TOPICS IN TROPICAL GEOMETRY

Antoine Chambert-Loir

Cours annoté - 15 février 2021

Antoine Chambert-Loir

Université Paris-Diderot.

E-mail: Antoine.Chambert-Loir@math.univ-paris-diderot.fr

Version of February 15, 2021, 13h33

The most up-do-date version of this text should be accessible online at address http://webusers.imj-prg.fr/~antoine.chambert-loir/enseignement/2019-20/gt/toptrop.pdf

©2020, Antoine Chambert-Loir

only. Since $f_j \in I$, we have proved that $x \notin \mathcal{T}_X$. This proves assertion c).

In fact, the same argument also allows to deduce assertion a) in full. We may indeed apply it to every element f of a tropical basis of I_L , and every point $x \in \mathbb{R}^n$. For a given f, there are only finitely many possible families (m_1, \ldots, m_r) as above, so that when x varies, the procedure furnishes finitely Laurent polynomials in I. The collection (f_i) of these Laurent polynomials is a tropical basis of I, as sought for.

For every i, \mathcal{T}_{f_i} is a Γ-strict polyhedral subspace of \mathbb{R}^n , hence so is their intersection \mathcal{T}_X . This proves b) and concludes the proof of the proposition.

Remark (3.7.7). — Let V be a closed subvariety of $(\mathbf{C}^*)^n$ and let I be its ideal in $\mathbf{C}[\mathsf{T}_1^{\pm 1},\ldots,\mathsf{T}_n^{\pm 1}]$. Let us endow the field \mathbf{C} with the trivial valuation. Then $\mathcal{T}_{\mathrm{V}(\mathrm{I})}$ coincides with the tropical variety \mathcal{T}_{V} of definition 2.6.3. This proves that \mathcal{T}_{V} is a \mathbf{Q} -rational polyhedral set. In particular, theorem 2.6.6 applies to V, and this concludes the proof of the Bieri–Groves theorem (theorem 2.6.5).

Theorem (3.7.8) (Einsiedler, Kapranov & Lind, 2006)

Let I be an ideal of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ and let X be the closed subscheme V(I) of $\mathbf{G_m}^n$. The following three subsets of \mathbf{R}^n coincide:

(i) The tropical variety \mathcal{T}_X ;

(i) La vanété tropicale Ex

(ii) The set of all $x \in \mathbb{R}^n$ such that there exists a valued extension L of K and a point $z \in X(L) \subset (L^{\times})^n$ such that $x = \lambda(z)$; (iii) The image of $X^{an} = \mathcal{V}(I) \subset (\mathbf{G_m}^n)^{an}$ by the tropicalization map

 $p \mapsto (\log(p(T_1)), \dots, \log(p(T_n))).$

→ *If the valuation of* K *admits a splitting, they also coincide with:*

(iv) The set of all $x \in \mathbb{R}^n$ such that $\operatorname{in}_x(I) \neq K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$;

For any algebraically closed extension L of K, endowed with an absolute value extending that of K which is nontrivial, they also coincide with:

(v) The closure of the set of all $x \in \mathbb{R}^n$ such that there exists a point $z \in X(L) \subset (L^{\times})^n$ such that $x = \underline{\lambda}(z)$.

Proof. — Let us denote these subsets of \mathbb{R}^n by $S_1 = \mathcal{T}_X$, S_2 , S_3 , S_4 , S_5^L . As for the proof of theorem 3.3.6, some inclusions are essentially formal. The equality $S_2 = S_3$ has been proved in §3.2.9. If the valuation has a splitting, the equality $in_x(I) = K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ is equivalent to the existence of $f \in I$ such that $in_x(I)$ is invertible, that is, a monomial. This proves that $S_1 = S_4$. By definition, S_5^L is the closure of a subset of S_2 ; since S_3 is closed, one has $S_5^L \subset S_3$. Finally, for every $f \in I$, one has $S_2 \subset \mathcal{T}_f$, hence $S_2 \subset \mathcal{T}_X = S_1$.

The rest of the proof follows from the results proved below. We first establish (lemma 3.7.9) that the dimension of \mathcal{T}_X is at most that of V(I). Under the assumption that K is algebraically closed and its valuation is nontrivial, this is then used to prove that for every point $x \in \mathcal{T}_X \cap \Gamma^n$, there exists $z \in X(K)$ such that $\lambda(z) = x$

 $\mathcal{E}_{x} = \bigcap \mathcal{E}_{f}$ $f = \sum c_{m} T^{m}$ $f(x) = \sup \{log_{k_{m}}\}_{+ < m, \times}\}$ Variete tropicale $\mathcal{E}_{f} = \{l(x)\}_{+ < m, \times}\}$ $log_{k_{m}} = \{l(x)\}_{+ < m, \times}\}$ an expectation of $log_{k_{m}} = log_{k_{m}} = log_{k$ f=Zcntm f(z)=0

con la borre repériere

p(f)=0

no

p(cm) p(Tn)

ne peut être atteinte en en soulon

(proposition 3.7.10). In this case, this implies the inclusion $\mathcal{T}_X \subset S_5^K$, hence the equality of all five sets.

In the general case, let us consider an algebraically closed valued extension K' of K whose value group is nontrivial; in particular, the valuation admits a splitting. By the case already proved, the subsets $S'_1, \ldots, S'_4, S'_5 = S_5^{K'}$ of \mathbf{R}^n corresponding to the ideal $I_{K'}$ of $K'[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ deduced from I satisfy the equalities $S'_1 = S'_2 = S'_3 = S'_4 = S'_5$. The inclusions $S'_1 \subset S_1$ and $S'_5 \subset S'_2 \subset S_2 = S_3$ follow from the definitions, and the equality $S'_1 = S_1$ has been proved in proposition 3.7.6, c). One then obtains the missing inclusion $S_1 = S'_1 \subset S'_5 \subset S_3$, and that will conclude the proof of the theorem. \Box

Lemma (3.7.9). — The polyhedral set \mathcal{T}_X has dimension at most $\underline{\dim(X)}$.

Using theorem 3.7.8, we shall prove later (theorem 3.8.4) that the dimension of \mathcal{T}_X is equal to dim(X).

Proof. — Thanks to proposition 3.7.6, we may assume that the valuation of K has a splitting and its image Γ is dense in **R**. Then a point $x \in \mathbf{R}^n$ belongs to \mathcal{T}_X if and only if $\operatorname{in}_x(I) = (1)$, if and only if there exists $f \in I$ such that $\operatorname{in}_x(f) = 1$.

Let then C be a maximal cell of the Gröbner polyhedral decomposition of \mathcal{T}_X and let $m = \dim(C)$. Since C is a Γ -strict polyhedron, and since Γ is dense in \mathbf{R} , there exists a point x in the relative interior of C whose coordinates belong to Γ . Up to a monomial

Se ramerer ou cos des hyperanfors par des projections breir choisis

Bx=BxL }L alg. dos, donce

C= by Lx dense

(=) T + los

(=) T + los

(=) Lx de grobner

de Bx

C= (x) ~ C C b xh c IR 1 (o,x) & C C b xh c IR 1 in z (Ih) est constant sur elast C)

redute) 1 T = offspor (C)
est dingé par un

ingle paral de 12

Ext plyedud con it exite des books topicals (change of variables, we may assume that the affine span of C is $x + (\mathbf{Z}^m \times \{(0, ..., 0)\})$. Fix a finite generating family $(f_1, ..., f_r)$ of $\operatorname{in}_x(I)$ such that no nontrivial subpolynomial of the f_j belongs to $\operatorname{in}_x(I)$.

Let $y \in \mathbb{R}^n$ such that $y_{m+1} = \cdots = y_n = 0$. It follows from proposition 3.6.7 and a homogeneization-dehomogeneization argument that $in_y(in_x(I)) = in_x(I)$. Since $in_y(f_i)$ is a subpolynomial of f_i , nonzero if $f_i \neq 0$, this implies that in_{ν} $(f_i) = f_i$ for all j. Apply this remark when y is one of the first m vectors e_1, \ldots, e_m of the canonical basis of \mathbf{R}^n . Writing $f_i = \sum c_m \mathbf{T}^m$, one has $\tau_{f_i}(e_i) =$ $\sup_{m \in S(f)} m_j = \deg_{T_1}(f_j)$ (recall that the residue field k is endowed with the trivial absolute value). The relation $in_{e_i}(f_i) = f_i$ implies that f_i is a power of T_i multiplied by a polynomial in the other variables. In other words, there exists a Laurent polynomial $g_i \in$ $K[T_{m+1}^{\pm 1},\ldots,T_n^{\pm 1}]$ and $p \in \mathbb{Z}^m$ such that $f_j = T_1^{p_1}\ldots T_m^{p_m}g_j$. Letting J be the ideal of $K[T_{m+1}^{\pm 1}, \dots, T_n^{\pm 1}]$ generated by g_1, \dots, g_r , one has $V(in_x(I)) = G_{m_k}^m \times V(J)$. Since $in_x(I) \neq (1)$, one has $J \neq (1)$ and $\dim(V(\operatorname{in}_x(I))) = m + \dim(V(J)) \ge m$. On the other hand, $\dim(V(in_x(I))) = \dim(V(I))$. This concludes the proof.

Proposition (3.7.10). — Assume that the field K is algebraically closed and that its value group Γ is nontrivial. Let $x \in \mathcal{T}_X \cap \Gamma^n$. Then there exists $z \in X(K)$ such that $\chi(z) = x$. If, moreover, χ is irreducible, then the set of such z is Zariski-dense in χ .

L=dy | iny (inx (I)) = inx (I) }.

when $e=(1,0,-\infty)$ | e=(0,0,0,1,0,0)mx(I)=< f>> $\dot{w}_{x}(\mathbf{I}) = \mathbf{J} \cdot \mathbf{k} \left[\mathbf{I}_{x}^{\pm 1}, \mathbf{T}^{\pm 1} \right]$ $t_{N_{\chi}}(\chi) = J \cdot \left(\left(\left(\frac{1}{1} \right) - \left(\left(\frac{1}{1} \right) \right) \right)$ $T \subset \mathcal{R} \left(T_{d+1}^{II}, T_{h}^{t_{I}} \right)$ $V(in_{\chi}(I)) = G_{m,k} \times V(J)$ et honzontal de din 7, d. $(V(J) + \beta, sinon # 1 \in J, donc 1 \in in_{x}(I))$ Lone X & Cx din V (inx(I)) { dim V(I) = dim (X) (men polyrone de Hilbert) d & dim (x),

Proof. — It suffices to treat the case where X is irreducible. Replacing the ideal I of X by its radical \sqrt{I} does not change \mathcal{T}_X , nor the set X(K). We may thus assume that I is a prime ideal of K[T₁^{±1},...,T_n^{±1}].

The proof of this proposition is by induction on n; we will make use of the case of hypersurfaces, already proved in theorem 3.3.6. The proposition is obvious if I = (0).

Assume that $\dim(X) = n - 1$. We first recall that there exists $f \in K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ such that I = (f). Indeed, let f be a nonzero element of I; it is a product of irreducible elements, and one of them belongs to I, since I is prime. We can thus assume that f is irreducible; since $K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ is a unique factorization domain, the ideal (f) is then prime. The inclusion $(f) \subset I$ implies an inclusion $X \subset V(f) \subseteq G_{mK}^n$ of irreducible sets. Since $\dim(X) = n - 1$, this implies X = V(f), hence I = (f). Consequently, the proposition follows from corollary 3.3.9 in this case.

We now assume that $\dim(X) < n-1$. Let $x \in \mathcal{T}_X \cap \Gamma^n$. To prove the existence of $z \in X(K)$ such that $\lambda(z) = x$, we shall project X to G_{mK}^{n-1} . Take a nonzero element $f \in I$. Up to a permutation of the variables, we may assume that f is not a monomial in T_n . We then make a monomial change of variables given by $T_1 \to T_1$, $T_2 \to T_2T_1^q, \ldots, T_n \to T_nT_1^{q^{n-1}}$, as in the proof of proposition 3.3.7, so as assuming that, when written as a polynomial in T_1 , every coefficient of f is a monomial in the other variables. This implies

hyperinfacts wedn't le spec (A) { in anneau tropped X-V(I) Proposition (3.7.10). — Assume that the field K is algebraically closed and that its value group Γ is nontrivial. Let $x \in \mathcal{T}_X \cap \Gamma^n$. Then there exists $z \in X(K)$ such that $\lambda(z) = x$. If, moreover, X is irreducible, then the set of such z is Zariski-dense in X.

preside
$$S_5^L \supset S_2$$
-

 $\chi_{EE} \left[S_1 \cap \Gamma^n = S_5^L \right] \ni \exists g \in X(L)$

dense dam S_2
 $\lambda(g) = \chi$

« X= VX) ⇒
$$G_X = V_X$$
; we ductible - we ductible $I = (f)$ $I = (f)$

cas de base $n = \dim(X) + 1$, ou din(X) hyperifacs.

メーソして) de hauten 1

Lyenfa's wednest $f \in K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ such that I = (f). Indeed let f = f element of f = f. them belongs to I, since I is prime. We can thus assume that f is irreducible; since $K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ is a unique factorization domain, the ideal (f) is then prime. The inclusion $(f) \subset I$ implies an inclusion $X \subset V(f) \subseteq G_{mK}^{n}$ of irreducible sets. Since dim(X) = n-1, this implies X = V(f), hence I = (f). Consequently, the proposition follows from corollary 3.3.9 in this case.

We now assume that $\dim(X) < n + 1$. Let $x \in \mathcal{T}_X \cap \Gamma^n$. To prove the existence of $z \in X(K)$ such that $\lambda(z) = x$, we shall project X to C^{n-1} . Take $z \in X(K)$ such that $\lambda(z) = x$, we shall project Xto G_{mK}^{n-1} . Take a nonzero element $f \in I$. Up to a permutation of the variables, we may assume that f is not a monomial in T_{η} . We then make a monomial change of variables given by $\mathcal{T}_1 \to \mathcal{T}_1$, $T_2 \rightarrow T_2 T_1^q, \dots, T_n \rightarrow T_n T_1^{q^{n-1}}$, as in the proof of proposition 3.3.7, so as assuming that, when written as a polynomial in T_1 , every coefficient of f is a monomial in the other variables. This implies

=> I f Ex medutible

I=(f).

Premi I) f 70, f= Tfi fi méductills-Ji fi E I remplace f par fi I > f we'dechible 01(f)CI A factoriel >> (f) est premier $h(J)=1 \Rightarrow T=(f).$

$$\lim_{X \to \infty} (X) = n - 1 = 1 = (f)$$

$$X = V(f)$$

$$X = V(f)$$

$$X = \{ \lambda(z), z \in X(n) \}$$

$$X = \{ \lambda(z), z$$

CHO(X DUNC PROJECTION (= DE q) TELLE QUE (T'/*(X)-(X) that the projection morphism p from $G_{m_K}^n$ to $G_{m_K}^{n-1}$ (forgetting the first coordinate) induces an integral, hence finite, morphism from X to its image. This image X' is then a closed integral subscheme of G_{mK}^{n-1} . One has $p(x) \in \mathcal{T}_{X'}$, so that there exists $z' \in X'(K)$ such that $\lambda(z') = p(x)$. By finiteness, the point z' lifts to a point $z \in X(K)$, but not all lifts will satisfy $\lambda(z) = x$. We force this property by making use of the diversity of possible projections, using multiple change of variables as above. Let $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ be a linear map of the form $(x_1, ..., x_n) \mapsto (x_2 + qx_1, ..., x_n + q^{n-1}x_1)$; one has $Ker(\pi) =$ **R**($-1, q, \ldots, q^{n-1}$). We shall choose the integer q so that $\pi^{-1}(\pi(x)) \cap$ $\mathcal{T}_X = \{x\}$. Let $x' \in \pi^{-1}(\pi(x)) \cap \mathcal{T}_X$ be such that $x' \neq x$; let C be polyhedron of a given polyhedral decomposition of \mathcal{T}_X such that $x' \in \mathcal{T}_X$; then $(x' - x) \in \text{Ker}(\pi)$, so that there exists $t \in \mathbf{R}$ such that $x' - x = t(-1, q, \dots, q^{n-1})$, and the line $\mathbf{R}(-1, q, q^2, \dots, q^{n-1})$ meets C - x in a nonzero point. On the other hand, since $\dim(\mathbb{R}C + \mathbb{R}x) \leq$ n-1, it is contained in a nontrivial affine hyperplane with equation, say $a_1x_1 + \cdots + a_nx_n = b$, and for all but finitely many $q \in \mathbb{Z}$, one has $-a_1 + a_2q + \cdots + a_nq^{n-1} \neq 0$. We may thus impose that $\pi^{-1}(\pi(x)) \cap \mathcal{T}_X = \{x\}.$

By induction, the set V' of elements $z' \in X'(K)$ such that $\lambda(z') = \pi(x)$ is Zariski-dense in X'. Since $p: X \to X'$ is a surjective morphism of irreducible schemes and K is algebraically closed, the inverse image $V = p^{-1}(V')$ of V' is Zariski-dense in X(K). For every $z \in V$,

We now assume that $\dim(X) < n-1$. Let $x \in \mathcal{T}_X \cap \Gamma^n$. To prove the existence of $z \in X(K)$ such that $\lambda(z) = x$, we shall project X to G_m^{n-1} . Take a nonzero element $f \in I$. Up to a permutation of the variables, we may assume that f is not a monomial in T_n . We then make a monomial change of variables given by $T_1 \to T_1$, $T_2 \to T_2T_1^q, \ldots, T_n \to T_nT_1^{q^{n-1}}$, as in the proof of proposition 3.3.7, so as assuming that, when written as a polynomial in T_1 , every coefficient of f is a monomial in the other variables. This implies

X' = P(X)Pour q bien chain $f = \sum_{m=1}^{\infty} c_m T_1^m \left(T_2 T_1^m \right)^{m_2}$ = p(x). $\frac{1}{2}$ $\frac{1}$ g'∈ X'(下) $S(f) \rightarrow Z(m)$ $(T_n T_1^{q'})^{m_n}$ $m \neq che$ p: x(K) >> x'(K) ZEX(R) r = 7(x) d(T1) dan k(T)/(f) \mathcal{L} $\pi(\tilde{x}) = x$ est entre on R[Tz,] X = X. => P/x est enher donc fixi =) P(x of ferred

et p(x) = X V = p'(V') conviert a V'est derse pour le topologie de jaiste,

one has $\lambda(z) \in \mathcal{T}_X$ and $\pi(\lambda(z)) = \lambda(p(z)) = \pi(x)$ since $p(z) \in V'$, so that $\lambda(z) = x$. This concludes the proof.

3.8. Dimension of tropical varieties

Proposition (3.8.1). — Let K be a valued field and let X be a closed subscheme of $G_{m_K}^n$. Let $p:G_{m_K}^n\to G_{m_K}^m$ be a monomial morphism of tori, let $\pi:\mathbf{R}^n\to\mathbf{R}^m$ be the corresponding linear map and let $Y=\overline{p(X)}$ be the schematic image of X under p. One has $\mathcal{T}_Y=\pi(\mathcal{T}_X)$.

Proof. — Write

 $\mathbf{G}_{m_{K}}^{n} = \operatorname{Spec}(K[\mathbf{S}_{1}^{\pm 1}, \dots, \mathbf{S}_{n}^{\pm 1}])$ and $\mathbf{G}_{m_{K}}^{m} = \operatorname{Spec}(K[\mathbf{S}_{1}^{\pm 1}, \dots, \mathbf{S}_{m}^{\pm 1}]);$ the morphism p corresponds to a morphism of K-algebras

$$p^*: K[S_1^{\pm 1}, \dots, S_m^{\pm 1}] \to K[T_1^{\pm 1}, \dots, T_n^{\pm 1}].$$

By assumption, $p^*(S_j)$ is a monomial, for every j. Let I be the ideal of X and let $J = (p^*)^{-1}(I)$, so that the morphism p^* induces an injective morphism of K-algebras, still denoted by p^* :

$$K[S_1^{\pm 1}, \dots, S_m^{\pm 1}]/J \to K[T_1^{\pm 1}, \dots, T_n^{\pm 1}]/I.$$

Then p maps X = V(I) into a Zariski-dense subset of Y = V(J); moreover, by Chevalley's theorem (Mumford (1994), corollary 2, p. 51)³,

p(X) est ere paire de X, par construction de X The p(X) conhect un ourt dene de Y

³Add a reference in the yet-to-be-written appendix

Exemple typique $(T_1, T_1) \leftrightarrow T_2$ $(T_1, T_1) \leftrightarrow T_2$ $(T_1, T_1) \leftrightarrow T_2$ $(T_2, T_1) \leftrightarrow T_2$ $(T_2, T_1) \leftrightarrow T_2$ $(T_2, T_1) \leftrightarrow T_2$ $(T_1, T_1) \leftrightarrow T_2$ $(T_2, T_2) \leftrightarrow T_2$ $(T_2, T_1) \leftrightarrow T_2$ $(T_2, T_2) \leftrightarrow T_2$ $(T_2, T_$

 $A^{2} \xrightarrow{P} A^{1}$ $(x, y) \xrightarrow{\sim} \chi$ $(xy-1) \xrightarrow{\sim} (maye)$ $= A^{1} - 105.$

$$P^*(S_j) = T^{*j}$$

HAPTER 3. NONARCHIMEDEAN AMOEBAS $P(2_1, 2_n) = (2_1, 2_n)$

the pointwise image p(X) of X contains a dense open subscheme Y' of Y.

For every valued extension L of K and every $z \in X(L)$, one has $\lambda(p(z)) = \pi(\lambda(z))$; this implies that $\pi(\mathcal{T}_X) \subset \mathcal{T}_Y$. Conversely, let $y \in \mathcal{T}_Y$. Fix an algebraically closed valued extension L of K which is non trivially valued. By proposition 3.7.10, the set of points $t \in Y(L)$ such that $\lambda(t) = y$ is Zariski-dense in Y. Consequently, it meets the dense open subscheme Y' of Y; let thus choose $t \in Y'(L)$ such that $\lambda(t) = y$. Since L is algebraically closed, there exists $z \in X(L)$ such that $\mu(z) = t$. Then $\lambda(z) \in \mathcal{T}_X$ and $\pi(\lambda(z)) = \lambda(\mu(z)) = \lambda(t) = y$, which proves that $\mathcal{T}_Y \subset \pi(\mathcal{T}_X)$.

Proposition (3.8.2). — Let X be a closed subscheme of $G_{m_K}^n$ such that \mathcal{T}_X is finite. Then X is finite.

Proof. — We argue by induction on n. The result is obvious if n = 0. One has $X \neq \mathbf{G}_{m_K}^n$ for, otherwise, one would have $\mathcal{T}_X = \mathbf{R}^n$; consequently, $I(X) \neq 0$. Choosing a nonzero Laurent polynomial $f \in I(X)$, we may find an adequate monomial projection $p : \mathbf{G}_{m_K}^n \to \mathbf{G}_{m_K}^{n-1}$ that induces a finite morphism from X to $\mathbf{G}_{m_K}^{n-1}$, and let Y be its image. By proposition 3.8.1, the tropical variety \mathcal{T}_Y is finite. By induction this implies that Y is finite. Since $p : X \to Y$ is finite, this implies that X is finite as well. □

 $\pi(\mathcal{C}_{x}) = \mathcal{C}_{y}$ LWEY(L), $\lambda(u)=y$ 5
ost dense dans y
pour la top de tarichi. donc rencontre l'evenlle TT(x) = x

Proposition (3.8.2). — Let X be a closed subscheme of $\mathbf{G}_{m}{}_{K}^{n}$ such that \mathscr{T}_{X} is finite. Then X is finite.

Proof. — We argue by induction on n. The result is obvious if n = 0. One has $X \neq \mathbf{G}_{mK}^{n}$ for, otherwise, one would have $\mathcal{T}_{X} = \mathbf{R}^{n}$; consequently, $I(X) \neq 0$. Choosing a nonzero Laurent polynomial $f \in I(X)$, we may find an adequate monomial projection $p : \mathbf{G}_{mK}^{n} \to \mathbf{G}_{mK}^{n-1}$ that induces a finite morphism from X to \mathbf{G}_{mK}^{n-1} , and let Y be its image. By proposition 3.8.1, the tropical variety \mathcal{T}_{Y} is finite. By induction this implies that Y is finite. Since $p : X \to Y$ is finite, this implies that X is finite as well. □

 $F(X) = 0 \implies X = G_{n}^{n} = 0$ $\Rightarrow X = IR^{n} = 0$

PX, = TT (PX) (prop.) PX, est fini (récurera)

X et fini (composition de morphism fini)

Con parhaller dem (X)-0 de t

den (Yx) = din(X)

Lemma (3.8.3). — Let K be a split valued field. Let I be an ideal of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ and let X = V(I). Let $x \in \mathcal{T}_X$. Then $Star_x(\mathcal{T}_X) = \mathcal{T}_{V(in_x(I))}$.

Proof. — Fix a tropical basis (f_1, \ldots, f_r) of I. Recall that the polyhedral set $\underline{\operatorname{Star}}_X(\mathcal{T}_X)$ is the set of $y \in \mathbf{R}^n$ such that $x + \varepsilon y \in \mathcal{T}_X$ for $\varepsilon > 0$ small enough.

Let $y \in \mathbb{R}^n$ be such that $y \notin \operatorname{Star}_x(\mathcal{T}_X)$. Then, for every $\varepsilon > 0$ small enough, one has $x + \varepsilon y \notin \mathcal{T}_X$, hence there exists i such that $\operatorname{in}_{x+\varepsilon y}(f_i)$ is a monomial. On the other hand, for all $\varepsilon > 0$ small enough, one has $\operatorname{in}_{x+\varepsilon y}(f_i) = \operatorname{in}_y(\operatorname{in}_x(f_i))$. Consequently, $\operatorname{in}_y(\operatorname{in}_x(f_i))$ is a monomial and $y \notin \mathcal{T}_{V(\operatorname{in}_X(\Omega))}$.

Conversely, let $y \in \mathbf{R}^n$ be such that $y \notin \mathcal{T}_{V(\operatorname{in}_x(I))}$. By definition, there exists $g \in \operatorname{in}_x(I)$ such that $\operatorname{in}_y(g)$ is a monomial. There is a finite family (f_1, \ldots, f_r) in I such that the initial forms $\operatorname{in}_x(f_1), \ldots, \operatorname{in}_x(f_r)$ have disjoint supports and $g = \sum \operatorname{in}_x(f_j)$. Since $\operatorname{in}_y(g)$ is a monomial, there exists $j \in \{1, \ldots, r\}$ such that $\operatorname{in}_y(\operatorname{in}_x(f_j))$ contains this monomial, and by the disjointness property of the supports, $\operatorname{in}_y(\operatorname{in}_x(f_j))$ is a monomial. For $\varepsilon > 0$ small enough, one has $\operatorname{in}_y(\operatorname{in}_x(f_j)) = \operatorname{in}_{x+\varepsilon y}(f_j)$, hence $x + \varepsilon y \notin \mathcal{T}_X$ for $\varepsilon > 0$ small enough and $y \notin \operatorname{Star}_x(\mathcal{T}_X)$. This proves the other inclusion $\operatorname{Star}_x(\mathcal{T}_X) \subset \mathcal{T}_{V(\operatorname{in}_x(I))}$.

Theorem (3.8.4). — Let K be a valued field, let I be an ideal of $K[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ and let X = V(I). One has $\dim(\mathcal{T}_X) = \dim(X)$. More precisely, if X is nonempty and every irreducible component of X

polyédial de dim²
mois avec une allule
mois avec de dim²

si touts le comp méduchols de X ont dinamin d, Aberdos, le celluls maximales de l'x ont din d. has dimension p, then the tropical variety \mathcal{T}_X is a purely p-dimensional polyhedral set.

Proof. — We start by copying the proof of lemma 3.7.9. We may assume that the valuation of K has a splitting and that its image Γ is dense in **R**. We consider a maximal cell C in the Gröbner polyhedral decomposition of \mathcal{T}_X and a point x which belongs to the relative interior of C. By a monomial change of coordinates, we may assume that the affine span of C is $x + (\mathbf{R}^m \times \{(0, \dots, 0)\})$. If I is the ideal of X, there exists an ideal J of $k[T_{m+1}^{\pm 1}, \dots, T_n^{\pm 1}]$ such that $\operatorname{in}_x(I) = \langle J \rangle$ so that $V(\operatorname{in}_x(I)) = \mathbf{G}_{\operatorname{m}_k}^m \times V(J)$. Moreover, if $p : \mathbf{G}_{\operatorname{m}_K}^n \to \mathbf{G}_{\operatorname{m}_K}^{n-m}$ is the projection $(z_1, \dots, z_n) \mapsto (z_{m+1}, \dots, z_n)$, and $\pi : \mathbf{R}^n \to \mathbf{R}^{n-m}$, $(x_1, \dots, x_n) \mapsto (x_{m+1}, \dots, x_n)$ is the corresponding linear projection, one has $V(J) = p(V(\operatorname{in}_x(I)))$, hence $\mathcal{T}_{V(J)} = \pi(\mathcal{T}_{V(\operatorname{in}_x(I))})$. Since x belongs to the relative interior of C, one has

$$\mathcal{T}_{V(in_x(I))} = Star_x(\mathcal{T}_X) = affsp(C) - x.$$

Its image under π is equal to 0, hence $\mathcal{T}_{V(J)} = \{0\}$. By proposition 3.8.2, this implies that V(J) is finite, so that $V(\operatorname{in}_x(I)) = \mathbf{G}_{\operatorname{m}_k}^m \times V(J)$ has dimension m. Since V(I) is irreducible, one then has $\dim(V(I)) = \dim(V(\operatorname{in}_x(I))) = m$.

Remark (3.8.5). — Let I be an ideal of $\mathbf{Q}[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ and X = V(I). Every absolute value v of \mathbf{Q} gives rise to a corresponding tropical variety $\mathcal{T}_{X,v}$ in \mathbf{R}^n . Let us prove that for all but finitely many prime

dun (Ex) c din (X)

Remark (3.8.5). — Let I be an ideal of $\mathbb{Q}[T_1^{\pm 1}, \dots, T_n^{\pm 1}]$ and X = V(I). Every absolute value v of \mathbb{Q} gives rise to a corresponding tropical variety $\mathcal{T}_{X,v}$ in \mathbb{R}^n . Let us prove that for all but finitely many prime

numbers p, the tropical variety $\mathcal{T}_{X,p}$ associated with the p-adic absolute value coincides with the tropical variety $\mathcal{T}_{X,0}$ associated with the trivial absolute value. Also recall from example 3.1.7 that $\mathcal{T}_{X,0}$, the non-archimedean amoeba of X associated with the trivial valuation on X, is the logarithmic limit set of the complex (archimedean) amoeaba of X.

The case where X = V(f) is a hypersurface, where $f \in \mathbf{Q}[T_1^{\pm 1}, \ldots, T_n^{\pm 1}]$ is a nonzero Laurent polynomial, follows from the description of \mathscr{T}_X as the non-smooth locus of the tropical polynomial τ_f . Indeed, if $f = \sum_{m \in S(f)} c_m T^m$, one has

$$\tau_{f,p}(x) = \sup_{m \in S(f)} \log(|c_m|_p) + \langle m, x \rangle,$$

for every prime number p. For all but finitely many primes p, one has $|c_m|_p = 1 = |c_m|_0$ for every $m \in S(f)$. Consequently, $\tau_{f,p} = \tau_{f,0}$ for all but finitely many prime numbers f, whence the equality $\mathcal{T}_{X,p} = \mathcal{T}_{X,0}$. Let us now prove the general case.

Let $x \in \mathbf{R}^n$ such that $x \notin \mathcal{T}_{X,0}$. By definition, there exists $f \in I$ such that $\inf_{x,|\cdot|_0}(f) = 1$. Write $f = \sum c_m T^m$. For $m \in S(f)$, the set of prime numbers p such that $|c_m|_p \neq 1$ is finite. For any prime number p outside of the union of these finite sets, one has $\inf_{x,|\cdot|_p}(f) = \inf_{x,|\cdot|_0}(f) = 1$, hence $x \notin \mathcal{T}_{X,p}$. This proves the existence of a finite set S of prime numbers such that for every prime number p such that $p \notin S$, one has $\mathcal{T}_{X,p} \subset \mathcal{T}_{X,0}$.

X = V(f) $f = Z c_m T \in Q[T]$ A p G $T \propto f$ sup $(l_{g} | c_m | f^{+(m, x)})$ $f = Z c_m T \in Q[T]$ FREI , xACf, => x & Cf b >> x

To prove the other inclusion, we argue by induction on n. The result is obvious if dim(X) = n, and it corresponds to the case of hypersurfaces if $\dim(X) = n-1$; let us now assume that $\dim(X) < n-1$ 1. Since the polyhedral sets $\mathcal{T}_{X,p}$ and $\mathcal{T}_{X,0}$ have the same dimension, namely dim(X), As in the proof of theorem 3.7.8, there exists a monomial morphism $q: \mathbf{G_m}^n \to \mathbf{G_m}^{n-1}$, whose associated linear map $\chi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ is surjective and is such that $\chi^{-1}(y) \cap \mathcal{T}_{\chi,0}$ has at most one point, for every $y \in \mathbb{R}^{n-1}$. Let $Y = \overline{q(X)}$. One has $\chi(\mathcal{T}_{X,p}) = \mathcal{T}_{Y,p}$ for every prime number p, and $\chi(\mathcal{T}_{X,0}) = \mathcal{T}_{Y,0}$. By induction, up to enlarging the finite set S, we may assume that $\mathcal{T}_{Y,p} = \mathcal{T}_{Y,0}$ for all prime numbers p such that $p \notin S$. This implies that $\mathcal{T}_{X,p} = \mathcal{T}_{X,0}$ for all such prime numbers p. Let indeed $x \in \mathcal{T}_{X,0}$ and let $y = q(x) \in \mathcal{T}_{Y,0}$. By what precedes, one has $y \in \mathcal{T}_{Y,p} = \chi(\mathcal{T}_{X,p})$, so that there exists $x' \in \mathcal{T}_{X,p}$ such that y = q(x'). Since $\mathcal{T}_{X,p} \subset \mathcal{T}_{X,0}$, one has $x' \in \mathcal{T}_{X,0}$. By the choice of the linear map q, this implies that x' = x, hence $x \in \mathcal{T}_{X,p}$, as was to be shown.

Beware:

The definition of the nonarchimedean amoebas has been modified so as to be more consistent with the definition in the archimedean case. I made the necessary corrections up to here, but there are certainly inconsistencies below.