form. Then there exists a finite family (f;) in 1 such
that the polynomials in, (iny(f;)) generate the ideal in,(in,(I)). Moreover,
there exists & > 0 such that for every ¢ € R such that 0 < ¢ < 6, one has
inyyey(I) = iny (iny(1)), and this ideal is monomial.

Proof. — a) By construction, theideal M, is generated by a family
(T™) of monomials belonging to in,(I); by Hilbert’s basis theorem,
this family can be assumed to be finite. By lemma 3.5.8, there exists,
for every i a polynomial f; € I such that T™ = in,(fi)-

We now argue by contradiction and consider f € I such that
in,(f) € M,,. Ifa monomial appearing in f belongs to M,;,, we choose
g € I'such that in, (g) is that monomial; by lemma 3.5.8, there exists
h € I'such thatin,(f)—in,(g) = in,(h), and that monomial does not
appear in in,(h); moroever, in, (k) ¢ M,.. Repeating this argument,
we assume that no monomial of in, (f) belongs to M,,.

Let now u be a vertex of the Newton polytope of in,(f) and let
z € R™! be the coefficients of a linear form defining . In other
words, u belongs to the support of in,(f), and for every other m
in this support, one has (m,z) < (u,z). Then in,(in,(f)) is the
monomial of exponent y in in,(f). By lemma 3.5.10, for z € R

—_—
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such that ||z|| is small enough, one has in,;.(f) = in.(in,(f)). Sim-
ilarly, if ||z]| is small enough, then for every i, one has iny.(f;) =
in, (iny(f;)) = in,(f;) since iny(f;) is a monomial. This implies that >
My, contains My. On the other hand, the monomial T# belongs 1/
to My, but not to M. This contradicts the hypothesis that M, is
maximal among the ideals of this form.
b) The ideal in,(I) is generated by the monomials in,(f;). For z €
R"*! such that ||z|| is small enough, one has in,-(f;) = in.(iny(£;)) =
iny(f;) since in,(f;) is a monomial and the valuation of K is triv-
ial. Consequently, in,,(I) contains the monomial ideal in,(I). By
maximality, the equality follows.
c) Let us apply the first part of the proposition to the ideal iny(I)
of k[To, ..., Tx] and choose y € R"*! such that in, (iny(I)) is maximal ‘
for this property — it is then a monomial ideal, by a). We shall prove } P SR [ )
that iny ;. (I) = iny(in,(I)) for ¢ > 0 small enough. / -
Let (g1,...,gm) be a finite family of elements of in,(I) such that | \ . .
iny(g;) is a monomial, for every i, and such these monomials gener- { ( g Voo wm S’W) 7 - wm (e (T ))
ate\iny(inx(l)). Fix i. As in the proof of lemma 3.5.8, ¢), there exists N 1 d &
a finite family (f;;); of elements of I, with pairwise disjoint sup- : 0
ports, such that g; = };inx(fi ;). Then the polynomials iny (inx(f;,7)) ,3»(: - Z Im y ( ‘{U j C/WN § f/n—w/j

have pairwise disjoint supports, and there exists a unique j such |
that the monomial in,(g;) appears in in,(in,(f; ;)), in which case NS V= ( o | dQ o \ >
i %4' & X l )0(,< L

Uk(gtl W v
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in, (g;) = in,(iny(f;;)). This shows that there exists a finite fam-
ily (f;) in I such that in,(iny(f;)) is a monomial for each i, and such
that these monomials generate the ideal in, (in, (I)).

Let then 6 > 0 be such that iny.,(f;) = in,(iny(f;)) for every i and

every ¢ € Rsuchthat( < ¢ < §;in particular, in, (iny(f;)) € iny4y (1),
hence| in;, (iny(I)) C iny;y(I). \Let us assume that the inclusion is
strict. en, there exists f € I such that inx+gy( f) does not belong

to the monomial ideal iny(iny(I)). Subtracting from f an adequate
linear combination of the the f;, we may moreover assume that no
monomial of iny;y(f) belongs to iny (iny(I)).

Let z € R""! be such that inz(iny+¢y(f)) is a monomial. (In other
words, z does not belong to the tropical hypersurface associated
with iny.,(f).) For 6 > 0 small enough (depending on y, ¢, f), one
then has iny¢y45:(f) = inz(iny4¢y(f)), hence is a nonzero monomial.
However, applying b), we observe that if ¢y + 0z is small enough
(depending on x and I uniquely), then that monomial belongs to
ingy1sz(iny(I)) = iny(iny(I)), a contradiction which concludes the
proof that iny ., (I) = in (iny(I)). O

Theorem (3.5.12). — Let 1 bea homogeneous ideal of K[ Ty, ..., T,]. For
every x € R"*, the Hilbert functions of I and in, (1) are equal: for every
integer d, one has

dimg ((K[To, ..., Tu]/D)a) = dimi((k[To, . .., Tn]/ine(T))a).
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Lemma (3.5.13). — The conclusion of theorem 3.5.12 holds if iny(I) is a
monomial ideal. —
onomal iaear

Proof. — Fix d € N.

Let M be the set of m € N"*! such that |m| = d and T™ ¢ in,(I).
Let us prove that the family (T").em is free in (K[Ty, ..., Tx]/Da.
Let (¢/n)mem be a family in K such that >},,cp ¢ T™ € I Then there
exist a family (¢;;)mem in k such thatin,(f) = . ¢,,T™. By definition,
one has in,(f) € iny(I), and since in,(I) is a monomial ideal, one has
Cn T™ € iny(I) for every m € M. Since T™ ¢ in,(I) for m € M, this
implies ¢, = 0, hence in,(f) = 0 and f = 0. As a consequence, one
has

dimK((K[To, S Tn]/I)d) 2 Card(M)

On the other hand, since the homogeneous ideal iny(I) is generated
by monomials, one has

Card(M) = dim((k[To, . .., T]/inx(I))a),

so that

(dimK((K[To, ..., Tal/Da) > Card(M) > dime((K[To, . . ., Tu]/inx(D))a).

In the other direction, let now M’ be the set of m € N"*' such
that |m| = d and T™ € iny(I). For every m € M, there exists f,, €1
such that iny(f,,) = T™. Since I is a homogeneous ideal, we may also
assume that f,, is homogeneous of degree d. Multiplying f,, by an
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Rum = \
element of R*, we may assume that&‘:: T" + X pem ampTP. Let us
prove that the family (f)mem is fre€Let (¢ )memr be a family in K
such that ’ ¢, fm = 0.

Let u € M’ such that log(|c,|) + (¢, x) is maximal. Considering the
coefficient of T# in )’ cmm ( C}, Feo)

Cu+ Z Cmm,u = 0.
M+

By ultrametricity, there exists m # u such that [c,| < |cinam,ul, and
then

log(lem)+(m, x) <log(leul+{u, x) < log(lem|) +1og(lam,ul) + {1, x),

so that ——
) < logllani) + w0\
contradicting the hypothesis that iny(f,) is the monomial T™.
Consequently, —

dlmK(K[To, ey Tn]dﬂl) = Card(M’) = dlmK(k[To, NP Tn]dﬂinx(l)).
—_—

Since I is a homogeneous ideal, one has
K dimg ((K[To, . .., Tul/1)a)
= dimg (K[ Ty, ..., Tyls) — dim(K[To, ..., T,]aNI)
< dimg(k[To, ..., Tulg) — dim(k[To, ..., Tnla NI
= dimy((k[To, ..., Tu]/inx(I))a).
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This concludes the proof of the lemma. O
Proof of theorem 3.5.12. — We fix y € R""! and ¢ > 0 such that
iny (iny(I)) = iny;y(I) is a monomial ideal.

Applying lemma 3.5.13 to the ideal I of K[Ty,...,T,] and the
point x + €y, we have

dimg ((K[To, ..., Tu]/Da) = dimi((k[To, . . ., Tul/inx+ey(D))a).

Applying that lemma to the ideal in,(I) of k[Ty,...,T,] and the
point y, we have

dimg((k[To, . .., Tul/inx(I))a) = dimg((k[To, ..., Ty]/iny(inx(I)))a)

= dim((k[To, ..., Tn]/inx+sy(1))d)~

This shows that

dimg((K[To, ..., Tu]/D)a) = dimi((k[To, . . ., Tu]/inx(1))a),

as claimed. 0O

Corollary (3.5.14). — Let I be a homogeneous ideal of K[Ty, ..., T,],
let x € R"™ and let (f1,-., fm) be a Grobner basis of 1 at x. Then

I=(fi,.--, fmn)

Proof. — Let ] be the homogeneous ideal of K[Ty, ..., T, ] generated
by the homogeneous components of fi,..., f,. One has ] C I, be-
cause these homogeneous components belong to I. Moreover, for
every j, the initial form in,(f;) is the sum of the initial forms of

X
x° M s Wan
M
=y M, (L |
- <) o= f
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the homogeneous components of f;, so that in,(f;)) C in.(J). As
a consequence, iny(I) C in,(J), hence the equality in,(J) = in,(I).
By theorem 3.5.12, the homogeneous ideals I and ] have the same
Hilbert functions. Since J C I, this implies ] = L. O

3.6. The Grobner polyhedral decomposition associated with an
ideal

3.6.1. — Let I be a homogeneous ideal in K[Ty,...,T,]. For x €
R, let C,(I) be the set of y € R"*! such that in,(I) = in,(I) and let
C,(I) be its closure in R"*!. Lete = (1,...,1) € R"*1,

Here is the main theorem T

Theorem (3.6.2). — Let I be a homogeneous ideal in K[Ty, ..., T,]. The
sets Cx(I) form a T-strict and Re-invariant polyhedral decomposition
OfRn+1. —

/
Proposition (3.6.3). — Let x € R™1.
a) Theset Cy(I) is a closed T-strict and Re-invariant polyhedron in R"*1;
b) If iny(I) is a monomial ideal, then C'.(I) is the interior of C,(I);
(1) ©) Ifine(l) is not a monomial ideal, then there exists y € R"*! such that

b ~iny (in.(l)) is a monomial ideal; for every such y, the polyhedron C.(I) is a
face af Cy(I).
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Proof. — Fixy € R"*! satisfying the conditions of proposition3.5.11,
¢), small enough so that in,,(I) = in,(in,(I)) is a monomial ideal.
As a consequence of b), itmssumemmx(l))
is a monomial ideal and y is small enough. T

Let z = x + y. Fix a finite family (fi,..., f) in I such that the
polynomials in,(f;) are monomials and generate in,(I); we may also
assume that in,(f;) = in,(in,(f;)) for all 7.

For each i, let m; € N"*! be such that in,(f;) = T"™. By the
argument explained in the proof of lemma 3.5.13, there exists a
unique polynomial g; € K[Ty, ..., T,], homogeneous of degree |m;|,
such that T" — g; € I, and such that no monomial appearing in g;
belongs to in.(I); write g; = >} ¢; ' T™ and set f; = T"™ — g;. Since T™
is the only monomial appearing in f; that belongs to the monomial
ideal in, (in,(I)) = in.(I), one has T™ = in,(in,(f;)). The family (f;)
is thus a Grobner basis for I at z.

Lemma (3.6.4). — With the preceding notation, the set C’(1I) is defined by
the strict inequalities
<m - mi, > < log(|ci,m|)/

forallie{1,...,r}andall m € N™* in the support of fi. The set C(I)
is the I'-strict polyhedron defined by the inequalities

(m —m;,-) <log(|ciml),

forie{1,...,r} and m € N™*in the support of f;.

/*_ X
3 //%/ U‘S“ (WX(—LB) - Uhg/ (I)
) /5y Z/z-i-
x //
“x (1)
o (3) el
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Proof. — Let w € C(I). By definition of C’(I), one has iny(f;) €
in, (I) = in,(I), so that the only monomial that can appear in ing(f;)
is T™, hence log(|cim|) + (m,w) < (m;,w) for all i. In the other
direction, if w statisfies these inequalities, then ing(f;) = T forall 4,
hence ing (I) contains in, (I). Since both of these ideals have the same
Hilbert function, they have to be equal and w € C%(I).

Let P be the closed convex polyhedron in R"*! defined by the in-
equalities (m —m;, -) < log(|cim|), for all i and m. By what precedes,
one has C,(I) ¢ P, hence C,(I) C P and C;(I) c P. Replacing an
inequality in the definition set of P by the corresponding equality
amounts to intersecting P with a hyperplane; since P has nonempty
interior, this defines a strict face of P. This implies that P = CL(I),
and then P = C,(I), since it is the closure of its interior. O

Lemma (3.6.5). — The set Cx(I) is a face of the polyhedron C,(I).

Proof. — By the choice of y, one has iny, ¢, (I) = in,(iny(I)) = in,(I)
for all € such that 0 < ¢ < 1. In particular, x + ey € C.(I). If we let ¢
go to 0, we obtain x € C,(I).

Let x” € C,(I); since iny/(I) = iny(I), the preceding analysis still
applies when one replaces the point x with x’, so that

My yey I = iny (iny (D)) = in, (iny (D)) = inz(I)

for ¢ > 0 small enough. Then x’ + ey € C,(I) and x” € C,(I). Taking
the closure, we obtain C,(I) c C,(I).
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Moreover, T is the only monomial in the support of f; that be-
longs to iny(iny(f;)); this implies that in,(iny(f;)) = T™. On the
other hand, the polynomial in,/(f;) — iny(f;) belongs to in,(I), and
none of its monomials belongs to in, (iny(I)), by the definition of f;.
Its initial form at y must vanish, which implies that iny/(f;) = inx(f;).
Since T™ appears in in,/(f;), this shows that 7,(x’) = (m;, x’), so that
log(|cim|) + (m, x’) = (m;, x’) for every m such that T" is in the sup-
port of in,(f;); on the other hand, if T is not in that support, then
log(|cim|) + (m,x") < (m;, x"). Conversely, these inequalities imply
that iny(fi) = in.(f;) for all i, so that iny(I) D ((inx(f;));) = inx(D).
Since both ideals iny(I) and in,/(I) have the same Hilbert function,
we obtain the equality iny (I) = in,(I).

This proves that C,(I) is contained in the face of C,(I) defined
by the equalities log(|cim|) + (m,x") = (m;, x"). Conversely, if w
is a point of this face, then every point of the open segment ]x; w|
belongs to C(I), hence w belongs to Cx(I). O

3

Lemma 3.6.5 proves part c) of proposition 3.6.3. The formulas of
lemma 3.6.4 prove that C,(I) is a closed I'-strict polyhedron in R"*1.
Moreover, since f; is homogeneous, one has (m; — m,w + te) =
(m; — m,w) for every w € R"*!, every t € R and every m € N"*!

3Est-ce que C(I) est toujours l'intérieur relatif de Cy(I)?
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such that ¢; ,, # 0, so that e belongs to the lineality space of C.(I).
Since C(I) is a face of C,(I), the same properties hold for C(I).

Let us finally assume that in,(I) is a monomial ideal. For every
monomial f belonging toin,(I), onehasin,(f) = f, so thatin, (in,(I))
contains in,(I). This implies that in,(I) = in,(in,(I)) contains in,(I),
hence in,(I) = in,(I) since both ideals have the same Hilbert func-
tion. As a consequence, C,(I) = C/(I), hence C,(I) = C.(I). By the
formulas of lemma 3.6.4, C.(I) is a the closure of a nonempty convex
open subset of R"™, and every point of C,(I) = C.(I) belongs to a
face of C;(I). This proves that C.(I) is the interior of C,(I). O

Lemma (3.6.6). — The set of monomial ideals in K[Ty, ..., T,] which are
of the form in,(I), for some x € R"*, is finite.

Proof. — Let & be this set of ideals. If # were infinite, there would
exist, by theorem 3.4.5, two elements x, y € R"*! such that in,(I) and
in,(I) are monomial ideals and iny(I) € in, (I). This contradicts the
fact that these two ideals have the same Hilbert function. O

Proof of theorem 3.6.2. — Let € be the set of all subsets of R"*! the
form Cy(I), for some x € R""'. The sets C,(I) are I'-strict convex
polyhedra in R"*1. Since x € Cy(I) for all x, their union is equal
to R**1. If in,(I) is a monomial ideal, then C(I) has dimension # +1;
otherwise, C,(I) is a face of a polyhedron of the form C,(I). By



172 CHAPTER 3. NONARCHIMEDEAN AMOEBAS

lemma 3.6.6, the set € is finite. Consequently, the set of initial ideals
in,(I) is finite, when x varies in R**1.
Let x, y € R"*1. The preceding description shows that x € C,(I)

~ L
if and only if C(I) € Cy(I). In this case, C,(I) and C,(I) are faces

of a common (n + 1)-dimensional polyhedron of the form C(I); in
particular, Cy(I) is a face of C,/(I). *

If F is a face of C,(I), choose x in the relative interior of F; then
F and Ci(I) are faces of Cy(I) which both have the point x in their
relative interiors; necessarily, F = C,(I).

T ~———C

Let x,y € R"*1. For every point z € C,(I) N Cy(I), one has C,(I) C
Cx(), since z € Cy(I), and C,(I) c C,(I), since z € Cy(I), so that
C.(I) ¢ C(D) N Cy(D). This proves that Cy(I) N Cy(I) is a union of
faces of C,(I). However, a union of faces of a polyhedron is convex
if and only it has a unique maximal element — so that one of these
faces contains all of them. As a consequence, C,(I) N Cy/(I) is a face
of C(I), and it belongs to %. —_— O

3.7. Tropicalization of algebraic varieties

The goal of this section is to generalize theorem 3.3.6 to all ideals
of K[Tfl, ..., TE!]. We first recall how to pass from ideals of this
ring to homogeneous ideals of K[Ty, ..., T,], and back.

4It needs to be explained more clearly

c,(=>c C, (T
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