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3.7. TROPICALIZATION OF ALGEBRAIC VARIETIES 183

only. Since f; € I, we have proved that x ¢ Jx. This proves asser-
tion c).

In fact, the same argument also allows to deduce assertion a) in full.
We may indeed apply it to every element f of a tropical basis of Iy,
and every point x € R". For a given f, there are only finitely many
possible families (m;,...,m,) as above, so that when x varies, the
procedure furnishes finitely Laurent polynomials in I. The collection
(fi) of these Laurent polynomials is a tropical basis of I, as sought
for.

For every i, 7, is a I'-strict polyhedral subspace of R", hence so is
their intersection x. This proves b) and concludes the proof of the
proposition. O

Remark (3.7.7). — Let V be a closed subvariety of (C*)" and let I
be its ideal in C[Tiﬂ, ..., T*1]. Let us endow the field C with the
trivial valuation. Then Jy ;) coincides with the tropical variety Iy
of definition 2.6.3. This proves that v is a Q-rational polyhedral
set. In particular, theorem 2.6.6 applies to V, and this concludes the
proof of the Bieri—Groves theorem (theorem 2.6.5).

Theorem (3.7.8) ( ;. )
Let 1 be an ideal of K[Tfl, ..., T and let X be the closed subscheme
V() of Gn"". The following three subsets of R" coincide:

(1) The tropical variety Ix;
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(ii) The set of all x € R" such that there exists a valued extension L of K

( and a point z € X(L) C (L*)" such that x = A(z);
> (iii) The image of X" = 7'(I) € (Gm")™ by the tropicalization map

p = (log(p(T1)), ..., log(p(Tn))).
—>r If the valuation of K admzts a splitting, they also coincide with:
(iv) The set of all x € R" such that in,(I) # K[T$!, ..., T#];

> For any algebraically closed extension L of K, endowed wzth an absolute

value extending that of K which is nontrivial, they also coincide with:
(v) The closure of the set of all x € R" such that there exists a point
z € X(L) € (L*)" such that x = A(z).

Proof. — Let us denote these subsets of R" by S; = Ix, Sz, S3, S4, St-
As for the proof of theorem 3.3.6, some inclusions are essentially
formal. The equality S; = S3 has been proved in §3.2.9. If the
valuation has a splitting, the equality in,(I) = K[T#!,..., T£!] is
equivalent to the existence of f € I such that in,(I) is invertible, that
is, a monomial. This proves that S; = S4. By definition, 815“ is the
closure of a subset of Sy; since Sj is closed, one has SIS“ C Sz. Finally,
for every f €I, one has S; C I, hence S; € Ix = 5.

The rest of the proof follows from the results proved below. We
first establish (lemma 3.7.9) that the dimension of Jx is at most
that of V(I). Under the assumption that K is algebraically closed
and its valuation is nontrivial, this is then used to prove that for
every point x € Ix NI", there exists z € X(K) such that A(z) = x
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3.7. TROPICALIZATION OF ALGEBRAIC VARIETIES 185

(proposition 3.7.10). In this case, this implies the inclusion 9x C sk
hence the equality of all five sets.

In the general case, let us consider an algebraically closed valued
extension K’ of K whose value group is nontrivial; in particular,
the valuation admits a splitting. By the case already proved, the
subsets S;,...,S),S; = SI5<' of R" corresponding to the ideal Ix of
K'[T#, ..., T3'] deduced from I satisfy the equalities S =S, = S} =
S, = S’ The inclusions S} C S; and S’ cS,cS = S3 follow
from the definitions, and the equality S = S; has been proved in
proposition 3.7.6, ¢). One then obtains the missing inclusion S; =
S} € S5 € Ss, and that will conclude the proof of the theorem. m]

(Lemma (3.7.9). — The ;%seh%(lms dimension at most dim(X).

’& Y Using theorem 3.7.8, we shall prove later (theorem 3.8.4) that the

dimension of Jx is equal to dim(X).

Proof. — Thanks to proposition 3.7.6, we may assume that the val-
uation of K has a splitting and its image I' is dense in R. Then a
point x € R" belongs to Ix if and only if in,(I) = (1), if and only if
there exists f € I'such thatin,(f) = 1.

Let then C be a maximal cell of the Grobner polyhedral decompo-
sition of Ix and let m = dim(C). Since C is a I'-strict polyhedron,
and since I' is dense in R, there exists a point x in the relative
interior of C whose coordinates belong to I Up to a monomial
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change of variables, we may assume that the affine span of C is
x4+ (Z™ x {(,...,0)}). Fix a finite generating family (f1,..., f)
of in,(I) such that no nontrivial subpolynomial of the f; belongs to
().

Let y € R" such that y;,41 = --- = y, = 0. It follows from propo-
sition 3.6.7 and a homogeneization-dehomogeneization argument
that in,(in,(I)) = in,(I). Since in,(f;) is a subpolynomial of f;,
nonzero if f; # 0, this implies that in,(f;) = f; for all j. Ap-
ply this remark when vy is one of the first m vectors e, ..., e, of
the canonical basis of R". Writing f; = 3 c,,T™, one has ’cf],(ei) =
SUP,eq(f) M = degr, (fj) (recall that the residue field k is endowed
with the trivial absolute value). The relation in,(f;) = f; implies
that f; is a power of T; multiplied by a polynomial in the other
variables. In other words, there exists a Laurent polynomial g; €
K[T£!,,...,Tf'] and p € Z™ such that f; = T''...T)"g;. Let-
ting J be the ideal of K[T=! , T*1] generated by g1, ..., g, one
= Gm; x V(J). Since in,(I) # (1), one has J # (1)

mels
has V(iny(I))

and dim(V(in,(I))) = m + dim(V(J)) > m. On the other hand,
dim(V(iny(I))) = dim(V(I)). This concludes the proof. O

Proposition (3.7.10). — Assume that the field K is algebraically closed and
that its value group T is nontrivial. Let x € Ix NT". Then there exists

z € X(K) such that A(z) = x. If, moreover, X is irreducible, then the set of

such z is Zariski-dense in X.
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3.7. TROPICALIZATION OF ALGEBRAIC VARIETIES 187

Proof. — It suffices to treat the case where X is irreducible. Replac-
ing the ideal I of X by its radical VI does not change J%, nor the set
X(K). We may thus assume that L is a prime ideal of K[T{", ..., T!].
The proof of this proposition is by induction on 7; we will make
use of the case of hypersurfaces, already proved in theorem 3.3.6.
The proposition is obvious if I = (0).
Assume that dim(X) = n — 1. We first recall that there exists
\M-U&" f e K[T*!,...,T:!] such that I = (f). Indeed, let f be a nonzero
JLX(\M element of I; it is a product of irreducible elements, and one of
L/ L A them belongs to I, since I is prime. We can thus assume that f is

irreducible; since K[T*!, ..., T#!] is a unique factorization domain,

Y{ theideal (f)is then prime. The inclusion (f) c Iimplies an inclusion
O»V‘Q“M X € V(f) € Gy of irreducible sets. Since dim(X) = n — 1, this
o oﬁ implies X = V( f ), hence I = (f). Consequently, the proposition
« o
te— follows from corollary 3.3.9 in this case.
>y\ J (T D , We now assume that dim(X) < n — 1. Let x € x N I". To prove

1 0Q W the existence of z € X(K) such that A(z) = x, we shall project X
S5 o+ to Gmpy '. Take a nonzero element f € I. Up to a permutation
UKQ KM\«QU’\ A of the variables, we may assume that f is not a monomial in T,.
We then make a monomial change of variables given by T1 — Ti,

_/CJ

n-1
b & \)\ WW«‘L- Ty — Tsz, LT, = TnTZ , as in the proof of proposition 3.3.7,
o3 so as assuming that, when written as a polynomial in Tj, every
= coefficient of f is a monomial in the other variables. This implies
\__/—/_
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Proposition (3.7.10). — Assume that the field K is algebraically closed and
that its value group T is nontrivial. Let x € Ix NT". Then there exists
z € X(K) such that A(z) = x. If, moreover, X is irreducible, then the set of
such z is Zariski-dense in X.
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Mssume that dim(X) = n — 1. We first recall that there exists , I 3 :zL o
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them belongs to I, since I is prime. We can thus assume that f is
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that the projection morphism p from Gt to Gml ! (forgetting the
first coordinate) induces an integral, hence finite, morphism from X
to its image. This image X’ is then a closed integral subscheme
of Gml’é_l. One has p(x) € Ix, so that there exists z’ € X'(K) such
that A(z’) = p(x). By finiteness, the point z’ lifts to a point z € X(K),
but not all lifts will satisfy A(z) = x. We force this property by
making use of the diversity of possible projections, using multiple
change of variables as above. Let 7t: R” — R"~! be a linear map of
the form (x1,...,x,) — (x2+qgx1,..., X, + q”‘1x1); one has Ker(7t) =
R(-1,4,...,4"1). We shall choose the integer g so that =!(r(x)) N
Ix = {x}. Let x’ € m~}(n(x)) N Ix be such that x’ # x; let C be
polyhedron of a given polyhedral decomposition of Jx such that
x" € Ix; thenly’ — x5 Ker(n), so that there exists t € R such that
x'—x =t(-1,q,...,9" "), and thelineR(-1, 4, 4%, . .., 3" fib) meets
C — x in a nonzero point. On the other hand, since dim(EC> Rx) <
n —1, itis contained in a nontrivial affine hyperplane with equation,
say ajx1 + --- + a,x, = b, and for all but finitely many g € Z,
one has —a; + axg +--- + unq"‘l # 0. We may thus impose that
i (n(x)) N Ix = {x}.

By induction, the set V' of elements z’ € X’(K) such that A(z’) =
7t(x) is Zariski-dense in X’. Since p : X — X’ is a surjective morphism
of irreducible schemes and K is algebraically closed, the inverse
image V = p~1(V’) of V' is Zariski-dense in X(K). For every z € V,

We now assume that dim(X) < n — 1. Let x € 9x NI". To prove

- the existence of z € X(K) such that A(z) = x, we shall project X

to Gmié_l. Take a nonzero element f € I. Up to a permutation

of the variables, we may assume that f is not a monomial in T,.

We then make a monomial change of variables given by T1 — Ty,
n-1

T2 > ToT],..., Ty = T,T] , as in the proof of proposition 3.3.7,

so as assuming that, when written as a polynomial in Ty, every

coefficient of f is a monomial in the other variables. This implies
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3.8. DIMENSION OF TROPICAL VARIETIES 189

one has A(z) € Ix and (A(z)) = A(p(z)) = n(x) since p(z) € V’, so
that A(z) = x. This concludes the proof. ]

3.8. Dimension of tropical varieties

Proposition (3.8.1). — Let K be a valued field and let X be a closed sub-

@« | \1”\ N scheme of Gmy. Let p: Gmyg — Gmy be a monomial morphism of tori,

— (;;4 = ™) let t: R" — R" be the corresponding linear map and let Y = M be the
b schematic image of X under p. One has Iy = n(Ix).

. L d
(VN
ez Proof. — Write
| Gmp = Spec(K[T#!,..., T£']) and Gl =Spec(K[Si,...,SE);
3 53
[o éS A= T v the morphism p corresponds to a morphism of K-algebras
P K[s*,...,St - K[TZ, ..., T
By assumption, p*(S;) is a monomial, for every j. Let I be the ideal
of Xand let] = (p*)~ 1( ), so that the morphism p* induces an injective \19 ( ><) ,u& M M W A Y
morphism of K-algebras, still denoted by p*: aﬂ oty chal
KISt ..., i /T = KT, ... T /L
Then p maps X = V(I) into a Zariski-dense subset of Y = V(J); more- - r
over, by Chevalley’s theorem (Vi1 wp 51)?,

3Add a reference in the yet-to-be-written appendix
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4&,4,7‘7> 2C %7\/%,\): (3; -z
the pointwise image p(X) of X contains a dense open subscheme Y’
of Y.

For every valued extension L of K and every z € X(L), one has
Mp(z)) = m(A(z)); this implies that (Ix) ¢ Fy. Conversely, let
y € Jy. Fix an algebraically closed valued extension L of K which is
non trivially valued. By proposition 3.7.10, the set of points t € Y(L)
uch that A(t) = y is Zariski-dense in Y. Consequently, it meets the
dense open subscheme Y’ of Y; let thus choose t € Y/(L) such that
A(t) = y. Since L is algebraically closed, there exists z € X(L) such
that p(z) = t. Then A(z) € Ix and n(A(z)) = A(p(z)) = A(t) =y,
which proves that 7y C 1t(J%). ]

Proposition (3.8.2). — Let X be a closed subscheme of Gy such that Ix
is finite. Then X is finite.

Proof. — We argue by induction on n. The result is obvious if n =
0. One has X # Gm1”< for, otherwise, one would have 9x = R”;
consequently, I(X) # 0. Choosing a nonzero Laurent polynomial
f € I(X), we may find an adequate monomial projection p : G —
GmI”[1 that induces a finite morphism from X to Gm1”<_1, and let Y be
its image. By proposition 3.8.1, the tropical variety Jy is finite. By
induction this implies that Y is finite. Since p : X — Y is finite, this
implies that X is finite as well. |



Proposition (3.8.2). — Let X be a closed subscheme of Gmy such that Ix
is finite. Then X is finite.

Proof. — We argue by induction on #n. The result is obvious if n =
0. One has X # Gmﬁ for, otherwise, one would have 9x = R’;
consequently, I(X) # 0. Choosing a nonzero Laurent polynomial
f € I(X), we may find an adequate monomial projection p : Gy —
Gmi'(l that induces a finite morphism from X to Gmi'(l, and let Y be
its image. By proposition 3.8.1, the tropical variety Fy is finite. By
induction this implies that Y is finite. Since p : X — Y is finite, this
implies that X is finite as well. m]
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Lemma (3.8.3). — Let K be a split valued field. Let 1 be an ideal of Z—// \/

K[T#, ..., T and let X = V(). Let x € Ix. Then Stary(Ix) =
IV (ing(1))- —

Proof. — Fix a tropical basis (fi, ..., fr) of I. Recall that the polyhe-
dral set Stary(9x) is the set of y € R" such that x + ¢y € Ix for e > 0
small enough.

Let v € R" be such that y ¢ Stary(Jx). Then, for every ¢ > 0
small enough, one has x + ¢y ¢ Jx, hence there exists i such that
iny1ey(fi) is @ monomial. On the other hand, for all ¢ > 0 small
enough, one has iny;.y(f;) = in,(in,(f;)). Consequently, iny(i@)
is a monomial and ¥ ¢ Fv(in.m)-

Conversely, let y € R" be such that y ¢ Jyin,1)- By definition,
there exists g € iny(I) such thatin,(g) isa monomial. There is a finite
family (f1, .7 f7/in I such that the initial forms in,(f1), ..., in.(f+)
have disjoint supportsand g = >, inxf( fj). Since in,(g) is a monomial,
there exists j € {1, ..., r} such that in,(in,(f;)) contains this mono-
mial, and by the disjointness property of the supports, in, (in.(f;))
is a monomial. For ¢ > 0 small enough, one has in,(in,(f;)) =
iny1ey(fj), hence x + ey ¢ Ix for ¢ > 0 small enough and y ¢
Star,(Jx). This proves the other inclusion Star,(9x) C F(in,@).- O

Theorem (3.8.4). — Let K be a valued field, let 1 be an ideal of
K[T#, ..., T and let X = V(). One has dim(Fx) = dim(X).
More precisely, if X is nonempty and every irreducible component of X
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has dimension p, then the tropical variety Ix is a purely p-dimensional
polyhedral set.

Proof. — We start by copying the proof of lemma 3.7.9. We may
assume that the valuation of K has a splitting and that its image I'is
dense in R. We consider a maximal cell C in the Grébner polyhedral
decomposition of x and a point x which belongs to the relative
interior of C. By a monomial change of coordinates, we may assume
that the affine span of Cis x + (R™ X {(0,...,0)}). If I is the ideal
of X, there exists an ideal J of k[T%!, |, ..., T#!] such that in.(I) = (J)
so that V(in,(I)) = G}’ X V(J). Moreover, if p: Gy — Gug "
is the projection (z1,...,zn) = (Zm+1,...,2n), and 7: R" — R"7",
(x1, ..., %n) = (Xms1, - .., Xp) is the corresponding linear projection,
one has V(J) = p(V(in,(I))), hence Fyj) = n(F(in, 1)) Since x be-
longs to the relative interior of C, one has

F(in, (1)) = Stary(Ix) = affsp(C) — x.

Its image under 7 is equal to 0, hence 9y = {0}. By proposi-
tion 3.8.2, this implies that V(J) is finite, so that V(iny(I)) = G| xV(J)
has dimension m. Since V(I) is irreducible, one then has dim(V(I)) =
dim(V (iny(1))) = m. T
Remark (3.8.5). — Let I be an ideal of\[Ti—Ll, ..., T and X = V().
Every absolute value v of Q gives rise to a corresponding tropical
variety Ix,, in R". Let us prove that for all but finitely many prime




Remark (3.8.5). — Let I be an ideal of Q[T?!,..., TZ!] and X = V(D).
Every absolute value v of Q gives rise to a corresponding tropical
variety X » in R". Let us prove that for all but finitely many prime

numbers p, the tropical variety 9, associated with the p-adic ab-
solute value coincides with the tropical variety Ix o associated with
the trivial absolute value. Also recall from example 3.1.7 that 9,
the non-archimedean amoeba of X associated with the trivial valua-
tion on X, is the logarithmic limit set of the complex (archimedean)
amoeaba of X.

The case where X = V(f) is a hypersurface, where f €
Q[T#,...,T#'] is a nonzero Laurent polynomial, follows from
the description of Jx as the non-smooth locus of the tropical
polynomial 7¢. Indeed, if f = e5(r) cmT™, One has

1f,p(x) = sup log(lculy) + (m,x),
mes(f)
for every prime number p. For al but finitely many primes p, one has
lcmlp =1 = |cmlo for every m € S(f). Consequently, 77, = 7f forall
but finitely many prime numbers f, whence the equality Ix , = Ix0.

Let us now prove the general case.

Let x € R" such thaﬁ@%y definition, there exists f € I
such that in, ., (f) = & i = > ¢y T™. For m € S(f), the
set of prime numbers p such that |c;,|, # 1 is finite. For any prime
number p outside of the union of these finite sets, one has in, ||, (f) =
iny |.,(f) = 1, hence x ¢ Jx,. This proves the existence of a finite

set S of prime numbers such that for every prime number p such
that p ¢ S, one has 9x , C Ix,0.
S~

\

\
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To prove the other inclusion, we argue by induction on n. The
result is obvious if dim(X) = n, and it corresponds to the case of
hypersurfaces if dim(X) = n—1; let us now assume that dim(X) < n—
1. Since the polyhedral sets x , and Jx o have the same dimension,
namely dim(X), As in the proof of theorem 3.7.8, there exists a
monomial morphism q: Gp," — G}, whose associated linear
map x: R" — R"7! is surjective and is such that x~'(y) N x

has at most one point, for every y € R"71. Let Y = g(X). One
has x(9x,) = Jy,, for every prime number p, and x(Ix0) = v,
By induction, up to enlarging the finite set S, we may assume that
Iy,p = Iy, for all prime numbers p such that p ¢ S. Thisimplies that
Ix,p = Ix, for all such prime numbers p. Let indeed x € Ix o and
let y = gq(x) € Jy,0. By what precedes, one has y € 9y, = x(Ixp),
so that there exists x” € I , such that y = g(x’). Since Ix , C Ixy,
one has x” € 9x . By the choice of the linear map g, this implies that
x" = x, hence x € Ix ,, as was to be shown.

Beware:

The definition of the nonarchimedean amoebas has been modified
so as to be more consistent with the definition in the archimedean
case. 1 made the necessary corrections up to here, but there are
certainly inconsistencies below.




