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INTRODUCTION

Tropical geometry has been invented at the end of the xx' century

by different group of scientists, with totally different motivations. It
tirst appeared in computer science (Gaubert, Quadrat,...) for ques-
tions of network optimization, under the names of (max, +)-algebra,
exotic algebra, and, finally, tropical algebra, in reference to their Brazil-
ian colleague Imre Simon. In functional analysis, it is also known as
Maslov dequantization, the phenomenon that happens to the ring laws
of R, written on log-log paper, are renormalized by letting the basis of
logarithm (“Plancks’s constant”) go to 0:

alh

a+pb=hloge”" + eb/hy — sup(a, )

and
a-,b= hlog(e“/h cebhy 5o+ b

Slightly later, it also appeared in algebraic geometry, first for questions
of real geometry (Viro) or enumerative geometry (counting curves sat-
isfying some incidence conditions), for example in Mikhalkin’s corre-
spondence theorem, and then in other contexts as well, such as the fine
study of linear systems on algebraic curves.

To be true, tropical geometry has its origin in much older works: in
some sense, it was founded by Newton in his analysis of Puiseux series
expansion of singularities of curves, a theory that, suitably generalized,
is at the basis of the study of valued fields.

In all of these examples, complicated phenomena in analysis or geom-
etry are studied by reducing them to piecewise linear phenomena. For
example, the Bergman and Bieri-Groves theory of amoebas of complex
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algebraic varieties shows that, drawn on log-log paper and at a large
scale, complex algebraic varieties look like polyhedra.

This course is grounded in algebraic geometry and will try to expose
various examples where this piecewise linear point of view illuminates
algebraic geometry.

A first part of the course will be focused on these amoebas; we will
also need to introduce polyhedral geometry and other themes of al-
gebraic geometry, such as Grobner bases, toric varieties, valued fields,
Berkovich spaces... 1 expect that this part of the course will be of
interest for students of various origins, hence will try to minimize the
requested background.

In a second part, we will prove more specialized theorem in algebraic
geometry, which precisely is too early to say.

These notes are in a moving state. Some parts may be incomplete, some
parts may be false; some may even may be both. Do not hesitate to complain
about any inaccuracy, imprecision, mistake, or misunderstanding you might
be aware of.



CHAPTER 1

POLYHEDRAL GEOMETRY

The fundamental idea underlying tropical geometry is to understand
phenomena in algebraic geometry that are governed by piecewise linear
structures. This first chapter describes the basic notions in polyhedral
geometry.

My basic reference was the book of ( ).

1.1. Algebraic setting

Classical polyhedral geometry is the study of subspaces of R” defined
by affine inequalities, in the same way that affine algebra is the study
of subspaces of R" defined by affine equalities. However, it will be
important later to restrict the subspaces we consider by assuming that
they are defined by affine inequalities whose multiplicative coefficients
are rational numbers.

Therefore, we consider the following general setting.

1.1.1. — We fix an ordered field R. In other words, R is a field, endowed
with total order relation < such that the following properties hold:

a) Foralla,b,c € Rsuchthata < b,onehasa +c < b +c;
b) For all a,b € R such that0 < a,b, one has 0 < ab.

If a € R satisfies a > 0, then 2a = a 4+ a > a + 0 = a and, by induction,
na > 0 for all integers n such that n > 1. Similarly, if a < 0, then na <0
for all n > 1. This proves that R has characteristic zero, hence its prime
subfield is Q.

We also fix a subfield Q of R.
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1.1.2. Examples. — For tropical geometry, the main example will be
givenby R=Rand Q = Q.

For classical polyhedral geometry, one simply takes R = Q = R.

In the theory of valued fields, Q = Q while the group R may be
arbitrary.

For the relation with analytic geometry, it may be more natural to take
R = R} (as a multiplicative group) and Q = Q, the structure of R as a
Q-module being given by a - x = x?. In this setting, it is even useful to
consider the additional datum of a Q-submodule I' of R.

1.1.3. — We will sometimes assume that R is archimedean, that is, for
every a € R such that a > 0, there exists an integer n such that na > 1.
In fact, according to the classification of complete archimedean ordered
tields, this implies that R is a subfield of R.

A variant of this assumption would be that Q is unbounded in R.

A stronger property is that Q is dense in R, but it is not equivalent in
general.

Exercise (1.1.4). — Let E be an ordered field and let F = E(t) be the field
of rational functions in one indeterminate ¢.

a) Show that there exists an ordering on F for which a rational func-
tion f € E(t) is strictly positive if f(n) is strictly positive for all large
enough integers n.

b) With respect to this ordering, the field F is nonarchimedean, and
t > n for every integer n. (One says that ¢ is infinite.)

c) Assume that E is nonarchimedean. Show that for every infinite
element a of E, one has t < a. Prove that E is unbounded in F but not
dense.

1.1.5. — Letn € N and let us consider the vector space R".
We also define a (partial) ordering relation < on R" as follows: for
Xx=(x1,...,x5) ER", wewrite 0 < xif 0 < xg forallk € {1,...,n}.
Let us observe thatif x, y € R" satisfy 0 < x and 0 < y, then0 < x +y.
Moreover, if x € R" and a € Q satisfy 0 < x and 0 < g, then 0 < ax.
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We say that a linear form f on R" is positive, and write f > 0, if its
coefficients are positive, in other words, if it is positive on the vectors of
the canonical basis.

An R-linear form f on R" is Q-rational if it is of the form (x1, ..., x,) —
a1x1+ - +a,x,, withay,...,a, € Q.

An affine form f on R" is Q-rational if it is of the form (x1,...,x,) —
a1x1+---+a,x,+b,withay,...,a, € Qand b € R. If, moreover, b € Q,
then we say that it is strictly Q-rational.

Its ordering induces on the field R a natural topology, for which a basis
of open subsets is given by the open intervals |a;b[, for a,b € R such
that a < b. We then endow R" with the product topology. Since affine
maps are continuous, this allows to endow every finite dimensional
affine space over R with a canonical topology.

Definition (1.1.6). — Let V be an R-vector space and let C be a subset of V.

a) One says that C is convex if for all x,y € C and all a € R such that
O0<a<lonehas(l1-a)x+aycC

b) One says that Cisa cone if 0 € Cand if for all x € Cand all a € R such
that 0 < a, one has ax € C.

The intersection of a family (C;) of convex subsets of R" (resp. of
cones in R") is itself convex (resp. a cone).

Consequently, for every subset A of V, there exists a smallest convex
subset (resp. a smallest convex cone) in R"” that contains A; it is called
the convex hull of A (resp. the convex cone generated by A) and is
denoted by conv(A) (resp. cone(A)).

Alternatively, conv(A) is the set of all points in V of the form a;x; +
coo+ Ay Xy, for x1,...,x, € Aand aq,...,4a,; € R such that 0 < a; for
all i and a1 + - - + a,, = 1. Similarly, cone(A) is the set of all points in V
of the formayx1+---+a,x,, forxy,...,x, € Aandaq,...,a,, € Rsuch
that 0 < g, for all i.

One has conv(@) = @ and cone(@) = {0}.

The convex hull of a finite subset is called a polytope. The convex cone
generated by a finite subset is called a polyhedral cone.

Example (1.1.7). — The set of all positive elements in R" is a polyhedral
cone, it is generated by the vectors of the canonical basis of R”. Similarly
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the set of all positive linear forms on R" is a polyhedral cone of the dual
space; the coordinate forms identify this dual space with R”, and this
identifies the positive cone of (R")* with the positive cone of R".

Definition (1.1.8). — Let V be a finite dimensional R-vector space and let P
be a subset of V.

One says that P is a polyhedron if there exists a finite family (f1, ..., fm)
of affine forms on V such that P is the set of all x € V such that fi(x) < 0 for
ke{l,..., m}.

In this setting, we say that P is defined by the affine forms fi, or, to avoid
ambiguities, by the affine inequalities f; < 0. Note that a polyhedron is
convex and closed.

Remark (1.1.9). — A polyhedron which can be defined by linear forms
1S a convex cone.

Conversely, let C be a cone and let f be a linear form on V which
is bounded from above on C, and let us prove that f(x) < 0 for every
x € C.

By assumption, there exists a € R such that f(x) < a for every x € C.
Since 0 € C, one has 0 = f(0) < a. Let us argue by contradiction
and let x € C be such that f(x) > 0; taking any element ¢ € R such
that t f(x) > a, we obtain f(tx) > a; since tx € C, this contradicts the
definition of a.

In particular, if a polyhedron is a cone, then it can be defined by linear
forms.

1.2. The Farkas lemmas

In linear algebra, a vector v belongs to the subspace generated by
some set A if and only if every linear form f that vanishes on A van-
ishes on v as well. The Farkas lemma is the counterpart of this result in
polyhedral geometry. Actually, this lemma is rather a constellation of
similarly looking results. We will derive them from the following gen-
eral theorem, borrowed from ( ), whose proof is inspired
by the simplex method in linear programming.
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Theorem (1.2.1). — Let V be an R-vector space, let A be a finite subset of V
and let v € V. The following assertions are equivalent:

(i) There exist an integer m, an independent family (uy, ..., uy,) in A and
positive elements ay, ..., a, € Rsuch that v = Z;’il a;u;;

(i) One has v € cone(A);

(iii) For all linear forms f on V such that f(u) > 0 for all u € A, one has
f(@) 2 0;

(iv) Let t be the dimension of the vector subspace generated by A U {v}; for
all linear forms f on V such that f(u) > 0 for all u € A, either f(v) > 0, or
the vector subspace generated by A N Ker(f) has dimension < t — 1.

Proof. — The implications (i)=(ii), (ii)=(iii) and (iii)=(iv) are obvious.
Let us prove the remaining implication (iv)=(i).

First of all, one has v € vect(A). Otherwise, there would exist a linear
form f on V such that A C Ker(f) and f(v) = 1; then the linear form —f
would contradict (iv), since dim(vect(A N Ker(f))) = dim(vect(A)) =
t — 1. In particular, one has t = dim(vect(A)).

Let By C A be a basis of vect(A). We will construct by induction a
(possibly finite) sequence of bases (By) of vect(A) consisting of elements
of A. We endow the set A with a total ordering <. Assume that By is
given and write v € vect(A) as an R-linear combination, v = 3¢, 4,1,
of the elements of Bx. If a, > 0 for all u € By, the assertion (i) is
proven. Otherwise, let u € By be an element such that 4, < 0, chosen
to be minimal for the given ordering of A. Let f be a linear form
on V such that f(#) = 1 and By — {u} C Ker(f); in particular, f(v) =
a, < 0. The subspace generated by A N Ker(f) contains the (t — 1)-
dimensional subspace generated by By — {u}. By the contrapositive
of assumption (iv), there exists w € A such that f(w) < 0; let w be
the smallest such element for the given ordering of A. One has w ¢
vect(Bx = {u}), so that Bx,1 = By U {w} = {u} is a basis of vect(A).

If the sequence (By) is finite, then assertion (i) holds. Otherwise, since
the set of subsets of A is finite, the same basis appears twice; without
loss of generality, we assume that By = B, for some integer s > 0,
and then the sequence is periodic : Bxys = By for all k € N. Let w
be the largest element of A which is removed from one of the bases
By, ..., Bs_1 to construct the next one, and assume that it is removed at
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step p: w € B, but w ¢ B,,1. Since B; = By, this element is restored
at some later step, say g, such that p < g < p + s, thatis, w ¢ B, but
w € Bq+1.

Let f be the linear form considered at step g; we have shown in the
construction that f(v) < 0. Now write v = ZueBp ayu (for some a, € R)
as a linear combination of elements of By; then f(v) = ZueBp a, f(u), and
we will derive a contradiction by showing that all terms are positive.

Letu € B,. If u > w, then u is untouched by the construction process,
hence u € B; and f(u) = 0; then a, f(u) = 0.

Assume that u = w. The addition of w at step g asserts that f(w) < 0;
moreovet, the removal of w at step p asserts that a,, < 0; in particular,
ay f(w) > 0.

Assume finally that u < w. Since w is the minimal element of B, such
that a,, < 0, we have a4, > 0; similarly, w is the minimal element of A
such that f(w) < 0, so that f(u) > 0, hence a, f(u) > 0.

Then f(v) = 2,ep, auf(u) > awf(w) > 0, while we have seen that
f(v) < 0. This contradiction shows that the sequence (By) is finite, and
this concludes the proof. O

A first corollary of the theorem is the Carathéodory theorem:

Corollary (1.2.2) (Carathéodory theorem). — Let V be an R-vector space
and let A be a subset of V. For every vector v € cone(A), there exists a linearly
independent subset A’ of A such that v € cone(A’).

Proof. — Sincev € cone(A), there exists a finite subset {v1, ..., v, } of A
such that v € cone(vy,...,v,,). This allows to assume that A is finite.
By assumption, there exist positive elements of R, ay, ..., a;,, such that
v = 4101 + -+ + a0y. The corollary thus follows from implication
(ii)=(i) in theorem 1.2.1. O

Corollary (1.2.3) (Farkas lemma, version 1). — Let ¢ : R" — R" be a
linear map and let v € R". There exists x € R"™ such that p(x) =vand x > 0
if and only if f(v) > O for all linear forms f on R" such that f o ¢ > 0.

Proof. — Let x € R™ be such that x > 0 and ¢(x) = v; let then f be a
linear form on R"” such that fog > 0. Then f(v) = f(p(x)) = fop(x) >0
since x > 0.
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Conversely, assume that f(v) > 0 for all linear forms f on R" such that
fo@ > 0. Let (e1, ..., en) be the canonical basis of R”; for every k €
{1,...,m}, let vy = @(ex), so that @(x1,...,xXm) = X101 + -+ + XUy for
all x € R™. The assumption says that every linear form f on R"” which
is positive on vy, ..., v, is positive on v. By the implication (iii)=(ii)
of theorem 1.2.1, there exist positive elements x1, ..., x;; € R such that
U = X101+ + XpUp. Letx = (x1,...,%xy); one has x > 0 and p(x) =
0. O

Corollary (1.2.4) (Farkas lemma, version 2). — Let ¢ : R"” — R" be a
linear map and let v € R". There exists x € R™ such that ¢(x) < v if and
only if f(v) > 0 for all linear forms f on R" such that f > 0and f o ¢ = 0.

Proof. — This corollary is deduced from the previous one by rewriting
the given problem.

Let 1 : R¥"*" — R" be the linear map defined by ¢(x, x’, y) = @(x) —
p(x’) +y. For x € R", we can write x = x; — x_, with x;,x_ > 0, so
that there exists x € R™ such that ¢(x) < v if and only if there exists
z € R¥™*" guch that z > 0 and ¥(z) = v. By the previous corollary, this
is equivalent to the inequality f(v) > O for every linear form f on R”
such that f oy > 0. But f o1 > O means that f, f o p and f o (—¢) are
positive, thatis, f > 0and f o ¢ = 0. This concludes the proof. O

Corollary (1.2.5) (Farkas lemma, version 3). — Let ¢ : R" — R" be a
linear map and let v € R". There exists x € R" such that x > 0 and ¢(x) < v
if and only if f(v) > O for all linear forms f on R" such that f > 0 and

fop=0.

Proof. — Let ¢: R™"*" — R" be the linear map given by (x,y) =
@(x) + y. Since Y(x,v — @(x)) = v, there exists x € R” such that x > 0
and ¢(x) < v if and only if there exists z € R"*" such that z > 0 and
Y(z) = v. By the first corollary, this is equivalent to the condition that
f(v) > 0 for every linear form on R” such that f o i) > 0, which means
precisely that f o ¢ and f are positive. O

Corollary (1.2.6). — Let n be an integer and let C be a convex cone in R". The
following propositions are equivalent:
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(1) The cone C is polyhedral (that is, there exist a finite family of vectors
(v1,...,0,) in R" such that C = cone(vy,...,0n));

(ii) There exists a finite family of linear forms (f1, ..., fm) on R" such that
C is defined by the inequalities f;(x) < 0;

(iii) The cone C is a polyhedron.

Proof. — (i)=(ii). Assume that C is polyhedral, thatis, there are vectors
v1,...,09m € Csuch that C = cone(vy, ..., vy) and let us prove that it is
a polyhedron.

By the equivalence (ii)& (iii) in theorem 1.2.1, a vector v belongs to C
if and only if f(v;) > 0 for all 7, so that C is defined by the (possibly
infinite) family of all linear forms f on R" such that f(v;) > Oforalli. We
need to show that a finite subfamily still defines C. To that aim, we will
rather make use of the equivalence with assertion (iv) of theorem 1.2.1.

We first assume that the v; generate R" as a vector subspace. Let ® be
the set of all nonzero linear forms f on R” such that f(v;) > 0 for all i,
and such that Ker(f) has a basis among the v;. Up to a normalization
factor (which can be set by imposing that f takes the value 1 on some of
the v;), this set @ is finite. Equivalence (iv)<(ii) in theorem 1.2.1 asserts
that a vector v € R" belongs to C if and only if f(v) > 0 for every f € ®.
Consequently, @ is a finite set of linear forms that defines the convex
cone C, which is therefore polyhedral.

The general case is similar. Let V = vect(vy, .. ., vy,) and let @y be the
set of all nonzero linear forms f on R” such that f(v;) > 0 for all 7, and
such that V N Ker(f) has a basis among the v;. Modulo addition of a
linear form on R" which vanishes on V and multiplication by a strictly
positive element of R, this set is finite Let ® be the set obtained by
adjoining to @ a basis of the space of linear forms on R" which vanish
on V as well as their additive inverses. Let us show that cone(vy, ..., v,)
is the set of all vectors v € R" such that f(v) > 0 for every f € .

If v € cone(vy,...,vn), then f(v) > 0 for every f € @, obviously.
Conversely, let v € R" be such that f(v) > 0 for every f € ®. To
prove that v € cone(vy,...,v,), we use the implication (iv)=(i) in
theorem 1.2.1. Using the forms of ® — @, we already see that v €
vect(vy,...,0y). In particular, the integer ¢ of assertion (iv) is given by
t = dim(vect(V + Rv)) = dim(V). Let then f be a linear form on R” such
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that f(v;) > 0 for all i and dim(vect({v1,...,vm} NKer(f))) >t — 1. If
dim(vect({v1, ..., vm}NKer(f))) = t, then f vanisheson Vand f(v) = 0.
Otherwise, Ker(f) draws a hyperplane on V which, by assumption, has
a basis consisting of vectors of {v1, ..., v, }. Then, modulo addition of
a linear form vanishing on V and multiplication by a strictly positive
scalar, we may assume that f € ®; (this does not change the sign of
f(v)), and then the hypothesis on v implies that f(v) > 0. Using the
implication (iv)=(i), We conclude that v € cone(vy, ..., V).

(ii)=(i). Let us assume that Cis the set of all x € R” such that f;(x) > 0
forall j € {1,...,p} and let D be the polyhedral cone cone(f, ..., f,)
they generate in (R")". By the implication (i)=(ii) applied to the cone D,
there exist elements vy, ...,v, € R” such that a linear form f on R”
belongs to D if and only if f(v;) > 0 for all i. Let C’ = cone(vy,...,vn),
and let us prove that C = C’. For every i, one has f;(v;) > 0 for all i,
because f; € D; this implies that v; € C. Consequently, C" C C. Let
v € C and let f be a linear form on R” such that f(v;) > 0. We then
have f € D, so that there exist positive elements ay, ..., 4, € Rsuch that
f=aifi+---+apfy, hence f(v) = 3} a;f;(v) > 0. By theorem 1.2.1, this
implies that v € C’, hence C c C'.

The equivalence (ii)< (iii) is remark 1.1.9. O

1.3. Polyhedra and polytopes

In corollary 1.2.6, we have seen that convex polyhedral cones can be
defined in two ways, either from the inside, as the cone generated by a
finite family of vectors, or from the outside, as defined by a finite set of
linear inequalities. Here, we extend this description to polyhedra, by
reducing their study to the case of cones.

1.3.1. — Let V be an R-vector space. Let us embed V into V' = V X R
by the affine map ¢: x — (x,1). An affine map V — R is of the form
f(x) =@(x)+bforp € V'and b € R, hence it extends to the linear form
f": V' — Rgiven by f'(x,t) = ¢(x) + tb. Then the inequality f(x) <0
in V is equivalent to the inequality f’(y) < 0 in V’ together with the
equality ¢t = 1. In this way, every polyhedron in V is viewed as the
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intersection with the affine hyperplane {t = 1} of a convex polyhedral
cone of V’.
We first apply this method to extend the Farkas lemma to polytopes.

Proposition (1.3.2). — Let V be an R-vector space, let A be a finite subset of V
and let v € V. The following assertions are equivalent:

(i) There exists an integer m, an affinely independent family (uo, . .., tm)
in A and positive elements ay,...,a, € R such that v = Y[" a;u; and
1=3"a;

(ii) One has v € conv(A);

(iii) For all linear forms f on V and all b € R such that f(u) > b for all
u € A, onehas f(v) > b.

Proof. — Let V' = VX R; foru € V, set u’ = (u,1), and let A’ be the
set of all u’, for u € A. Condition (i) is equivalent to the existence
of an integer m, an independent family (u(’), ..., uy,) in A” and positive
elements ag,...,a, € R such that v/ = }”,a;u;. Condition (ii) is
equivalent to v’ € cone(A’). All linear forms f’ on V’ are of the form
(x,t) = @(x) = bt, for ¢ € V' and b € R, that is are associated to an
affine form f : x — ¢@(x)—b onV; condition (iii) is then equivalent to the
inequality f’(v”) > O for all linear forms f” on V’ such that f’(u’) > 0 for
all u” € A’. The proposition is then a consequence of theorem 1.2.1. O

Corollary (1.3.3) (Carathéodory theorem). — Let V be an R-vector space
and let A be a subset of V. For every v € conv(A), there exists an affinely
independent subset A’ of A such that v € conv(A’).

Theorem (1.3.4). — Let V be a finite dimensional R-vector space and let P be
a subset of V. Then P is a polyhedron if and only if there exist a polytope Q
and a polyhedral convex cone C such that P = Q + C.

Proof. — Let P be defined in V by a finite family of affine inequalities of
the form f;(x) < bj, where f; isalinear formon Vand b; € R. Let then P’
be the polyhedral convex cone in V X R (with coordinates (x, t)) defined
by the linear inequalities f;(x) — b;jt < 0 and —t < 0. By corollary 1.2.6,
the cone P’ is generated by a finite family of vectors of the form (x;, t;);er,
where x; € Vand t; € R. Necessarily, t; > 0; since P’ is a cone, we may
assume that t; € {0,1}. Let I’ be the set of all i € I such that t; = 0,
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and let I” = I =T’ be the complementary subset. Let Q be the polytope
in V, convex hull of the x; for i € I, and let C be the convex cone in V
generated by the x; for i € I”. Let us now show thatP = Q + C.

Let x € V. One has x € P if and only if (x,1) € P, if and only if there
is a family (a;) of positive elements of R such that (x,1) = >; ai(x;, t;),
which is equivalent to the relations

x:Zaixi+Zaixi and Zaizl.

iel’ iel” iel’

This writes x as the sum of the element x” = }};.y a;x; of P’ and of the
element x” = ;1 a;x; of C, and conversely.

Let us now assume that P = Q+C, where Qis a polytopein Vand Cis
a polyhedral cone in V. Let (x;);c1 be a finite family of vectors of which
Q is the convex hull, and let (y;) ;¢ be a finite family of vectors such that
C = cone(y;). Let P’ be the convex polyhedral cone in V X R generated
by the vectors (x;,1), for i € I, and (y;,0), for j € J. By corollary 1.2.6,
this cone is defined in V X R by a finite family of linear inequalities, say
fi(x,t) < 0. For every k, the function fx on V given by fx(x) = f/(x,1)
is an affine form.

Now, a vector x € V belongs to P if and only if the vector (x,1) of VXR
belongs to P/, that is, if and only if fi(x) < O for all k. This proves that
P is a polyhedron. O

Corollary (1.3.5). — Let ¢ : V. — W be an affine map between finite dimen-
sional R-vector spaces.

a) The image @ (P) of a polyhedron P C V is a polyhedron in W.
b) The inverse image ¢~ (P) of a polyhedron P C W is a polyhedron in V.

Proof. — a) By thetheorem, there exist a polytope Q and a polyhedral
convex cone C in V such that P = Q + C. Then ¢(P) = ¢(Q) + ¢(C).
Obviously, ¢(Q) is a polytope and @(P) is a polyhedral convex cone
in W. Consequently, ¢(P) is a polyhedron in W.

b) This follows from the definition of a polyhedron: if P is defined
in W by affine inequalities f;(y) < 0, then ¢~ 1(P) is defined in V by the
affine inequalities f; o p(x) < 0. O
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Corollary (1.3.6). — The Minkowski sum P + Q of two polyhedra is a polyhe-
dron.

Proof. — The subset P x Q of V X V is a polyhedron: if P is defined by
affine forms f; and Q is defined by affine forms g, then P x Q is defined
by the forms f; o p1 and gx o p2, where p1,p2: VXV — V are the two
projections. Then P + Q) is the image of this polyhedron P X Q under the
addition map, V X V — V, which is affine. O

Corollary (1.3.7). — A polyhedron is a polytope if and only if it is bounded.

Proof. — It is obvious that a polytope is bounded. Conversely, if P is a
polyhedron, let us write P = Q + C, where Q is a polytope and C is a
polyhedral convex cone. If P = @, then it is the convex hull of the empty
family; let us thus assume that P is nonempty — then Q is nonempty as
well. If C # 0, then C is unbounded, because it is a cone, which implies,
since Q is nonempty, that P is unbounded as well. This concludes the
proof. O

Definition (1.3.8). — Let V be a finite dimensional R-vector space and let P
be a nonempty polyhedron in V. The recession cone of P is the set of all
y € V such that x + ty € P for all x € P and all positive t € R; we denote it
by recc(P).

Proposition (1.3.9). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V.

a) If P is defined by affine inequalities fi(x) < b; (where f; is a linear form
on Vand b; € R), then recc(P) is defined by the linear inequalities fij(x) < 0
in V. In particular, recc(P) is a polyhedral convex cone in V.

b) For every x € P, the recession cone of P is also characterized by:

reccP)={yeV,;3IxeP, vVt >0, x +ty € P}.
If R is archimedean, then one also has
recc(P)={y e V;VxeP, x+y €P}.

c) The recession cone recc(P) of P is the unique cone C for which there exists
a polytope Q such that P = Q + C.
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Proof. — a) Lety € V be such that f;j(y) < 0 for all j. Then, for every
x € Pandeveryt € Rsuchthatt > 0,onehas fi(x+ty) = fj(x)+tf;(y) <
b; for all j, hence x +ty € P. Conversely, let y € recc(P) and fix some
element x € P. Then for all j and all ¢ > 0, one has f;(x) + tf;(y) < bj;
when t — oo, this implies f;(y) < 0.

b) Let C’ and C” be these two other sets.

The inclusion recc(P) ¢ C’ is obvious, because P is nonempty. Con-
versely, let y € C" and let x € P be such that x +ty € P forall t € R such
that t > 0. With the notation of a), for all j, one has f;(x) + tfj(y) < b;
for all t > 0 hence f;(y) < 0; consequently, y € recc(P).

One has recc(P) ¢ C”: if x € P and y € recc(P), then x +y € P,
hence y € C”. Conversely, let us assume that R is archimedean and let
us prove that C” C recc(P). If y € C”, then we see by induction that
x+ny € Pforallx e Pand alln > 0. Lett € R such thatt > 0. Since
R is archimedean, there exists n € N such that t < n; then x and x + ny
belong to P. The expression

t t
x+ty—(1—g)x+g(x+ny)

shows that x + ty is a convex combination of x and x + ny; since P is
convex, this shows that x + ty € P.

c) By theorem 1.3.4, there exist a polytope Q and a polyhedral convex
cone C such that P = Q + C. From these relations, we see that P+ C = P
hence, C being a cone, the inclusion C C recc(P).

Let now y € recc(P). Let f be any linear form such that f(x) < 0 for all
x € C; and let us show that f(y) < 0; by theorem 1.2.1, this will imply
that y € C, hence the inclusion recc(P) c C.

Forall x € Qand t € Rsuch thatt > 0, we can write x +ty = x; + ty;,
with x; € Qand y; € C. Then y = (x; — x)/t + y;, hence f(y) =
f(xy —x)/t + f(y;); since Q is bounded, f(x; — x) is bounded as well;
moreovet, f(y¢) < 0. When t — oo, we obtain f(y) <0, as claimed. O

Definition (1.3.10). — Let P be a nonempty polyhedron. The lineality space
of P is the intersection recc(P) N (—recc(P)); we denote it by linsp(P).

Proposition (1.3.11). — Let P be a nonempty polyhedron in a finite dimen-
sional R-vector space V.



16 CHAPTER 1. POLYHEDRAL GEOMETRY

a) The lineality space of P is the largest vector subspace W of V such that
P+W=P.

b) Let ¢ : V. — R" be a linear map and let v € R" be such that P is the
polyhedron defined by ¢(x) < v. Then linsp(P) = Ker(¢p).

Proof. — As the intersection of two convex cones, linsp(P) is itself a
convex cone. By construction, it is stable under x +— —x; this implies
that it is a vector subspace of V. If W is a vector subspace of V such that
P+ W =P, then one has x + Ryy C P for all y € W and all x € P, hence
y € recc(P), so that W C recc(P); since, moreover, W = —W, this implies
W C linsp(P), as claimed.

If P ={x € V; p(x) < v}, we have seen that C = {x € V; ¢p(x) < 0}.
Then linsp(P) = C N (-=C) is the set of x € V such that ¢p(x) < 0 and
@(=x) < 0; the latter condition means ¢(x) > 0; combined, they are
thus equivalent to ¢(x) = 0. O

1.3.12. — Let P be a nonempty polyhedron in a finite dimensional R-
vector space V. We define the dimension of P as the dimension of the
affine subspace affsp(P) it spans. We also define the relative interior of P
to be its interior inside affsp(P); we denote it by relint(P).

Let P be defined by a finite family (f;);¢j of affine inequalities, that is,
P is the set of x € V such that f;j(x) <0 forallj. Leti €].

One says that the inequality fi(x) < 0 is redundant if the family
(fi)jej-(iy defines the same polyhedron. It the system is minimal, then it
has no redundant inequality.

One says that f; = 0 is an implicit equality for this system if one has
fi(x) =0forall x € P. If f; = ¢; — b;, where ¢, is a linear form on V and
b; € R, one also says that ¢; = b; is an implicit equality.

Let I be the set of all j € J such that f; = 0 is an implicit equality for
this system. Assume thatI # J.

Proposition (1.3.13). — Let P be a nonempty polyhedron defined by a system
of affine inequalities (f;) ey in a finite dimensional vector space V, and let (f;)je1
be the subfamily of those which are implicit equalities.

a) The affine subspace spanned by P, aftsp(P), is defined in V by the equal-
ities (f; = 0)jer.
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b) The relative interior of P is defined in affsp(P) by the strict inequalities

(fi <0)jep1-
c) The polyhedron P is the closure of its relative interior.

Proof. — We first treat the case where I = ]J. Then P coincides with
the affine space defined by the vanishing of the affine forms f;, so that
P = affsp(P). In this case, relint(P) = P and all three assertions hold.
For the rest of the proof, we assume that I # J. For every j €
J =1, let us choose a point x; € P such that f;(x;) < 0; let then
& = (Xjer x;)/Card(] = I) be their center of mass (here use that I # J!).
Since P is convex, one has & € P. Moreover, for all j € J =1, one has

(@ =) fixw)/CardJ=1) < f(x;)/Card( =T < 0.

ke]-1

Explicitly, we have constructed a point & € P at which all inequalities
which are not implicit equalities are strict.

Let L be the affine subspace of V defined by the implicit equalities
fi=0,foralljel

Let U be the subset of P defined by the strict inequalities f; < 0, for
j € J=1. By construction, one has & € U.

We need to prove that U = relint(P) and L = affsp(P).

By classical linear algebra, the affine subspace spanned by P is the
subspace of V defined by the affine forms which equal to zero on P.
Let f be an affine form on V such that f = 0 on P. Since f < 0O on P,
corollary 1.4.2 implies that there exist positive elements a; € Rand c € R
such that f = —c + > a;f;. One then has

0=f(&) =—c+ Y aif(&)=—c+ Y a;fi(&),

jeJ=1

so that c = 0and a; = O for all j € J=1. In other words, f is a linear
combination of the affine forms (f;)je; and f = 0 on L. This proves that
L = affsp(P).

Since U is open in L, one has U cC relint(P). Conversely, let x €
relint(P). The line (£x) is contained in L, and the trace of relint(P) on
this line is an open interval containin x. Consequently, there exists t > 1
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such that (1 — t)& + tx € P. Then, for every j € ] =1, one has

filll = HE +tx) = (1= 1) f(&) + tfi(x) <O,

which implies, because 1 -t < 0 and f;(&) < 0, that f;j(x) < 0. This
proves that x € U, hence U = relint(P).

To conclude the proof of the proposition, it remains to prove that P
is the closure of relint(P). Since P is defined by large inequalities, it is
closed. Conversely, let x € P; for t € R such that 0 < t < 1, one has
(1-t)E+tx € relint(P), because f;((1-t)E+tx) = (1-1)f;(E)+tfi(x) <O.
Whent — 1, one has (1 — )& + tx — x, so that x belongs to the closure
of relint(P). O

1.3.14. — For every subset C of V, one defines a subset C° of V* as the
set of all linear forms f on V such that f(x) < 1forall x € C. This subset
is called the polar of C.

The mapping C +— C° reverses inclusions: if C,D are subsets of V
such that C c D, then D° c C°. Moreover, one has C° = conv(C)°.

If C is a cone, then applying the relation f(x) < 1 to all multiples of x
shows that C° is the set of all f € V such that f(x) < Oforall x € C. In
that case, C° is a convex cone. Assume that C is a polyhedral convex
cone and let uq,...,ux € V be such that C = cone(uq, ..., ux). Then
C° is defined by the linear inequalities f(u;) < 0, for j € {1,...,k}.
Consequently, C° is polyhedral convex cone in V*.

If C is a polytope, say C = conv(vy, ..., vy), then C° is defined by the
affine inequalities f(v;) < 1,forj € {1,...,m}, henceitis a polyhedron.

If C is a polyhedron, written as C = Q + recc(C), then we see that
C° = Q° Nrecc(C)° is a polyhedron.

Assume that V = R” (or that it is endowed with a Q-structure, for
some subfield Q of R). If Cis a Q-rational polyhedron, defined by affine
forms with rational linear part and constant term, then its polar subset
is again a rational polyehdron. Indeed, the vertices vy,...,v, of C
belong to Q", and its recession cone is generated by vectors uy, ..., ux
in Q". The claim then follows from the fact that C° is defined in R" by
the affine inequalities f(v;) < 1 (for i € {1,...,m}) and f(u;) < O (for
je{l,..., k}).
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1.3.15. — If L is a vector subspace of V, then L° is a vector subspace
of V*, it identifies with the dual of V/L. If one identifies V with its
bidual V** via the canonical morphism, one then has L = L°°.

More generally, the mapping C — C° gives rise to a duality of poly-
hedra when they contain the origin, and of polyhedral convex cones.

Proposition (1.3.16) (Convex duality). — If C is a polyhedron of V that
contains 0, then C°° = C.

Proof. — The inclusion C C C°° follows from the definitions; let us
prove the converse inclusion. Identify V with R” and write C as the
set of all x € R™ such that ¢(x) < v, for some linear map ¢ : R” — R"
and some v € R". Since 0 € C, one has v; > 0 for all j. If v; > 0,
then ¢;/v; € C° and the condition x € C°° implies that ¢;(x) < v;.
Otherwise, if v; = 0, then tp; € C° for all t € R such that t > 0; if
x € C°°, then tp;(x) < 1forallt > 0, hence ¢;(x) < 0. This proves the
claimed equality. O

The inclusions linsp(C) ¢ C ¢ affsp(C) furnish inclusions affsp(C)° c
C° C linsp(C)°. In fact, with the previous notation, one has linsp(C°) =
C° N (=C°) is the set of all f € V" such that f(v;) = 0 for all j, that is
linsp(C°) = affsp(C)°. By duality, we see that linsp(C)° = affsp(C°).

1.4. Linear programming

Proposition (1.4.1) (Linear programming). — Let ¢ : R" — R" be a linear
map, let v € R" and let C be the set of x € R™ such that p(x) < v. Let f bea
linear form on R™ and let D be the set of all positive linear forms g on R" such
that f = g o @.

a) Assume that both C and D are nonempty. Then there exist & € C and
y € D such that

f(&) =sup f(x) = inf g(v) = y(v).
xeC §€b

b) Let & € Cand y € D. The following are equivalent:
(i) One has f(&) = sup,..c f(x) and y(v) = infeep g(v);
(ii) One has f(&) = y(v);
(iii) One has y(v — @(&)) = 0;



20 CHAPTER 1. POLYHEDRAL GEOMETRY

(iv) If the jth component of v is strictly positive, then the jth component
of the inequality @(&) < v is an equality.
c) If C is nonempty but D is empty, then sup, .- f(x) = +oco. If D is
nonempty but C is empty, then inf, cp y(v) = —oo.

Proof. — a) For x € C and g € D, one has ¢(x) < v, hence f(x) =
g o @(x) < g(v) since g is positive. Conversely, we prove that there
exist £ € C and y € D such that f(&) > y(v). Writing & under the
form x — x’, for positive x, x” € R™, this problem is equivalent to finding
positive x,x” € R™ and a positive linear form g on R” satisfying the
system of inequalities (x, x’, ¢) < (v,0, f, —f), where ¢ : R¥"x(R")* —
R" x R X (R™)? is the linear map given by

P(x, %', 8) = (p(x) — ("), —f(x) + f(x') + g(v), g 0, ~g ° ).

By corollary 1.2.5, this is then equivalent to proving that g(v) + f(u) —
f(u’) > 0 for all positive linear forms g on R”, all positive t € R, all
positive vectors u, u’ € R™ such that go @ —tf = 0 and tv + @(u) —
p(u’) > 0.

Let us prove tht this last assertion holds. First assume thatt > 0; then
f=t"lgop,so that

g@)+ f(u) - fw)=tg(tv+@u—u’) >0

since ¢ > 0 and tv + @(u) — p(u’) > 0. Let us now assume that t = 0,
so that go @ = 0 and ¢(u) — @(u’) > 0. Fix £ € Cand y € D. Since
(&) <vand g > 0, we then have

)+ fu)—f(W') = g(pé)+yopu—-u’) >0,

sincego@ =0,y > 0and @(u —u’) > 0.
b) The implication (i)=(ii) follows from part a). Since

y(@=@(&)=y©)—gop(&)=y@)-f(),

assertions (ii) and (iii) are equivalent. Assume then that y(v) = f(&).
For every x € C and every g € D, one has

f(x) = goplx) < g),
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because g is positive and ¢(x) < v. In particular, f(x) < y(v) = f(&),
so that f(&) = sup,.c f(x). Similarly, g(v) > f(&) = y(v), so that
y(v) = infeep g(v). This proves (i).

By assumption, ¢(&) < v and y is positive, so that y(v — ¢(&)) = 0.
Consequently, the equality y(v — ¢(&)) = 0 is equivalent to the fact that
for every integer j € {1,...,n} such that ¢;(£) < v;, one has y; = 0.
This proves the equivalence of (iii) and (iv).

c) AssumethatD = @. By corollary 1.2.3 applied to ¢*': (R")* — (R™)"
and to the vector f € (R™)" there exists & € R" such that (&) > 0 and
f(x) < 0. Let x € C. For every t € R such that t > 0, the vector
x —t& € R" satisfies p(x —t&) = p(x) —tp(E) < v, hence x —t& € C, so
that

sup f(y) = sup f(x —t&) = f(x) +sup(—tf(&)) = +oo.

yeC t<0 t<0
Similarly, assume that C = @. By corollary 1.2.4, there exists a positive
linear form g on R” such that go@ = 0and g(v) < 0. Letalso y € D. For
everyt € Rsuchthatt > 0,onehasy+tg > 0and (y+tg)op = yop = f,
so that y + tg € D; moreover, (y +tg)(v) = y(v) + tg(v), so that
inf (o) < inf(y + £g)(0) = y(0) + infrg(0) = —oo.

=0

This concludes the proof. O

Corollary (1.4.2). — Let ¢ : R™ — R" be a linear map, let v € R"; let f be a
linear form on R™ and let ¢ € R. Assume that there exists x € R"™ such that
@(x) < v, and that one has f(x) < c for every such x. Then there exists a
positive linear form g on R" such that f = g o ¢ and g(v) < c.

More explicitly, every inequality f(x) < ¢ which is implied by a consis-
tent system of inequalities ¢;(x) < v; is trivially implied by them, in the
sense that a positive linear combination of them is of the form f(x) < b,
with b < c.

Proof. — With the notation of proposition 1.4.1, the set C is nonempty
and f(x) is bounded from above on C. By part c), the set D is nonempty
as well, and part a) implies that there exist £ € R” such that (&) < v
and a positive linear form y on R” such that y o ¢ = f and f(&) = y(v).
Then y(v) = f(&) < c. O
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Corollary (1.4.3). — Let us retain the notation of proposition 1.4.1, assuming
that C and D are both nonempty. For every j € {1,...,n}, exactly one of the
following assertions holds:

(i) There exists & € C such that f(&) = sup, . f(x) and @;(&) < vj;
(i) There exists y € D such that y(v) = infeep g(v) and y; > 0.

Proof. — That (i) and (ii) cannot hold simultaneously follows from
property (iv) of proposition 1.4.1.

Let ¢ = sup, . f(x) = infeep g(v); let £ € C and y € D be such that
f(&) = y(v) = c. Assume that (i) does not hold, that is, that for every
x € Csuch that f(&) = sup,.c f(x), one has ¢;(£) = v;. In other words,
the inequality ¢;(£) > v; is implied by the inequalities @;(£) < v; and
f(x) >c.

By proposition 1.4.1 applied to the linear map ¢’ : R X R — R" xR
defined by ¢’(x,t) = (¢(x),—f(x)), the vector v’ = (v,—c), and the
linear form —¢;, there exist positive elements ay,...,4,,,t € R such
that >,/° a;p; —tf = —@; and }/. a;v; — tc < —v;. Let a’ € R" be
given by a; = a; for i # j and a; = aj + 1; then /1, alp; = tf and
>y a}v; < tc; moreover, a;. > 1. Let g, ¢’ : R" — R be the linear forms
given by g(y1,...,Ym) = Diqaiyi and g'(y1, ..., Ym) = Xiq 41Yi, SO
thatgop =tf —qj, g’ op =tf, g(v) = tc—vjand g’'(v) = tc; moreover,
g and g’ are positive.

First assume that t = 0. Then the linear form y’ = y + ¢’ is positive
and satisfies ' o ¢ = y o ¢ = f; moreover, y'(v) = y(v) = c and the jth
component of y’ is strictly positive, so that (ii) holds.

Now assume that t > 0. Then )’ = t~1¢’ is a positive linear form such
that " o ¢ = f and y’(v) = c; moreover, the jth component of y’ is
strictly positive, so that (ii) holds. O

Corollary (1.4.4). — With the notation of proposition 1.4.1, assume that C
and D are nonempty. There exists a linear form y on R" such that, if ] is the
setof j € {1,...,n} such that the jth component of y is strictly positive, the
family (¢;)jey is linearly independent.

Proof. — Fix £ € C and y € D such that f(§) = g(v). Letay,...,a,
be the coordinates of y; they are positive and one has f = y o ¢ =
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i ajpjand f(&) = g(v) = X7 a;v;. In other words, in the space
(R")* X R, the vector (f, f(£)) belongs to the cone generated by the
vectors (¢, v;). By Carathéodory’s theorem (corollary 1.2.2), there exist
asubset ] of {1,...,m} and positive elements b; € R (for j € J) such that
(f,8(v)) = Xjebj(@j,vj) and such that the family (¢;, v;);e is linearly
independent in (R")* X R. We may even assume that b; > 0 for all j € ].

Let ¢’ : R" — R/ be the linear map x — (@i(x))je, letv" = (v))j¢ € RJ
and let y” be the positive linear form on R! given by y'(y) = X, bjy;.
One has ¢’(£) < v and Y’ o ¢ = f, so that £ and )’ belong to the
sets C" and D’ associated by proposition 1.4.1 with the linear map ¢’,
the vector v’ and the form f. Forall j € ], one has b; > 0, hence part b) of
that proposition implies that ¢;(£) = v;. As a consequence, the families
(@, 9j(&))jeg and (¢;)jey have the same rank, which proves that the latter
family is linearly independent. Then, the linear form y; on R" defined
by y1(y) = 21 bjy; satisfies the requirements of the corollary. O

1.5. Faces, facets, vertices

1.5.1. — Let P be a nonempty polyhedron in a finite dimensional R-
vector space V. Let f € V*be a linear form on V (possibly, f = 0). If f is
bounded from above on P, then linear programming (proposition 1.4.1)
implies that there exists x € P such that f(x) = supp(f). The subspace
of P defined by the equality f = sup(f) is then a polyhedron (it suffices
to add the inequality — f < —supp(f) to a system defining P), which we
call the face of P defined by f.

According to this definition, a face is never empty. However, some
authors (actually, most authors) let the empty set be a face of a polyhe-
dron.

If f =0, then the face of P defined by f is equal to P.

Let us assume that f # 0. Then the affine hyperplane {f = supp(f)}
is called the the supporting hyperplane detined by f; it separates the two
closed halfspaces {f > supp(f)} and {f < supp(f)} in V, and P is
contained in the latter.
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The faces of P are ordered by inclusion. Faces of P which are maximal
among those distinct from P are called facets. Faces of dimension 0
(these are the faces which are reduced to a point) are called vertices.

Proposition (1.5.2). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V.

a) Let (fj)je) be a finite family of affine forms on V that defines P (that is,
x € Pifand only if fi(x) < 0 forall j € ]). Then a nonempty subset F of P is
a face of P if and only if there exists a subset 1 of ] such that F = {x e P; Vj €
I, fi(x) = 0}.

b) The set of faces of P is finite and nonempty.

c) Let F be a face of P. Then a subset ¥’ of F is a face of P if and only if it is
a face of F.

Proof. — a) We may assume that V = R". For every j € ], write
fi = ¢; —bj, where @; is alinear formon R" and b; € R. Let ¢ : R" —» R
be the corresponding linear map and let b = (b;) € Rl

Let Fbe a face of P. Let f be a linear form on V which is bounded from
above on P and let F = {x € P; f(x) = supp(f)} be the corresponding
face. By linear programming (proposition 1.4.1), there exist a positive
linear form ¢ on R” such that g o ¢ = f and £ € F such that f(&) =
supp(f) = @(b). Let (a;) be the coordinates of ¢ so that f = go @ =
2. a;j@j; let I be the subset of | consisting of those j such that a; > 0. By
proposition 1.4.1, b), onehas F = {x € P; Vj € I, ¢j(x) = b;}.

Conversely, let I be a subset of ] and let F be the subset of P defined
the equations @;(x) = bj for j € I, and ¢;(x) < b; for j € J=1. Assume
that F # @. Let f = };cipjand ¢ = 3,1 b;. For x € P, one has f(x) <,
and f(x) = c if and only if x € F. Since F # @, this proves that F is the
tface of P defined by f.

b) This follows from the preceding assertion since the set of all subsets
of ] is finite and nonempty. (In any case, P is a face of itself.)

¢) Retain the notation from a) and let I be a subset of ] such that F
is defined in P by the equalities fi(x) = 0 for j € I. We may view F
as a polyhedron by adding to the system defining P the inequalities
—fi(x) < 0 (for j € I).
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If a subset I’ of Fis a face of P, itis defined in P by additional equalities
fi(x) = 0, for j in a subset I’ of J. If we add to these the inequalities
—fi(x) <0, for j € I, this still defines I, because I’ C F. Consequently,
F’ is a face of F.

Conversely, if F’ is a face of F, let it be defined in F by additional
equalities f;j(x) = 0, for j in a subset I; of ], as well as by additional
equalities —f;(x) = 0, for j in a subset I} of I. LetI’ = 1] UL; then F" is
defined in P by the additional equalities f;(x) = 0, for j € I'. This proves
that F’ is a face of P. O

Proposition (1.5.3). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V. Let (f;)je be a finite family of affine forms that defines P
(that is, P is the set of x € V such that fi(x) < 0 for all j € ]);, assume
that it is minimal, that is, has no redundant inequality. For every j € J, let

Fi={x€eP; fj(x) = 0}.

a) Let j € ]. IfF; = P, then f;(x) = 0 is an implicit equality in this system;
otherwise, F; is a facet of P.

b) If F is a facet of P, then there exists a unique j € J such that F; = F (and
F; #P).

]

Proof. — a) Let I be the subset of all i € ] such that fi(x) = 0 is an
implicit equality in the given system defining P; in other words, i € I if
and only if F; = P.

Let j € ]. Assume that F; is empty. Then there exists a family (a;);¢)
of positive elements in R, as well as a strictly positive element ¢ €
R, such that f; = —c + XY, a;if;. If we had a; > 1, we would write
2izj aifi(x) + (a; — 1) f;(x) = c on P, hence ¢ < 0, a contradiction, so that
aj < 1. Then (1 -a;)f; = —c+ Xz aifi, so that (1 —a;)fi(x) < —c <0 for
all x € P; this implies that the inequality f;(x) < 0 is redundant in the
given system defining P. As a consequence, F; is not empty.

By the previous proposition, this proves that F; is a face of P, and that
the only faces of P containing F; are F; and P. If F; # P, then F; is a facet
of P; otherwise, F; = P,and j € L.

b) Let F be a facet of P and let K be a subset of | such that F is defined
by additional equalities fx(x) = 0 for k € K. Since F # P, the set K is not
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contained in I. Let then k € K=I, onehas F; # @ and F Cc F; C P. Since
F is a facet, this implies that F = Fy.

Letnow i € J=1Iand let x € relint(P), so that fi(x) <Oforallj € J=1.
Since no inequality in the given system is redundant, there exists y € V
such that fi(y) > 0 and fj(y) < O for all j € J such that j # i. Since
fi is affine and fi(y) > 0 > fi(x), there exists a unique point z on the
segment [x; y] such that f;(z) = 0; moreover, z # x,y. For j € ] = {i},
one has f;(x) < 0and fj(y) < 0, so that f;(z) < 0. This shows that z € F;
and that z ¢ F; for any j € ] = {i}. In particular, F; # F; for distinct i, j
inJ=—1 O

Corollary (1.5.4). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V.

a) Every face of P is the intersection of some family of facets of P;

b) The facets of P have dimension dim(P) —1;

c) The polyhedron P has no facets if and only if it is an affine subspace;
d) The relative interior is the complement in P of the union of all facets.

Proof. — We fix a finite family (f;);e of affine forms on V that defines P;
we also assume that it is minimal, so that no inequality is redundant.
Let I be the subset of ] consisting of all i € J such that fi(x) = 0is an
implicit equality on P.

a) Let F be a face of P. By proposition 1.5.2, we know that there exists
a subset K of ] such that F = {x € P; Vk € K, fx(x) = 0}. Then F is the
intersection of the facets Fy, for k € K=1.

b) Let j € J=1 The facet F; = PN {fj(x) = 0} is defined by the
family of inequalities f;(x) < 0, for i € ], to which we add the inequality
—fj(x) < 0. On this new system, there are two new implicit equalities,
namely f;(x) = 0 and —f;(x) = 0 — which are equivalent — but there
are none other, because F; ¢ F;. fori € J—Iand j # i.

The dimension of P, being the dimension of the affine subspace
defined by the implicit equalities in the given system, is equal to
dim(V)—rank((f;)ie1). Similarly, the dimension of F; is equal to dim(V)—
rank((f;)icru(jy)- In particular, dim(P) — 1 < dim(F;) < dim(P). Since
j € I, the form f; is not a linear combination of the forms f;, for i € I, so
that dim(F;) = dim(P) - 1, as was to be shown.
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c) Assume that the polyhedron P is an affine subspace. Then every
linear form which is bounded from above on P has to be constant, hence
defines the face P itself. This proves that P is the only face of P, and P
has no facets.

Conversely, if P has no facets, then I = J, all inequalities in the given
system that defines P give rise to implicit equalities and P is an affine
subspace.

d) This is a consequence of proposition 1.3.13, b). O

Corollary (1.5.5). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V. A face F of P is minimal if and only if it is an affine subspace;
it is then a principal homogeneous space under the lineality space of P.

In particular, if linsp(P) = 0, this proves that the minimal faces of the
polyhedron P are its vertices. Conversely, if P has vertices, then they
are minimal faces, hence linsp(P) = 0.

Proof. — Let F be a face of P. Since a face of F is a face of P, Fis a
minimal face of P if and only if it has no facets, that is, if and only if it
is an affine subspace of V. Assume that it is the case.

Let (f)je be a finite family of affine forms that defines P; we may
assume that it is minimal so that no inequality is redundant in this
system. For every j € ], write f; = ¢; — b;, where ¢; is a linear form
on V and b; € R. By proposition 1.3.11, linsp(P) is the set of all x € V
such that ¢;(x) = 0 for all j.

Let I be a minimal subset of ] such that F = {x € P; Vi € I, fi(x) = 0}.
Then F is defined by the system of inequalities given by the union of
the families (—f)ic1 and (fj)j). These forms are obviously bounded
from above on F. Since, by assumption, F has no facets, each of them is
constant on F, hence F is a translate of linsp(P). O

Corollary (1.5.6). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V. Let F.(P) be the set of faces of P to which we add the empty
set; ordered by inclusion, this is a catenary lattice.

Recall that a lattice is an ordered set of which every finite subset has
a least upper bound (join) and a greatest lower bound (meet); a lattice is
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catenary if and only if all maximal totally ordered subsets have the same
cardinality.

Proof. — The ordered set #.(P) as a unique minimal element, @, and
a unique maximal element, P. If nonempty, then the intersection of
two faces is again a face, and this face is the largest face of P which is
contained in both of them. By induction, the intersection of any subset
of #.(P) belongs to #.(P), and it is their greatest lower bound. For
F,F € %.(P), the intersection of all G € #.(P) such that F ¢ G and
F' C G, belongs to #.(P), and is their least upper bound. This proves
that #.(P) is a lattice.

Let us consider a maximal totally ordered subset in %.(P). It can be
written on the form {F, ..., F,}, where F, ..., F,, are either faces of P
or the empty set such that Fy ¢ F; ¢ --- € F;;. Since it is maximal,
Fo = @ and F; is a minimal face of P, so that dim(F;) = dim(linsp(P)).
Moreover, by maximality, for every j € {1,...,m}, F;_1 is a facet of F;,
so that dim(F;) = dim(F;_;) + 1. Still by maximality, one has F,, = P.
Finally, dim(P) = dim(F;) + (m — 1) = dim(linsp(P)) + (m — 1), so that
m =1+ dim(P) — dim(linsp(P)). This concludes the proof. O

Remark (1.5.7). — Let C be a polyhedral convex cone in a finite dimen-
sional R-vector space V. Observe that every face of C is a polyhedral
convex cone. Indeed, since C is a cone, and not only a polyhedron, there
exists a finite family (¢;);ej of linear forms defining C, that is, such that
C is the set of x € V such that ¢;(x) < 0 for all j. Let F be a face of C;
there exists a subset I of | such that an element x € P belongs to F if
and only if ¢;(x) = 0 for all i € I. Thus F is defined by the inequalities
@j(x) < 0 (for j € J) and —¢;(x) < O (for i € I); this proves that F is a
polyhedral convex cone.

In particular, the lineality space linsp(C) of C is the unique minimal
face of C.

1.6. Vertices, extremal rays

In this section, we show how a polyhedron of trivial lineality space can
be reconstructed from its vertices and its faces of dimension 1 (extremal
rays). We start with the case of polytopes.
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Theorem (1.6.1). — Let V be a finite dimensional R-vector space and let P be
a polytope in V.

a) The set S of vertices of P is the smallest subset of P such that P = conv(S);
b) For every face F of P, its vertices are vertices of P; in particular, there
exists a subset T of S such that F = conv(T).

Proof. — We may assume that P # @. We then note that the vertices of
a face of P are faces of P of dimension 0, hence are are vertices of P.

Since P # @, the set of faces of P is not empty, so that P has minimal
faces, which are points because P is a polytope, hence linsp(P) = 0.

Let us prove that P = conv(S). The inclusion conv(S) c P follows
from the fact that P is convex; let us prove the converse assertion by
induction on dim(P). If dim(P) = 0, then P is reduced to a point {x},
and S = {x}, so that the result holds. Since the vertices of a face F of P
are themselves vertices of F, we may assume by induction that all faces
of P distinct from P are of the form conv(T), for some subset T of S. Let
then x € P and let us prove that x € conv(S). If x € S, then we are done.
Otherwise, choose v € S and consider the set L of all + € R such that
t > 0and x +t(x —v) € P. Let (f;) ;) be a minimal family of affine forms
that defines P and let I be the set of all j € J such that f;(v) < f;(x). For
t € R, one has f;(x + t(x —v)) = fi(x) + t(fj(x) = fj(v)), so that t € L if
and only

0<t<inf—%Y

et fi(x) = £j(v))

Since P is a polytope, the set L is bounded polyhedron of R, hence one
has L # [0; +oo[; in particular, I # @. Let a = inf;c1(—f;(x)/(fi(x) — fi(v)))
and let i € I be such that a = —fi(x)/(fi(x) — fi(v)). Since fi(x) # fi(v),
the affine form f;(x) is not constant on P, hence it does not give rise to
an implicit equality in the given system that defines P, and the point
x + a(x — v) belongs to the facet of P defined by f;. By induction, this
point belongs to conv(S). Then the relation

a
x—1+a(x+a(x—v))+1+a

proves that x € conv(S) as well.
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Let T be a subset of P such that P € conv(T). Letv € S and let us show
that v € T, we argue by contradiction. Since {v} is a face of P, there
exists a linear form ¢ on V such that ¢(x) < ¢(v) for every x € P—{v}.
Write v = ) craxx for some family (ay)rer with finite support such
that a, > 0 for all x, and } ,crax = 1. If v ¢ T, then ¢(x) < @(v) for
all x € T, and there exists x € T such that a, > 0 since ) ,c7ay = 1;
we then have ¢(v) = 3}, cr ax@(x) < @(v), a contradiction which proves
thatov € T. O

Example (1.6.2) (Birkhoff, von Neumann). — Doubly stochastic matrices
A € M, (R) are matrices with positive coefficients and such that the
sums of each row and of each column are equal to 1. The subset P of
R"’ consisting of doubly stochastic matrices is defined by the system

Z;l:laijzl (1<]<Tl)
Z?zlaijzl (1<z<n)
ai]->O (1<l,]<1’l),

hence is a polyhedron. Since it is contained in [0; 1]”2, it is bounded,
hence is a polytope.

The 2n equalities of the given system define the affine span of P,
because none of the remaining inequalities (a;; > 0) give rise to implicit
equalities: indeed, the matrix all of which coefficients are 1/n belongs
to P. These 2n equalities are not linearly independent, the sum of the
tirst n is equal to the sum of the remaining ones, but their rank is 2n —1:
the elements 4;; for 1 < i,j < n — 1 can be chosen at will, the given
equations then furnish a; , (for1 <i < n — 1) and a, ; (for 1 < j < n).
In particular, this polytope P has dimensmn n>—2n-1)=(n-1>=~

Let us prove that the vertices of P are the permutation matrices, that
is, the matrices of the form A, = (a;;) where a;; = 1if j = o(i), and
a;; = 0 otherwise, for some permutation o € G,,.

Let 0 € S, and let ¢ be the linear form on R™ defined by ¢(a;;) =
Yiiz1 i (i) For every A € P, one has ¢(A) < n, and ¢(A) = n if and only
if A = A, is the permutation matrix defined above. This proves that the
permutation matrices are vertices of P.
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We prove the converse inclusion by induction on 7. Let v be a vertex
of P. As a zero-dimensional face of P, it must be defined by n? linearly
independent linear forms from the systems. Since the first 21 equalities
are notindependent have rank 211 —1, at least n2—2n +1 of the remaining
inequalities a; ; > 0 are equalities at v: there exist n* —2n + 1 pairs (i, j)
such that 2;; = 0 on v or, equivalently, at most 2n — 1 coefficients of v
are nonzero. Since the sum of the coefficients of every row is 1, every
row has a nonzero coefficients; if all rows had at least two nonzero
coefficients, this would make 21 nonzero coefficients, so that at least
one row has only one nonzero coefficient, which is equal to 1. Then all
other coefficients of the column of that coefficient, being positive and
of sum zero, are equal to 0. By renumbering the system, we assume
thata,, = land a;, = a,; = 0fori € {1,...,n — 1}. Moreover,
P’ =Pn{a,, =1} is a face of P (defined by the linear form a,, ,) which
is identified with the set of doubly stochastic matrices of size n — 1.
By induction, the vertex v (viewed in R(”‘l)z) is associated with the
permutation matrix corresponding to a permutation ¢’ € S,_1; then v
is the permutation matrix associated with the permutation o € ©,, that
extends ¢’ (and fixes n).

1.6.3. — Let P be a nonempty polyhedron in a finite dimensional R-
vector space V. Assume for the moment that linsp(P) = {0}, the general
case will be explained later.

In this case, the minimal faces of P are its vertices, and their dimension
is 0. Let F be a face of P such that dim(P) = 1. Then the affine span (F)
is an affine line; let ¢ : R — (F) be an affine bijection. Then ¢~ !(F) is a
nonempty polyhedron in R, distinct from R because then F would be an
affine subspace, hence have no facet, thus contradicting the hypothesis
that minimal faces of P have dimension 0.

Consequently, two possibilities remain:

— Either there exists a € R such that ¢ }(F) = [a;+oo[ or ¢~ }(F) =
]—00; a]: the face F is a half-line, and we say that it is an extremal ray of P;

— Or there are a,b € Rsuch that a < b and ¢~ (F) = [a;b]: the face F
is a segment; we say that it is an edge of P.
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The first case corresponds to the case where F is unbounded, and the
second one to the case where F is bounded.

Proposition (1.6.4). — Let C be a cone in V such that linsp(C) = 0 and let S
be the set of all faces F of C such that dim(F) = 1.

a) For every face F € S and every vector vy € F={0}, one has F = R, vg;

b) Choose vectors as above; one has C = cone((vp)ges).

c) Let T be a set of vectors such that C = cone(T); then, for every face F € S,
there exists w € T and t > 0 such that vg = tw.

Proof. — a) Let F € S be a face of C such that dim(F) = 1. Let f be a
linear form defining F: it is bounded from above on P and F = {x €
P; f(x) = supp(f)}. Since C is a cone, f is negative on C, so that
supp(f) = 0, hence F is itself a cone. Let Fy be a facet of F; it is again a
cone and 0 € Fy. One has dim(Fy) = 0, hence Fy = {0}.

By the description of extremal rays of polyhedra, one thenhasF = R,v
for every v € F—{0}.

b) Let us choose such a family (vg)res and let C' = cone((vg)) be the
polyhedral convex cone it generates; let us prove that C = C’. Since
C is a convex cone, one has C' C C; we prove the other inclusion by
induction on dim(C).

If dim(C) = 0, then C = {0} and the assertion is trivial (actually, S is
empty and C" = {0}).

Assume that dim(C) > 0. In this case, C has faces of dimension 1, so
thatS # @; fix F € S.

Let G be a face of C which is distinct from C. Its faces of dimension
1 are faces of C; by induction, this proves that G is contained in C’. Let
x € C. Thesetofallt € Rsuchthatt > 0and x—tvg € Cisapolyhedron
in R of the form [0; a], for some a € R, because vr # 0 and linsp(C) = 0.
Necessarily, x — avr € C belongs to a face of C; by induction, it belongs
to C’. Then x = avg + (x — avg) € C/, as was to be shown.

c) Let f be a linear form on V which defines F in C: since C is a cone,
one has f = 0onFand f < 0 on C=F. Write vp = ) e Aww, for
a family (Ay) of positive elements of T with finite support. One has
2 Awf(w) = f(vp) = 0. All terms of the sum are negative, so that they
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all vanish. Since vg # 0, there exists w € T such that A, # 0; then
f(w) =0, which implies that w is a positive multiple of vr. O

Proposition (1.6.5). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V; assume that linsp(P) = 0. Let S be the set of vertices of P
and let T be the set of its extremal rays.

a) The set S is not empty.

b) Every extremal ray F of P contains a unique vertex xg of P; choose a
vector vg € V such that F = xg + R, vp.

c) Every edge F of P is of the form [xg; yg], for two distinct vertices xg, yr
of P.

d) One has P = conv(S) + cone((vg)ger)-

e) The recession cone of P is the polyhedral convex generated by the vectors v,
forFeT,

Proof. — Since P is nonempty and linsp(P) = {0}, its minimal faces are
vertices; consequently, S is not empty.

Let F be face of P such that dim(F) = 1. Since dim(F) = 1 and
linsp(P) = 0, minimal faces of P are vertices so that F has a facet, which
is necessarily reduced to a vertex {xp} of P. Since dim(affsp(F)) = 1, it
follows that F is either of the form xg + R, v, for some nonzero vector
vr € V (and one can take vp = yp — xF for every yr € F—{x5}), or of the
form [xf; yr]. In the latter case, yr is vertex of F, hence it is a vertex of P.
This proves the description of a) and c).

LetF € Tbe anextremal ray of P. Foreveryt € R,, onehas xp+tvr € F,
hence xg + tvp € P. Consequently, vr € recc(P) and cone((vp)per) C
recc(P).

Let us prove that P = conv(S) + cone((vg)rer) by induction on dim(P).
The inclusion conv(S) + cone((vr)ret) C P follows from the convexity
of P and the fact that its recession cone contains the vectors vg. Let
x € P. If x belongs to a face of P, then it belongs to the desired set, by
the induction hypothesis. Otherwise, x belongs to the relative interior
of P.

If relint(P) = {x}, then P = {x}, S = {x} and T = @, in which case the
proposition is clear. Otherwise, let y be another point of the relative
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interior of P and let v = y —x. Since linsp(P) = {0}, the line (xy) meets P
in a polyhedron which is either a half-line, or a segment.

Assume T # @ and let F € T. Since vp € recc(P) and linsp(P) =
{0}, one has vg ¢ recc(P) and the trace of P on the line x + Rog is a
polyhedron of the form x — avg + Ry vg, for some a € Ry with a > 0.
Necessarily, x — avg belongs to some face of P hence, by induction,
belongs to conv(S) + cone((vr)ret). Then x = (x — avg) + avg belongs to
conv(S) + cone((vp)ger) as well.

If T is empty, all 1-dimensional faces of P are bounded and the fol-
lowing lemma asserts that P is a polytope. Then recc(P) = 0, and
P = conv(S) by theorem 1.6.1. This proves d), and proposition 1.3.9 then
implies e), which concludes the proof of the proposition. O

Lemma (1.6.6). — Let P be a nonempty polyhedron of a finite dimensional
vector space such that linsp(P) = {0}. Then P is a polytope if and only if all
1-dimensional faces of P are bounded;

Proof. — One implication is obvious, so let us assume that all 1-
dimensional faces of P are bounded. To prove that P is a polytope, it
suffices, by corollary 1.3.7, to prove that P is bounded, and we argue
by induction on the dimension of P. We may assume that affsp(P) = V
and that dim(P) > 2. Let C = recc(P) be the recession cone of P; the
origin is a face of C and there exists a non-zero linear form f on V
which is strictly positive on C — {0}. Let x € P and let v be nonzero
vector in Ker(f); in particular, v ¢ C and —v ¢ C. The intersection of the
line x + Rv with P is thus a bounded polyhedron, of the form [x’; x"].
The points x” and x” belong to lower dimensional faces F’ and F” of P.
By induction, F’ and F” are bounded, and the point x belongs to their
convex hull. Since the set of faces of P is finite, this proves that P is
bounded, as claimed. O

1.7. Rational polyhedra

1.7.1. — Let Qbe a subfield of R and let I" be a Q-vector subspace of R.
A linear form on R" is said to be Q-rational if it is of the form x +—
ai1x1+---+a,x, forsomeay,...,a, € Q.
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An affine form on R” is said to be (Q, I')-rational if its linear part is
Q-rational and its constant term belongs to I".

If Q and I are clear from the context, we also use the simpler expres-
sion “rational”.

Definition (1.7.2). — A polyhedron P in R" is said to be (Q, I')-rational (or,
simply rational) if it can be defined by affine forms which are (Q, I')-rational.

Example (1.7.3). — a) Let V be a vector subspace of R".

Assume that V is Q-rational and let us choose a minimal family
(fi,..., fr) of rational linear forms that define V in R". They are Q-
linearly independent, hence the Q-subspace of Q" defined by these
linear forms is a vector subspace of dimension n — t; let us choose a
basis (v1,...,0s—t) in Q". Then (v1,...,v,—¢) is a family of R-linearly
independent vectors of V, so that dim(V) > n —t. Since V is defined by
t linear forms, one has dim(V) < n — t, hence equality. Consequently,
V has a basis consisting of vectors in Q".

Conversely, let (v1, ..., v,—t) be abasis of V consisting of vectors in Q".
Let(fi,..., ft) beindependent linear forms on Q" which vanish on them.
Since (f1,..., ft) are still R-linearly independent, the vector subspace
of R" that they define has dimension (n—t). Sinceit contains vy, ..., vy—¢,
it is equal to V. This proves that V is Q-rational.

b) Let V be an affine subspace of R".

Assume that V is (Q, I')-rational. Moreover, it follows from gaussian
elimination that the a system of (Q, I')-rational affine equations has a
solution v in I'?, if it has any solution at all. Then V — v is a rational
vector subspace of R".

Conversely, assume that there exists v € I" such that V-0 is a
rational vector subspace of R"”. Let (¢1, ..., @) be a family of rational
linear forms on R" which define V —v. Since the affine forms ¢;(v) + ¢;,
forj € {1,...,t}, are (Q,I')-rational and define V, we conclude that V
is (Q, I')-rational.

Proposition (1.7.4). — Let P be a nonempty rational polyhedron.
a) All faces of P are rational polyhedra.
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b) The recession cone of P, recc(P), its lineality space linsp(P), the affine
subspace it spans, affsp(P), are rational.

Proof. — Let (f;);ej be a finite family of rational affine forms defining P;
write f; = ¢; + b;, where @; is a Q-rational linear form and b; € I'. Each
face of P is defined by adding inequalities of the form —f; < 0, for j
in some subset I of J; this shows that they are rational. Similarly, the
recession cone of P is defined by the linear inequalities ¢; < 0; it is thus
Q-rational. The lineality space is defined by the equalities ¢; = 0, for
j €], hence is Q-rational. Finally, since the affine span of P is defined by
all the implicit equalities f; = 0 in the given system, it is (Q, I')-rational
as well. O

Example (1.7.5). — Let C be a Q-rational cone.

Assume that dim(C) = 1. In this case, affsp(C) = C—-C. Since affsp(C)
is a Q-rational line, there exists v € Q" such that affsp(C) = Rv. Up to
replacing v by —v, one then has C = R,v.

In the general case, the extremal rays of C are themselves Q-rational
cones, hence of the form R, v for some v € Q". Given proposition 1.6.4,
this implies that C is the polyhedral convex cone generated by a finite
family of vectors in Q".

1.8. Polyhedral subspaces, fans

Definition (1.8.1). — Let V be a finite dimensional R-vector space and let S be
a subspace of V.

a) One says that S is a polyhedral subspace of V if it is a finite union of
polyhedra in V;

b) One says that a map f from S to a finite dimensional R-vector space V' is
piecewise affine if there is a finite family € of polyhedra of V of which S is the
union and such that for every C € €, there exists an affine map fc: V — V'
which coincides with f on C.

1.8.2. — Let S be a polyhedral subspace. Let € be a finite set of
polyhedra of which S is the union. The supremum sup;, dim(C)
does not depend of the choice of the set € such that € = cecg;
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it is called the dimension of S, and is denoted by dim(S). Let in-
deed €’ be another finite set of polyhedra such that S = (Jcce C.
If = @, then S = @ and €' = @ as well; in this case, the supre-
mum is —oco. Let C € €. Then C = [Jpee/(C N D) writes C as
a union of polyhedra of dimension < dim(D) contained in affsp(C).
Necessarily, one of them has nonempty interior in affsp(C), which
implies that there exists D € %’ such that dim(C N D) = dim(C).
Then dim(C) < dim(D) and dim(C) < supp,, dim(D). Consequently,
SUP e dim(C) < supp.y, dim(D), and the other inequality follows by
symmetry.

Lemma (1.8.3). — Let V, V' be finite dimensional R-vector spaces. Let S be a
polyhedral subspace of V, let S’ be a polyhedral subspace of V' andlet f : S — V
be a piecewise affine map.

a) Theintersection, the union of two polyhedral subspaces of V is a polyhedral
subspace. One has dim(S U S’) = sup(dim(S), dim(S’)) and dim(SNS’) <
inf(dim(S), dim(5")).

b) The image f(S) is a polyhedral subspace of V' such that dim(f(S)) <
dim(S).

c) The preimage f~1(S') is a polyhedral subspace of V.

Proof. — These assertions follow immediately from the analogous as-
sertions for polyhedra and affine maps. O

1.84. — Let f,9: S — R be piecewise affine maps; then f + g, cf,
inf(f, g) and sup(f, g) are piecewise affine.

Let f : S — R be a map. Then f is piecewise affine if and only if its
graph I'y is a polyhedral subspace of SX R, if and only if its epigraph F}r
(the set of all (x, t) such thatt > f(x)) is a polyhedral subspace of S X R.

If f is piecewise affine and bounded from the above, then its maximal
level set {x € S; f(x) = sup(f)} is a polyhedral subset of S.

Definition (1.8.5). — Let V be a finite dimensional R-vector space and let S
be a subspace of V. A polyhedral decomposition of S is a finite set € of
polyhedra satisfying the following properties:

a) The union of all polyhedra in € is equal to S;

b) Every face of a polyhedron in € belongs to €;



38 CHAPTER 1. POLYHEDRAL GEOMETRY

c) The intersection of every two polyhedra P,Q in € is either empty, or a
face of both of them.

The set S is also called the support of the polyhedral decomposition €, and is
denoted by |€|.
A fan is a polyhedral decomposition all of which polyhedra are cones.

1.8.6. — One defines analogously the notions of a rational polyhedral
subspace, of a rational piecewise affine function on such a polyhedral
subspace, or of a rational polyhedral decomposition of a rational poly-
hedral subspace.

Remark (1.8.7). — a) If a finite union of polyhedral cones is a convex
cone, then it is a polyhedral cone. In other words, a convex cone is
a polyhedral subset if and only if it is a polyhedral cone, so that the
terminology is not ambiguous.

b) A polyhedral decomposition is determined by its maximal poly-
hedra, all other are faces of them. Since a face of a cone is a cone, a
polyhedral decomposition is a fan if and only if its maximal polyhedra
are cones.

c) Let € be a polyhedral decomposition of a polyhedral subspace S.
For every x € S and every polyhedron P € & such that x € P, either x
belongs to a facet of P, or x belongs to the relative interior of P, bot not
simultaneously. Consequently, the relative interiors of the polyhedra
in € are pairwise disjoint, and their union is S.

1.8.8. — Let S be a polyhedral subspace of V and let €, 6’ be poly-
hedral decompositions of S. One says that € is finer than €’ if every
polyhedron in €’ is the union of some polyhedra in €. Equivalently,
for every point x € S and every polyhedron P’ € ¢’ such that x € I,
there exists a polyhedron P € € such that x e Pand P C P".

Note that classical presentations of polyhedral subspaces start from
polyhedral decompositions and defines polyhedral complexes as polyhe-
dral decompositions up to refinement.

Proposition (1.8.9). — a) For every finite set § of polyhedra in V, there
exists a polyhedral decomposition € of V such that every polyhedron P € § is
a union of polyhedra in 6.
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b) Every polyhedral subspace has a polyhedral decomposition.
c) Moreover, two polyhedral decompositions of a polyhedral subspace admit
a common refinement.

Proof. — a) Write S as a finite union of polyhedra (P;);c1 and, for each
of them, let (f; ;);¢j; be a finite family of affine forms that defines it. Let]
be the disjoint union of the sets J;, that is, the set of pairs (i, j) with i € I
and j € J;. For every family ¢ = (¢; ;) € {=, <, >}, let P, be the set of all
points x € Vsuchthat f; j(x) ¢; ; Oforall (i, j) € J;itisa polyhedronin V.
Moreover, the family (P, ) is stable under taking faces and intersections,
its union is equal to V. For every i, the polyhedron P; is the union of
the polyhedra P, for all ¢ such that ¢; ; = < for all j € J;. Consequently,
S is the union of a subfamily of the family (P;). This proves that the set
of polyhedra of the form P, is a polyhedral decomposition of S.

b) Let S be a polyhedral subspace of V. Let (P;);c1 be finite family of
polyhedra such that S = [, Pi. Apply a) to the family (P;); we obtain
a polyhedral decomposition € of V such that every polyhedron P; is a
union of polyhedra in €. This implies that S is a union of polyhedra
in €, as claimed.

c) Let € and €’ be polyhedral decompositions of S. The polyhedra
PNP, forP € € and P’ € €’ cover S. By b), there exists a polyhedral
decomposition €” of S such that every polyhedron P N P’ is a union of
some polyhedra in €”. This polyhedral decomposition is finer than &
and €'.! O

Corollary (1.8.10). — Let f : V — V' be a linear map between finite dimen-
sional R-vector spaces. Let 8 be a finite set of polyhedra in V and let ] be a
finite set of polyhedra in V'. There exists a polyhedral decomposition € of V
and a polyhedral decomposition €’ of V' satisfying the following properties:

(1) Every polyhedron S € § is a union of polyhedra that belong to €;
(ii) Every polyhedron S' € 8" is a union of polyhedra that belong to 6’;
(iii) For every C € €, f(C) belongs to €’;

(iv) For every C' € €', f~1(C’) is a union of polyhedra belonging to €.

!t is plausible that the P N P’ already form a polyhedral decomposition of S.
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Proof. — We start from a polyhedral decomposition & of V such that
every polyhedron S € &§. is a union of polyhedra in €;. Let then &’
be a polyhedral decomposition of V' such that every polyhedron of the
form f(C), for C € %1, the subspace f(V), and every polyhedron S’ € §”
are union of polyhedra of €”.

LetCe @ and C' € €, 1letS =Cn f1(C); then f(S) = f(C)NC’isa
union of polyhedra in ¢” which are faces of C’. Since it is convex, it is a
face of C’; replacing C’ by f(S), we may assume that f(S) = C'.

Let us show that the set € of all non-empty polyhedra of V of the
form C N f~1(C’), for C € 1 and C’' € ¥’ such that f(C) > C/, is a
polyhedral decomposition of V. It covers V; moreover, the intersection
of two of its members is either empty, or a an element of €. Let us
consider two members of €,say S=CnN f1(C')and T = DN f4(D)
such that T C S; let us prove that T is a face of S. As above, we
may assume f(S) = C’ and f(T) = D’. One thus has D’ ¢ C’, hence
D’ isa face of C’,and T = DN (D) is a face of D N f~1(C’). We are
reduced to proving the assertion when D’ = C’. Since 6 is a polyhedral
decomposition, CNDis a face of C and of D, and it belongs to &;. Then
T=SNT=(CND)N f(C)isaface of S=CnN f~1(C).

The polyhedral decompositions € and €’ satisty properties (i) and (ii)
by construction. Let S € €; as we have seen, f(S) € €’; this proves (iii).
Finally, let C’ € €’; writing V = Uccg, C, we have f71(C’) = Uceg, (C N
f71(C")), which shows that property (iv) holds as well. O

Corollary (1.8.11). — Let S be a polyhedral subspace of V and let f : S — V'
be a piecewise affine map. Then f(S) is a polyhedral subspace of V', and there
exist polyhedral decompositions € of S and €’ of S’ such that the following
properties hold:

a) ForeveryC’' € €’, theset of all C € € such that f(C) c C’isa polyhedral
decomposition of f~1(C’);

b) For every C € €, the map f|c is the restriction of an affine map from V
to V',



1.9. REGULAR POLYHEDRAL DECOMPOSITIONS AND THE LEGENDRE TRANSFORM 41

1.9. Regular polyhedral decompositions and the Legendre transform

Proposition (1.9.1). — Let P be a polyhedron of dimension d in a finite di-
mensional R-vector space V and let f : P — R be a piecewise affine convex
function. There exists a unique polyhedral decomposition € of P satisfying the
following properties:

(1) The restriction of f to any polyhedron C € € coincides with an affine
function fc on'V;

(ii) If C, D are distinct polyhedra of dimension d of €, then fp < fc on C.

Moreover, one has the following properties:

(iii) One has f = supc.y fc;

(iv) All maximal polyhedra of € have dimension d;

(v) The union of the interiors of the polyhedra of € is the differentiability

locus of f.

This polyhedral decomposition is called the regular polyhedral de-
composition of P associated with f.

Proof. — Replacing the ambient vector space by the affine span of P,
we assume that P has nonempty interior in R”. Let U be the set of x € P
such that f is affine in a neighborhood of x. Let & be a finite polyhedral
decomposition of P such that f|p is affine, for every polyhedron D € 9.
This open subset of P contains the union of the interiors of the maximal
cells of 9; it follows that U is dense in P and that its set of connected
components is finite.

On U, the function f is everywhere differentiable and its differen-
tial is locally constant; consequently, for every connected component E
of U, there exists an affine function fg on R” such that f|g = fg. Since
the graph of a convex function is always above its tangents, one has
f(x) > supg fe(x) for every x € P. This implies that for every connected
component E of U and every x € E, one has fg(x) = f(x) > supg fr(x).
This proves the relation f(x) = supg fe(x) on U, hence on P because U
is dense in P.

Let E be a connected component of U. The function f — fg is convex,
positive, and vanishes on E. The set of points x € P such that f(x) =
fe(x) is thus convex and contains E.
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Let us prove that if E, F are two distinct connected components, then
the linear parts of fg and fr are not equal; otherwise, fg — fr would
be constant. If it were strictly positive, then one would have fg(x) >
fe(x) for all x € F, contradiction; if it were strictly negative, one would
have a similar contradiction. So fg = fp. But then the convexity of f
implies that f coincides with fg on the convex hull of E U F, which is
an open subset of R" containing E and F. By definition of a connected
component, this implies E = F.

Let E and F be two distinct connected components of U; let us prove
that fr(x) < fg(x) for every x € E. Otherwise, one would have fr(x) =
fe(x) at some point x € E. Then the affine half-space defined by fr > fg
contains x on its boundary; for x’ close to x there, one has f(x’) >
fe(x’) > fe(x’) = f(x’), a contradiction.

It follows that E is defined in P by the inequalities fz(x) > fr(x) for all
connected components F of U. In particular, E is a polyhedron.

If E and F are distinct connected components, then E N F is defined
in P by the equality fg = fr and the inequalities fg > fg for all other
components. If non-empty, this is the face of E associated with the affine
form fg — fg which is maximal there, and the face of F associated with
the affine form fg — fr.

The desired polyhedral decomposition of P is thus the family of poly-
hedra E and their faces. O

1.9.2. — Let P be a nonempty polytope in a finite dimensional vector
space V and let f : P — R be a convex piecewise affine function. The
regular decomposition € of P associated with f admits an alternative,
possibly more concrete, description.

Write (-, -) for the duality between V and its dual space V* and let P* be
the subset of V* consisting of all linear forms y such that x — (x, y)—f(x)
is bounded from above on P. The Legendre transform is the function on P*
given by

f*(y) = sup{x,y) - f(x).

xeP
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If one adds to f an affine form x +— (x, 1)+, this changes P* to P* + 1
and f*toy — f*(y —n) — B, as one sees on the relation

(x,y) = (f(x) +{x,n) + B) = sup{x,y =) — f(x) - B.

xeP

Consider similarly the function g : x — f(x—&)onP+¢&. The relation

(x,y) =g ={,y) - flx =& = ((x=&y) - f(x = &) +(& v)
shows that this does not change P* but changes f*toy — f*(y) + (&, y).

Proposition (1.9.3) (Legendre duality). — The function f* on P* is convex
and piecewise affine. Moreover, one has f* = f on P.

Proof. — For C € €, let yc € V* and ac € R be such that f(x) = fc(x) =
(x,yc) —ac for x € C, so that

f(x) =sup ({x,yc) — ac) .
Ce®

For y € V7, the function x — (x, y) — f(x) is bounded from above on C
if and only if x  (x, y — yc) is bounded from above on C, which means
that ¥ — yc € recc(C)°. In this case, one has

sup(x, y = yc) +ac = sup ((x,y = yc) +4ac),

xeC xeV(C)
where V(C) is the set of vertices of C. Consequently, P* = (\ceg(yc +
recc(C)°) and

f*(y) =sup sup ({x,y - yc) +ac)
Ce®% xeV(Q)

for all y € P*. In particular, f* is piecewise affine and convex.

For x € Pand y € P*, one has (x, y) < f(x) + f*(y). This implies that
f** is defined on P and that f*(x) < f(x) for all x € P.

To prove the equality, we may subtract from f any affine form that it
takes on a maximal dimensional polyhedron C € €. Indeed, both sides
of the equality to prove are changed in the same way. This implies that
f>0onP.

Let £ € P. Then & € P" and (&) < f(&). Let B € R be such
that B < f(&). Since the epigraph of f is a polyhedron which does
not contain (&, §), there exists an affine form on V X R, say (x,t) +—
(x,n)+at + c which is strictly negative at (&, ) but positive at all points
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(x,t) such that x € P and t > f(x). Necessarily, a > 0. Dividing
the given affine form by a, we assume that 4 = 1. The inequalities
(x,m) + f(x)+c > 0 for x € P imply that —n € P* and that f*(-n) < c.
Then,

sup(&, y) = f'(y) 2 (&, - = f(-n) > (&, n) —c > .

yep*

Consequently, f*(&) > B. Since < f(&) is arbitrary, this implies that
(&) = f(&).

Let now & € V=D and let us prove that £ ¢ P*. Similarly as above,
there exists an affine form on V, say (x, t) = (x,n) + ¢ which is strictly
negative at & but positive on P. Let t > 0. Since f > 0, one has
(x,—n) —tf(x) < c for all x € P, hence —n/t € P* and f*(-n/t) < c/t.
Then,

Sup(E, y) = F(y) > (€, ~n/t) = F(=1/1) > ~3 (&, ) +0).

yep*

When t tends to 0, this implies that & ¢ P*, as was to be shown. O

1.9.4. — Let Q be the epigraph of f, the set of all (x,t) € P X R such
that t > f(x). Since f is convex and piecewise affine, Q is a convex
polyhedral subset of V X R, hence it is a polyhedron. Let G be a face
of Q and F be its projection to V. The linear form defining G takes the
form (x,t) — (x,y) + at, for some y € V* and a € R; let b be its value
on G. Since that linear form is bounded from above on P, one hasa < 0.
There are two cases.

Assume that 2 < 0. Dividing y and b by —a, we may assume that
a = —1. Then we see that F is the set of all x € P such that (x, y) — f(x) =
f*(y), and G is the set of all (x,t) for x € Fand t = f(x). In particular,
the restriction of f to F is affine, given by x — (x,y) — f*(y). More
precisely, F is the set of all x € P such that f(x) + f*(y) = (x, y). We say
that G is a “horizontal face”, or a “lower face” of Q.

When E ranges over the regular polyhedral decomposition of P asso-
ciated with f, the intersections E N F are polyhedra which cover F. At
least one of them, say E, has dimension dim(F), and then f(x) = fg(x)
on F, hence F C E. In fact, for all x € E=F, one has (x,y) — fe(x) =
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(x,y)— f(x) < f*(y), so that F is the face of E defined by the linear form
x > (2, ) — fo(x).

Assume now that a = 0. Then the linear form y on V defines a face F
of P, and G is the set of all (x,t) € F X Rsuch thatt > f(x). Since Gis a
polyhedron, the restriction of f to F is affine, and G is a “vertical face”

of Q.

Remark (1.9.5). — Here is a classical example of C
a polyhedral decomposition of a square which is
not regular. To fix ideas assume that the vertices D
of the outer square are A = (0,0), B = (3,0),
C = (3,3) and D = (0,3), while the vertices of A B
the inner square are A’ = (1,1), B = (2,1), C’' =
(2,2) and D’ = (2,2). Let f be convex piecewise
affine function on the square whose loci of affinity are as depicted on
the figure. Subtracting an affine function, we may assume that f is
identically 0 on the inner square A’B'C'D’. Let a,b, c,d be the values
of f at the corresponding vertices of the outer square, so thata = f(0,0),
b= f(3,0), .. Onthetriangle AA'D’, onehas f(x, y) = a(1-x), because
f(A) = a while f(A’) = f(D’) = 0; similarly, on the triangle BA’B’, one
has f(x,y) = b(1—-y). Since A does not belong to the triangle BA’B’, one
hasa = f(A) > b. By symmetry,onehasb > ¢,c > d and d > a, hence
the equality a = b = ¢ = d. It follows that f is given by f(x,y) = a(1-x)
on the triangle ADD’, which implies that it is affine on the trapezoid
AA’D’D, a contradiction.

A B

1.9.6. — We will now show that the regular polyhedral decomposi-
tion € of P associated with a convex piecewise function f induces a
“dual” (regular) polyhedral decomposition €~ of P*. We first need a
definition.

Definition (1.9.7). — Let P be a polyedron of V and let P* be a polyhedron
of V*. Let € be a polyhedral decomposition of P and let €~ be a polyhedral
decomposition of P*. A duality is a bijection from € to €’, denoted by C — C~,
satisfying the two properties:

(i) IfC,D € @, then C c D if and only if D* c C*;
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(i) For C,D € € such that C C D, one has cone(D—C)° = cone(C*—D").

Taking D = C in (ii), observe that cone(C — C) is the vector subspace
of V directing affsp(C); its polar in V* is the vector subspace directing
affsp(C*). In particular, these conditions imply that dim(C) + dim(C") =
dim(V) forall C € &.

1.9.8. — Let P be a nonempty polyhedron of V and let f : P — R be
a convex piecewise affine function. Let f*: P* — R be the Legendre
transform of f.

For x € P, define C;, as the subset of V* consisting of all y € P* such
that (x,y) = f(x) + f*(y). Similarly, for y € P, let C, be the set of all
x € P such that (x,y) = f(x) + f*(y). For fixed x (resp. for fixed y), the
function f(x) + f*(y) — (x, y) is convex, piecewise affine, positive, and
vanishes at some point y (resp. x); consequently, its vanishing locus is
a polyhedron, so that the sets C} and C,, are polyhedra.

In fact, it follows from the description of the regular polyhedral de-
composition of P associated with f done in §1.9.4 that it is the family of
all C,, for y € P*. Similarly, the family of all C}, for x € P, is the regular
polyhedral decomposition € of P* associated with f*.

Proposition (1.9.9). — For C € &, the intersection C* of all C;, for x € C,
is an element of €. Moreover, the map C +— C* from € to €~ is a duality of
polyhedral decompositions.

Proof. — For x € P and y € P7, set

P(x,y) = f(x) + f(y) = (x,y).

Let x’,x” € P be such that C}, N C,, is nonempty; let x be any point

x//
on the open segment ]x’; x”[ and let us prove that C;, N C’,, = C}. Let
y € C, N C,,; by convexity and positivity of P(-, y), one has y € C;

X
this proves the inclusion C, N C’,, C C. Let then z € C} and write

*
x//
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x =(1—-1t)x"+tx”. One has

0=P(x,z) = f(x)+ f(z) — (x,2)
= (f0)=A=-t)f(x)=tf(x") + (A=) (f(x) + f(z) = (x', 2))
+t(f(x") + f(z) = (x”, z))
= (f(x) = (A=t f () —tf(x") + (1 = )P(x’, z) + tP(x", 2).

Since these three terms are positive and 0 < ¢ < 1, this implies that
P(x’,z) = P(x”,z) = 0, hence z € C;, N C,,,. As a consequence, one has
C* = C;, for any point x in the relative interior of C. This proves that C*
belongs to €™.

Let C,D be elements of € such that C ¢ D. It follows from the
construction that one has D* c C".

Let us prove that cone(C* — D*) € cone(D - C)°. Lety € D", vy’ € C7,
x € Cand x’ € D; one has

(X'—=x,y —y)=-P",y)+P(x,y)+P(x’,y)-P(x,y) = -P(x’, y") < 0.

This implies that y’ — y € cone(D — C)°; consequently, cone(C* — D) C
cone(D — C)°.

Conversely, let z € cone(D—-C)° and let us prove that z € cone(C*-D").
Choose y € V*such that D = C,,. There exists t > 0 such that f* is affine
on the segment [y; v + tz]; let us prove that [y; y + tz] C D.

Let y’ be any point of the open segment |y; y + tz[ and let x € Cy/, so
that P(x, y’) = 0. Since the function s — P(x,y +s5z) = f(x) + f*(y +
sz)—{x,y+sz) is affine on [0; ], positive, and vanishes at some interior
point, it vanishes identically. This proves that P(x,y) = P(y + tz) = 0;
in particular, x € D. Let x’ € C; one has (x — x’,z) < 0, by definition
of z. Then,

P(x’,y") = -P(x,y") + P(x,y) + P(x", ') - P(x’, y) = (x = x", y' — y) <0,
so that P(x’,y’) = 0 and y’ € C*. Since y € D, this implies that

z € cone(C* — D). O

1.9.10. — Let V be a finite dimensional R-vector space, let S be a finite
subset of V* and let ¢ : S — R be any function. Let f : V — R be the
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convex piecewise affine function defined by

f(x) = sup ({x,m) — p(m)).
meS

The “tropical polynomials” are particular examples of such functions.

Let P be the polytope conv(S). Let us prove that P is the support of
the Legendre transform f*.

Let y € V* such that y ¢ P. By the Farkas lemma for polytopes
(prop. 1.3.2), there exists x € V such that (x,y) > a, where a =
sup,, .g{x, m). Fort > 0, one has

f(tx) = sup ((tx, m) — p(m)) < ta — iréfs(p(m),

meS

hence
(tx,y) = f(tx) > £ ((x, y) = a) = inf p(m).

When t — +oo, this proves that f* is not defined at y.

Conversely, let m € S. Since f(x) > (x,m) — @(m), one has (x, m) —
f(x) < @(m), hence m belongs to the support of f*(m). By convexity, P
is contained in the support of f* and f*(m) < @(m).

If f*(m) < @(m), the definition of the Legendre transform implies that
for all x € V, one has (x,m) — f(x) < f*(m) < @(m), hence f(x) >
(x, m) — @(m). Consequently, denoting by T the set of m € S such that
f*(m) = ¢(m), one has

£(x) = sup ((x, m) - p(m)
meT

Let € and €* be the regular polyhedral decompositions of V and P
associated with f and f*. The polyhedra of €* are of the form C;,
for some x € V, where C;, is the set of all y € P such that (x,y) =
f(x) + f*(y). By the duality theorem, the vertices of the polyhedra
of €~ correspond to d-dimensional cells of &, and those are of the form
Py ={x; f(x) = (x,m) — p(m))}. In particular, they belong to T.

This also implies that the polyhedral decomposition €* can be con-
structed from the function ¢, as the projections of the horizontal faces
of the polyhedron Q = conv((m, —@(m))nes + Rye of V* X R.
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1.10. The normal fan of a polyhedron

1.10.1. — Let P be a nonempty polyhedron in a finite dimensional R-
vector space V and let v € P. Let N,(P) be the set of all linear forms f
on V such that f(x) < f(v) for all x € P; equivalently, f is negative on
the translated polytope P — v. In other words, N,(P) is the polar set
cone(P — v)° of cone(P — v).

Werecall thatitis a polyhedral convex cone — we call it the normal cone
of P at v. Indeed, fix a decomposition P = conv((x;)cr) + cone((y;)jej),
where (x;)ie; and (y;);ej are finite families in V. Then a linear form f
belongs to N, (P) if and only if f(x;) < f(v) forall i € Iand f(y;) = 0 for
all j € ], a finite set of linear inequalities.

By convex duality (proposition 1.3.16), one has cone(P — v) = N, (P)°.

1.10.2. — Let ®p C V* be the set of all linear form on V which are
bounded from above on P. A linear form f on V belongs to ®p if and
only if f(y;) < O0forall j € J; then supp(f) = sup,; f(x;). In particular,
®p is a polyhedral cone in V*; if P is a polytope, then ®p = V*. In general,
®p is the polar set to the recession cone of P.

1.10.3. — For f € ®p, let then Py = {x € P; f(x) = supp(f)} be the
corresponding face of P. If I is the set of i € I such that f(x;) = supp(f),
and ]y is the set of j € J such that f(y;) = 0, one has

P¢ = conv((x;)ier;) + cone((y)jej;)-

Let ¢ € ®p be a second linear form. One has Py C P, if and only if
the points x;, for i € I, and the points y;, for j € J7, belong to P, which
means that g(x;) > g(xx) and g(y;) = 0foralli € I and all k € I, and
g(x;) = 0 for all j € J;. This description shows that the set of all linear
forms ¢ € ®p such that Py C P, is a polyhedral cone N¢(P) in V*.

Definition (1.10.4). — Let F be a face of P. The normal cone of P along F is
the set of all linear forms f on V which are bounded from above on P and such
that Py contains F.

If F = {v} is a vertex v of P, then we recover the normal cone of P at v.
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Proposition (1.10.5). — Let F and G be faces of P. The inclusions Ng(P) C
Ng(P) and G c F are equivalent.

Proof. — Let f, ¢ € ®p be linear forms such that F = Pr and G = P,. By
definition, alinear form h € ®pbelongs to Ng(P)ifand only F = Py C Pj,.
Taking h = f, we see that f € Ng(P). If Ng(P) € Ng(P), then f € Ng(P),
hence Py = F O G. Conversely, if G C Fand h € Ng(P), then P, O F,
hence P, ¢ G and h € Ng(P). O

Theorem (1.10.6). — Let P be a polyhedron in a finite dimensional R-vector
space V and let ®p be the set of all linear forms on V which are bounded from
above on P. The set of all cones Ng(P), for F in the set of faces of P, is a
polyhedral fan with support @p.

Proof. — By construction, one has Ng(P) € ®p for every face F of P.
Conversely, if f € ®p and Fis the face of P defined by f, then f € Ng(P).
This proves that the union of the cones Ng(P) is equal to ®p.

Let F', F” be two faces of P. By definition, a linear form f € ®p belongs
to Np/(P) if and only if Pf contains F’. Consequently, Ng/(P) N Ng»(P) is
the set of all linear forms f € ®p such that Py contains the smallest face F
of P that contains both of F and F” (in other words, F = sup(F/, F”)).
This shows that Ng(P) N Ng»(P) = Ng(P).

To conclude the proof, it remains to show that if F and G are faces
of P such that Ng(P) ¢ Ng(P), then Ng(P) is a face of Ng(P). By
proposition 1.10.5, one has G C F. Let f, g € ®p be linear forms such
that F = Py and G = P;. For h € ®p, the condition & € Ng(P) means
that h(x) < h(y) for every x € P and every y € G; this implies that
h is constant on G. Requiring moreover that # € Ng(P) imposes the
additional inequalities h(x) < h(y) for x € P and y € F. In particular,
h has to be constant on F. Conversely, if 1 € Ng(P) is constant on F,
then it takes on F the same value that it takes on G, since G C F,
and then h(x) < h(y) for all x € P and y € F. It remains to see
that these conditions actually define a face of Ng(P). Let us write
F = conv((x;)) + cone((y;)), for two finite families (x;);e1 and (y;)jej; let v
be the mean of the x; and let w be the sum of the Yj; let also z € G. Then
for all h € Ng(P), one has h(x;) < h(z) for all i, and h(y;) < O for all j.
Consequently, (v +w) < h(z), and the equality h(v + w) = h(z) implies
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that h(x;) = h(z) for all i and h(y;) = 0 for all j, hence h is constant on F.
This proves that Ng(P) is the face of Ng(P) defined by the linear form
h— h(v+w). O

Definition (1.10.7). — Let P be a nonempty polyhedron in a finite dimensional
R-vector space V and let ®@p be the set of all linear forms on V which are bounded
from above on P. The fan consisting of all cones Ng(P), for all faces F of P, is
called the normal fan of P.

Remark (1.10.8). — In fact, this section can be seen as a particular case
of the preceding one applied to the function f = 0 on the polyhedron P.
Then, ®@p is the support of the Legendre transform f*, and the normal
fan is the regular polyhedral decomposition of ®p associated with f*.






CHAPTER 2

ARCHIMEDEAN AMOEBAS

2.1. The tropicalization map
21.1. — Let A: (C")" — R" be the map given by

(21, 24) > (log(|z1]), . .- log(|zal).
We say that A is the tropicalization map.

Lemma (2.1.2). — The tropicalization map A : (C')" — R" is continuous,
open and proper.

Proof. — The continuity of A follows from the continuity of the loga-
rithm map.

The image of the open disk D(z, r) (for » < |z|) by the map z +— |z]
from C* to R} is the open interval ||z| — 7, |z| + r[, so that this map
is open. Since the logarithm is an homeomorphism from R to R, it
follows that the map z +— log(|z|) from C* to R is open. Then a product
topololgy argument implies that the map A is open.

By ( ), chap. 1, § n°2, th. 1, to prove that the map A is
proper, it suffices to show that for every sequence (z,,) in (C*)" such that
Mzm) converges to some point u € R”, there exists z € (C*)" which is a
limit point of (z,,) such that A(z) = u. Since |z, ;| converges to e"/ for all
j€{1,...,n}, the sequence (z,,) is bounded in C". Up to considering a
subsequence, we may thus assume that it converges in C". Then its limit
z satisfies |z;| = e for every j, hence z € (C*)" and (z;;) converges
to z. Moreover, one has A(z) = u. O

2.1.3. — One aspect of tropical geometry consists in studying subsets
of (C*)" via their images by A. When V is an algebraic subvariety, this
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image A(V) is the tropicalization of V, often called its amoeba by reference
to its “tentacular” appeareance.

Remark (2.1.4). — It would be more natural to define the tropicalization
map as the map 7: C" — R defined by ©(z1,...,z,) = (|z1], ..., |zxl).
Indeed, this map is semi-algebraic, ie, can be defined only polyno-
mials and quantifiers in the real and imaginary parts x; and y;
of zj: (t1,...,ty) € R" belongs to 7(V) if and only if there exist
X1, .o, Xn, Y1, ..., tn € Rsuch that x2 + y2 = t7,...,x3 + y2 = t2 and
(x1+1iy1,...,xn +iyn) € V. Moreover, if V is an algebraic subset of C”,
then the latter condition can be expressed as polynomial equations in
X1, s Xu, Y1, -y Yn-

Then, by Tarski’s theorem, a fundamental result of real algebraic ge-
ometry, the set 7(V) is semi-algebraic, that is, can be defined using
only polynomial equations (and inequations). An crucial fact of real
algebraic geometry is that such sets have good algebraic properties (sta-
bility under intersection, union, or complement, as well as under taking
images by semi-algebraic maps) and good topological properties, both
local (such as local contractibility) and global (for example, finiteness of
the set of connected components, finite dimensionality of its homology
and cohomology).

For V € (C*)", one has 7(V) C (R%)", and A(V) is the image of 7(V) un-
der the (real) logarithm map, (t1, ..., t,) — (log(t1),...,log(t,)). Since
this map is a homeomorphism from (R )" to R”, the tropicalization A (V)
of V has the same topological properties.

2.1.5. — One says that a subset D of (C*)" is a Reinhardt domain if for
every z € D and every u € (C*)" such that |u;| = --- = |u,| = 1, one has
uz = (u1z1,...,unzy) € D. Thus D is a Reinhardt domain if and only if
D = A"1(A(D)).

If D is a Reinhardt domain, and U is its interior, then U is a Reinhardt
domain and A(U) is the interior of A(D). Indeed, A(U) is open since A is
an open map. Moreover, let x € D such that A(x) belongs to the interior
of A(D); let us prove that x € U. Let O be an open neighborhood of A(x)
contained in A(D); then A~1(O) is an open subset of (C*)" containing x
and contained in A1(A(D)) = D. This proves that x € U.
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2.2. Laurent series and their convergence domains

2.2.1. — Every monoid M gives rise to a convolution algebra C™
whose underlying vector space is the group of all functions f : M — C
with finite support, and with multiplication given by convolution:
fxgm) = Yppeg f(P)g(q) for f,g € CM and m € M. Denoting
by T the function that takes the value 1 at m, and 0 elsewhere, we may
write f = Y f(m)T™ for all f € C™M); moreover one has T" » T" = T"*",
and we thus recover the classical point of view on the algebra associated
with a monoid; the classical notation is C[M].

The most classical example of this situation are the algebra of poly-
nomials in n variables, C[Ty,...,T,], corresponding to the monoid
M = N", where T; is the element T*/. Another classical example the al-
gebra of Laurent polynomials in n variables, corresponding to the monoid
M = Z"; it can also be viewed as a localization of the algebra of polyno-
mials, and is often denoted by C[Tfl, N =

2.2.2. — If we remove the support condition in the definition of C™),

we only get a vector space in general, because the sum defining the
convolution product may be infinite. If the fibers of the addition law
of M are finite, then one obtains an enlarged monoid algebra, classically
denoted by C[[M]].

This property holds when M = N" — we then obtain the algebra of
formal power series C[[Ty, ..., T,]] — but does not hold when M = Z"
(ifn >1).

Nevertheless, we call an element of CZ" a formal Laurent series in the
n variables Tq,...,T,. We conform to the tradition and write it as

f = Ymezn anT", where T" = T{" ... T)/" for m € Z".

Definition (2.2.3). — Let f = . ,,czn amT™ be a formal power series in n vari-
ables.

a) The domain of absolute convergence of f is the set of all z € (C*)" such
that the family (ay,z™ )mezr is summable; it is denoted by €.

b) Its interior is denoted by %y and is called the open domain of absolute
convergence of f.
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c) The domain of boundedness of f is the set of all z € (C*)" such that the
family (ayz™)mezn is bounded; we denote it by By.

Let A : (C')" — R" be the map given by

(21, ..., 2n) = (og(|z1]), - .., 1og(|zxl))-

One says that a subset D of (C*)" is a Reinhardt domain if for every
z € D and every u € (C’)" such that |u1| = --- = |u,| = 1, one has
uz = (u1z1,...,uUnzy) € D. Then D is a Reinhardt domain if and only if
D = A"1(A(D)).

Proposition (2.2.4). — Let f = },,czn anT" be a formal power series in
n variables.

a) The domain of absolute convergence €y of f, its interior Uy, and the
domain of boundednes By of f are Reinhardt domains in (C*)";

b) The domains €y and 9By have the same interior;

c) The function z v 3., czn amz™ is holomorphic on Uy;

d) The tropicalizations A(By), AM(Gr) and A(Uy) of By, €y and Uy are
convex subsets of R"; moreover, A(%y) is the interior of A(By) and of A(€y).

Proof. — a) That €y and %y be Reinhardt domains is obvious, since
the property for a family to be summable (resp. bounded) only depends
on the absolute values of its terms. Since the interior of a Reinhardt
domain is a Reinhardt domain again, % is a Reinhardt domain.

b) Since € C %y, the interior of € is contained in that of %By. Let w
be a point in the interior of 9%By; let r be a strictly positive real number
such that z € %y for every z such that |z; — w;| < r for every j. (In
particular, r < |wj| for all j.) Choosing z; with the same argument
than w;, we see that the sequences (a,(|lw1| = 7)™ ... (Jw,| + r)") are
bounded; let c be an upper bound. Let z € (C*)" be such that |w;| —r <
|zj| < |wj|+7 forevery j;let O = sup].(sup(lz]-|/(|w]-| +7), (lwj|=7)/1z1));
onehas(0 < 0 < 1. If m; > 0, then [z;|" < 0™(|w;|+7)";if m; < 0, then
1z;|™ < 07" (Jw;| — r)™. Consequently, |a,z"| < cOl"l for all m € Z",
hence z € €. This implies that w € %y. These estimates also show that
Uy is a Reinhardt domain.
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c) The previous estimate shows the normal convergence of the se-
ries ) a,;z" on every closed ball contained in %;. Its sum is thus a
holomorphic function on that open set.

d) By §2.1.5, the set A(%y) is the interior of both A(%f) and A(&).
Since %y is a Reinhardt domain, one has %y = /\‘I(A(%f)).

Letus prove that A(%r)is convexinR". Letu, w € %randlett € [0;1];
any point z € (C*)" such that |zj| = |u;|'|w;|" satisfies A(z) = (1 —
t)A(u)+tA(w). Forevery m € Z", onehas |a,z"| = (|a,u™|) " (|amw™|)t,
the sequences (a,,u™),, and (a,,w™),, are bounded, hence the squence
(amz™)m is bounded and the point z belongs to 9. This proves that
AM%By) is convex.

For x,y € R, and t € [0;1], one has x'"y' < (1 — t)x + ty (Young
inequality), so that |a,,z"| < (1-t)|a,u™|+t|a,w™| forallm € Z". The
same argument then shows that A(&) is convex.

Finally, the interior of a convex set is convex, hence A(%y) is convex.

O

Theorem (2.2.5). — Let U be a nonempty connected open Reinhardt domain
in (C*)" and let ¢ : U — C be a holomorphic function. There exists a
unique Laurent series f € C[T!, ..., T£'| such that U C %y and such that

f(z) = p(z) for every z € U.

Proof. — Letus firstassume thatn = 1. Then there are realnumbersa, b
suchthat0 < a <bandsuchthatU = {z € C; a < |z| < b}. Letr,s € R
be such thata < r < s < b; for any point z € C such that 7 < |z| < s, the
residue theorem implies that

1 p(u) 1 p(u)
ple) = ﬁfwzsu—zdu 270t Jyy u—z
If lu| = s and |z| < s, we write
pu) o) 1 < k, k-1
u—-z u 1—(z/u)_kZ::0(P(u)2u '

The first integral has then the expansion as a power series in z

(o]

L (P(u) duy = Z ZkL, (p(u)uk—l du
0

27t lu|=s u-—z lu|=s
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which is normally convergent on every compact subset of the domain
defined by |z| < s. Similarly, if |u| = r and |z| > r, we write

pu) _ g 1 Zw)uz _

u-—z z 1—(u/z)

which gives the expansion

(0]

1 ) k11 / k
2mi el Z 0 o Puu du

Jul=r pa jul=r

of the second integral as a power series in z7! (with no constant term)
that converges normally on every compact subset of the domain defined
by |z| > r. Let us define a Laurent series f = .z arTF by

. 2Lm‘/|u|=s ew)u*tdu ifk >0,
L'/Iulﬂ ew)u du ifk < -1,

27i

Its open domain of convergence contains the annulus » < |z| < s and
the holomorphic function it defines on that domain coincides with ¢.

Uniqueness follows from the fact that, conversely, the coefficients ay of
a formal Laurent series f with % # @ can be recovered by this formula,
just replacing @ by f. If two Laurent series converging on a common
open Reinhardt domain defined the same holomorphic function, they
would thus be equal.

Consequently, all formal power series defined as above but in a dif-
ferent annulus contained in U coincide with f. In particular, the open
domain of convergence of f contains U.

In higher dimension, the argument is analogous, but makes use of the

multiple integral
/ e
(2711)” jujl=re H(u]—Z])

where rJT—L are real numbers such that 0 < i < |z| < rf ; such that U
contains the product of the closed annuli consisting of all w € C" such
that ri < lw;| < rJTL for all j.

p(z) =

e€{+ -}

We then develop 1/(u; — z;) as a power series of z;/u; if ¢; = + and
uj/zj if ¢; = —. In this way, we obtain a Laurent series f whose open
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domain of convergence contains the polyannulus with inner radii ry
and outer radii rJTL and such that f(z) = ¢(z) for all z in that domain.
The uniqueness partis analogous: if f is a formal Laurent power series
with nonempty open domain of convergence %y, then its coefficients
can be recovered by those formulas (replacing ¢ by f) with well chosen
inner and closed radii. This implies that f~1(0) has empty interior in
that domain if f # 0; otherwise one could choose these radii so that f
evaluates as 0 in such a polyannulus, hence f = 0. By connectedness
of U, all formal Laurent series defined as above, associated with small
enough polyannuli contained in U, coincide with a single one, whose
open domain of convergence thus contains U. O

Exercise (2.2.6). — Let Ube anonempty convex open subset of R". Prove
that there exists a formal Laurent series f such that %y = A~H(U).

2.3. The amoeba of a hypersurface

The following definition is due to

(1994).

Definition (2.3.1). — Let f € C[T#!,..., T#'] be a Laurent polynomial and
let V¢ = f71(0) be the hypersurface of (C*)" it defines. The amoeba of f is
the image A(V ¢) of V ¢ by the tropicalization map; we denote it by oy.

Example (2.3.2). — If n = 1and f # 0, then V¢ is a finite subset of C*, so
that o/ is a finite set of points.
[Expliquer ce qui se passe dans ce cas 13]

Example (2.3.3) (Amoeba of a line). — Assume that n = 2 and f =
T1 + T2 — 1. Then a pair (1, up) € R? belongs to o/ if and only if there
exist z1,zp € C* such that |z1]| = e", |z2| = "2 and z1 + zp = 1. Writing
1 = z1 + zp, the triangular inequality implies implies 1 < e"! + e*?;
writing z1 = 1—zp, it implies e"! < 1+ ¢e"?; writing z, = 1 - z1, it implies
e"2 < 1+ e". Conversely, the conjunction of these three inequalities
implies that there exists a (possibly flat) triangle with lengths 1, e, e*2.
Let a,b, c € Cbe the vertices of this triangle; up to reordering, one has
lc—=b|=1,|b—al =e" and |c — a| = "2, then z1 = (a — b)/(c — b) and
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zp = (c —a)/(c — b) satisfy |z1| = "1, |z2| = e*? and z1 + z2 = 1, hence
(ul, uz) S ,fo

We have represented the amoeba in figure 1, together with three
half-lines with equations u7 = up > 0, up < 0 = u; and u; < 0 = uy.
These half-lines correspond to the asymptotic directions of the line V¢
in (C*)*. Namely, a sequence of points (z,,) in V¢ converges to infinity
either if it is unbounded in C?, or if (z,, 1) has 0 as a limit point (hence
(zm) has (0,1) as a limit point), or if z,, » has 0 as a limit point, so that
(zm) has (1, 0) has a limit point. Up to extracting subsequences, we can
assume either that (z,,) tends to infinity in C?, or that it tends to (1, 0), or
that it tends to (0, 1). In the first case, the relation z,, 1 + z, o = 1 implies
that z,,,1/zm 2 converges to 1, and log(|zy,1|) —log(|zm 2|) converges to 0;
we obtain the first half-line. In the second case, log(|z,2|) tends to —co,
while log(|z,,,1]) converges to 0; we obtain the second half-line. In the
last case, a similar argument furnishes the third half-line.

up = log(|z2|)

~
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uy = log(|z1|)
,,,,,,,,,,,,,,,,,,,,,,, >

Ficure 1. Amoeba of the polynomial T; + T, — 1

Theorem (2.3.4) (Gelfand, Kapranov, Zelevinski). — Let f € C[T!, ..., T3]
be a Laurent polynomial.
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a) The amoeba 9y of f is a closed subset of R".

b) The connected components of its complement C /¢ are open and convex.

c) For each connected component E of Cdy, there exists a unique formal
Laurent series gg whose open domain of convergence is equal to A™1(E), and
such ge(z)f(z) = 1 for all z € A™Y(E). Moreover, if E and B’ are distinct
connected components of Cody, then gg # gp'.

Proof. — Since Vy is closed in (C*)" and the tropicalization map A is
proper, hence closed, the amoeba of f is a closed subset of R". Let U be
its complementary subset; it is open, hence its connected components
are open too (R" is locally connected). By construction, A7}(U) is the
largest Reinhardt domain in (C*)" which is disjoint from V. Since
the fibers of A are connected (they are polycircles) and A is proper,
the connected components of A~1(U) are the open sets A~}(E), where E
ranges over the set of connected components of U.

Let ¢: A"}(U) — C be the holomorphic function z +— 1/f(z)
on A~1(U). Let E be a connected component of U; by proposition 2.2.4,
there exists a unique formal Laurent series gg whose open domain of
convergence %g contains A~1(E) and such that ¢g(z)f(z) = 1 for every
z € A7(E).

Let E,E’ be connected components of U such that gg = gg. Then
Ur = Uw, so that A(%g) = AM(Ug’) is a convex open subset of R" that
contains E and E’. Since a convex set is connected, this implies that
E = F’, and the map E — g is injective.

More generally, if g and %g' have a nonempty intersection, proposi-
tion 2.2.4 implies that gg and gg both are the Laurent series expansion
of the function ¢ on this intersection, hence gg = g/

When E ranges over the set of connected components of U, the sets
A(%g) are pairwise disjoint convex open subsets and their union is equal
to U. Since A(%g) contains E, one necessarily has, A(#g) = E for all E; in
partiular, E is convex. O
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2.4. The order of a connected component of the complement

Definition (2.4.1). — Let f € C[TF!,..., T£'] be a non zero Laurent polyno-
mial; write f = },,czn ¢ T". The Newton polytope of f is the convex hull
in R" of the set of m € Z" such that c,, # 0. We denote it by NPy.

Since NP is the convex hull of points in Z", it is a Q-rational polytope.

Proposition (2.4.2). — Let f € C[T{?, ..., T£'] beanon zero Laurent polyno-
mial, let o ¢ be its amoeba and let E be a connected component of its complement
C .

a) There exists an element v? € Z" such that

[ i
(2mi)" A-1(x) ]f(Zl,...,Zn) Z1...2p

for every x € Eand every j € {1,...,n}.
b) Moreover, for every z € A1(E) and every s € Z" — {0}, the expression

E
Vv, .=
fi

n

E\ _ . E
(s,vf) = ZSJVf,j

j=1

is the number of zeroes minus the order of the pole at the origin of the one-
variable Laurent polynomial

t f(zit®, ..., zyt™)
within the unit disk {|t| < 1}.

Let us recall that for x € (o s A71(x) is the product of the circles with
center 0 and radius e*/ in C. If we parameterize these circles as z; =
eXitit for t; € [0;2m], we see that the measure dz; ... dz, /(2ni)"z1 ...z,
is the Haar measure of A~1(x) normalized so that it has total mass 1.

Proof. — We will need some classic facts of complex analysis that we
recall first. Firstof all, if = }, w;(z) dz; is a closed holomorphic 1-form
on an open subset Q) of C”, then for each path y in ), that is, each
&!-function [0; 1] — Q, the path integral

n 1
/y w = ]Z; /0 wi(y()y/(t) dt
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is an element of C which does only depend on the strict homotopy class
of y (that is, up to homotopies fixing the endpoints of y). In the case y
is a closed path, the integral even only depends on the homology class
of y.

One important case happens for w = ¢~(z)d¢(z), where ¢ is a holo-
morphic function on ) which does not vanish. In this case, the path
integral

1 1 1 aJQO ,
2ni/(p(z) Ap(z) = 27”/0 ;7@0))%(1‘)%

is an integer. Let us indeed pose, for u € [0;1],

u n a
v = [ Py i

j=1

Formally, {(u) = [;" dlog((t)) = log(p(y(w))) - log(¢(y(0))), so that
e () = (p()/(u))go()/(O)) 1. To prove the latter formula, we show that
u = @(y(u))e v is constant; this follows readily from the fact that it
is €! and that its derivative is zero:

D00 (r)y e ™ — oy (W) (w)e ™ = 0.

j=1

Then ¥ = ¢(y(1))@(y(0))~" = 1. Consequently, ¥(1) € 2miZ. This is
the argument principle.

In the case where Q) is the complement of a finite set in a simply
connected domain of C and ¢ is meromorphic, then this integer is equal
to the number of zeroes and poles (poles being counted negatively) each
of them multiplied by the index of the closed path y (Rouché’s theorem).

We now prove the proposition. Let x € E. By the Fubini theorem, the
integral on the right hand side can be rewritten as

1 21 1 21 )
x]+zt] (ex1+lt1 o exn+ltn) dti|dty...
(2m)n-1 0 /
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Forz € A71(E), the map t — (z1,...,2j-1, z] z]+1, ...,2Zn)isaclosed

path in A7}(E), so that the inner integral

27 0
ﬁ o izjelt]Tf(zl, e zjm1,ziet Zjer, o, z) dE

is an integer. Since it varies continuously when z varies in C.Qf £, 1t s
constant on the connected set A~!(E). If we integrate furthermore with
respect to the remaining variables, we obtain that the given integral is
an integer v?l]. that does not depend on the choice of x. This concludes
the proof of the first part of the proposition.

Letz € (C*)"besuchthat A(z) € Eandlets € Z". Asexplained above,
Rouché’s theorem implies that the number v(z, s) of zeroes (minus the
order of the pole at the origin) of the meromorphic function ¢ : u —
f(z1u®, ..., zyu®") within the unit disk is given by

21 ’
v(z,s) = 2%11/0 ie”%(e”)dt.

It is thus equal to

1 [ ¢ L dif |
v(z,s) = _/ eztzsjzjez(sj—l)t 7 (z1€™1, .. zpesnt) dt
0

27 ,

j=1
n 27

1 / is-tajf isqt st st
= Si— zie®lt——(z1e"", ..., z;e"", ...,z ") dt

]Z:; Dy ; j ¥ j n
1

df (z),

f(Z)

where 7 is the closed path in A7}(E) given by t > (z1e'tt, ..., z,e"n").
Forevery j € {1,...,n},let y; be the closed path in A"!(E) given by t
(z1,...,2j-1, z]-e”, Zjt1,--.,2Zn)- Since the closed path y is homologous
to the sum Z}Ll s;yj, one has

” 1
v(z,8) = 2mi /f(z) af(z) = 5]2711/ f(z) af (z)-

Now, it follows from the definition of V]E(]. that one has v(z,s) =

W i=15iV f The concludes the proof. O
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Definition (2.4.3). — The vector vj]? € Z" characterized by proposition 2.4.2
is called the order of the component E of the complement of the amoeba .

Theorem (2.4.4). — Let f € C[T3!, ..., TE'] be a non zero Laurent polyno-
mial and let o ¢ be its amoeba.

a) For every connected component E of the complement C o/ r of the amoeba,

the vector v? belongs to the Newton polytope of f. Moreover, the normal cone
of NPy at vjlf‘ is the largest Q-rational convex cone C of R" such that E+C C E.

b) IfE and E' are distinct components of C s, then V]];: # v};:'.
c) In particular, the set of connected components of C o/ is finite.
d) For every vertex p of the Newton polytope of f, there exists a connected

component of Co ¢ such that vJ]? = L.

Assertion a) implies that the normal cone NV};: (NPf) of the Newton

polytope NPy at the vertex vJEr

is contained in the recession cone of the
component E. In fact, we will prove in corollary 2.5.8 below that there is

equality: ijg (NPf) = recc(E). This is not obvious because the recession

cone of an arbitrary convex open subset of R"” might not be rational.

Proof. — a) Write f = > ,,cz» ¢ IT™ and let V be the support of f,
that is, the set of m € Z" such that c¢,, # 0. By Farkas lemma (propo-
sition 1.3.2), to prove that v? belongs to NPy = conv(V), it suffices to
prove that for every linear form # on R" and every vector m € V, one
has h(v]h;) < h(m). Writing h(x) = . s;x;, it suffices, by density, to prove
this inequality when (s, ...,s,) € Q", and, by homogeneity, to prove
it when s = (s1,...,s,) € Z". The assertion is obvious if s = 0; we
therefore assume that s # 0.

Let z € A"}(E) and let ¢ be the meromorphic function on C given by
@(t) = f(z1t%,...,z,t%). One has h(v?) = (sjvjh;,].);by proposition 2.4.2,
it is equal to the number of zeroes, minus the order of the pole at the
origin, of the function ¢ on the unit disk. On the other hand,

qD(t.) — Z szmtslm1+~~+snmn

meZn
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is a Laurent polynomial of degree at most sup, (s, m). This is in
particular an upper bound for the total number of zeroes of this poly-
nomial minus the order of the pole at origin, hence the conclusion that
vi € NPy.

Let Cbe the cone of NP at VJE ; itis the cone generated by the translated

polyhedron NPs — vj]f (in other words, we choose 1/? for the origin of the
affine space V). This is a Q-rational polyhedral convex cone; moreover,
a linear form /1 on R" belongs to ij}; (NPy) if and only if it is negative

on NP (= vlf“:,
VJE € conv(V), this is equivalent to h(v]]?) = sup,, .y h(m).
Let h be a Q-rational linear form on R”; let s € Q" be such that

h(x) = X sjxj for x € R". Let us show that 1 € NvE(NPf) if and

only if the half-line E + R.s is contained in E. By homogeneity, we
may assume that s € Z". By the definition of a connected component,
saying that E + R;s is contained in E means that E + Rys does not
meet o/f. By proposition 2.4.2, this is equivalent to the fact that the
Laurent polynomial ¢(zT®) = Y c,,z"T¢™ has no zero t such that
|t| > 1. Its degree is < sup, (s, m), with equality if the arguments
of the components of z are well chosen. Since its number of zeroes
within the unit disk, minus the order of the pole at the origin, is equal
to (s,vj}f), this shows that E + R;s is disjoint from &/ if and only if

that is, if and only if h(m — v}h:) < 0 for every m € V; since

(s,v?) = sup,,.y(s, m), thatis, if and only if & € NV?(NPf)'

b) Since E and E’ are nonempty open subsets of R", they contain
rational points; let us thus choose z,z" € (C*)" such that A(z) € EN Q"
and A(z") € EE N Q". Letalso s € Z" such that A(z") — A(z) is a positive
multiple of s, say A(z") — A(z) = rs, for r € R}; we can assume that
z’ = ze". Since E # F/, one has A(z’) # A(z), hence s # 0.

Let u € (S1)". We have seen that (s,v?) and (s, v}b:'> are the number
of zeroes within the unit disk (minus the order of the pole at origin) of
the Laurent polynomials t +— f(zt°) and t +— f(z’ut®). Since z’ = ze’®,
one has z’ut® = zu(e"t)®, hence (s, v?) is the number of zeroes (minus
the order of the pole at the origin) of the function t +— f(zut®) in the
disk of radius e”. If one had (s, V?) = (s, v?'), the function t — f(zut®)
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would not vanish in the open annulus 1 < [t| < ¢”. Since this holds
for all u, the function f would not vanish on the inverse image by A of
the segment [A(z), A(z’)], and this segment would not meet the amoeba
of f, a contradiction.

c) Since the Newton polytope of f is compact, it contains only finitely
many points of Z", hence the assertion by a) and b).

d) Write f = . ¢,,T". By definition, NP/ is the convex hull of the
set of m € Z" such that ¢, # 0. Since u is a vertex of NPy, one has
u € Z" and ¢, # 0. Since {u} is a face of NPy, there exists a linear
form on R" such that ¢(m) < ¢(u) for every m € NP such that m # p.
In particular, for every m € Z" such that ¢,, # 0 and m # u, one has
p(m) < @(u). Write p(y) = X xjy; for y € R" and let z € (C*)" such that
log(|z;]) = x; for every j. By construction, one has [z"| < |z#| for every
m € Z" as above. Up to replacing z by a large enough power z!, we may
assume that the inequality

ez < leyz
m [uy

m#u

holds. By continuity, the set W of all w € (C*)" such that

D leww™| < feyat]

m#u

is an open neighborhood of z; it is also a Reinhardt domain. Let g be
the Laurent polynomial given by

(=3 e T

M+

one has f = ¢, T#(1 + g), and |g(w)| < 1 for all w € W. Consequently,
there exists a holomorphic function u on W such that e*®) = 1 + ¢(w)
for all w € W. Moreover, W is disjoint from &/; let E be the connected
component of z in C&/s. Writing z]-a}%f(z) = uj + z;dju in the definition
of the order of E, the integral gives v;.E = pj. Consequently, u = vF is the
order of E. O
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2.5. The Ronkin function of a Laurent polynomial

Definition (2.5.1). — Let f € C[T5', ..., T] be a nonzero Laurent polyno-
mial. The Ronkin function of f is the function on R" defined by

1 dz1 ...dz,
, lo Z1, e, Zp)|————
(2mi)n /A_l(x) UAC ) Z1...2p

Re(x) =
for x € R".

Let us recall that A7!(x) is product of the circles with center 0 and
radius ¥/, and that the measure dzq . ..dz, /(2wi)"z; ...z, is its normal-
ized Haar measure.

Example (2.5.2). — Assume that n = 1. Let then ay, ..., a;, be the roots
of f in C*, repeated according to their multiplicites, and let m be the
order of f at 0, so that

p
fmy=ct| [(T-a,
j=1

for some ¢ € C*. Using the classic integral, fora € Cand r € R,

1 2m

, 1 if r > |al,
L [t —apan =80 572

21 Jo log(a) otherwise

= log(sup(f, |(1|)),

one has

4
Ry(x) = log(lc|) + mx + > sup(x, log(|a;])).
j=1
(This is Jensen’s formula.) Consequently, the Ronkin function is piece-
wise affine, increasing, convex, with a slope change at each point of the
amoeba of f.

Theorem (2.5.3) (Ronkin). — The Ronkin function of f is convex (hence
continuous) on R". For every connected component E of Cof £, Ry is affine
on E, and its differential is given by (v?, ).
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Proof. — We use a bit of complex analysis. First of all, recall that the
function u : z = log(|f(e*, ..., e*")|) on C" is plurisubharmonic (psh),
as the logarithm of the absolute value of a holomorphic function. It
is also invariant by translation under the lattice 2nZ". As a mean of
translates of this function, the function on C" defined by

21
u'(z) = 2n)™" /[/ u(z1+1i64,...,z, +1i0,)d6:...d0,
0

271
:(271)‘”/[/ log(|f(ezl+i91,...,ez”+i6”)|)d61...d6n
0

is psh. By construction, this function is independent of the imaginary
parts of its arguments and coincides with Ry on R".

If u* were smooth, its psh nature would be detected by the positivity
of the differential form of type (1, 1),

_ LI I
i0ou* = ou

idZ]' Adzy,

equivalently, by the positivity of the hermitian matrix (9°u*/dz;0zx).

Since u* is invariant under imaginary translations, one has —g“f = %—g“f
Zj Xj

Ju* _ 1ou* : ; 2 A i
and % = 2ox Consequently, the Hessian matrix (0“Ry/dx;dx;) is

symmetric positive at each point, which would prove that Ry is convex.

The general case follows from the case of a smooth function by an
approximation argument. Indeed, as any psh function, log(|f]) is a
decreasing limit of smooth psh functions; then u is a decreasing limit
of smooth psh functions which are invariant by translations under the
lattice 22", and u” is a decreasing limit of smooth psh functions which
are invariant under imaginary translations. By what precedes, Ry is a
decreasing limit of smooth convex functions, hence it is convex.

Let E be a connected component of Co r. Let Ug be the open subset
of C" consisting of points (z1, ..., z,) with real part in E. On Ug, the
function z +— f 1?1, ..., e*)is holomorphic, hence the function —u is
psh, and the same argument as above implies that —Ry is convex on E.
Since both Ry and —Ry are convex on E, it follows that Ry is affine on E.
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To compute the differential of Rf on E, we may differentiate under the
integral sign in the formula

1 o +i Xp+i
Rf(x)z(m)n///o log(|f (e, ..., ™ *itn)]) dt.

Since the function log(| f]) is € on A~}(E) and the integral ranges over a
compact set, this is valid. With any local determination of the logarithm,

one has log(|f|) = R(log(f)), so that d;(log(|f|)) is the real part of ]%8]-f.
Consequently, djR¢(x) is the real part of

1 2n . x-+1’t-8jf x1+itg X, +it _.E
(2n)”/.[/o e (e e b = v

J}f]. € Z, this implies the relation

Since v

—_,E
5%, W =V,

for every x € E, and this concludes the proof. O

Remark (2.5.4). — One can prove that the connected components of C </
are the maximal open subsets of R"” on which the Ronkin function Ry is
affine. We refer to ( ) for the proof.

2.5.5. — Let Ebe a connected component of o/ and let 1/]};: be its order.

There exists a unique complex number c? such that

Re(x) = CJE + (vj]?, X)
for every x € E. Let then

S¢(x) = sup (cj}f + (vj}f, x)) ,
EET(()(C.fo)

where E ranges over the set 7to( Co r) of connected components of Co iz
This is a piecewise affine function; as the supremum of a family of affine,
hence convex, functions, it is convex. It is viewed as an approximation
of the Ronkin function of f. We call it the Passare—Rullgird function of f.
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Definition (2.5.6) ( , ). — The spine &y of the
Laurent polynomial f is the set of points of R" at which the Passare—Rullgdrd
function of f, S¢, is not smooth.

Theorem (2.5.7). — a) The Ronkin and the Passare—Rullgdrd functions of f
coincide outside of <.

b) One has Sy C dy: the spine of f is contained in its amoeaba.

c) More precisely, the spine Sy is a purely (n — 1)-dimensional polyhedral
subspace of R" and is a deformation retract of 9.

Proof. — a) Let E, F be connected components of Co r;letx € Eand
y € F. Let us consider the restriction of Ry to the real line (xy): for
t € R, we set u(t) = R¢((1 - t)x + ty). The function u is convex; it is
given by u(t) = cj]? + (v?, (1 - t)x + ty) in a neighborhood of 0, and by
u(t) = c}lj + (vjlf, (1 —t)x + ty) in a neighborhood of 1. By the classical
theory of convex functions of one variable, the graph of u at 0 is above
the tangent line at 1: u#(0) > u(1) — u’(1). In other words, one has the
inequality

C? + <ng’ xX) = c; + (vjli, y) — (v}lj, y—x)= cjlj + (v?, x).
When F ranges over 7to(C /), this furnishes the desired equality
Sr(x) = CJE + (v?,x) =Rf(x) onE.

b) In particular, Sy is smooth on Co r. By definition of the spine, this
proves the inclusion 8¢ C /.

c) For every connected component E of (& t, let us denote by E’ the
set of points x € R" such that S¢(x) = cJEc + (VJE, x). It is a polyhedron
in R” that contains E, and the function Sy is affine, hence smooth, on
the interior of E’.

When E ranges over mo(C /), these polyhedra cover R". Let E and F

be distinct connected components of Co r; then the gradient of Sy is vjlf

on the interior of E/, and v? on the interior of F’. Since v? # v; by, this
shows that the interiors of E’ and F’ are disjoint. At a point x of E' N F,
the Passare-Rullgdrd function cannot be smooth: considering points
of E’ that approach x, we see that its gradient should be equal to v]Ec,
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considering points of F/, it should be equal to vjlj. As a consequence, the
spine &y is the union of faces of the polyhedra E’. This also shows that
it is a purely (n — 1)-dimensional polyhedral subspace of R".

For every E € no(Cssz), let us choose a point xg € E. Let Ug be
the set of points x € E’ — {xg} such that the half-line [xg, x) meets the
boundary Jd(E’) of E’; this is an open subset of E'={xg} containing J(E’).
For any x € Ug, there is a largest real number 7(x) such that x + 7(x)(x —
xg) € E’; the function 7: Ug — R} is continuous. Setting og(x,t) =
xg+tt(x)(x —xg), fort € [0;1] and x € Ug is a retraction by deformation
of Ug onto J(E’).

Let U be the union of these sets Ug, when E ranges over no(C.szYF);
the maps og define a continuous map o: U X [0;1] — R” which is a
retraction by deformation of U onto §%.

To prove that &y is a retraction by deformation of &y, it suffices to
prove that U contains &/f. Let x € oy — &8y, let E be the (unique)
connected component of Co rsuchthatx € E'andleté = x—xg;ifx ¢ U,
then the half-line xg + R.& does not meet d(E’), which means that it is
contained in E’, hence & € recc(E’). This implies that (v?, &) = (v}lj, &)

for every other component F of Co/s. Since every vertex of NPy is of
the form vjlj, for some component F, this is equivalent to the inequalities
<VJEC, &) = (u, &) tor every u € NPs. As a consequence, & belongs to the

normal cone ijg (NPy) of NP/ at the point vZ. By theorem 2.4.4, one

E
;-
has E + NV?(NP 7) C E; in particular xg + R1& C E, contradicting the
hypothesis that xg + & = x € /. O

As a corollary of an argument in the proof, we can strengthen the first
assertion of theorem 2.4.4.

Corollary (2.5.8). — For every connected component E of Cof £, the normal
cone ijl;i (NPy) is the largest cone C such that E + C C E.

Proof. — Since NPy is a polytope with vertices in Z", it is Q-rational
and its normal cone Nvlfz (NPy) at v? is generated by vectors in Q". We

have seen in the proof of theorem 2.4.4 that these vectors belong to the
recession cone of E, hence the inclusion E + Nvlfz (NPs) C E.
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Conversely, let x € E and let £ € R" be such that x + R;¢ € E. Then
x + R4 & C E’, with the notation of the proof, and we have seen how this
implies that £ € NV? (NPy). This concludes the proof. O

2.6. The logarithmic limit set of a variety

Definition (2.6.1). — Let V be an algebraic subvariety of (C*)". The logarith-
mic limit set of V is the set of points x € R" such that there exists sequences
(xx) € A(V) and (hy) € R such that hy — 0 and hixy — x. We denote it
by Aeo(V).

This set has been introduced by ( ) who gave a descrip-
tion of the set when V is a hypersurface. His work has been completed
by (1954).

It is also called the asymptotic cone of A(C), and can be defined as the
limit of the closed subsets hA(V), when h — 0 (restricted to h > 0) for
the topology defined by the Hausdorff distance on compact sets.

In this section, we describe A(V) when V = 7(f) is defined by a
nonzero Laurent polynomial in C[T#!, ..., T£!].

Lemma (2.6.2). — Let V be a nonempty closed algebraic subvariety of (C*)".
Then its logarithmic limit set Aw(V) is a closed conic subset of R".

Proof. — Since V is nonempty, one has A(V) # @; one then may choose
xk to be equal to a given element of A(V) and hy = 1/k; this shows that
0 € Ao(V).

Let x € Ao(V); write x = lim hyxy, with xx € A(V) and (hx) — 0. For
every t > 0, one has tx = lim(thy)xy, and thy — 0, so that tx € A(V).

This proves that A(V) is a cone. Let us prove that it is closed.

Let (x(")) be a sequence of points of A(V) that converges to a point x €
R" and let us prove that x € A(V). For every m, choose a point x,, €
A(V)and areal number /1, such that0 < h,;, < 1/m and ||x(m> - hmxm” <
1/m. Then ||x — hpx || < ||x — x(’”)H +1/m, so that x = lim h,, x,,, hence
X € Awo(V). This proves that A(V) is closed. O

Definition (2.6.3). — Let f € C[Tf, ..., TE] be a nonzero Laurent polyno-
mial and let S C Z" be its support. The tropical variety defined by f is the
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set of all points x € R" such that sup,,c(x, m) is attained for at least two
values of m € V. We denote it by J.

It follows from the definition of I that it is a closed Q-rational cone
(non convex, in general).

In general, if V is a closed subvariety of (C*)", one defines its tropi-
cal variety Iy as the intersection of all F, for f € #(V) = {0}, wher
J(V) is the ideal of V, namely the ideal of all Laurent polynomi-
als f € C[TI—’l, ..., T*!] such that f|y = 0.

If V.C W, one has (W) c #(V), hence 9y C Jw.

The tropical variety Iy is a closed conic subset of R”, as an intersection
of a family of such subsets.

Lemma (2.6.4). — Assume that V. = 7'(f) is a hypersurface defined by a
nonzero Laurent polynomial f € C[T{!,..., T']. Then Iy = J5. In
particular, Iy is a Q-rational polyhedral set.

Proof. — It suffices to prove that 7y C %, for every nonzero Laurent
polynomial ¢. One has NPf, = NP +NPg; indeed, if m € Z" is a vertex
of NP fg, 1t must be a vertex of both NP ¥ and NP,. In other words,
if a linear form defines a nonpunctual face of NPy, then it defines a
nonpunctual face of NPy,; this means exactly that 7y C Jy,. O

Using Grobner bases and the notion of nonarchimedean amoebas, we
shall prove in the next chapter (remark 3.7.7) a conjecture put forward
by ( ) and proved by ( ) that there is
a finite family (f;) of Laurent polynomials such that 7y = (); 7. In
particular, 9y is a Q-rational polyhedral set. The motivation for the
work of ( ) came from the following consequence
regarding the logarithmic limit set of an algebraic variety.

Theorem (2.6.5) ( , ). — For every closed subvariety V
of (C*)", the tropical variety of V coincides with its logarithmic limit set:
Iv = Ae(V).

For the moment, we need to content ourselves with the weakest result.
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Theorem (2.6.6) ( , ). — Let V be a closed subvariety such that
v is a Q-rational polyhedral set. Then Iy = Aw(V). In particular, for every
non zero Laurent polynomial f € C[Ti—’l, ..., T, one has Tr = Ao 7' (f)).

We split the proof of this equality as two inclusions. The proof of
the first one is relatively elementary, the second will require a bit of
algebraic geometry.

Proposition (2.6.7). — One has A(V) C Fy.

Proof. — Itsuffices to prove that Ao (7°(f)) C Iy for every non zero Lau-
rent polynomial f. Fix x € R". Let S be the support of f and write f =
2mes Cm'T™; let S, be the set of m € S such that (x, m) = sup,, ¢(x, m).
By definition, x € JF if and only if Card(S,) > 2. Let us assume that
x ¢ 5, thatis, Card(Sy) = 1, and let us prove that x ¢ A.(7°(f)). We
argue by contradiction, assuming that there is a sequence (zx) in 7°(f)
and a sequence (i) of strictly positive real numbers such that iy — 0
and hiA(zx) — x. Let u € S be the unique element such that Sy = {u}.
By assumption, one has (x, m) < (x, u) forevery m € S={u}. Lete >0
be such that (x,m) < (x,u) — ¢ for every m € S={u}; by continuity,
this inequality holds in a neighborhood U of x. For k large enough such
that hxA(zx) € U, one then has

log(z, ") = (Mzk),m —u) = b (hA(zg), m — p) < —hi'e
for all m € S—={u}. Since hj tends to 0, this shows that log(lzT_“ |

converges to —oco, hence |ZZHJ | converges to 0. From the equality f(zx) =

0, we deduce that
1=- Z Cﬂz?_”.

més—{u}
By the preceding estimate, the right hand side of the previous equality
converges to 0, whence the desired contradiction. O

Lemma (2.6.8). — Let t € Ry and let x = (0,...,0,—t); if x € Iy, then
X € Awo(V).

Proof. — The result is obvious if x = 0. Since both 9y and A« (V) are
invariant by multiplication by a positive real number, we may assume
thatx = (0,...,0,-1).
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Let Ry = C[T!, ..., T#! ], let R = Ro[T;!] and R* = Ro[T,]; let
¢ : R” = Robe the unique morphism of Rp-algebras such that ¢(T,) = 0.
These rings R, R” and Ry are respectively viewed as the rings of func-
tions on the algebraic varieties (C*)", (C*)"~! x C and (C*)"~! x {0}. Let
[=.7(V)betheideal of Vin R; letI’ = INR" and let Iy = p(I"). Geomet-
rically, I’ is the ideal of the Zariski closure V’ of V in (C*)"~! x C, and I
is the ideal of Vo = V' N (C*)"~! x {0}.

Let us prove that Iy # (1). Otherwise, there exists f € I’ = INR’ such
that ¢(f) = 1, let S be the support of f and write f = },,c5cmT™, s0
that

o(f) = E cmTTl...TTﬁl.
meS
m,=0

Since f € I/, one has S ¢ Z"! x N, so that (x,m) = —m, < 0 for all
m € S. From the equality ¢(f) = 1, we see that there exists m € S
such that m, = 0 and (my,...,m,—1) = 0, thatis, 0 € S. In particular,
sup,, g{x, m) = 0.

Since x € Jf, there are at least two distinct elements m,m’ € S such
that 0 = (x, m) = (x,m’), thatis, m, = m), = 0. Then (mq,...,m,_1) #
(mf,...,m!_,), hence p(f)is notamonomial, contrary to the hypothesis
@(f) = 1. Consequently, Vo # @. Let z € (C)""! be a point such that
(Z, 0) € V.

By definition, V is a dense open subset of V' for the Zariski topology. It
is therefore an open subset of V’ for the classical topology. Moreover, a
basic but nontrivial result of algebraic geometry asserts it is also dense;
see, for example, ( , ), p- 58, theorem 1. Consequently,
there is a sequence (z;) of points of V such that zx — (z, 0). If one writes
z) = (zk,ux), with zx € (C)"! and u; € C, this means that z; — z
and uy — 0. In particular, A(zx) — A(z) and A(ux) — —oo; For k large
enough, one thus has log(ux) < 0; removing a few terms, we assume
that log(ux) < O for all k; setting hy = —1/log(ux), the sequence (hy)
converges to 0 and consists of strictly positive real numbers. Then,
hiA(z}) = (hA(zk), hiA(ug)) converges to (0, —1) = x. This proves that
X € Aso(V). O
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Proposition (2.6.9). — Assume that v is a Q-rational polyhedral subset
of R". Then Iy C As(V).

Proof. — Since Jv is a Q-rational conic polyhedral subset of R", its
rational points Q" N Jy are dense in Fy. Since A (V) is closed in R”, it
thus suffices to prove that every point of Q" N Iy belongs to A (V). Let
x € Q"NIy. If x =0, then x € A(V); let us then assume that x # 0. By
the classification of matrices over Z, there exists A € GL,(Z) such that
A7'x = (0,...,0,—t), where t € Q. Performing the monomial change
of variables given by A, we are reduced to the case of x = (0,...,0,-1).

The proposition follows from the preceding lemma. O
2.7. Missing
Following ( );

(2004); (2005):

— The connected components of the complement of the amoeba are
maximal open sets on which the Ronkin function is affine.

— (Limit of the amoebas is the tropical hypersurface, it is purely (n—1)-
dimensional;) maybe explain the balancing condition, at least the local
concavity, maybe not.






CHAPTER 3

NONARCHIMEDEAN AMOEBAS

3.1. Seminorms

Definition (3.1.1). — Let Rbearing. AseminormonRisamapp: R — R,
satisfying the following properties:

(i) One has p(0) = 0and p(1) < 1;

(ii) Foreverya,b € A, one has p(a —b) < p(a) + p(b);

(iii) For every a,b € A, one has p(ab) < p(a)p(b).

One says that the seminorm p is radical or power-multiplicative if, more-
over, it satisfies

(iv) Foreverya € Aandn € N, one has p(a™) = p(a)”.

One says that the seminorm p is multiplicative if:

(v) Foreverya,b € A, one has p(ab) = p(a)p(b).

One says that the seminorm p is a norm, or an absolute value, if p(a) = 0
implies a = 0.

One has p(a) < p(a)p(1) for all a € R; if p # 0, this implies 1 < p(1)
hence p(1) = 1.

Taking a = 0 in (ii), one has p(=b) < p(b), hence p(-b) = p(b) for all b.
Consequently, p(a + b) < p(a) + p(b) for all a,b € R.

Example (3.1.2). — Let R be a ring and let p be a seminorm on R. Let
P={a eR; p(a)=0}. Leta,b € P, thenp(a+b) < p(a)+p(b) = 0, hence
p(a+b) =0anda+b € P. Leta € Rand b € P; thenp(ab) < p(a)p(b) =0,
hence ab € P. This proves that P is an ideal of R.

For every a € R and every b € P, one has p(a + b) < p(a), and
p(a) =p((a+b)—-b) < p(a+Db),sothat p(a +b) = p(a). Consequently, p
passes to the quotient and defines a seminorm on R/P.
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If p is radical, then P is a radical ideal. Let indeed 2« € Rand n € N be
such that a” € P; then p(a)" = p(a”) =0, hence p(a) =0and a € P.

Assume that p is multiplicative and p # 0, and let us show that P is a
prime ideal. Since p # 0, one has P # R. Let also a,b € R be such that
ab € P; then p(ab) = p(a)p(b) = 0, hence either p(a) = 0and a € P, or
p(b) =0and b € P.

Example (3.1.3). — Let R be a ring, let S be a multiplicative subset
of R, let Rs be the associated fraction ring. Let p be a multiplica-
tive seminorm on R such that p(s) # 0 for every s € S. There exists
a unique map p’: Rs — R such that p’(a/s) = p(a)/p(s) for every
a € A and every s € S. (Indeed, if a/s = b/t, for a,b € R and
s,t € S, there exists u € S such that atu = bsu; then p(a)p(t)p(u) =
p(b)p(s)p(u), hence p(a)/p(s) = p(b)/p(t).) Itis clear that p’ is mul-
tiplicative: p'(a/s)(b/t)) = p'(ab/st) = p(ab)/p(st) = (p(a)/p(s)) -
(p(b)/p(t)). Moreover, let a,b € Rand s,t € S; then (a/s) + (b/t) =
(at + bs)/st, so that

,a b, at+bs.  plat+Dbs)
VG =P ) = s
 Plat) +pbs) _pla)  p(b)
S pGst) pGs)  p(t)
b
=P +p'C).

In particular, any absolute value on an integral domain extends
uniquely to an absolute value on its field of fractions.

Definition (3.1.4). — Let R be a ring and let p be a seminorm on R. One
says that the seminorm p is nonarchimedean, or ultrametric, if one has
p(a +b) < sup(p(a),p(b)) for every a,b € R.

Assume that p is ultrametric and let a, b € R be such that p(a) # p(b).
If, say, p(a) > p(b), we have p(a + b) < p(a); moreover, from the relation
a = (a+b)+(-b), we deduce that p(a) < sup(p(a+b), p(=b)) = sup(p(a+
b), p(b)) < p(a). Since p(a) > p(b), this implies that p(a + b) = p(a) =
sup(p(a), p(b)). By symmetry, the same relation holds if p(a) < p(b).
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The terminology ultrametric refers to the property that p satisfies an
inequality stronger than the triangular inequality. The terminology
nonarchimedean alludes to the fact that it implies that p(na) < p(a) for
every 1 € N: no matter how many times one adds an element, it never
gets higher than the initial size. The following lemma explains the
relations between these two properties.

Lemma (3.1.5). — Let R be a ring and let p be a seminorm on R.

a) If p is nonarchimedean, then p(na) < p(a) for every n € Z and every
a € R

b) Conversely, let us assume that p is radical and that p(n) < 1 for every
n € N. Then p is nonarchimedean.

Proof. — The first assertion is proved by an obvious inductive argu-
ment. Let us prove the second one. Let a,b € R. For every n € N, one
has

pla+b)" =p(a+b)") < p(Y. (’;)akb”—’w
k=0

n

< Zp(( ))p (a)"p(b)"™* < Zp(a)kp<b)” k

< (n +1)sup(p(a), p(b))".

As a consequence, one has

p(a+Db) < (n+1)"sup(p(a), p(b)).

When n — 400, we obtain the upper bound p(a + b) < sup(p(a), p(b));
this proves that p is nonarchimedean. O

Example (3.1.6). — A theorem of Ostrowski describes the multiplicative
seminorms on the field Q of rational numbers.

a) The usual absolute value ||, and its powers |-|" for r € |0;1];

b) For every prime number p, the p-adic absolute value |-|,, and its
powers ||, for all € ]0; +co[;

c) The trivial absolute value |-|p defined by |0]p = 0 and |a|p = 1 for all
a € Q%.
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Example (3.1.7). — Let % be an ultrafilter on N that contains the Fréchet
filter: % is a set of ‘P(N) satisfying the following properties, for A, B C N:

(1) If CA is finite, then A € %;

(i) f AcBand A € %, thenB € %;
(iii) f A,Be %, then ANB € %;
(iv) @ ¢ %.

(v) If A ¢ %, then CA € %;

In more elementary terms, elements of % are the subsets of N which
are almost sure with respect to some 0/1-valued finitely additive prob-
ability, and for which finite sets have probability 0.

The existence of ultrafilters follows from Zorn’s theorem, the set of
subsets of ‘B(N) satisfying (i)—(iv) being inductive with respect to inclu-
sion.

Members of a chosen (ultra)filter are sorts of neighborhoods of infinity.
In particular, one can define the notion of convergence along % for a
sequence (ay): lim, ¢/(a,) = a if for every neighborhood V of 4, the set
of n € N such that a,, € V belongs to . Every sequence with values in
a compact (Hausdorff) topological space has a unique limit along %; in
particular, every real valued sequence converges along % to an element
in RU {#o0}.

Fix a sequence t = (t,) of strictly positive real numbers converging
to +oo.

Let B, resp. Z;, be the set of all sequences (a,) € CN such that
lim, o log(|a,|)/tn < oo, resp. lim, o log(|a,|)/t, = 0. The set B; is
a subring of the product ring CN, and Z; is a maximal ideal of B;. The
quotient C-algebra K; = B;/Z; is an algebraically closed field. The map
(ap) — limy, |a, |1/t gives rise to an absolute value on K; which restricts
to the trivial absolute value on C. In particular, it is nonarchimedean.

The study of the logarithmic limit set of a complex variety amounts
more or less to the study of the nonarchimedean amoeba of the associ-
ated K;-variety.

3.1.8. — LetKbe anonarchimedean valued field, thatis, a field endowed
with a nonarchimedean absolute value.
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Let R be the set of a € K such that |a| < 1. Then R is a subring of K,
and K is its fraction field. More precisely, for every a € K*, then either
a € R (if |a] < 1), or 1/a € R (when |a| > 1), which means that R is a
valuation ring. It is called the valuation ring of K.

An element a € R is invertible in R if and only if |a] = 1. As a
consequence, the ring R is a local ring and the set M of all 4 € R such
that |a| < 1is its unique maximal ideal. The field k = R/M is called the
residue field of K.

If the absolute value of K is trivial, then R =K, M =0 and k = K.

In this context, the map from K* to the ordered abelian group R given
by v:a +— —log(|al) is a group morphism which satisfies the property
v(a+0b) > inf(v(a),v(b)) forall a,b € Ksuch thata,b,a +b # 0; in other
words, v is a valuation on K. In this context, one also defines v(0) = +oo.

The minus sign in the definition of v is sometimes annoying, at least it
creates confusion by reversing the inequalities. As we shall see below,
a valuation gives rise to a topology, but an element of large valuation
is small. For this reason, some authors such as ( ) define an
abstract valuation on a field K as a morphism A from K* to an ordered
multiplicative abelian group I' such that A(a + b) < sup(A(a), A(b)) for
all a,b € Ksuch thata,b,a + b # 0. In this context, one also sets A(0)
to be an additional element 0 which is strictly smaller than any element
of I.

Conversely, let K be a field and let R be a valuation ring of K. For
a,b € K%, write a < b if there exists u € R such that a = bu; this is a
preordering relation on K* and it induces an ordering relation on the
quotient abelian group K*/R* and the canonical morphism A : K* —
K*/R* is a valuation. Indeed, let a, b € K* be such thata+b # 0 and set
u=>bj/a;ifueR,thenb=auanda+b =a(l+u),sothat (a +b) < a;
otherwise,v =1/u € R,a =bvanda +b = b(1 + v) so that (a + b) < b;
in both cases, we have shown that A(a + b) < sup(A(a), A(D)).

Example (3.1.9). — Let K be a nonarchimedean valued field and let R
be its valuation ring. It follows from the property of a valuation ring
that for every a,b € R, either a € bR or b € aR, according to whether
la| < |b| or |b| < |a]. In particular, every finitely generated ideal of R is
principal.
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If M is finitely generated, then M is a principal ideal. Let = € M be
such that M = nR; one has || < 1, moreover, for a € R, either |a| < |r|,
or |a| = 1. Let a € R—{0}; there exists a largest integer n € N such that
la| < ||". One thus has |77| < |a/7"| < 1, so that |a/7"| = 1 and there
exists u € R* such that a = un".

As a consequence, all ideals of R are of the form "R, for some unique
n € N. In particular, R is a principal ideal domain. The mapv: K* — Z
given by v(a) = n if and only if aR = 7"R is a (normalized) discrete
valuation on K.

Proposition (3.1.10). — Let K be a field endowed with a nonarchimedean
absolute value |-| and let r = (r1,...,1y) be a family of strictly positive real
numbers. There is a unique absolute value p, on K(Ty, ..., T,) such that for
every polynomial f = 3’ ¢, T™, one has

pr(f) = sup enlr" ... 1",
meN"
Its restriction to K[T1,...,T,] is the largest absolute value such that
pr(Tj) = rjfor j € {1,...,n} and which restricts to the given absolute value

on K.

This absolute value is called the Gauss absolute value (with param-
eters r). Indeed, its multiplicativity is essentially equivalent to the
multiplicativity of the content of two polynomials with coefficients in a
unique factorization domain.

Proof. — To prove the first assertion, it suffices to prove that the given
formula defines an absolute value on K|[Tjy,...,T,], because it then
extends uniquely to its fraction field K(Ty, ..., T,). One has p,(0) = 0;
conversely, if f = ¢, T™ is such that p,(f) = 0, then |c,,| = 0 for all m,
hence f = 0. One also has p,(1) = 1.

Let f = > ¢, T™ and g = . d,, T be two polynomials.

Then f + g = >.(ci + d)T"; for every m,

My My

|Co + dulr]™ o1y < (sup(leml, [dm)r™ .. ry™) < sup(pr(f), pr(8)),
so that p,(f + g) < sup(p(f), pr(g))-
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Moreover, f ¢ = 2., (2p+q=m ¢pdq)T™. For every m, one has

Z Cpdy
p+g=m
sothatp,(fg) < pr(f)p:(g). Thisshows thatp,isanormonK[Ty, ..., T,],
and it remains to prove that p, is multiplicative.

Let P be the convex hull of the set of all p € N" such that p,(f) = |c,|r?,
and let Q be the convex hull of the set of all g € N" such that p.(g) =
|dg|r7. Let m be a vertex of P + Q; then there is a vertex a of P, and a
vertex b of Q such that m = a + b. In particular, if m =p + g, forp € P
and g € Q, then p = a and g = b, so that the coefficient of T" in fg is
the sum of c,d; and of other elements c,d,;, where either |c,|r7 < |c,|r?,
or |dg|rT < |dp|7? (or both) This implies that

Z cpdg| 1™

p+g=m

™ < sup |cplldg|rPrt < p(f)pr(8)
p+g=m

= |Cadb|rm = |Ca|ru |db|rb = Pr(f)Pr(g)

Consequently, p,(f ) = p:(f)p:(g) and p, is a multiplicative seminorm
onK[Ty, ..., Tul 0

3.1.11. — Let K be a field endowed with an absolute value. The map
(a,b) — |a — b|is a distance on K.

Let K be the completion of K for this distance. Let us recall its defini-
tion. One starts from the ring S of all Cauchy sequences in K and the
subset M of all Cauchy sequences which converge to 0. It is obvious that
M is an additive subgroup of M; since a Cauchy sequence is bounded,
it is an ideal of S, and K is the quotient ring S/M. Letj: K — K be the
map such that j(a) is the class of the constant sequence with value a; it
is a morphism of rings.

For a,b € K, one has

lla| — ]| < |a - b].

This implies that for every Cauchy sequence (a,) in K, the sequence
(lan|) is a Cauchy sequence in R; in particular, it converges. It induces
a map || : K — R which is a multiplicative seminorm on K such that
|j(a)| = |a] for every a € K.
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Let a = (a,) be a Cauchy sequence in K which does not converge to 0;
by definition, there exists ¢ > 0 and arbitrarily large integers n such that
la,| > €. Since (a,) is a Cauchy sequence, there exists an integer p such
that |a, — a,| < /2 for all integers m,n > p. Taking m > p such that
lam| > ¢, it follows that |a,| > ¢/2 for all integers n > p. In particular,
one has |a| > ¢/2. Consequently, the seminorm on K is an absolute
value.

Setb, =0forn < pand b, =1/a, for n > p. The inequalities

_lan —aw| i| — |
T apllan] 2T im

B = b
for m,n > p, imply that b = (b,) is a Cauchy sequence. Moreover, ab
converges to 1, hence the equality [a][b] = j(1) in K. This proves that K
is a field.

Assume that the initial absolute value of K is nonarchimedean. The
obtained absolute value on K is then nonarchimedean as well. More-
over, with the previous notation, we have |a,| = |a,| for all inte-
gers m,n > p: if the Cauchy sequence (a,) does not converge to 0,
then the sequence (|a,|) is eventually constant. In particular, the value
group of K is the same as that of K.

Example (3.1.12). — Let K be a nonarchimedean valued field. It is
known that the absolute value of K extends to an absolute value on
any algebraic extension of K.

More precisely, if K is complete, then for every algebraic extension L
of K, there exists a unique extension absolute value on L that extends
the absolute value of K. I refer to ( ), theorem 5.1, for
a detailed proof. Let us just mention that when the extension K — L is
finite, the absolute value of L is given by the formula

bl = INL ()] /1HN],

for every b € L.
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3.2. The analytic spectrum of a ring

Definition (3.2.1) ( , ). — Let K be a field endowed with a
nonarchimedean absolute value and let R be a K-algebra. The analytic spec-
trum of R is the set / (R) of all multiplicative seminorms on R which restrict
to the given absolute value on K, endowed with the coarsest topology for which
the maps from M (R) to R, p — p(f), are continuous, for every f € R.

If R is the ring of an affine K-scheme X, hence X = Spec(R), then the
analytic spectrum of R is also called the (Berkovich) analytification of X,
and is denoted by X"

3.2.2. — Since the evaluation maps p — p(f) are continuous, for every
a,b € R such that a < b, the set of all multiplicative seminorms p such
that p(f) < b (resp. that p(f) > a) is an open subset of .#(R). On
the other hand, the definition of the topology of .Z(R) implies that for
every p € #(R), a subset V of #(R) is a neighborhood of p if and only
if there exists a finite family (f1, ..., fn) in R, real numbers (ay,...,a,)
and (b1, ...,by) such that a; < p(f;) < b; for all j, and such that for
every q € #(R) such that a; < q(f;) < bjforall j, onehas g € V.

Another way to understand the topology of . (R) is its universal
property: if X is a topological space, then a map ¢ : X — #(R) is
continuous if and only if the map from X to R given by x — ¢(x)(f) is
continuous, for every f € R.

Example (3.2.3). — Let K be a nonarchimedean valued field, let n be a
positive integer and let R = K[T;!, ..., T#'] be the K-algebra of Laurent
polynomials in n indeterminates.

a) Every point z € (K*)" induces a multiplicative seminorm p, on R,
given by p.(f) = |f(z)|. For every f € R, the map from (K*)" to R given
by z — |f(z)]| is continuous. Consequently, the map z +— p. from (K*)"
to /(R) is continuous. It is also injective because for z € (K*)" and
a € K,onehas p,(Tj—a) = |zj—a| = 0ifand only if 2 = z;. One can even
show that it induces a homeomorphism from (K*)” onto its image.

b) For every r € (R})", the Gauss absolute value p, on K(Ty, ..., T,)
induces an element of /Z(R).
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Let f € R. The formula defining p, in proposition 3.1.10 shows that
the map r — p,(f) from (R%)" to R is continuous, as the supremum of
a finite family of continuous functions. Consequently, the map r +— p,,
from (R})" to #(R), is continuous. Using the relation p,(T;) = r;, one
can also show that this map induces a homeomorphism onto its image
which is a closed subset of .Z(R).

3.2.4. — Let K be a nonarchimedean valued field and let R be a K-
algebra. Letp € ./ (R)be a multiplicative seminorm on R which restricts
to the given absolute value on K. The kernel Ker(p) of p is a prime ideal
of R, hence a point of Spec(R), the classical spectrum of R. This furnishes
amap 7 : M (R) — Spec(R).

This map is surjective. Indeed, let P be a prime ideal of R; the residue
ring R/P is an integral domain; its fraction field «(P) is an extension of K.
Using absolute values on completions, algebraic extensions and Gauss
norms, we see that there exists an absolute value on this field which
extends the given absolute value on K. This absolute value restricts to
a multiplicative seminorm on R with kernel P.

3.2.5. — Let ] be a ideal of R and let 7'(J) be the subset of .Z(R) con-
sisting of all seminorms p such that p(f) = 0 for every f € ]. Itis a
closed subset of ./#(R), For each f € R, the set of all seminorms p on R
such that p(f) = 01is closed, as the preimage of the closed set {0} by the
continuous map f +— p(f) on #(R). Therefore, 7'(]) is the intersection
of a family of closed subsets of ./#Z(R), hence is closed.

If X = Spec(R), the following proposition shows that 7'(J) identifies
with the analytification of V(J) = Spec(R/]).

Proposition (3.2.6). — Let K be a field endowed with nonarchimedean absolute
value.

a) If ¢ : R — Sis a morphism of K-algebras, then the map ¢*: p — p o @
is a continuous map from M (S) to M (R).

b) If ¢ is surjective, then ¢ induces a homeomorphism from M (S) to its
image, which is a closed subset of 4 (R).

Proof. — a) To prove that ¢* is continuous, it suffices, by the defini-
tion of the topology of .#(R), to prove that for every f € R, the map
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p = @ (p)(f) =plp(f)) from (S) to R is continuous. But this follows
from the fact the definition of the topology of .Z(S).

b) Assume that ¢ is surjective and let ] = Ker(¢). Multiplicative
seminorms on S then correspond, via ¢, to multiplicative seminorms
on R which vanish on ]J. Consequently, ¢* is injective and its image
is the closed subset 7(J) of ./#(R) consisting of all seminorms p such
that p(f) = 0 for every f € ]J. Let us prove that the inverse bijection,
(") ': 7 (J) = (S), is continuous. By the definition of the topology
of J(S), it suffices to prove that for every f € S, the map from 7/(])
to R given by p — ()Y (p)(f) is continuous. Let ¢ € R be such
that f = @(g). For every q € #(S), one has ¢*(q) = g o ¢, hence
P*(@)Q) = q o ¢(g) = q(f); if p = ¢*(q) € 7(J), one thus has g =
(") X(p) and (@)1 (p)(f) = p(g)- By definition of the topology of ./ (R),
the map p — p(g) is continuous on .#(R), so that the requested map is
continuous on 7'(J), as the restriction of a continuous map. O

Theorem (3.2.7). — Let R be a finitely generated K-algebra and let f =
(f1,..., fn) be a generating family. The continuous map M (R) to R" given
by p — (p(f1),...,p(fn)) is proper. In particular, 4 (R) is a locally compact
topological space.

Proof. — Let ¢ : K[Ty,...,T,] — R be the unique morphism of K-
algebras such that ¢(T;) = f; forall j € {1,...,n}. Since it induces a
closed embedding of # (R) into 4 (K[T1, ..., T,]), it suffices to treat the
case where R = K[Ty, ..., T,] and f; = T; for all j.

Forr € R, theset V, ofallp € #(R) such that p(T;) < r forall j is open
in . (R) and the union of all V, is equal to .#(R). Moreover, the closure
of V, is contained in the set W, of all p € .Z(R) such that p(T;) < r for
all j. Consequently, to prove that .#(R) is locally compact, it suffices to
prove that W, is compact.

The map j: #(R) — RX given by p +— (p(f)) is continuous, by
definition of the topology of .#(R) and of the product topology. It is
injective, by the definition of a seminorm. Moreover, its image is the
subset of RY defined by the relations in the definition of a multiplicative
seminorm, each of them defining a closed subset of RY since it involves
only finitely many elements of R. Finally, j is a homeomorphism onto
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its image. Indeed, the inverse bijection associates to a family ¢ = (cy)
the multiplicative seminorm f +— c¢s. To prove that j~! is continuous,
it suffices to prove that for every f € R, the composition ¢ > j~1(c)(f)
is continuous; since this map is the restriction of the projection ¢  cy,
this is indeed the case, by the definition of the product topology.

For f € R, set ||f||r = sup, [cm|r™, where f = Y ¢, T" € R and
im| = my + -+ + my,. For every p € W,, one has p(f) < ||f
that j(W;) € [l¢erl[0;||f ||r]. According to Tikhonov’s theorem, the
latter set is compact, as a product of compact sets; consequently, W, is
homeomorphic to a closed subset of a compact set, hence is compact.

By what precedes, the inverse image of a compact subset of R" by the
map p — (p(T1),...,p(Ty)) is compact. Since #(R) and R" are locally
compact, this implies that this map is proper ( ( ), chap 1,
§10, n° 3, prop. 7). O

s SO

Corollary (3.2.8). — Let X = Spec(K[TI—’l, .., TEY)). The map A : X3 —
R" given by p — (log(p(T1)), ..., log(p(Ty))) is surjective and proper. In
particular, for every ideal 1 of K[Tlﬂ, .., T, A7) is a closed subset
of R".

Proof. — Let x € R" and let v, be the Gauss absolute value
of K(Ty, ..., Ty) such that v,(T;) = e/ for all j. One has A(v,) = x, so
that A is surjective.

By theorem 3.2.7, the map

p — (log(p(T1)), - .., log(p(Tn)), log(p(T;h), log(p(T, 1))

from Xa — R?" is continuous and proper. Its image is contained in
the closed subspace L of R?" defined by the equations x1 = x,41,x2 =
Xn+2, Xn = X2n, 50 that A induces a continuous and proper map from X"
to L. The corollary follows from the fact that the linear projection
(x1,...,%) — (x1,...,x,) from R*" to R" induces an homeomorphism
from L to R". O

3.2.9. — The scheme X = SpeC(K[TI—“l, ..., T#1]) is the n-dimensional
torus over K, the algebraic-geometry analogue of the complex mani-
fold (C*)". The map A is then the analogue of the tropicalization map
(C)Y* = R", (z1,...,2zn) = (log(|z1]), . .., log(|zx|)) studied in chapter 2.
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If I is an ideal of K[Tfl, ..., T#1], then the closed subscheme V(I)
of X has a Berkovich analytification 7'(I), naturally a closed subspace
of Xa" = ./ (K[Ti—’l, ..., T#1]), and its image A(Z (1)) is the tropicalization
of V(I).

In the algebraic geometry of schemes, one makes a careful distinc-
tion between the scheme X (or its closed subscheme V(I)) and its set
of points X(K) with values in a given field. One has a natural iden-
tification of X(K) with (K*)", an n-tuple (z1,...,z,) € (K¥)" being
identified with the images of Ty,..., T, by a morphism of K-algebras
from K[T;!, ..., T#'] to K; more generally, for any K-algebra L, the set
X(L) identifies with (L*)". Then, the set V(I)(L) identifies with the set
of elements (z1, ..., z,) € (LX)" such that f(z1,...,z4) =0forall f €L

Similarly, a point in K[Tfl, ..., TH]is a multiplicative seminorm p
on this K-algebra. Its kernel J, = {f; f(p) = 0} is a prime ideal of
K[T#!,...,T#'] and p induces a multiplicative norm on the quotient
K-algebra K[TI—“l, ..., T¥1]/],, and then on its field of fractions L, which
is a an extension of K endowed with an absolute value that extends the
absolute value on K. The field L, is generated by the images z1, ..., z,
of Tq, ..., T, by the morphism of K-algebras K[TI—“l, o, TH) — L,, and
the condition p € 7'(I) is equivalent to the conditionI C J,, or to the con-
dition f(z1,...,z,) = 0forall f € I. Conversely, any valued extension L
of K and any family (z1,...,z,) € (L*)" such that f(z1,...,24) = 0
for all f € I gives rise to a point in 7'(I), given by the multiplicative
seminorm f > |f(z1,...,z,)| on K[TF, ..., T#].

Consequently, the tropicalization of V(I) is the set of all x € R”
for which there exists a valued extension L of K and a family
(z1,...,2n) € (LX)" such that f(z1,...,z4,) = 0 for all f € I and

(log(lz1l), - .., log(|znl)) = (x1, ..., xn).

3.3. Nonarchimedean amoebas of hypersurfaces

3.3.1. — Let K be a field endowed with a nonarchimedean absolute
value. Let R be the valuation ring of K, let k its residue field and
red: R — k the reduction morphism; it maps the maximal ideal to 0
and induces a morphism of groups from R* to k*.
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The map from v : K* to R given by a — —log(|a|) is a morphism of
groups. LetI'beitsimage. One says that the given valued field K is split
if we are given a section of the surjective map v. Such a section does not
exist in general, but it does exist in the following two important cases:

— Assume that K is discretely valued. Then R is a discrete valuation
ring. If t is a given generator of its maximal ideal, one hasI' = Z log(|¢])
and the map n log(|t|) = t" is a section as required.

— If K is algebraically closed, then such a section also exists, by an
abstract homological algebra argument. Indeed, in this case, R* is
a divisible abelian group, hence an injective Z-module. In a more
elementary way, one can also use the fact that I' is a uniquely divisible
abelian group, hence a Q-vector space. It then suffices to choose, in a
compatible manner, nth roots of a given element of K*. Let y € ' and
let 2 € K* be such that log(|a|) = y. Let us choose inductively elements
a, € K* such that a; = a and (a,)" = a,—1 for all integers n > 2. In
particular (a,,)" = a forall n > 1. Moreover, if m > n, then n divides m!
and we see by induction that (a,)™/" = (a,)"/" = (a,)" V. Then
there is a unique morphism of groups from Qy to K* that maps 71y to
(a,)"~ D" for all m, n € Z such that n > 1.

If K is a split valued field, then we can extend the morphism of
groups red : R* — k* to a morphism of monoids p : K — k, by setting
p(a) = red(a/|al). Note that p restricts to a morphism of groups from K*
to k. Moreover, the map a — (—1log(|a|), p(a)) is a group isomorphism
from K* to T X k*.

Definition (3.3.2). — Let f € K[T5!, ..., T#] be a nonzero Laurent polyno-
mial; write f = ), ¢, T™.

a) The tropical polynomial associated with f is the map

7 : R" > R, x> sup (log(lem|) + (m, x)).

m

b) The tropical hypersurface defined by f is the subset Iy of all x €
R" such that there exist two distinct elements m € Z" such that T¢(x) =

log(|cul) + (m, x).
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c) (Assuming that the valued field K is split.) For x € R", the initial form
of f at x is the Laurent polynomial

ing(f) = > plem)T™.

¢ (x)=log(|cm[)+(m,x)

Recall that the support of a Laurent polynomial f = > ¢, " is the set
S(f) of all m € Z" such that c,,, # 0, and that the Newton polytope of f
is the convex hull NP of S(f) in R".

For x € R", we will often denote by Sy(f) the subset of S(f) consisting
of those m such that 7¢(x) = log(|c|) + (m, x); this is the support of the
initial form in,(f); its convex hull is then a sub-polytope NPy , of NPy.

With this notation, the tropical hypersurface 97 is the set of all x € R”"
such that S;(f) has at least two elements, equivalently, NPy , is not a
point. When K is a split valued field, this is also equivalent to the
property that iny(f) is not a monomial.

The preceding concepts make sense when f = 0: one has S(f) = @
(no nonzero monomials), 7¢(x) = —co (supremum of an empty family),
and iny(f) = 0, but the tropical variety 97 should be defined as R".

Remark (3.3.3). — Let ¢ : Gy — Gmi be a monomial morphism, given
at the level of Laurent polynomials by a morphism of K-algebras
¢ : K[T{, ... ,TI';”] — K[T:,..., T#'] of the form T; +— a;T%, where
ai, ..., dp € K* and e1,...,8p € Z". If L is an extension of K, this
morphism ¢ maps a point z = (z1,...,z,) € (L¥)" to the point
p(z) = (@124, ..., a,z°).

This morphism gives rise to an affine map ¢.: R" — RP, given
by x = (x1,...,x,) = (log(|ai|) + {e1,x),...) and to monomial mor-
phism ¢, : Gn — GmZ given by z — (a1z%,. ..,z;”), where a1 =
plai),...,a, = p(ap).

Let f € K[Tfl, e ,T;“l]; write f = ),,ezv Cn T™ so that

¢ (f) = Z cmaTl...a?meleﬁ“'*mPeP.

meZP
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If the rank of (ey,...,e;) € My, ;,(Z) is equal to p, then all exponents
mye1 + - -+ + mye, are pairwise distinct. This implies that

) (6) = sup 10+ ol ) + -+ gl
(e + -+ mpep,x>)
= sup (oglen )+ m(loglor) + ey 2)) .
+ mp(log(lay) + ey, x>>)

= sup (log(lcml) tmiyr -t Mplp |,
m

where y; = log(|a;|) + {e;, x)) for j € {1, ..., p}. This shows that
To*(f) = Tf ©° Pr-
If K is a split valued field, we obtain similarly that

inx((P*(f)) _ Z p(Cm)Oé;nl o aZZme]el-i'--.-Fmpep — (P;(inqu(x)(f))-

Lemma (3.3.4). — Let f, g € K[TF!, ..., T£'] be nonzero Laurent polynomi-
als and let h = f g. For every x € R", one has the following relations:

() tn(x) = Tr(x) + T4(x);
(i) NPy, , = NPf , + NP ;
(iii) If K is a split valued field, then iny(h) = iny(f )in,(g).

Proof. — Write f = > a,1?, ¢ = }.b,T7and h = }, ¢, T". For m € Z",
one has ¢;,, = Zp+q:m ayb,, hence

log(leml) + (m, x) < sup (log(lapl) + (p, x)) + (log(|b,]) + (g, x))

p+q=m
< sup(log(|ap|) + (p, x)) + sup(log(|cq]) + (g, x))
p q

= Tr(x) + 74(x).

This proves that 7;(x) < T¢(x) + Tg(x).
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In order to prove that equality holds, we observe that the set of all
m € Z" such that log(|c,|) + (m,x) = 77(x) + T¢(x) is contained in
the sum Sy(f) + Sx(g). Let then u be a vertex of the Minkowski sum
NP + NP, ; and let £ € R" be such that (m, &) < (u, &) for every
m € NPy , + NP,  such that m # u. The face of NPy , + NP, , defined
by & contains the Minkowski sum of the faces of NPy, and NP .
defined by &; consequently, these faces are vertices and there exists a
unique pair (p, q), with p € S,(f) and g € Sx(g), such that u = p + 4.
The initial computation then implies that

log(lepul) + (u, x) = (log(lap|) + (p, x)) + (log(|by]) + (g, x)),

so that 7,(x) = 77(x) + 74(x). It also shows that NPy, + NP;, C
NPj x. However, we have seen that every vertex of NP}, , belongs to
NPy » + NPg », which implies the equality NPy » = NP, + NPg ».

The relation regarding initial formsis a refinement of these properties.

Let m € Z". If log(|cm|) + (m, x) < 75(x), then the monomial T" does
not appear in iny(h).

Otherwise, since 1j,(x) = T¢(x) + 74(x), one has log(|a,|) + log(|b,]) <
log(|cy|) for every pair (p,q) such that p + g = m, and equality is
achieved for at least one pair. Consequently,

lelenlle,, = plosllend 5N g p,

p+q=m
= Z ¢~ 1oglla,Dg 4= log(lbghp,
p+q=m
pESx(f)
7€5x(8)

s 7 g telenl)lognbriog(ny b p-Togllal)g, ¢~ loslinby,

other terms

a relation between elements of R. The reduction of the left hand side
modulo the maximal ideal is the coefficient p(c,) of T in iny(h).
Similarly, if p € Si(f), then the reduction of t~18(%Dg, is p(a,); if
g € Sx(g), then the reduction of t‘log(lbq“bq is p(by). On the other hand,
if log(|a,|) + log(|by]) < log(|c/|), then the reduction of corresponding
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term on the right hand side is zero. Consequently,

plew) = D play)p(by).

p+q=m
peSx(f)
q€5x(8)

Since ink(f) = Xyes,(r) P(ap)TP and ink(g) = Xges,(g) P(bg)T7, this
proves the coefficient of T" in iny(h) is equal to the coefficient of T in
the product of in,(f) and iny(g). Consequently, iny(h) = iny(f)iny(g),
as claimed. O

Proposition (3.3.5). — Let f € K[T{', ..., T£'] bea Laurent polynomial. The
associated tropical hypersurface Iy is a closed I'-strict polyhedral subset of R",
purely of dimension n — 1. More precisely, there exists a I'-strict polyhedral
decomposition of R" the (n — 1)-dimensional polyhedra of which Jy is the
union.

Proof. — Write f =}’ ¢, T"; let S(f) be the support of f; for x € R", let
Sx(f) be the set of all m € S(f) such that log(|c|) + (m, x) = T¢(x).

For every m € S(f), let P,,, be the the set of x € R" such that m € S,(f).
Since Py, is defined in R" by the affine inequalities log(|c,]) + (g, x) <
log(|cm|) + (m, x) for all g € S(f), it is a convex polyhedron. The slopes
of these affine forms are integers, and their constant terms are elements
of the value group I' = log(|K*|) of K; consequently, P,, is a I'-strict
convex polyhedron. By construction, these polyhedra cover R".!

If S,(f) is reduced to an element m, then then there exists an open
neighborhood V of x such that S,(f) = {m} for all y € V; in particular,
V is is disjoint from the other polyhedra P,, and it is contained in the
interior of P,,.

On the other hand, for two distinct elements m, g of S(f), the polyhe-
dron Py, N P; is contained in the hyperplane defined by the nontrivial
affine equation log(|c,|) + (m, x) = log(|cy|) + (g, x), so that P, N P, is
disjoint from the interior of P;,. In particular, if Card(S,(f)) > 2, then x
does not belong to the interior of P,.

1Vérifier la terminologie sur les polyedres stricts
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This proves that R” is the union of those polyhedra P,, which have
dimension 7, and that the union of their interiors is the set of all x € R"
such that Sy(f) is reduced to one element.

Consequently, the tropical hypersurface 7y, which is its complemen-
tary subset, is the union of the (n — 1)-dimensional faces of these poly-
hedra P, and they are I'-strict convex polyhedra. O

Theorem (3.3.6) (Kapranov). — Let f € K[Tfl, ..., T*1] be a Laurent poly-
nomial. The following three subsets of R" coincide:

(i) The tropical hypersurface I,

(ii) The set of all x € R" such that there exists a valued extension L of K and
a point z € (L*)" such that f(z) = 0 and x = A(z);

(iii) The image of 7' (f) in M(K[T%', ..., T£']) by the tropicalization map
A /%(K[Tfl, .., TE)), p > (log(p(T1)), . . ., log(p(Ty))).

Assuming that the valued field K is split, they concide with:

(iv) The set of all x € R" such that iny(f) is not a monomial.

If L is an algebraically closed extension of K, endowed with a nontrivial
absolute value extending that of K, they also coincide with the set:

(v) The closure of the set of all x € R" such that there exists a point z € (L*)"
such that f(z) = 0 and x = A(z).

Proof. — Let Sy = 9%, 52,53, Sy, Ss be these subsets. Write f = ' ¢, T™.

Let x € R". Let m € Z"; the monomial T appears in in,(f) if and
only if log(|cy|) + (m, x) = 17(x). Consequently, in,(f) is a monomial
if and only if the supremum defining 7¢(x) is reached only once. This
proves that S; = Sj.

The equality So = S3 follows from the discussion in §3.2.9.

Let L be a valued extension of K, let z € (L*)" be a point such that
f(z) = 0 and let x = A(z). One has 2 c¢;,z™ = 0. Since the absolute
value is nonarchimedean, the supremum of all |c,,z"| must be attained
twice. Since A(c,z™) = log(|cm|) + (m, x), this shows that there exist
two distinct elements m, g € Z" such that log(|cy|) + (m, x) = 7¢(x). In
other words, x belongs to the hypersurface 7. This proves that one has
52 C 51.

By definition, the set S5 is the closure of a subset of Sy; since S; is
closed, one also has S5 C 5.



98 CHAPTER 3. NONARCHIMEDEAN AMOEBAS

By the corollary to the lifting proposition below, one has 7y NI € Ss.
Since K is algebraically closed and its valuation is nontrivial, the group I
is anon zero Q-subspace of R; in particular, itis dense in R. On the other
hand, since 7 is a I'-strict polyhedral subspace of R”, its subset 7 N I™
is dense in Jf. Since 7 is closed in R", this implies that S; = 9 C Ss.

Using Gauss absolute values (proposition 3.1.10) and example 3.1.12,
there exists an algebraically closed valued extension L of K whose value
group I'1, contains the coordinates of x. By the corollary of the lifting
proposition, there exists z € (L*)" such that f(z) = 0 and A(z) = x; in
other words, one has x € S;. Consequently, S; C S,. This concludes the
proof of the theorem. O

Proposition (3.3.7) (Lifting). — Assume that K is an algebraically closed
valued field with residue field k. Let f € K[T#',..., T£'] be a Laurent
polynomial. We assume that the coefficients of f belong to the valuation ring
of K and that its reduction ¢ € k[TI—“l, ..., T¥] is nonzero.

For every a € (k*)" such that ¢(f) = 0O, there exists a € (R*)" such that
p(a) = aand f(a) = 0. Moreover, if f is irreducible, then the set of such a is
Zariski dense in the closed subscheme V(f) of G-

Proof. — We do the proof by induction on #.

Let us first assume that n = 1. Since K is algebraically closed, we
may write f = c¢T" szl(T —a;), for some c € K*, m € Z, q € N and
ai, ..., a; € KX If |aj| > 1, we write T —a; = —a;(1 - a].‘lT), so that

f=c l—l (—a;)T" 1_[ (1- a]._lT) ]—[ (T - aj).

|aj|>1 laj|>1 laj|<1

Let ¢/ = c]_[|a].|>1(—aj). If || < 1, then this formula shows that f
reduces to 0 in k[T*!], contradicting the stated hypothesis that ¢ # 0.
If |¢’| > 1, the coefficients of (¢’)"!f belong to the maximal ideal of
the valuation ring of K, so that the reduction of (¢)"'f is zero; on the
other hand, we see that this reduction is equal to T" H|aj|<1(T — a;).
then the relation (¢’)"! f and the hypothesis Consequently, |c’| = 1 and
Q= p(c’)Tm(H|a],|<1 T) H|a],|=1(T — p(a;)). Since ¢ vanishes at a, there
must exist j € {1,...,q} such that |4;| = 1 and p(a;) = a. This proves
the proposition in this case.
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To do the induction step, we first perform a multiplicative Noether
normalization theorem to reduce to the case where the map m — my
from the support S(f) of f to Z is injective. To see that it is possible,
we make an invertible monomial change of variables Ty — Ty, To —
T, ..., T,.1 — Tn_lTiH,Tn — T,,,T?n_1 for some integer 4, chosen
to be large enough so that g > |m; - m]’.| for all m,m’ € S(f) and
all j € {1,...,n}. This change of variables transforms the Laurent
polynomial f into the polynomial

fr= Y eT{™Ty2 T,
meS(f)
where
@(m) =my + gmy + q*mz + -+ q" "'y,
Let m,m’ € S(f) be such that m # m’; let k € {1,...,n} be such that

mj = m]’ for j > k and my # m,’{; then one has

n k-1
pm') = p(m) = > g/ ] —my) = > g7 (m = my) + 45 (m), — my).

j=1 j=1

In absolute value, the last term is at least qk_l, because m,’( # my; on the
other hand, the first one is bounded from the above by

k-1 k-1

. -1
> 47 g - 1) = (g - 1) — g1,
=1

qg-—1

hence |p(m’) — p(m)| > 1.

Assume that this property holds. In other words, if f is written as
a Laurent polynomial in Tq, with coefficients Laurent polynomials in
T,, ..., T,, then all of these coefficients are monomials.

Then fix any lifting a’ = (aa,...,a,) € R 1 of a’ = (ay,...,an).
The polynomial f is not a monomial; otherwise ¢ would be a monomial
and would not vanish at a. Thanks to the property imposed on the
exponents of f, the one-variable Laurent polynomial f(T,a’) is not a
monomial either; its reduction is ¢(T, a’) and vanishes at a;. By the
n =1 case, there exists a1 € R* such that p(a;) = a1 and f(a1,4’) = 0.
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To prove the density, we let Z be the Zariski closure in Gy of the
set of these elements a € (R*)" such that f(a) = 0 and p(a) = a. By
definition, the ideal .#(Z) of Z is the set of all Laurent polynomials
h e K[Tfl, ..., T*!] such that h(a) = 0 for all these a. One has f € 7(Z)
by construction, hence (f) C #(Z). To prove that Z = 7'(f), it suffices
to prove that 7 (Z) = (f).

Let g € 7(Z)=(f). Since K[Tiﬂ, ..., T¥1] is a unique factorization
domain and f is irreducible in K[Ti—“l, ..., T#1], Gauss’s theorem shows
that f is either a unit, or irreducible in the one-variable polynomial
ring K(To, ... ,Tn)[T1,Tf1]. Since g does not belong to (f), the poly-
nomials f and g are coprime in this principal ideal domain and there
exist polynomials u,v € K(T, ... ,Tn)[Tl,TI—“l] such that uf + vg is a
nonzero element of K(To, ..., T,). Multiplying by a common denom-
inator, this furnishes a nonzero element # of (f, g) N K[T#, ..., T=1).
Let a’ € (R¥)""! be such that p(a’) = a’. By what precedes, there exists
a € R" of the form a = (t,4’) such that f(¢,4") = 0 and p(a) = a; by
assumption, g(a) = 0, hence h(a’) = 0. This contradicts the fact that
these elements a” are Zariski-dense in Gml’}_l (lemma 3.3.8 below). O

Lemma (3.3.8). — Let K be a field, let A4, ..., A, be subsets of K and let
A=A X XAy Let f €K[Ty,...,Ty]. If Card(A;) > degTj(f)for all j,
then there exists a € A such that f(a) # 0.

In particular, if A4, ..., A, are infinite, then A is Zariski dense in A".

Proof. — If n = 1, this amounts to the fact that a polynomial in one
variable has no more roots than its degree. We then prove the result
by induction on n, writing f = fo+ fiT1 +--- + f, T{, for fo,..., fu €
K[T,,...,T,], where m = deng (f), hence f,, # 0. By induction, there
exists ax € Ay, ...,a, € A, such that fy,(az,...,a,) # 0. This implies
that the polynomial f(T,ay,...,a,) has degree m. Since Card(A;) >
deng(f) = m, there exists a; € Aj such that f(ay,az,...,a,) # 0, as was
to be shown. O

Corollary (3.3.9). — Assume that K is an algebraically closed split valued field
and let x € I"™. Then, for every a € (k*)" such that in,(f)(a) = 0, there exists
a € (KX)" such that AM(a) = x and f(a) = 0. Moreover, if f is irreducible, then
the set of such a is Zariski dense in 7'(f).
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Proof. — By assumption, there exists b € (K*)" such that A(b) = x.
Let ¢ € (R*)" be such that p(c) = p(b). Since A(c) = 1, we then
have A(bc™!) = A(b) = x and p(bc™!) = p(b)p(c)™! = 1. Replac-
ing b by bc™!, we now assume that A(b) = x and p(b) = 1. Let
g(T) = f(01Tq,...,b,Ty); writing f = Zmes(f) cmI™, we have g =
2imes(f) cmb™T™. Consequently, for every z € R", one has

T¢(z) = sup(log(|cm|) + (m, x + z)) = 1¢(x + z).

This also shows that S;(g) = Sx+z(f) and that

in:(g)= ). plend™T" = > plen)T" = ingsz(f).

mGSz(g) mesx+z(f)

In particular, x € Iy if and only if 0 € I, iny(f)(a) = 0 if and only
if ing(¢)(a) = 0, and g(a) = 0 if and only if f(ab) = 0, where ab =
(Ellbl, ceey Elnbn).

By the lifting proposition, there exists a € (R*)" such that p(a) = «a
and g(a) = 0; then ab € (K*)" satisfies p(ab) = a and f(ab) = 0.

Moreover, if f is irreducible, then g is irreducible as well, the set
of such elements a is Zariski dense in 7(g), hence the set of such
elements ab is Zariski dense in 7°(f). O

3.4. Monomial ideals

Definition (3.4.1). — An ideal of K[Ty, ..., T,] is said to be monomial if it
is generated by a set of monomials.

Observe that if an ideal I is generated by a family (f;) of monomials,
then a monomial f belongs to I if and only if it is divisible by some f;.

Lemma (3.4.2). — Let1beanideal of K[Ty, ..., T,]. The following properties
are equivalent:

(1) The ideal 1 is monomial;
(ii) For every polynomial f € 1, every monomial that appears in f belongs
to L
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Iflisanideal of K[T4, ..., T, ], we shall sometimes consider the ideal |
generated by all monomials which belong to I; it is the largest monomial
ideal contained in L.

Proof. — (i)=(ii). Assume that I is monomial. Let f € I; we may write
f =", figi, where f; is a monomial in a given generating family of I
and g; € K[Ty,...,T,]. Let cT™ be a (nonzero) monomial that appears
in f. There exists i € {1,...,m} such that m belongs to the support
of f;gi; since every monomial of f;g; is divisible by the monomial f;, this
implies that f; divides T", hence ¢T" € (I).

(ii)=(@). Let (f;) be a generating family of I. By assumption, all the
monomials of the f; belong to I. The family consisting of all of these
monomials generates an ideal which is contained in I by assumption,
and which contains I since it contains all of the f;. O

Example (3.4.3). — The ideal generated by a subfamily (T;);es of the in-
determinates is a monomial ideal. It is also prime, since the quotient
ring, isomorphic to the polynomial ring K[(T;);¢s] in the other indeter-
minates, is an integral domain.

Conversely, all prime monomial ideals are of this form. Let indeed
I be a prime monomial ideal of K[Ty,...,T,] and let S be the set of
alli € {1,...,n} such that T; € I; let us prove that I = ((T;)ies). The
inclusion ((T;);es) C Iis obvious. Conversely, let f € I and let us prove
that f € ((T;)ies). Since all monomials of f belong to I, we may assume
that f is a monomial; write f = ¢T" = cT{"...T;”. If none of the
indeterminates that appear in f belong to I, then neither does their
product, by definition of a prime ideal. Consequently, there existsi € S

such that m; > 1, and f € (T;) € ((T})ies)-

Proposition (3.4.4). — a) The sum and the intersection of a family of mono-
mial ideals is a monomial ideal.

b) The radical of a monomial ideal is a monomial ideal.

c) Every monomial ideal has a primary decomposition which consists of
monomial ideals. In particular, the prime ideals associated with a monomial
ideal are monomial ideals.



3.4. MONOMIAL IDEALS 103

Proof. — a) The case of a sum follows directly from the definition.
Let (Ij) be a family of monomial ideals and letI = (;I;. Let f € [ and
let cT™ be a monomial that appearsin f. Fix anindex j; since f € I; and
I; is a monomial ideal, we have ¢cT" € I;. Consequently, ¢cT" € 1. This
proves that I is a monomial ideal.

b) Let I be a monomial ideal and let ] = VI; let us prove that J is a
monomial ideal. Let f € J and let us prove that every monomial of f
belongs to J. Subtracting from f its monomials that belong to J, we
may assume that no monomial of f belongs to J; assume, arguing by
contradiction, that f # 0 and write f = >, ¢, 7. Let m € N™ be a vertex
of the Newton polytope of f, so that c,, # 0 and T" ¢ J. Then for every
integer s > 1, the exponent sm is a vertex of the Newton polytope of f°,
because NPss = sNPy, and the coefficient of T*" in f* is equal to c},.
Since I is a monomial ideal, one has c;, T*" € I; by the definition of the
radical, one has T € J, a contradiction.

c) Let I be a monomial ideal and let us consider a primary decompo-
sitionI = (1,1, of I. For every a, let P, be the radical of I, let ], be the
largest monomial ideal in I,.

Let Q, be the radical of J,. It is the largest monomial ideal contained
in P,. Indeed, if a monomial T" belongs to P,, then there exists s > 1
such that T°™ € 1,, hence T°™ € J,, hence T € Q,.

Let us prove that Q, is a prime ideal. It is contained in P,, hence
is not equal to (1). Let f,g € K[Ty,...,T,] be such that fg € Qu;
subtracting from f and g all of their monomials that belong to Q,, we
may assume that they have no monomial in Q,; assuming that f # 0,
we need to prove that ¢ belongs to Q,. We may assume that g # 0. The
Newton polytope of f g is equal to the Minkowski sum of the Newton
polytopes and f and g. Considering a vertex of the Newton polytope
of f g, we get two monomials ¢, T" of f, and d,T7 of g, such that their
product ¢,,d,T"*1 is a monomial of fg, and their power (c,,dg)sT*("+9)
is a monomial of (f g)*, for every integer s > 1. Since Q, is the radical
of J,, there exists s such that (fg)° € J,; since J, is a monomial ideal,
one then has Ts("+%) ¢ J, c 1,, hence T"*1 € P,. The monomial T"
does not belong to P,, hence T € P,, hence T € Q.
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We now prove that J, is a Q,-primary ideal. Similarly, we consider
f,g € K[Ty,...,T,] such that fg € ], and f ¢ Q,, and prove that
g € J4. Subtracting from f and g all monomials that belong to Q, and
Ja respectively, we reduce ourselves to the case where no monomial
of f belongs to Q,, and no monomial of g belongs to J,. Assume that
f,8§ # 0; as above, there are monomials ¢, T" of f and d,T7 of ¢ such
that c,,d,;T"*7 is a monomial of fg. Since J, is a monomial ideal, one
has T"*1 € J, c I,. Since T™ ¢ Q, and T™ is a monomial, one has
1" ¢ P,. Since I, is P,-primary, one then has T7 € 1,,, hence T7 € J,, a
contradiction.

Let us now prove that I = (), ]J,. One has J, C I, for all a, hence
MNaJa € Nala = 1. To prove the other inclusion, let f € I and let us
prove that f € ], for all a. Since I is a monomial ideal, it suffices to treat
the case where f is a monomial. Then for every a, one has f € I,, hence
f €Ja since f is a monomial. Consequently, f € (1, ]Ja.

O

Theorem (3.4.5) ( , ). — Let K bea field and let & be an infinite
set of monomial ideals in K[Ty,...,T,]. There exists a strictly decreasing
sequence of elements of F.

Proof. — The set of monomial prime ideals is finite. Considering mini-
mal primary decompositions consisting of monomial ideals and succes-
sively extracting infinite subsets, we reduce to the case where all ideals
in & are primary with respect to the same prime ideal, (Ty, ..., Ty).
Replacing K by the field K(T;,+1,...,T,), we are reduced to the case
where all ideals in & are primary with respect to the maximal ideal
(Ty, ..., Ty).

For every monomial ideal I, let M(I) be the set of m € N” such that
" ¢ L.

If I € #, there exists an integer N > 1 such that (TN, ... ,Tl,f) c I so
that the set M(I) is contained in [0; N]"; in particular, M(]) is finite.

Observe that the inclusion I C J is equivalent to the inclusion M(J) C
M(I). We will first prove by contradiction that there are ideals I,] € &
such thatI € J. Assume otherwise.
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Let Jo be the intersection of all ideals in & and choose I; € . For
everyl € # such thatl # I;, onehasI; ¢ I, so that there exists m € M(I;)
such that T € I. Since Z is infinite and M(I;) is finite, there exists an
infinite subset %1 of # and a nonempty subset M; of M(I;) such that for
alll € 1 and all m € N", m € M; if and only if m € M(I;) and T" € I;
let then J; be the intersection of all ideals I, for I € %;. One has Jy C ],
by construction. On the other hand, if m € M;, then T" € I for every
I e F,butT” ¢ 11, so that T € J; and T™ ¢ ]y, so that Jo < J;.

Iterating this construction, we construct a strictly increasing se-
quence (J) of ideals in K[Ty, ..., T,]. This contradicts the fact that this
ring is noetherian.

Consequently, in any infinite set of monomial ideals which are pri-
mary with respect to the maximal ideal, we can find two ideals which
are contained one in another.

Let us now construct a strictly decreasing sequence of ideals in such a
set #. Since the ring K[T1, ..., T, ] is noetherian, the set # has finitely
many maximal elements; for one of them, say I, the set #; of ideals
I € # such that I € I is infinite. Applying this construction with
F1 instead of %, we obtain an ideal I, € % such that I; € I, and an
infinite subset of %, consisting of ideals contained in &. Iterating this
construction, we obtain the desired decreasing sequence. O

3.5. Initial ideals and Grobner bases

Let K be a valued field, let R be its valuation ring and let k be its
residue field. It will be important below to admit the case where the
valuation of K is trivial; in fact, we will apply the theory to polynomials
with coefficients in k, when viewed as a trivially valued field.

LetI' = log(|K*|) be the value group of K; it is a subgroup of R.

We assume implicitly that the valued field K is split, denoting by y + t”
a morphism of groups from I' to K*; one has log(|t”|) = y for all
y € I'. We also write p: KX — k* for the group morphism given by
a +— red(at~1o8(lal),

3.5.1. — With a polynomial f € K[Tp,...,T,], we have associated a
tropical polynomial 77 : R"*! — R as well as, for every x € R"*!, an
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initial form in,(f) € k[T, ..., T,]. The exponents of the monomials of
iny(f) are exponents of monomials of f; in particular, if f is homoge-
neous of degree d, then so is iny(f).

Definition (3.5.2). — Let I be an ideal of K[Ty, ..., T,] and let x € R+,
The initial ideal of I at x is the ideal of k[T, . .., T,,] generated by all initial
forms iny(f), for f € L. It is denoted by in,(I).

Lemma (3.5.3). — Let 1 be an ideal of K[ Ty, ..., T,] and let x € R+, Iflis
a homogeneous ideal, then in, (1) is a homogeneous ideal.

Proof. — Let]be theideal of k[Ty, ..., T, ] generated by the initial forms
iny(f), for all homogeneous polynomials f € I;onehas] C in,(I),andJisa
homogeneous ideal. Let f € I and let f = } ;N fa be its decomposition
as a sum of homogeneous polynomials, f; being of degree d. Since I
is a homogeneous ideal, one has f; € I. By definition of the tropical
polynomial, one has

Tr(x) = ZEE(de(x))-

Let D be the set of all d € N such that f; # 0 and 7(x) = 75(x). By
definition of iny(f), one then has

ine(f) = ) ine(f),
deD
because of the exponents of the monomials appearing in the polynomi-
als f; are pairwise distinct. In particular, iny(f) € J. This proves that
iny(I) = J is a homogeneous ideal. O

3.5.4. — The initial ideal at 0, ing(I), is the image in k[Ty, ..., T,] of
the ideal I N R[Ty, ..., T,] by the reduction morphism. Let indeed
J be this ideal. For every f € I, written as f = } ¢,T", one has
7¢(0) = sup,, log(|cx|) and ing(f) is the image of the element ft‘Tf(O) €
I N R[Ty,...,Ty], so that ing(f) € J. On the other hand, if f € I N
R[Ty, ..., Ty], then either 7¢(0) < 0, in which case the image of f in
k[To, ..., Tu]is zero, or 7£(0) = 0, in which case ing(f) is the image of f.
This proves that ] = ing(I).

Moreover, R[Ty, ..., T,]/(INR[Ty, ..., T,])is a torsion free R-module,
hence is flat, because R is a valuation ring. In the case where I is a
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homogeneous ideal, this says that the family Proj(R[Ty,...,T,]/I N
R[To, ..., Tn])) — Spec(R) is a flat morphism of projective schemes;
its generic fiber is Proj(K[Ty, ..., T,]/I) = V(I), and its closed fiber is
Proj(k[To, ..., T,]/inp(I)) = V(ing(I)). This flatness has the following
important consequences:?

— The Hilbert functions of I and ing(I) coincide. Explicitly, for every
integer d, one has

dimg ((K[To, . .., Tn]/Da) = dimg((k[To, . . ., Tx]/ino(I))a);

— If V(I) is integral, then V(ing(I)) is equidimensional, of the same
dimension.

3.5.5. — Let x € R"*L; let us assume that the coordinates of x belong
to the value group I'. For every j € {0,...,n}, fix a; € K* such that
log(|a;|) = xj; let also &j = p(a;) for every j.
Forevery f = > ¢,/ IT™ € K[Ty, ..., Ty], onehas f(aT) = } c,,a™T™, so
that
tan)(0) = sup(log(lcal) + (m, ¥)) = T4(x),
m

as well as

ing(f@T) = ) plend™T" = > plen)a™T" = iny(f)(aT),

meS(x) meSs(x)

Let ¢, be the K-algebra automorphism of K[Ty,...,T,] given by
@a(f) = f(aoTo,...,a,T,) and let ¢, be the k-algebra automorphism
of k[To, ..., Tx] given by ¢,(f) = f(aoT,...,a,T). By the preceding
computation, we have 1, (in,(I)) = ing(¢,(I)) is the image of the ideal
o) NR[Ty, ..., Tyl in k[T, ..., Tpl-

This change of variables will allow to reduce properties of the initial
ideal in,(I) to the case of x = 0. In particular, it immediately implies the
following lemma.

Lemma (3.5.6). — Let 1 be a homogeneous ideal of K[Ty,...,T,] and let
x € R"*! be such that its coordinates belong to the value group of K.

a) The initial ideal iny(I) is the set of all iny(f), for f € I,

ZMaybe write an appendix with material from commutative algebra and algebraic geometry
that is used in the notes.
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b) If V(1) is integral, then V(iny(I)) is equidimensional, of the same dimen-
sion;

c) The Hilbert functions of 1 and iny(I) coincide. Explicitly, for every
integer d, one has

dimg ((K[To, ..., Tx]/D)q) = dimg((k[To, . .., Tx]/ine(I))a).

One of the goals of the theory that we develop now is to extend these
properties to an arbitrary x € R"*!.

Remark (3.5.7). — Let x1,x2 € R be Q-linearly independent real num-
bers such that (Qx; + Qx2) N log(|K*|) = 0. Let I = (Ty,T2). One has
iny(I) C (Ty, T2), and the relations iny,(T1) = Ty and in,(T2) = T2 imply
that in,(I) = (Tq, Ty).

Onthe otherhand, let f € K[Ty, T], written ; ¢, 7", and letm, n € N2
be elements such thatlog(|c,,|)+(m, x) = log(|c,|)+({x,n) = 7¢(x). Then
log(|cm/cnl) + x1(m1 —n1) + x2(ma —n2) =0, so that ¢, /¢, € R, my = ny
and my = ny; this proves that in,(f) is a monomial. In that case, the
set of polynomials of the form in,(f), for f € I, is not an ideal of I
In particular, the statement of Lemma 2.4.2 in
( ) is incorrect (this is signaled in the errata of that reference).

The next lemma is a weakening of the expected property.

Lemma (3.5.8). — Let 1 be a homogeneous ideal of K[Ty,...,T,] and let
x € R™1,

a) Every element of in, (1) is a sum of polynomials of the form in,(f), for
fel

b) Let f,g € L. If the supports of in,(f) and in,(g) are not disjoint, then
there exists h € 1 such that iny(h) = in,(f) +in,(g). If 17(x) = T¢(x) and
iny(f) +iny(g) # O, then one may even take h = f + g.

c) Let m € N"*L if T™ € in, (1), then there exists f € 1 such that T" =

Ny (f)

Proof. — a) Let f € I,leta € kX and let m € N"™. Leta € R* be
such that p(a) = a. One has 7,1 ¢(x) = T¢(x) + (m, x) and in, (aT" f) =
aT™iny(f) (this is an elementary instance of lemma 3.3.4). This proves
that the set of initial forms is stable under multiplication by a monomial.
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In particular, the additive monoid it generates in k[T, . .., T, ] isanideal
of k[To, cen ,Tn].

b) Write f = Y, ¢, T", ¢ = >, dy, T™ and let u € N"*! be a common
point of the supports of iny(f) and of in,(g). This means that log(|c,|) +
(11, %) = 74(x) = sup,, (log(lcul)+ (m, x)) and log(Id,|) + (i, x) = T4(x) =
sup,,(log(|du|) + (m,x)). In particular, 7¢(x) — T4(x) = log(|c,/dl).
Replacing f by ft=18lcD) and ¢ by ¢t~1°8(4u) does not change in,(f)
and in,(g) and allows us to assume that |c,| = |d,| = 1 and 7¢(x) =
To(x) = (U, x).

If in,(f) + in,(g) = 0, then we take h = 0.

Let us now assume that in,(f) +in,(g¢) # 0andleth = f + g = >(cm +
dn)T™. For all m, one has log(|c,,|) + (m, x) < 7¢(x) and log(|dy|) +
(m,x) < t¢(x) = 17(x), so that log(|cy, + dp|) + (m,x) < 77(x) and
Th(x) < T(x).

Let m € N™+1.

Let us assume that m € Sy(f)=5x(g). Thenlog(|c,|) + (m, x) = 7(x)
but log(|d|) + (m, x) < 14(x) = 7¢(x); we then have |d;;| < |cy|, hence
lcm + dm| = |cwm| and log(|cy, + din|) + (m, x) = T¢(x). This implies that
Th(x) = 17(x). Moreover, p(cy, + dy) = p(cim) is the coefficient of T in
iny(f) + iny(g) and in in,(h).

Similarly, if m € Sx(g) = Sx(f), then |cy + di| = |dm| > |cm|, Th(x) =
1¢(x), and p(ciu + di) = p(d) is the coefficient of T™ in in,(f) + iny(g)
and in iny(h).

If m € Sx(f) NSx(g) and p(cim) + p(d) # 0, then log(|cim|) + (m, x) =
T¢(x) = 14(x) = log(|dm|) + (m, x), so that |c;;| = |d;;| and

0 # p(cm) + p(dpn)
= red(c,,t~108UenD) 1 red(d,, t~108cnD)y
= red((cm + dm)t_log(lcml)),

so that [c;, + dpy| = |cim|. Then 1,(x) = 7¢(x) and p(cym + d) = p(cm) +
p(dm) is the coefficient of T™ in in,(f) + iny(g) and in iny(h).

Since in,(f) + iny(g) # 0, by assumption, at least one of these three
cases appears. This already proves that 7;(x) = 77(x).

Two possibilities remain for m € N™*1,
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If m & Sy(f) U Sx(g), then log(|ciu|) + (m, x) < t(x) and log(|d|) +
(m,x) < 74(x), so that log(|cy, + di|) + (m, x) < 17(x) = 14(x). Then m
does not appear in in,(f), in,(g) or iny(h).

Let us finally assume that m € Sy(f) N S.(g) and p(cm) + p(dm) = 0.
As above, one has |cy,| = |d,| and p(cy) + p(dy) is the reduction of
(¢ + dpy)t~108Uenl) - This implies that |c,; + dy| < |c|, hence T™ does
not appear in iny (%), and neither does it appear in in,(f) + in,(g).

c) Let ¢ € iny(I) and let (fi)1<i<p be a finite family of minimal cardi-
nality of elements of I such that ¢ = Zle iny(f;). By minimality of p,
one hasin,(f;) # Oforalli. Applying b), we deduce from the minimality
of p that for all i # j, the supports of in,(f;) and in,(f;) are disjoint. The
support of their sum, }; in,(f;) = ¢, is then the union of their supports,
hence it has at least p elements.

If ¢ is a monomial, this implies that p = 1, so that there exists f € I
such that @ = in,(f). O

Definition (3.5.9). — Let I be an ideal of K[Ty, ..., T,] and let x € R"1 A
finite family (f1, ..., fm) of elements of L is called a Grobner basis for 1 at x if
the initial forms in,(f;) at x generate the initial ideal in,(I) of L at x.

Since the initial ideal in,(I) is generated by the polynomials of the
form in,(f), for f € I, the existence of a Grobner basis follows from the
noetherian property of the ring k[Ty, ..., T,] (aka, Hilbert’s finite basis
theorem).

Assume, moreover, that I is homogeneous and let (fi,..., fin) be a
Grobner basis for I at a point x. For every j, iny(f;) is the sum of the
initial forms of the homogeneous components of f;, as we saw in the
proof of lemma 3.5.3. This implies that the homogeneous components
of the f; constitute a Grébner basis for I at x.

In the next lemma, we consider initial forms of polynomials of
k[Ty, ..., T,]; this means that the field k is considered as a valued field,
for the trivial absolute value.

Lemma (3.5.10). — Let x € R™ and let f € K[Ty,...,T,]. There exists a
strictly positive real number & such that for every y € R"*! such that ||y|| <90,

one has inyy(f) = in, (ine(f)) and T¢(x + y) = Tin,(r)(¥)-
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Proof. — Write f = 3 ¢, T™; let S(f) be its support and let S;(f) be the
set of all m € S(f) such that

log(lem|) + (m, x) = 1¢(x) = sup(log(|cml) + (m, x)),

so that one has iny(f) = X es,(r) P(cm)T™. Let then Sy ,(f) be the set of
all m € Sy(f) such that

<mr y) = Sup (m, }/> = Tinx(f)(y)/
meSx(f)

so that iny (inx(f)) = Xyes, ,(r) Plem)T™.
Let ¢ be a strictly positive real number such that log(|c,|) + (m, x) <

T¢(x) — € for m € S(f) = Sx(f). Letalso 6 > 0 be such [(m, y)| < ¢/2 for
every m € S(f) and every y € R"*! such that ||y|| < 6. For every such y
and every m € Sy ,(f), one then has

log(lem|) + (m, x +y) = (og(lcml) + (m, x}) + (m, y) = T¢(x) + Tin, (1) (Y)-
In particular, one has 7¢(x + ¥) > Tin,(r)(y)- If m € S(f) =Sx(f), one has

log(lcm) + (x +m, y) = (og(lcm]) + <m, x)) + (m, y)
<1f(x) —e+(m,y)
< Tf(x) + Tinx(f)(y).
(Indeed, Tjn,(r)(y) > —¢/2 and (m,y) < €/2.) On the other hand, if
1 € S.(f) = Sx(f), then
log(lcml) + (x +m,y) = (log(lew|) + (m, x)) + (m, y)
= 17(x) + (m, y)
< Tf(x) + Tinx(f)(y).
This proves that 7¢(x + y) = T¢(x) + Tin,()(y) and that
iny(f) = > plen)T" = iny(iny(f)).

meSy.(f)

O

Proposition (3.5.11). — Let 1 be a homogeneous ideal of K[Ty, ..., T,]. For
any y € R"™1, let M, be the largest monomial ideal contained in in, ().
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a) Let y € R"*! be such that M, is maximal among the ideals of this form.
Then iny(I) = M, — in particular, in,(I) is a monomial ideal.

b) Assume, moreover that the valuation of K is trivial. Then there exists
6 > 0 such that for every z € R"! such that ||z|| < 6, one has one has
iny..(I) = in,(I) = My,

c) Let x € R"*1. Let y € R"*! be such that in (iny (1)) is maximal among
the ideals of this form. Then there exists a finite family (f;) in 1 such that
the polynomials in, (in.(f;)) generate the ideal in,(iny(I)). Moreover, there
exists 6 > 0 such that for every ¢ € R such that 0 < ¢ < 0, one has
iNytey(I) = iny, (iny (1)), and this ideal is monomial.

Proof. — a) By construction, the ideal M, is generated by a family
(T™) of monomials belonging to in, (I); by Hilbert’s basis theorem, this
family can be assumed to be finite. By lemma 3.5.8, there exists, for
every i a polynomial f; € I such that T = in,(f;).

We now argue by contradiction and consider f € I such that in,(f) ¢
M,. If a monomial appearing in f belongs to M,,, we choose ¢ € I such
that in,(g) is that monomial; by lemma 3.5.8, there exists i € I such that
in,(f) —iny(g) = iny(h), and that monomial does not appear in in, (h);
moroever, in, (1) ¢ M,. Repeating this argument, we assume that no
monomial of in, (f) belongs to M,,.

Letnow u be a vertex of the Newton polytope of in, (f) and let z € R"*!
be the coefficients of a linear form defining pi. In other words, u belongs
to the support of in,(f), and for every other m in this support, one
has (m,z) < (u,z). Then in,(in,(f)) is the monomial of exponent u
in iny(f). By lemma 3.5.10, for z € R"*! such that ||z|| is small enough,
one has in,;,(f) = in,(in,(f)). Similarly, if [|z]| is small enough, then
for every i, one has iny,(f;) = in,(in,(f;)) = iny(f;) since in,(f;) is a
monomial. This implies that M, contains M,. On the other hand,
the monomial T# belongs to My, but not to M,,. This contradicts the
hypothesis that M, is maximal among the ideals of this form.

b) Theidealin,(I)is generated by the monomials in(f;). For z € R"*!
such that ||z|| is small enough, one has in,,.(f;) = in;(iny(f;)) = in,(f;)
since iny(f;) is a monomial and the valuation of K is trivial. Conse-
quently, in,;,(I) contains the monomial ideal in, (I). By maximality, the
equality follows.
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c) Let us apply the first part of the proposition to the ideal in,(I) of
k[To, ..., Tu] and choose y € R"*! such that in, (in,(I)) is maximal for
this property — it is then a monomial ideal, by a). We shall prove that
iNyyey(I) = in, (iny(I)) for € > 0 small enough.

Let (g1,...,9m) be a finite family of elements of in,(I) such that
in,(g;) is a monomial, for every i, and such these monomials gener-
ate in, (in,(I)). Fix i. As in the proof of lemma 3.5.8, c), there exists a
finite family (f; ;); of elements of I, with pairwise disjoint supports, such
that ¢; = 2};iny(f;,7). Then the polynomials iny (in«(f; ;)) have pairwise
disjoint supports, and there exists a unique j such that the monomial
in,(g;) appears in in,(iny(f; ;)), in which case in,(g;) = in,(in.(f;)).
This shows that there exists a finite family (f;) in I such that in, (in,(f;))
is a monomial for each 7, and such that these monomials generate the
ideal in,, (iny(I)).

Let then 6 > 0 be such that iny,.,(f;) = in,(iny(f;)) for every i and
every ¢ € Rsuch that 0 < ¢ < §; in particular, in,(iny(f;)) € iny4ey (D),
hence in (in,(I)) C inyy¢y(I). Let us assume that the inclusion is strict.
Then, there exists f € I such that iny,.,(f) does not belong to the
monomial ideal in, (iny(I)). Subtracting from f an adequate linear com-
bination of the the f;, we may moreover assume that no monomial
of iny ¢, (f) belongs to in (in,(I)).

Let z € R™*! be such that in,(iny4ey(f)) is @ monomial. (In other
words, z does not belong to the tropical hypersurface associated with
iNytey(f).) For 6 > 0 small enough (depending on y, ¢, f), one then has
iNyteytoz(f) = inz(iny4¢y(f)), hence is a nonzero monomial. However,
applying b), we observe that if ¢y + 6z is small enough (depending
on x and I uniquely), then that monomial belongs to in. s, (iny(I)) =
in, (in,(I)), a contradiction which concludes the proof that iny,.,(I) =

in, (iny (I)).

Theorem (3.5.12). — Let I be a homogeneous ideal of K[Ty, ..., T,]. For
every x € R"™, the Hilbert functions of 1 and in,(1) are equal: for every
integer d, one has

dimg ((K[To, ..., Tn]/Da) = dimy((k[To, .. ., Ty ]/inx(I))a).
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Lemma (3.5.13). — The conclusion of theorem 3.5.12 holds if iny(I) is a mono-
mial ideal.

Proof. — Fixd € N.

Let M be the set of m € N"*! such that |m| = d and T ¢ in,(I). Let us
prove that the family (T™),,em is free in (K[To, ..., Tx]/I)4. Let (cp)mem
be a family in K such that ;¢ T" € I Then there exist a family
(Cm)mem in k such that in,(f) = 3. ¢, T". By definition, one has in,(f) €
in,(I), and since in,(I) is a monomial ideal, one has ¢,,T" € in,(I) for
every m € M. Since T ¢ in,(I) for m € M, this implies ¢,, = 0, hence
iny(f) = 0and f = 0. As a consequence, one has

dimg ((K[Ty, ..., T,]/1)4) = Card(M).

On the other hand, since the homogeneous ideal in,(I) is generated by
monomials, one has

Card(M) = dimy((k[To, . . ., T,.]/ine(D))a),
so that
dimg((K[To, ..., T,]/T)a) > Card(M) > dimy((k[To, ..., Tn]/ine(I))q).

In the other direction, let now M’ be the set of m € N"*! such that
|m| =d and T € in,(I). For every m € M’, there exists f,, € I such that
iny(fn,) = T™. Since I is a homogeneous ideal, we may also assume that
fm is homogeneous of degree d. Multiplying f,, by an element of R*, we
may assume that f, = T" + 2., am pTF. Let us prove that the family
(fm)mewr is free. Let (¢y)mem be a family in K such that } ¢, fi = 0.

Let u € M’ such that log(|c,|) + (i, x) is maximal. Considering the
coefficient of T in }; ¢y, fm, one has

Cu+ Z Cmlm,u = 0.
m#u

By ultrametricity, there exists m # u such that |c,| < |cyam,ul, and then

log(|cm|) + (m, x) < log(|cu| + (u, x) <log(lcu|) +log(lam,ul) + {u, x),
so that

(m, x) < log(lam,pul) + (g, x),
contradicting the hypothesis that in,(f,) is the monomial T".
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Consequently,
dimg (K[Ty, ..., Tyla NI) > Card(M’) = dimg(k[Ty, ..., Tnla N ing(I)).
Since I is a homogeneous ideal, one has
dimg((K[To, ..., Tn]/Da)

= dimg (K[ Ty, ..., Tyls) — dim(K[Tp, ..., Txla NI
< dimg(k[To, ..., Tyla) — dim(k[To, ..., Tpla NI
= dim((k[To, ..., Ty ] /inx(I))a)-

This concludes the proof of the lemma. O

Proof of theorem 3.5.12. — We fix y € R"1! and ¢ > 0 such that
iny (iny(I)) = iny4¢,(I) is a monomial ideal.

Applying lemma 3.5.13 to the ideal I of K[ Ty, . . ., T, ] and the point x +
¢y, we have

dlmK((K[TO, R Tn]/I)d) = dlmk((k[To, R Tn]/inx+sy(1))d)-

Applying that lemma to the ideal in,(I) of k[Ty,...,T,] and the
point iy, we have

dimg((k[To, . .., Tnl/ine(D)g) = dimg((k[To, . .., Ty ]/iny (inx(I))) 1)
= dimy((k[To, .. -, Tn]/inx+ey(1))d)-
This shows that

dlmK((K[TO, ceey Tn]/I)d) = dlmk((k[To, s Tn]/inX(I))d)/

as claimed. 0

Corollary (3.5.14). — Let I be a homogeneous ideal of K[ Ty, ..., T, ], let x €
R"*! and let (f1,--., fm) be a Grébner basis of Lat x. Then1 = (f1,..., fm)-

Proof. — Let ] be the homogeneous ideal of K[Ty, ..., T,;] generated by
the homogeneous components of fi,..., f. One has ] C I, because
these homogeneous components belong to I. Moreover, for every j,
the initial form iny(f;) is the sum of the initial forms of the homoge-
neous components of f;, so that in,(f;) C in.(J). As a consequence,
iny(I) € iny,(J), hence the equality in,(J) = in,(I). By theorem 3.5.12,
the homogeneous ideals I and ] have the same Hilbert functions. Since
J 1, this implies ] = L. O
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3.6. The Grobner polyhedral decomposition associated with an ideal

3.6.1. — Let I be a homogeneous ideal in K[Ty, ..., T,]. For x € R
let C,(I) be the set of y € R"*! such that iny (I) = in,(I) and let C,(I) be
its closure in R**!. Lete = (1,...,1) € R**.,

Here is the main theorem

Theorem (3.6.2). — Let I be a homogeneous ideal in K[Ty, ..., T,]. The sets
Cx(I) form a T-strict and Re-invariant polyhedral decomposition of R"*1,

Proposition (3.6.3). — Let x € R"*1,

a) The set C(1) is a closed T-strict and Re-invariant polyhedron in R";

b) If iny(I) is a monomial ideal, then C'.(I) is the interior of C,(I);

c) If iny(I) is not a monomial ideal, then there exists y € R"™! such that
in, (iny (I)) is a monomial ideal; for every such y, the polyhedron C(I) is a face
of Cy(D).

Proof. — Fix y € R"*1 satisfying the conditions of proposition 3.5.11,
c), small enough so that in,,,(I) = in,(in,(I)) is a monomial ideal. As
a consequence of b), it will be enough to assume that in, (in,(I)) is a
monomial ideal and y is small enough.

Let z = x + y. Fix a finite family (f1, ..., f;) in I such that the poly-
nomials in;(f;) are monomials and generate in,(I); we may also assume
that in,(f;) = in, (in,(f;)) for all 7.

For each i, let m; € N"*1 be such that in,( fi) = T™. By the argument
explained in the proof of lemma 3.5.13, there exists a unique polynomial
gi € K[Ty, ..., T,], homogeneous of degree |m;|, such that T" — g; €1,
and such that no monomial appearing in g; belongs to in,(I); write
i = 2 ¢imIT™ and set fi = T™ — g;. Since T is the only monomial
appearing in f; that belongs to the monomial ideal in, (in,(I)) = in,(I),
one has T™ = in,(in,(f;)). The family (f;) is thus a Grobner basis for I
at z.

Lemma (3.6.4). — With the preceding notation, the set C.(1) is defined by the
strict inequalities

<m —m;, > + 10g(|ci,m|) < O/
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foralli e {1,...,r} and all m € N"™* in the support of f;. The set C,(I) is
the I'-strict polyhedron defined by the inequalities

(m —m;j, ) +log(|cim|) <0,

fori€{1,...,r}and m € N™*\in the support of f;.

Proof. — Letw € C,(I). By definition of C,(I), one has in,(f;) € iny,(I) =
in,(I), so that the only monomial that can appear in in( f;) is T, hence
log(|cim|) + (m,w) < (m;,w) for all i and all m such that m # m;. In
the other direction, if w statisfies these inequalities, then in,(f;) = T™
for all i, hence iny(I) contains in,(I). Since both of these ideals have the
same Hilbert function, they have to be equal and w € C/(I).

Let P be the closed convex polyhedron in R"**! defined by the in-
equalities (m — m;,-) +log(|cim|) < O, for all i and m # m;. By what
precedes, one has P = C.(I). Since P is nonempty (it contains z), one
has P = C,(I). O

Lemma (3.6.5). — The set Cy(I) is the smallest face of the polyhedron C,(I)
that contains x.

Proof. — By the choice of y, one has iny¢,(I) = in,(iny(I)) = in,(I) for
all e such that0 < ¢ < 1. In particular, x + ey € C,(I). If we let € go to 0,
we obtain x € C,(I).

Let x’ € C}(I); since iny (I) = iny(I), the preceding analysis still applies
when one replaces the point x with x’, so that

inx’+8y(I) = iny(inx’(l)) = iny(inx(l)) = inz(I)

for ¢ > 0 small enough. Then x” + ¢y € C/(I) and x’ € C,(I). Taking the
closure, we obtain C,(I) ¢ C,(I).

Moreover, T is the only monomial in the support of f; that be-
longs to in,(iny(f;)); this implies that in,(iny(f;)) = T™. On the
other hand, the polynomial in,(f;) — iny(fi) belongs to in,(I), and
none of its monomials belongs to in,(in,(I)), by the definition of f;.
Its initial form at y must vanish, which implies that iny(f;) = iny(f).
Since T™ appears in iny(f;), this shows that 74(x’) = (m;, x’), so that
log(|cim|) + (m,x") = (m;, x’) for every m such that T" is in the sup-
port of iny(f;); on the other hand, if T™ is not in that support, then
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log(|cim|) + (m,x") < (m;, x’). Conversely, these inequalities imply that
iny(fi) = in,(f;) for all 7, so that iny/(I) D ((iny(f))i) = in,(I). Since both
ideals in,(I) and in, (I) have the same Hilbert function, we obtain the
equality iny (I) = iny(I).

This proves that C,(I) is contained in the face of C,(I) defined by the
equalities log(|cim|) + (m —m;,x") = 0 for all i and all m such that
m # m; and log(|c;m|) + (m —m;, x) = 0. Conversely, if w is a point of
this face, then every point of the open segment |x; w[ belongs to C/(I),
hence w belongs to C(I).

Finally, a face of C,(I) containing a point x is obtained by replacing,
in the system of affine inequalities defining this polyhedron, by the
corresponding equalities some of those inequalities which are equalities
at x. The smallest such face is obtained in replacing all possible such
inequalities. By the previous description, this is exactly C,(I). O

Lemma 3.6.5 proves part c) of proposition 3.6.3. The formulas of
lemma 3.6.4 prove that C.(I) is a closed TI'-strict polyhedron in R"*!.
Moreover, since f; ishomogeneous, one has (m;—m, w+te) = (m;—m, w)
for every w € R+ every t € Rand every m € N"*1 such that ¢, ,, # 0,
so that e belongs to the lineality space of C,(I). Since C(I) is a face
of C;(I), the same properties hold for C,(I).

Let us finally assume that in,(I) is a monomial ideal. For every mono-
mial f belonging to in,(I), one has iny(f) = f, so that in,(in,(I)) con-
tains in,(I). This implies that in,(I) = in, (in,(I)) contains in,(I), hence
in;(I) = in,(I) since both ideals have the same Hilbert function. As a
consequence, Ci(I) = C.(I), hence C,(I) = C;(I). By the formulas of
lemma 3.6.4, C/(I) is a the closure of a nonempty convex open subset
of R"*1, and every point of C,(I) = C,(I) belongs to a face of C,(I). This
proves that C/(I) is the interior of C,(I). O

Lemma (3.6.6) (Maclagan). — The set of monomial ideals in K[Ty, ..., T,]
which are of the form in, (1), for some x € R, is finite.

Proof. — Let F be this set of ideals. If & were infinite, there would
exist, by theorem 3.4.5, two elements x,y € R"*1 such that in,(I) and
in, (I) are monomial ideals and in,(I) < in,(I). This contradicts the fact
that these two ideals have the same Hilbert function. O
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Proof of theorem 3.6.2. — Let & be the set of all subsets of R"*! the
form C,(I), for some x € R"*!. The sets C,(I) are I'-strict convex poly-
hedra in R"*!. Since x € C,(I) for all x, their union is equal to R"*%. If
in,(I) is a monomial ideal, then C,(I) has dimension n + 1; otherwise,
Cx(I) is a face of a polyhedron of the form C,(I). By lemma 3.6.6, the
set € is finite. Consequently, the set of initial ideals in,(I) is finite, when
x varies in R"*1,

Letx,y € R"*!. The preceding description shows that x € C,(I) if and
only if C(I) € C,(I). In this case, C,(I) and C,(I) are faces of a common
(n + 1)-dimensional polyhedron of the form C,(I); in particular, C,(I) is
a face of C,/(I).

If F is a face of Cy(I), choose x in the relative interior of F; then F
and C,(I) are faces of C,(I) which both have the point x in their relative
interiors; necessarily, F = C, ().

Letx,y € R""!. Foreverypointz € C, (HNCy(I), onehas C(I) C Ci(I),
since z € Cy(I), and C,(I) c C,(I), since z € Cy(I), so that C,(I) C
Cx(I) N Cy(I). This proves that C,(I) N C;(I) is a union of faces of C,(I).
However, a union of faces of a polyhedron is convex if and only it has
a unique maximal element — so that one of these faces contains all of
them. As a consequence, C,(I) N Cy(I) is a face of C,(I), and it belongs
to 6. O

Proposition (3.6.7). — Let I be a homogeneous ideal of K[Ty, ..., T,] and let
x € R Let L = affsp(Cy(I)) — x be the minimal vector subspace of R"*!
such that Cy(I) C x + L. One has in, (iny(I)) = iny(I) for every y € L.

Proof. — Let g € in,(I); let f1, ..., f; € I be such that ¢ decomposes as
a sum Y _, iny(f;) of initial forms with pairwise disjoint supports. For
all i and all ¢ > 0 small enough, one has iny,,(f;) = in,(in,(f;)). Let]
be the subset of {1, ..., r} consisting of all i where i, (f)(y) is maximal;
by the disjointness of the supports of the polynomials in,(f;), one has

iny() = > iny(ine(fi) = D inesey (fi)
i€] i€]

If ¢ is small enough, one has x + ¢y € C}(I), hence inyi.,(f;) € iny(I)
for all i, so that in,(g) € in,(I). This implies the inclusion in(in,(I)) C
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iny(I). Since these two homogeneous ideals have the same Hilbert
functions, one has equality. O

3.7. Tropicalization of algebraic varieties

The goal of this section is to generalize theorem 3.3.6 to all ideals of
K[Tfl, ..., TX1]. We first recall how to pass from ideals of this ring to
homogeneous ideals of K[ Ty, ..., T,], and back.

3.71. — Let f € K[T#!,...,T£!']. The support in Z" of the homo-
geneous Laurent polynomial f(T1/To,...,Ty/To) have an infimum,
say p = (po,...,pn). Explicitly, if S(f) is the support of f and f =
2imes(f) Cm T, then

FT1/To,..., Tu/To) = D Ty T T),
meS(f)

so that pp = —deg(f) and p; = ordr,(f) for j € {1,...,n}. Let then
f h be the polynomial T77 f(T1/To, ..., T,/Tp); it is the unique homo-
geneous polynomial in K[Ty, ..., T, ] such that ordr,(f ) = 0 for every
je{0,...,n}tand f =T ... TH (1, Ty, ..., Ty).

3.7.2. — LetIbe anideal inK[T%!, ..., T#!]. The ideal I" generated by
all polynomials ", for f € I, is a homogeneous ideal of K[Ty, ..., T,].
The ring morphism K[Ty, ..., T,] — K[Ty, ..., T,] with kernel (Ty — 1)
corresponds to setting to 1 the homogeneous coordinate T, it identi-
fies the invertibility locus of Ty in Py with the affine space Ay. The
locus of invertibility of Ty...T, is defined by requiring further that
the other homogeneous coordinates are invertible too: this is an open
subscheme of Py which is is naturally isomorphic to Gny and corre-
sponds to the ring morphism f +— f(1,Ty,...,T,) from K[Ty, ..., T,]
to K[T#L, ..., T,

Ideals of K[Ti—q, ..., T*1] correspond to closed subschemes of Gmg =
Spec(K[TI—“l,...,T,*;'l]). Homogeneous ideals of K[Ty,...,T,] corre-
spond to closed subschemes of Py = Proj(K[Ty, ..., T,]). Then V(I
is the Zariski closure of V(I).
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As a consequence, several geometric properties of V(I) are preserved
when passing to V(IM):

— If V(I) is irreducible, then so is V(I");

— If V(I) is integral, then so is V(I");

— One has dim(V(I")) = dim(V(1));

— If V(I) is equidimensional, then so is V(I").

3.73. — Let f € K[Tfl, ..., T*1]; let p € Z" be such that
f=T0 T, T).

Let x’ € R" and let x = (0, x’) € R"*1; then the definitions of the tropical
polynomials and of the initial forms imply that 7¢(x) = (p, x) + 1 fh(x’)
and iny(f) = Tfl . THiny(f1). In particular, ing(f") € in,(I)". Every
homogeneous element of I is of the form T ™ for some elements f € I
and m € Z", one then has iny(T"f1) = T™iny(f") € in, ()", hence
in,/(I") € in,(I)". Conversely, if f € I, then there exists m € Z"*! such
that T"in,(f)? = iny(f1), hence T"in,(f)! € in,(I"). This proves the
relation

in, (" = (iny (") : (To... T,)™) = K[To, ..., Tu] N ing (M7, 1,

In any case, identifying R"” with {0} x R", the Grobner decomposi-
tion L of R"*! associated with the ideal I furnishes a similar decom-
position X of R"”. When x varies in an open cell of this decomposition,
and x” = (0, x), the initial ideal in,(I") is constant, hence the initial ideal
in,(I) is constant. The reader shall be cautious not to state an indue
converse assertion: for example, in,(I) = (1) only means that in,(I")
contains a monomial, but the different initial ideals in,(I") can be very
different.

Definition (3.7.4). — Let K be a valued field, let 1 be an ideal of
K[TI—“l, ..., Tt and let X be the closed subscheme V(I) of Gm"".

a) The tropical variety Ix of X is the intersection, for all f € 1, of the
tropical hypersurfaces Iy.

b) A tropical basis of 1 is a finite family (f1, ..., fm) in 1 such that Ix =
Niz1 Ty
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By definition, for x €€ R”, one has x ¢ Jx if and only if there exists
f € Isuch that the supremum defining 7,(x) is achieved at a single
monomial ¢, T™ of f. This also means that NP¢ , is reduced to a point,
or, if K is split, that the initial form in,(f) is a monomial.

Replacing f by ¢;;'T™"f, we may assume that 77(x) = 0, which is
achieved uniquely at the monomial 1, that is NP; , = {0}. From the
point of view of initial forms, this means that in,(f) = 1.

Proposition (3.7.5). — Let I be an ideal of K[TF', ..., T£'] and let X be the
closed subscheme V(I). Let (X;) be the family of its irreducible components; for
every j, let I; = I(X;) be the prime ideal defining X;. One has Ix = J; Ix;.

Proof. — The ideals I; are the minimal prime ideals of K[T5!, ..., T#!]
containing I; as a consequence, their intersection | = (; I; is the radical
of I, the set of all elements f € K[Ti—rl, ..., T#1] such that there exists
m > 1 such that f € L.

Forevery j,onehasI C I;, hence F/'x]. C Ix. Consequently, | J F/'x]. C 9x.
Conversely, let x € R" = Ix;. For every j, there exists f; € I; such that
in,(f;) = 1. Let f = [] f;; one has f € (1; =], hence there exists m € N
such that f™ € I. Then in,(f™) = [];in«(f;)™ =1, hence in,(I) = 1 and
x & Ix. O

Proposition (3.7.6). — Let K be a valued field, let 1 be an ideal of
K[Tfl, ..., T2 and let X be the closed subscheme V(I) of Gp".

a) The ideal 1 admits a tropical basis.
b) The tropical variety Ix is a I'-strict polyhedral subspace of R".
c) For every valued extension L of K, one has Ix, = Ix.

Proof. — We first prove assertion a) under the assumption that there is
a splitting of the valuation K* — T.

Let I" be the homogeneous ideal of K[Ty, ..., T,] associated with L
Let P]Xh be the set of all x € R"*! such that in,(I") does not contain any
monomial.

Ifx ¢ P/'Xh, then in, (I") contains a monomial, say T, hence there exists
f € I" such that in,(f) = T™. Then in,(f) =T" forevery y € R™"*! close
enough to x, so that Pth is closed in R"*1.
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If x € 9;(}‘, then the open cell C,(I") is contained in 9'Xh as well, and
its closure C,(I") too. Consequently, 9‘Xh is a union of some cells of
the Grobner polyhedral decomposition Y. In particular, it is a I'-strict
polyhedral subset of R"*!.

Let x € R" and let x* = (0,x). Then in,(I) = (1) if and only if
there exists f € I such that in,(f) = 1; then in,(f") is a monomial
inTy, ..., T, multiplied by a polynomial in Ty. By homogeneity, in,-(f")
is a monomial. Conversely, if in,/(f") is a monomial, then in,(f) is a
monomial as well. This proves that Ix is the set of x € R" such that
(0,x) € T

Moreover, for every cell C;,(I") such that the corresponding initial ideal
in,(I") contains a monomial, we may choose f € I such that in,(f") is
a monomial. The family (f;) of these polynomials satisfies the required
condition.

To prove c), we may assume that the valuation of the field L has a
splitting, so that assertion 4) holds for Jx; .

The inclusion J%, C Ix follows from the definition. Indeed, if x €
R" = Jx, there exists f € I such that the supremum defining 7¢(x) is
reached for one monomial only, and the same property holds for f
viewed as an element of I, so that x ¢ Jx,.

Conversely, let x € R" = 9%, and let f = > c,,T" € Iy be such that
the supremum defining 7¢(x) is reached at only one monomial. Let us
consider an expression f = Z]r-zl ajfj, where a; € L and f; € I, and the
integer r is minimal. Let S C Z" be the union of the supports of the f;
and let us consider the r X S matrix A given by the coefficients of these
Laurent polynomials. Among all finite families R = (my,...,m,) in S,
let us choose one such that the quantity

log(|det(A®)]) + > (m, x)
j=1

is maximal, where AR is the 7 X r submatrix of A with columns
mi, ..., my. Since A has rank r, the matrix AR is invertible and there
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exists a matrix U € GL(r, K) such that (UA)RUAR = I,. Then

log(|det(UA)®)[)+ )" (m;, x) = log(|det(L)|)+log(|det(A®)|)+ > " (m;, x)

j=1 j=1
ismaximal. Fori € {1,...,r}and m € S=R, exchanging the columns m
and m; replaces the above quantity by

.
Log(|(UA)iml) + > (mj, x) + (m, x) = (mi, x),
j=1
so that
log(|(UA)im|) + (m, x) > (m;, x).

Replacing the polynomials f1, . .., f by the polynomials whose coeffi-
cients are given by the matrix UA, we may assume that there are Laurent
polynomials g; = >, cs-r ¢j,n T™ with support contained in S =R (for
j€A{1,...,r})suchthat f; = T" + ¢; and such that log(|c; u|) + (m, x) <
(mj, x). Then

r r
f = Zaijf + Z (Z El]'C]',m)Tm,
=1 meS-R j=1
so that
f(x) > sup(log(|a;|) + (m;, x)).
]

Then, forevery m € S=Randeveryj € {1, ..., r}, one has the inequality
log(lajcjm|) + (m, x) <log(|a;|) + (m;, x),

so thatlog(|c;jm|)+(m, x) < (m;,x)and 1¢(x) = sup].(log(|aj|)+ (mj, x)).
By the assumption x ¢ JF, there exists a unique j € {1,...,r} such
that 7¢(x) = log(|a;|) + (m;, x), and log(|cy|) + (m, x) < 7¢(x) for every
m e S=R. Fori e {1,...,r} such that i # j, one thus has log(|a;|) +
(m;, x) <log(l|a;|) + (mj, x). Then for every m € S=R, one has
log(laicim|) + (m, x) < log(lai|) + {m;, x) <log(lajl) + (m;, x),
so that log(|c,|) = log(lajcjm|). Since log(|cu|) + (m,x) < T¢(x) =
log(|a;|) + (m;, x), one has log(|c; u|) + (m,x) < (m;,x). This proves
that the supremum defining 7¢,(x) is reached for the monomial m; only.
Since f; € I, we have proved that x ¢ 9x. This proves assertion c).
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In fact, the same argument also allows to deduce assertion a) in full.
We may indeed apply it to every element f of a tropical basis of I, and
every point x € R". For a given f, there are only finitely many possible
families (m1,...,m,) as above, so that when x varies, the procedure
furnishes finitely Laurent polynomials in I. The collection (f;) of these
Laurent polynomials is a tropical basis of I, as sought for.

For every i, Iy, is a I'-strict polyhedral subspace of R", hence so is
their intersection Jx. This proves b) and concludes the proof of the
proposition. O

Remark (3.7.7). — Let V be a closed subvariety of (C*)" and let I be its
ideal in C[TI—“l, ..., T#1]. Let us endow the field C with the trivial valua-
tion. Then Jy 1) coincides with the tropical variety 9y of definition 2.6.3.
This proves that vy is a Q-rational polyhedral set. In particular, theo-
rem 2.6.6 applies to V, and this concludes the proof of the Bieri-Groves
theorem (theorem 2.6.5).

Theorem (3.7.8) ( , )
Let I be an ideal of K[T$?, ..., TE] and let X be the closed subscheme V(1)

of Gm"". The following three subsets of R" coincide:

(1) The tropical variety Ix;

(ii) The set of all x € R" such that there exists a valued extension L of K and
a point z € X(L) € (L*)" such that x = A(z);

(iii) The image of X*™ = 7' (I) € (Gm" )" by the tropicalization map p —
(log(p(T1), ., 1og(p(T,))).
If the valuation of K admits a splitting, they also coincide with:

(iv) The set of all x € R" such that in,(I) # K[T*!,..., T#);
For any algebraically closed extension L of K, endowed with an absolute value
extending that of K which is nontrivial, they also coincide with:

(v) The closure of the set of all x € R" such that there exists a point
z € X(L) c (L*)" such that x = A(z).

Proof. — Let us denote these subsets of R" by S; = 9%, Sy, S3, S4, Sg. As
for the proof of theorem 3.3.6, some inclusions are essentially formal.
The equality S, = Sz has been proved in §3.2.9. If the valuation has
a splitting, the equality in.(I) = K[Tf},..., T#!] is equivalent to the
existence of f € I such that in,(I) is invertible, that is, a monomial. This
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proves that S; = S4. By definition, Sg is the closure of a subset of Sy;
since Sg is closed, one has S; C S;. Finally, for every f € I, one has
S, € If, hence S; € Ix = 5.

The rest of the proof follows from the results proved below. We first
establish (lemma 3.7.9) that the dimension of 9 is at most that of V(I).
Under the assumption that K is algebraically closed and its valuation is
nontrivial, this is then used to prove that for every point x € I9x N I'",
there exists z € X(K) such that A(z) = x (proposition 3.7.10). In this
case, this implies the inclusion Jx C SX, hence the equality of all five
sets.

In the general case, let us consider an algebraically closed val-
ued extension K’ of K whose value group is nontrivial; in par-
ticular, the valuation admits a splitting. By the case already
proved, the subsets S/, . ..,SZL,Sg = SI5<' of R" corresponding to the
ideal Iy of K/[T5!, ..., T#'] deduced from I satisfy the equalities
S =5, = Sg =85, = Sf,_.). The inclusions S| C S; and Sg CS,CS =53
follow from the definitions, and the equality S; = S; has been proved
in proposition 3.7.6, ¢). One then obtains the missing inclusion
S1=5] C Sg C Sz, and that will conclude the proof of the theorem. O

Lemma (3.7.9). — The polyhedral set Ix has dimension at most dim(X).

Using theorem 3.7.8, we shall prove later (theorem 3.8.4) that the
dimension of Jx is equal to dim(X).

Proof. — Thanks to proposition 3.7.6, we may assume that the valuation
of K has a splitting and its image I' is dense in R. Then a point x € R"
belongs to Jx if and only if in,(I) = (1), if and only if there exists f €1
such that in,(f) = 1.

Let then C be a maximal cell of the Grébner polyhedral decomposition
of 7x and let m = dim(C). Since C is a I'-strict polyhedron, and since I
is dense in R, there exists a point x in the relative interior of C whose
coordinates belong to I Up to a monomial change of variables, we
may assume that the affine span of C is x + (Z™ x {(0,...,0)}). Fix
a finite generating family (f1,..., f;) of iny(I) such that no nontrivial
subpolynomial of the f; belongs to in.(I).
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Let y € R" such that y,,41 = --- = y, = 0. It follows from propo-
sition 3.6.7 and a homogeneization-dehomogeneization argument that
iny (iny(I)) = in,(I). Since in,(f;) is a subpolynomial of f;, nonzero if
fi # 0, this implies that in,(f;) = f; for all j. Apply this remark when
y is one of the first m vectors ey, ..., e, of the canonical basis of R".
Writing f; = 2 ¢, T™, one has 7f,(e;) = SUP,,eq(p) M) = degr (fj) (recall
that the residue field k is endowed with the trivial absolute value).
The relation in.(f;) = f; implies that f; is a power of T; multiplied
by a polynomial in the other variables. In other words, there exists
a Laurent polynomial g; € K[Tilﬂ,...,Tﬁl] and p € Z" such that
fi = Tfl L The gj. Letting ] be the ideal of K[T;lﬂ, ..., T*1] generated
by g1,...,§r, one has V(in,(I)) = G}’ X V(J). Since iny(I) # (1), one has
] # (1) and dim(V(iny,(I))) = m + dim(V(J)) > m. On the other hand,
dim(V(iny(I))) = dim(V(I)). This concludes the proof. O

Proposition (3.7.10). — Assume that the field K is algebraically closed and
that its value group I' is nontrivial. Let x € Ix NI". Then there exists
z € X(K) such that A(z) = x. If, moreover, X is irreducible, then the set of
such z is Zariski-dense in X.

Proof. — It suffices to treat the case where X is irreducible. Replacing
the ideal I of X by its radical VI does not change J%, nor the set X(K).
We may thus assume that I is a prime ideal of K[Tfl, N =

The proof of this proposition is by induction on 7n; we will make
use of the case of hypersurfaces, already proved in theorem 3.3.6. The
proposition is obvious if I = (0).

Assume that dim(X) = n — 1. We first recall that there exists f €
K[Tfl, ..., Tl such that I = (f). Indeed, let f be a nonzero element
of I, it is a product of irreducible elements, and one of them belongs
to I, since I is prime. We can thus assume that f is irreducible; since
K[Tfl, ..., T*1] is a unique factorization domain, the ideal (f) is then
prime. The inclusion (f) C I implies an inclusion X C V(f) € Gy of
irreducible sets. Since dim(X) = n — 1, this implies X = V(f), hence
I = (f). Consequently, the proposition follows from corollary 3.3.9 in
this case.
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We now assume that dim(X) < n — 1. Let x € Ix N I". To prove the
existence of z € X(K) such that A(z) = x, we shall project X to Gm1"<_1.
Take a nonzero element f € I. Up to a permutation of the variables,
we may assume that f is not a monomial in T,,. We then make a
monomial change of variables given by T1 — Tq, To — TZTZ, o, T >

TnTi'H, as in the proof of proposition 3.3.7, so as assuming that, when
written as a polynomial in T;, every coefficient of f is a monomial
in the other variables. This implies that the projection morphism p
from Gy to Gm1n<_1 (forgetting the first coordinate) induces an integral,
hence finite, morphism from X to its image. This image X’ is then a
closed integral subscheme of Gjr '. One has p(x) € Fx, so that there
exists z' € X'(K) such that A(z") = p(x). By finiteness, the point z’ lifts
to a point z € X(K), but not all lifts will satisfy A(z) = x. We force
this property by making use of the diversity of possible projections,
using multiple change of variables as above. Let 7: R" — R"! be a
linear map of the form (x1,...,x,) — (X2 +gx1,...,x, + q"1x1); one
has Ker(n) = R(-1,4,...,9"!). We shall choose the integer g so that
i m(x)) N Ix = {x}. Let x’ € n1(n(x)) N Ix be such that x’ # x;
let C be polyhedron of a given polyhedral decomposition of Ix such
that x’ € 9x; then x’ — x € Ker(m), so that there exists t € R such that
x'—x =t(-1,q,...,9" "), and the line R(-1,4,4%,...,4"1,1) meets
C—x inanonzero point. On the other hand, since dim(RC+Rx) < n-—1,
it is contained in a nontrivial affine hyperplane with equation, say
aixy + -+ +ayx, = b, and for all but finitely many g € Z, one has
—ay +axa+---+a,q" ! # 0. We may thus impose that 7~ 1(n(x)) N Ix =
{x}.

By induction, the set V' of elements z’ € X’(K) such that A(z’) = 7(x)
is Zariski-dense in X’. Since p: X — X’ is a surjective morphism of
irreducible schemes and K is algebraically closed, the inverse image
V = p~(V’) of V' is Zariski-dense in X(K). For every z € V, one has
Az) € Ix and 1(A(z)) = A(p(z)) = n(x) since p(z) € V’, so that A(z) = x.
This concludes the proof. O
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3.8. Dimension of tropical varieties

Proposition (3.8.1). — Let K be a valued field and let X be a closed subscheme
of Gmg. Let p: Gmyg — Gmy be a monomial morphism of tori, let 7t : R" —
R™ be the corresponding linear map and let Y = W be the schematic image
of X under p. One has Iy = 11(Ix).

Proof. — Write
Gmp = Spec(K[T3!, ..., T¥]) and Gmp = Spec(K[St,...,SE);
the morphism p corresponds to a morphism of K-algebras
p*K[SH, ..., St - K[TH, ..., T

By assumption, p*(S;) is a monomial, for every j. Let I be the ideal
of X and let ] = (p*)~1(I), so that the morphism p* induces an injective
morphism of K-algebras, still denoted by p*:

K[Si,...,StH/1 —» K[Tf, ..., TE/L

/T n

Then p maps X = V(I) into a Zariski-dense subset of Y = V(J); more-
over, by Chevalley’s theorem ( ( ), corollary 2, p. 51)3, the
pointwise image p(X) of X contains a dense open subscheme Y’ of Y.
For every valued extension L of K and every z € X(L), one has
Ap(z)) = (A(z)); this implies that (%) C Fy. Conversely, let y € Jy.
Fix an algebraically closed valued extension L of K which is non triv-
ially valued. By proposition 3.7.10, the set of points t € Y(L) such
that A(t) = y is Zariski-dense in Y. Consequently, it meets the dense
open subscheme Y’ of Y; let thus choose t € Y’(L) such that A(t) = y.
Since L is algebraically closed, there exists z € X(L) such that p(z) = ¢.
Then A(z) € I9x and n(A(z)) = A(p(z)) = A(t) = y, which proves that
Iy C 1(Ix). O

Proposition (3.8.2). — Let X be a closed subscheme of Gy such that Ix is
finite. Then X is finite.

Proof. — We argue by induction on n. The result is obvious if n = 0.
One has X # Gy for, otherwise, one would have x = R”"; conse-
quently, I(X) # 0. Choosing a nonzero Laurent polynomial f € I(X),

3Add a reference in the yet-to-be-written appendix
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we may find an adequate monomial projection p : Gmlt — Gmp ! that
induces a finite morphism from X to Gm1”<_1, and let Y be its image.
By proposition 3.8.1, the tropical variety Jy is finite. By induction this
implies that Y is finite. Since p : X — Y is finite, this implies that X is
finite as well. O

Lemma (3.8.3). — Let K be a split valued field. Let 1 be an ideal of
K[T#, ..., TE and let X = V(I). Let x € Ix. Then Starx(9x) = Fy(in,1))-

Proof. — Fix a tropical basis (f1, .. ., f;) of I. Recall that the polyhedral
set Stary(7x) is the set of y € R" such that x + ¢y € Ix for ¢ > 0 small
enough.

Let y € R" be such that y ¢ Star,(9x). Then, for every ¢ > 0 small
enough, one has x + ¢y ¢ Ix, hence there exists i such that inx+gy( i)
is a monomial. On the other hand, for all ¢ > 0 small enough, one has
iNytey(fi) = iny(iny(f;)). Consequently, in,(in,(f;)) is a monomial and
Y & IV(in(1)-

Conversely, let y € R" be such that y € Jyin,1). By definition, there
exists ¢ € in,(I) such that in,(g) is a monomial. There is a finite family
(f1,..., fr)inIsuch that the initial formsin,(f1), .. ., iny(f,) have disjoint
supports and ¢ = > in,(f;). Since in,(g) is a monomial, there exists
j € {1,...,r} such that in,(iny(f;)) contains this monomial, and by the
disjointness property of the supports, in,(in,(f;)) is a monomial. For
¢ > 0 small enough, one has in, (in,(f;)) = iny1ey(f;), hence x + ey ¢ Ix
for ¢ > 0 small enough and y ¢ Star,(9x). This proves the other
inclusion Stary(9x) C Fy(in,(1))- O

Theorem (3.8.4). — Let K be a valued field, let 1 be an ideal of K[TF, ..., T£!]
and let X = V(I). Omne has dim(9x) = dim(X). More precisely, if X is
nonempty and every irreducible component of X has dimension p, then the
tropical variety Ix is a purely p-dimensional polyhedral set.

Proof. — We start by copying the proof of lemma 3.7.9. We may assume
that the valuation of K has a splitting and that its image I' is dense in R.
We consider a maximal cell C in the Grobner polyhedral decomposition
of 9x and a point x which belongs to the relative interior of C. By a
monomial change of coordinates, we may assume that the affine span
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of Cisx + (R™ x {(0,...,0)}). If I is the ideal of X, there exists an ideal
J of k[T;”I_':l]:l-].’ ..., T#'] such that in (I) = (J) so that V(in,(I)) = G|’ X
V(J). Moreover, if p: Gmg — Gy " is the projection (z1,...,z,)
(Zms1,---,2n), and 7t: R" — R"™™ (x1,...,x5) = (Xms1,...,%y) 1S
the corresponding linear projection, one has V(J) = p(V(in(I))), hence

() = T(I(in,1))- Since x belongs to the relative interior of C, one has
I (in, (1)) = Stary(Ix) = affsp(C) — x.

Its image under 7 is equal to 0, hence Jy; = {0}. By proposi-
tion 3.8.2, this implies that V(J) is finite, so that V(in,(I)) = G X V(J)
has dimension m. Since V(I) is irreducible, one then has dim(V(I)) =
dim(V(iny(I))) = m. O

Remark (3.8.5). — Let I be an ideal of Q[Tfl, ..., T and X = V(D).
Every absolute value v of Q gives rise to a corresponding tropical va-
riety Ix,, in R". Let us prove that for all but finitely many prime
numbers p, the tropical variety Jx,, associated with the p-adic abso-
lute value coincides with the tropical variety Jx o associated with the
trivial absolute value. Also recall from example 3.1.7 that Jx o, the non-
archimedean amoeba of X associated with the trivial valuation on X, is
the logarithmic limit set of the complex (archimedean) amoeaba of X.

The case where X = V(f) is a hypersurface, where f € Q[Tfl, N
is a nonzero Laurent polynomial, follows from the description of Jx as
the non-smooth locus of the tropical polynomial 7. Indeed, if f =
2mes(f) Cm T, one has

Trp(x) = sup log(|culp) + (m, x),
meS(f)
for every prime number p. For al but finitely many primes p, one has
lcmlp = 1 = |cmlo for every m € S(f). Consequently, 7¢, = 10 for all
but finitely many prime numbers f, whence the equality Ix , = Ix.0.

Let us now prove the general case.

Let x € R" such that x ¢ 9x . By definition, there exists f € I such
that in, |.,(f) = 1. Write f = > ¢, T". For m € S(f), the set of prime
numbers p such that |c;,[, # 11is finite. For any prime number p outside
of the union of these finite sets, one has in || (f) = iny |,(f) = 1, hence



132 CHAPTER 3. NONARCHIMEDEAN AMOEBAS

x ¢ Ix,p. This proves the existence of a finite set S of prime numbers
such that for every prime number p such that p ¢ S, one has 9x , C Ix.0.

To prove the other inclusion, we argue by induction on n. The result
is obvious if dim(X) = n, and it corresponds to the case of hypersur-
faces if dim(X) = n — 1; let us now assume that dim(X) < n — 1. Since
the polyhedral sets x, and Jx have the same dimension, namely
dim(X), As in the proof of theorem 3.7.8, there exists a monomial mor-
phism g : Gn," — Gp" ™!, whose associated linear map y : R* — R""!
is surjective and is such that x~!(y) N Jx o has at most one point, for
every y € R"L LetY = m One has x(9x,p) = Jy,p for every prime
number p, and x(Ix,0) = Jy,0. By induction, up to enlarging the finite
set S, we may assume that 7y, = Iy for all prime numbers p such
that p ¢ S. This implies that 9x , = I for all such prime numbers p.
Let indeed x € Ix and let y = q(x) € Jv,0. By what precedes, one has
v € Iy, = x(Ixp), so that there exists x” € Jx, such that y = g(x’).
Since Ix,, C Ix,0, one has x” € Ix 0. By the choice of the linear map g,
this implies that x” = x, hence x € Jx ,, as was to be shown.

3.9. Multiplicities

3.9.1. — Let I be an ideal of K[Tlﬂ, ..., T¥ ] and let X = V(I) € Gpg.
A crucial notion of tropical geometry is that the tropical variety Ix
carries an additional information, of algebraic nature: positive integers,
called multiplicities, attached to polyhedra of maximal dimension of the
Grobner decomposition of Ix.

The definition of these multiplicities below requires that the valua-
tion of K admits a splitting and that the value group is dense in R. This
allows the Grobner theory to function and garantees that the points
with coordinates in the value group are dense in every cell of the Grob-
ner decomposition of Jx. It also requires that the residue field k be
algebraically closed. Note that both conditions are achieved, in partic-
ular, when K is algebraically closed. On the other hand, the definition

of multiplicities will then be invariant under further extensions of the
valued field K.
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3.9.2. — Let d = dim(X) and let C be a polyhedron of dimension 4 in
the Grobner decomposition of Jx. By definition of C, the initial ideal
in,(I) C k[Ti—’l, ..., T#1] does not depend on the choice of a point x in
the relative interior of C.

Let Z be a d-dimensional irreducible components of V(in,(I)). It
corresponds to prime ideals of k[T:!,..., T#!] containing in.(I), and
the local ring of V(in,(I)) at the generic point of Z is equal to

(k[T ..., T2 /Dp ~ K[TEL, ..., T p/Ip = (K[TFY, ..., TE']/Q)p,

where
Q=Ink[T,..., T g

is the P-primary component of I associated with the prime ideal P. This
local ring is noetherian and has dimension zero, hence has finite length;
this length is called the multiplicity of Z in V(iny(I)).

Definition (3.9.3). — (We assume that k is algebraically closed.) The mul-
tiplicity of the polyhedron C in the tropical variety Ix is the sum, for all
d-dimensional irreducible components Z of V(iny(I)), of the multiplicity of Z
in V(iny(I)). We denote it by multg (C).

In general, if kisan algebraically closed extension of k, the multiplicity
of C is defined by applying this recipe to the scheme V(in,(I)7).

We start by giving an alternative formula for this multiplicity which,
in fact, works even if k is not algebraically closed.

Lemma (3.9.4). — Assume that X is equidimensional of dimension d that the
affine span of C is x + R? x {0}.

a) The scheme V(iny (1)) is invariant under the action of sz x {1}.

b) Theinitial ideal iny(I) has a basis consisting of elements of k[T, ..., TE!].

c) Let ], = ine(I) N k[T%,, ..., TEY. Then the multiplicity of C in Ix is
given by

multg (C) = dimg(k[T3L,, ..., T5'1/Tx).

Up to a monomial change of variables, the second part of the as-
sumption is not restrictive. Geometrically, this lemma then says that
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the d-dimensional “initial scheme” V(in,(I)) is invariant under the ac-
tion of a d-dimensional subtorus of Gy, and the multiplicity is the
“number” of orbits, appropriately counted.

Proof. — 1If k is replaced by an algebraically closed extension, then the
assertions of the theorem are equivalent with their replacement. We
thus assume that k is algebraically closed.

Assertions a4) and b) have already been proved in the proof of
theorem 3.8.4. As for the third one, the minimal prime ideals of
k[T;—’}rl, cel, Tﬁl] containing J, are maximal ideals, and furnish, by ex-
tension, the minimal prime ideals of k[Ti—Ll, N containing in,(I),
and their lengths coincide (because k[Tfl, ..., T*!'] has a maximal ideal
with codimension 1). In fact, k being algebraically closed, all maximal
ideals of k[T:ﬁl, ..., TE are of the form (Tyy1 — ags1,..., Ty — ay),
for some (a441,...,a,) € (K)"4, by Hilbert’s Nullstellensatz. Conse-

quently,
length(k[T%1,, ..., T5'/Tx) = dime (k[T ..., TE1 /T,

hence the lemma. O

Example (3.9.5) (Multiplicities for hypersurfaces). — Let I be the ideal
generated by a Laurent polynomial f € K[T{!, ..., T£!]. The open cells
of the Grébner decomposition of Ix corresponds to given values for the
initial ideal in(g »)(f 0 in k[Ty, ..., T,], that is, for different values of the
initial form in,(f).

Let S(f) be the support of f; write f = },,e5(f) cmT™. For x € R", let
Sx(f) be the support of in,(f). The open cell C’ containing x is then
defined by the relations

log(leml) + (m, x) =log(lcpl) + (p, x),
for m,p € Sy(f), and the inequalities
log(lem|) + (m, x) <log(lcpl) +(p, x),

for m € Sy(f) and p € S(f) = Sx(f).
The Grobner decomposition of R" is thus “dual” to the regular poly-

hedral decomposition of the Newton polytope NP which is associated



3.9. MULTIPLICITIES 135

with the function m — log(|c|) on S(f) as in §1.9.10. Each poly-
hedron F in this decomposition is a polytope, and its vertices form a
subset Sp of S(f); to this polyhedron Q corresponds the polyhedron Cr
in R" consisting of those x € R” such that S,(f) contains Sg. The poly-
hedra F of dimension n correspond to points in S, the polyhedra F of
dimension n —1 to edges; more generally, one has dim(Cg) +dim(F) = n.

Let C be an (n — 1)-dimensional polyhedron of the Grébner decompo-
sition, corresponding to an edge F = [a; b] with endpoints in S(f). By
a monomial change of variables, we may assume that C is parallel to
R"~1 x {0}; as in the lemma 3.9.4, there exists m € Z" and ¢ € k[T,, T;']
such that f = T" g. We may moreover assume that g € k[T, ] is a poly-
nomial which does not vanish at 0. In these coordinates, one thus has
F = [m, m + de,], where e, is the last basis vector and d = deg(g). By
lemma 3.9.4, one has

multg; (C) = dime(k[T5'1/(g)) = dimk(k[T4]/(g)) = deg(g),

because g ¢ (T,).

We also see that the edge F contains exactly (d + 1) integer points,
namely the points m + pe,, for p € {0,...,d}. This shows that the
integer d can already be computed in the initial system of coordinates
where F = [a;b]: it is the gcd of the coordinates of b — a. This integer
is also called the “lattice length” of the segment [a;b]: if d = gcd(by —
ai,...,bp —ag), the line (a,b) is directed by the primitive vector v =
(b—a)/dandb—a=d-v.

This description also explains how to compute I explicitly, by first
computing the regular polyhedral decomposition of NPy described
above. Its edges furnish the polyhedral set 7.

Proposition (3.9.6). — Assume that dim(X) = 0, so that Ix is a finite set.

a) Assume that Ix = {x}, for some x € R". The multiplicity of {x} in Ix
is then given by

multg, ({x}) = dimp(K[T5?, ..., TE1/D).

b) For every x € Jx, there exists a smallest ideal 1, of k[TI—rl, el Tﬁl] such
that 1 C 1 and Iy, = {x}. One has1 = (\,cg, Ly and for every x € R", the
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multiplicity of {x} is given by
multg, ({x}) = dimg(K[TF, ..., TE']/Ly).
Proof. — For the proof, we assume that K (hence k) is algebraically

closed.
To establish a), we need prove that

dimg (K[TF, ..., TE/D) = dimg (k[T5, . .., TE] /ing (D).

While multiplicities are defined using initial ideals of k [Tfl, ., T,
the proposition involves the ideal I in K[T*, ..., T#!]. The relation
between both sides rests on the comparison of Hilbert functions, but
this holds for homogeneous ideals only; we thus have to compare the
ideals in(orx)(lh) and in, ()"
By 3.7.3, one has
ine(D" = (ing,v (I : (To ... Tw)®).

The schemes V(I) and V(in,(I)) are zero-dimensional. By homogeneization-
dehomogeneization, one has equalities, for d — +oo,

dimg(K[TE, ..., T /1) = dimg(K[To, - - ., Tu]/T")4)
and
dimk(k[TI—“l, ..., T /in, (D) = dimg((k[To, . . ., Tn]/ine(DM)a).
Moreover, by comparison of Hilbert functions, one has
dimg ((K[To, ..., Tal/I")g) = dimi((K[To, . . ., Ty ] /ing,« (I")a).
By what precedes, one then has, for d — +oo,
multg, ({x}) = dimg(k[TF, ..., T£']/ing (1))
= dimg((k[To, - .., Tul /ine(D")a)
= dim((k[To, - . ., Tu]/(ing, 1)) : (To - . . T)*))a)-

Let us now prove that (in(o,x)(lh) :(To... Tp)®)g = in(orx)(Ih)d for d
large enough. To that aim, let us consider a primary decomposition of
in(olx)(lh) in k[To, ..., T,]. Since the scheme V(I") in Py has dimension 0,
the same holds for the scheme V(in(ofx)(lh)) and the prime ideals associ-
ated with I" are of two forms, either the irrelevantideal M = (T, ..., T,),
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or homogeneous prime ideals of the form P, = (a;T; — a,;T;) defining
points a € P*(k). We thus write in(olx)(lh) = Qo N (), Qq, a finite inter-
section where the ideal Qp is M-primary and, for each 4, the ideal Q, is
P,-primary.

Let ¢ € (in(olx)(lh) : (Tp...T,)™®), and let m € N be such that
Ti ... Tlg € ing (I"). Fix a € P"(k).

Let j € {1,...,n} and let us consider the polynomial f =
[Lzevayw)(T; — zjTo). Since f(z) = 0 for all z € V(I)(K) and K
is algebraically closed, Hilbert’s Nullstellensatz implies that there
exists an integer m such that f™ € I Since log(|z;|) = x; for ev-
ery z € V(I)(K), one has ing(f) = [lLevayw(T; — p(z))To) and
[Levayw)(T; — p(z))To)™ € in(,x)(I). Consequently, there exists z such
that T; — p(z;)To € P;. As a consequence, Ty € P, if and only if T; € P,.

It follows that Ty...T, ¢ P,, for, otherwise, (Ty,...,T,) Cc P,, a
contradiction. By the definition of a P,-primary ideal, one then has
g € Q.

This proves the relation

(ingo, I : (To... Tw)™) = ine (@) N (Qo: (To. .. Ta)™).

Since Qp contains a power of the irrelevant ideal M, we have shown

iny (D5 = (ing,0 M) : (To... Tu)®)a = ingg,) )4

for all large enough integers d. It then follows from the constancy of
Hilbert functions that

inx(I)E1 = in(O,x)(Ih)al =1,
and
multg, ({x}) = dim(k[T7, ..., T /in (D)) = dim(K[T5?, ..., TE1/D),

which established part a) of the proposition.

Let x € I%. Since K is algebraically closed, irreducible components
of X correspond to point z € X(K), hence there is such a point with
A(z) = x. Consequently, there are ideals ] containing I and such that
Fv() = {x}. Since Jx is finite, the ring K[Tfl, ..., T#1]/1is artinian, so
that every nonempty set of ideals containing I admits minimal elements.
Therefore, there are minimal ideals ] such thatI C J and Jy) = {x}. If
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J and J" are such ideals, then I C J N ] and Jyjny) € Fvg) YU Iy = {x};
necessarily Jyjny) = {x} since V(JNJ') # @. By minimality, one has
J =7J'. This proves the existence of a unique minimal ideal I, containing I
such that 9y ,) = {x}.

Let us prove that I = (¢ Ix. To that aim, let us consider a minimal
primary decoposition of I. Since V(I) is zero-dimensional, the associated
prime ideals of I are maximal ideals and such a decomposition takes
the form I = zev)k) Qz, where, for each z, Q; is an M;-primary idea,
M, = (T; - z;) being the maximal ideal of K[T*!, ..., T#!] such that
V(M;) = {z}. Since M, is minimal among the associated prime ideals
of I, the primary ideal Q. is given by In,, N K[T5!, ..., T#!].

Let x € 9x. Since I C ()= Q: and the tropicalization of
V((Mi(z)=x Qz) is equal to {x}, one has I, C (;(;)=x Q2. Consequently,
IcMIx €, Qz =1 hence the equality I = ), L.

For every y € Jx such that y # x, one has x ¢ I, hence there
exists fy € I, such that in«(fy) = 1. Letting fr = [],+, fy, one has
iny(fy) = 1. Moreover, for every f € I, one has f f, € Nyzxly N L =1,
hence iny(f) = iny(f fx) € iny(I); this implies that in,(Iy) C in,(I). Since
I c I, one also has iny(I) C in,(I,), hence the equality. It then follows
from part a) that

multg; ({x}) = dimg(k[TE, ..., TE']/iny(1))
= dimg(k[TF, ..., TE/iny (1))
= dimg(K[TF, ..., TE/LL),

as claimed.* O

Beware:

The definition of the nonarchimedean amoebas has been modified so
as to be more consistent with the definition in the archimedean case.
I made the necessary corrections up to here, but there are certainly
inconsistencies below.

4Is it true that I coincides with J; = (,(;)=x Qz? In any case, one also has iny(J) = iny(I), by
the same argument. The ideal J, being maybe more explicit, maybe statement b) should be
phrased in terms of it.
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3.10. The balancing condition

3.10.1. — Let I be an ideal of K[Tfl, ..., TH1X and let X = V(I) be
the closed subscheme it defines. Let d = dim(X). The tropical vari-
ety Ix of X is a polyhedral subset of R" of dimension d. The Grobner
polyhedral decomposition of R"*! associated with the homogeneous
ideal I" induces a rational polyhedral decomposition of Jx, and each
polyhedron C of dimension d of that decomposition has been assigned
a multiplicity mg (C). In fact, the specific polyhedral decomposition
of Ix is not that relevant: for every point x € Jx, one can define the
multiplicity m, of V(iny(I)) and what the construction shows is that the
function x + m, on Ix is locally constant outside of a polyhedral subset
of smaller dimension.

In the sequel we fix a rational polyhedral decomposition € of Ix such
that the multiplicity function is constant on the relative interior of every
polyhedron of dimension d belonging to €.

For any C € @, the affine space affsp(C) is directed by a rational vector
subspace V¢ of R". The intersection Lc = Vc N Z" is then a free finitely
generated abelian group of rank dim(V¢) = dim(C). Moreover, if Dis a
tace of C, then Vp is a subspace of V¢, and Lp is a saturated subgroup
of L¢; in particular, there exists a basis of L¢ that contains a basis of Lp.

3.10.2. — Let D € € be a polyhedron of dimension d — 1 and let ép be
the set of all polyhedra C € € of dimension d of which D is a face.

For every C € ép, there exists a vector vc € L¢ that induces a basis
of Lc/Lp and that vc belongs to the image of C modulo D: precisely,
for every x in the relative interior D’ of D and every small enough real
number t > 0, one has x + tvc € C. Such a vector vc is unique modulo
a vector of Lp.

The balancing condition around the polyhedron D is the following
relation:

Z multg, (C)vc € Lp.
Ce%p

Example (3.10.3) (Balancing condition for hypersurfaces)






CHAPTER 4

TORIC VARIETIES

4.1. Tori, characters and graduations

4.1.1. Tori. — Let k be a field. The n-dimensional torus
Gmy = Spec(k[Tfl, ., TEY)

is already an important object of this course, as an algebraic k-variety
(synonymous, say, for separated, integral scheme of finite type), or, if
k = C, as the complex manifold (C*)". We now consider its structure
of an algebraic group. On the complex manifold side, it corresponds to
the product of coordinates, which is indeed given by polynomials, the
identity element being the point (1,...,1).

There are two ways to understand the scheme theoretic side of al-
gebraic groups. Maybe the most natural one consists in viewing a
k-scheme X as its functor of points, associating with any k-algebra R
the set hx(R) = Hom(Spec(R), X), and with any morphism f: R — S
of k-algebras, the map hx(f): X(R) — X(S) induced by composition
with the morphism of schemes f*: Spec(S) — Spec(R). In this respect,
the functor of points of X = Gy, is simply given by hx(R) = (R¥)",
for every k-algebra R, and for a morphism f: R — S, by the map
hx(f): (R*)" — (5*)" which is induced by f coordinate-wise.

That X be an algebraic group means that these sets hx(R) = (R¥)"
are endowed (by coordinate-wise multiplication) with a structure of a
group, and the maps hx(f) are morphisms of groups. The unit element
is the point (1, ..., 1) of X(k).

The other way to view algebraic groups consists in interpreting the
notion of group in the category of k-schemes. The group law is then
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the morphism of k-schemes

that corresponds, at the level of k-algebras, to the morphism of k-
algebras

m* k[T, T — k[TH, ... T2 @ k[T, ..., T2

n

such that m*(T;) = T; ® T;. The identity element is the morphism
e: Spec(k) — Gp, that corresponds to the k-point (1,...,1). The
inverse is the morphism i : Gy, — G induced by the morphism

i k[TE, .., TE - k[T, ..., TE

1 77 "mn 7 *n

of k-algebras such that i*(T;) = T].‘1 foreveryje {1,...,n}.
In the sequel, it shall be useful to have a coordinate-free version of
tori.

Definition (4.1.2). — Let k be a field. A k-torus is an algebraic group
over k which is isomorphic (as an algebraic group) to the n-dimensional torus
Spec(k[T5!, ..., TE), for some integer n > 0. A morphism of tori is a
morphism of algebraic groups.

Note that the definition could be enlarged so as to allow any ring k.
On the other hand, it only corresponds to what is called a split torus
in the classical litterature, but the difference is not relevant for tropical
geometry (at least, not yet).

Definition (4.1.3). — Let T be a k-torus. A character of T is a morphism from
T to Gy, a cocharacter of T is a morphism from Gy to T.

Let T be a k-torus. Any morphism from T to G, is of the form
f=(f,..., fn), where f1,..., f, are characters of T.

Let f,¢: T — Gmi be characters of a torus T. Let m(f, g) be the
morphism given by composing (f,g): T — Gmi with the group law
m: Gm% — Gp, of Gpg. Since Gy is commutative, this is a morphism
of algebraic groups, hence a character of T, that we simply denote by
fg. Similarly, the morphism i o f obtained by composing f with the
inverse morphism of Gy, is a character of T, that we denote by f -1 The
constant map with image e, composition of the projection morphism
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T — Spec(k) and the unit element Spec(k) — Gmy is also a character
of T, called the trivial character. The set of characters of T is an abelian
group, we denote it by 2(T).

Similarly, the set of cocharacters of T is an abelian group, and we
denote it by Z.(T).

Note that 2*(T) and Z.(T) are functorial in T. In particular, given a
morphism of tori ¢ : T — T’, composition with ¢ furnishes morphisms
of abelian groups ¢*: Z*(T") — X*(T) and ¢.: Z.(T) — Z.(T).

Y : TV — T” is a second morphism of tori, then one has (o p)* = ¢ o1)”
and (Y o ¢). = . o .. Moreover, the identity morphism idr induces
the identity morphism on 2*(T) and Z.(T).

Proposition (4.1.4). — a) There is a unique morphism of abelian groups
from Z to Hom(Gm,, Gm) that maps 1 to the identity map; this morphism is an
isomorphism. The chamcter fm associated with an integer m € Z is induced by
the morphism f;;, . k[T, T'] — k[T, T~!] of k-algebras such that f;,(T) =

b) Let T, T’ be tori. Let ¢ € X.(T)and p € X.(T'); themap (¢, V) : G —
TXT" is a cocharacter of TXT". The corresponding mapping L.(T) X L.(T") —
Z.(T, T’) is an isomorphism.

c) Let T, T be tori. Let f € X*(T) and g € X*(T’); the composition
(f,8): TXT — Gmi X Gmg N Gy is a character of T X T". The corre-
sponding mapping L*(T) x L*(T") — (T, T’) is an isomorphism.

d) Let T be an n-dimensional torus. Then the abelian groups Z.(T) and
Z*(T) areisomorphic to Z". Moreover, the map ™ (T)XZL(T) = L(Gm) = Z
given by (f, @) — f o @ is a perfect duality abelian groups.

Proof. — a) The identity morphism idg,, is a morphism of alge-
braic groups, hence the existence and uniqueness of a morphism
Z — Hom(Gp, Gn) that maps 1 to idg,,. Let f,, be the image of
m € Z. The constant morphism with image e is the unit element
of Hom(Gm, Gm), hence is equal to fp. Since Gy is commutative,
the inverse i is a morphism of algebraic groups; one checks that
m(i,idg,,) = fo. By induction on |m|, the morphism of k-algebras f,,
is given by f,,(T) = T™. This proves in particular that the morphism
m — fy, is injective.
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Conversely, let f: G, — Gm be a morphism and let ¢ = f*(T) €
k[T, T7]. Since it is invertible, with inverse f*(T™!), there exist ¢ € k*
and m € Z such that ¢ = cT™. Since f(e) = e, one has ¢(1) = 1, hence
@ =T"and f = f.

Assertions b) and c) follow from the definitions.

Let us finally prove d). We first start with the case T = Gn,". Let
m,u € Z"; let ¢, be the corresponding cocharacter of T and f;; be the
corresponding character of T. The morphism ¢, : Gy — Gm corre-
sponds to the morphism of k-algebras ¢, : k[Tfl, o, TE] — k[T, T
such that go*M(T]-) = T;.lj, for every j € {1,...,n}; the morphism
fm: Gm’,z —  Gpy corresponds to the morphism of k-algebras
frot k[T, T — k[T, ..., T such that f,;(T) = T;"...T," = T™.
Their composition fy, © @, : Gmr — Gmi thus corresponds to the
morphism of k-algebras from k[T, T™!] to itself that maps T to

Pu(fu(D) = (T ... Ty") = @i(T)™ ... @ (T)™
= THm  Thattn = T,

This proves the claim in this case since the bilinear map Z" X Z" — Z
given by (m, u) — (m, u) is a perfect duality.

To establish the general case, we choose an isomorphism j: T =
Gmy. Then j induces isomorphisms j*: Z" = 2*(Gp;) — 2*(T) and
jo: LT) = XL(Gmy) =Z". Let f € X*(T) and ¢ € X(T); Letm, u € Z"
be such that f = j*(fis) and ¢, = j.(¢); then fop = fu0j lojoq, =
fm © @ is the character of G, associated with (m, u). This concludes
the proof. O

Corollary (4.1.5). — The functors of cocharacters and characters respectively
induce a covariant and a contravariant equivalence of categories from the
category of free finitely generated abelian groups to the category of k-tori. A
quasi-inverse of the functor of characters is given by M +— Spec(k™).

4.1.6. — Let k be a field. Actions of an algebraic k-group G on a k-
variety X can either be defined by translating the classical definition
into the language of schemes, or by referring to the functors of points.
In the latter way, this means that one is given, in a functorial way, an
action of the group G(R) on the set X(R), for every k-algebra R. In the
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language of schemes, this corresponds to a morphism u: G X X — X
that satisfies the following two properties:

a) The two morphisms p o (m Xidx) and p o (idg Xu) from G X G X X
to X coincide;
b) The morphism u o (e,idx) from X to X is the identity.

4.1.7. — LetTbea k-torus and let M be its group of characters. Let A be
a k-algebra and let X = Spec(A) be the corresponding affine scheme, let
be an action of T on X. It corresponds to ya morphism u*: A — kM A
of k-algebras. For every a € A, let us write pu*(a) = >,,em T" ® ay,. The
maps (i, : A — A are k-linear. That u is an action corresponds to the
following two relations:

a) Foreverya € A, theequality ., cpm 5, (15, (2)) TS = 3, w3, (a)(ST)"
in kM @ kM @ A. In other words,

ifn =m;

0 otherwise;

b ) = {”W)

b) For every a € A, the equality
a= ) @),

This implies that A = @ nem Am- Indeed, the second relation shows
that A = > ,,emAm. On the other hand, let us consider a family (a,,)
with finite support, with a,, € A,, for every m € M, and },, a,, = 0.
Then uy, * (a,) = an, and yj,(a,) = 0if n # m, so that 0 = a,. This
proves that the family (A,,) is in direct sum. Finally, the fact that u*is a
morphism of k-algebras translates as

Am ) An - Am+n

form,n € M.

In other words, the family (A )mem is an M-graduation of the k-
algebra A. Moreover, the map p;, is the projector from A to A, wich
vanishes on the other factors.

Conversely, the given formulas show that every such graduation of A
gives rise to an action of T on Spec(A).
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4.2. Toric varieties

Definition (4.2.1). — Let k be a field. A toric variety is a k-variety X (sepa-
rated, integral scheme of finite type) endowed with the action of a torus T and
with a point x € X(k) whose T-orbit is dense.

The point x is called the base-point of the toric variety X.

By Chevalley’s theorem ( ( ), corollary 2, p. 51), the orbit
of x is a constructible subset of X; since it is dense, it contains an open
subscheme of X, which implies that this orbit is itself open in X. Let T,
be the stabilizer of x in T; this is a closed subgroup scheme of T. Since
X is separated and Ty acts trivially on a dense open subscheme of X,
it acts trivially on X. On the other hand, there is a quotient algebraic
group T/T,,and itis a torus; its character group is the subgroup of 2™*(T)
consisting of characters f such that f|r, = 1. Replacing T by T/T, allows
to assume that the stabilizer of x is trivial.

In this case, the morphism ¢ + ¢ -x from T to X is an open immersion.
It is then inoccuous to identify T with its image in X. The variety T then
appears as an equivariant (partial) compactification of T, “equivariant”
meaning that the action of T on itself given by the group law extends to
an action of T on X.

Example (4.2.2). — Let T = Gp," = Spec(k[T%!,...,Ti!land X = P,, =
Proj(k[Xo, . .., X,]) be the n-dimensional projective space. There is an
action of T on X given by

(tl,...,tn)-[xole:...:xn]:[x():tlxl:...:tnxn].

The orbit of the point x = [1 : ... : 1] is the principal open subset
D(Tp...T,) of Py,.

The open subset D(Ty) of P, is the affine space A”". Since it contains x
and is invariant under T, it is a toric variety as well.

We can also consider P,,_; as a toric variety with underlying torus Gn,",
with action given by

(tl,...,tn)'[xl:...:xn]:[t1x1:...:tnxn],

and base-point [1 : ... : 1]. The stabilizer of the base-point is the
diagonal subgroup of G,,” and the quotient is isomorphic to Gp,," ™.
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4.2.3. — Let X be a toric variety with torus T and base-point x. For
every point y € X(k), the closure X, = T - y of its orbit is a toric variety,
with base-point and underlying torus the quotient T/T,,.

More generally, let S be a torus and f : S — T be a morphism of tori.
Then the torus S acts on X, by the formula s -x = f(s)-x, and the closure
of the S-orbit of a point y is a toric variety with underlying torus S/S,
and base-point y.

Example (4.2.4). — a) Let us consider the n-dimensional affine
space A" as a toric variety with underlying torus Gn", the action
of Gn," on A" being given by

(tl,...,tn) ¢ (.X'l,.. .,.Xn) = (tlxl,...,tnxn),

the orbit of the base-point (1, ..., 1) being dense in A".

Let T be a torus, let M = Z*(T) be its character group and let
ad = (my,...,my) be a finite family in M. It induces a morphism
fa: T — Gp'". The Zariski closure Yy of the orbit of the base-
point (1,...,1) is a toric variety in A”. Its underlying torus is the
quotient of T by the kernel of f, its character group is identified with
the abelian group (mj, ..., m,) generated by &. In particular, the di-
mension of Y is that of the linear span of & in Mg.

b) Similarly, starting from P,_;, viewed as a toric variety with
torus Gn,"" and base-point [1 : ... : 1], we can restrict the action to T,
and the Zariski closure of the base-point is a toric variety Xy. The
diagonal torus Gy, in Gp" acts trivially on P,_1, and the underlying
torus of Xy is its inverse by fy; its character group identifies with the
subgroup of M generated by the elements m; — m;. Consequently, the
dimension of Xy is that of the affine span of & in Mp.

Proposition (4.2.5). — Let T be a torus, let o = (my,...,my,) be a finite
family of characters of T and let Xy C P,_1 and Yo C A" be the associated
toric varieties.

Let X1, ..., Xy be the homogeneous (resp. affine) coordinates of P,_1 (resp.
A").

a) Theideal of Yo in k[Xy, ..., X,] is generated by the binomials X — X1,
forall p,q € N" such that 3, pym; = 3 qjm; in L*(T).
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b) The homogeneous ideal of X is the ideal generated by those binomials
which are homogeneous. In particular, if the ideal of Y o is homogeneous, then
it is the ideal of Xy, and the variety Y o is the affine cone over Xy.

Proof. — a) Let M be the character group of T and ¢ : T — A" be the
morphism givenby ¢(t) = t-(1,...,1). It corresponds to the morphism
of k-algebras " : k[X1, ..., Xu] = k™ such that ¢*(X;) = T" for every
j € {1,...,n}. By definition of the Zariski closure of the image of ¢,
the ideal I of Y4 is the kernel of ¢*.

If p,q € N" satisty }; pjm; = 3 qjmj, one has

@ (X = X7) = 1_[ TmiPi — 1_[ T = TZPM — TZ4M) = (),

which shows that the indicated binomials belong to the ideal I. We need
to prove the opposite inclusion. On the other hand, let f = > ¢, XV € 1
and let S be the support of f; we argue by induction on S that f belongs
to theideal | generated by these binomials. Let g € Sand let u = ' g;m;.
One has

0= (= qTm= )| ), o]t

meM \ ) pjmj=m

The sum of all ¢, for p € S such that } pjm; = p, is the coefficient
of T¥ in ¢*(f), hence vanishes. Since this sum contains c;, there exists
p € S={q} such that }, pjm; = m. The polynomial g = f — c; X7 + ¢, X
satisties ¢*(g) = @*(f) — ¢, (X7 = XP) = 0; its support is contained
in S={g}. By induction, ¢ belongs to J, hence so does f.

b) Let f = XP — X9 be an homogeneous binomial in I, where p, g € N"
satisty >, pjm; = > qym;j and ) p; = >, g;. It vanishes on Xy, so that
the homogenous ideal of X contains the ideal ] generated by those
homogeneous binomials. Conversely, the same argument as in a) proves
that an homogeneous polynomial that vanishes on X belongs to the
ideal generated by these elements.

The ideal of X is contained in the ideal of Yy, and they coincide if
the latter is already homogeneous. O

Remark (4.2.6). — The map ¢*: N" — M given by ¢*(p1,...,pn) =
2. pim; is a morphism of monoids. Let K be its kernel, namely, the
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set of pairs (p,q) € N”" such that p*(p) = ¢*(g); it is a submonoid
of N" X N that contains the diagonal A (corresponding to pairs with
p = q). Let S C K be a subset such that the smallest submonoid
of N” X N" that contains SU S’ U A is equal to K, where S’ is the
symmetric of S, that is, the set of pairs (g, p) for (p, q) € S. (It will follow
from proposition 4.3.1 below that there exists a finite such setS.) Let ]/,
be the ideal of k[Xy, ..., X,] generated by the polynomials X? — X4, for
(p,q) € S. For s € S, write (ps, g5) for the pair corresponding to s.

Let p,q € N" be such that ¢*(p) = ¢*(g), that is, (p,q) € K. By the
assumption on S, there are elements mg, m; € N (for s € S) and an
element r € N" such that

(,9) = ) mops, 45)+ ) mi(qs, ps) + (r,7).

One has XPs = X% (mod J’,), for every s € S, so that [[ X"sPs = [T X",
and [] X% = [] X"™Ps, as well as X" = X. Consequently, X = X1
(mod J’)), so that XV — X7 €] .

This proves that the ideal J', is the ideal of Y in k[X1, ..., X;].

A similar description holds for the ideal of X. Let K}, C K be the set
of pairs (p, g) € K such that |p| = |g| and let Sy, be a subset of Ky, such
that Ky, is the smallest submonoid of N X N" containing Sy, S]’[1 and the
diagonal. Then the polynomials X? — X1, for (p, q) € S, generate the
homogeneous ideal of X,.

Example (4.2.7). — Let us consider T = G, with character group identi-
fied with Z, and the family & = (2, 3). Let I be the ideal of Y in k[X, Y];
let us prove that I = (X3 — Y?).

Let us compute the kernel K of the morphism of monoids N? — Z
givenby (p,p’) — 2p+3p’. Let (p, p’),(q,q") € N?>be such that2p+3p’ =
2q + 3q’; then there exists a € Zsuch thatp — g =3aand p’' — g’ = -2a,
so that (p,p’) = (g9,9") + a(3,2). By the preceding remark, one may
take S = {(3,2)}. Consequently, the ideal I of Y is generated by the
polynomial X® — Y2.

Since this polynomial X® — Y? is not homogeneous, the toric variety
Y, C A? is not the cone over Xy. In fact, one has X, = P; and the
homogeneous ideal of X is zero, because the homogeneous part Ky
of K is reduced to 0.
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Remark (4.2.8). — Replacing the torus T by the torus T" = T X G,
changes M into M’ = M @ Z. Let us set m]’ = (m;,1) for every j €
{1,...,n} and let &’ = (m{,...,my). This gives rise to toric varieties
Y, € A" and Xy € P,,_1. Now, Y is the cone over X which itself
coincides with X .

Remark (4.2.9) (To be done). — Let T, T be tori and let f : T — T be a
morphism of tori; let f*: M — M’ be the morphism of abelian groups
that it induces on character groups. Let & and &/’ be finite families in M
and M’ respectively.

a) Assume that o = (my,...,my)and o = (f*(m1),..., f*(my)). Ex-
plain that X, and X coincide, as well as Y7 and Y .

b) Find more general conditions on & and &’ that allow to compare
these varieties.

4.210. — Let S be a commutative monoid and let M = S8 be the
abelian group associated with S; we assume that S is finitely generated,
that the canonical map from S to M is injective and that M =~ Z". In the
language used by logarithmic geometry, see for example ( ),
such monoids are called fine; we will also mainly consider the case
where S is saturated, in the sense that for any s € M such that there
exists n > 1 with ns € S, then s belongs to S (rather, to the image of S
in M).

Then the monoid algebra k® is a finitely generated k-algebra, and is
a subalgebra of kM| Let Xg = Spec(k(s)) and let T be the torus with
character group M. Since k® is a finitely generated integral k-algebra,
the scheme Xs is an integral k-variety. The obvious M-graduation of k)
endowes Xs with a T-action. Let o = (my,...,m,) be a finite generat-
ing family of the monoid S. Then the k-algebra corresponding to the
principal open subset D(T"1++") of Xg is k™M), so that this open subset
identifies with T. We thus have constructed an affine toric variety with
torus T.

The elements T™, ..., T" of k® = I'(Xg, Ox;) define a morphism
@: Xs — A". One has ¢(e) = (1,...,1). By construction, ¢ factors
through Y. In fact, ¢ induces an isomorphism of toric varieties Xg =~
Y. Indeed, it corresponds to ¢ the morphism of monoid algebras
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@ : k[T1,...,T,] = k© such that @*(T;) = T" forevery j € {1,...,n}.
This morphism is surjective, because & generates S. Composing with
the embedding of k® into k™, we see that the kernel of ¢* is the ideal I
of Y. This proves that ¢ induces an isomorphism from Xg into Y, as
claimed.

4.3. Affine toric varieties and cones

Proposition (4.3.1) (Gordan’s lemma). — Let C be a rational polyhedral
convex cone in R". Then C N Z" is a finitely generated monoid.

Proof. — Itis clear that C N Z" is a monoid; what needs to be proved is
that it is finitely generated.

By the general theory, there exists a finite family (v1, . . ., v;,) of vectors
in Q" such that C = cone(vy,...,v,). We can then assume that these
vectors vj belong to Z". Let K = [0;1]vy +- - - +[0; 1]o,,; this is a compact
subset of R", hence S = KN Z" is finite. Let us prove that C N Z" is
generated by S.

Let then v € CNZ"; we can write v = }, a;v;, with (ay, ..., a,) € RY.
Let o' = }|aj]vj; since v; € S for all j, one has v" € (S). Moreover
v—v" = (a;— |a;j])v; € K, by definition of K, and v — v’ € Z", because
both v and v” belong to Z"; consequently, v — v € S C (S). Finitely,
v =0+ (v—-"70") € (S), as was to be shown. O

4.3.2. — Let T be a torus and 7 its dimension. let M be its group of
characters and N be its group of cocharacters; they are isomorphic to Z".
Then Mg are N are R-vector spaces isomorphic to R” with Q-structures
respectively given by Mg and Ng.

Let o be a rational polyhedral convex cone in Ngr and let 6° be its polar
cone in Mg, namely the setof all f € Mg = (NR)* such that that f(x) <0
for all x € o; it is a rational polyhedral convex cone. According to
proposition 4.3.1, 0° "M s a finitely generated monoid and one defines
the toric variety X, by the formula

X, = Spec(k@""™M)),

Its associated torus is the quotient of T with character group (0°—0°)NM.
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The cone ¢° generates MR if and only if if 0 N (—0) = 0; in this case,
the associated torus of X, is T.

In the sequel, we will always assume that this property is satisfied
and mention it by saying that o is strongly convex.

4.3.3. — The functor of points of the affine toric variety X, has an
elementary description.

Let R be a k-algebra. Then k-morphisms of Spec(R) to X, correspond
to morphisms of k-algebras from k(@"™) {5 R, hence, by the universal
property of the monoid algebras, to morphisms of monoids from ¢°NM
to (R, ). This description is functorial: if f : R — S is a morphism of
k-algebras, the natural map Xs(R) — X, (S) induced by composition
with the morphism“f : Spec(S) — Spec(R) corresponds to composition
with f.

Analogously, k-morphisms from Spec(R) to T correspond functorially
to morphisms of k-algebras from k™) to R; by definition of the group
algebra, they correspond to morphisms of groups from M to R*. (Note
that since M is a group, the image of a morphism of monoids from M
to (R, -) is contained in R*.)

In these descriptions, the action of T(R) on X, (R) is simply given as
follows: ift € T(R)and x € X;(R) respectively correspond to morphisms
7: M — R*and £ : 6°NM — R, then the point f-x € X(R) corresponds
to the morphism of monoids m +— t(m)&(m) from 6° "M — R.

Example (4.3.4). — Here are some examples, borrowed from §1.2 of
( ). Let T = G, so that M and N are both identified with Z".
Let (eq, ..., e,) be the canonical basis of N.

a) Letr € {0,...,n} and let 0 = cone(—e1,...,—e;). Then ¢° is the
set of m € R" such thatm; > 0,...,m, > 0. Consequently, 6° "M =
N" X Z"" and X; = A} X Gm;

b) Assume that n = 2. Let d be a strongly positive integer and let
o = cone(—de; + ey, —¢ep). Then ¢° is the set of m € R? such that
dmi —my > 0and my > 0, thatis, 0 < my < dm.

To compute a generating set of 6° N Z2, we can use the argument of
the proof of proposition 4.3.1. We can also argue directly: the points
(1,m), for 0 < e < d belong to ¢° N Z%; moreover, if (my,my) € N?
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satisfies 0 < my < dmy then, choosing e € {0,...,d — 1} such that
emy < my < (e + 1)mq, one has

(my1, m) = ((e + 1)my — ma)(1, e) + (mz —emq)(1,e +1),

so that (m1, my) belongs to the monoid generated by the d + 1 points
(1,0),...,(1,4).

¢) Assume that n = 3 and let 0 = cone(—eq, —ey, —e1 —e3, —ex — e3). Its
polar cone 0° is the set of m € R3 such thatmy >0, mp >0, my +msz > 0
and my + mz > 0. This cone has 4 extremal rays, generated by the
integral vectors (1,0,0), (0,1,0), (0,0,1) and (1,1, -1). Moreover, for
(my, ma, m3) € 0°, the expressions

(ml, mo, m3) = m1(1, 0, 0) + THQ(O, 1, O) + m3(0, 0, 1)
if mz > 0, and
(mlr may, m3) = (ml + m3)(1/ 0/ O) + (mZ + m3)(0/ 1/ O) - 7713(1, 1/ _1)

if m3 < 0, show that 0° N Z% is generated by these 4 vectors.
Consequently, k© °"NZ%) s the subalgebra k[T1, Tz, T3, T1ToT5'] of
k[T, T3, TE']. Themorphism ¢ : k[X,Y, Z, T] — k[Ty, T2, T3, T1T2T5']
mapping the indeterminates X, Y, Z, T to the monomials Ty, Tz, T3, T1 T3 T 1
is surjective. The morphism ¢ identifies X, with the toric variety Yy
in A* defined by & = ((1,0,0),(0,1,0),(0,0,1),(1,1,-1)). The corre-
sponding morphism of monoids from N* to Z3 is generated by the pair
((1,1,0,0),(0,0,1,1)), its symmetric, and the diagonal. Consequently,
the ideal of Y4 is generated by the polynomial XY — ZT.

Proposition (4.3.5). — Let T, T’ be two tori, with cocharacter groups respec-
tively N and N" and let v: N — N’ be a morphism of abelian groups, with
corresponding morphism of tori ¢ : T — T’. Let 0 and ¢’ be rational poly-
hedral strongly convex cones in Nr and Ny respectively. Then ¢ extends to
a morphism of toric varieties X, — Xy if and only if v(c) C o’; such an
extension is then unique.

Proof. — Let M, M’ be the character groups of T, T’ respectively, and let
S=0°NMand S = (¢)° N M’ be the corresponding monoids, so that
Xy = Spec(k®) and T = Spec(k™) on the one side, and X, = Spec(k(®)
and T’ = Spec(k™") on the other side. By duality, the morphism of
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abelian groups v: N — N’ induces a morphism u : M’ — M which,
in turn, gives rise to the morphism of k-algebras kM) — k™ and to a
morphism of tori ¢ : T — T’ such that ¢*(T™) = T*(" for every m € M".

If v(o) € o, then u((0’)°) € ¢°: indeed, for every m € (¢’)° and
every u € o, one has (u(m), u)y = (m,v(u)) > 0 since v(y) € o’ and
m € (0’)°. Consequently, u(S’) C S, so that u induces a morphism of
monoids S’ — S, hence a morphism of k-algebras k) — k®) and then
a morphism of toric varieties ¢ : X, — X, that extends ¢.

The necessity of the condition is proved similarly, as well as the
uniqueness of an extension. Indeed, if ¢ : X, — X, extends the mor-
phism of tori ¢ : T — T’, one has T" € I'(Xy, Ox_,) for every m € S,
hence @*(T") € I'(X;, Ox,). On the other hand, the restriction of ¢*(T")
to the torus T is the element T*(™) of kM) so that u(m) € S. We thus have
u(S’) c S. Since the polyhedral convex cone (¢”)° is rational, it has a
generating subset in M/, hence in S’. By what precedes, u((¢’)° € ¢°. O

Example (4.3.6). — In R?, let us take 0 = —cone((1,0),(1,1)) and ¢’
—cone((1,0),(0,1)), so that ¢ € ¢’. One has ¢° = {(mq, my); my
0, my+my > 0} = cone((0,1), (1, 1)), and Xy = Spec(k[T2, T1T,') = AZ.
Similarly, (6’)° = R2 and X, = Spec(k[T1, T»]) = A2. The identity mor-
phism from G to itself extends a morphism f : X; — Xy. At thelevel
of rings, it corresponds to the inclusion f*: k[T1, To] — k[T1T; 1 T,].
Composing with the isomorphism k[T1T; U Ty] ~ k[X,Y] that maps
TiT, ltoXand T to Y, we get the morphism jo f*: k[Tq, T2] — k[X, Y]
such that Ty — XY and T, +— Y. Identifying X, and X, with A2, the
morphism f : X, — X, which is induced from the identity map of Z>

is thus given by f(x,y) = (xy, y).

AV

Proposition (4.3.7). — Let o be a rational polyhedral strongly convex cone
in Nr. For every face t of o, the morphism of toric varieties X; — X, which
corresponds to the identity map of M is an open immersion.

Proof. — Since o is a rational polyhedral convex cone in Nr and 7 is a
face of 0, there exists a primitive element m € M satisfying the following
two properties, for x € o:

(i) One has (x,m) < 0;

(ii) One has x € 7 if and only if (x, m) = 0.
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Then m € ¢° € 7°, and —m € t°. Let us prove that t° = ¢° + R + (-m)
and (7° " M) = (6° " M) + N(-m). The inclusions ¢° + R + (—m) C 1°
and (¢° N M) + N(-m) c (7° N M) are clear. Conversely, let w € 7°. Let
(x1,...,xs)be a finite family in N such that ¢ = cone(x1, ..., xs) and let
c = sup].(l(xj,z())l). Letje {1,...,s}. If (x;,m) = 0, then x; € T hence
(xj,w) > 0and

(xj,w+cm) = (xj,w) +c{x;,m) > 0.
Otherwise, since {(x;, m) € N, one has (x;,m) > 1 and
(xj,w +cm) ={xj,w) +c{xj,m)y > —c+c=0.

This proves that w + cm € ¢°, hence w € ¢° + Ry(—m). In the case
where w € 7° N M, we have ¢ € N because (x;, w) € Z for all j, hence
w € 0°+ N(—m).

Then T" € k(@™ and k(™M) = [(e""M)[T-"] ig the localization of
k™) by the multiplicative subset generated by T". This proves that
Xz is the principal open subscheme D(T") of X,; defined by T™. O

Proposition (4.3.8). — Let T be a torus with group of characters M and group
of cocharacters N and let X be an affine integral toric variety with torus T;
assume that the canonical morphism T — X is an open immersion.

a) There exists a unique submonoid S C M such that X = Spec(k(s)), the
immersion of T into X being given by the inclusion of k' in k™,

b) The monoid S is finitely generated and generates M as an abelian group.

c) The variety X is normal if and only if the monoid S is saturated; in
this case, there exists a rational polyhedral convex cone o in NR such that
S=0"NM.

Proof. — a) Let A = O(X) be the algebra of X; since X is integral, A
is a subalgebra of O(T) = k™). Let S be the set of all m € M such that
T™ € A; it is a submonoid of M and A = k©).

b) Let M’ be the subgroup of M generated by S; there exists a
basis (e1,...,e,) of M and positive integers di,...,d, such that
(die1, ..., dye,) generates M. Then the fraction field of A coincides
with k(TiZl, e, Tﬁ”), but is also equal to k(Ty,...,T,) since T is dense
in X. Necessarily, dy =---=d, =1and M’ = M.
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Because we assume that Xis an affine variety, the k-algebra A is finitely
generated. Let fi, ..., f, € Abesuchthat A = k[fy, ..., fr]. Necessarily,
the supports of the f; are contained in the monoid S, and conversely, Sis
contained in the submonoid generated by the union of these supports;
in particular, S is a finitely generated monoid.

c) Letus assume that X is normal and let us show that S is a saturated
submonoid of M. Letm € Mandletd > 1busuchdm € S. Then f =T"
is an element of the fraction field of A such that f? € A; in particular, f
is integral over A. Since X is normal, A is integrally closed in its field of
fractions, so that f € Aand m € S.

Conversely, let us assume that S is a saturated submonoid of M. Let ©
be the rational polyhedral convex cone generated by S; onehasS ¢ tnM
by construction. On the other hand, any extremal ray of 7 is generated
by a vector s € S; conversely, if v € M belongs to that ray, one has
v € Q,s, hence there exists an integer d > 1 such that dv € S; since S is
saturated, this implies v € S. As a consequence, S = T N M and we see
that X = X,, with 0 = 7°.

Finally, let us assume that S = 6° N M and let us prove that X = X is
normal. Let f be an element of the field of fractions of A whichis integral
over A. In particular, f isintegral over O(T) = k[Ti—Ll, ..., T#1]. Since this
ring is a unique factorization domain, f belongs to O(T). It remains to
prove that A is integrally closed in O(T). Let f € O(T) which is integral
over A. Let x € o; let us show that for every element m € S(f), one has
(x,m) < 0. Otherwise, let us consider a vertex m € S(f) of the Newton
polytope of f such that ¢ = (x, m) > 0 is maximal. Then dm is a vertex
of the Newton polytope of f¢, so that T#" appears in f?. However,
every element p € M of the support of f47/ satisfies (x,p) < (d — j)c,
every element p of the support of u; satisfies (x, p) < 0, so that every
element p of the support of — Z}t& u; 977 satisfies (x,p) < (d — 1)c.
Since dm belongs to the support of f¢ and (x,dm) = dc > (d — 1)c, this
contradicts the relation f% + Z}tol u;f d-j = (. O
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4.4. Normal toric varieties and fans

4.4.1. — Let T be a torus, let M be its group of characters and N be its
group of cocharaters. Recall that a (rational) fan in Ng is a nonempty
finite set X of rational polyhedral convex cones in Ny such that:

(i) Every face of a cone in X belongs to X;
(ii) The intersection of two cones of X is a face of both of them.

In the sequel, we will also assume that the cones of a fan are strongly
convex, that is, do not contain any line; equivalently, we assume that
the punctual cone {0} belongs to X.

We recall that a fan is determined by its set of maximal cones.

4.4.2. — GivenafanZ, one can define a toric variety Xy with underlying
torus T by glueing the affine toric varieties X, for 0 € L.

Precisely, for 0,7 € L, 0 N 7 is a face of both ¢ and 7, and the identity
map of M furnishes an open immersion j,r : Xonr — Xg; let Vi be its
image. Exchanging the roles of 0 and 7, we see that the open subscheme
Vo of X is the image of the open immersion j;;. Let @sr = jo7 © jrd be
the isomorphism of schemes from V., to V.

The glueing condition takes three cones o, 7,9 € L and asks that ¢,
defines by restriction an isomorphism @7, from Vi, N Vsy, to Vioy NV,
and that ¢/, » = ©5r 0 P " (cocycle relation). The first property holds, in
fact, Vo N Vgy is the toric variety associated with the cone o N7 Ny
which is a face of 0 N7, 0 N ¢ and 7 N . The cocycle relation follows
from the fact that these isomorphisms ¢/, " all correspond to the identity
map on M.

Lemma (4.4.3). — For every point x € Xy, there exists a smallest cone o € X
such that x € X,.

In other words, the cone o is such that for every cone 7 € L, the
assertions x € X; and ¢ C 7 are equivalent.

Proof. — Let x € Xy and let 0 € £ be a minimal cone such that x € X;;
such a cone exists because X is finite. Letnow 7 € X. If 0 C 7, then o
is a face of 7, and X, is an open subscheme of X, hence x € X;. In the
other direction, assume that x € X;. By construction, the intersection
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Xs N X7 is the open subscheme X;n; of Xxz. By minimality of ¢, one has
ocN7T=0,hence o C 7. O

Example (4.4.4). — Let T = Gy, so that M = N = Z, and let X be the fan
consisting of the three cones 0 = R-, ¢’ = R; and 7 = {0} in Ngr = R.
Then 0° = Ry, (07)° = R_ and 7° = R, so that the three correspond-
ing affine toric varieties are X, = Spec(k[T]), X,» = Spec(k[T™!]) and
X: = Spec(k[T, T7]). Both X, and X, are isomorphic to A}, and X;
is identified with the open set Gp, their glueing being done via the
automorphism ¢ - ¢! of G,. One thus gets the projective line Pi.

Example (4.4.5). — Let T, T be two tori, with character groups M, M’
and cocharacter groups N, N’, and let X, 2’ be two fans in Ng, N} re-
spectively. A cocharacter of the character group of the product torus
T x T is of the form (A, A”), where A, A" are cocharacters of T, T” respec-
tively, so that 2.(T X T’) is identified with N X N’. The set of cones ¢ X ¢’
in Ng X N, for 0 € X and ¢’ € ¥, is a fan of Nr X N which we denote
by £ X ¥’. One has (0 X 0”)° = ¢° X (¢”)°, so that

(cxd)’NMxM)=(c°NM) X ((¢)°NM),

and the monoid algebra of (¢ X ¢”)° N (M X M’) identifies with the tensor
product of the monoid algebras of ¢° N M and of (¢’)° " M’. This
identifies X, with the product X, X X, .

Glueing these affine toric varieties, we identify the toric variety Xzxy:
with the product Xz X Xy .

Example (4.4.6). — Let T = Gy", with character and cocharacter
groups identified with Z". Let (e1,...,e,) be the canonical basis
of Z" and let g = e; +--- + e,. For every j € {0,...,n}, we let
o; = cone(ep, —e1,...,—€j,...,—e,}, where —¢; means that this vector
is omitted from the list. The cones oy, ..., 0, and their faces form a fan
in R". Let us check that this fan defines the projective space P;,.

Let us set U; = Xg]. ; it corresponds to an open subscheme of Xy.
Since faces of o; give rise to open subsets of X;, the open sets
Up, ..., Uy cover Xz. One has o; = R}, so that o; N Z" = N" and
Xo = Spec(k[Ty,...,T,]) = AZ‘ Fixje{l,...,n}. Anelementm € R"
belongs to 0}’ if and only if m; > O for i # j and m; +--- + m, <0, that



4.4. NORMAL TORIC VARIETIES AND FANS 159

02

€2
€0

€1

o
0 o1

Ficure 1. The fan of P,

is, m; < — Ziij m;. Writing m = ), m;e; = Z#J- mi(e; —ej) + (X; m;)ej, we
see that the cone 0;.’ is generated by the vectors e; — ¢;, for i # j, and by
the vector —¢;. These vectors forming a basis of Z", we have

G; NZ" = N(e; —¢j) +---+N(e, —¢j) + N(—¢j),

which identifies U; with Spec(k[Tlijl, cel, TnT]._l, T]._l]) ; in particular, it
is isomorphic to A}

Written in this way, the coordinates furnish an explicit isomorphism
between the principal open subscheme D(T;) of Uy and the open sub-
scheme D(T].‘l) of U;, and an explicitisomorphism between the principal

open subscheme D(TiT]._l) of Uj and the open subscheme D(T;T; ') of U;.
This is the standard definition of the n-dimensional projective space by
glueing n + 1 affine spaces of dimension .

Proposition (4.4.7). — Let T be a torus, N its group of cocharacters and let L.
be a fan in Ng.

a) The toric variety Xy is separated.

b) It is proper if and only if the support of ¥ is equal to Ng.

Proof. — The proof of the proposition relies on the valuative criteria for
separation and properness ( , , proposition 7.2.3 and
théoreme 7.3.8). Namely, a k-scheme X of finite type is separated (resp.
proper) if for every k-algebra R which is a discrete valuation ring, with
field of fractions K, every k-morphism f : Spec(K) — Xhas at most one
(resp. has exactly one) extension to a k-morphism ¢ : Spec(R) — X.
We will also need to make three observations:
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— Affine schemes are separated, so that if U is an affine open sub-
scheme such that f factors through U, then there exists at most one
extension ¢ : Spec(R) — U;

— If a morphism ¢ : Spec(R) — X maps the closed point of Spec(R)
to an open subscheme U of X, then it factors through U, so that ¢ is the
unique extension of f that factors through U;

— It suffices to treat the case of a morphism f that factors through
a given dense open subscheme of X ( , , corol-
laire 7.3.10).

We apply this with X = Xy and its dense open subscheme T.

a) Since Xy, is described by glueing open subschemes X, to prove
that it is separated, it will suffice to consider, for each cone o € X,
the only possible extension ¢, of f through X;, and to show that all
of these extensions coincide as a morphism from Spec(R) to Xxz. The
morphism f is a K-point of T, hence corresponds to a morphism of
abelian groups u : M — K*. The morphism f extends to a morphism
o : Spec(R) — X, if and only if u(c° " M) C R.

Assume, thus, that f extends to morphisms ¢, : Spec(R) — X, and
@7 : Spec(R) — X;. This means that u(c° " M) c Rand u(t° N M) C
R. Let then 1 = 0 N 7 is a cone of ¥ with dual ¢¥° = 0° + 7°, and
u(°NM) C R. Then f extends to a morphism ¢y : Spec(R) — Xj.
However, ¢ being a face of o, Xy is an open subscheme of X;; since X,
is affine, it is separated, hence ¢y = ¢,. Similarly, one has ¢y = @,.

This proves that Xy is separated.

b) First assume that |X| # Ng. Since |X| is closed, its complement is
open and nonempty, and it contains a nonempty cube C. Since X is a
cone, one has tC N |X| = @ for all t > 0. If t is large enough, then tC
has size > 1, so that it contains a point v € N={0}. Let A : Gy — T be
the inverse of the corresponding cocharacter; the associated morphism
of groups u: M — k(T)* is given by m + T~ [ claim that the
morphism A does not extend to a morphism A : Ai — Xyz. Assume
otherwise and let ¢ € X be the minimal cone such that 1(0) € X,. Since
X(Gm) C Xg, the morphism A factors through X, so that the morphism
of groups M — k(T)* corresponding to A maps 6° "M to k[T]. In other
words, (v, m) < 0 for all m € ¢° N M. Since ¢° is a rational cone, it is
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generated by vectors in M, so that (v, m) < 0 for all m € ¢°. By duality,
we have v € 0°° = ¢, a contradiction. This proves that if |[Z| # Ng, then
Xy 1is not proper.

Let us now prove thatif || = NR, then Xy is proper. Let Rbe a discrete
valuation ring, let K be its field of fractions and let f: Spec(K) —
T be a morphism, corresponding to a morphism of abelian groups
u: M — K*. Composing with the valuation of K, we obtain a linear
form on M, hence an element x € N such that v(u(m)) = —(x, m) for
every m € M. Let 0 € L be such that x € 0. For every m € 6° N M, one
has v(u(m)) = —(x,m) > 0, hence u(m) € R. Consequently, f extends
to a morphism ¢ : Spec(R) — X, and this concludes the proof of the
proposition. O

Proposition (4.4.8). — We consider two tori T, T’, with character groups M, M’
and cocharacter groups N,N'. Let ¥, Y/ be fans in Ng, Ny respectively. Let
f: T — T be a morphism of tori, let v: N — N’ be the morphism that it
induces on cocharacters.

There is at most one morphism of toric varieties ¢ : Xy — Xy that extends f .
For such a morphism to exist, it is necessary and sufficient that for every cone
0 € X, there exists a cone ¢’ € ¥/ such that v(o) C o’.

Proof. — That there is at most one morphism from Xy, to Xy that ex-
tends f follows from the fact that the torus T is (schematically) dense
in Xy, and that Xy is separated. Indeed, let ¢, ¢” be two such mor-
phisms, and let us consider the morphism (¢, ¢’): Xz — Xz Xx Xy
Since Xy is separated, its diagonal is a closed subscheme of X5/ Xj Xy,
hence so is its inverse image in Xy. This inverse image contains T, hence
is equal to Xy itself, because T is dense in Xyx.

To prove the existence of such a morphism ¢, we first observe that
f extends to a morphism ¢, : X; — Xg, for every ¢ € L. Indeed, we
choose a cone ¢’ € ¥’ such that v(0) C ¢’ and define ¢, as the mor-
phism from X,; to X, that extends f which is given by proposition 4.3.5
composed with the open immersion of X, into Xy/. If 7 is a face of o,
then X is an open subscheme of X;;, and ¢, |x, extends f, hence is equal
to ¢, by the uniqueness property applied to the fan with 7 as a unique
maximal cone, O
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Remark (4.4.9). — Let T be a torus, let M be its group of characters and
let N be its group of cocharacters.

Let X be a fan in Ng. Since the monoids ¢° N M are saturated, for
o € L, the varieties X, are normal, hence Xy is a normal toric variety.

Conversely, if X is a normal toric variety with underlying torus T,
there exists a fan X in NR such that X is isomorphic to X. Indeed, by
a theorem of ( ), the variety X has an affine cover (U;) by
T-invariant open subschemes. For each j, there exists a cone o; in Ng
such that U; = X, - There exists a fan ¥ in Nr containing the cones o;
and such that |Z| is the union of the ones o;. Then X is isomorphic

to Xy; in fact, there exists a unique isomorphism X — Xy which extends
a given identification of the underlying tori.

Example (4.4.10). — Let T be a torus, let M be its group of characters and
let N be its group of cocharacters. Let P C Mg be a rational polyhedron
of dimension rank(M) and let Zp be its normal fan (definition 1.10.7):
this is the set of all cones Ng(P) = (P — F)° = P° N F+, where F ranges
over all faces of P. These cones are rational and, since P has dimen-
sion rank(M), their lineality spaces are reduced to 0. Let us denote
by Xp the toric variety associated with this fan Xp.

Every face F of P gives rise to a torus-invariant open subset Xg in Xp,
given by Xp = Spec(k(P=F™)) " The ordering relation between faces
gives rise to the opposite ordering on normal cones; in particular, the
maximal cones of Lp correspond to the vertices of P.

The support |Zp| € Ny of Xp is the set of all linear forms on Mg which
are bounded from above on P. In particular, if P is a polytope, then
|Zp| = NRr. Consequently, proposition 4.4.7 asserts that Xp is a proper
variety if and only if P is a polytope.

Let us assume that P is a polytope with vertices in M and letS = PNM.
Every element s € M corresponds to a character of T which we denote
by xs : T — Gm. Let Ps be the projective space of dimension Card(S) —1
with homogeneous coordinates indexed by S. For Let f: T — Ps be
the morphism t +— [xs(t)]ses; by definition, the Zariski closure of its
image is the toric variety Xs. Let us show that f extends uniquely to a
morphism from Xp to Xs.
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Every face F of P gives rise to a torus-invariant open subset Xg in Xp,
given by Xp = Spec(k(P-F)"™)) " Tt suffices to prove that f extends
uniquely on each of them. It suffices to treat the case of a face reduced
to a vertex v of P. For every s € S, one has s — v € P — F, so that the
character ysx;' on Textendstoa regular function on X,. By definition of
homogeneous coordinates, one has [(xs(t)]ses = [(xs(t)xo(t)]ses, and
in the latter expression, all homogeneous coordinates extend to regular
functions on X,, and one of them is identically equal to 1. Consequently,
f extends uniquely to a from X, to Ps, and these extensions glue to
furnish the desired morphism from Xp to Xs.

4.5. Toric orbits and cones

When a k-torus T (more generally, a k-group scheme of finite type)
acts on a k-scheme of finite type X, the scheme X admits a finite partition
in orbits, minimal locally closed subsets which are invariant under T. In
the case of a toric variety with underlying torus T, one of those orbits is
the torus itself. We will show that the other orbits are, in a natural way,
quotients of the torus T, and that their closures in X are themselves toric
varieties.

4.5.1. — Let T be a torus, let M be its group of characters and let N be
its group of cocharacters; let X be a fan in Ngr.

Leto € 2.

Let 0+ = 0°N(—0°) be the set of elements m € Mg such that (x, m) = 0
for all x € 0. This is a rational vector subspace in MR of codimen-
sion dim(o0), it is the lineality space of the cone ¢°. Observe that c- "M
is a submonoid of 6° N M. Let then ¢, : 0° "M — k be the map such
that ¢, (m) =1if m € o+ and @,(m) = 0 otherwise.

One has ¢;(0) = 1.

Let m,m’" € 6° NM. If m + m’ € o+, then (x, m) + (x,m’)y = 0 for all
x € 0°, hence (x,m) = (x,m’) = 0 since both of them are positive real
numbers, such that m, m’ € o+ and @,(m +m’) =1 = p,(m)ps(m’). On
the other hand, if m + m’ ¢ o+, then either m, or m’ does not belong
to o+ and @y(m + m’) =0 = @s(m)ps(m’).
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This proves that ¢, is a morphism of monoids. It corresponds to ¢,
a morphism of k-algebras k©™) — k, hence a point x, € X, (k).

Let us compute the stabilizer of x,. Let R be a k-algebra and let
t € T(R); let ¢ : M — R* be the corresponding morphism of groups.
Since X, is a T-stable open subscheme of Xy and since x, € Xq(k),
the point t - x, belongs to X, and corresponds to the morphism of
monoids ¢ - p;: 6° "M — (R, ) that maps m € o+ to ¢(m), and the
rest to 0 = @y(m). In other words, t - x; = x, if and only if p(m) =1
for every m € o+ N M. This proves that the stabilizer of x, is the group
subscheme of T defined by the equations " =1 for all m € ¢+ N M.

The orbit O, of x, is then identified to the quotient torus T,, with
character group o+ N M. One has dim(T,;) = dim(c* N M) = dim(c*) =
dim(T) — dim(o).

Lemma (4.5.2). — Let n € N and let A: Gy, — T be the corresponding
morphism of group schemes. The morphism A extends to a morphism A’
from Ai to Xy, if and only if —n € |Z|; one then has A’'(0) = x4, where o is the
smallest cone of . containing —n.

Proof. — The morphism A corresponds to the morphisms of groups
@ : M — k[T, T71]* given by m > T,

Assume that —n € |Z| and let ¢ be the smallest cone of ¥ contain-
ing —n; in other words, —n belongs to the relative interior of 0. For
every m € ¢° N M, one has (m,n) < 0, hence T-mm e k[T], so that the
morphism A induces a morphism of monoids ¢’: 6° "M — (k[T], -).
Therefore, A extends to a morphism of schemes A’ : Allc — Xy, hence to
a morphism from Ai to Xx.

The point A’(0) € X;(k) corresponds to the morphism of monoids
@y: 0°NM — (k,-) such that py(m) = 1 for m € 0° N M such that
(m,n) =0, and @j(m) = 0 otherwise. Since n belongs to the relative
interior of o, the condition (m,n) = 0 for m € ¢° N M implies that
m € o+. We thus see that A’(0) = x,.

Conversely, let us assume that A extends to a morphism of schemes
A': Ap — Xz. Let 0 € L be a cone such that A’(0) € X,. Since a mor-
phism of schemes is continuous, A’ maps a neighborhood of 0 into X,;
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it maps the complement of 0 into T, which is contained in X, hence A’
factors through a morphism, still denoted by A’, from Ai to X,.

Let ¢’: 0° N M — (k[T],:) be the corresponding morphism of
monoids. Since ¢’(m) = T~ "™, one has (m,n) < 0 for every
m € ¢° N M; by duality, this proves that n € ¢, hence n € |Z|. O

Theorem (4.5.3). — a) A point x € Xy, belongs to the torus orbit O if and
only if o is the minimal cone of ¥ such that x € X,. In particular, the torus
orbits Oy, for o € L, form a partition of Xy in locally closed subsets;

b) For 0,7 € £, one has O, C O, ifand only if T C o.

c) For every cone o € L, one has

Xo = UOT and O_G:UOT.

TEL TEL
TCo 00
Proof. — a) Let x € Xy and let 0 € L be the smallest cone such that

x € Xy (lemma 4.4.3). Let us prove that x € O,. Let K = «(x) be
the residue field of x and let ¢ : 6° "M — (K, -) be the morphism of
monoids corresponding to x.

Let m € 0° NMbe such that ¢(m) # 0. Then D(T™) is a principal open
subscheme of X, stable under the action of T, with associated monoid
N(-m) 4+ 0° N M; it corresponds to a face 7 of o and one has x € X;. By
minimality, one has T = ¢, hence —-m € ¢° "M and m € o+. Conversely,
if m € ot NM, then —-m € ¢° N M, hence p(m)p(-m) = ¢(0) =1, so
that p(m) € K*. Then the morphism of groups ¢|stapm: 0+ N M — KX
corresponds to a point t € T;(K) and x =t - x,. In particular, x € O,.

Conversely, let T be the smallest cone of X such that x, € X;; one has
T C 0, since x, € X, by construction. The points x; and x, both belong
to X, and correspond to morphisms of monoids ¢+, ¢, : 0°NM — (k, -).
By construction, ¢,(m) = 1if m € o+ N M, and ¢,(m) = 0 otherwise;
on the other hand, using that X; is an open subscheme of X, and
the definition of x,, we see that ¢.(m) = 1if m € ¢° N1t NM, and
@-(m) = 0 otherwise. By what precedes, there exists t € T(k) such that
Xy = t-xr; the point t corresponds to a morphism of groups ¢ : M — k*,
and one has ¢,(m) = p(m)p.(m) for all m € ¢° N M. Consequently,
c°NTtNM = ¢+ NM; since 6° N+ and ¢° are rational polyedral cones,
this implies 0° N 7+ = ¢+; by duality, we then have 0 + (1 — 1) = 0 — 0.
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Let x € 0; then there exists y € 0 and z € 7 such that —x = y — z, hence
x +y = z; since 7 is a face of o, one has x € 7. This proves that o = .

b) Applied to the fan generated by a cone o, part a) proves that X, is
the union of the orbits O, for all faces 7 of o.

As a consequence, if T is not a face of o, then O; does not meet X,
hence is contained in the closed subscheme Xy =X,. Taking the closure,
we have O, N X, = @; in particular, O, N O, = @. This proves that if O,
meets O, then 7 is a face of o.

Conversely, let T be a face of 0 and let us prove that O, C O,. This
is obvious if ¢ = 7, hence assume that 1 € 0. Let then n € N such
that n € 0 = 1; view n as a cocharacter v : G, — T and let us consider
the morphism A : t v(H)™ - x, from Gp, to X, It corresponds to the
morphism of monoids ¢ : 7°NM — (k[T, T"!], ) given by

T-mm  ifm e 1,

—(m,n) _
me T prlm) = {0 otherwise.

Since n € o, one has (m,n) < 0 for all m € 0° NN and this morphism
of monoids extends to a morphism of monoids from 7° "M to (k[T], -),
hence A extends to a morphism A’ : A,lc — X;. The point A(0) corre-
sponds to the morphism of monoids from 7° N M to (k, -) which maps
m € °NMtolif m € Tt No* = o+ and to 0 otherwise, thatis, A(0) = x,.
One thus has x, € O, hence the inclusion O, c O,, and then O, C O;.

c) Let 0 € L. Since X, is stable under T, it is the union of the torus
orbits O, for those T € X such that x; € X;; by a), this is equivalent to
the relation 7 C 0.

Similarly, the closure of a torus orbit is stable under T, so that O,
is the union of the torus orbits O, for those T such that O, c O, or,
equivalently, such that O, ¢ O,. By b), this is equivalent to the relation
TDOO. O

4.54. — Let T € X. The closure O, of the torus orbit O, in Xy is a
toric variety with underlying torus T,. Let M; and N, be the group
of characters and cocharacters of T;. The quotient morphism T — T,
corresponds to an injection M; — M (with torsion-free quotient) and a
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quotient N — N;. In fact, one has M; = - "M and M g = t+; then,
Neg = M2y = (t4)° = Ng/(v5)* = Ng/(7) and N = N/((x) N N).

Let us show that O; is a normal toric variety and let us compute its
associated fan in Ny r.

The intersection O, N X, is the union of all torus orbits Oy, for ¢y € &
such that 7 € 1 C ¢. In particular, O; N X, is nonempty if and only
if T C 0; in this case, O, is contained in X, and O; N X, is the closure
of O in this affine toric variety X,.

We first identify its R-points, for every k-algebra R. Elements x €
Xs(R) correspond to morphisms of monoids ¢ : 6° "M — (R, ). Let
Y € X be a cone such that 7 C ¢y C 0. The point x corresponds to the
morphism ¢y, that maps 0° Ny NM to 1, and the rest to 0; consequently,
if x € Oy, then one has ¢(m) = 0 for all m € ¢° N M such that m ¢ .
The inclusion 7 C i C ¢ implies o+ C ¥+ C 7+, so that the union of the
subspaces 1+, for those cones 1, is equal to 7+. This proves that x € O,
if and only if p(m) = 0 for all m € 6° N M such that m ¢ t+.

Equivalently, the ideal I, of O; N X, in k®*™™) is generated by the
monomials T, for m € 0° N M such that m ¢ 7t. Since 7 is a face of o,
the quotient identifies with the monoid algebra of ¢° N 7+ N M.

The intersection 6°N7+in T+ = M, r is the polar of the cone 0, in N g,
image of the cone o (or of the cone 0 +(7) ) by the projection Nr — N .
This identifies O; N X, with the affine toric variety with cone o;.

When o runs among the cones of X that contain 7, these cones o, form
a fan X, in N g and the associated toric variety Xy identifies with O,.

4.5.5. Missing. — — The fan of a projective toric variety given by a
polytope

— Bernstein’s theorem, mixed volumes. . .

— Lattice points and sections of line bundles, and Riemann-Roch

— The fan of a toric variety as a subset of its analytic space.

4.6. The extended tropicalization associated with a toric variety

If R is a k-algebra, we have seen that the R-points of a toric variety Xy
associated with a fan X are described by morphisms of monoids to
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the multiplicative monoid of R. We first amplify this fact and define,
functorially, the points of a toric variety with values in a monoid.

4.6.1. — Let M, N be free finitely generated abelian groups, endowed
with a bilinear map M X N — Z that identifies each of them with the
dual of the other. Let £ be a (rational) fan in Ng.

4.6.2. — Let S be a commutative monoid.

For every o € X, one sets X,(S) to the set of all morphisms of monoids
from 6° "M to S. Let T be a face of 0 and let m € ¢° N M that defines ©
in o: for every x € o, one has x € 7 if and only if (x,m) = 0. Then
1° = 0°+R4(—m), 1°NM = 6°NM+N(-m). Let then j;; : X¢(S) — X;(S)
be the map such that j,(¢) = @|senm. It is injective and its image is the
set of all ¢ € X;(S) such that ¢(m) € S*.

In the same way as we glued the affine varieties X,; into a toric vari-
ety Xy, we define a set Xx(5).

For X = {0}, we get an abelian group T(S) = Hom(M, S*). This group
acts on Xz (S): for 7 € Hom(M, S*) and ¢ € Hom(6° N M, S), T - ¢ is just
the map m — (m)p(m).

4.6.3. — Let f : R = Sbe a morphism of commutative monoids. Com-
position with f induces maps Xs(R) — Xy(S) which glue to a map
fi: Xz(R) = Xz(R).

This map is compatible with the actions of T(R) and T(S): one has

filt @) = fui(T) - fl).

Example (4.6.4). — Let us consider the multiplicative monoid S = {0, 1}.
For every ¢ € L, let ¢, : 6° N M be the map that maps 6- "M to 1 and
the rest to 0. One has ¢, € X;(5); more precisely, ¢, € X{(S) if and only
if T € 0. The map o — ¢, is a bijection from X to Xx(S).

The injection S — k is a morphism of multiplicative monoids. It
induces an injective map Xz (S) — Xz (k) which maps ¢, to the point x,
for every o € L.

Conversely, for every field K, the surjection K — S that maps 0 to 0
and the rest to 1 is a morphism of monoids. It induces a surjective map
Xz (K) to Xx(S); the image of a point x is the unique point x, such that
x € O, — equivalently, o is the smallest cone of X such that x € X,.
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4.6.5. — Let us assume that S is a Hausdorff topological commutative
monoid (the composition law S X S — S is continuous).

For 0 € X, we endow the set X;(S) with the topology of pointwise
convergence.

In fact, if (my, ..., my) is a finite family in 0° "M that generates c°NM,
then the map from X;(S) to S” given by ¢ +— (p(m1), ..., p(my)) is a
homeomorphism onto its image which is the closed subset of 5" defined
by the relations [] s;' = [] sf", for all (a, b) in the kernel of the morphism
of monoids from N” to ¢° N M that maps (a1, ..., a,) to [] sf".

The set Xz (S), which is a quotient of the sum of the family (X;(S))sex
is then endowed with the quotient topology.

Assume, moreover, that S* is open in S. If 7 is a face of ¢, then X+(S) is
an open subset of X;(S). This implies that the topology of Xz (S) induces
on X,(S) its initial topology.

4.6.6. — Let f : R — Sbe a continuous morphism of topological com-
mutative monoids. The map f. : Xz(R) — Xx(S) is continuous.
Let f : R — S be a morphism of commutative monoids.

Definition (4.6.7). — The multiplicative monoid R is called the tropical
monoid, and Xz(Ry) is called the extended tropicalization of the toric
variety Xy.

Note that the logarithm map is an isomorphism of topological
monoids from the multiplicative R, to the additive monoid R U {—co}.

Let k be a valued field. The map a — |a| from k to R, is a morphism
of topological monoids, the map a +— log(|a|) from k to RU {—oo} is a
morphism of topological monoids.

Definition (4.6.8). — The map t: Xz(C) — Xz(R.) associated with the
absolute value C — Ry is called the extended tropicalization map. The
image of a subvariety V of Xz (C) is called its extended amoeba and is denoted
by y\/.

Example (4.6.9). — Let us take M = N = Z; let 0 = Ry, ¢’ = Ry and
T = 0, and let us consider the fan £ = {R_,R,,0} in R.

One has 0°NM = N, and the map ¢ — ¢(1) is a bijection from X;(R)
to R;. One has (¢’)° "M = —N, and the map ¢ — @(-1) is a bijection
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from Xy (Ry) to R-. One has t° "M = Z; the map ¢ — ¢(1) is a
bijection from X;(R.) to ]0; +oo[, and the map ¢ — ¢(-1) is a bijection
from X;(R;) to ]0; +oo].
This identifies Xyg(R,) with [0; +00], where X,(R;) = [0;+co[ and
X (R4+) = ]0; +00]. The action of T(R4) = R} is just by multiplication.
Taking log, we get [—oo;+0], T(R;) then corresponds to R acting
on [—oo0; +00] by addition.

4.6.10. — Let us now assume that k is a non-archimedean valued field.
The Berkovich spaces X3" associated with the k-varieties X, for o € X,
are naturally glued into a topological space X3". Its points are equiv-
alence classes of pairs (K, x), where K is a valued extension of k and
X € Xz(K).

The absolute value induces continuous maps Xz (K) — Xz(R+), which
are combined to a continuous map A: X§' — Xz(R4), the extended
tropicalization map.



CHAPTER 5

MATROIDS AND TROPICAL GEOMETRY

5.1. Hyperplane arrangements

5.1.1. — An hyperplane arrangement in a projective space P is a finite
sequence (Vo, ..., V,) of hyperplanes in P.

There are obvious variants for affine or vector spaces, they can be
reduced to the case of an hyperplane arrangement in a projective space.
Indeed, if L is an affine space, it can be viewed as the complement of the
hyperplane at infinity in the projective compactification of L. Moreover,
an arrangement of linear hyperplanes in a vector space is the particular
case of an arrangement of hyperplane in an affine spaces where all
hyperplanes meet in one point. Conversely, the case of hyperplane
arrangements in projective spaces essentially reduces to the vector case.

In this setting, P can be either a “classical” projective space (that is,
the set of lines in a k-vector space), and this is the point of view used
in classical complex geometry or topology. We will rather consider
that P is the scheme theoretic version of a projective space, and the V;
are subschemes. Of course, one recovers the classical case by taking
k-points. While these two points of view are really equivalent if k is
infinite, the one we adopt has the advantage of allowing to consider the
case of a finite field k.

If & = (Vo,...,Vy)is an hyperplane arrangement in P, the comple-
ment Xy = P — U;'l:o V; is a k-variety. Classically, in the theory of
hyperplane arrangements, the goal is to relate the geometry of Xy to
combinatorial properties of the arrangement.
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5.1.2. — Let & = (Vy,...,Vy) be an hyperplane arrangement in a pro-
jective space P. One says that this arrangement is essential if one has
m;l:() V]' = Q.

If the arrangement is not essential, then Q = ﬂ?zo V; is a projective
space, and Xy is isomorphic to the product of an affine space by the
complement of an essential arrangement.

5.1.3. — Let & = (Vy,...,V,) be an essential hyperplane arrangement

For every j € {0,...,n}, let us choose a linear form f; € I'(P, Op(1))
defining V; in P. Since the arrangement is essential, the f; have no com-
mon zero and we obtain a morphism from P to P;. The morphism fy
is a closed immersion from P to a projective subspace of P}'; moreover,
for every j, the hyperplane V; is the inverse image of the coordinate
hyperplane H; = V(T)).

In classical terms, P = P(V), for a k-vector space V, and the f; are linear
forms on V such that V; = P(L;), with L; = Ker(f;). The hypothesis that
the arrangement is essential means that ﬂ}qzo Ker(f;) = 0; equivalently,
the f; generate V*. For every extension K of k, a point x € X4(K) is the
line generated by a vector v € V ®; K such that f;j(v) # 0 for all j, and
one has fy(x) = [fo(v) :...: fu(v)].

Conversely, let P be a linear subscheme of PZ/ that is, a subscheme
defined by linear forms, which is not contained in any of the coordinate
hyperplanes H;. The family (Hp N P, ..., H,; N P) is then an essential
hyperplane arrangement in P. Moreover, if f; = Tj|p is the restriction
to P of the global section T; € I'(P}, ©(1)), then (fo, ..., fu) defines the
embedding of P in P;.

5.1.4. — We fix an hyperplane arrangement &/ as above and keep the
preceding notation. We also introduce some vocabulary from matroid
theory.

We say that a subset J of {0, ...,n} is o/-free (resp. &/-dependent) if
the family of linear forms (f;);e is linearly independent (resp. is lin-
early dependent). By definition, the empty set is linearly independent.
Moreover, the full set {0, ..., n} is linearly independent if and only if
P =Py.
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We say that it is an &/ -circuit if it is minimal among all linearly depen-
dent sets: it is linearly dependent, and for every j € J, the set ] — {j} is
linearly independent.

The empty set is not a circuit.

For every linearly independent set F and every linearly dependent
set D, and every j € D=F, a minimal subset C such that FU{j} c Cc D
is a circuit. In particular, if P # P?, then for every element j € {0, ..., n}
a circuit containing j.

Lemma (5.1.5). — a) Let C bean of-circuitin {0, ..., n}. There exists, up
to scalar multiple, a unique nonzero linear form fc = 3 ;cc a;T; with support
contained in C such that fc|lp = Y. a;f; = 0. One has S(fc) = C.

b) Every linear form f € I'(PY}, Op(1)) which vanishes on P is a linear
combination of these forms fc, where C ranges over the set of of-circuits
in {0, ..., n}. In particular, these forms generate the ideal I(P) of P.

c) The Hilbert function of I(P) is the Hilbert function of P7', where m =
dim(P).

Proof. — a) By the definition of a circuit, there exists such a linear
form. Let fc = XjecaT; and fl = Xjec a;.Tj be two nonzero linear
forms such that fc|p = fl|p = 0. Since C is a circuit, one has a; # 0 for
all j € C. Since the empty set is free, one has C # @. Fix j € C and
consider the linear form a’fc — a;f¢; it vanishes on P and its support is
contained in C — {j}. Consequently, it is 0, which shows that fc and f/
are proportional.

b) Let f = Z;LO a;T; be a linear form such that f[p = 0. Let us prove
by induction on the cardinality of S(f) that f is a linear combination of
forms fc. This holds obviously if S(f) = @, that is, if f = 0. Otherwise,
f # 0, hence S(f) is linearly dependent; fix j € S(f) and choose a
circuit C such that {j} ¢ C c S(f). For A € k, onehas S(f —Afc) € S(f);
moreovet, if A is the quotient of the euclidean division of f by fc with
respect to the variable T;, then one has S(f — Afc) € S(f) —{j}. By
induction, f — Afc is a linear combination of forms associated with
circuits, as was to be shown.



174 CHAPTER 5. MATROIDS AND TROPICAL GEOMETRY

c) By a linear change of variables on P}, we may assume that P =
V(Tu+1,...,Tn). As a graded k-algebra, k[Ty, ..., T,] is then isomor-
phic to k[Ty, ..., T;], whence the assertion. O

Theorem (5.1.6). — Let K be a valued field. Let P C Py be a projective
subspace and let o be the associated hyperplane arrangement of P. Let Xy
be its complement in Gy and let I C K[TI—“l, ..., T2 be its ideal and let
I" € K[Ty, ..., T,] be the associate homogeneous ideal.

a) The family of forms fc(1,Ty,...,T,), where C ranges over the set of
4 -circuits, is a tropical basis of 1.

b) A point x € R" belongs to Ix,, if and only if for every of -circuit C, the
initial form iny(fc) is not an indeterminate.

c) For every x € R, the family of forms fc, where C ranges over the set
of of -circuits, is a Grébner basis for 1 at x: the initial forms iny(fc) generate
the initial ideal in, (I).

Proof. — The ftirst two assertions are equivalent, by the definition of a
tropical basis. Setting xo = 0, we will identify a point x € R" with the
point (0, x) of R**1,

Letx € 9x,,. Forevery &/-circuit C, the dehomogenized form fc(1, T, . ..

belongs to I, so that iny(fc(1, Ty, ..., T,)) is not a monomial.

Conversely, let x € R" = 9%, and let us prove that there exists a
circuit C such that iny(fc(1, Ty, ..., Ty)) is a monomial.

Let m = dim(P). To start with, we recall that the initial ideal in,(I")
admits the same Hilbert function as I. The subspace I"NK[Ty,..., T, h
has dimension n — m, hence the same property holds for in,(I") N
k[To,..., Tpli. We thus can find linear forms fi,..., fu—-m € "N
K[To, ..., Ty)1 such thatin,(f1), ..., iny(f,—m) are linearly independent.
The ideal in, (I") thus contains the ideal I(P,) of the projective space P,
of dimension m in P} which is defined by these linear forms iny(f;).
Since the homogeneous ideals I", in, (I") and I(P, ) have the same Hilbert
function, the inclusion I(P,) C in,(I") implies that in,(I") = I(P,), and
V(in,(I")) = P,. In particular, in,(I") is a homogeneous prime ideal.

Since x ¢ Jx,, this ideal in,(I") contains a monomial and, being
prime, it contains an indeterminate. By lemma 3.5.8, there exists f €
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I"NK][Ty, ..., T,]1 such thatin,( f)is anindeterminate, and we choose f
so that Card(S(f)) is minimal.

For simplicity of notation, we assume that in,(f) = To, so that 7¢(x) =
0. Replacing f by a multiple, we may write f = Ty + Z;lzl a;T;, hence
v(aj)+xj>0forallje{l,...,n}.

Let C be an o/-circuit such that C ¢ S(f) and normalize the form fc =
2jec bjTj so that 14.(0) = infj € C(v(bj) + x;) = 0.

Let j € C={0} be such that v(b;) + x; = 0 and let us set f’ = f —
a]-b]._lfc,' this is an element of ' NK[Ty, ..., T,]; such that S(f’) € S(f)—
{j}; moreover 7¢(x) = T¢(x) = 0, and in,(f") = p(1 - ajb]._lbo)T]- is a
multiple of an indeterminate, contradicting the minimality of Card(f).
Consequently, v(b;) + x; > 0 for all j € C={0}, hence in,(fc) = p(bo)To.

O

5.1.7. — It follows from the proof that for any x € R", the initial ideal
in(o ) (I") associated with the homogeneous ideal I" of P in Py defines
a linear subspace P, of PZ. One has x € Jx, if and only if Py is not
contained in one of the coordinate hyperplanes. In this case, P, defines
an hyperplane arrangement over the residue field k. We will call it the
reduction of the hyperplane arrangement & at x.

5.1.8. — At least when the valuation of K is trivial, one can give an
alternate, possibly more explicit, description of x_,. It involves another
notion from matroid theory.

We say thatasubsetlof {0, ..., n}isan o/-flat if there exists a (possibly
empty) projective subspace Q of P such that for i € {0,...,n}, the
conditions i € I and ¢;|g = 0 are equivalent. By definition, {0,...,n}
is a flat, corresponding to Q = P. The intersection of two flats is a flat,
given by the intersection of the corresponding subspaces. For every
subset J of {0,...,n}, there exists a smallest flat (J) containing J; it is
given by the projective subspace Q of P generated by the subspaces
V(pj), forj €].

A flag of o/-flats is a strictly increasing sequence F = (Fy, ..., Fs41) of
o -flats such that Fy = @ and F;.1 = {0, ..., n}.

Let F and F’ be two flags; one says that the flag F’ refines the flag F if
every flat of F appears in F.
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5.1.9. — Let (eg,...,e,) be the canonical basis of R"*!. With each
subset I of {0, ...,n}, we associate the vector e; = ;;e; of R"*1; we
alsolet1=(1,...,1) = e, ). Witheach flag F = (Fo,Fy,...,Fs, Fs11)
we associate the cone Cg = cone(eg,, . .., er,) + R1in R**!; its dimension
is s + 1 and its lineality space is R1.

Let F = (Fy,Fy,...,Fs41) be a flag of &/-flats. A point x € R"*!
belongs to the cone Cy if and only if forall r, 7" € {1,...,s + 1}, every
i € F, and every i’ € F,, the inequalities x; < xy and r < r’ are
equivalent; this means that x; takes a constant value ¢, on each F,—=F,_4,
forr € {1,...,s}, and that one has ¢; < - -- < ¢s41. The relative interior
of the cone Cr is described by the equalities x; = xy forr € {1,...,s+1},
i,i" € F, =F,_1, and the strict inequalities x; < xy forr € {1,...,s + 1},
i € F, and i’ ¢ F,; with the above notation, it corresponds to the strict
inequalities c1 < - -+ < Cg41.

Lemma (5.1.10). — Let F and F’ be two flags of o/-flats.

a) One has Cg C Cy is and only if the flag ¥’ refines the flag F, which means
that every flat of F appears in F'.

b) There exists a finest flag ¥ which is coarser both than F and ¥, and one
has Cg N Cp = Cpr.

Proof. — We start with a remark. Let x € R"*!. Define a sequence
(Io, ..., I;+1) by induction, letting Iy = @, and, if I, ..., I, are defined
and I, # {0,...,n}, L,+1 being the set of i € {0,...,n} =1, such that
x; is minimal; one has I,+1 = {0,...,n}. By construction, for every
m e {1,...,r+1}, x; takes a constant value c; fori € I,, =1,,_1, and one
has ¢; < c2 < -+ < cr41. Let F be a flag of /-flats; by definition of the
cone Cr, one has x € Cr if and only if there exists a strictly increasing
sequence (j1, ..., j;) such thatI,, = F; form € {1,...,r}.

a) Write F = (Fy,...,Fsy1)and F = (F, ..., F;,H). Let x be a point of
the relative interior of Cg; For r € {1, s + 1}, let ¢, be the common value
of x; fori € F, =F,_1,sothatc; < --- < ¢s41. One has x € Cg if and
only if there exists a strictly increasing sequence (ji, . . ., js+1) such that
F, = F}r for every r € {1, ...,s}. This means that the flag F’ refines F.

Assume that this holds and choose, for every m € {1,...,5s + 1}, an
element i, € F;.m - F; - Let f be the linear form on R"*1 defined

m—
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by f(x) = X, _1(xi,., — xi,). It is positive on Cg and one has Cr =
Cp NKer(f), so that Cg is a face of Cp.

b) Extracting from F the flats that appear in F’ defines a flag of flats F” =
(Fé’ s, B, +1) that is coarser both than F and F’; and it is the finest such
flag. One has Cp» C Cg N Cp. Conversely, let x € Cg N Cp and let us
prove that x € Cpr. Define (Iy, ..., I;) as in the preamble of the proof.
By assumption, there are integers ji, ..., j,in{1,...,s+1}and ji,...,
in{1,...,8" +1} such that I, = F;, = F;m forevery m € {1,...,r}. By
construction of F”, the set I, is thus a flat in the flag F”, for every m,
hence x € Cg». O

Theorem (5.1.11). — Assume that the valuation of K is trivial. The family of
cones Cg, where F runs over the set of flags of o -flats, is a fan T(/) in R"*1.
A point x € R" belongs to Ix,, if and only if the point x" = (0, x) belongs
to |X(1)|.

If the valuation of K is not trivial, I expect that the support of this fan
computes similarly the recession cone of the polyhedral set 9, but 1
can only prove one inclusion. A fuller description is still possible, but
it involves further matroid theory.

Proof. — Let x € R" and set xo = 0. for every r € {0,...,n}, let
F,={ie{0,...,n}; x; > x,}.

Assume that Fy, ..., F, are o/-flats. Letr,s € {0,...,n} be such that
F, ¢ F; and let i € F, = F;: this means that x; > x; > x,; then, for all
j € Fs, one has x; > xs > x; > x,, hence j € F;, so that F; C F,. This
proves that the set {Fy, ..., F,} is totally ordered. If x, = inf;c(, .1 (x:),
onehasF, = {0,...,n}. Letusindex the elements F, in increasing order:
there exists an integer r € {0,...,n — 1} and a family (i1, ..., i, ir+1)
of elements of {0,...,n} such thatF;, ¢ --- CF;, ¢ F,, ={0,...,n}
and {Fo,...,F,} ={F;,...,Fi,,}. ThenF =(92,F;,...,F,,)isaflag of
/-flats and x belongs to the cone Cr.

Now assume that x does notbelong to |2(¢/)|. By what precedes, there
exists an integer r € {0, ..., n} such thatF, isnota flat. Leti € (F,)=F,.
By definition of F,, one has x; < x, < x; for all j € F,. By definition
of (F;), there exists a family (a;)jer, in K such that ¢; = Xjcp, a;¢;.
Let then f = T; — X ep, a;7T); this is an homogeneous element of the
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homogeneous ideal I". Since the valuation of K is trivial, the initial
form in,(f) is equal to T;, hence x ¢ Ix,.

Conversely, let us prove that |[X(#)| € Jx,. Let x € |[Z(«)| and let
F = (Fo,F1,...,F41) be a flat of o/-flats such that x belongs to the
cone Cg.

Let C be an &/-circuit; write fc = > };cc a;T; the linear form associated
with the circuit C. Since C C F,,4, there exists a smallest integer s €
{0,...,r}besuchthat C Cc Fs,1. If s =0,thenC ¢ F; = @;if s > 1, then
s —1€{0,...,r} and the minimality of s implies that C ¢ F;.

Let C" = C=F;; one has C' # @; let us prove that Card(C’) > 2.
Otherwise, there exists j € C such that C' = {j}. Since }};ccaipi =0,
the linear form ¢ jisa linear combination of the forms ¢;, fori € CNFg;
since F; is a flat, this implies that j € F;, a contradiction that proves
Card(C’) > 2.

Let then j, k be distinct elements of C’. One has j, k € Fs11 = F,,
hence x; = xi, because x belongs to the cone Cg. Moreover, x; > x;
for all i € Fs. Since the valuation of K is trivial, this implies that T;, T;
belong to the support of in,(fc), so that iny(fc) is not a monomial.
Consequently, x € J..

By theorem 5.1.6, one has x € Jx,,. O

5.2. Matroids

Matroids were invented by ( ) to express the abstract
combinatorial properties of linear independence in vector spaces by
developing an axiomatic treatment of free resp. dependent families,
of rank, of flats, of generating families, etc. It has soon be observed
that they allow a large number of equivalent formalizations. In this
section, we present the definitions and the vocabulary of matroid theory,
referring the reader to a later appendix for some proofs. Our main
reference was ( , ).

Definition (5.2.1). — Let M be a finite set. A matroid structure on M is the
datum of a subset S of B(M) satisfying the following properties:

(I1) The empty set belongs to S,
(L) If A, B are subsets of M such that A C B and B € A\, then A € Ay,
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(I3) If A, B are elements of Ay such that Card(A) < Card(B), there exists
b € B= A such that AU {b} € Au.

Let M be a matroid given by a subset .1 of ‘(M) and let A be a subset
of M. One says that A is independent, or free, if it belongs to #\1, and that
it is dependent otherwise.

Example (5.2.2). — Let M be a matroid and let A be a subset of M.
The intersection of %\ with B(A) is a matroid structure on M. The
corresponding matroid is denoted by M | A.

A basis of M is a maximal free subset; a circuit of M is a minimal
dependent subset.

Since M is assumed to be finite, we observe that a subset is free if and
only if it is contained in a basis, and a subset is dependent if and only if
it contains a circuit.

A loop is an element i € M such that {i} is not free.

Lemma (5.2.3). — Let M be a matroid. Every free subset of M is contained in
a basis. All bases have the same cardinality.

Proof. — Let L be a free subset of M. Since M is finite, there exists
among all free subsets of M that contain L, one which has maximal
cardinality. It is a basis.

Let B, B’ be two bases of M. If Card(B) < Card(B’), there exists an
elementa € B'=Bsuch that BU{a} is free; this contradicts the hypothesis
that B is a maximal free subset. Consequently, Card(B) > Card(B’). By
symmetry, this implies that Card(B) = Card(B’). O

One defines the rank of a matroid M to be the cardinality of any of
its bases; it is denoted by rank(M). For any subset A of M, one defines
ranky(A) to be the rank of the matroid M | A.

Lemma (5.2.4). — Let M be a matroid and let A be a subset of M. Then A is
a basis of M if and only if Card(A) = ranky(A) = ranky(M); it is free if and
only if Card(A) = rankpm(A).

Proof. — One has ranky(A) < Card(A), by construction. If equality
holds, then A is a basis of M | A, hence A is free in M | A, so that
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A is free. Conversely, if A is free, then A is a basis of M | A and
Card(A) = ranky(A).

If A is a basis of M, then Card(A) = ranky(A) by what precedes, and
Card(A) = ranky(M), by the definition of the rank, hence the equality
Card(A) = ranky(A) = ranky(M).

Let us assume, conversely, that this equality holds. First of all, A is
free. Let Bbe a basis of M such that A € B. Then Card(A) = ranky(M) =
Card(B). Consequently, A = B and A is a basis of M. O

Example (5.2.5). — 1) Let K be a field and let V be a K-vector space.
Let (v;)iem be a finite family in V and let W be the vector subspace it
generates. The set .7 of all subsets A of M such that the family (v;);ca
is linearly independent defines a structure of matroid on M. For this
structure, a subset A is a basis if and only if (v;);ca is a basis of W.

The axiom (I;) holds because the empty family is linearly indepen-
dent, and the axiom (I,) follows from the fact that a subfamily of a
linearly family is linearly independent. To prove the axiom (I3), we
now by dimension theory that the subspace W spanned by (v;)ica
has dimension Card(A), while the subspace Wg spanned by (v;);cp has
dimension Card(B). If v, € Wy for all b € B, then Wg € W,, which
contradicts the inequality dim(Wg) = Card(B) > Card(A) = dim(Wa,).
Consequently, there exists b € B such that v, ¢ W and the family
(Vi)ieauqp) is linearly independent.

An element i € M is a loop if and only if v; = 0.

A basis is a subset I of M such that (v;);¢1 is a basis of the subspace
spanned by the family (v;)iem.

2) Let Kbe a field and let V be an affine space over K. Let (v;);em be a
finite family in V and let W be the affine subspace it generates. The set .7
of all subsets A of M such that the family (v;);ca is affinely independent
defines a structure of matroid on M. Its bases are the affine bases of the
affine subspace of V spanned by the points v;.

3) Let K be a field and let P be an affine space over K. Let (x;)iem
be a finite family in P and let Q be the projective linear subspace it
generates. The set .7 of all subsets A of M such that the family (x;);eca is
projectively independent defines a structure of matroid on M. Its bases
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are the projective frames of the projective subspace of P spanend by the
points x;.
Such matroids are called representable over K.

Proposition (5.2.6). — Let M be a matroid. The set v of all circuits of M
satisfies the following properties:

(C1) The empty set does not belong to G\,

(Co) If C, " are distinct elements of G\, then C ¢ C/;

(C3) IfC, C aredistinct elements of v and e € CNC’, thereexists D € Gm
such that D c (CUC’)={e}.

Conversely, if M is a finite set and € is a subset of B(M) satisfying the
properties (C1), (Cz), (Cs), there exists a unique structure of matroid on M of
which € is the set of circuits.

For the proof, see §A.1.1.

Example (5.2.7). — Let G be a finite graph. That is, G is given by finite
sets V (vertices) and A (arrows), by two maps s,t: A — V (source
and target), and by a fixed-point-free involution of V, a — 4, such that
s(a) = t(a) for every a € A. In this formalism, the arrows are oriented,
a is the opposite of the arrow a, and one defines an edge of G as a pair
[a] = {a,a} of opposite arrows. A path in G is a sequence of arrows
(e1,...,en) such that the target of e; is the origin of e;1 for 1 < i < n;
a path is a closed if the target of ¢, is the origin of e;; a closed path is
a circuit if e;;1 # ¢; for1 < i < n and e1 # ¢,, and if t(e;) # s(eq1) for
1<i<n.

Given a circuit (eq, ..., e,), consider the set {[e1],..., [e.]} of edges.
These sets constitute the circuits of a matroid structure on the set E of
edges of G. In this context, the axiom (C3) is the elimination rule for
two circuits that share a common edge: if (e1,...,ey,) and (f1,..., fu)
are circuits such that e; = fi, then (e, ..., en, ]Tn, ceey 172) is a closed path
in G, and one can build a circuit from it by eliminating consecutive
opposite arrows.

The independent sets of this matroid are the forests of the graph G.

Lemma (5.2.8). — Let M be a matroid, let L be a free subset of M and let
e € M be such that L U {e} is dependent.
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a) There exists a unique circuit C of M such that C c L U {e}.
b) One has e € C.
c) For every f € M, the set (L={f}) U {e} is free if and only if f € C.

Proof. — Since L U {e} is dependent, it contains a circuit C. Since L
is free, one has C ¢ L, so that e € C. Let C,C’ be distinct circuits
contained in L U {e}; they both contain e. Let then D be a circuit such
that D c (CUC’)={e}. One has D C L, a contradiction. This proves a)
and b).

Let us prove c). Let f e M. If f ¢ C, then (L—{f}) U {e} contains C,
hence is dependent. Conversely, if this subset is dependent, it contains
a circuit, say C’. One has C' ¢ LU {e}, hence C' = C, by a). Since f ¢ C,
this proves that f ¢ C. O

Proposition (5.2.9). — Let M be a matroid. The set B\ of all bases of M
satisfies the following properties:

(B1) The set 9B\ is not empty;
(B2) If B, B’ belong to B\ and x € B=B’, there exists y € B’ =B such that
(B={x}) U {y} belongs to Bum.

Conversely, if M is a finite set and R is a subset of B(M) satisfying the
properties (B1) and (B), there exists a unique structure of matroid on M of
which 9 is the set of bases.

For the proof, see §A.1.3

Proposition (5.2.10). — Let M be a matroid. The function ranky; : P(M) —
N satisfies the following properties:

(R1) For every subset A of M, one has 0 < ranky(A) < Card(A);

(Rp) If A,B are subsets of M such that A C B, one has ranky(A) <
ranky(B);

(R3) If A, B are subsets of M, one has (submodular inequality)

rankyi(A U B) + ranky(A N B) < ranky(A) + ranky(B).

Conwversely, if M is a finite set and r : (M) — N is a function satisfying
the properties (R1), (Rz), (Ra), there exists a unique structure of matroid on M
such that r(A) = ranky(A) for every subset A of M.

For the proof, see §A.1.4.
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Definition (5.2.11). — Let M be a matroid. For every subset A of M, let (A)
be the set of all x € M such that ranky(A U {x}) = rankm(A).

The set (A) is called subset of M generated by A, or the closure of A with
respect to the matroid structure of M. The loops of M are the elements
of (@).

One says that A generates M if one has (A) = M.

Lemma (5.2.12). — Let M be a matroid and let A be a subset of M. The set (A)
is the largest subset of M containing A such that ranky((A)) = rankpm(A).
In particuliar, A is generating if and only if ranky(A) = ranky(M).

Proof. — Let us assume that ranky(A) = ranky(M) and let us prove
that (A) = M. Then rankm(A U {x}) = rankm(M) for every x € M,
so that x € (A); this proves that A is generating. Conversely, let us
assume that (A) = M, and let us prove that ranky(A) = ranky(M). Let
B be a basis of M | A, and let B’ be a basis of M containing M. Let
x € B’=B. Then BU {x} is free. Since B is a basis of M | A, this implies
x ¢ A. Thenranky(AU{x}) > Card(BU{x}) = Card(B)+1 > rankp(A).
This contradicts the assumption that A is generating, and concludes the
proof of the second assertion.

The first assertion follows from this, applied to the matroids M | B,
for all subsets B of M that contain A. O

Lemma (5.2.13). — Let M be a matroid and let A be a subset of M. The
following properties are equivalent:

(1) The set A is a basis of M;

(ii) The set A is a minimal generating subset of M;
(iii) The set A is a maximal independent subset of M;
(iv) The set A is generating and independent.

Proof. — (i)=(iv). Let A be a basis of M. Then A is independent,
by definition, and rankym(A) = Card(A) = ranky(M). Moreover, for
every x € M, the inclusions A ¢ AU {x} ¢ M imply that rankp(A) <
rankp(AU{x}) < ranky(M); consequently, ranky(AU{x}) = ranky(A),
so that x € (A). This proves that A is generating.

(iv)=(iii). Let A be a generating and independent subset of M. Let
x € M= A. Then ranky(A U {x}) = ranky (M) = ranky(A), because A
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is generating. Moreover, Card(A) = ranky(A) so that rankpm(A U {x}) <
Card(A U {x}). This proves that A U {x} is dependent. Consequently,
A is a maximal independent subset.

The equivalence (iii)< (i) is the definition of a basis.

(iv)=(ii). Let A be a generating and independent subset of M, so that
one has Card(A) = rankm(A) = ranky(M). For any subset B of M such
that A € B, one thus has ranky(B) = ranky (M) = ranky(A) < Card(B),
hence B is not free. This proves that A is generating and maximal.

(i))=(v). Let A be a minimal generating subset of M and let B be a
basis of M | A. One has Card(B) = ranky(A). If A is not free, then
B # A, hence B is not generating, by assumption, which means that
there exists x € M such that ranky(BU {x}) # ranky(B). It then follows
from inequality (R3) that ranky(BU{x}) = rankm(B)+1 = Card(BU{x}),
so that BU {x} is free. In particular, x ¢ A.

rankyi(A) + ranky (B U {x}) < ranky(A U {x}) + ranky(B),

sothat Card(B)+1 < ranky(AU{x}). Sinceranky(AU{x}) < ranky(A)+
1, this implies that ranky(A U {x}) = rankm(A) + 1, contradicting the
hypothesis that A is generating. O

Proposition (5.2.14). — Let M be a matroid. The function A — (A) satisfies
the following properties:

(c1) For every subset A of M, one has A C (A),

(c2) For every subsets A, B of M such that A C B, one has (A) C (B);

(c3) For every subset A of M, one has ((A)) = (A),

(ca) If Ais a subset of M, a € Mand b € (AU {a}) —(A), then a €
(AU {b}).

Conversely, if M is a finite set and ¢ : ‘P(M) — B(M) is a function satisfying
the properties (c1), (c2), (c3) and (c4), there exists a unique structure of matroid
on M such that c(A) is the subset generated by A, for every subset A of M.

For the proof, see §A.1.6.

Definition (5.2.15). — Let M be a matroid. One says that a subset A of M is
a flat if one has A = (A).
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Proposition (5.2.16). — Let M be a matroid. The set F\ of flats in M satisfies
the following properties:

(F1) The set F\ is stable under intersection. (Equivalently, M € F\1, and
if A,B € S\, then ANB € Fp)

(F2) For every A € S such that A # M, the set of elements of F which
strictly contain A and are minimal for this property cover M.

Conversely, if M is a finite set and S is a subset of B(M) satisfying (F)
and (Fy), there exists a unique structure of matroid on M of which S is the
set of flats.

For the proof, see §A.1.7.

5.2.17. — Let us endow the set )\ of flats of M with the order given by
inclusion. If A, Bare flats, then ANB = inf(A, B) and (AUB) = sup(A, B).
In particular, # is a lattice.

5.2.18. — Let (X, <) be a finite nonempty ordered set.

A chain in X is a strictly increasing nonempty sequence (xo, . .., Xy)
in X; its floor is xy, its roof is x,, and its length is m. One says that a chain
(x0, ..., Xm) refines a chain (yo, ..., y,) if for every j € {0, ..., n}, there
exists i € {0,...,m} such that y; = x;; intuitively, the chain (xo, ..., x)
is obtained by inserting new elements.

For x € X, the height of x is the supremum htx(x) of all lengths of
chains with roof x, and its coheight cohtx(x) is the supremum of lengths
of chains with floor x.

The ordered set X is said to be catenary if htx(x) + cohtx(x) is in-
dependent of x. In this case, for every x,y € X such that x < y, all
maximal chains in X with floor x and roof y have length ht(y) — ht(x) =
coht(x) — coht(y).

Assume that X is a lattice. An atom in X is an element of height 1.

Lemma (5.2.19). — Let M be a matroid and let S\ be its lattice of flats.
For every flat A, one has ht(A) = rankm(A) and coht(A) = ranky(M) —
rankni(A). The atoms of F are the flats of the form {(a), for a € M = (D).

Proof. — If P is the minimal flat of M, then ht(P) = 0; the maximal flat
of M is M itself and coht(M) = 0. In a chain (Ay,...,A,) of flats, the
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ranks strictly increase; moreover this chain cannot be refined if and only
if rankn(A;) = ranky(Ag) + j for every j. Taking A, = M, this implies
that coht(A) = ranky (M) —ranky(A) for every flat A; taking Ag = P, we
get ht(A) = ranky(A). O

Proposition (5.2.20). — Let L be a finite lattice. Then L is isomorphic to the
lattice of flats of a matroid if and only if the following properties hold:
(L1) The lattice L is catenary;
(Lp) For every x,y € L, one has
ht(x) + ht(y) > ht(inf(x, y)) + ht(sup(x, y));

(L3) For every x € L, there exist an integer m € N and a sequence
(x1,...,xm) of atoms of L such that x = sup(x1,..., Xn).

For the proof, see §A.1.8.

5.3. Matroids and polytopes

The following theorem is due to ( ) (written in 1970) and
has been rediscovered by ( ).

5.3.1. The greedy algorithm. — Let E be a finite setand letw : E = R
be a function (“weight”). For every finite family A = (e;)icr in E, one
sets w(A) = ) ;egw(e;) — this is the weight of A.

Let .7 be a subset of B(E) which is nonempty and stable by inclusion
(these are properties (I1) and (I>) of independent families in matroids).
Asequence (e, . . ., ey) in E is w-admissible with respect to .7 if it satisfies
the following properties:

(A1) The set {eq,...,en} belongs to .7 and has cardinality m;
(Az) Foreveryn € {0,...,m — 1}, one has

w(eys1) = inf w(e).

(Az) Foreverye €e E={ey,..., ey}, onehas {e1,...,en, e} ¢ 7.

Lemma (5.3.2). — Let M be a set, let w : M — R be a function and let .7 be
a subset of ‘B(M) satisfying the properties (1;) and (I).
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a) There are admissible sequences.
b) Let (e1, ..., en) be an admissible sequence in M. One has w(eq1) < -+ <
w(ey,) and the set {e1, ..., en} is a maximal element of M.

Proof. — One constructs admissible sequences by induction: starting
from asequence (ey, . . ., e,,) satisfying properties (A1) and (A;), Let E’ be
the set of all elements e € E—{e1,...,e,} such that {e1,..., ey, e} € F
is nonempty, then one chooses for ¢,,+1 an element e of that set such
that w(e) is minimal.

Let then (e, ..., e,) be an admissible sequence. For every integer m
such that 1 < m < n, the set {e1,...,eu-1,em+1} belongs to .7; by
property (Ay), this implies that w(en+1) > w(en). Consequently, one
has w(ey) < -+ < w(ey).

By property (A3), the set {e1, ..., e,} is a maximal element of ¥. O

Theorem (5.3.3). — Let M be a matroid and let w : M — R be a function. For
every subset A of M, set w(A) = Y.,eaw(a). Let (e1,...,en) be a sequence
of distinct elements in M such that w(e1) < --- < w(e,) and {eq, ..., en} isa
basis of M.

Then (ey, ..., e,) is w-admissible with respect to the set A\ of independent
subsets of M if and only if 37 w(e;) < w(B) for every basis B of M.

In other words, up to ordering, the greedy algorithm constructing
admissible sequences produces exactly all bases B (enumerated by in-
creasing weights) such that w(B) is minimal. The terminology “greedy”
refers to the fact that at each step of the construction, one chooses an
element of minimal weight that can be added to the current sequence
while keeping it independent.

Proof. — Let B’ be a basis of M. Since {e1,...,e,} is a basis of M, one
has Card(B’) = n. Enumerate the elements of B’ as (f1, ..., f4) insuch a
way that w(f1) < --- < w(f,). To prove that w(B) < w(B’), it suffices to
prove that w(e,,) < w(fm) forevery m € {1,...,n}.

We argue by induction on m. Let m € {1, ..., n} be such that w(e;) <
w(f;) for all i < m and let us prove that w(e,) < w(fn). Let A =
{e1,...,em—1}and B = {f1, ..., fu}; these are free subsets of M. By the
property (I3) of independent subsets, there exists j € {1,...,m} such
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that f; ¢ Aand AU {f;} € #u. By definition of an admissible sequence,
one has w(f;) > w(ey,). Then, w(f,) > w(f;) > w(en), as was to be
shown. O

Remark (5.3.4). — Let M be a set, let .# be a subset of PB(M) satisfy-
ing (I;) and (Io). Assume that for every function w : E — R, the greedy
algorithm only produces maximal subsets A of .# which make w(A)
minimal. Then .# is the set of independent subsets of a matroid on M.

By assumption, the set .7 satisfies the axioms (I;) and (I,) of indepen-
dent subsets, so that we just have to prove axiom (I3). Let us argue by
contradiction, considering sets A, B € .# such that Card(A) < Card(B)
and such that AU {e} ¢ .7 for every e € B—A.

Let a and 8 be real numbers such that 0 < a < g < 1; let us define
a weight w on M by setting w(e) = -1 for e € AN B, w(e) = —a for
e € A=B, w(e) = —p for e € B— A and w(e) = 0 otherwise. By
definition, the greedy algorithm will first select the elements of A N B,
and then the elements of A — B; at that point, it has selected all of A,
because A € .#. Then, the algorithm will select elements of B = A, if
possible, but it can’t select any since we have assumed that AU {e} ¢ .7
for all e € B—A. So, it will select a subset A’ of M — (A U B) such that
A U A’ is a maximal element of .7; its weight is equal to

w(A) + w(A") = w(A) = —Card(A N B) — a Card(A — B).

On the other hand, let B’ be a subset of M — B such that BU B’ is a
maximal element of .7; its weight is

w(B) + w(B’) = —Card(A N B) — Card(B—A) — Card(A N B').
By the hypothesis about the outcome of the greedy algorithm, we obtain
Card(ANB’) +BCard(B—A) < a Card(A —B).
If @ and g are close to 0, this implies A N B’ = @. We then get
pCard(B—A) < a Card(A —B),

which is impossible if f is close to a, since the inequality Card(A) <
Card(B) implies that Card(B—A) > Card(A — A).
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Example (5.3.5). — Let M be the matroid associated with a finite
graph G; the underlying set of this matroid is the set of edges of G.
Let w: M — R be a weight function. The application of the greedy
algorithm to this matroid furnishes a maximal independent subset
of M, and one recovers Kruskal’s algorithm for obtaining a maximal
forest of G.

5.3.6. — Let M be a matroid and let w € RM. We associate with w
an increasing filtration (F;:M);cr of the matroid R, indexed by the real
numbers, where, for every t € R, M = {e € M; w, < t}.

The filtration is separated (one has FFM = @ when t — —oc0) and
exhaustive (one has F:M = M for t — +o0). Conversely, such a filtration
(F:M) is defined by a unique weight function w € RM: it is defined by
w, =tifand onlyife € FFM and e ¢ FM for s < t.

One says that the filtration (F:M) of the matroid M is flat if F;M is a
flat of M, for every t € R.

Corollary (5.3.7). — Let M be a matroid, let w € RM and let (FM) be the real
filtration of M associated with w. A basis B of M is minimal with respect to w
if and only if one has Card(B N F;M) = ranky(F:M) for every t € R.

Proof. — The bases which are produced by the greedy algorithm are
exactly those bases B for which, for every t € R, BN F;M is a maximal
independent subset of F;M, that is, a basis of F;M. O

5.3.8. — Let M be a matroid. Let (e;);em be the canonical basis of the
vector space RM. For every subset A of M, let ep = Y,;c4 €;. Following
( ), we associate with
the matroid M the polytope Py which is the convex hull of the vectors e,
for all bases B of M.
It is a subset of [0; 1]M. Moreover, for every x € Py, one has );cp X; =
rank(M).

Theorem (5.3.9). — a) Let M be a matroid. For every edge [x;y] of the
matroid polytope Py, there exist i,j € M such that y — x = e; — e;.
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b) Conversely, let M be a finite set, let P € [0;1]M be a nonempty polytope
and let r be an integer such that ) ;.\ xi = v for every x € P. We make the
following assumptions:

(i) The vertices of P are of the form ) ;ca ei, for some subset A of M.
(i) Foreveryedge|[x;y]ofP, thereexisti,j € Msuchthat y—x = ej—e;.

Then there exists a unique structure of a matroid on M such that P = Py.

Proof. — a) The vertices of P\ are vectors eg, where B is a basis of M,
hence edges of P\ are segments of the form [ep; ep’]. If Card(B N B’) =
Card(B) — 1, then let i,j € M be such that B—=B’ = {i} and B'=B =
{j}; one has epr — eg = ¢; — ¢;, as claimed. Let us now assume that
Card(B N B’) < Card(B) — 1 and let us prove that [ep; ep] is not an edge
of Pp. Let p = Card(B) — Card(B N B’). Let us construct sequences (ix)
in B—B’, and sequences (ji) in B’ =B as follows:

— We fix any element i1 € B=DB’;

— Assume that i1, ...,ix and ji,..., jxk-1 are defined. Applying
axiom (By) of bases, let jx € B’ =B be such that (B— {ix}) U {jx} is a
basis of M;

— Assume that iy, ..., ik and ji, ..., jk are defined. Applying ax-
iom (By) of bases, let i1 € B=DB’ be such that (B’ = {jx}) U {ix+1} is
a basis of M.

For every integer k > 1, we let By = (B={ix}) U {jx} and B = (B’ —
{jk}) U{ik+1}. These are bases of M; one has By # Band B # B’ for all k.
Since B and B’ differ by at least two elements, one also has By # B’ and
B} # B for all k. Also note that one has

€B, + BB;( =ept+ep —¢€j t j, — €jy + €., =€ptep —¢& +¢e,
while
€B;, T 813;( =eptep —€i,, te, —¢€ e, =egtepte,, —¢ej.

Since B =B’ is finite, there exists a smallest integer k such that either

— The elements ij,...,ix are pairwise distinct, the elements
ji, ..., k-1 are pairwise distinct, but jx € {j1,...,jk-1}; item The
elements iy, ..., i are pairwise distinct, the elements ji, ..., jx are
pairwise distinct, but iy € {i1, ..., ix}.
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In the first case, let m € {1, ..., k — 1} be such that jx = j,;; one has

k-1 k
Z(eBS+1 + eB;) = Z(eB t+ep + €, — 6]'5) = (k - m)(eB + eB/).
s=m s=m

Since k > m, this proves that the midpoint of the segment [ep; ep]
belongs to the convex hull of the vectors ec, for all bases C of M which
are distinct from B and B’. In particular, [ep; ep] is not an edge of Py.
In the second case, let m € {1, ..., k} such that i1 = i;;,. Then

k k
Z(BBS +ep) = Z(eg +ep +ej,,, —ei)=(k+1—m)(ep+ep).
S=m s=m

Since m < k, we obtain as precedently that [ep; ep’] is not an edge of Py.

b) Consider an integer r and a polytope P as in the statement. Let %
be the set of all subsets B of M such that eg = }};cge; is a vertex of P.
By property (i), P is the convex hull of the vectors eg, for B € %. Since
P is nonempty, 9 is nonempty as well. To prove that P is the matroid
polytope for a unique structure of matroid on M, it suffices to prove that
the echange property (B,) holds.

Let B, B’ be two elements of & and leta € B=B’. LetBg, ..., B,, be the
distinct elements of B such that the edges of P out of ep are [ep; ep ].], for
1 < j < m. By assumption, ep, — ep is of the form ey, — e,,, for a;, b; € M
and a; # b;. Rewriting this equality as ep, +e,, = ep +ep,, we deduce that
a; € B=B;, b; € B;=—Band B; U {a;} = BU {b;}. Since P is contained in
the cone with apex P and rays the vectors eg, — e, there exists a family
(c1,...,cm) of positive real numbers such that

m m
€pr —€B = Z Ci(eBi —eg) = Ci€p; — Z Ci€q;.
i=1

i=1 i=1
By assumption, a € B=DB’, so that the coefficient of ¢, on the left hand
side is equal to —1. No b; is equal to a, hence the coefficient of ¢, on
the right hand side is equal to — 3, _, ¢;. In particular, there exists
j€A{l,...,m}suchthata; =aand c; > 0. Let b = b;. By construction,
B; = (B={a}) U {b} is an element of %. It remains to prove that
b € B’ =B. We know that b ¢ B. For every i, one has a; € Band b ¢ B,

This is visually obvious, but it needs an explanation.
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hence a; # b; consequently, the coefficient of e, on the right hand side
is equal to ;. ¢; > ¢; > 0. Consequently, it is strictly positive in the
left hand side as well, which implies that b € B’. This establishes the
property (By) and concludes the proof that % is the set of bases for a
matroid structure on M. By construction, P = Py;. O

Proposition (5.3.10). — Let M be a matroid and let w : M — R be a function.
The set of all w-minimal bases of M is the set of bases of a matroid My, on M.
The associated polytope Py, s a face of the polytope Pyy.

Proof. — Let ¢y, be the minimal weight of a basis of M. By construction,
the polytope Py is contained in the half-space defined by the inequality
2iemXi = cy. Consequently, the intersection of Py with the hyper-
plane H,, with equation }’ x; = ¢, is a face of Py;, and is the convex hull
of the vectors ep, for all w-minimal bases of M. Being edges of Py, its
edges are of the form e, — e,, for a,b € M. By theorem 5.3.9, Py N H is
a matroid polytope, which means that the set of w-minimal bases of M
is the set of bases for some matroid structure M, on M. O

Remark (5.3.11). — One can also check directly the axiom (B;) of bases,
but this requires a strengthening of that axiom that we prove in propo-
sition A.1.5. Let B, B’ be w-minimal bases and leta € B=B’;letb € B’=—B
such that (B={a}) U {b} and (B’ = {b}) U {a} are bases of M. By min-
imality of w(B), one has w(b) > w(a); by minimality of w(B’), one has
w(a) > w(b). Consequently, w(a) = w(b) and these two constructed
bases are w-minimal.

Theorem (5.3.12) ( , ). — Let M be a matroid and let
w € R". The matroid My, has no loop if and only if the filtration (F:M) =
(Fo, ..., Fm+1) of M associated with w is flat.

5.4. Grassmann variety

5.4.1. — Letkbeafield, let V be a finite dimensional k-vector space and
let p be an integer such that 0 < p < dim(V). The Grassmann variety
of V, denoted by G,(V), is an algebraic variety over k that parameterizes
p-dimensional vector subspaces of V. In fact, functorial considerations
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lead to the “correct” definition in ( )
that parameterizes p-dimensional quotients of V. In the present context,
that just amounts to replace V by its dual V*.

In this section, we present the construction of this variety, a natu-
ral projective embedding (Pliicker coordinates) and state some results
about its tropicalization.

5.4.2. — Letn = dim(V) and let (eq, ..., e,;) be a basis of V.

A p-dimensional vector subspace W of V is the image of an injective
linear map from k? to V, itself represented by a matrix A € M, (k).
Saying that A has rank p means that there exists a minor of size p which
is invertible, in other words, a subset I C {1,...,n} of cardinality p
such that the determinant det(Aj) of the extracted matrix is nonzero.
We can multiply A on the right by the inverse of the matrix Aj, this
does not change the range of A and makes the extracted matrix A; =
I,. Conversely, if I is fixed and W is a p-dimensional vector subspace
of V, there exists exactly at most one matrix A such that A; = I, and
W = range(A), and this identifies the subset of all matrices A € M, ,,(k)
such that A; = I,. with a subset Uy of G,(V)(k). When I varies along
all cardinality-p subsets of {1,...,n}, the corresponding subsets U
cover G, (V)(k).

A matrix A such that A; = I, is determined by (n — p)p coefficients:
those a;; withi € {1,...,n}=Iand j € {1,...,p}. This endowes Uj
with the structure of an algebraic variety, namely the affine space A=)
of dimension (n — p)p.

Let us compare these structures. Let I and ] be subsets of {1,...,n}
such that Card(I) = Card(J) = p. Let W be a p-dimensional subspace
that belongs to Uj(k) N Uj(k), and let A € M, ,,(k) be a matrix such that
W = range(A). Then W is represented by the matrix ¢i(A) = A(A})™
in Uj(k), and by the matrix ¢j(A) = A(Aj)~! in Uj(k). One thus has
P1(A) = pj(A)pn(A), where ppi(A) = Aj(A)~L

Let Uy be the principal open subset of U; defined by the non-vanishing
of the polynomial representing det(Aj), and define Uy by symmetry. By
Cramer’s formulas, the matrix Aj(A;)~! is represented by a rational
function @y whose denominator is det(4j), so has no poles on Uy,
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The map A — A@q(A) induces an isomorphism of algebraic varieties
from Uy to Uyy; its inverse is given by A — Agj(A).

The cocycle relation holds: if K is a cardinality-p subset of {1, ...,n},
one has ¢|uxnuy © @yluynuk = Pilugnuk. Indeed, both maps are
given by right-multiplying a matrix A by the matrix representing
Ar(Ax)™L.

By glueing, we obtain an algebraic variety Gy, ,, over k which we call
the Grassmann variety of p-planes in k".

Proposition (5.4.3). — The Grassmann variety G, , is a proper, smooth and
connected k-variety of dimension (n — p)p.

Proof. — The smoothness and the dimension of G, follows from its
construction by glueing affine spaces of dimension (n — p)p. It is irre-
ducible because the Uy are irreducible, and the open subschemes Uy
are dense in them. To prove that it is proper, we check the valuative
criterion of properness.

Let K be a field and let R be a valuation ring of K, and let W €
Gp,2(K). We want to prove that the morphism f: Spec(K) — G, ,
representing W extends uniquely to a morphism ¢ : Spec(R) — Gy ;.

Let A € M, ,(K) be a matrix such that W = range(A). Among all
subset I of {1,...,n} such that Card(I) = p, let us choose one such
that the valuation of det(A;) is minimal. In particular, det(A;) # 0.
Multiplying A on the right by (Aj)~!, replaces A; by I,. For every
subset ] of {1, ...,n} such that Card(]) = p, this replaces Aj by Aj(A))~},
and one has

v(det(A](AI)_l)) = v(det(Ay)) — v(det(Ar))
>0 = o(l,) = v(det(Ar(AD) ™)),

so that the minimal property still holds.

I then claim that A € M;, ,(R). Leti € {1,;n}andj € {1,...,p}. If
i €I, then A;; € {0,1}. Otherwise, let us enumerate the elements of I
in increasing order, say iy, ...,i,, let us replace I by I' = I = {i;} U {i}
and let us replaces the j-th row of Aj by the i-th row of A. One has
det(Ayr) = a; ;, hence v(a; ;) > 0Oand a; ; € R.
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The matrix A then defines a morphism ¢ from Spec(R) to Uy, hence
to Gy, -

On the other hand, let ¢’: Spec(R) — G, , be a morphism extend-
ing f. Let ] be a cardinality-p subset of {1, ..., n} such that ¢’ maps the
closed point s of Spec(R) into Uy. Since R is a local ring, Spec(R) fac-
tors through Uj, and there exists a matrix A" € M, ,(R) describing ¢’.
Then A and A’ define the same subspace of K", hence there exists a
matrix P € My(K) such that A” = AP. One has A] = AP = P, hence
P € M,(R). Similarly, Ay = A}P‘1 = P!, hence P! € M,(R). Conse-
quently, P € GL,(R) and ¢’ factors through Uj(R). Since Uj is affine,
one has ¢ = ¢’, hence the uniqueness of an extension of f. Let ] be a
cardinality-p subset of {1,...,n} O

5.4.4. — It is important to understand the functoriality of this con-
struction. Let thus V’ a finite dimensional k-vector space, let m be its
dimension, let (e, ..., e;,) be abasis of V/,and let f : V — V’be a linear
map. Let us show how f gives rise to a rational map from G, ,, to Gy, .
Let (U}) be the family of Zariski open subschemes, isomorphic to affine
spaces AP,

Let P € M, (k) be the matrix of f. Let W be a p-dimensional vector
subspace of V. Then f(W) is a vector subspace of V’, but its dimen-
sion is p if and only if Ker(f) "W = 0. If a matrix A € M, (k)
represents W, namely, W = range(A), then f(W) = range(PA). The
matrix PA has rank p if and only there exists a cardinality-p subset ]
of {1,...,m} such that det((PA);) # 0. For every cardinality-p subset I
of {1,...,n}, the non-vanishing of this polynomial defines a principal
open subscheme U{ of Uy, and multiplication by P defines a morphism
of algebraic varieties ¢ : U{ — Uy

Theses morphisms glue and define a morphism ¢ : G}, , — Gy,m,
defined on the Zariski open subscheme G, , = U U{ of Gy . If f is
injective, thenG), ,, = Gy . Note that G}, , = @ if and only if rank(f) < p;
otherwise, G;,n is dense.

If f =idpr, then G, , = Gy » and ¢ = id.

Let g: V' — V”is alinear map to a finite dimensional k-vector space,
with corresponding rational morphism y: G, ,, — Gp4, where q =
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dim(V”). Then (p‘l(G;,,m) NG, , is an open subscheme of Gy, on which
one has y o ¢ is defined and corresponds to the morphism associated

togof.
In particular, if f is an isomorphism, then ¢ is an isomorphism.

5.4.5. — The Grassmann variety admits a natural embedding into a
projective space. For every matrix A € M, ,(k) of rank p, let ’(A)
be the family (det(A1)), where I ranges over the cardinality-p subsets
of {1,...,n}. This subset of B({1, ..., n}) has cardinality (Z); once it is

ordered, we view the point v'(A) as an element of k(z). The coordinates
of this point are called the Pliicker coordinates of range(A).

Let us show that these coordinates only depend on range(A) by mul-
tiplication by a common scalar. Since A has rank p, one of the mi-
nors of size p is invertible, hence 7'(A) # 0. If A’ is another matrix
representing the same subspace of k", namely, range(A’) = range(A),
there exists P € GL,(k) such that A” = AP. Then A; = A(P, hence
det(A]) = det(Ar) det(P) and 7v'(A") = 7'(A) det(P).

This proves that the image 7(A) of 7’(A) in P(Z)_l(k) only depends on
range(A), but not on the choice of A.

On a given affine chart Uy of G, ,, the map 7’ is obviously defined
by polynomials, and the J-th coordinate of 7’(A) is equal to 1 for every
matrix A in Uj. We thus have defined a morphism of algebraic varieties
m: Gy — P(;)_l, the Pliicker embedding, and the following proposition

justifies the term “embedding”.

Proposition (5.4.6). — The Pliicker morphism 7 : Gy, ,, — P(n)_1 is a closed
p
immersion.

Proof. — We have seen that on the affine open subscheme Uy of G, ,,
identified with the affine space A”~P)?, the Pliicker morphism is defined
by a morphism 7’ : AP — Ab) - {0}, such that the I-th coordinate
of ’(A) is equal to 1 for every A € U;. To prove the proposition, it
suffices to prove that 7’|y, defines a closed immersion from Uj to a closed

subscheme of A(P). In fact, as we already observed, one can recover a
matrix A € U from m(A). Let (i1,...,iy) be the unique increasing
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sequence such that I = {iy;...;i,}. One already has A;; = 6;x for
j,ke{l;...;p}. Then,ifi € {1,...,n}=land j € {1,...,p}, one has
a;; = det(Ay) = ©'(A)r, wherel’ = I={i;} U{i}, up to a sign, equal to the
signature of the permutation of (iy;. . .; (i1 00415 -5 ip) that reorders
this sequence. This furnishes a morphism ¢ : Ab) - Ur which is a
retraction of 7’|y;. This implies the claim. O

Example (5.4.7). — There are four trivial cases, two of them being even
more trivial.

a) If p = 0, then W = 0 is the only zero-dimensional subspace of k".
Since (’;) = 1, there is only one Pliicker coordinate, corresponding to
the empty sequence, and it is equal to 1. One has Gy, = Spec(k) = Py,
and the Pliicker morphism is an isomorphism.

b) If p = n, then W = V is the only n-dimensional subspace of k", so
that G, , = Spec(k). One has (Z) = 1 and the Pliicker morphism is an
isomorphism.

c) Assume that p = 1. A 1-dimensional subspace W of k" is a line,
generated by a vector v € k". Its Pliicker coordinates are the coordinates
of v. Then Gy, = P;_1 and the Pliicker morphism is an isomorphism.

d) Assume finally that p = n — 1. A (n — 1)-dimensional subspace W
of k" is a hyperplane, the kernel of a nonzero linear form f € V*. Write
f(x) = aix1 + -+ + ayx,. Assume for simplicity that a, = 1; then the
family (e; — ajen)i<n is a basis of Ker(f). Its corresponding Pliicker
coordinates are (-1)"*'aq, (=1)"a,, ..., —a,-1,1, so that we recover, up
to signs, the coefficients of f. In this case, G,-1,, is the dual projective
space of V and the Pliicker morphism is an isomorphism.

5.4.8. — From now on, we assume that2 < p < n—2. Then, the homo-
geneous ideal of the image of G, in P(,_p), has a classical description:
it is generated by a family of quadratic polynomials — the Grassmann
relations. The following presentation is inspired by the treatement of
( ); the paper of ( ) provides a more
elementary, “determinant-only”, approach.
We first revisit the Pliicker embedding in an intrinsic way. Recall that
we have chosen a basis (e, ..., e,) of V. It induces a basis (e;); of the
p-th exterior power APV indexed by the set of all strictly increasing
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sequences I = (i1;...;ip) in {1,...,n}, were e;f = e;; A -+ A ei,. 1If
W is a vector subspace of V of dimension p, with basis (vy,...,v)),
the Pliicker coordinates of W are just the coordinates of the p-vector
v1 A--- Av, € AP Vin the basis (er)r.

Recall that there exists a unique bilinear map A” V*x A’ V — k which
maps (1A Afp, V1A -Avp) todet(f;(v;)). Itidentifies each space to the
dual of the other. Let f € V*. Themap ¢ > @A f from AP V* to AP V*
admits an adjoint, \¥ V — AP~!V; theimage of & € A? V is denoted by
f 1 . Explicitly, one has (¢ A f, &) = (@, f 2 &) for every ¢ € \P7 V7,
every f € V' and every @ € APV. The element f . a is sometimes
called the interior product of f and «a. It can be described explicitly as
follows. Let (f1,..., fu) be the basis of V* dual to the basis (eq, ..., e,)
of V; for every sequence | = (ji;...;jm), let fj = f; A--- A fj,; when ]
runs along all strictly increasing sequences of length m, the elements f;
form a basis of A" V*. If ] and ]’ have the same support, then f; = e}’ f1,

where 8}, is the signature of the permutation that reorders J to J'.

Let] = (ji,...,jm), K = (ky,..., kg) and I = (i, ..., i) be strictly
increasing sequences with p = m + q. We set E%K =0ifI #JUK;
otherwise, let E%K be the signature of the permutation that maps to
sequence (], K) to I. Since

(fr fx aen) =i fxen) = E%K
for all such I, ], K, it follows that
fK 1€ = Z E%Ke].
J
Proposition (5.4.9). — Let « € \F V.

a) There exists a smallest vector subspace V, in 'V such that « € NP V.

b) Its orthogonal V in V* is the set of f € V* such that f 1 a = 0.

c) It is the image of the linear map from NP~* V* to V given by ¢ — ¢ 1 a.

d) Ifa =0, then V, = 0. Otherwise, the following properties are equivalent:
dim(V,) = p; one has x A a = 0 for every x € V,; one has (p s a) Aa =0
for every @ € NP1V

Proof. — a) Let W; and W3 be subspaces of minimal dimension of V
such that a belongs to A? W7 and to AP W,. Let W = Wy N W,. Choose
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a basis of V containing of a basis of W, then extended so as to contain
a basis of W1 and a basis of W5. In the basis of AV associated with
this basis, we see that AP W = AP W; N AP Wy, hence o« € A\ W. By
minimality of the dimensions of W1 and W5, we have W; = W = W.
This implies the first assertion.

b) Let W be a complementary subspace to V,,. This gives a direct sum
decomposition

p p p-1 p
/\V:/\VQ@W@)AV&@---@/\W.

For every f € V* such that V, c Ker(f) and every ¢ € AP™'V*, one
has (¢, f 1 a) = (¢ A f,a) = 0. In other words, V3 is contained in the
kernel L of the morphism f + f i a from V* to AP V.

Conversely, let f € V*besuchthat f|y, # 0. Chooseabasis (e1, . .., em)
of V, such that f(e1) = 1 and f(e;) = 0 for j > 2; extend this basis to a
basis (¢;)1<i<n of V, and let (f;) be the dual basis, so that f = f;. Write
a = Yjajer; one then has f b = Y yaifi aep = Z](—l)V_la(lJ)e]. There
existsJsuch thata j) # 0; otherwise, we would have o € NFler, ..., em),
which contradicts the minimality of V,,. Consequently, f 1 a # 0.

¢) Let us consider the linear mapping A : f > f aa from V*to AP V.
By b), its kernel is the orthogonal of V,. The transpose of A is a linear
mapping p from AP~ V* to V; by duality, V, = range(u). On the other
hand, for every f € V* and every ¢ € A"~'V*, one has the following
equalities

(f ul@)) ={p,A(f)) =(p, faa)={p A f,a)
= (DA a) = ()P NF, paa),

so that u(p) = (-1)P"1¢ 1 a. This proves c).

d) Let m = dim(V,). If m < p, then A"V, = 0, hence a = 0; in
this case, one has V, = 0 and m = 0. Assume that @ # 0, so that
m > p. Ifm = p, then APV, = 0, hence x A @ = 0 for every
x € V,. Finally assume that m > p. Then A"V, =~ k, the bilinear
form APV, x APV, - A"V, is nondegenerate and identifies each
space with the dual of the other. In particular, there exists y € A"7 V,
such that y Aa # 0. Since m > p, there exists x € V, such that x Aa # 0.
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This proves that dim(V,) = p if and only if x A @ = 0 for every x € V,.
The final characterization then follows from c). O

5.4.10. — Let a be a nonzero element of A’ V. When ¢ runs among
a basis of AP7' V*, the relations (¢ 4 a) A @ = 0 give a necessary and
sufficient condition for the equality dim(V,) = p. On the other hand,
this equality is equivalent to the existence of vectors x1, ..., x, € V such
that « = x1 A --- A x,. This, written in a basis of V, is then equivalent
to the fact that a belongs to the image of n’. In other words, we have
given a family of (,%,)(,”;) homogeneous quadratic equations for the
image of the Pliicker embedding.

Let (e1,...,e,) be abasis of V, let (f1, ..., fu) be the dual basis of V*.
If J is a stricly increasing sequence of length p —1in {1,...,n} and
ke{l,...,n}, let ¢ be 0 if k appears in ], and (-1) to the number of
elements in ] which are greater than k. Similarly, if K a stricly increasing
sequence of length p +1in {1,...,n} and k € {1,...,n}, let 8112 be 0
if k does not appear in K, and (-1) to the number of elements in K
which are strictly smaller than k. One thus has ex A ej = ¢ rejuqry and
€k N eK={k} = EIk<eK.

Writing a = >)jaje; and taking ¢ = fj, Let I = (i1,...,ip) and ] =
(j1, ..., jp-1) be strictly increasing sequences, one has

n

f] d4€1 = Z e}kek.

k=1
Write a = ) jarer; one then has

n

f] 14 = Z €1, kAJk €k,

k=1
where by Jk, we denote the strictly increasing sequence with image

J U {k}. Consequently,

n

(faa)Na= Z Z €], kAjkarex A er.

I k=1
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Fix a stricly increasing sequence K in {1,...,n} of length p + 1. The
coefficient of ex in the preceding expression is equal to

Z €],k 31k<“IU{k}”K—{k}°
keKn(CJ
For k e Kn (], set elkq = eLkeIk(.

These expressions are called the Grassmann relations Their vanishing,
when J and Krun among the strictly increasing sequences of lengths p—1
and p +1in {1,...,n}, define the image of the Pliicker embedding
n P(Z)_l.

Theorem (5.4.11). — Index the homogeneous polynomial ring of P(n)_1 by the
p
cardinality-p subsets of {1, ..., n}. Theideal of (G, ;) in Py 4 is generated
P

by the (,"1)(,%;) homogeneous quadratic polynomials

p+1
k
Z ex 1 Trugiy Tk={k},
keKn(CJ

where | and K run along the subsets of {1,...,n} with cardinality p — 1
and p + 1 respectively.

Proof. — Let I be the indicated ideal. The previous discussion shows
that for every field k, a pointa € P(n)_l(k) belongs to 11(Gy, ;) if and only
P

if it belongs to V(I)(k). This proves that the radical of I coincides with
the ideal of (G, ).

Proving that Iis actually a prime ideal is more difficult, and classically
requires representation theory of the linear group, or at least the intro-
duction of Young tableaux. I refer to ( , ,§8.4) or to ( ,

, §3.1) for a Grobner-oriented presentation. O

The Grassmann relation associated with a pair (J,K) is a sum of
Card(K N CJ) quadratic monomials. Since Card(K) = Card(]) + 2, one
has Card(K N CJ) > 2. If Card(K N CJ]) = 2, then this relation is trivial.

Example (5.4.12). — Let us take p = 2 and n = 4 — this is the first
nontrivial case of a Grassmann variety. In this case, there is, up to sign,

only one Grassmann relation, which in fact had been exhibited earlier
by Pliicker.
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Assume ] = {1}. If 1 is in K then, up to permutation, we may as-
sume that K = {1,2,3}, and the Pliicker relation for (J,K) vanishes.
Otherwise, K = {2, 3,4}, and the Pliicker relation for (J, K) writes

T12T34 — T13To4 + T14T23 = 0.

All other Grassmann relations are either zero, or equal to this one
up to sign. We also observe that it is irreducible, for example because
each indeterminate appears only once. This identifies the Grassmann
variety Gy 4 with a hypersurface in Ps.

Example (5.4.13). — The three-term Pliicker relation for G, 4 can be gen-
eralized in all Grassmann varieties G, , if p > 2.

Let S be a subset of {1,...,n} of cardinality p — 2; let a,b,c,d be
elements not in S, where ¢ < b < ¢ < d, and set] = SU {a} and
K=SuU{b,c,d}. Up to sign, the associated Grassmann relation is

TapsTeas — TacsTras + TaasTres = 0.

If p = 2, then these three-term Grassmann relations are the only (non
zero) ones. However, if n—1 > p > 2, then there are pairs (], K) of subsets
of [1, n]]] with Card(J) = p — 1, Card(K) = p + 1 and Card(K n (C]) > 3.

5.5. Tropicalizing the Grassmannian manifold

I can’t write this down in a correct order. . .

5.5.1. — Let n and p be integers such that 2 < p < n — 2. The Pliicker

embedding 7 maps G, ,, to P(n)_1 ; inside this projective space, we iden-
P

tify the open subscheme defined by the nonvanishing of the standard

homogeneous coordinates with the torus Gm(P)_l. Let G, , be the in-
verse image of this torus in G, ,. This is the open subscheme of the
Grassmann manifold G, that parameterizes p-spaces W of V = k"
such that W + (e;, ..., e;, ) = V for every strictly increasing sequence
(i1, - i)

Although the homogeneous ideal of (G, ;) in P(n)_l is not generated

p

by the three-term Grassmann relations, this holds after intersecting with
the torus.
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Proposition (5.5.2). — Assume that 2 < p < n — 2. The ideal of k[(T{")i]
generated by the homogeneous ideal of (G, ) is generated by the three-term
Grassmann relations.

Proof. — A Grassmann relation is associated with a pair (J, K) of subsets
of [1, n]], where Card(]) = p — 1 and Card(J) = p + 1; it has Card(K n CJ)
terms. We will show that those with more than 3 terms belon to the
ideal generated by the three-term Grassmann relations, provided the
indeterminates Ty are inverted.

To simplify notation, we write (I) = Ty for any subset I of [[1, n]]; also,
if k is an element, we write (Ik) for 1U {k}) and (I—=k) for (I —={k}).

Set A=KN(C],B=Jn(CKand S = KNJ. One has Card(K) =
p +1 = Card(A) + Card(S), Card(J) = p — 1 = Card(B) + Card(S), hence
Card(A) = Card(B) + 2 = p + 1 — Card(S).

For k € A, let g = (—1)Card((Lk[NA)(_1)Card([Lk[NB). the Grassmann
relation for (K, J) is then written

R =R(A,B) = Z ex(A = k)(BK).
keA

Let a = inf(A), a’ = sup(A) and b = sup(B). Let us modify K, ] by
removing a and adding b to A, so that A’ = AU{b}={a}; this replaces K
with K" = KU {b} = {a} and does not change J, nor S. The Grassmann
relation for (K’, J) is then written

R = R(A/,B) = Z ¢/ (Ab — ak)(Bk),
keA=a

where ¢/ is (—1)Card([LKINAY) (_1)Card([LK[OB) Note that it has one less term
than the relation R; by induction, one thus has,

(Ab = aa’)(Ba') = — Z ¢ & (Ab = ak)(Bk)

a<k<a’
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modulo the ideal generated by the three-term Grassmann relations.
Consequently, modulo this ideal, one has the following congruences:

(Ab=aa’)R = Z ex(A = k)(Bk)(Ab —aa’)

keA

= > ex(A=K)(BK)(Ab—aa’) + £4(A—a')(Ba')(Ab — aa’)
k<a’

= Z ex(A = k)(Bk)(Ab = aa’)
k<a’

— e(A=a') Z ¢ ¢! (Ab — ak)(BK)
a<k<a’
= ¢,(A =a)(Ba)(Ab =aa’) + Z (Bk)exCy,

a<k<a’

where we have set
Cr = (A=k)(Ab = aa’) — o i(Ab—ak)(A=a'),

and n = eke;c for any k € A. Observe that e;c = ¢ if b > k and 8;( = —&k
if b <k, sothatng = ¢xe; =1if b > k and -1 otherwise.

For a given index k, the term Cj can be rewritten (aa’T)(kbT) —
Naek(a’bT)(akT), withT = A={a, a’, k}. let us now write the three-term
relation associated with the pair (TU {a,a’, k}, TU {k}). There are three
terms (aa’T)(kbT), (a’bT)(akT) and (abT)(ka'T), and we will prove that
Ck is, up to a sign, equal to (abT)(a’kT). Note that a < k < a’, and there
are four possibilities for the position of b with respect to these:

— If a’ < b, then ny = ny = 1, the three-term relation is (akT)(a’bT) —
(aa’T)(kbT) + (abT)(ka’T), so that Cx = (abT)(ka'T);

- If k < b < a, then nx = 1, ny = =1, the three-term relation is
(akT)(a’bT) — (abT)(ka’T) + (aa’T)(kbT), and Cy = (abT)(ka'T);

—-Ifa < b < k, then nx = ny = -1, the three-term relation is
(abT)(a’kT) — (akT)(ba’T) + (aa’T)(kbT), and Cx = —(abT)(a’kT).

— Finally, if b < a, then nx = n,y = -1, the three-term relation is
(abT)(a’kT) — (akT)(ba’T) + (aa’T)(kbT), and Cx = —(abT)(a’kT).

In other words, Cy = Ox(abT)(ka’T), where Oy = 1ifk < b,and 6y = —1if
k > b. With the above notation, (abT) = (Ab=—a’k) and (a’kT) = (A=—a),
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so that

(Ab=aa’)R = (A=a)Ba)(Ab=aa’) + Z (Bk)exOx(Ab —a’k)(A —a)
a<k<a’

= (A—a) ) ex0u(BK)(Ab—a'k).

k<a’

Observe that €0 = ¢ if k < b, and —¢i if kK > b. Consequently, ¢,0f =
—(—1)Card((Ab=a)N[LKD)(_1)CardBALKD  We thus recognize the opposite
of the Grassmann relation for the pair (Ab — a’, B). This proves that
(Ab=aa")R belongs to the ideal generated by the three-term Grassmann
relations; since (Ab — aa’) is a monomial, the relation R also belongs to
that ideal, as was to be shown. O

5.5.3. — The affine space k" has an action of the group (k*)", acting
diagonally: (t1,...,ts) - (x1,...,%n) = (t1x1, ..., txXy). In the language
of schemes, this corresponds to an action of Gp," on A”".

This action gives rise to an action of Gp," on the Grassmann vari-
ety Gyn: for t € (k*)", a point w € G,,,(k) corresponding to a sub-
space W, the point ¢ - w is the subspace t - W of V. By definition of a
vector subspace, if t = (u,...,u) is an element of the diagonal torus,
then t - W = W, so that the diagonal torus G, acts trivially.

Let f: Gp" — Gm(z) be the morphism of tori given by f(t1,...,t,) =
(ITier )1, where I ranges over the () p-element subsets of [[1,n]. It

p
follows from the definition of the Pliicker coordinates that 7t(t - V) =

f(t) - (V). Letp: R" — R() be the corresponding linear map, given
by f(t1, ..., tn) = (Xjer Xir.

/

Proposition (5.5.4). — The tropical variety of G, , is a purely (n — p)p-

dimensional polyhedral subspace of RG) /R1. Its lineality space is (R")/R1;
it has dimension n — 1.

Example (5.5.5). — The case of the Grassmann variety Gy 4 is particu-
larly simple. Indeed (G, 4) is the hypersurface with equation T12Ta4 —
T13To4 + T14T23. The action of Gm4 on A° is given by (t1, to, t3, tg) -
(x12, ..., x34) = (t1tax12, . . ., t3tax34).
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This implies that the tropical variety of 71(Gy4) in R®/R1 admits
a lineality space containing the vectors (1,1,1,0,0,0), (1,0,0,1,1,0),
(0,1,0,1,0,1) and (0,0,1,0,1,1). (Their sumis2(1,...,1)=2-1.)

If we quotient R® by this 4-dimensional vector space, we obtain RZ.
This corresponds to consider the subspaces W = range(A) of V such
that only 2 Pliicker coordinates are different from 1. If we let (¢,1,1,1)
act, we can assume that x1» = 1; letting (1,1, 1, t) act, we also assume
that x34 = 1. We then let (t,¢71, 1, 1) act; this does not change x12 and x34
but multiplies x13 by t and x23 by t~1 in this sort, we reduce to the case
where x13 = 1. Finally, welet (t, ¢!, +71, ) act. This does not change x15,
x34, X13 but multiplies x23 by t=2. This allows to assume that xp3 = 1
(over an algebraically closed field). Then, only two coordinates remain,
x14 and x4, and one has f = 1 — T4 + T14. The tropicalization of f is a
tropical line.

It follows that the tropicalization of G} , is the union of 3 cones of
dimension 4.

5.5.6. — For p = 2and n > 4 arbitrary, the tropicalization of G, ,, has a
combinatorial description as the space of phylogenetic trees, which is the
kind of datum evolutionary biologists use to represent the evolution of
a species (a virus, say) along time. This model originates from a passage
of Charles Darwin’s book On the Origin of Species ( ):

The affinities of all the beings of the same class have sometimes
been represented by a great tree. I believe this simile largely
speaks the truth.

Figure 1 can be found on a notebook of Darwin dated 1837, it is the first
sketch of such a tree; figure 2 is the phylogenetic tree of the Sars-CoV2
(Severe Acute Respiratory Syndrome COronaVirus 2) that is presently
(Spring 2020) confining at home half of the humankind in all continents.

5.5.7. — Let n be an integer such that n > 1; the bouquet with n stems
is the quotient B, of {1, ..., n} X [0; 1] by the finest equivalence relation
for which all points (i, 0) are identified, for i € {1,...,n}. We write
[i,t] for the image of the point (i, t) € {1,...,n} X [0;1]. This bouquet
is endowed with the distance such that d([i, ¢],[j,s]) =t +sifi # j, and
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The handwritten text reads:

“I think case must be that one generation
should have as many living as now. To do
this and to have as many species in same
et oSt 3 genus (as is) requires extinction . Thus
S T ' s D .

between A + B the immense gap of
: relation. C + B the finest gradation. B+D
e fonms Lno” L33 ‘ rather greater distinction. Thus genera

Eriy. & A‘"‘/”'T Ll 1 would be formed. Bearing relation [to

ancient types with several extinct forms]”

Ficure 1. Evolutionary tree, Charles Darwin, 1837. (Picture taken from
Wikipedia, Tree of life).
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Ficure 2. This picture, taken from Forster 7 AL (2020), represent the
phylogenetic tree of 160 SARS-CoV2 genomes. The initial “bat” virus is
on the bottom right.
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d([i, t],[i,s]) = |t — s|. The point b = [i,0] is called the base-point of the
bouquet; the points [7, 1] are called its leaves.

Let x € B, and let V be a connected neighborhood of x in B,,. If x
is a leaf of B,, then V — {x} is connected; if x is the base of B,, then
V — {x} has exactly n connected components; otherwise, V= {b} has
exactly 2 connected components.

A compact metric spaceis called a metrized graph. if for every point p €
T, there exists an integer n > 1, a neighborhood V of p and an isometry
from V to a neighborhood of b in the bouquet B, that maps p to b. The
integer n is called the degree of the point p.

All but finitely many points of a metrized graph have degree 2. Points
of degree # 2 are called vertices; vertices of valency 1 are called leaves.

A bouquet with n stems is a metrized graph. If n =1 or n = 2, then it
has 2 leaves, and no other vertex. If n > 3, then it has n leaves and the
base is its other vertex, with degree n.

A metrized tree is a metrized graph G which is simply connected (in
particular, connected). Equivalently, for every two points p,q of G,
there exists a unique continuous map f: [0;d(p,q)] — G such that
d(p, f(t) =t and d(q, f(t)) = d(p,q) — t for every t € [0;d(p, q)]. This
map is called the geodesic linking p to g.

A metrized tree has at least two leaves.

The following lemma characterizes the restriction to the leaves of the
distance function of a metrized tree.

Lemma (5.5.8). — a) Let T be a metrized tree and let A be its set of leaves.
Forevery x,y,z,t € A, the supremum of the three real numbers

dix,y)+d(z,t), dx,z)+d(y,t), d(x,t)+d(y,z)

is attained at least twice (four-point condition).

b) Conversely, let A be a finite set of cardinality at least 2 and let 6 : AXA —
R be a distance satisfying the four-point condition. Then there exists a unique
metrized tree T of which A is the set of leaves such that the distance of T
coincides with the given distance on A.

Distances on a finite set A satisfying this property are called tree
distances.
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Proof. — a) Let x,y,z,t € A. The union of the geodesics link-
ing x,y,z,t is a subtree of T with set of leaves A. Let u be the point

Ficure 3. A representation of a metrized tree with four leaves x, y, z, t

closest to z on the geodesic [x; y]. This isolates the subtree of T with
leaves x, y, z as a kind of bouquet with u for its only vertex of degree 3.
Let then v be the point of T which is closest to t. There are three
possibilities.

— Either v € [u; z] (as on the picture); in this case,

dix,t)+d(y,z) =d(x,u)+du,v)+d(v,t)+d(y,u)+du,v) +d(v, z)
=d(x,z)+d(y,t),
and
dix,y)+d(z,t)=d(x,u)+du,y)+d(y,v)+d(v,t)
<d(x,t)+d(y,z).

— If v € [u; x], one exchanges the roles of x and z, hence d(z, t) +
d(y,x)=d(x,z)+d(y,t) > d(z,y) +d(x,t).

— Finally, if v € [u; y], then one exchanges the roles of y and z, so
thatd(x,t)+d(y,z) =d(y,z)+d(x,t) > d(x,z) + d(y, t).

b) We argue by induction on the cardinality of A. If A = {a, b}, then
we take for tree T a segment of length 6(a, b) with endpoints a and b. If
A ={a, b, c} has three elements, the construction is similar: the tree T
will be the union of three segments [u;a], [u;b], [u;c] with lengths
%((S(a, c) + o6(a,c) — 6(b,c)), %((S(b, a)+ 6(b,c) — 6(a,c)) and %(6(0, a) +
o(c,b) — 6(a,b)). We now assume that Card(A) > 4.

Let a,b, c be three points of A such that 6(a,c) + 6(b,c) — 6(a, b) is
maximal and let A’ = A = {a}. By induction, there exists a metrized

tree T” with leaves A’ that induces the given distance on A’. Set u =
%(6(a,b) + 6(a,c) — 6(b,c)) and v = %(6(51,19) + 6(b,c) — 6(a,c)). The
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direct analysis predicts the common point p of the geodesics [a;b],
[a; c] and [b; c]: it should be at distance u of a on [a; c], and at distance v
of b on [b;c]. Since d is a distance, one already has u,v > 0. Let
x € A’ ={b, c} be one of the remaining leaves. By the choice of 4, b, c,
one has 6(a,c)+6(b,c)—0(a,b) = 6(a,c)+06(x,c)—06(a,x) and 6(a, c) +
o(b,c)—0(a,b) > 6(x,c)+0(b,c)—05(x,b). Consequently, 6(b, ¢)+6(a, x)
and 6(a, c) + 6(x, b) are both greated than 6(x, c) + 6(a, b), so that the
hypothesis implies their equality:

O(b,c)+06(a,x)=0(a,c)+ 6(x,b) = d(x,c)+ d(a,b).

In particular,

O(a,c)—u=06(a,c)— %((S(a, b)+ 6(a,c) — 6(b, c))

:%ww¢g+am@—amm»>o

and

o(b,c)—v=0(b,c) - %(5(&1, b)+ 6(b,c) —06(a,c))

:%@w¢g+aao—5mm»>o.

Let us thus extend the tree T’ to a tree T by attaching a segment of
length u at the point p which is at distance v of b on [b; c], with other
endpoint 4.

It remains to check that this metrized tree satisfies the distance condi-
tions for two points (x, ). This is obviousis x = y = a and follows from
the choice of the tree T’ if neither x nor y is equal to a. Let us compute
d(a, x) for any x € A’. By construction, one has

d(a,c)=d(a,p)+d(p,c)=u+db,c)-db,p)) =u+06b,c)—v

- %(6(01, b) +o(a,c) = o(b,c)) + o(b,c)
—%®w10+&hd—6ww»
= 0(a, c).

Let then assume that x € A’ = {b,c}. The common point g to the
geodesics [b;c], [b; x] and [x;c] is at distance w = %(5(b,x) +0(b, c) -
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6(x, c)) of the point b. One has
Z(ZU - U) = (6(b/ x) + 6(b/ C) - 6(x/ C)) - (6(a/ b) + 6(b/ C) - 6(&, C))
=0(b,x)—0(x,c)—06(a,b) + 6(a,c)
>0,
so that p belongs to the geodesic [g; x]. This implies that

d(a,x)=d(a,p)+d(p,x)=u+(dDb,x)—db,p)) =u—-v+06(,x)

= %(5(01, b) +0(a,c) = o(b,c))

— %(6(&1, b)+ 6(b,c) —06(a,c))+ o(b, x)
=0(a,c)+06(b,x)—06(b, c)

= 0(a, x),
as was to be shown. O
5.5.9. — One says that a metrized tree T is equidistant if there exists a

point p € T such that the distances d(p, x) are equal, for all leaves x of T.

Corollary (5.5.10). — a) Let T be a metrized tree and let A be its set of
leaves. The restriction to A of the distance of T is ultrametric if and only if the
tree T is equidistant.

b) Let A be a finite set of cardinality > 2 and let 6 be a ultrametric distance
on A. There exists a unique metrized tree T with set of leaves A such that the
distance of T induces on A the given distance. In particular, T is equidistant.

Proof. — a) Let x,y,z be leaves of T and let a be the common point
to the three geodesics [x; v], [x; z], v, z].

Let p be such a point. Assume, by symmetry, that p € [a;z]. Then
d(x,y) =d(x,a)+d(y,a) < 2d(x, p). On the other hand, p € [x;z] and
p € |y;z] so that d(x,z) = d(x,p) + d(p,z) = 2d(x,p), and similarly,
d(y,z) = 2d(x,p). This proves that the restriction to A of the distance
of T is ultrametric.

Conversely, assume that this distance is ultrametric. By symmetry,
we may assume that d(a,x) = d(a,y) > d(a,z). Let then p be the
midpoint of the geodesic [x; z]; by the previous inequality, it is as well
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the midpoint of the geodesic [y; z], and it is equidistant of x, y, z. This
implies that the midpoints of all geodesics linking two leaves coincide,
and the tree is equidistant.

b) It suffices to prove that an ultrametric distance on A satisfies the
four-point condition. So let x,y,z,t be four elements of A. Up to
permutation, we may assume that d(x, y) is the smallest of the 6 mu-
tual distances, and that d(x, z) < d(x,t). By the ultrametric property,
one then has d(x,y) < d(z,x) = d(z,y) and d(x,y) < d(t,x) = d(t, y).
This already implies that d(x,z) + d(y, t) = d(x,t) + d(y, z). Moreover,
d(z,t) < sup(d(z, x),d(x,t)) = d(x, z); consequently, d(x,z) + d(y,t) >
d(z,t)+d(y,t) =d(z,t)+d(y, x). This establishes the four-point condi-
tion for the family (x, y, z, t). O

Theorem (5.5.11). — A point x = (x;;)i<j € RG) belongs to the tropical-
isation of G, , if and only if there exist a tree distance 6 on [[1,n] and a
sequence (t1, ..., t,) of real numbers such that 6(i, j) = —x;; +t; +t; for every
i,j € [1,n]] such thati < j.

Proof. — We write the pairs (7, j) of elements of [1, n] such thati < jin
lexographic order. In the proof, we identify a function d : [1,#n]*— R
which is symmetric and satisfies d(i,i) = O for all i with the element
(d(i, j))1<i<j<n Of RG).

Let x € R() be such that its image modulo R1 belongs to the tropi-
calization of G, . Adding a multiple of the vector 1, we may assume
that —x;; > 0 for all i, j, and that —x;; — xjx > —xy for all 7, j, k. Then,
(i, j) = —x;; defines a distance on [[1, n]].

By assumption, there exists a nonarchimedean valued field K, a 2-
dimensional subspace W of V = K" such that 7(n(W)) = x. Let (p;;)
be the family of Pliicker coordinates of W; one has v(p;;) = —x;;. Let
i,j, k, € €[1,n]]; the associated 3-term Grassmann relation writes

f =TTk = TixTje + TigTj = 0.

The condition that —x belongs to 5 is precisely equivalent to the four-

point condition of lemma 5.5.8. Consequently, 6 is a tree distance.
Conversely, let us consider a tree distance 6 on [[1;n]]. Let T be a

metrized tree with set of leaves A = [[1, n]] and distance d that induces
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the tree distance 6 on A. Let us choose a point p € T which is not a
leaf. Let R be a real number such that R > sup, d(p, x), the supremum
being over the set of leaves. We then attach to each leaf x a segment of
length R—d(p, x), so that the new tree is equidistant. The new distances
satisfy d’(x, y) = d(x,y) + R-d(p,x)) + R—-d(p, y)) for all leaves x, y.
Since the lineality space of the tropicalization of G, | contains the image
of the linear map R" — R() given by (t;) — (t; +t;)i<j, the point —d’
belongs to the tropicalization of G, , if and only if —d belongs to it. This
allows to assume that the restriction to A of the distance 6 is ultrametric.

Let R = SUP, yea 6(x,y). By the ultrametric property, the relation
“0(x,y) < R” in A is an equivalence relation on A. If x,y are not
equivalent, then 6(x, y) = R, so that there are at least two equivalence
classes. By induction, for each equivalence class B, there exists elements
(tx)xep in K such that v(t, —t,) = —d(x, y) for x, y € B. Since the residue
field of K is infinite and R is in the value group of K, there exists a
family (up)p of elements of K such that v(up) = v(up — up’) = R for every
equivalence classes B, B’. For an equivalence class B and x € B, we set
zx = ty+up. The plane W spanned by (1, ..., 1) and (zx)1<x<» admits the
family (z,,—zy )y, for Pliicker coordinates. If x and y are equivalent, then
v(zy — zx) = v(t, — ty) = —d(x, y). Otherwise, the equivalence classes B
of x and B’ of y are distinct, and v(z, —zy) = v(t, —tx +up—up) = Rsince
v(up—up) = Rand v(t,~t,) > R. This proves thatv(n(W)) = —(6(i, f))i<;
and concludes the proof of the theorem. O

5.5.12. — The above discussion also furnishes a description of the trop-
icalization of G,  as a union of some cones. For this, we analyse the
combinatorial of metrized trees with n leafs, numbered 1,...,n. To
such a tree T, we attach a combinatorial tree, whose vertices are the
vertices of T, and whose edges are those geodesics linking two vertices
which do not contain another vertex. Each leaf of T is the endpoint
of exactly one edge, those edges will be called terminal; the remaining
edges are called inner edges; let E’ be the set of inner edges, E” be the
set of terminal edges, and E = E’ UE"”. The only additional information
which is be needed to reconstruct the metrized tree T is the family of
lengths of its edges.
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The case of binary trees will be important below, it is the case where
every vertex of T has degree 1 or 2. For n = 2 or n = 3, there is only one
combinatorial tree with n leaves, and it is binary. However, for n = 4,
there are three binary such trees, the figure 4 only shows the one where
the geodesics [1;2] and [3; 4] are disjoint, and one non-binary tree.

1 3 1 3
1 :
3
le—e2 2 2 4 2 4
Ficure 4. Metrized binary tree with two, three and four leaves, and a
non-binary tree with four leaves.

5.5.13. — Let us fix a combinatorial tree T with n leaves {1,...,n}; let
V be the set of its vertices and let E be the set of its edges, E’ be the set
of inner edges and E” be the set of terminal edges. For any family of
real numbers x = (x.).cg, let us define a function dr: [[1, n]]2 — R as
follows: for a,b € [[1,n]], the geodesic [a;b] is a union of some edges,
and we let dt .(a, b) be the sum of the corresponding real numbers.

If x, > 0 for every edge e, then the family x induces a metric on the
realization of the combinatorial tree, and its restriction to the leaves
is given by drt . The corresponding metrized tree T is thus the one
associated with dr , by lemma 5.5.8. If one lets the length x, of an inner
edge e, the corresponding edge collapses in the initial graph, two inner
vertices being identified. In this way, we see that metrized trees with
n leaves appear as limits of metrized binary trees with n leaves.

Since n > 2, we identify E” with [[1,n]] — a terminal edge has only
one endpoint which is a leaf. Let then ¢ : R" — R() be the linear map
given by ¢(x;) = (x; + x;); let L be its image.

Let also ¢r: RE — R() be the map given by x +— (drtx(a,b))a<b.
It is linear and the image of the polyhedral convex cone RY Let Xt =
RE'XRF” ¢ REbe the set of vectors x such that x, > 0foralle € E’; this is
a polyhedral convex cone. Let Ct C R() be the image of the polyhedral
convex cone in RE consisting of all (x,) such that x, > 0 if ¢ € E’. For
e € E’, theimage v, of the vector 1, is as follows: if one deletes the edge e
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from T, this disconnects the tree T into two disjoint connected trees, and
leaves I,, I, respectively, so that I, and I}, are disjoint, nonempty, and
1,n)l=L VL. If x,y €I, or x,y € I, then dr1,(x, y) = 0; otherwise,
dr1,(x,y) = 1. These vectors v, have nonnegative coordinates, and one
of them is strictly positive. This proves that Cr = cone((v;).cr) is a
polyhedral convex cone of dimension Card(E’).

By theorem 5.5.11, the tropicalization v(G, , ) is equal to the union of
all cones Ct + L. One has dim(Crt + L) = n + Card(E’) = Card(E). It
is also sufficient to consider only the cones Crt for those combinatorial
trees which are binary.

5.5.14. — A combinatorial binary tree with n leaves is constructed by
induction, from a combinatorial tree with (n — 1) leaves by attaching
the terminal edge of the nth leaf to one of the edges. This adds one
vertex of degree 2 and one edge. By induction, we conclude that such
a combinatorial tree has n — 2 non-leaf vertices and 2n — 3 edges, n of
them being terminal. Still by induction, this analysis also shows that the
number of combinatorial binary trees with n leaves (up to isomorphism
preserving the numbering of the leaves) is equal to: 1-3...(2n —5).

Corollary (5.5.15). — The tropicalization of G;,  in RG) is the union of (1-
..(2n = 5)) polyhedral convex cones of dzmenszon (2n — 3) with lineality
space L, each of them generated by n — 3 linearly independent vectors modulo L.

5.6. Valuated matroids, tropical linear spaces

Definition (5.6.1). — Let M be a matroid on a set E and let 9B\ be its set of
bases. An absolute value p on M is function p : B — R, satisfying the
following properties:

(V1) If B, B’ belong to B\ and x € B=1B’, there exists y € B’ =B such that
(B={x})U{y}, and (B'={y}) U {x} are bases of M, and
p(B)p(B) < p(B={x}) U{yHp((B"={y}) U {x}).

There is a similar notion of valuation on a matroid, replacing the
group R} with a totally ordered abelian group I', and reversing the
inequality. We shall only be interested here in the case whereI' = R and
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freely pass from a valued matroid (M, p) to a valuated matroid (M, v)
by setting v = —log(p(B)) and p = e~®) for every basis B of M.

Example (5.6.2). — Let M be a matroid; set p(B) = 1 for every basis B
of M. Then p is an absolute value on M. Indeed, axiom (V) is then the
strong exchange property for bases, which is known to hold. We call it the
trivial absolute value on M.

Example (5.6.3). — Let K be a field endowed with a nonarchimedean
absolute value. Let E be a finite set and let (v, ).cg be a family of vectors
of K". Let M be the associated matroid on E: its independent subsets
are the subsets F of E such that (v,).cr is linearly independent. Let W
be the space generated by the v, let m be its dimension and let ¢ be a
basis of A" W. Let us also endow E with a total ordering.

Then to every subset F of E, one can attach the exterior product v
of the v,, for ¢ € F, written in increasing order. One has vg = 0 if
and only if F is dependent. If B is a basis of M, there exists a unique
element cg € K* such that vp = cge; set p(B) = |cp].

Let us show that p is an absolute value on the matroid M. Let B, B’ be
bases of M and let y € B’ = B. The identity

Z ExCBU{y}-{x} CB'~{y}U{x} CBU{y}={x} CB'={y}u{x} = 0
xeBU{y}

is a rewriting of the Grassmann relation, ¢, being a sign depending
on whether the number of elements of B— B’ U {y} is even or odd.
The term of this identity corresponding to x = vy is cgcp. The terms
corresponding to x € B'NBand x # y vanish, because B'={y} U {x} has
cardinality Card(B’) — 1. Consequently, the ultrametric property of K
implies that there exists x € B=B’ such that

|CBUy—{y}CB’—{y}U{x}| > |cgep|.

Consequently, p(B)p(B’) < p(BU y = {y})p(B’ = {y} U {x}), as claimed.

Let (a.) be a family in K*; for every e, set v, = a,0,. Then the family
(v)) defines the same matroid M. Let also ¢’ be another basis of A" W;
let ¢ € KX be such that ¢ = c¢’. These choices give rise to another
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valuation p’ on the matroid M, and one has

p'(B) = lclp(B) | [lal.
e€B

The end of the preceding example justifies the introduction of the
following definition, whose proof is an immediate verification.

Lemma (5.6.4). — Let M be a matroid on a finite set E and let p be an absolute
value on E. Let ¢ € R} and let (a,).cg be a family of strictly positive real
numbers. For every basis B, set p’(B) = cp(B) [1,ep a.. Then p’ is an absolute
value on E.

Such absolute values p’ are said to similar to p; if, moreover, a, = 1
for all e, then one says that p and p’ are equivalent. Equivalence and
similarity of valuations are equivalence relations.

Definition (5.6.5). — Let M be a finite matroid. The Dressian of M is the
subspace Dryp of R#M consisting of families (v(B))pegy, for all valuations p
on M.

Proposition (5.6.6). — Let M be a finite matroid, let p = rank(M) and let n =
Card(%Bw). The Dressian of a finite matroid M is the support of a fan in R#M
(dimension ?). Its lineality space contains the image of the (not necessarily
injective) linear map f : RM — R*M given by (x¢) > (X ,cp Xe)Be By

Proof. — Let B, B’ be bases of M and let x € B—=DB’; for every y € B=DB’
such that B—{x} U {y} and B’ = {y} U {x} are bases, let C%/B,,x be the

half-space of R® defined by the inequality

UB +UB 2 Up—{x}u{y} T UB~{y}U{x}:

Otherwise, set C% g, = 9. By definition, the Dressian of M is the subset

D= () () U e

B,B’'e %\ xeB-B’ yeB’-B

It is thus a polyhedral subspace of R#M. Since it is also a cone, it is the
support of a fan.

Moreover, if f: RM — R#M is the linear map (a;)eem — (Xocp de)B,
then for every x € R®, one has x € Dry if and only if f(a) + x € Dry;.
In particular, the lineality space of Dry; contains the image of f.
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The rest, I don't know. . . O

5.6.7. — Let Gpm C G, be the closed subscheme that parameterizes
p-dimensional subspaces W of k" such that the associated hyperplane
arrangement is of type M. Its ideal Ins under the Pliicker embedding is
obtained by adding to the ideal I of G, , the indeterminates Tg, where
B is a p-element subset of M which is not a basis of M.

Let G|, € Gm be the open subscheme obtained by imposing the non-
vanishing of the indeterminates Ty, when B is a basis of M. Taking
valuations, the restriction of the Pliicker embedding w: Gy — P(Z)_l

induces a continuous map (G},)™ — R?/R1, W  (v(pg(W))). Its
image is contained in the Dressian tropical variety of M.

On the other hand, we have seen that the ideal of the linear space W
in k" was generated the linear forms associated with the circuits of the
matroid M, and that these linear forms even constituted a tropical basis
of W. Let (1tg(W))p be a choice of Pliicker coordinates. Let B be a basis
of M and let 4 € M = B; let C be the unique circuit of M such that
C c BU {a}. The linear form associated with C can we written

fc = Z TBU{a}{x} (W) Tk
xeBU{a}

(up to signs). Moreover, every circuit of M is obtained in this way. This
justifies the following definition.

Definition (5.6.8). — Let (M, v) be a matroid of rank d endowed with a valua-
tion. For every subset K of M such that ranky(K) = d and Card(K) = d + 1,
let Tx be the tropical polynomial on RM defined by

w(x) = inf  (0(K={k})+xp).
K—{k?e%M

The tropical linear space defined by (M, v) is the intersection of the corre-
sponding tropical hypersurfaces. It is denoted by L(M, v).

Explicitly, this means that a point x € RM belongs to the tropical for
every such subset K, the set of k € K such that tx(x) = v(K={k}) + x
has cardinality at least 2.
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In the case (M, v) is the valuated matroid associated with a linear
subspace W of K", where K is an ultrametric valued field, the tropical
linear space (M, v) coincides with the tropicalization of W N Gp,".

Lemma (5.6.9). — Let (M, v) be a valuated matroid and let x € RM. The
bases B of M such that v(B) — }.,cp X, is minimal are the bases of a matroid
on M.

This matroid will be denoted by (M, v),.

Proof. — For every basis B of M, set v,(B) = v(B)— 2.5 X, and let 8’ be
the set of bases of M that minimize v,. We need prove that this set %’
satisfies the axioms of bases of a matroid. It is nonempty, because By
is not empty. Let then B, B’ € %’ and let b € B’ = B. By the axiom (V1)
of valuated matroids, there exists a € B—=B’ such that B—={a} U {b} and
B—{b} U {a} are bases of M and such that

v(B) +v(B') > v(B={a} U{b}) +v(B={b} U {a}).
Adding — > ,cp X¢ — 2.cep Xe ON both sides, we get
vx(B) + vx(B) > vx(B={a} U{b}) + v:(B—{b} U {a}).

Since v,(B) and v,(B’) are minimal, this implies that the preceding
inequality is an equality and that both B—{a} U {b} and B—{b} U {a}
belong to %’. This establishes the exchange property (B.) for the bases
of a matroid, hence the lemma. O

Proposition (5.6.10). — Let (M, v) be a valuated matroid and let x € RM.
Then x belongs to the tropical linear space L(M, v) if and only if the ma-
troid (M, v) has no loop.

A loop of a matroid is an element e such that {e} is dependent; equiv-
alently, it is a circuit of cardinality 1.

Proof. — Assume that x € L(M, v) and let C be a circuit of (M, v),. Let
a € C; then C = {a} is an independent subset of (M, v),, so that there
exists a basis B of (M, v), such that C = {a} C B. In particular, B is
a basis of M and C C B U {a}; more precisely, C is the unique circuit
which is contained in BU {a}. By assumption, x belongs to the tropical
hypersurface defined by the tropical polynomial 7p(,}. By the choice
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of B, one has Tpy(,)(x) = v(B) + x,; let then b € Bsuch that BU {a}—={b}
is a basis of M and 1py(,)(x) = v(BU {a} = {b}) + x. In particular,

vx(BU{a}={b}) = v(B) + x, — xp = vx(B),

so that BU {a} — {b} is a basis of the matroid (M, v),. Since C is
dependent, one has C ¢ BU {a}—={b}, since C c BU {a}, this shows that
b € C. In particular, C contains the two distinct elements a, b, hence
Card(C) > 2 and (M, v), has no loop.

Conversely, assume that x ¢ L(M, v). By the definition of L(M, v),
there exists a subset K of M such that ranky(K) = p = Card(K) — 1
such that x does not belong to the tropical hypersurface defined by the
tropical polynomial k. There exists then a € K such that K—{a} is a
basis of M and such that v(K = {k}) + xx > v(K={a}) + x, for every
k € K such that K= {k} is a basis of M. Let us show that a is a loop
of (M, v),. Otherwise, there would exist a basis B of (M, v), such that
a € B. Let us apply the exchange property for the two bases K — {a}
and B, and the element a of B. There exists k € B such that K—{k} and
B—{a} U {k} are bases of M and such that

v(K={a})+v(B) > v(K={k}) +v(B={a} U {k}).
Adding - ’,cp x5 on both sides, we get
v(K={a}) +0x(B) > v(K={k}) + vx(B—={a} U {k}) — x4 + xx.

Since v, (B) is minimal, this implies v(K={a})+x, > v(K={k} + x; and
contradicts the definition of a. Consequently, a is a loop of (M, v),. O

Theorem (5.6.11). — Let (M, v) be a valuated matroid.

a) The associated tropical linear space L(M, v) is a polyhedral subspace
of RM of rank ranky(M).

b) Its recession fan is equal to L(M), where M is endowed with the trivial
valuation. Its lineality space contains the vector 1.

c) For every x € L(M, v), one has Star,(L(M, v)) = L((M, v)), where the
matroid (M, v)y is endowed with the trivial valuation.

Proof. — As an intersection of finitely many tropical hypersurfaces,
L(M, v) is a polyhedral subspace of RM. For every subset K of %y such
that ranky(K) = ranky(M) = Card(K) — 1, every x € RM and every
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t € R, one has tx(x +t1) = tx(x) +¢; this implies that the lineality space
of L(M, v) contains the line R1.

Let x € L(M, v) and let y € RM. For every positive real number ¢ and
every basis B of M, one has

Orrey(B) = 0(B) = D (xj + ey)) = 0:x(B) — £ Dy
j€B j€B

Let ¢ be the minimum value of v,(B), when B runs over all bases of M,
and let « > 0 be such that v,(B) > ¢ + a if v,(B) # c. Assume that
0<e<a/2 ||y|| If v,(B) # ¢, then vy,¢y(B) > ¢ + %a; on the other
hand, if v,(B) = ¢, then v,y (B) < c—¢ X j € By; <c+ %a. This proves
that B is a basis of (M, v)x+¢y if and only if B is a basis of (M, v)y)y,
where (M, v), is viewed as a trivially valued matroid. By definition of
the link, one has y € Stary(L(M, v)) if and only if x + ey € L(M, v) for all
small enough real numbers ¢. This is equivalent to the fact that matroid
L(M, v)x1¢y has no look, hence to the fact that the matroid (L(M, v)y),
has no loop, hence to the fact that y € L((M, v)y).

Since (M, v), is a trivially valued matroid, the tropical linear space
L((M, v)y) is its Bergman fan; it is purely of dimension ranky(M).

The computation of the recession fan is supposed to be analogous but I dont’t
understand it. O






CHAPTER 6

TROPICAL INTERSECTIONS

6.1. Minkowski weights

All polyhedra are implicitly assumed to be rational.

6.1.1. — Let L = Z" be a free finitely generated Z-module and let
V = LR = R" be the associated R-vector space.

Let p be aninteger such that0 < p < n. We define as follows the group
F, (V) of p-dimensional weighted polyhedral subspaces of V: it is generated
by closed polyhedra of dimension < p in V with the following relations:

(i) [P] = 0 for every polyhedron P such that dim(P) < p;

(i) [P]+[PNH] =[PNV,]+[PNV_]whenever P is a p-dimensional
polyhedron in V and V., V_ are half-spaces such that V, N V_is a
hyperplane Hand V=V, U V_.

Note that this second relation is trivial when P € H; on the other hand,
if P ¢ H, then dim(P N H) < dim(P) < p, so that the first relation
implies [P N H] = 0 and that second one relation can be rewritten as
[P]=[PNV ]+ [PNV_].!

The submonoid of F,(V) generated by the classes [P] of polyhedral
subspaces is denoted by F; (V). Its elements are said to be effective.

The group Fy(V) identifies with ZY), the free abelian group on V. We
denote by deg: Fo(V) — Z the unique morphism of groups such that
deg([x]) = 1 for every x € V.

tAjouter un dessin avec P,H, V,, V_.
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6.1.2. — As for any group defined by generators and relations, one
defines a morphism A from F,(V) to a given abelian group A by pre-
scribing A(P) for every polyhedron P of V such that dim(V) < p such
that A(P) = 0 if dim(P) < pand A(P) + A(PNH) = A(PNV,)+A(PN V)
for every hyperplane H of V dividing V into two closed half-spaces V.,
and V_.

The simplest example of such a morphism is given by the Lebesgue
measure tw on a subspace W of V such that dim(W) = p. Let indeed C
be a compact polyhedron of W; for every polyhedron P of V such that
dim(P) < p, set Ac(P) = uw(C N P). If dim(P) < p, then dim(CNP) < p
hence Ac(P) = 0; on the other hand, if H is a hyperplane of V dividing V
into two closed half-spaces V., and V_, then the additivity of measure
implies that Ac(P)+Ac(PNH) = Ac(PNV,)+Ac(PNV_). Consequently,
there exists a unique morphism of abelian groups Ac : F,(V) — R such
that Ac([P]) = pw(P N C) for every closed polyhedron P of V such that
dim(P) < p.

Observe that Ac(S) > 0 for every effective class S € Fj (V).

6.1.3. — Every closed polyhedral subspace P of V such that dim(P) < p
has a class [P] in F,(V): it is the sum of all polyhedra of any polyhedral
decomposition of V. This class is effective and vanishes if and only if
dim(P) < p.

For every element S of F,(V), there exists a polyhedral decomposi-
tion € of V and a family (wc)cew,, where ), is the set of all polyhedra
C € € such that dim(C) = p, such that

S= Z wc[Cl.

Ce®,

One then says that € is adapted to S.

Let K be a convex compact polyhedron of dimension p contained
in a polyhedron C € %,; then one has Ax(S) = wcAk(C N K). This
shows that the family (wc) is uniquely determined by S and the given
polyhedral decomposition. Moreover, S is effective if and only wc > 0
for every C € €. The element wc is called the weight of Cin S.

More generally, if S = ZC,G% w,[C’] is another class S" € Fy(V)
adapted to a polyhedral decomposition €”’, then the equality S = &
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is equivalent to the equalities wc = w, for every pair of polyhedra
(C,C') € €, X &), such that dim(C N C’) = p.

The union of all polyhedra C € & such that wc # 0 is called the
support of S, and is denoted by |S|. It is a polyhedral subspace of V, and
is everywhere of dimension p.

Onehas |S+5'| € |S|U|S|" and [mS| = |S| for every non-zero integer m.

Let A be an abelian group. A similar definition allows to define the
group F,(V; A) of polyhedra with coefficients in A.

6.1.4. — Let us recast the balancing condition in this context. Let S €
F,(V) be a weighted polyhedral subspace of dimension < p.

Let € be a polyhedral decomposition of V which is adapted to S, and
letS = ZCE‘@, wcl[C].

Let D € € be a polyhedron of dimension p — 1. Let ép be the set of
all polyhedra C € & of which D is a face and such dim(C) = p.

For every C € &, let V¢ be the lineality space of (C); since the polyhe-
dron Cisrational, the intersection Lc = VcNLis a free finitely generated
submodule of L of rank dim(C). For every C € ép, there exists a vector
vector vc € Lc N C which generates the quotient abelian group Lc/Lp;
such a vector is unique modulo Lp. We say that S satisfies the balancing
condition along D if one has

We say that S is balanced (in dimension p) if it satisfies the balancing
condition along all (p — 1)-dimensional polyhedra of €.

This condition is independent of the choice of the polyhedral decom-
position which is adapted to S.

If S,S € Fy(V) are balanced weighted polyhedral subspace, then so
are S+ S’ and mS, for every m € Z.

6.1.5. — LetS € F,(V) and x € V. One says that S is a fan with apex x
if there exists a polyhedral decomposition of V adapted to S of which
every polyhedron is a cone with apex x.

Let S € F,(V) let € be a polyhedral decomposition of V which is
adapted to S; write S = Y wc[C]. Let x € V and let €, be the set of
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polyhedra in € which contain x; their union is a neighborhood of x
in V. For every C € &y, let A,(C) = R, (C — x) be the cone with apex x
generated by C; the set of all A,(C), for C € €y is a fan of V. Then
Ax(S) = Ycew, wclAx(C)] is a fan with apex x.

Moreover, S satisfies the balancing condition along a polyhedron D €
@ if and only if A,(S) satisfies the balancing condition along A,(D). In
particular, if S is balanced, then so is A,(S).

Definition (6.1.6). — A balanced p-dimensional weighted polyhedral subspace
is called a p-dimensional Minkowski weight, or a p-dimensional tropical
cycle.

They form a subgroup MW, (V) of F, (V).

2

Example (6.1.7). — Let K be a nonarchimedean valued field, let X be
a subvariety of Gy and let p = dim(X). The tropicalization Ik of X
is a polyhedral subspace of R" of dimension p. There exists a poly-
hedral decomposition € of R" such that the set €x of all polyhedra
in € that meet Jx is a polyhedral decomposition of x. For C € @x
with dim(C) = p, we have defined a multiplicity multg (C); Then
S = Y cew, multg (C)[C] is a weighted polyhedral subspace of V of di-
mension p with support Jx. It satisfies the balancing condition, hence
defines a Minkowski weight in MW,(R"). By abuse of language, this
Minkowski weight is still denoted by 9.

Example (6.1.8). — The Bergman fan X(M) of a matroid, more generally,
the tropical linear space associated with a valuated matroid, is the
support of a Minkowski weight (all weights are equal to 1).

Example (6.1.9). — Let n = dim(V); the class [V] € F, (V) is balanced.
The morphism Z — MW, (V) givenby a +— a[V] is injective; let us show
that it is an isomorphism

Let S € MW, (V) and let € be polyhedral decomposition of V which
is adapted to S; write S = },cwc[C]. Let D € € be a polyhedron of
dimension n—1. There are exactly two polyhedra C, C’ € € containing D

2Define F,(V; A) and MW(V; A) for any abelian group A?
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such that dim(C) = dim(C’) = n: the affine space Vp generated by D is
a hyperplane that delimits V in two half-spaces, one containing C, the
other C’. The vectors vc and v that appear in the formulation of the
balancing condition can then be chosen opposite, hence wc = wc.

Let then C,C’ be arbitrary polyhedra of dimension n in €. There
exists a sequence (Cy,...,Cy) of polyhedra in € such that Cy = C,
C = C/, and such that for each k € {1,...,m}, Cx_1 and Cj share a
face of dimension n — 1; By what precedes, one then has wc, , = wc,.
Consequently, w¢c = wc, = we, = -+ = wc, = wc. Let a be this
common value.

Finally, one has S = >\ a[C] = a[V].

Remark (6.1.10). — One can amplify the previous example for
Minkowski weights of arbitrary dimension. Let indeed S € F,(V)
be a weighted polyhedral subspace. The support of S, |S|, is a poly-
hedral subspace, and the weight of S can be viewed as a function
from |S| to Z which is defined and locally constant outside of a (p — 1)-
dimensional polyhedral subspace of |S|, the union of the polyhedra of
dimension < p contained in [S| in a polyhedral decomposition of V
which is adapted to S.

Let P be a polyhedron of dimension p which is contained in |S| and
such that |S| is a submanifold at every point of P. In other words, P is
open in |S|.

If S is balanced, then its weight is constant on P.

Example (6.1.11). — Let L, L’ be free finitely generated abelian groups,
let V.= Lg and V' = L}. There exists a unique bilinear map

Fy(V) X By (V') = Fpyg(V X V')

such that ([C], [C']) — [C x C'] for every p-dimensional polyhedron C
in V and every g-dimensional polyhedron C"in V’. If S € F,(V) and
S" € Fy(V’) are weighted polyhedral subspaces, the image of (S,5’) is
denoted by S x S'.

Choose polyhedral decompositions € and €’ which are respectively
adapted to S and S’. The family (Cx C’), for C € € and C" € €, is a
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polyhedral decomposition which is adapted to S X S’: one has

Sx§ = Z Z wewl,[C x C']

Ce%, C'e®,

if, for every (C,C’), wc is the weight of Cin S and w, is the weight of C’
ins.

IfSand S’ are balanced, then so is SXS’. Indeed, let us consider a polyhe-
dron E of dimension p + 4 —1 belonging to the polyhedral decomposition
€ X€6'. Letuswrite E =D XD/, where D € ¢ and D’ € &’.

LetC € € and C’ € €’ be polyhedra such that Eis a face of CxC’. Then
D c Cand D’ c (', so that D is a face of C and D’ is a face of C’. Since
dim(D) + dim(D’) = dim(C) + dim(C’) — 1, there are two possibilities:
either dim(D) = dim(C) — 1 and D’ = C’, or dim(D’) = dim(C’) — 1 and
D=C.

This already shows that the balancing condition along E is trivial if
dim(D) # p and dim(D’) # 4.

Let us now assume that dim(D) = p (hence dim(D’) = g4 —1). By
what precedes, the polyhedra of the form C x C’, where C € €, and
C € ‘“6& of which E is a face are of the form D X C’, where D’ c C’ € ‘“60'7.
The balancing condition along E for S X S’ follows from the balancing
condition for §” along D',

Similarly, if dim(D’) = g and dim(D) = p — 1, then the balancing
condition along E for S X S’ follows from the balancing condition for S
along D.

6.1.12. — A Minkowski weightissaid to be effective if the corresponding
weighted polyhedral subspace is effective. Effective Minkowski weights
form a submonoid MW (V) of MW, (V).

Proposition (6.1.13). — Every Minkowski weight is the difference of two ef-
fective Minkoswski weights.

Proof. — Let S € MW,(V) be a Minkowski weight and let & be a poly-
hedral decomposition of V which is adapted to S; for C € &, let wc
be the weight of C in S. Let ./ be the set of all C € &, such that
wc < 0; for C € J, let Sc = [(C)] be the weighted polyhedral subspace
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associated with the affine space generated by C; it is balanced. Set
S" = Y ces(—wc)Sc; is is an effective Minkowski weight. then one has

S+8' = > wclCl+ ) wel(O)]

CE%F Cen

= 3 welCl+ Y (=we) (O] - [C).
Cegp Cen
wc>0

Since C c (C), the weighted polyhedral subspace [(C)]—[C] is effective.
Consequently, S + S is effective; it is also balanced. Then S = (S+5’) -
S’ is the difference of two effective Minkowski weights, as was to be
shown. O

6.2. Stable intersection

6.2.1. — Let L, L’ be free finitely generated abelian groups, let V = Lg,
V' =L, and let f : V. — V' be a linear map such that f(L) C L.

There exists a unique linear map f.: F,(V) — F,(V’) satistying the
following properties, for every p-dimensional polyhedron C of V:

(i) If dim(£(C)) < p, then £([C]) = 0;

(ii) If dim(f(C)) = p, then f(Lc) is subgroup of rank p of L¢(c), so that
the index [L¢(c) : f(Lc)] is finite, and £.([C]) = [Lf(c) : f(Lo)][C].
For every S € F,(V), one has [£.(S)| C f(|S]).

Proposition (6.2.2). — If S is balanced, then f.(S) is balanced. In other words,
one has f.(MW,(V)) C MW, (V’).

Proof. — Replacing V’ be its image, we may assume that f is surjective.
There is a polyhedral decomposition € of V such that the polyhedra
f(C), for C € ¥, form a polyhedral decomposition €’ of V' (corol-
lary 1.8.10).

Let D’ be polyhedron of dimension p — 1 in €’. Let €p be the set of
all polyhedra C’ in ¢’ such that dim(C’) = p and D’ c C’". For C’ € 6y,
define vc)p € L, which generates L(, /L[, and is such that x + tve € C’
for every x € D’ and every small enough positive real number ¢.
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Let 9 be the set of all polyhedra D of dimension p —1 of € such that
f(D) =D'. Forevery D € 9, let 6p be the set of all polyhedra C € &
such that dim(C) = p and D C C. For every D € 91y and every C € ép,
let vc/p € L be a vector that maps to a generator of Lc/Lp and is such
that x + tvc € C for every x € D and every small enough positive real
number t. The balancing condition at D for S writes

Z wcoc/p € Lp.
Deép
Since f(C) contains f(D) = D/, the image f(C) of C is either equal
to D, or it belongs to €. In the latter case, set C' = f(C). There exists
kc € N* such that f(vc/p) = kcocr; one has

kc = [Le : (L + Zf (ve/p))]-

Then
[Le : f(Lo)l = [Le : f(Lp + Zogp)]

= [Le « (f(Lp) + Zf (v¢p))]
=L (Lp + Zf (v¢/p)] [Lyy = f(Lp)]
= ke [Lp : f(Lp)l,

so that

ke = [Le : f(Lo)l/[Ly : f(Lp)].
Modulo L, the vector of L’ responsible for the balancing condition

along D’ is equal to

DD D well: f(Lo)] oo

C'ebp | Dey Cebp
fO=C

= 31D D wclly : fLo))floc)

C’G%D/ DE@D/ Ce%ép
f(O)=C

= Y [Lp:lol > wefloep),

DE@DI CE%D
dim(f(C))=p
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hence it belongs to L,. Indeed, for every D € 9p, the balancing
condition of S along D asserts that }\cc¢, Wcvc/p € Lp; applying f, we
get Y ceq, Wef(vep) € Ly, on the other hand, if dim(f(C)) < p, then
f(C) c D' and f(vc)p) € L,

Consequently, f.(S) is balanced along I)’, as was to be shown. O

6.2.3. — Let p, g be two integers, let S € MW,(V) and S’ € MW,(V).
Choose polyhedral decompositions € and €’ of V which are respec-
tively adapted to Sand S’; write S = ZCE% wcl[Cland S’ = ZCG% wi[Cl.
The polyhedra (CNC’), for C € € and C’ € €’ form a polyhedral decom-
position of V which is simultaneously adapted to S and S/, in particular
to the intersection |S| N |S/|.

Let Pbe a polyhedronin V. One says that Sand S’ intersect transversally
along P if there exist C € €, and C' € &, such that PcCnC and
dim(P) = p + g — n. This implies that dim(C + C’) = n.

For v € V, define

u(P,v) = Z wpwly[L: Lp + L],
D,D

where the sum is over all pairs (D, D’) of polyhedra such that D € &),
De®,PcDND,dim(D+D)=nand DN (v+D) # .

This formula implies that for every x € (C N C’)°, one has
u(Stary(P),v) = u(P,v). Indeed, the pairs of polyhedra that ap-
pear in the formula for u(Star,(P),v) are precisely of the form
(Stary(D), Stary(D’)) where (D,D’) appear in the formula for u(P,v),
and the weights are the same.

Lemma (6.2.4). — a) If Sand S’ intersect transversally along P, then v
w(P, v) is constant in a neighborhood of 0 in V.

b) There exists a strictly positive real number 6 and a polyhedral subspace B
of V of dimension < dim(V), and an integer u(P) such that u(P,v) = u(P)
forall v € V=B such that ||v]| < 6.

Proof. — We may assume that 0 € P° and replace S, S’ by the associated
conic Minkowski weights with apex at 0. In particular, all polyhedra
in € are cones. Moreover, P is a vector subspace, and is contained in
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the lineality spaces of all cones involved. To check the lemma, we also
may mod out by P, which reduces us to the case where P = {0}.

a) Assume that S and S’ intersect transversally along P; as in the
definition, let C € €,, C' € €} be such that PcCnC and dim(P) =
p +q —n. Since CnC is non-empty, by assumption, it is equal to
(CNC’)°, hence it contains 0, so that both C and C’ are linear subspaces.

Let v € V and (D,D’) be a pair of polyhedra that appear in the
definition of u(C,C’,v). Since 0 € (ol, and 0 € CNC’ c D, one has
C c D; since dim(D) = p, this implies D = C. Similarly, D’ = C’. Then
the sum defining u(C, C’, v) reduces to wcw&, [L: Lc+L7, ]; inparticular,
it i1s constant.

b) Let SxS’ be the (p + g)-dimensional weighted polyhedral subspace
of V X'V defined by

Sx8'= > > wcw,[CxC].

Ce®%y C’e%;,

It is balanced (example 6.1.11).

Let f: VXV — V be the linear map given by f(x,y) = x —y. Let
us consider polyhedral decompositions €71 of V and &, of V X V that
respectively refine € and ¢’, and € x €', and such that f(C x C’)
is a union of cones in € for every C,C’ € & (corollary 1.8.10). The
expression u(C,C’, v) is the coefficient of the cone [C - C’] = f(C x C’)
in the Minkowski weight £.(S x S’). Since this is a Minkowski weight of
dimension n, there exists a € Z such that f.(SXS’) = a[V]. It follows that
u(C,C’, v) = a for every vector v which does not belong to a polyhedron
of € of dimension < n. O

6.2.5. — Let S € MW, (V) and S € MW,(W) be Minkowski weights;
let € and €’ be polyhedral decompositions of V which are adapted
to S and S’ respectively. Let & be the polyhedral decomposition of V
consisting of the polyhedra CNC’, for C € € and C' € '. For P € 9,
denote by u(P) the common value u(P,v) where v € V is a generic
vector; note that dim(P) = p + g — n if u(P) # 0. We then define an
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element of F,.;_,(V) by
SNwS' = ) u(P)[P].

Peo

In particular, it is 0 if p + g < n. Moreover, one has |S N S’| C |S| N |S'].

This element is called the stable intersection of S and S’. It does not
depend on the chosen polyhedral decomposition & and is bilinear in S
and S'.

Since multiplicities p(P) can be computed after passing to links, one
also has Star,(S Ng S’) = Starx(S) Nst Stary(S’) for every x € V.

At this point, it is not so clear that S Ng; S’ belongs to Fp 4y (V), because
we have not yet proved that the polyhedra [P] involved in its definition have
dimension p + g — n, if u(P) # 0.

6.2.6. — LetS € MW,(V) and &' € MW, (V). According to

( ), one says that |S| and |S’| intersect transversally if dim(|S| N
|S’|) = p+g—n and if there exist polyhedral decompositions & of |S|, and
€’ of |S'|, such that for every polyhedron P satisfying dim(P) = p+q—n
and P c |S| N |S'|, there exists a unique pair (C, C’) of polyhedra, with
C € ¢ and ¢’, such that dim(C) = p, dim(C’) =gand Pc CN C".

Proposition (6.2.7). — If S and S’ intersect transversally, then S Ng S’ €
MW g-n(V) and |S Ng: S'| = [S| N [S'].

Proof. — Fix polyhedral decompositions € and €’ adapted to S and &'
that attest of their transversal intersection; let (wc), resp. (w(,) be the
weights of S, resp. of §’. For every pair (C,C’), where C € &, and
C’ € 6, are such that wc # 0, w;, # 0 and CNC" # @, one has
dim(C N C’) = p + g — n, and the definition of u(C,C’) shows that
u(C,C") = wcwy,. In fact, the sum defining u(C,C’,v) is reduced to
(C,C), for every small enough v € V. This already proves that S Ng S’
belongs to Fy,,-»(V) and that [SNg S| = [S| N [S].

Let us prove the balancing condition. By construction, |S Ng S| is
a union of polyhedra of dimension p + g — n of the form C N C’, for
C € ¢ and C' € €', and they only meet along faces which are of the
form D X C’, or C X D/, where D is a codimension 1 face of C, or D’ is a
codimension 1 face of C’. Consequently, the balancing condition needs
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only be checked along such faces. We thus assume that E = DN C,
where D € €),-1 and C’ € €, the other case being similar by symmetry.
The polyhedra of S N S’ that border E are of the form C N C’, where
C € ) contains D.

For every such C, fix a vector vc/p € Lc which generates Lc/Lp and
whichissuch that x +tvc/p € Cforevery x € D and every small enough
positive real number t. The balancing condition for S along D writes
ZC wcoc/p € Lp.

Let us fix a normal vector v,CmC’ pre € Lcncr associated with the
face D X C" of C x C’. There exists a unique integer pc € N* such
that v, prc = PCYC/D (mod L)p, so that the balancing condition
for SN S along D X C" writes Y. u(C, C’)pcvc/p € Lp. To conclude the
proof, since u(C, C’') = wcw(, [L : Le + L], it now suffices to prove that
pclLc + Lc] is independent of C.

One has

Lc N Lo = Lener = Lone + Zovcncr/pne
hence

[(Lc "Lc) + Lp = Lp + Zvcncr/pner = Lp + Zpcoc)p.
Since Lc = Lp + Zouc)p, it follows that
pc =[Lc: (LcNLe)+Lp] =[Lc+ Lo : Lo + Lp]

and
pc[L : LC + ch] = [L : LC/ + LD].
O

Proposition (6.2.8). — a) There exists a polyhedral subspace B of V such
that dim(B) < n and such that for every v € V =B, the Minkowski weights S
and S’ + v intersect transversally.

b) If n = p + q, then deg(S Ngt (S’ + v)) is independent of v € V —B.

Proof. — We fix polyhedral decompositions & and €” of V respectively
adapted to Sand S'.

Let .7 be the set of all pairs (C,C’) such that C € €, C' € %g, wc # 0,
w, # 0. Let (C,C") € 5. Forv € V, one has CN (v + ') # @ if and only
if v € C —C’. Let By be the union of all d(C — C’), for (C,C’) € .¥ such
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that dim(C — C’) < n. Let (C,(’) € .# be such that dim(C — C’) = n and
let J(C-C’) = (C-C")=(C-C)°; itis a polyhedron of dimension < n. If
v¢(C-C),thenCnN(v+C) =©;ifv e (C-C’)° thenv € C—C’, hence
Cn (v+ (O:’) # @. Let By be the union of all d(C —C’), for (C,C’) € .# such
that dim(C — C’) = n. Let B = B; U By. This is a polyhedral subspace
of V of dimension < 7.

Let v € V=B. By construction, S and S’ + v intersect transversally
along CN(C’ +v), for every pair (C, C’) such that CN (C" +v) # @. This
proves that S and S’ + v intersect transversally.

Assume that p + g = n. Let U be a connected component of V=B
such that 0 € U. Fix (C,C’) € .#. When v € U, the pairs (D,D’) € .7
such thatv € DN (v+ D ) remain the same, and in fact, v is their unique
point of intersection. This gives

deg(SNgt (v +5')) = Z wpwpy[L : Lp + Lp/]
(D,D)

= > ). wpwh[L:Lp+Lp]

ccy (DbD)
DND’= CmC’

- Z u(C,C’)
(C.C)
= deg(S N S').

This implies the claim. O

Theorem (6.2.9). — Let p,q be integers such that p + q > n. For any
S e MW,(V)and S’ € MW, (V), one has SNt S € MW,y (V).

Proof. — Let E be a polyhedron of dimension p + g — n — 1 along which
we wish to check the balancing condition for S Ng S”. Choosing an
origin in E and replacing S and S’ by the fan-like Minkowski weights,
we can assume that there are polyhedral decompositions of V adapted
to Sand S, all polyhedra of which are cones. We may also quotient by E
and reduce to the case where E = {0}; thenp + g =n + 1.

We will first prove that SN S’ = recc(S Nyt (v +5')) forall v € V. It
suffices to prove this when S and v + S’ intersect transversally. If C and C’
are cones such that CN (C’ + v) # @, then one has recc(C N (C' + v)) =
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CncC. (Let x € CN(C" + v); then for every u € C N C’, one has
x+u € CN(C'+9v). On the other hand, if x + tu € CnN (C’ + v)
for every t € Ry, then u € C N C’, as one sees letting t — o.) By
transversality, dim(C N C’) = dim(C N (C" + v)) = 1. Multiplicities add
up as well. This implies the equality recc(S Ng (S’ + v)) = SN S'. Since
S and v + S’ intersect transversally, one has S Ng (S’ + v) € MW, (V).
To conclude the proof of the theorem, it thus follows to establish the
following lemma. O

Lemma (6.2.10). — Let S € MW1(V). Then recc(S) € MW1(V).

Proof. — Let € be a polyhedral decomposition of V which is adapted
to S; for C € €1, let wc be the weight of C in S.

Let C € 61, so that Lc ~ Z; we fix arbitrarily one generator vc of Lc.
There are three possibilities.

— Either there exist xc, yc € C such that C = [xc; yc], chosen such
that yc € xc + Ryovc. Then its recession cone is 0;

— Or there exists x € V such that C = xc + Ryoc or C = x¢c — R,vc.
Up to changing vc into —vc, we assume that we are in the former case.
Then recc(C) = Ry uc;

— Or there exists xc € V such that C = xc + Roc; then recc(C) = Roc.

Let ‘(512, ‘611, ‘6? be the corresponding subsets of €;. The recession fan
of S is given by the sum

recc(S) = Z wc[Riyvc] + Z wc[Roc].
Ce®, Ce®Y

The balancing condition at the origin for recc(S) is thus the relation

We now write the balancing condition for S at a point p € 6. Let G,
be the set of C € €1 such thatp € C. If C € %1 then p = Xc; moreovetr,
vc is an admissible normal vector for (p,C). Otherwise, C € %12 and
there are two possibilities:

— Either p = xc; then vc is an admissible normal vector for (p, C);
— Or p = yc and then —o¢ is an admissible normal vector for (p, C).
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The balancing condition at p thus writes

Z wcoc + Z wcoc — Z wcoc =0

Ce‘[€11 Ce%l2 Ce‘“gl2
xc=p xc=p Yyc=p

Adding all of these relations, for all p € €, we obtain

0= Z wcoc + Z wcoc — Z wcoc = Z wcoc,

Ce%; Ce®} Ce%;} Ce%;
as was to be shown. O
Proposition (6.2.11). — The stable intersection product endowes the abelian

group MW(V) = @P MW, (V) with a ring structure. The neutral element
is [V].

Proof. — It follows from the definitions that the stable intersection
product is commutative and bilinear. It also follows from the defi-
nitions that SN [V] =S.

Let us check associativity. Let S, S’, S” be three Minkowski weights of
dimensions p, g, v and let us prove that (SN S") Nt S” = SNt (S Nt ).
Let us first treat the case where these Minkowski weights intersect
transversally, in the sense that CNC'C” # o for every C € &), C' € €,
C” € €} such that wc, wg, we, # 0and CNC'NC” # @. If this holds
then S’ and S” intersect transversally and

S’ NgS” = Z wl,wl,[L: Lo + Ler][C N C7).
CI,C/I

Moreover, S and S’ N S” intersect transversally and
S mst (S, mst S”)

= Z wewl,wly[L : Lo + Ler][L s Le + (Lo N Ler)] [CN C N C7.
c,c,cr

By symmetry, one also has
(SNst S') N5t S”)

Z wewl,wl[L: Le + Lo[L : (Le N Le) + Ler ] [CNC N C7.
C C/ C//
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It thus suffices to prove the following equality of indices:
[L:Lc+Ler][L: Le+(LoNLer)] =[L: Le+Le][L: (LeNLer) + Ler].
On the other hand, one has
[L:Lc+(LoonNLcr)] =[L:Lc+Le][Le+ Lo : Le + (Lo N Ler)]
=[L: Lc + Lo ][Le = (Le N Le) + (Lo N Ler)],
so that

[L:Lc + Ler][L: Le + (Lo N Ler)]
=[L:Lo+Lc][L: Lo+ Lev] [Ler : (Le N Ler) + (Lo N Ler)],

an expression which is invariant when one exchanges the roles of C
and C”. Therefore,

[L: Lo+ Ler][L: Le+(LooNLer)] =[L: Lo+ Le][L: Loy + (Lo NLe)],

as was to be shown.

In the general case, we consider arbitrarily small vectorsv € V, w € V
such that S, S’ + v and S” + w intersect transversally. If C,C’,C” are
polyhedra of dimensions p, g, r, the multiplicity u(C,C’,C”) of [CNC'N
C”]in (SNgtS’) Nt S” is a sum of multiplicities u(D, D', D”; v, w), where
CNC'NC"=DND’'ND”and D,D’ + v, D” + w intersect transversally,
associated with (S Ngt (S + v)) Nt (S” + w). By the case of transverse
intersections, they coincide with the multiplicity of [C N C' N C”] in
SNgt (S + v) Ngt (S + w)). O

Example (6.2.12) (Unfinished). — AssumethatL = Z" andlet(ey, ..., e,)
be its canonical basis; set also eg = —e1 — -+ —¢,,. For1 € {0, ..., n}, let
C1 be the cone generated by the vectors e;, for i € I; one has dim(Cy) =
Card(I). Note that C;NCy = Gy for 1] € {0, ..., n}, so that the set of
cones (Cy)icqo,....n}y is a fan in R".

For p € {0,...,n}, we define an effective weighted polyhedral sub-

space of dimension p by
s,= > [Cl.

Card(I)=p

(This is a tropical linear space of dimension p.) One has L¢, = > ;¢ Ze;.
Itis balanced. The only polyhedra along which the balancing condition
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is not obvious are of the form Cj, where Card(J) = p —1, and its adjacent
polyhedra are of the form Cjy;, for i € {0,...,n} =]; one may take ¢;
as a normal vector. The balancing condition along Cj then writes

S as Y a-Yaclk

€; —
i€{0,...,n}=] i€{0,...,n} j€]

since X7 5 ¢e; = 0.
Let us prove that S, Nst S; = Sp1g—-

Proposition (6.2.13). — Let S € MW, (V) and let S" € MW, (V). If A €
MW,,(V X V) is the diagonal, then one has

A Ngt (S X S,) =S Ngt S

6.3. The tropical hypersurface associated with a piecewise linear
function

6.3.1. — Let f : R” — Rbe a continuous piecewise affine function and
let € be a polyhedral decomposition of R" which is adapted to f. We
assume that f has integral slopes, in the sense that for every C € €, there
exists an linear function ¢c € LY such that f(y) — f(x) = pc(y — x) for
every x,y € C.

Let x € R" and let D be the unique polyhedron of € such that x € D.
If dim(D) # n — 1, set w¢(D) = 0. Otherwise, if dim(D) = n -1, then D
is a face of exactly two n-dimensional polyhedra C*,C™ in %; one has
D=C"nC".

Fix a point x € D.

The quotient group Z" /Lp is isomorphic to Z, and it admits a unique
generator which is the image of an element v™ such that x + tv*™ € C*
for every small enough t € R,.

Define v~ similarly. In fact, one has v~ = —v™.

By assumption, f is affine with integral slopes on C*; let ¢*: V — R
be the unique linear map such that f(y) — f(x) = ¢*(y —x) if x, y € C*.
We define similarly ¢ ™.

We then set

wp =@ @)+ e (v).
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and define

a(f)= », wolD].

De¥é,,-1

Proposition (6.3.2). — Let f be a piecewise linear function f with integral
slopeson V.

a) The weighted polyhedral subspace J(f) is a Minkowski weight of dimen-
sion n — 1 adapted to the polyhedral decomposition €.

b) Its support |d(f)| is the non-linearity locus of f.

c) If f is convex, then J(f) is effective.

Proof. — We have to prove that J(f) statisfies the balancing condition.

Let E € € be a polyhedron of dimension n — 2. Fix a point x € E and
consider a 2-dimensional plane through x which is transverse to E. We
get a fan in R? which reduces the verification of the balancing condition
to the case n = 2, for E = {0}.

The 1-dimensional polyhedra that contain the origin are (chunks of)
rays D1 = Ryuy, ..., Dy = Ryuy,, where uq, ..., u, € Z? are primitive
vectors.® The balancing condition at 0 is the equation

n
Z Wp,Uj = 0.
j=1

Up to a reordering of the u;, unique modulo cyclic permutations, the
2-dimensional polyhedra that contain the origin are (chunks) of sec-
tors C; = cone(uy, up),...,Cy—1 = cone(uy,, u,),C, = cone(u,, uy). Set
@(x) = f(x) — £(0); for every j, let ¢; be the linear function on R? such
that f(x) = f(0) + ¢;(x) for every point x € C; which is close to 0.

If p is the rotation of angle /2, we then may take D;“ = C; and
D7 = Cj-1, v} = p(u;) and v} = p~Huy) = —v7. Then wp, = @;(p(1))) -
@j-1(p(u;)) forallj € {1,...,n}.

3Picture?
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We thus have
n n n
2wty = ) 9ipuy = > pia(plu)u;
j=1 j=1 j=1

= D 9ip)u; = D @i(plu)ug.

j=1 j=1
The continuity of f along the ray u; writes ¢;(u;) = @(u;) = @j-1(u;).
Let aj, b]' € R be such that p(u]-) = aju; + b]-u]-+1. Then
@j(p(u)) = ajp(u;) + bj@j(uj) = ajp(u)) + bjp(ujs).
Similarly, p(uj+1) = aj-1uj-1 + bj_1u;, hence

pi(p(uj+1) = aj;(uj-1) + bj1gj(u)) = aj1p(wj-1) + bj—1p(w)).
Finally,

n

D wpup= )" (ajp(uy) + b)) = (aj-19(uj-1) + b ap(uy)) = 0.
j=1

j=1
This proves that df belongs to MW,,_1(V).
By construction, f is locally differentiable on V = [ Jpcg, , D. For

De®,.1and x € f), observe that f is differentiable on a neighborhood
of x if and only if wp = 0. Consequently, the open non-differentiability
locus of f is equal to |J(f)|.

4

a) b) With the previously introduced notation, it suffices to prove
that wp > 0 for every D € €,_1.
For every positive real number ¢, one has

twp = @*(tv™) + @~ (tv7) = (f(x + t07) = f(x)) + (f(x — to7) = f(x))
if ¢t is small enough. By convexity, one has
f(x) = % (f(x +to*) + f(x —to™)),
so that twp > 0; if t > 0, this implies wp > 0. O

*Some points to check. ..
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Proposition (6.3.3). — The map f — Jd(f) from the abelian group PL(V) of
piecewise linear functions on V with integral slopes to the group MW,,_1(V)
of (n — 1)-dimensional Minkowski weights is a surjective morphism of groups.
Its kernel is the subgroup of affine functions with integral slopes on V.

Proof. — O

Theorem (6.3.4). — Let f be a piecewise linear function with integer slopes and
let S € MW, (V). The Minkowski weight d(f) NstS can be computed explicitly
as follows. Let € be a polyhedral decomposition of V which is adapted to S
and such that f|c is affine, for every C € €. For every D € 6,1, let €p be
the set of C € 6 such that D C C. For C € 6p, let vcp € L be a vector
that generates Lc /Lp and such that x + tocp € C for every x € D and every
small enough positive real number t. Set

wp = Z we (lim flx + toejp) = f(%) .

t—0+ t
CE%D

Then J(f) Nst S = X wp[D].

Theorem (6.3.5) (Projection formula). — Let u : L — L’ be a morphism of
free finitely generated abelian groups, let V. = Lgr and V' = Lg. Still write u
forur: V.— V’. Let S be a Minkowski weight on 'V and let f be a piecewise
linear function on V'. One has

M*(M*(f) Mgt S) = f Mgt M*(S)

Remark (6.3.6). — There should be a projection formula of the form
u(S Nst u*(S")) = u(S) Nt S’

if u: L — L’ is a morphism of free finitely generated abelian groups.

If u is surjective, then L ~ L’ X L”, and u*(S') = S'® L".

Otherwise, one can/needs to define u* by stable intersection, say
u*(s') = p.(I'y Nt (L®S’)), where I', = (id Xu).(V) is the graph of u and
p: VX V" — Vis the first projection.
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6.4. Comparing algebraic and tropical intersections

6.4.1. — Let X and Y be subvarieties of Gn,", respectively defined by
idealsIand J of K[T$!, ..., T£!. Their intersection XNY is the subvariety
of G, with ideal I +].

Note that in general, XN'Y might not be integral. It may have multiple
component. It alsomay be non-reduced, for exampleif Y is a hyperplane
tangent to X at some point a: the tangency will then be reflected by the
fact that the local ring Oxny,, contains non-trivial nilpotent elements.

By a general inequality in algebraic geometry, one has

dim,(X NY) > dim,(X) + dim,(Y) — n,

for every a € X N'Y. This inequality is an equality in certain cases,
for example when X and Y are smooth at 4, and T, X + T,Y = T,Gp"
(then, we say that the intersection is transverse around a). But the strict
inequality may hold, for example in the trivial case where X =Y, but
also in less obvious cases.

We are interested in computing the tropicalization of XNY. How does
it compare to the intersection 9x N Iy, beyond the obvious inclusion?
This guess is however often too large, for example if 7x = 9y? Then how
does it compare to the stable intersection Ix Ngt 7y? While that second
guess is often too small, it is indubitably better, since we will show
that it suffices to translate “generically” Y in Gp,", without changing its
tropicalization, to make it correct.

We start with the case of transversal tropical intersections, where the
picture is particularly nice.

Lemma (6.4.2). — Let X, Y be subvarieties of Gp,".
a) Let x € R". If 9x and Fy meet transversally at x, then
Starx(Ixny) = Starx(Ix Nst IY).
b) If 9x and Fy intersect transversally everywhere, then
Ixny = Ix Nst Ty-
Proof. — Let],] be theideals of X, Yin K[T!, ..., T#']. By assumption,

there exists polyhedra C and C’ of the Grobner polyhedral decom-
positions of Ix and Jy respectively such that x € C N C’; moreover,
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dim(C + C’) = n. In particular, W = Star,(9x) and W’ = Star,(Jy) are
vector spaces, with a constant multiplicity is constant, and W + W’ =
R". Let p = dim(W), g = dim(W’); let W’ = W N W’, so that
r = dim(W”) = p + g — n. Choose a rational basis of R" as fol-
lows, starting from a basis of W”, and extending it to rational bases
of W and W’. This shows that there exists a rational isomorphism
¢ : R" = R" such that p(W”) = R" X {0} X {0}, (W) = R" X RP~" x {0}
and p(W’) = R" x {0} x R97". We may also assume that ¢(Z") c Z".
Let then f: Gn" — Gp'" be the morphism of tori whose action on
cocharacters is given by . It is finite and surjective.

Let X’ = f(X) and Y’ = f(Y); by proposition 3.8.1, one has Ix =
©+(9x), Iy = 9.(Fy) and Ixry = @.(Ixny). Since @. is a linear isomor-

phism, we may assume, for proving the lemma, that ¢ is the identity.
5

Lalx::ImkHﬁy“qT#]MMJg::]ﬂkﬁﬂy“qT#} By
lemma 3.9.4, one has I = [; - k[Ti—Ll, ... ] and multg (C’) = codim(Jy);
similarly, ] = Jx - k[Tf?, ... ] and multg (C') = codim(],).

We now observe that

in (I +]) = iny(I) + in, (),
and that
in,I+])Nk[T=L, ..., T =1, +7,,

r+1/

so that

k[T;'_'-ill s /Til]/(lx +]x) = (k[T;F}_lr R Til]/lx) ®k (k[Tfili s /Tzl]/]x)

has dimension multg, (C) multg (C’). The same result holds for every
other point in C N ¢’ This shows that CNC’ C Ixny contains a polyhe-
dron of the Grobner decomposition of XN'Y, and that its multiplicity is
the product of the multiplcities of C and C’. This concludes the proof
of the first assertion of the lemma, and the second follows directly from
it. O

50Oops! That proposition says nothing about multiplicities. . .
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6.4.3. — Let K be a valued field. Let L = K(s) be the field of rational
functions in one indeterminate s with coefficients in K, endowed with
the Gauss absolute value. Let I C L[Tfl, ..., T#1] be an ideal and let
X = V(I). Assume that X is equidimensional and let d = dim(X).

Consider K(s) as the field of functions of the affine line A'. The Zariski
closure & of X in Gy, is defined by the ideal v = K[s][T*'] N 1. For
every point a € K, or rather in a valued extension K’ of K, we can then
consider the ideal .7, of K'[T*!] deduced from I by setting s = a and the
subscheme X, = V(%) of Gy,

The relations between X and the schemes 2, its specializations, are
well-studied in algebraic geometry. In fact, & is a flat Al-scheme, and
2, isits fiber. In particular, the schemes &, are equidimensional if X" is,
with the same dimension.

We first prove that, up to finitely many obstructions, the schemes 2,
have the same tropicalization as X provided v(a) = v(s) = 0.

All this should be rewritten replacing Al with A", possibly even any integral
variety V; the outcome is an analytic domain containing a given Zariski-dense
point of V3.

Proposition (6.4.4). — There exists a finite subset B of K, a finite subset C of k
such that for every a in a valued extension K’ of K (with residue field k') such
that a ¢ B, v(a) = 0, and a ¢ C, the variety &, has the same tropicalization
than X: one has an equality of weighted polyhedra Ix = Ig,.

Proof. — Let us consider the homogeneization " ¢ K(s)[Ty, ..., Tx]
of I. Let (f1,..., fu) be a finite set of homogeneous polynomials in Ir
which is a universal Grobner basis, i.e., at every x € R we may
assume that it is contained in " = K[s][Ty, ..., T,] NI

a) The family (fi, ..., fu) generates the ideal I" in K(s)[Ty, ..., Ty].
Since K[s][To, ..., T,] is a noetherian ring, the homogeneous ideal .# h
has a finite basis (g1,...,gp) consisting of homogeneous polynomi-
als. For every j € {1,...,p}, there exist homogeneous polynomials
kj,l; ceey k]'/m € K(S)[TO, ..., T] such that gj = Z:n:l k]',jfj. Let h € K[s]
be a non-zero polynomial such that hk;; € K[s][To,...,T,] for all 7, j.
We then obtain inclusions h.#" c ( fi, oo fm) CF h of homogeneous
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ideals of K[s][Tp, ..., Tn]. In particular, for every a in a valued exten-
sion K’ of K such that h(a) # 0, the ideal .7, of K'[Ty, ..., T, ] coincides
with the ideal generated by fi(a;T), ..., fu(a;T). We define B c K as
the set of roots of .

b) Let f € K[s][To, ..., T,]; write f = Zmes(f) fm(s)cm T™, where ¢, €
K* and f, € K[s] is a polynomial of Gauss-norm 1. The reductions
f .. of the polynomials f;, are non-zero polynomials in k[s]. Let 7 be
their product. By construction, for every a in a valued extension K’
of k such that v(a) = 0 and hs(a) # 0, one has v(f,(a)) = 0 for all
m € S(f). It follows that for every such a, one has 7.(f) = 7.(f(a;T))
and in,(f)(@; T) = iny(f(a; T)) for all x € R,

c) Let i’ be the product of the polynomials /¢, and let C; C k be the
set of roots of I’.

For x € R"*!, set], = in (I"); note that there are only finitely many
ideals of the form J,, when x € R"*1. Let % =], N k[s][To, ..., T.]; for
b in an extension k’ of k, let %, be the image of % in k’[Ty, ..., Tx].

For x € R**!, the ideal J, is generated by (in,(f1),...,inx(fn)), by
definition of a universal Grobner basis. It follows that there exists a
finite subset C, of k such that for every b in an extension k’ of k such
that b ¢ Cy, one has %, = (ing(f1)(b; T), ..., iny(f)(b; T)).

Let a be an element of a valued extension K’ of K such that a ¢ B,
v(a) = 0and a € C; U Ca. Then one has in,(fj(a;T)) = in,(f;)(a; T), so
that 7z = (ine(f)(@T), ..., ine(fn)(@; T)) C iny(F2).

By flatness of K[s][Ty, ..., T,]/.# over K[s], the homogeneous ide-
als #; and I have the same Hilbert function. Similarly, the homo-
geneous ideals % ; and J, have the same Hilbert function. More-
over, by theorem 3.5.12, the homogeneous ideals I c K(s)[Ty, ..., T,]
and J, = in. (") c k(s)[To,...,T,] have the same Hilbert function;
similarly, the homogenous ideals ! c K'[Ty, ..., T,] and iny (")
k’[To, ..., T,] have the same Hilbert function. It follows that the inclu-
sion % 7 C iny (.7 is an equality: % 7 = iny (7M.

d) These equalities imply that the Grobner decompositions of R"*?
associated with the homogeneous ideals I' and .7 coincide, for every
such a. Let x € R” and let ¥’ = (0, x) € R""; we know that x € Jx
if and only if in,(I) # (1), if and only if in,(I") contains no monomials.
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Similarly, x € Jg, if and only if iny(.7;) # (1), if and only if in, (7N
contains no monomial.

For good a as above, this already implies that 7y, C Jx. Let indeed
x € R"=FJx and let x’ = (0, x). Then J» = iny(I") contains a monomial;
it then belongs to %, so that inx/(jah) = Jv 7 contains a monomial as
well. Consequently, x ¢ Jg,.

The converse inclusion will require to put an additional restriction on
the set of good a. Let %, C GmZ[s] be the closed subscheme defined by
the ideal . Its image V, in A} = Spec(k[s]) is the set of points a of Al
such that %, # (1). By a theorem of Chevalley, it is a constructible
subset of Ai. Since Ai has dimension 1, there are only two possibilities:
either V, is a strict closed subset, or V, is a dense open subset and its
complement is finite. The first case happens if and only if the generic
point of Ai does not belong to V,, i.e., if J, contains 1, that is, if and
only if x ¢ Ix. Let C3 be the set of points in k which do not belong to
those V,, for x € 9x. Since there are only finitely many ideals of the
form J,, the set Cs is finite.

Let a be an element of a valued extension K’ of K such that a ¢ B,
v(a) =0and a ¢ C; UC,UC3. By construction, if a point x € R" belongs
to Ix, then %, ; # @, hence in,(.#;) # (1) and x € Tg.,.

This proves the equality 9x = Jg, for all such a. We also saw above
the coincidence of the Grébner polyhedral decompositions of this poly-
hedral subset of R" respectively associated with the ideals I and .7,.

e) It remains to prove the equality of multiplicities. Let x € R" and let
C be a polyhedron of these Grobner decompositions. Up to a monomial
change of variable, we may assume that the affine span of Cis x+R4x{0}.
Then one has

multg; (C) = dim(k(s)[T%),, ..., T ]/Je N k(s)[T5L,, ..., TE))
and
multz,, (C) = dim(K'[Tg1,, ..., Ty'1/ Fea VK Tg, -, TiD).

Let o be the finitely generated k[s]-algebra k[s][T;—’il, L TE A0
k[s] [Tdi}rl, ..., T Ttis flat, by construction, and its generic fiber & ®k[s]

k(s) is a finite k(s)-algebra of rank multg;, (C). Consequently, & is finite
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over k[s], of constant rank. In particular,
multg% (C) = dimy (o ®k[s] k") = multg (C).
This concludes the proof. O

Lemma (6.4.5). — Let1 C K[T5!, ..., T and let x € R"~! x {0}. One has
the following equality of ideals in k(s)[T!, ..., TE]:

iny(Ix(s) + (T — 5)) = inx(D(s) + (Tn — 5).

Recall that the field K(s) is endowed with the Gauss absolute value;
in particular, v(s) = 0.

Proof. — One has iny(I)ks) = iny(Ix()) and ine(T,, —s) = T;, — s since
x, = 0. This implies the inclusion

iny(Dg(s) + (Tn = 8) C inx(Ixs) + (Tn = 9))-

Conversely, let h € Igi) + (T, — s) and let us prove that in,(h) €
iny (Ix(s)+ (T —s). Up tomultiplying h by a non-zero element of K[s], we
may assume that there exist p € K[s], f € Iand g € K[s][T*!,..., T#!
such that h = pf + (T, — s)g. Writing s = T, — (T, — s), there exists a
polynomial g € k[s][T%!, ..., T#'] such that p = p(Ty) + (T, — 5)q. We
thenwrite h = pf + (T, —s)g = p(T,)f + (T, —s)(g + q). This allows to
assume that p = 1.

Observe that 7,((T, — 5)g) = Tx(Tn —5) + Tx(g) = 7x(g) since x,, =0
and v(s) = 0; moreover, in,((T, —5)g) = (T, — s)iny(g).

If 7,(f) < 7((Tn — 5)g), then x(h) = To(f + (Tn — 5)g) = 7x(f) and
iny(h) = iny(f).

Similarly, if 7,(f) > (T, — 5)g), then t(h) = (T}, — 5)g) = 7x(g)
and iny(h) = iny((Ty — 5)g) = (Ty — 5)inx(g).

Assume finally that 7,(f) = 7:((T, — s)g). Since deg (in,(f)) = 0
and deg (iny((T, — s5)g)) > 1, one has in,(f) + in, (T, — s)g) # 0.
Consequently, t,(h) = 7.(f) and in,(h) = in,(f) + in (T, — 5)g) =
iny(f) + (Ty — s)iny(g).

In these three cases, this proves that in,(h) € Ixs) + (T, —s). This
concludes the proof of the lemma. O

Proposition (6.4.6) ( ( ). — Let 1 be an ideal of
K[T:Y, ..., TE, let X = V(I). Let H = d(sup(x,,0)) ¢ R* — the
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hyperplane defined by x, = 0 with multiplicity 1. Let ] = Ix) + (T —s) C
K(s)[TI—Ll, ..., T¥ and let Y = V(]). One has the equality of tropicalizations

Iy = Ix Nst H.

Proof. — Let us prove that the following five assertions, for x € R”, are
equivalent.

(i) One has x € 9x Ngt H;

(ii) One has 9, (1) ¢ H;

(iii) One has in,(I) N k[T,, T,,'] = (0);

(iv) One has iny(I)xs) + (T, —s) # (1);

(v) One has x € Jy.

(i) (ii). One has Star,(Ix) = Fy(in,1))-

If Sv(n,a@ C H, then a generic deplacement by a vector v such that
v, # 0 shows that the stable intersection is empty; in particular, x ¢
(i, Nst H, hence x ¢ Ix Ng; H.

Otherwise, there exists a polyhedral convex cone Q C Jyin 1) such
that that x € Q and Q ¢ H. The polyhedral convex cone Q + H has
dimension n. If we perform a generic deplacement by a vector v € Q+H
such that v, > 0, we obtain a strictly positive contribution of (Q, H) to
the intersection Jyin (1) Nst H. In particular, x € Ix Ngt H.

(ii)e(ii). Let p: Gn" — G be the projection to the last factor;
similarly, let m: R” — R be the projection to the last factor. One has
Stary(9x) = Fv(n, @) and 7(Stary(Ix)) = Ivq,), where I, = in (I) N
K[T%1], since p(V(iny(I))) = V(I,). The inclusion R (in, (1) C H is equiv-
alent to 11(Fy(in,1))) = {0}, hence to Fy,) = {0}. It implies that I, # (0)
(otherwise, V(1) = Gy and Jy,) = R). Conversely, if I, # (0), then
V(I,) is a finite subscheme of G, 7t(Stary(9%)) is finite; since it is a fan,
it is then reduced to 0.

(iii)e(iv). — Let f € k[T#!] be a non-zero Laurent polynomial. Since
s is transcendental, one has f(s) # 0 and the ideal (f, T,, —s) of k(s)[T%!]
contains 1. If, moreover, f € iny(I), this implies that in, (I)i(s)+ (T, —s) =
(1). Assume conversely that in,(I)xs) + (T4) = (1) and let us consider a
relation of the form 1 = }’ gjiny(f;) + (T, — s)h, where f; € I, g; € k(s)
and h € k(s)[Ti—Ll, ..., T=]. Let p € k[s] be a non-zero polynomial
such that pg; € k[s] for all j, and ph € k[s][Tfl, ..., T, In the



250 CHAPTER 6. TROPICAL INTERSECTIONS

relation p = ’ pgjiny(f;) + (T, — s)ph we substitute T,, to s. We obtain
p(T,) = Zj(pg]-)(Tn)inx(f]-), which proves that p(T,) € in (I) N k[TZ1].

The equivalence (iv)=(v) follows from the preceding lemma. Indeed,
x € Jy if and only if in,(]J) # (1), which is then equivalent to in,(I)s) +
(Tn —s) # (1)

It remains to explain compare the multiplicities. O

6.5. A tropical version of Bernstein’s theorem
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A.1. Matroids

A.1.1. Circuits of a matroid. — We first prove that the circuits of a
matroid M satisfy the axioms given in proposition 5.2.6.

The axiom (C;) follows from (I;): since the empty set is free, it is not
a circuit.

Let C, C’ be distinct dependent subsets of M such that C ¢ C’. Then C’
is not minimal, hence C is not a circuit. This establishes the axiom (C,).

Let us C, C’ be distinct cricuits and let e € C N C’. Let us assume that
(CU ) = {e} does not contain any circuit. Then it is free. By (C»),
one has C ¢ C’, hence we may choose f € C'=C; by the definition
of a circuit, the set C' — {f} is free. Let L be a maximal free subset
of CU C’ containing C' = {f}. Since C and C’ are not free, neither C
nor C’ is contained in L, so that f ¢ L and there exists g € C=1L;
since f € C"=C,onehas f # g. ThenL c (CUC’)={f, g}, hence
Card(L) < Card(CUC’) -2 < Card((CUC’)={e}). By the axiom (I3) of
free subsets, there exists an element x of (C U C’) = {e} such that x ¢ L
and such that L U {x} is free; this contradicts the maximality of L.

Conversely, let us prove that the axioms of circuits give rise to a
matroid structure. We consider a subset &\ of B(M) satisfying the
axioms (C;), (C2) and (C3) and prove that it is the set of circuits of
a unique matroid structure on the set M. Necessarily, its set Ay of
independent subsets consists of all subsets of M that do not contain any
circuit.

Since circuits are nonempty (axiom (C;)), the empty set is indepen-
dent; this establishes axiom (I).
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The proof of axiom (Iy) is an argument of ordered sets: let A, B be
subsets of M such that A ¢ B and A ¢ %. Then A contains a circuit
C € 6m, hence B> Cand B ¢ A\.

Let us now establish axiom (I3). Let A, B be independent subsets of M
such that Card(A) < Card(B); let us prove that there exists e € B— A
such that A U {e} is independent. Among all free subsets of A U B,
let us choose one L which has maximal cardinality, and, if there are
more than one of them, such that Card(L — A) is minimal. One has
Card(L) > Card(B) > Card(A). If A C L, then there exists b € L= A;
since AU {b} C L, this implies that A U {b} is free. Otherwise, let us
choosea € A—=L.

Forevery f € L=A,letL; = (LU{e})={f}, sothatCard(Ls) = Card(L)
and Card(L; — A) = Card(L — A) — 1. By the choice of L, the set Ly is
not free, hence it contains a circuit Cy. One has f ¢ Cy, because f ¢ L;
one has ¢ € Cy, because L — {f} is free. Moreover, Cy N (L—A) # 2,
for, otherwise, one would have Cy ¢ AN AN (LU {e}) C A, which
contradicts the hypothesis that A is free.

Let then ¢ € L — A and let us choose € C¢ —A. One has h € C,
but i ¢ Cy, hence C; # Cy. One also has e € C; N Cp,. By the
axiom (C3), there exists a circuit D such that D C (C, U Cj) = {e}. Since
Cg,Cp c LU {e}, onehas D c LU {e}. Consequently, D C L, which
contradicts the hypothesis that L is free.

Proposition (A.1.2). — Let M be a matroid, let C, C’ be distinct circuits in M,
lete € CNC andlet f € C=C’. Then there exists a circuit D in M such that
feDandD c (CUC)=—{e}.

Proof. — We argue by induction on Card(C U C’).

By the axiom (C3) of circuits, there exists a circuit D; in M such that
D; c (Cu’)={e}. If f € Dy, then we are done. Assume that f ¢ D;.
Since D; is a circuit and e € C = D1, one has D; ¢ C and there exists
g € D1 =C; in particular, one has g € C'.

Since C’"UD; ¢ (CUC’)={f}, one has Card(C'UD;) < Card(CUC’);
apply the induction hypothesis to the circuits C’ and D;, to the element
g € D1NC" and to the element e € C’'=D;: there exists a circuit D, such
thate € Dy and D, € (C' UD;) = {g}. Note that f ¢ D».
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One has g ¢ CUD;,, hence CUD, c (CUC’)={g} and Card(CUD) <
Card(C U C’). By the induction hypothesis, applied to the circuits C
and Dy, to the element ¢ € C N D, and to the element f € C =D, there
exists a circuit D in M such that f € Dand D c (CU D;) = {e}. This
concludes the proof, since CuD, c Cu (. O

A.1.3. Bases of amatroid. — Letus prove that the bases of a matroid M
satisfy the properties (B;) and (B,) of proposition 5.2.9.

Existence of bases ((B1)) is proposition 5.2.3.

Let then B, B’ be bases and let x € B—B’. Then B— {x} and B’ are
free subsets of M, and one has Card(B—{x}) = Card(B) — 1 < Card(B’),
by proposition 5.2.3. By axiom (I3) of independent subsets, there exists
y € B’=(B={x}) such that (B={x}) U {y} is free, hence is contained in
some basis B*. Since Card(B*) > Card((B={x}) U {y}) = Card(B), one
has B* = (B={x}) U {y}. This establishes the axiom (B,) of bases.

Conversely, let %\ be a subset of ‘B(M) satisfying the properties (B;)
and (B,), and let us prove that it is the set of bases for a unique structure
of matroid on M.

We first prove that all elements of %\ have the same cardinality. Other-
wise, let B, B’ be elements of %\ such that Card(B) < Card(B’) and such
that Card(B’=B) is minimal. In particular, B’=B is not empty and there
exists x € B’=B. By the axiom (B;) of bases, there exists y € B=B’ such
that B* = (B’={x}) U {y} is a basis. Since B*=B = B’— (B U {x}) has
cardinality less than B’ = B, this contradicts the minimality assumption
on the pair (B, B).

Necessarily, the independent subsets for some matroid structure on M
with bases %) must be defined as the subsets of some element of %Bum
and we need to prove this set %\ satisfies the axioms (1), (I2), (I3). Since
9B\ 1s not empty, @ is contained in some basis, hence @ € #; this
proves (I).

Let A, B be subsets of M such that B € .#\. Let B’ € %)\ be a basis
of M containing B. Then A C B/, hence A € %, establishing (I,).

Let L,L’ be elements of %\ such that Card(L) ¢ Card(L’). Let us
choosebases B, B’ with L. ¢ Band L. ¢ B’ and such that Card(B’—(L’UB))
is minimal.
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OnehasL'=B c L’=L. Assume that the inclusion is strict; then there
exists x € L' N B such that x ¢ L. Since LU {x} C B, the set L U {x} is
free, and x € L, so that the axiom (I3) holds.

Otherwise, one has L' =B = L’ = L. Let us prove that B C L’ UB.
Otherwise, let x € B’ = B such that x ¢ L’. By the axiom (B,), there
exists y € B=B’ such that B} = (B"={x}) U {y} belongs to %y;. One has
L’ ¢ B] by construction. Moreover, B} — (L’ UB) = B'— (L' UB U {y}),
and this contradicts the minimality assumption on Card(B’ = (L’ U B)).
In conclusion, onehas B =B =L"=B =L"=1L.

Let us prove that B ¢ LUB’. Otherwise, let x € Bsuch thatx ¢ LUB".
By the axiom (By), there exists y € B’=B such that By = (B—{x}) U {y}
belongs to %\. Since L U {y} C By, this implies that L U {y} is free.
Since y € B=B =L'=L, one has y € L’ = L. This concludes the proof
of axiom (I3).

A.1.4. Matroids and the rank function. — Let us prove that the rank
function of a matroid M satisfies the axioms (R1), (Ry) and (R3).

If Xisaabasisof M | A, then X C A, hence 0 < Card(X) < Card(A);
since rankyf(A) = Card(X), this establishes axiom (R7).

Similarly, if X is a basis of M | A and A C B, then X is a free subset
of M | B, so that ranky(A) = rankya (M | A) = Card(X) < rankya(M |
B) = ranky(B).

Let A,B be subsets of M. Let X be a basis of M | (A N B). As
a subset of M | (A U B), the set X is still free, hence there exists a
basis Y of M | (A UB) such that X C Y. Then, YN A is free in M | A,
hence ranky(A) > Card(Y N A); similarly, ranky(B) > Card(Y N B).
Consequently,

rankyi(A) + ranky(B) > Card(Y N A) + Card(Y N B)
= Card(Y N AN B) + Card(Y N (A UB))
= Card(Y N A N B) + Card(Y).

One has Card(Y) = ranky (A U B), by definition. Moreover, Y N AN Bis
a free subset of A N B that contains X; since X is a basis of M | (A N B),
one has YN ANB = Xand Card(Y N ANB) = rankym(A N B). This proves
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the inequality
ranky(A) + ranky(B) > ranky(A N B) + ranky(A U B)

and establishes axiom (R3).

Conversely, let us assume that r is a function on (M) which satisfies
the axioms (R1), (Ry) and (R3), and let us prove that it is the rank
of a unique structure of matroid on M. Necessarily, the free subsets
of M would be the subsets A such that 7(A) = Card(A), so that it
suffices to prove that the set 1 of such subsets A satisfies the axioms
of independents subsets of a matroid.

Let us first prove the following property: Let A,B C M be such that
r(AU{b}) = r(A) forall b € B; then r(A UB) = r(A). We argue by
induction on Card(B); the property holds if B C A; letthen b € B— A
and B’ = B={b}. One has r(AUB’) = r(A) by the induction hypothesis,
and r(A U {b}) = r(A) by assumption. Using (R3), one has

2r(A) =r(AUB)+r(AU{b}) > r(AUB)+r(A),

hence 7(A) > r(A U B). This implies the equality r(A U B) = r(A), as
claimed.

Using (R1), one has 0 < 7(@) < Card(@), hence (@) = 0 = Card(2);
consequently, @ is free, establishing axiom (I;).

Let A, B be subsets of M such that A ¢ B and B € #A. Then r(B) =
Card(B), by assumption, hence

Card(B) =r(B)=r(AU(B=A))+r(AN(B=A))
<7r(A)+r(B=A) < Card(A) + Card(B—A) = Card(B).

This implies that 7(A) = Card(A), hence A € Ay. Axiom (I,) is proved.

Let A, Bbe subsets of M belonging to %\ such that Card(A) < Card(B).
Let us assume that A U {b} does not belong to A, for all b € B—A.
Then r(A U {b}) = r(A) for all b € B, hence r(A UB) = r(A), by the
property established above. On the other hand, B ¢ A U B, hence
(A UB) > r(B) = Card(B), contradicting the inququality Card(A) <
Card(B). Consequently, there exists b € B=—A such that AU {b} belongs
to Av; this proves axiom (I3).

Finally, it remains to prove that the rank function ranky; associated
with this matroid structure coincides with the function r. let A be a
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subset of M. If A is free, then ranky(A) = Card(A) = r(A). Otherwise,
let B be a maximal free subset of A, that is, a basis of M | A; one has
ranky(A) = Card(B) = r(B) by definition. For every a € B— A, the set
B U {a} is not free, hence (B U {a}) # Card(B U {a}). Since Card(B) =
r(B) < r(BU {a}) < Card(B) + 1, this implies that ¥(BU {a}) = 7(B). By
the property above, one thus has r(A) = (BU (A =B)) = r(B). In other
words, ranky(A) = r(A), as was to be shown.

Proposition (A.1.5) ( , ). — Let M be a matroid, let B, B’ be bases
of M and let a € B=D’. There exists b € B’ =B such that (B={a}) U {0’}
and (B’ ={b}) U {a} are bases of M.

Proof. — Let C’ be the unique circuit contained in B'U{a} (lemma 5.2.8);
one has a € C’ and C"=B c B’. For x € (, the set (B' = {x}) U {a} is
a basis of M, since it is free (lemma 5.2.8, ¢) and its cardinality is equal
to Card(B’).

Since B is free, one has C’ ¢ B; since C’ = B is nonempty. For any
x € C' =B, let then C, be the unique circuit such that C, ¢ B U {x}
(lemma 5.2.8).

First assume that there exists b € C’ =B such that a € C;,. In this
case, lemma 5.2.8, ¢), applied to B and b, implies that (B—{a}) U {b} is
free, hence is a basis of M since it has the same cardinality as B. As we
have seen above, (B’ = {b}) U {a} is a basis of M. This establishes the
proposition in this case.

Let us thus argue by contradiction and suppose que a ¢ C, for all
x € C'=B. Let us define sequences (x,) and (D,), where D,, is a circuit
of M such thata € D, x, € D, =B and D,,4; € (D, UCy, )= {x,} for
all n. We set Dy = C. Assume that (Dy,...,D,) and (xq,...,x,-1) are
defined. One has a € D, by construction, and D,, ¢ B; let x,, € D, = B.
By proposition A.1.2, applied to the circuits D,, and C,, and to the points
xn, € D, NCy, and a € D, = C,, , there exists a circuit D,4+1 such that
Dy+1 € (D, UCy,)={x,} and a € D, 1. This concludes the desired
construction.

Since C,, ¢ B U {x,}, one has D,.1 =B c D,. Moreover, x, €
D, =B and x, ¢ D,+1. This implies that the sequence D,, = B is strictly
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decreasing, in contradiction with the fact that is is a sequence of finite
sets. This concludes the proof. O

A.1.6. Matroids and the closure operator. — Let us prove proper-
ties (1) to (ca).

Property (c;) is obvious: for x € A, one has AU {x} = A, hence
ranky(A) = ranky(A U {x}).

Let A, B be subsets of M such that A € B. Leta € (A). If a € B, then
a € (B); let us assume that a ¢ B. Let X be a basis of M | A; then X is a
basis of M | (A U {a}) because ranky(A U {a}) = ranky(A) = Card(X).
Let then Y be a basis of M | (BU {a}) that contains X. One hasa ¢ Y;
otherwise, X U {a} would be a free subset of A U {a} of cardinality
Card(X) + 1, contradicting the hypothesis that X is a basis of A U {a}.
Consequently, Y is a basis of M | B, and ranky(B U {a}) = Card(Y) =
ranky(B), so that a € (B). This proves property (c2).

Let A be a subset of M. The subset ((A)) is the largest subset of M
containing (A) with rank equal to ranky({A)) = ranky(A). Since (A)
contains A, lemma 5.2.12 implies that <(A)> = (A), hence (c3).

Let A be asubsetof M,leta e Mandletb € (AU {a}) = (A). Then
ranky(AU{b}) = rankyi(A)+1 and ranky(AU{a, b}) = rankp(AU{a}).
The inequalities

ranky(A)+1 < ranky(AU{b}) < ranky(AU{a, b}) = ranky(AU{a}) < ranky(A)+1
imply that
ranky(A U {a,b}) = rankp(A U {b}) = rankp(A) + 1,

hence a € (AU {b}), proving (c4).

Conversely, let us assume that c : B(M) — PB(M) is a map satisfying
the properties (c1) to (cs), and let us show that there is a unique matroid
structure on M such that c(A) = (A) for every subset A of M. Let us say
that a subset A of M is free if x ¢ c(A —{x}) for all x € A, and let A\
be the set of all free subsets of M. We now prove that % satisfies the
axioms (I;), (I,) and (I3) of a matroid structure.

By definition, the emptyset is free, establishing (I;).
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Let A, Bbe subsets of M such that A C B and Bis free; let us prove that
Aisfree. Letx € A. Then c(A—={x}) C c(B={x}); since x ¢ c(B—{x}),
this implies that x ¢ c(A — {x}). This establishes (I,).

Let us now prove an intermediate result: Let A be a free subset of M
and x € M; then A U {x} is not free if and only if x € c(A) = A. First
assume that A U {x} is not free; since A is free, one has x ¢ A. Let
then y € AU {x} be such that y € c((AU {x})={y}). Silf y = «x,
then we get x = y € c(A—={x}) C c(A). Otherwise, one has y € A,
hence y ¢ c(A—={y}), because A is free, and y € c((A={y}) U {x}). By
the axiom (cy), this implies x € c((A={y}) U {y}) = c(A). Conversely,
let x € ¢(A)=—A. Since x ¢ A, one has (A U {x})={x} = A, hence
x € c((AU {x})={x}); this proves that A U {x} is not free.

We prove axiom (I3) by induction on Card(A N B). Let A, B be free
subsets of M such that Card(A) < Card(B). Letb € B=A. If A C
c(B={b}), then c(A) C c(B={b}), hence b ¢ c(A), because B is free. By
the intermediate result, BU {b} is free. Otherwise, let us considera € A
such thata ¢ c(B—{b}). By the intermediate result, B’ = (B—{b}) U {a}
is free, and A N B’ = (A N B) U {a} has cardinality Card(A N B) + 1. By
the induction hypothesis, there exists ¢ € B’ = A such that A U {c} is
free. Since a € A, one has c € B, and this concludes the proof.

Finally, we prove that c(A) = (A) for every subset A of M. Let B be
a basis of M | A, so that B is a free subset of A such that Card(B) =
rankyi(A). For every a € A — B, the set B U {a} is not free, hence A C
c(B) € c(A), by the indermediate result. As a consequence, c(B) = c(A).

Leta € (A) and let us prove that a € c(A). By assumption, ranky (A U
{a}) = rankm(A), hence BU {a} is not free. By the intermediate result,
this implies that a € ¢(B), hence a € c(A); this proves that (A) C c(A).

On the other hand, leta € c(A)=A. By the intermediate result, AU{a}
is not free, so that a € (A).

A.1.7. Matroid and flats. — Let us prove that the set #\ of flats of a
matroid satisfies the axioms (F;) and (F»).

Since M ¢ (M) € M, one has M = (M) and M is a flat.

Let A, Bbe flatsin M. One has (ANB) c (A) = Aand (ANB) C (B)B,
hence (A N B) € A N B. This implies that A N B is flat.

This establishes axiom (F).
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Let A € #ybesuchthat A # M. Letx e M=A and letF = (AU {x});
this is the smallest flat of M that contains AU {x}. Let y € F—A. By the
axiom (c4), one has x € (AU{y}), hence x € (AU{y}). This implies that
F is a minimal flat of M among those which strictly contain A. Since
x € F, this establishes axiom (F).

Conversely, let # be a subset of P(M) satisfying the properties (F)
and (F»), and let us prove that it is the set of flats of M for a unique
matroid structure on M. We define a closure operator ¢ on ‘¥(M) by
setting c(A) to be the intersection of all elements of # that contain A.
This is the smallest subset of # containing A. If a matroid structure
on M has & for flats, it has the map c for its closure operator, and
conversely since a set A is flat if and only if A = c(A). Consequently, it
suffices to prove that the map c satisfies the axioms (c1) to (cs).

Properties (c1), (c2)and (cz)follow from the definition of c. Let now A
be asubsetof M,a € Mand b € c(AU{a})=c(A). Then c(AU{a})is the
minimal element of % that contains A U {a}. Since b € c(A U {a}), one
hasc(A) c c(AU{b}) c c(Au{a}). By property (F»), the only elements F
of # such that ¢(A) C F C c(A U {a}) are c(A) and c(A U {a}). Since
b ¢ c(A), one has c(A U {b}) = c(A U {a}, establishing axiom (c4).

A.1.8. The lattice of flats of a matroid. — We first prove that the lat-
tice Fu of flats of a matroid satisfies these properties. Axiom (L) is
lemma 5.2.19. Granted the relation between height and rank provided
by that lemma, axiom (L,) is exactly the axiom (R3) of ranks. Let A be a
flat. The set of loops in M is the smallest flat (@) of M; in particular, it is
contained in A. For any a € A which isnotaloop of M, the flat A, = (a)
is an atom of #\; which is contained in A and contains a. Moreover, the
supremum of these atoms is contained in A, contains each element of A
which is not a loop, and contains each loop of A; it is thus equal to A.

Let now L be a finite lattice satisfying the axioms of proposition 5.2.20,
and let us show that L is isomorphic to the lattice of flats of some
matroid. Let E be the set of atoms of L; for any subset A of E, let
(A) =sup(A) and let r(A) = ht((A)).

Since (@) is the smallest element of L, one has (@) = 0.

Let A, B be subsets of E such that A c B; one has sup(A) < sup(B),
hence r(A) < r(B).
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Let A be a subset of E and let e € E. Then
r(A U {e}) = ht(sup(sup(A), e))
< ht(sup(A)) + ht(e) — ht(inf(sup(A), e))
<r(A)+1.
Assume that 7(A U {e}) =r(AU {f}) = r(A). Then,

r(AU{e, f}) = ht(sup((A U {e}), (AU {f}))
<ht((AU {e})) +ht({AU {f})) —ht({(A U {e}) N (AU {f}))
<r(Au{e}) +r(AU{f}) - rA),

because (A) < inf((A U {e}), (AU {f})). Consequently, (AU {e, f}) <
r(A), and one has equality r(A U {e, f}) = r(A).

These properties are the so-called local axioms for the rank func-
tion r: P(E) — N; they imply the axioms (R;), (R2) and (R3). The
inequalities of (R;) and (R2) hold, by induction. To prove the submodu-
lar inequality, we first remark that the intermediate result proved §A.1.4
still holds in this context: Let x, y1, ..., Y, € L be such that r(sup(x, y;)) =
r(x) for all i; then r(sup(x, y1,...,Yn)) = r(x). It by induction, it suffices
to treat the case n = 2, which is precisely the last of the local axioms.
From that point on, one proves in the same way that the subsets X C E
such that r(X = {x}) < r(X) for all x € X are the free sets for a unique
matroid structure on E.
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Pliicker embedding, 196



polar subset, 18
polyhedral decomposition, 37
regular —, 41
polyhedral subspace, 36
power-multiplicativesee also
radical 79

R

radical seminorm, 79
rank of a matroid, 179
rational polyhedron, 35
recession cone, 14
redundant inequality, 16
Reinhardt domain, 54, 56
relative interior, 16
Ronkin function, 68
Rouché’s theorem, 63

S

seminorm on a ring, 79

simplex method, 6

stable intersection, 233

support of a Laurent
polynomial, 93

supporting hyperplane of a
polyhedron, 23
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T

theorem of Birkhoff-von
Neumann, 30

torus, 142

tree distance, 208

tropical basis of an ideal, 121

tropical hypersurface, 92

tropical linear space, 218

tropical polynomial, 92

tropical variety, 73, 121

tropicalization map, 53

tropicalization of an algebraic
subvariety of (C*)", 54

U
ultrametric seminorm, 80

\Y%
valuation

on a matroid, 215
vertex of a polyhedron, 24

\4Y
weighted polyhedral subspace,
223
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