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3.6. THE GROBNER POLYHEDRAL DECOMPOSITION ASSOCIATED WITH AN IDEANL67

3.6. The Grobner polyhedral decomposition associated with an
ideal

3.6.1. — Let I be a homogeneous ideal in K[Ty,...,T,]. For x €
R"*1, let C}(I) be the set of y € R"*! such that in, (I) = in,(I) and let
C.(I) beits closure in R**!. Lete = (1,...,1) € R"*L,

Here is the main theorem

Theorem (3.6.2). — Let I be a homogeneous ideal in K[Ty, ..., T,]. The
sets Cy(I) form a I'-strict and Re-invariant polyhedral decomposition
OfRn+1.

Proposition (3.6.3). — Let x € R*™L,

a) Theset Cy(I) isa closed T-strict and Re-invariant polyhedron in R"*1;

b) If iny(1) is a monomial ideal, then C’,(1) is the interior of Cy(I);

c) If iny(1) is not a monomial ideal, then there exists y € R"*1 such that
iny (iny (D)) is a monomial ideal; for every such y, the polyhedron C(I) is a
face of C/(I).

Proof. — Fixy € R satisfying the conditions of proposition 3.5.11,
c), small enough so that iny,,(I) = in,(in,(I)) is a monomial ideal.
As a consequence of b), it will be enough to assume that in, (in(I))
is a monomial ideal and y is small enough.
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Let z = x + y. Fix a finite family (fi,..., f;) in I such that the
polynomials in,(f;) are monomials and generate in,(I); we may also
assume that in;(f;) = in,(in,(f;)) for all i.

For each i, let m; € N"* be such that in,(f;) = T"™. By the
argument explained in the proof of lemma 3.5.13, there exists a
unique polynomial g; € K[Ty, ..., T,], homogeneous of degree |m;|,
such that T" — ¢; € I, and such that no monomial appearing in g;
belongs to in,(I); write g; = >’ ¢i »T" and set f; = T — g;. Since T™
is the only monomial appearing in f; that belongs to the monomial
ideal iny (iny(I)) = in;(I), one has T™ = in,(iny(f;)). The family (f;)
is thus a Grobner basis for I at z.

Lemma (3.6.4). — With the preceding notation, the set C(I) is defined by
the strict inequalities

(m —mj,-) +log(lciml|) <0,

foralli € {1,...,r}and all m € N1 in the support of f;. The set C(I)
is the I'-strict polyhedron defined by the inequalities

(m —m;, ) +log(|cim|) <0,
forie{1,...,r}and m € N™ in the support of f;.

Proof. — Let w € C(I). By definition of C(I), one has iny(f;) €
iny (I) = in,(I), so that the only monomial that can appear in ing(f;)
is T™, hence log(|cim|) + (m,w) < {(m;, w) for all i and all m such
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that m # m;. In the other direction, if w statisfies these inequalities,
then in,(f;) = T™ for all i, hence in,(I) contains in,(I). Since both
of these ideals have the same Hilbert function, they have to be equal
and w € C,(I).

Let P be the closed convex polyhedron in R"*! defined by the
inequalities (m — m;, ) +1og(|cim|) < 0, for all i and m # m;. By
what precedes, one has P = C.(I). Since Pis nonempty (it contains z),
one has P = C,(I). O

Lemma (3.6.5). — The set Cx(1) is the smallest face of the polyhedron C,(I)
that contains x.

Proof. — By the choice of y, one has iny, ¢ (I) = in,(iny(I)) = in,(I)
for all € such that 0 < ¢ < 1. In particular, x + ey € C,(I). If we let ¢
go to 0, we obtain x € C,(I).

Let x” € C,(I); since iny(I) = iny(I), the preceding analysis still
applies when one replaces the point x with x’, so that

My yey I = iny (iny (D)) = in, (iny (D)) = inz(D)
for ¢ > 0 small enough. Then x" + ey € CJ(I) and x” € C;(I). Taking
the closure, we obtain C,(I) c C,(I).

Moreover, T is the only monomial in the support of f; that be-
longs to iny(iny(f;)); this implies that in,(iny(f;)) = T™. On the
other hand, the polynomial in,/(f;) — iny(f;) belongs to in,(I), and
none of its monomials belongs to in, (in,(I)), by the definition of f;.
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Its initial form at y must vanish, which implies that iny/(f;) = inx(f;).
Since T™ appears in iny(f;), this shows that 74,(x’) = (m;, x’), so that
log(|cim|)+ (m,x") = (m;, x") for every m such that T" is in the sup-
port of in,(f;); on the other hand, if T is not in that support, then
log(|cim|) + (m,x") < (m;, x"). Conversely, these inequalities imply
that iny(fi) = in.(f;) for all i, so that iny(I) D ((inx(f;));) = inx(D).
Since both ideals iny(I) and in,/(I) have the same Hilbert function,
we obtain the equality iny (I) = in,(I).

This proves that C,(I) is contained in the face of C,(I) defined by
the equalities log(|c; )+ (m —m;, x") = 0 for all i and all m such that
m # m; and log(|ci m|) + (m — m;, x) = 0. Conversely, if w is a point
of this face, then every point of the open segment |x;w[ belongs
to C(I), hence w belongs to Cx(I).

Finally, a face of C,(I) containing a point x is obtained by replac-
ing, in the system of affine inequalities defining this polyhedron,
by the corresponding equalities some of those inequalities which
are equalities at x. The smallest such face is obtained in replacing
all possible such inequalities. By the previous description, this is
exactly Cy(I). O

Lemma 3.6.5 proves part c) of proposition 3.6.3. The formulas of
lemma 3.6.4 prove that C,(I) is a closed I'-strict polyhedron in R"*1.
Moreover, since f; is homogeneous, one has (m; — m,w + te) =
(m; — m,w) for every w € R"", every t € R and every m € N"*!
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such that ¢; ,, # 0, so that e belongs to the lineality space of C,(I).
Since Cx(I) is a face of C,(I), the same properties hold for Cy(I).

Let us finally assume that iny(I) is a monomial ideal. For every
monomial f belonging toiny(I), onehasiny(f) = f, so thatin,(iny(I))
contains iny(I). This implies that in;(I) = in,(iny(I)) contains in,(I),
hence in;(I) = in,(I) since both ideals have the same Hilbert func-
tion. As a consequence, C,(I) = C,(I), hence C(I) = C,(I). By the
formulas of lemma 3.6.4, C/(I) is a the closure of a nonempty convex
open subset of R"*!, and every point of C.(I) = C.(I) belongs to a
face of C,(I). This proves that C.(I) is the interior of C,(I). O

Lemma (3.6.6) (Maclagan). — Theset of monomial ideals inK[Ty, ..., T,]
which are of the form in,(1), for some x € R, is finite.

Proof. — Let # be this set of ideals. If # were infinite, there would
exist, by theorem 3.4.5, two elements x, y € R"*1 such thatin,(I) and
in, (I) are monomial ideals and in,(I) < in,(I). This contradicts the
fact that these two ideals have the same Hilbert function. O

Proof of theorem 3.6.2. — Let & be the set of all subsets of R"*! the
form C,(I), for some x € R**!. The sets C,(I) are I'-strict convex
polyhedra in R"*!. Since x € C(I) for all x, their union is equal
to R**1. If iny(I) is a monomial ideal, then C,(I) has dimension 7 +1;
otherwise, Cy(I) is a face of a polyhedron of the form Cy,(I). By
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lemma 3.6.6, the set € is finite. Consequently, the set of initial ideals
in,(I) is finite, when x varies in R**1,

Let x, y € R"*!. The preceding description shows that x € C,(I)
if and only if Cy(I) € Cy(I). In this case, C,(I) and C,(I) are faces
of a common (1 + 1)-dimensional polyhedron of the form C(I); in
particular, C,(I) is a face of C,(I).

If F is a face of C,(I), choose x in the relative interior of F; then
F and C,(I) are faces of Cy(I) which both have the point x in their
relative interiors; necessarily, F = C,(I).

Let x, y € R"*L. For every point z € C,(I) N Cy(I), one has C,(I) C
Cx(I), since z € Cy(I), and C,(I) c Cy(I), since z € Cy(I), so that
Cz(I) € Cy(I) N Cy(I). This proves that C,(I) N Cy(I) is a union of
faces of C,(I). However, a union of faces of a polyhedron is convex
if and only it has a unique maximal element — so that one of these
faces contains all of them. As a consequence, C,(I) N C,(I) is a face
of Cx(I), and it belongs to 6. O

Proposition (3.6.7). — Let 1 be a homogeneous ideal of K[ Ty, ..., T,] and
let x € R"L. Let L = affsp(Cy(I)) — x be the minimal vector subspace
of R"*! such that C(I) C x + L. One has iny (iny(I)) = iny(I) for every
y €L

Proof. — Let g € in,(I); let fi,..., fr € I be such that ¢ decomposes
as asum ), _; in,(f;) of initial forms with pairwise disjoint supports.
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T ) <
Forall i and all ¢ > 0 small enough, one has t4 Ty="bal, (7,

and iny ey (f;) = iny(iny(f;)). Let ] be the subset of {1,...,7} con-
sisting of all i where i, (£)(y) is maximal; by the disjointness of the
\IJ/ supports of the polynomials in,(f;), one has

~ | iny(g) = ) iny(inx(fi)) = ) ingiey(fi)-
U"d(a)é tn (L) ’ IZGJ: ' ZZGJ: '

If ¢ is small enough, one has x + ¢y € C\(I), hence in, ., (f;) €

iny(I) for all 7, so that in,(g) € iny(I). This implies the inclusion
QM C Cny __9 y(iny(I)) C iny(I). Since these two homogeneous ideals have the
ame Hilbert functions, one has equality. m]
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The goal of this section is to generalize theorem 3.3.6 to all ideals
of K[T#!,..., T£']. We first recall how to pass from ideals of this
ring to homogeneous ideals of K[Ty, ..., T,], and back.

3.71. — Let f € K[T#!,..., T*']. The support in Z" of the homo-
geneous Laurent polynomial f(T1/Ty, ..., T,/Tp) have an infimum,
say p = (po,...,pn)- Explicitly, if S(f) is the support of f and
f = Zmes(s) cmT", then
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3.7. Troﬁicalization of algebraic varieties

The goal of this section is to generalize theorem 3.3.6 to all ideals
of K[Tfl, ..., T1]. We first recall how to pass from ideals of this
ring to homogeneous ideals of K[Ty, ..., T, ], and back.

3.71. — Let f € K[Tfl, ..., T#!]. The support in Z" of the homo-
geneous Laurent polynomial f(T1/Ty, ..., T, /To) have an infimum,

say p = (po,...,pn). Explicitly, if S(f) is the support of f and
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so that pp = —deg(f) and p; = ordr,(f) for j € {1,...,n}. Let
then 1 be the polynomial T f(Ty/Ty, ..., Ty/To); it is the unique
homogeneous polynomial in K[Ty, ..., T,] such that ordr ; (f hy =0
foreveryj€{0,...,n}and f = Tfl .. .Tﬁ"fh(l,Tl, ., Th).

3.7.2. — Let I be an ideal in K[T#!, ..., T#']. The ideal I" gener-
ated by all polynomials f%, for f € I, is a homogeneous ideal of
K[To,..., T,]. The ring morphism K[Ty,...,T,] — K[Ty,...,T,]
with kernel (Tp — 1) corresponds to setting to 1 the homogeneous
coordinate Ty, it identifies the invertibility locus of Ty in Pl’z with
the affine space Ay. The locus of invertibility of Ty ... T, is defined
by requiring further that the other homogeneous coordinates are
invertible too: this is an open subscheme of Py which is is nat-
urally isomorphic to Gy and corresponds to the ring morphism
f f(A,Ty,...,Ty) from K[T, ..., T to K[TF, ..., TE.

Ideals of K[Tlﬂ,...,Tﬁl] correspond to closed subschemes of
Gmp = Spec(K[T:!, ..., T£']). Homogeneous ideals of K[ Ty, . .., Ty]
correspond to closed subschemes of Py = Proj(K[Ty, ..., Ty]). Then
V(I") is the Zariski closure of V(I).

As a consequence, several geometric properties of V(I) are pre-
served when passing to V(I"):

— If V(I) is irreducible, then so is V(I");
— If V(I) is integral, then so is V(I");
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— One has dim(V(I")) = dim(V(I));
— If V(I) is equidimensional, then so is V(I").

3.73. — Let f e K[T{', ..., TE!]; let p € Z" be such that
f=T0 TN T, ., Th).

Letx’ € R"and letx = (0, x") € R"*!; then the definitions of the trop-
ical polynomials and of the initial forms imply that 7¢(x) = (p, x) +
Tan(x’) and iny(f) = Tfl...TZ”inx/(fh). In particular, in,(f") €
in,(I)". Every homogeneous element of I" is of the form T fh
for some elements f € [ and m € Z", one then has in, (T™" fh) =
T™in,( fh) € ine(D", hence iny(I") < iny(I)". Conversely, if f €1,
then there exists m € Z"*! such that T"in,(f)! = in.(f"), hence
T"in,(f)! € in(I"). This proves the relation

ing (D" = (iny (") : (Tg... T)™) =K[To, ..., Tp] N ine (.7,

In any case, identifying R" with {0} x R", the Grobner decom-
position p of R"*! associated with the ideal I' furnishes a similar
decomposition Xj of R”. When x varies in an open cell of this de-
composition, and x’ = (0, x), the initial ideal in,(I") is constant,
hence the initial ideal in,(I) is constant. The reader shall be cautious
not to state an indue converse assertion: for example, in,(I) = (1)
only means that in,/(I") contains a monomial, but the different initial
ideals in,/(I") can be very different.
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1
Definition (3.7.4). — Let K be a valued field, let 1 be an ideal of /gx - (\lﬁkg-ﬁ SN
K[Tfl, ..., T and let X be the closed subscheme V(I) of G e Z "&O
a) The tropical variety x of X is the intersection, for all f € 1, of the \o( K L;)‘/& ?OY EREE Y A
tropical hypersurfaces Ty. ) »>< : . o - .
b) A tropical basis of | is a finite family (f1,..., fm) in 1 such that 1= 2c C\: ! L&‘CWH i)
- g
Ix = Niz1 T /2’016 - "L % I =7 j?Jc &W o Gk w\i/wu% Ao X
By definition, for x €€ R”, one has x ¢ 9x if and only if there exists L ne i P éw
. . ) . C@ S (V\ ¢.b ~e
f € I'such that the supremum defining 7¢(x) is achieved at a single X N )
monomial ¢, T" of f. This also means that NPy, is reduced to a = - NP ot U i
point, or, if K is split, that the initial form in,(f) is a monomial. fﬂc e -
Replacing f by c;;'T™" f, we may assume that 7¢(x) = 0, which is oo " ( f \ ot U

achieved uniquely at the monomial 1, that is NPy, = {0}. From the
point of view of initial forms, this means that in,(f) = 1.

Proposition (3.7.5). — Let 1 be an ideal of K[Tfl,. .., T and let X
be the closed subscheme V(I). Let (X;) be the family of its irreducible =7
components; for every j, let I; = 1(X;) be the prime ideal defining X;. One
has Ix = U]‘ Ix;-

Proof. — TheidealsI; are the minimal primeideals ofK[TI—Ll,. i N J
containing I; as a consequence, their intersection J = (;1; is the
radical of I, the set of all elements f € K[Tfl,. .., T#1] such that

there exists m > 1such that f™ € 1. 1 - N LJ
x =
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For every j, onehas I C I;, hence Ix; C Ix. Consequently, |J Ix; C
“Ix. Conversely, let x eR™=J IX;- For every j, there ex1stﬂ']—e—['
“such that i ine(f;) = 1. Let f =[] f], one has f € (1I; =], hence there
exists m € N such that f™ € I Then iny(f™) = [I;ins(f;)" = 1,
hence in,(I) =1 and x ¢ Ix. |

Proposition (3.7.6). — Let K be a valued field, let 1 be an ideal of
K[TI—'l, ..., T2 and let X be the closed subscheme V(1) of G,

a) The ideal 1 admits a tropical basis. <— %

,9 b) The tropical variety Ix is a I'-strict polyhedral subspace of R". <—

c) For every valued extension L of K, one has Ix, = Ix. G
Proof. — We first prove assertion a) under the assumption that there
assumption tha

is a splitting of the valuation K* — T..

LetI"be the homogma_ea_o/fK[To, ..., T,] associated with L.
Let F]Xh be the set of all x € R"*! such that in,(I") does not contain
any monomial.

Ifx¢ g G”h , then in,(I") contains a monomial, say T™, hence there
exists f € Ih such that in,(f) = T". Then in,(f) = T™ for every
y € R"*! close enough to x, so that 7} is closed in R"*™.

Ifxeg c”h then the open cell C/(I ) is contained in 9Xh as well,
and its closure C.(I") too. Consequently, F/'Xh is a union of some cells
of the Groébner polyhedral decomposition . In particular, it is a
[-strict polyhedral subset of R"*™.
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Let x € R" and let x” = (0,x). Then in,(I) = (1) if and only if
there exists f € I such that in,(f) = 1; then in,/(f") is a monomial
in Tq,..., T, multiplied by a polynomial in To. By homogeneity,
in,(f") is @ monomial. Conversely, if in,/(f") is a monomial, then
in,(f) is a monomial as well. This proves that I is the set of x € R"
such that (0, x) € F}.

Moreover, for every cell C,(I") such that the corresponding initial
ideal in,(I") contains a monomial, we may choose f € I such that
in,(f1) is a monomial. The family (f;) of these polynomials satisfies

the required condition.

To prove c), we may assume that the valuation of the field L has az

splitting, so that assertion a) holds for ;.
The inclusion 7%, C Jx follows from the definition. Indeed, if
x € R"=9, there exists f € Isuch thatthe supremum defining 7(x)

‘is reached for one monomial only, and the same property holds for

f viewed as an element of I;, so that x ¢ I .

Conversely, let x € R" = 9%, and let f = } ¢,,T" € I1 be such
that the supremum defining 7(x) is reached at only one monomial.
Let us consider an expression f = 2;21 ajfj, where a; € L and
fi € 1, and the integer r is minimal. Let S ¢ Z" be the union of the
supports of the f; and let us consider the r X S matrix A given by the
coefficients of these Laurent polynomials. Among all finite families
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Conversely, let x € R" — 7, and let f = } ¢, T" € IL be such
that the supremum defining 7¢(x) is reached at only one monomial.
Let us consider an expression f = Z;.:la jfj, where a; € L and
fi € I, and the integer r is minimal. Let S C Z" be the union of the
Supports of the f; and let us consider the r X S matrix A given by the
coefficients of these Laurent polynomials. Among all finite families
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= (my,...,m,)in S, let us choose one such that the quantity Co M /W-Véﬂ(& ﬂ
- —
R L /176‘ ﬂ - { m K O { % ‘L — K
log(|det(A®)) + > (m;, x) v
i=1
i N R
is maximal, where AR is the r X r submatrix of A with columns /F Q‘L t
my, ..., m,. Since A has rank r, the matrix AR is invertible and there . E Udn N
exists a matrix U € GL(r, K) such that (UA)RUAR = I,. Then o O('A S @7

log(|det((UA)®))+ > (mj, x) = log(|det(Ll)|)+log(|det(AR))+ > (m;, x)

b (0 AR) =k (1) Ak (AT

is maximal. For i € {1,...,r} and m € S =R, exchanging the
columns m and m; replaces the above quantity by R - /Qb

log(I(UA)iml) + > (mj, x) + (m, x) = (my, x),

= ’ M < R
so that \)A, - T \%\ / 7™
. . - R
&S’ﬂ(UA)z,mD +{m,x) > (m;, x).

Replacing the polynomials fi, ..., fr by the polynomials whose A‘Jf QAF 4 ) — Cd" N
coefficients are given by the matrix UA, we may assume that there
are Laurentpolynomlals 8 = Xmes-r Cj,m 1™ with support contained & \ C. \ ‘ Z - )(7 4 QD *2 {m x>
in S—R (for j € {1,...,r}) such that f; = T" + g; and such that a gm 0 el
W&
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sz(%> of tt out i ue geed mena

[108(|C]’,m|) +(m, x)y < (mj, x). Then Com

r ] ‘ >3
f=) aT"+ () ajcim)I", ‘o a | 4 Zm X
;] meZS—Rj;]] % ,Z(X %ﬂf(%
so that
w7(x) > supllogla) + ) o qu i | < /zﬁp le | Teyan )
Then, for every m € S—R and every j € {1,...,r}, one has the A [ ) o \ < @)/& < L, lCJM l
inequality J’ U 0w N d (

log(lajcjml) + (m, x) <log(la;l) + (m;, x),

I\

ot
so that log(lcjm|) + (m,x) < (mj,x) and 1¢(x) = sup,(log(la;|) + ) L XD
<mjlx>)‘
By the assumption x ¢ 7, there exists aunique j € {1,...,7} such /@ ’ PRCY Y - \ + R
that 7¢(x) = log(|a;|) + (m;, x), and log(|c,u|) + (m,x) < 7¢(x) for ¢ pe
o . Mo L)
every m € S=R. Fori € {1,...,r} such that i # j, one thus has < - i 6 ‘QU‘ 4 v’

log(la;|) + (m;, x) <log(|a;|) +{(m;, x)\Then for every m € S=R, one J
<

has = "T (<)
( log(laiciml|) + (m, x) < log(lai|) + (m;, x) <log(la;]) + (mj, x), g Zj M t& + Cw > >
so that log(|c,u|) = log(lajcjml). Since log(lci|) + (m,x) < T¢(x) =

log(|a;|) + (m;, x), one has log(|c; m|) + (m, x) < (m;, x). This proves | i
that the supremum defining 7¢,(x) is reached for the monomial m; Un WOl
p g 75 (x) ; X & }Jﬂ{_ 5| ﬂ 9

%(QJ(\+ CMJ//()

( CM\:\Zab"CMW ‘ = tG\ CJ \ ~~) %GKCJM\* C“\,X)Zémy%) *\-
S T Z.
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only. Since f; € I, we have proved that x ¢ Jx. This proves asser-
tion c). —

In fact, the same argument also allows to deduce assertion a) in full.
We may indeed apply it to every element f of a tropical basis of I,
and every point x € R". For a given f, there are only finitely many
possible families (14, ...,m,) as above, so that when x varies, the
procedure furnishes finitely Laurent polynomials in I. The collection
(fi) of these Laurent polynomials is a tropical basis of I, as sought
for.

For every i, 77, is a I'-strict polyhedral subspace of R", hence so is
their intersection x. This proves b) and concludes the proof of the
proposition. O

Remark (3.7.7). — Let V be a closed subvariety of (C*)" and let I
be its ideal in C[T;',..., T#']. Let us endow the field C with the
trivial valuation. Then Jy;) coincides with the tropical variety v
of definition 2.6.3. This proves that 9y is a Q-rational polyhedral
set. In particular, theorem 2.6.6 applies to V, and this concludes the
proof of the Bieri—-Groves theorem (theorem 2.6.5).

—

Theorem (3.7.8) ( , )
Let I be an ideal of K[Tt', ..., T£'] and let X be the closed subscheme
V(I) of Gn"". The following three subsets of R" coincide:

(i) The tropical variety Ix;

(B, <0 2058
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(ii) The set of all x € R" such that there exists a valued extension L of K
and a point z € X(L) c (L*)" such that x = A(z);

(iii) The image of X* = 7Z'(I) € (G") by the tropicalization map
p = (+log(p(T1)), ..., +log(p(Ts))).
If the valuation of K admits a splitting, they also coincide with:

(iv) The set of all x € R" such that in,(I) # K[T¥!, ..., T:!];,
If K is algebraically closed and its valuation nontrivial, they also coincide
with:

(v) The closure of the set of all x € R" such that there exists a point
zZ € X(Is?)/ C (I(;)” such that x = A(z).

Proof. — Let us denote these subsets of R"” by S; = 9, S, S3,S4, Ss.
As for the proof of theorem 3.3.6, some inclusions are essentially
formal. The equality S, = S3 has been proved in §3.2.9. If the
valuation has a splitting, the equality in,(I) = K[T#!,..., T#!] is
equivalent to the existence of f € I such that in,(I) is invertible, that
is, a monomial. This proves that S; = S4. By definition, Ss is the
closure of a subset of Sy; since S3 is closed, one has S5 C S3. Finally,
for every f € I, one has S; € 5, hence S; C Ix = 5.

The rest of the proof follows from the results proved below. We
first establish (lemma 3.7.9) that the dimension of Jx is at most
that of V(I). Under the assumption that K is algebraically closed
and its valuation is nontrivial, this is then used to prove that for
every point x € Ix NI, there exists z € X(K) such that A(z) = x

_ e e
S, = 59— A,LVV\\/\ }ng
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