
ALGEBRAIC GEOMETRY
OF SCHEMES

Antoine Chambert-Loir



Antoine Chambert-Loir
Université Paris Cité, Institut de mathématiques de Jussieu Paris Rive Gauche,
8 place Aurélie Nemours, F-75013 Paris.
E-mail : antoine.chambert-loir@u-paris.fr

Version of February 7, 2024, 10h39
The most up-do-date version of this text should be accessible online at address
https://webusers.imj-prg.fr/~antoine.chambert-loir/enseignement/2023-24/
cohcoh/ag.pdf
©1998–2024, Antoine Chambert-Loir

https://webusers.imj-prg.fr/~antoine.chambert-loir/enseignement/2023-24/cohcoh/ag.pdf
https://webusers.imj-prg.fr/~antoine.chambert-loir/enseignement/2023-24/cohcoh/ag.pdf


CONTENTS

1. Commutative algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Recollections (Uptempo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Localization (Medium up) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. Nakayama’s lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Integral and algebraic dependence relations . . . . . . . . . . . . . . . . . . . . . . 9
1.5. The spectrum of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6. Finitely generated algebras over a field . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7. Hilbert’s Nullstellensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8. Tensor products (Medium up) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9. Noetherian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.10. Irreducible components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.11. Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.12. Artinian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.13. Codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.14. Krull’s Hauptidealsatz and regular rings . . . . . . . . . . . . . . . . . . . . . . . . 44
1.15. Associated ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2. Categories and homological algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1. The language of categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2. Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3. Limits and colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4. Representable functors. Adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5. Exact sequences and complexes of modules . . . . . . . . . . . . . . . . . . . . . . 73
2.6. Differential modules and their homology . . . . . . . . . . . . . . . . . . . . . . . 76
2.7. Projective modules and projective resolutions . . . . . . . . . . . . . . . . . . . . 82
2.8. Injective modules and injective resolutions . . . . . . . . . . . . . . . . . . . . . . 86
2.9. Abelian categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



iv CONTENTS

2.10. Exact sequences in abelian categories . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.11. Injective and projective objects in abelian categories . . . . . . . . . . . . . 100
2.12. Derived functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3. Sheaves and their cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.1. Presheaves and sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2. Some constructions of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.3. Direct and inverse images of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.4. The abelian category of abelian sheaves . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.5. Support, extension by zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.6. Cohomology of abelian sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.7. Flasque sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.8. Cohomological dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4. Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.1. Sheaves associated to modules on spectra of rings . . . . . . . . . . . . . . . . 153
4.2. Locally ringed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.3. Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.4. Some properties of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5. Products of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.6. Group schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.7. Coherent and quasi-coherent modules on schemes . . . . . . . . . . . . . . . 184
4.8. Schemes associated with graded algebras . . . . . . . . . . . . . . . . . . . . . . . . 195
4.9. Locally free modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.10. Invertible sheaves and divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.11. Graded modules and quasi-coherent sheaves on homogeneous

spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5. Morphisms of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.1. Morphisms of finite type, morphisms of finite presentation . . . . . . . . 223
5.2. Subschemes and immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.3. Affine morphisms, finite morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.4. Separated and proper morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.5. Flat morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.6. The module of relative differential forms . . . . . . . . . . . . . . . . . . . . . . . . 256
5.7. Smooth morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6. Cohomology of quasi-coherent sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 267



CONTENTS v

6.1. Cohomology of affine schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.2. Serre’s characterization of affine schemes . . . . . . . . . . . . . . . . . . . . . . . 269
6.3. Cohomology of the projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283





CHAPTER 1

COMMUTATIVE ALGEBRA

1.1. Recollections (Uptempo)

1.1.1. Basic algebraic structures. — The concepts of groups, rings, fields,mod-
ules are assumed to be known, as well as the notion of morphisms of groups,
rings, fields, modules, etc.
In this course, rings are always commutative and possess a unit element,

generally denoted by 1. The multiplicative group of invertible elements of a
ring A will be denoted by A∗ or A×.

1.1.2. Algebras. — Let k be a ring. A k-algebra is a ring A endowed with a
morphism of rings f ∶ k → A. When this morphism is injective, we will often
understate the morphism f and consider that A is an overring of k, or that k
is a subring of A... Let (A, f ∶ k → A) and (B, g∶ k → B) we two k-algebras; a
morphism of k-algebras is a ring morphism φ∶A→ B such that g = φ ○ f .

1.1.3. Polynomial algebras. — Let I be a set. One defines a k-algebra k[(Xi)i∈I]
of polynomials with coefficients in k in a family (Xi)i∈I of indeterminates indexed
by I. This algebra satisfies the following universal property: for every family
(ai)i∈I of elements of A, there exists a unique morphism φ∶ k[(Xi)i∈I] → A
of k-algebras such that φ(Xi) = ai for every i ∈ I. In other words, for every
k-algebra A, the canonical map

Homk−Algebras(k[Xi], A)→ HomEns(I, A), φ ↦ (i ↦ φ(Xi))
is a bijection.
When I has one, two, three,... elements, the indeterminates are often denoted

by individual letters, say X, Y, Z,...
Let J be a subset of I, and let K be its complementary subset. The polynomial

algebra k[(Xi)i∈I] is isomorphic to the polynomial algebra k[(Xi)i∈J][(Xi)i∈K]
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in the indeterminates Xi (for i ∈ K) with coefficients in the polynomial algebra
k[(Xi)i∈J] with coefficients in k in the indeterminates Xi (for i ∈ J).
We do not detail the notion of degree in one of the indeterminates (of degree,

if I is a singleton).
There is a notion of euclidean division in polynomial rings. Let A be a ring,

let f , g ∈ A[X] be polynomials in one indeterminate X with coefficients in A. If
the leading coefficient of g is invertible in A, there exist a unique pair (q, r) of
polynomials in A[X] such that f = gq + r and deg(r) < deg(g).

1.1.4. Ideals. — An ideal of a ring A is a non-empty subset I which is stable
under addition, and such that ab ∈ I for every a ∈ A and every b ∈ I. In other
words, this is a A-submodule of A.

The subsets {0} and A are ideals. The intersection of a family of ideals of A
is an ideal. If S is a subset of A, the ideal generated by S is the smallest ideal
of A containing S (it is the intersection of all ideals of A which contain S). Let I
and J be ideals of A; the ideal I + J (resp. the ideal I ⋅ J, also denoted by IJ) is the
ideal generated by the set of sums a + b (resp. the set of products ab) for a ∈ I
and b ∈ J. The ideal generated by a family of elements of A is often denoted by
((ai)i∈I); for example (a), (a, b), (a1, a2, a3)...

The image φ(I) of an ideal I of A under a morphism of rings φ∶A → B is
generally not an ideal of B; the ideal it generates is often denoted by IB. However,
the inverse image of an ideal J of B by such a morphism of rings is always an
ideal of A. In particular, the kernel ker(φ) = φ−1(0) of a morphism of rings is
an ideal of A.
Let I be an ideal of A. The relation x ∼ y defined by x − y ∈ I is an equivalence

relation. The quotient set A/∼, denoted by A/I, admits a unique ring structure
such that the canonical surjection π∶A → A/∼ is a morphism of rings. The
so-called quotient ring A/I possesses the following universal property: for every
ring B and every morphism of rings f ∶A→ B such that f (I) = {0}, there exists
a unique morphism of rings φ∶A/I→ B such that f = φ ○ π.

The kernel of the canonical morphism π is the ideal I itself. More generally,
the map associating with an ideal J of A/I the ideal π−1(J) of A is a bijection
between the (partially ordered) set of ideals of A/I and the (partially ordered)
set of ideals of A which contain I.
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1.1.5. Domains. — Let A be a ring. One says that an element a ∈ A is a zero-
divisor if there exists b ∈ A, such that ab = 0 and b ≠ 0. One says that A is an
integral domain, or a domain, if A ≠ {0} and if 0 is its only zero-divisor. Fields
are integral domains.

1.1.6. Prime and maximal ideals. — One says that an ideal I of A is prime if
the quotient ring A/I is an integral domain. This means that I ≠ A and that for
every a, b ∈ A such that ab ∈ I, either a ∈ I, or b ∈ I.
One says that an ideal I of A ismaximal if the quotient ring A/I is a field. This

means that I is a maximal element of the partially ordered set of ideals of A
which are not equal to A. A maximal ideal is a prime ideal.
One deduces from Zorn’s theorem that every ideal of A which is distinct

from A is contained in some maximal ideal. (Indeed, if I is an ideal of A such
that I ≠ A, the set of ideals J of A such that I ⊆ J ⊊ A, ordered by inclusion, is
inductive—every totally ordered subset admits an upper-bound) In particular,
every non-zero ring contains maximal ideals.
Hilbert’s Nullstellensatz (theorem 1.7.1 below) gives a description of the maxi-

mal ideals of polynomials rings over algebraically closed fields.

1.1.7. — If a ring admits exactly one maximal ideal, one says that it is a local
ring. A ring is local if and only if its set of non-invertible elements is an ideal
(exercise!).
Let A and B be local rings; letmA andmB be their maximal ideals; let κ(A) =

A/mA and κ(B) = B/mB be their residue fields. A morphism f ∶A → B is said
to be local if f (mA) ⊆ mB or, equivalently, if f −1(mB) = mA. Observe that
a local morphism f ∶A → B passes to the quotient and induces a morphism
κ(A)→ κ(B) between their residue fields.

1.1.8. — The intersection J of all maximal ideals of a ring A is called its Jacobson
radical. It admits the following characterization: one has a ∈ J if and only if
1 + ab is invertible in A for every b ∈ A (exercise!).

1.1.9. — Let A be an integral domain and let K be its field of fractions. One
says that A is a valuation ring if, for every non-zero element a of K, either a ∈ R,
or 1/a ∈ R (or both).
Assume that A is a valuation ring. Let a, b be element of A which are not

invertible. If a = 0, then a + b = b is not invertible; assume that a ≠ 0 and let
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x = b/a. If x ∈ R, then a + b = a(1 + x) is not invertible; otherwise, x ≠ 0, hence
1/x ∈ R and a + b = b(1 + 1/x) is not invertible as well. This implies that the set
A A× of non-invertible elements of A is an ideal, hence a valuation ring is a
local ring.

1.1.10. — Let A be an integral domain. One says that an element a ∈ A is
irreducible if it is not invertible and if the equality a = bc for b, c ∈ A implies that
b or c is invertible. An element a is said to be prime if the principal ideal (a) is
prime; this implies that a is irreducible but the converse does not hold (exercise!;
show, for example, that the element 1+ i√5 of the ring Z[i√5] is irreducible but
not prime).
One says that the ring A is a unique factorization domain (ufd, in short) if the

following two properties hold:
(a) Every strictly increasing sequence of principal ideals of A is finite;
(b) Every irreducible element of A generates a prime ideal.

Indeed, these two properties are equivalent to the fact that every non-zero
element of A can be written as the product of an invertible element and of
finitely many prime elements of A, in a unique way up to the order of the factors
and to multiplication of the factors by units.
Condition (ii) is sometimes stated under the name of ‘‘Gauss’s lemma’’: If A

is a ufd, then every irreducible element a which divides a product bc must divide
one of the factors b or c. Condition (i) obviously holds when A is noetherian.
Consequently, a noetherian ring for which Gauss’s lemma holds is a ufd.
Principal ideal rings are unique factorization domains, as well as polynomial

rings over fields. In fact, if A is a ufd, then so is A[X] (a theorem proved by
Gauss for A = Z).

1.2. Localization (Medium up)

Let A be a ring.

1.2.1. Nilpotent elements. — One says that an element a ∈ A is nilpotent if
there exists an integer n ⩾ 1 such that an = 0. The set of nilpotent elements of A
is an ideal of A, called its nilradical. When 0 is the only nilpotent element of A,
one says that A is reduced. More generally, when I is an ideal of A, one defines
the radical of I, denoted by

√
I, as the set of all a ∈ I for which there exists an
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integer n ⩾ 1 such that an ∈ I; it is an ideal of A which contains I. An ideal which
is equal to its radical is called a radical ideal.

1.2.2. Multiplicative subsets. — Amultiplicative subset of A is a subset S ⊆ A
which contains 1 and such that ab ∈ S for every a, b ∈ S.

1.2.3. — Let M be an A-module. The fraction module S−1M (sometimes also
denoted byMS) is the quotient of the set M×S by the equivalence relation ∼ such
that (m, s) ∼ (m′, s′) if and only if there exists t ∈ S such that t(sm′ − s′m) = 0.
Let us denote by m/s the class in S−1M of the pair (m, s) ∈M × S. The addition
of the abelian group S−1M is given by the familiar formulas

(m/s) + (m′/s′) = (s′m + sm′)/ss′,

for m,m′ ∈M, s, s′ ∈ S; its zero is the element 0/1. Its structure of an A-module
is given by a ⋅ (m/s) = (am)/s, for a ∈ A, m ∈M and s ∈ S.
For every s ∈ S, the multiplication by s is an isomorphism on S−1M—one says

that S acts by automorphisms on S−1M. The map θ∶M→ S−1M given by θ(m) =
m/1 is a morphism of A-modules; it satisfies the following universal property:
For every morphism of A-modules f ∶M→ N such that S acts by automorphisms
on N, there exists a unique morphism of A-modules φ∶S−1M → N such that
f = φ ○ θ (explicitly: f (m) = φ(m/1)) for every m ∈M).

1.2.4. — Let B be an A-algebra. Then the module of fractions S−1B has a natural
structure of an A-algebra for which the multiplication is given by the familiar
formulas

(b/s) ⋅ (b′/s′) = (bb′)/(ss′),
for b, b′ ∈ B and s, s′ ∈ S; its zero and unit are the elements 0/1 and 1/1. The
canonical map θ∶B → S−1B is a morphism of A-algebras, and the images of
the elements of S are invertible in S−1B. In fact, this morphism satisfies the
following universal property: For every morphism of A-algebras f ∶B→ B′ such
that the images of elements of S are units of B′, there exists a unique morphism
of A-Algebras φ∶ S−1B→ B′ such that f = φ ○ θ.
In particular, S−1A itself is an A-algebra.. Moreover, for every A-module M,

the A-module S−1M has a natural structure of a S−1A-module.
The ring S−1A is the zero ring if and only if 0 ∈ S.
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1.2.5. Examples. — Let us give examples of multiplicative subsets and let us
describe the corresponding ring of fractions.

a) Let a ∈ A; the set S = {1, a, a2, . . . } is a multiplicative subset which con-
tains 0 if and only if a is nilpotent. The corresponding fraction ring is of-
ten denoted by Aa. Let φ1∶A[T] → Aa be the morphism of rings given by
φ1(P) = P(1/a); it is surjective and its kernel contains the polynomial 1 − aT.
Let φ∶A[T]/(1 − aT)→ Aa be the morphism of rings which is deduced from φ1
by passing to the quotient; let us show that φ is an isomorphism by constructing
its inverse.

The obvious morphismψ1∶A→ A[T]/(1−aT)maps a to an invertible element
of A[T]/(1 − aT); by the universel property of the localization, there exists a
unique morphism of rings ψ∶Aa → A[T]/(1 − aT) such that ψ(b) = b for every
b ∈ A; one has ψ(b/an) = b cl(T)n for every b ∈ A and every integer n ⩾ 0.
Moreover, φ ○ ψ(b/an) = b/an, so that φ ○ ψ = id. In the other direction,
ψ ○ φ(b) = b for every b ∈ A and ψ ○ φ1(T) = ψ(1/a) = cl(T); consequently,
ψ ○ φ1(P) = cl(P) for every polynomial P ∈ A[T], hence ψ ○ φ = id. This shows
that φ is an isomorphism, with inverse ψ, as claimed.
b) Let I be an ideal of A. The set S = 1+ I = {a ∈ I ; a− 1 ∈ I} is a multiplicative

subset of A.
c) Let f ∶A→ B be a morphism of rings, let T be a multiplicative subset of B

and let S = f −1(T). Then S is a multiplicative subset of A and there is a unique
morphism of rings φ∶ S−1A→ T−1B such that φ(a/1) = f (a)/1 for every a ∈ A.
d) If A is an integral domain, then S = A {0} is a multiplicative subset of A;

the fraction ring S−1A is a field, called the field of fractions of A.
e) Let p be an ideal of A and let S = A p. Then S is a multiplicative subset

of A if and only if p is a prime ideal of A; the fraction ring is denoted Ap.

1.2.6. — Let A be a ring, let S be a multiplicative subset of A. For every ideal I
of A, the ideal θ(I)(S−1A) generated by the image of I in S−1A is denoted by S−1I.
It is equal to S−1A if and only if S∩ I ≠ ∅. Moreover, every ideal of S−1A is of this
form.
Finally, the map p↦ S−1p is a bijection from the set of prime ideals of A which

do not meet S to the set of prime ideals of S−1A.
In particular, for every prime ideal p of A, the ring Ap is a local ring, called

the localization of A at p, and pAp is its maximal ideal.
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Lemma (1.2.7). — Let A be a ring, let S be a multiplicative subset of A and let I
be an ideal of A. If I does not meet S, then there exists a prime ideal p of A which
contains I and does not meet S.

Proof. — Since I∩ S = ∅, the ideal S−1I is distinct from S−1A, hence is contained
in some maximal ideal of S−1A, of the form S−1p, for some prime (but non
necessarily maximal) ideal p of A. One then checks that I ⊆ p. Let indeed a ∈ I.
Since one has a/1 ∈ S−1I ⊆ S−1p, there exists b ∈ p and s ∈ S such that a/1 = b/s.
By definition of the ring S−1A, there exists t ∈ S such that t(as − b) = 0. In
particular, sta = tb ∈ p. Since st ∈ S and S∩p = ∅, the definition of a prime ideal
implies that a ∈ p, as was to be shown.

Proposition (1.2.8). — The radical of an ideal is the intersection of the prime ideals
which contain it. In particular, the nilradical of a ring is the intersection of its
prime ideals.

Proof. — Let A be a ring. Nilpotent elements are contained in every prime
ideal of A. Conversely, let a ∈ A be a non-nilpotent element. By definition, the
multiplicative subset S = {1, a, a2, . . . } is disjoint from the ideal {0}, hence there
exists a prime ideal p of A which does not meet S; in particular, a /∈ p.

Lemma (1.2.9). — Let A be a ring and let M be an A-module. The following
properties are equivalent:
(i) One hasM = 0;
(ii) One hasMp for every prime ideal p of A;
(iii) One hasMm = 0 for every maximal idealm of A.

Proof. — The implications (i)⇒(ii) and (ii)⇒(iii) are obvious. Let us assume
that (iii) holds and let us show that M = 0. Let x ∈M and let I be the set of all
elements a ∈ A such that ax = 0; then I is an ideal of A. By assumption, for every
m ∈ Spm(A), there exists an element a ∈ A m such that ax = 0; in other words,
I is not contained in any maximal ideal of A. This implies that I = A, hence 1 ∈ A
and x = 0. Consequently, M = 0, as claimed.

Definition (1.2.10). — Let A be a ring and letM be an A-module. The support
ofM is the set of all prime ideals p of A such thatMp ≠ 0.

Proposition (1.2.11). — LetM be an A-module.
a) One has SuppA(M) = ∅ if and only ifM = 0.
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b) IfM is generated by one element m, then SuppA(M) = V(AnnA(M)).
c) If M is finitely generated, then SuppA(M) is a closed subset of Spec(A)

contained in V(AnnA(M)).

Proof. — a) If M = 0, then Mp = 0 for every p ∈ Spec(A), so that SuppA(M)
is empty. Conversely, if SuppA(M) is empty, then M = 0 by lemma 1.2.9.
b) For a prime ideal p ∈ Spec(A), one has m/1 = 0 in Mp if and only if there

exists s ∈ A p such that sm = 0, that is AnnA(M) /⊆ p. Equivalently, m/1 ≠ 0
in Mp if and only if AnnA(M) ⊆ p, so that SuppA(M) = V(AnnA(M)).
c) Let S be a finite generating subset of M. For every p ∈ Spec(A), the set S

generates Mp. Consequently, SuppA(M) is the union of the sets SuppA(m), for
m ∈ S. In particular, this is a closed subset of Spec(A).
For every m ∈ S, one has AnnA(M) ⊆ AnnA(m), so that V(AnnA(m)) ⊆

V(AnnA(M)). Consequently, SuppA(M) ⊆ V(AnnA(M)).

1.3. Nakayama’s lemma

Theorem (1.3.1) (‘‘Cayley–Hamilton’’). — Let A be a ring and let J be an ideal
of A. Let M be an A-module which is generated by n elements and let u be an
endomorphism of M such that u(M) ⊆ JM. Then there exists elements a1 ∈ J,
a2 ∈ J2, . . . , an ∈ Jn such that

un + a1un−1 + ⋅ ⋅ ⋅ + an−1u + anIdM = 0.

Proof. — Let (m1, . . . ,mn) be a finite family which generates M. For every
i ∈ {1, . . . , n}, there exist elements ai j ∈ J such that u(mi) = ∑n

j=1 ai jm j; let P
be the matrix (ai j). We consider M as an A[T]-module, where T acts by u;
we then let n × n matrices with coefficients in A[T] act on Mn by the usual
formulas. Let In be the identity matrix; then the matrix TIn − P annihilates the
vector (m1, . . . ,mn) ∈ Mn. Let Q be the adjunct matrix of the matrix TIn − P;
one has Q ⋅ (TIn − P) = det(TIn − P)In. Consequently, the element det(TIn − P)
of A[T] annihilates the vector (m1, . . . ,mn) as well, that is, det(TIn −P) ⋅mi = 0
for every i. Since (m1, . . . ,mn) generates M as an A-module, it follows that
det(TIn − P) ⋅m = 0 for every m ∈M.
Expanding the determinant, we have

det(TIn − P) = ∑
σ∈Sn

n
∏
i=1
(TIn − P)iσ(i).
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Fix σ ∈Sn and let p be the number of fixed points of σ ; then∏n
i=1(TIn − P)iσ(i)

is the product of p factors of the form T − a, with a ∈ J, and n − p factors
of the form a ∈ J; by induction on p, this is a monic polynomial of degree p
and the coefficient of Tm belongs to Jn−p. Consequently, there are elements
a0, a1, . . . , an ∈ A, with ai ∈ Ji for every i, such that det(TIn − P) = a0Tn +
a1Tn−1 + ⋅ ⋅ ⋅ + an; moreover, a0 = 1. By the definition of the structure of A[T]-
module on M, we conclude that un + a1un−1 + ⋅ ⋅ ⋅ + anIdM = 0.

Corollary (1.3.2) (Nakayama’s lemma). — Let A be a ring, let J be an ideal of A
and letM be a finitely generated A-module such thatM = JM. There exists a ∈ J
such that (1 + a)M = 0.
In particular, if J is contained in the Jacobson radical of A (which happens, for

example, if A is local and J is its maximal ideal), thenM = 0.

Proof. — Let us apply theorem 1.3.1 to the endomorphism u = IdM of M. With
the notation of that theorem, there exist an integer n ⩾ 1 and elements a1, . . . , an ∈
J such that (1 + a1 + ⋅ ⋅ ⋅ + an)IdM = 0. It thus suffices to set a = a1 + ⋅ ⋅ ⋅ + an.
If J is contained in the Jacobson radical of A, one has 1 + a ∈ A×; the relation
(1 + a)M = 0 then implies that M = 0.

Corollary (1.3.3). — Let A be a ring, let J be its Jacobson radical. Let P be an
A-module, letM and N be submodules of P such that JM +N =M +N. IfM is
finitely generated, thenM ⊆ N.

Proof. — LetM′ = (M+N)/N =M/(M∩N); it is a finitely generated A-module.
Moreover, one has JM′ = (JM +N)/N = (M +N)/N = M′. By corollary 1.3.2,
one has M′ = 0, hence M =M ∩N, that is, M ⊆ N.

1.4. Integral and algebraic dependence relations

1.4.1. — Let f ∶A→ B be a morphism of rings. One says that an element x ∈ B
is integral over A if there exists an integer n ⩾ 1, and elements a1, . . . , . . . , an ∈ A
such that

xn + f (a1)xn−1 + ⋅ ⋅ ⋅ + f (an−1)x + f (an) = 0.
Such an equation is called an integral dependence relation. Very often, the mor-
phism f is understated and the previous relation is written simply xn + a1xn−1 +
⋅ ⋅ ⋅ + an = 0.
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Proposition (1.4.2). — An element x ∈ B is integral over A if and only if there
exists a subring R of B which contains A[x] and which is finitely generated as an
A-module.

Proof. — Let us assume that x possesses an integral dependence relation as
above; then, the A-subalgebra A[x] generated by x in B is generated as an
A-module by the elements 1, x , . . . , xn−1. It suffices to set R = A[x].
Conversely, let R be anA-subalgebra of Bwhich contains x andwhich is finitely

generated as anA-module. By theorem 1.3.1, applied to the endomorphism u of R
given by multiplication by x and to the ideal J = A, there exist an integer n and
elements a1, . . . , an ∈ A such that un + a1un−1 + ⋅ ⋅ ⋅ + an = 0 as an endomorphism
of R. Considering the image of 1, we obtain an integral dependence relation
for x, as required.

Corollary (1.4.3). — Let f ∶A → B be a morphism of rings. The set of all ele-
ments x ∈ B which are integral over A is an A-subalgebra of B, called the integral
closure of A in B.

Proof. — Let Ã be this subset of B. Let x , y be elements of Ã. Let m and n be
the degrees of integral dependence relations for x and y respectively, and let R
be the A-submodule of B generated by the finite family (x i y j), for 0 ⩽ i < m
and 0 ⩽ j < n; it is a subring of B. Since it contains x + y and xy, this shows that
these elements are integral over A, hence belong to Ã. Moreover, every element
of f (A) is integral over A; in particular, 0 and 1 are integral over A. This shows
that Ã is a subring of B; since it contains f (A), it is an A-subalgebra of B.

1.4.4. — One says that a morphism of rings f ∶A → B is integral, or that B is
integral over A, or also that B is an integral A-algebra, if every element of B is
integral over A.
If B is finitely generated as an A-module, then B is integral over A. Conversely,

if B is finitely generated as an A-algebra, and if it is integral over A, then it is
finitely generated as an A-module. We say that B is a finite A-algebra.

Lemma (1.4.5). — Let B be an integral domain and let A be a subring of B such
that B is integral over A. Then A is a field if and only if B is a field.

Proof. — Let us assume that A is a field. Let b ∈ B be a non-zero element and let
bn + a1bn−1 + ⋅ ⋅ ⋅ + an−1b + an = 0 be an integral dependence relation ofminimal
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degree for b. Let c = bn−1 + a1bn−2 + ⋅ ⋅ ⋅ + an−1, so that bc + an = 0. If an = 0, one
would have bc = 0, hence, since b ≠ 0 and B is an integral domain, c = 0, which
is an integral dependence relation of degree n − 1 for b. This contradicts the
definition of n, so that an ≠ 0. Since A is a field, an is invertible in A; let d ∈ A
be such that and = 1. Then bcd = −and = −1; consequently, b is invertible in B,
with inverse −cd. This shows that B is a field.
Let us now assume that B is a field. Let a ∈ A be any non-zero element and let

b be its inverse in B. By assumption, b is integral over A; let bn + a1bn−1 + ⋅ ⋅ ⋅ +
an−1b + an = 0 be an integral dependence relation. Since ab = 1, one has

b = an−1bn = −an−1(a1bn−1 + ⋅ ⋅ ⋅ + an) = −(a1 + a2a + ⋅ ⋅ ⋅ + anan−1).

In particular, b ∈ A, so that a is invertible in A.

1.4.6. — It is crucial that the leading coefficient of an integral dependence rela-
tion be equal to 1 (it could be a unit). When A and B are fields, this becomes
pointless; in this setting, one usually replaces the adjective integral by the adjec-
tive algebraic. One thus speaks of algebraic dependence relation, of an algebraic
element, of the algebraic closure of A in B, etc.
Let f ∶K→ L be an extension of fields. Elements of L which are not algebraic

over K are said to be transcendental. A field K is said to be algebraically closed if
it is algebraically closed in every extension L of K.
Every field K possesses an algebraic closure: this is an algebraic extension

K→ K which is algebraic and algebraically closed. Any two algebraic closures of
a field K are isomorphic (as K-algebras).

1.4.7. — Let f ∶K→ L be an extension of fields. One says that a family (ai)i∈I
of elements of L is algebraically independent if there does not exist a non-zero
polynomial P ∈ K[(Xi)i∈I] such that P((ai)) = 0, in other words if the canonical
morphism of K-algebras K[(Xi)i∈I] → L which, for every i, maps Xi to ai is
injective.
A transcendence basis of L over K is an algebraically independent family (ai)

such that L be algebraic over the subextension of L generated by the ai .
Transcendence basis exist. More precisely, the following analogue of the incom-

plete basis theorem holds: Let A ⊆ C be two subsets of L, where A is algebraically
independent over K, and L is algebraic over the subextension generated by C; then
there exists a transcendence basis B such that A ⊆ B ⊆ C. Two transcendence
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basis have the same cardinality, called the transcendence degree of L over K and
denoted tr. degK(L), or even tr. deg(L) if the field K is clear from the context.
Finally, let K→ L and L→M be two field extensions. One has the relation

tr. degK(L) + tr. degL(M) = tr. degK(M).

By abuse of language, we will sometimes make use of the words algebraic,
algebraically independent, transcendence degree, in the context of a K-algebra A
which is an integral domain, to speak of the corresponding notions of the field
of fractions of A.

1.5. The spectrum of a ring

1.5.1. — Let A be a ring. The set of all prime ideals of A is called the spectrum
(or the prime spectrum) of A and denoted by Spec(A); the subset Spm(A) of
all maximal ideals of A is called its maximal spectrum.
Every non-zero ring possesses maximal ideals. Consequently, the following

assertions are equivalent:
(i) A is the zero ring;
(ii) Its spectrum Spec(A) is empty;
(iii) Its maximal spectrum Spm(A) is empty.
For every subset E of A, let V(E) be the set of prime ideals p ∈ Spec(A) such

that E ⊆ p. One also writes V(a, b, . . . ) for V({a, b, . . . }).
The following properties essentially follow from the definitions.

Lemma (1.5.2). — a) One has V(∅) = Spec(A) and V(1) = ∅;
b) If E and E′ are subsets of A such that E ⊆ E′, one has V(E′) ⊆ V(E);
c) For every family (Eλ)λ∈L of subsets of A, one has V(⋃λ∈L Eλ) = ⋂λ∈LV(Eλ);
d) Let E, E′ be two subsets ofA and let EE′ be the set of all products ab, for a ∈ E

and b ∈ E′; then one has V(EE′) = V(E) ∪V(E′);
e) Let E be a subset of A and let I be the ideal of A generated by E; then one has

V(E) = V(I).

Proof. — a) The first property is obvious, and the second follows from the
fact that A is not a prime ideal of itself.
b) Let p ∈ V(E′); then p is a prime ideal of A such that E′ ⊆ p; it follows that

E ⊆ p, hence p ∈ V(E).
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c) Let p be a prime ideal of A. One has p ∈ V(⋃Eλ) if and only if p contains Eλ
for every λ, which means that p belongs to V(Eλ) for every λ.
d) Let p ∈ V(E). Let a ∈ E and b ∈ E′; one has a ∈ p, hence ab ∈ p, so that

p ∈ V(EE′). This shows that V(E) ⊆ V(EE′), and the inclusion V(E′) ⊆ V(EE′)
follows by symmetry. Conversely, let p ∈ V(EE′). Assume that p /∈ V(E′) and
let us show that p ∈ V(E); let b ∈ E′ be such that b /∈ p. For every a ∈ E, one
has ab ∈ EE′, hence ab ∈ p; Since p is a prime ideal, this implies that a ∈ p.
Consequently, p ∈ V(E), as was to be shown.

1.5.3. The spectral topology. — Let us decree that a subset of Spec(A) is closed
if it is of the form V(E) for some subset E of A. By property d) of lemma 1.5.2,
we may even assume that E is an ideal.
By property a) of that lemma, the empty set and Spec(A) are closed subsets.

According to property c), the intersection of a family of closed subsets is closed;
by property d), the union of two closed subsets is closed.

The sets V(E), where E runs among all subsets of A, are the closed subsets
of a topology on the spectrum Spec(A). We call it the spectral topology, or the
Zariski topology

1.5.4. — For every subset Z of Spec(A), let j(Z) be the set of a ∈ A such that
Z ⊆ V(a). One thus has j(Z) = ⋂p∈Z p; in particular, j(Z) is a radical ideal of A.

Lemma (1.5.5). — a) If Z and Z′ are subsets of Spec(A) such that Z ⊆ Z′, then
j(Z′) ⊆ j(Z);
b) If (Zλ)λ∈L is a family of subsets of Spec(A), then j(⋃λ∈LZλ) = ⋂λ∈L j(Zλ);
c) For every subset Z of Spec(A), one has the inclusion Z ⊆ V(j(Z)), with

equality if and only if Z is of the form V(E) for some subset E of A.
d) For every subset E of A, one has the inclusion E ⊆ j(V(E)), with equality if

and only if E is of the form j(Z), for some subset Z of Spec(A).

Proof. — Only the cases of equality in assertions c) and d) do not follow directly
from the definitions.
For c), it suffices to prove that V(E) = V(j(V(E))). We already know that

V(E) ⊆ V(j(V(E)); by the inclusion d), one has E ⊆ j(V(E)); applying the
map V, we conclude that V(j(V(E))) ⊆ V(E).
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Similarly, we prove d) by establishing that j(Z) = j(V(j(Z)). We know the
inclusion j(Z) ⊆ j(V(j(Z)). According to the general inclusion c), we have
Z ⊆ V(j(Z)); applying the map j, we conclude that j(V(j(Z))) ⊆ j(Z).

Proposition (1.5.6). — a) For every ideal I of A, one has j(V(I)) =
√
I.

b) For every subset Z of Spec(A), one has V(j(Z)) = Z, the closure of Z for the
spectral topology.
c) The maps E↦ V(E) and Z↦ j(Z) induce bijections, inverse one of the other,

between the set of radical ideals of A and the set of closed subsets of Spec(A).

Proof. — a) By definition, V(I) is the set of prime ideals containing I, so that
j(V(I)) is the intersection of all prime ideals containing I. By proposition 1.2.8,
one has j(V(I)) =

√
I.

b) Since V(j(Z)) is closed and contains Z, it contains its closure Z for the
spectral topology. Conversely, let Z′ be a closed subset of Spec(A) containing Z
and let us show that Z′ ⊇ V(j(Z)). Applying the map V ○ j to the inclusion
Z ⊆ Z′, we obtain V(j(Z)) ⊆ V(j(Z′)). Since Z′ is of the form V(E), one has
V(j(Z′)) = Z′, hence V(j(Z)) ⊆ Z′, as was to be shown.
c) This follows directly from properties a) and b).

Exercise (1.5.7). — Let A be a ring and let X be the topological space Spec(A).
An idempotent element of A is an element e such that e2 = e. Show that the
map a ↦ V(a) defines a bijection between the set of idempotents of A and
the set of open and closed subsets of Spec(A). (If e is idempotent, observe
that X = V(e) ∪V(1 − e).) In particular, X is connected if and only if the only
idempotent elements of A are 0 and 1.

1.5.8. Basic open sets. — For every a ∈ A, one defines D(a) = Spec(A) V(a).
It is an open subset of Spec(A). One has D(1) = Spec(A) and D(a) = ∅ if a is
nilpotent.
Let E be a subset of A. Since V(E) = ⋂a∈EV(a), we have Spec(A) V(E) =
⋃a∈ED(a). This shows that the open sets of the form D(a), for a ∈ A, form a
basis of the topology of Spec(A).

Exercise (1.5.9). — a) Let x be a point of Spec(A) and let p = j({x}) be the
corresponding prime ideal of A. Prove that the point {x} is closed in Spec(A)
if and only if p is a maximal ideal.
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b) Let x , y be two points of Spec(A) such that x ≠ y. Prove that x /∈ {y} or
y /∈ {x}. (This says that Spec(A) is a Kolmogorov topological space, aka T0.)
c) Describe the topological space Spec(Z). Show in particular that it is not

Hausdorff.
d) Prove that every open cover of Spec(A) has a finite subcover (one says that

it is quasi-compact).

Proposition (1.5.10). — a) Let φ∶A → B be a morphism of rings. For every
prime ideal q of B, the ideal φ−1(q) is a prime ideal of A. The associated map
aφ∶ Spec(B)→ Spec(A) given by aφ(q) = φ−1(q) is continuous.
b) Let I be an ideal of A and let φ∶A → A/I be the canonical morphism. The

associated map aφ is a homeomorphism from Spec(A/I) to the subspace V(I)
of Spec(A).
c) Let S be a multiplicative subset of A and let θ∶A → S−1A be the canonical

morphism. The associated map aθ is a homeomorphism from Spec(S−1A) to its
image in Spec(A), which is the set of prime ideals of A disjoint from S.
If S = {1, a, a2, . . . }, then aθ identifies Spec(S−1A) with the open subset D(a)

of Spec(A).

Proof. — a) Since q ≠ B, one has 1 /∈ q, hence 1 = φ(1) /∈ φ−1(q); consequently,
φ−1(q) ≠ A. Moreover, let a, b ∈ A be such that ab ∈ φ−1(q); then φ(ab) =
φ(a)φ(b) ∈ q, hence φ(a) ∈ q or φ(b) ∈ q, by definition of a prime ideal. This
implies that a or b belongs to φ−1(q), proving that φ−1(q) is a prime ideal of A.
To prove that the map aφ is continuous, we need to show that the inverse

image of a closed subset is closed. So let E be a subset of A. A prime ideal q of B
belongs to (aφ)−1(V(E)) if and only if aφ(q) = φ−1(q) belongs to V(E), which
means that E ⊆ φ−1(q), and is equivalent to the inclusion φ(E) ⊆ q. In other
words, we have (aφ)−1(V(E)) = V(φ(E)); this is a closed subset of Spec(B).
b) We known that the map J ↦ φ−1(J) is a bijection from the set of ideals

of A/I to the set of ideals of A which contain J. Moreover, for every ideal J
of A/I, the morphism φ induces an isomorphism from A/φ−1(J) to (A/I)/J. In
particular, an ideal J of B is prime if and only if the associated ideal φ−1(J) is
prime, and the prime ideals of A of this form are exactly those containing I. This
shows that the map aφ is a bijection from Spec(A/I) to the closed subset V(I)
of Spec(A).
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Moreover, for every ideal J of A/I, one has aφ(V(J)) = V(φ−1(J)), so that aφ
is a closed map. Since it is a continuous bijection, it is a homeomorphism.
c) We know that the continous J↦ θ−1(J) induces a continous bijection from

the set Spec(S−1A) of prime ideals of S−1A to the subset X of Spec(A) consisting
of prime ideals of A which do not meet S.
Let us show that this bijection is closed. Let E be a subset of S−1A; let E′ be

the set of elements a ∈ A such that there exists s ∈ S with a/s ∈ E, and let us
show that aθ(V(E)) = V(E′). Let p be a prime ideal of A which does not meet S,
let q = S−1p, so that p = θ−1(q). Then p belongs to aφ(V(E)) if and only if
S−1p ∈ V(E), that is if and only if E ⊆ S−1p; on the other hand, p belongs to V(E′)
if and only if E′ ⊆ p. It thus remains to show that for a prime ideal p of A which
does not meet S, the conditions E ⊆ S−1p and E′ ⊆ p are equivalent. Let us assume
that E ⊆ S−1p; let a ∈ E′ and let s ∈ S be such that a/s ∈ E; then a/s ∈ S−1p, hence
θ(a) ∈ S−1p, hence a ∈ p; this shows that E′ ⊆ p. Conversely, let us assume that
E′ ⊆ p; let b ∈ E and let (a, s) ∈ A × S be such that b = a/s; then a ∈ E′, hence
a ∈ p; consequently, b = a/s ∈ S−1p; we have shown that E ⊆ S−1p.

Remark (1.5.11). — Let φ∶A → B be a morphism of rings. Classical algebraic
geometry is essentially concerned with finitely generated algebras over a field.
In that context, corollary 1.6.3 shows that aφ maps Spm(B) into Spm(A), as the
simple example of the canonicalmorphism φ∶Z→ Q shows. This is an indication
that the spectrum of a ring is a more natural object than its maximal spectrum.
Indeed, spectra of rings were the basic block of Grothendieck’s refoundation of
algebraic geometry in the 1960s.

1.6. Finitely generated algebras over a field

Theorem (1.6.1) (Noether normalization lemma). — Let K be a field and let
A be a finitely generated K-algebra; we assume that A ≠ 0. Then there exist an
integer n ⩾ 0, elements a1, . . . , an ∈ A such that the uniquemorphism ofK-algebras
φ∶K[X1, . . . , Xn]→ A which maps Xi to ai is injective and integral.

Proof. — Let (x1, . . . , xm) be a family of elements of A such that A =
K[x1, . . . , xm]. Let us prove the result by induction on m. If m = 0, then
A = K and the result holds with n = 0. We thus assume that the result for any
K-algebra which is finitely generated by at most m − 1 elements.
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Let φ∶K[X1, . . . , Xm] → A be the unique morphism of K-algebras such that
φ(Xi) = xi . If φ is injective, the result holds, taking n = m and ai = xi for every i.
Let us assume that there is a non-zero polynomial P ∈ K[X1, . . . , Xm] such that

P(x1, . . . , xm) = 0. We are going to show that there exist strictly positive integers
r1, . . . , rm−1 such that A is integral over the subalgebra generated by y2, . . . , ym,
where yi = xi − xr i1 for i ∈ {2, . . . ,m}. Let B = K[y2, . . . , ym] be the subalgebra
of A generated by y2, . . . , ym.
Let (cn) be the coefficients of P, so that

P = ∑
n∈Nm

cn
m
∏
i=1

Xn i
i .

Let r be an integer strictly greater than the degree of P in each variable; in other
words, cn = 0 if there exists i such that ni ⩾ r; then set ri = r i−1 and yi = xi − xr i1
for i ∈ {2, . . . ,m}. We define a polynomial Q ∈ B[T] by

Q(T) = P(T, y2 + Tr2 , . . . , ym + Trm)
= ∑

n∈Nm
cnTn1(y2 + Tr2)n2 . . . (ym + Trm)nm

= ∑
n∈Nm

n2

∑
j2=0
⋅ ⋅ ⋅

nm

∑
jm=0
(n2
j2
) . . . (nm

jm
)cnyn2− j2

2 . . . ynm− jm
m Tn1+∑

m
i=2 j ir i

and observe that Q(x1) = P(x1, x2, . . . , xm) = 0.
OrderNm with the ‘‘reverse lexicographic order’’: (n′1, . . . , n′m) < (n1, . . . , nm)

if and only if n′m < nm, or n′m = nm and n′m−1 < nm−1, etc. Let n be the largest
multi-index in Nm such that cn ≠ 0. For any other n′ ∈ Nm such that cn′ ≠ 0, one
has n′i < r for every i, so that for any j2 ∈ {0, . . . , n′2}, . . . , jm ∈ {0, . . . , nm},

n′1 + j2r2 + ⋅ ⋅ ⋅ + jmrm ⩽ n′1 + n′2r + ⋅ ⋅ ⋅ + n′mrm−1 < n1 + n2r + ⋅ ⋅ ⋅ + nmrm−1.

This implies that the degree of Q is equal to n1+n2r+⋅ ⋅ ⋅+nmrm−1 and that only the
term with jk = nk for k ∈ {2, . . . ,m} contributes the leading coefficient, which
thus equals cn. In particular, Q is a polynomial in B[T]whose leading coefficient
is a unit, so that x1 is integral over B. Consequently, B[x1] is integral over B. For
every i ∈ {2, . . . ,m}, one has xi = yi − xr i1 ∈ B[x1]. Since A = K[x1, . . . , xm], we
conclude that A = B[x1] and A is integral over B.
By induction, there exist an integer n ⩽ m − 1 and elements a1, . . . , an ∈ B

such that the unique morphism f ∶K[T1, . . . , Tn] → B of K-algebras such that
f (Ti) = ai for all i is injective and such B is integral over K[a1, . . . , an]. Then
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A is integral over K[a1, . . . , an] as well, and this concludes the proof of the
theorem.

We now deduce from the Noether normalization lemma some important
algebraic properties of rings which are finitely generated algebras over a field.
The following result is the basis of everything that follows; due to Zariski, it is
sometimes considered as the ‘‘algebraic version’’ of Hilbert’s Nullstellensatz.

Theorem (1.6.2) (Zariski). — Let K be a field and let A be a finitely generated
K-algebra. If A is a field, then A is a finite algebraic extension of K.

Proof. — By the Noether normalization lemma (theorem 1.6.1), there exist
an integer n ⩾ 0 and an injective and integral morphism of K-algebras
f ∶K[X1, . . . , Xn]→ A. Since A is a field, lemma 1.4.5 implies that K[X1, . . . , Xn]
is a field as well. For n ⩾ 1, the ring of polynomials in n indeterminates is not
a field (consider the degree with respect to X1, for example), so that n = 0.
Consequently, A is integral over K. Since A is finitely generated as a K-algebra,
it is a finite K-module, hence a finite extension of K.

Corollary (1.6.3). — Let K be a field and let φ∶A→ B be a morphism of finitely
generated K-algebras. For every maximal idealm of B, φ−1(m) is a maximal ideal
of A. In other words, the continuous map aφ∶ Spec(B)→ Spec(A)maps Spm(B)
to Spm(A).

Proof. — Let n = φ−1(m); it is a prime ideal of A. Passing to the quotients, the
morphism φ induces an injective morphism φ′∶A/n→ B/m of finitely generated
K-algebras. By assumption, B/m is a field; by corollary 1.6.2, it is a finite extension
of K, that is a finite dimensional K-vector space. A fortiori, A/n is a finite
dimensional K-vector space. This implies that A/n is integral over K; since K is
a field and A/n is an integral domain, this implies that A/n is a field, hence n is
a maximal ideal of A.

Corollary (1.6.4). — Let K be a field and let A be a finitely generated K-algebra.
a) The nilradical of A coincides with its Jacobson radical;
b) For every ideal I of A, its radical

√
I is the intersection of all maximal ideals

of A which contain I.
c) For every closed subset Z of Spec(A), the intersection Z ∩ Spm(A) is dense

in Z.



1.7. HILBERT’S NULLSTELLENSATZ 19

Proof. — a) We need to prove that an element a ∈ A is nilpotent if and only if it
belongs to every maximal ideal of I. One direction is clear: if a is nilpotent, it
belongs to every prime ideal of I, hence to every maximal ideal of I. Conversely,
let us assume that a is not nilpotent and let us show that there exists a maximal
idealm of A such that a /∈ m. Let S be the multiplicative subset {1, a, a2, . . . } and
let B be the K-algebra given by B = S−1A; it is non-zero and finitely generated.
By the preceding corollary, the inverse image in A of a maximal ideal of B is
a maximal ideal of A which does not contain a. This concludes the proof of
assertion a).
b) Let B = A/I; it is a finitely generated K-algebra and its maximal ideals are

of the formm/I, wherem is a maximal ideal of A containing I. By part a), the
nilradical of B is the intersection of the maximal ideals of B. Since the class of a
element a ∈ A is nilpotent in B if and only if a ∈

√
I, this implies that

√
I is the

intersection of all maximal ideals of A which contain I.
c) Let I be an ideal of A such that Z = V(I), let U be an open subset of Spec(A)

such that U∩Z is non-empty. We need to show that U∩Z∩Spm(A) is non-empty.
We may moreover assume that U is of the form D(a), for some a ∈ A; then the
image ā of a in A/I is not nilpotent (otherwise, D(ā) = ∅ in Spec(A/I), hence
V(I) ∩D(a) = ∅). Consequently, there exists a maximal idealm of A such that
I ⊆ m and a /∈ m. This maximal ideal is an element of D(a)∩Z∩Spm(A), hence
D(a) ∩ Z ∩ Spm(A) is non-empty.

Exercise (1.6.5). — This exercise revisits the main technical step of the Noether
normalization lemma in the case where K is an infinite field. Let A be a (non-
zero) finitely generated algebra; assume that A = K[x1, . . . , xm], and let P ∈
K[T1, . . . , Tm] be a non-zero polynomial such that P(x1, . . . , xm) = 0. Prove
that there exist elements a2, . . . , am ∈ K such that, denoting yi = xi − aix1, x1 is
integral over the subring generated by y2, . . . , ym.

1.7. Hilbert’s Nullstellensatz

Theorem (1.7.1) (Nullstellensatz, 1). — Let K be an algebraically closed field and
let n be an integer such that n ⩾ 0. For every maximal idealm of the polynomial
ring K[X1, . . . , Xn], there exists a unique element (a1, . . . , an) ∈ Kn such that
m = (X1− a1, . . . , Xn − an). Conversely, every ideal of this form is a maximal ideal.
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Proof. — Let (a1, . . . , an) ∈ Kn and let m be the ideal (X1 − a1, . . . , Xn − an)
of K[X1, . . . , Xn]. Let φ∶K[X1, . . . , Xn]→ K be the morphism of rings given by
φ(P) = P(a1, . . . , an). It is surjective and its kernel containsm. Conversely, let
P ∈ Ker(φ). By euclidean divisions, we may write

P = (X1 − a1)Q1(X1, . . . , Xn) + (X2 − a2)Q2(X2, . . . , Xn)+
+ ⋅ ⋅ ⋅ + (Xn − an)Qn(Xn) + P(a1, . . . , an).

Since P ∈ Ker(φ), P(a1, . . . , an) = 0, so that P ∈ m.
Let now m be a maximal ideal of K[X1, . . . , Xn] and let A be the quotient

ring K[X1, . . . , Xn]/m. Since A is a field, corollary 1.6.2 implies that A is a finite
extension of K. Since K is algebraically closed, the canonical morphism K→ A
is an isomorphism. In particular, for every i ∈ {1, . . . , n}, there exists a unique
ai ∈ K such that Xi − ai ∈ m. Then (X1 − a1, . . . , Xn − an) is contained in m.
Necessarily, one hasm = (X1 − a1, . . . , Xn − an). This concludes the proof of the
theorem.

1.7.2. Algebraic sets. — Let K be a field and let n be an integer such that n ⩾ 0.
Let E be a subset of K[X1, . . . , Xn]. The algebraic setdefined by E is the subset

V (E) = {(a1, . . . , an) ∈ Kn ; ∀P ∈ E, P(a1, . . . , an) = 0}.

Lemma (1.7.3). — Let K be a field and let n ⩾ 0 be an integer.
a) One has V (∅) = Kn and V (1) = ∅;
b) IfE andE′ are subsets ofK[X1, . . . , Xn] such thatE ⊆ E′, thenV (E′) ⊆ V (E);
c) For every family (Eλ)λ∈L of subsets of K[X1, . . . , Xn], one has V (⋃λ∈L Eλ) =
⋂λ∈L V (Eλ);
d) Let E, E′ be two subsets of K[X1, . . . , Xn] and let EE′ be the set of all prod-

ucts ab, for a ∈ E and b ∈ E′; then one has V (EE′) = V (E) ∪ V (E′);
e) Let E be a subset of K[X1, . . . , Xn] and let I be the ideal generated by E; then

V (E) = V (I) = V (
√
I).

Proof. — This lemma is analogous to lemma 1.5.2 and one can prove it
in the same way. One can in fact deduce it from that lemma as fol-
lows. Let us consider the map φ∶Kn → Spec(K[X1, . . . , Xn]) given by
φ(a1, . . . , an) = (X1 − a1, . . . , Xn − an), whose image is contained in the
maximal spectrum Spm(K[X1, . . . , Xn]), and is even equal to the maximal
spectrum when K is algebraically closed. Then V (E) = φ−1(V(E)).
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1.7.4. — Let Z be a subset of Kn; one defines a subsetI (Z) of K[X1, . . . , Xn] by

I (Z) = {P ∈ K[X1, . . . , Xn] ; ∀(a1, . . . , an) ∈ Z, P(a1, . . . , an) = 0}.

It is an ideal of K[X1, . . . , Xn]; it is in fact the kernel of the morphism of rings
from K[X1, . . . , Xn] to the ring KZ given by P↦ (a ↦ P(a)).

Lemma (1.7.5). — Let K be a field and let n ⩾ 0 be an integer.
a) One has I (∅) = K[X1, . . . , Xn] and I (Kn) = {0};
b) If Z and Z′ are subsets of Kn such that Z ⊆ Z′, then I (Z′) ⊆I (Z);
c) If (Zλ)λ∈L is a family of subsets of Kn, then I (⋃λ∈LZλ) = ⋂λ∈L I (Zλ);
d) For every subset Z of Kn, one has the inclusion Z ⊆ V (I (Z)), with equality

if and only if Z is an algebraic set;
e) For every subset E of K[X1, . . . , Xn], one has the inclusion E ⊆I (V (E)).

Proof. — Assertions a), b) and c) follow directly from the definitions, as well as
the inclusions d) and e).
Let us terminate the proof of d). If Z = V (I (Z)), then Z is an algebraic

set. Conversely, let us assume that Z is an algebraic set, let E be a subset
of K[X1, . . . , Xn] such that Z = V (E). By definition, one has E ⊆ I (Z), so
that V (I (Z)) ⊆ V (E) = Z, hence the desired equality.

Theorem (1.7.6) (Nullstellensatz, 2). — Let K be an algebraically closed field, let
n ⩾ 0 be an integer, let E be a subset of K[X1, . . . , Xn] and let I be the ideal it
generates. One has I (V (E)) =

√
I. In particular, if V (E) = ∅, then I = (1).

Proof. — We give two proofs of this result; both rely on theorem 1.7.1 which
describes the maximal spectrum of K[X1, . . . , Xn]. The first one combines it
with properties of the operations V and j on the spectrum of a ring, as well as
with corollary 1.6.4 which is specific to finitely generated algebras over a field.
The second proof will be more elementary.
1) According to theorem 1.7.1, assigning the maximal ideal ma = (X1 −

a1, . . . , Xn − an) of K[X1, . . . , Xn] to the point a = (a1, . . . , an) of Kn defines a
one-to-one correspondence between Kn and Spm(K[X1, . . . , Xn]). For every
subset E of K[X1, . . . , Xn], this correspondence identifies the subset V (E)
of Kn with the subset V(E) ∩ Spm(K[X1, . . . , Xn]) of Spec(K[X1, . . . , Xn]); for
every subset Z of Spm(K[X1, . . . , Xn]), identified with a subset of Kn, one has
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J (Z) = j(Z). In particular, for every subset E of K[X1, . . . , Xn], one has

J (V (E)) = j(V(E) ∩ Spm(K[X1, . . . , Xn])).

Let J be this ideal; it is a radical ideal of K[X1, . . . , Xn]; according to proposi-
tion 1.5.6, V(J) is the closure ofV(E)∩Spm(K[X1, . . . , Xn]) in Spec(K[X1, . . . , Xn]).
By part c) of corollary 1.6.4, one thus has V(J) = V(E). By proposition 1.5.6, a),
one thus has J = j(V(J)) = j(V(E)) = j(V(I)) =

√
I.

2) The second proof of theorem 1.7.6 begins by showing the second assertion:
let us assume that I ≠ (1) and let us prove that V (E) ≠ ∅.
Since I ≠ (1), there exists a maximal idealm of K[X1, . . . , Xn] such that I ⊆ m;

in particular, E ⊆ m, hence V (m) ⊆ V (E). Let (a1, . . . , an) ∈ Kn be such that
m = (X1 − a1, . . . , Xn − an); one thus has V (m) = {(a1, . . . , an)}. We conclude
that (a1, . . . , an) ∈ V (E); it is in particular non-empty.

The inclusion
√
I ⊆I (V (E)) follows from the definitions. Let indeed P ∈

√
I

and let e be an integer such that e ⩾ 1 and Pe ∈ I. For every (a1, . . . , an) ∈ V (E),
one thus has Pe(a1, . . . , an) = 0, hence P(a1, . . . , an) = 0. This shows that
P ∈I (V (E)).
Conversely, let P ∈ I (V (E)); we need to show that P ∈

√
I. The following

proof relies on the so-called ‘‘Rabinowitsch trick’’ (Rabinowitsch (1930)). Let
E′ be the subset of K[X1, . . . , Xn , T] given by E′ = E ∪ {1 − TP}. It follows from
its definition that V (E′) = ∅: indeed, a tuple (a1, . . . , an , b) belongs to V (E′)
if and only if Q(a1, . . . , an) = 0 for every Q ∈ E and 1 = bP(a1, . . . , an); the
first conditions imply that (a1, . . . , an) ∈ V (E), so that P(a1, . . . , an) = 0 since
P ∈I (V (E)); the last condition 1 = bP(a1, . . . , an) is then impossible. By the
first case, the ideal ofK[X1, . . . , Xn , T] generated byE′ is equal to (1); in particular,
there exist polynomials Q1, . . . , Qm ∈ E, R1, . . . , Rm , S ∈ K[X1, . . . , Xn , T] such
that

1 = Q1R1 + ⋅ ⋅ ⋅ +QmRm + (1 − PT)S.

Let us substitute T = 1/P(X1, . . . , Xn) in this relation; it follows an equality of
rational functions:

1 =
m
∑
j=1

Q j(X1, . . . , Xn)R j(X1, . . . , Xn , 1/P).
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Let e be an integer greater than the degrees of the polynomials R1, . . . , Rm , S
with respect to the variable T; multiplying this relation by Pe , we obtain

Pe =
m
∑
j=1

Q j(X1, . . . , Xn)P(X1, . . . , Xn)eR j(X1, . . . , Xn , 1/P).

By the choice of the integer e, the rational function PeR j(X1, . . . , Xn , 1/P) is a
polynomial for every j ∈ {1, . . . ,m}, so that Pe belongs to the ideal (Q1, . . . , Qm).
In particular, Pe ∈ I, which shows that P ∈

√
I, as claimed.

Corollary (1.7.7). — Let K be an algebraically closed field and let n ⩾ 0 be an
integer. The maps E↦ V (E) and Z↦I (Z) induce bijections, inverse one of the
other, from the set of radical ideals of K[X1, . . . , Xn] to the set of algebraic subsets
of Kn.

1.8. Tensor products (Medium up)

1.8.1. — Let k be a ring, let M andN be k-modules. Their tensor productM⊗kN
is a k-module endowed with a k-bilinear map φ∶M×N→M⊗kNwhich satisfies
the following universal property: For every k-module P and every k-bilinear
map b∶M ×N→ P, there exists a unique k-linear map β∶M⊗k N→ P such that
b = β ○ φ.

1.8.2. — It may be constructed as follows. Let P1 = k(M×N) the free k-module
on M × N. Its elements are maps with finite support from M × N to k. Let
δ∶M ×N → P1 be the map which associates with (m, n) ∈M ×N the function
which maps (m, n) to 1 and maps every other element of M ×N to 0. Let P2 be
the submodule of P1 generated by elements of the form

δ(am, n) − aδ(m, n),
δ(m, an) − aδ(m, n),

δ(m +m′, n) − δ(m, n) − δ(m′, n),
δ(m, n + n′) − δ(m, n) − δ(m, n′),

withm,m′ ∈M, n, n′ ∈ N and a ∈ k. Let P = P1/P2, let π∶P1 → P be the canonical
surjective morphism and let φ = π ○ δ.

The image φ(m, n) is denoted m ⊗ n and called a split tensor.
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1.8.3. — Let u∶M→M′ and v∶N→ N′ be morphisms of k-modules. The map
M ×N→M′ ⊗k N′ given by (m, n)↦ u(m)⊗ v(n) is k-bilinear. Consequently,
there exists a unique morphism of k-modules, w∶M⊗k N→M′⊗k N′, such that
w(m ⊗ n) = u(m)⊗ v(n) for every m ∈M and every n ∈ N. This morphism is
often denoted by u ⊗ v.
If u and v are surjective, then u ⊗ v is surjective.
If u and v are split injective, that is, if they admit retractions, then u ⊗ v is

split injective. Indeed, let u′∶M′ →M and v′∶N′ → N be morphisms such that
u′ ○ u = IdM and v′ ○ v = IdN; then (u′ ⊗ v′) ○ (u ⊗ v) = (u′ ○ u) ⊗ (v′ ○ v) =
IdM ⊗ IdN = IdM⊗N. An important case where this happens is when k is a field.

1.8.4. — Let (Mi)i∈I be a family of k-modules, let M =⊕i∈IMi be their direct
sum; for every i ∈ I, let pi ∶M → Mi be the projection of index i. Let (N j) j∈J
be a family of k-modules and let N = ⊕ j∈JN j be their direct sum; for every
j ∈ J, let q j∶N → N j be the projection of index j. The map from M × N to
⊕i , j(Mi⊗kN j) given by (m, n)↦ ∑i , j pi(m)⊗q j(n) is k-bilinear; consequently,
there exists a unique k-linear morphism π∶M⊗k N→⊕i , j(Mi ⊗k N j) such that
π(m ⊗ n) = ∑i , j pi(m)⊗ q j(n). The morphism π is an isomorphism.
In particular, if M and N are free k-modules, their tensor product is a free

k-module. More precisely, let (mi)i∈I be a basis of M, let (n j) j∈J be a basis of N;
then the family (mi ⊗ n j)(i , j)∈I×J is a basis of M⊗k N.

1.8.5. Base change. — Let M be a k-module and let A be a k-algebra. The
k-module M⊗k A is naturally an A-module: the external multiplication being
characterized by the relation b(m ⊗ a) = m ⊗ ab. It is called the A-module
deduced fromM by base change, and is sometimes denoted by MA.
If f ∶M→M′ is a morphism of k-modules, the morphism fA = f ⊗ IdA∶MA →

M′A is A-linear.

1.8.6. — Let A and B be k-algebras. Then the tensor product A ⊗k B has a
unique structure of k-algebra for which (a ⊗ b) ⋅ (a′ ⊗ b′) = (aa′)⊗ (bb′) for
every a, a′ ∈ A and every b, b′ ∈ B.

The map A→ A⊗k B given by a ↦ a⊗ 1 is a morphism of k-algebras; similarly,
the map from B to A⊗k B given by b ↦ 1⊗ b is morphism of k-algebras.

1.8.7. — For example, let A and B be polynomial algebras in families of inde-
terminates (Xi)i∈I and (Y j) j∈J respectively. Then the tensor product A⊗k B is
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isomorphic to the polynomial algebra in the family of indeterminates obtained
by concatenation of the families (Xi) and (Y j). Such an isomorphism is induced
by the bilinear map from k[(Xi)] × k[(Y j)] to k[(Xi , Y j)] which maps a pair
(P(Xi), Q(Y j)) to its product P(Xi)Q(Y j).

Lemma (1.8.8). — Let I be an ideal of A, let J be an ideal of B; let (I, J) denote the
ideal of A⊗k B which they generate. There exists a unique morphism of k-algebras

(A⊗k B)/(I, J)→ (A/I)⊗k (B/J)

which maps the class of a ⊗ b to the tensor product ā ⊗ b̄ of the classes of a and b
in A/I and B/J respectively. This morphism is an isomorphism of rings.

Theorem (1.8.9). — Let K be an algebraically closed field and let A, B be two
K-algebras. If A and B are integral domains, then A ⊗K B is also an integral
domain.

Proof. — The tensor product of two non-zero K-vector spaces is a non-zero
K-vector space; consequently, A⊗KB ≠ 0 and it suffices to show that the product
of two non-zero elements of A⊗K B is non-zero.
Let f and g be two element of A⊗K B such that f g = 0. We may decompose f

as a sum∑r
i=1 ai ⊗ bi of split tensors, where b1, . . . , br are linearly independent

over K. Similarly, we write g = ∑s
j=1 a′j ⊗ b′j, where b′1, . . . , b′s are linearly inde-

pendent over K.
Let A1 be the subalgebra of A generated by a1, . . . , ar , a′1, . . . , a′s, let B1 be the

subalgebra of B generated by b1, . . . , br , b′1, . . . , b′s. Let I and I′ be the ideals
(a1, . . . , ar) and (a′1, . . . , a′s) of A1. Since A1 and B1 have direct summands in A
and B as K-modules, the canonical morphism from A1 ⊗K B1 to A ⊗K B has
a retraction, which allows to view A1 ⊗K B1 as a subalgebra of A ⊗K B. By
construction, f and g belong to A1⊗KB1, and f g = 0. Let us show that I∩I′ = {0}.
Letm be a maximal ideal of A1. The quotient ring A1/m is a finitely generated

K-algebra, and is a field; consequently, it is an algebraic extension of K, hence
is isomorphic to K since K is algebraically closed. Let clm∶A1 → K be the corre-
sponding morphism of K-algebras with kernelm. Let also θm∶A1 ⊗K B1 → B1 be
the morphism clm⊗ idB1 ; it is a morphism of K-algebras.
Since

θm( f )θm(g) = θm( f g) = 0
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and B1 is an integral domain, either θm( f ) = 0 or θm(g) = 0. Moreover, one has

θm( f ) =
r
∑
i=1

clm(ai)bi and θm(g) =
s
∑
j=1

clm(a′j)b′j.

Assume that θm(g) = 0. Since b1, . . . , br are linearly independent over K, we
conclude that clm(ai) = 0 for every i ∈ {1, . . . , r}; in other words, the ideal
I = (a1, . . . , ar) is contained inm.
Similarly, if θm( f ) = 0, we obtain that the ideal I′ = (a′1, . . . , a′s) is contained

inm.
In any case, one has I ∩ I′ ⊆ m.
This is valid for any maximal idealm of A1. By corollary 1.6.4, every element

of I ∩ I′ is nilpotent. Since A1 is an integral domain, one has I ∩ I′ = {0}.
Assume that f ≠ 0. Then I ≠ 0; let thus x be a non-zero element of I. For every

y ∈ I′, xy ∈ I ∩ I′, hence xy = 0. Since A1 is an integral domain, this implies
y = 0, hence I′ = 0, hence a′1 = ⋅ ⋅ ⋅ = a′s = 0 and g = 0. This concludes the proof
that A⊗K B is an integral domain.

1.9. Noetherian rings

1.9.1. — Let k be a ring. One says that a k-module M is noetherian if one of the
following equivalent properties holds:
(i) Every strictly increasing sequence of submodules of M is finite;
(ii) Every non-empty family of submodules of M has a maximal element;
(iii) Every submodule of M is finitely generated.

The equivalence of (i) and (ii) is elementary. Let us assume that they hold, let
P be a submodule of M and let us prove that P is finitely generated. The set
of all finitely generated submodules of P is non-empty, since {0} is finitely
generated, hence it has a maximal element, say P′. For every m ∈ P, P′ + Am
is a finitely generated submodule of P which contains P′; by maximality of P′,
one has P′ + Am = P′, hence m ∈ P′; consequently, P = P′ and P is finitely
generated, as was to be shown. Conversely, let us assume that every submodule
of M is finitely generated and let us prove by contradiction that every stricly
increasing sequence of submodules of M is finite. Let thus (Pn) be a stricly
increasing infinite sequence of submodules of M and let P be their union. By
assumption, P is finitely generated, hence there are elements p1, . . . , ps ∈ P such
that P = Ap1 + ⋅ ⋅ ⋅ +Aps. By definition of P, for each integer i ∈ {1, . . . , s}, there
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exists an integer ni such that pi ∈ Pn i . If n = max(n1, . . . , ns), one has pi ∈ Pn
for each i, hence P ⊆ Pn. Since Pn ⊆ Pm ⊆ P for every integer m ⩾ n, this shows
that Pm = Pn and contradicts the hypothesis that the sequence (Pn) is strictly
increasing.
One says that a ring A is noetherian if it is noetherian as a module over itself;

since a submodule of A is an ideal of A, this means that one of the following
equivalent properties holds:

(i) Every strictly increasing sequence of ideals of A is finite;
(ii) Every non-empty family of ideals of A has a maximal element;
(iii) Every idel of A is finitely generated.

In particular, principal ideal domains are noetherian.

1.9.2. — Let N be a submodule ofM. ThenM is noetherian if and only if both N
andM/N are noetherian. In particular, finite direct sums of noetherian modules
are noetherian.
If A is an noetherian ring, then an A-module is noetherian if and only if it is

finitely generated.

Theorem (1.9.3) (Hilbert). — For every noetherian ringA, the ringA[X] is noethe-
rian. In particular, for every fieldK and every integer n ⩾ 0, the ringK[X1, . . . , Xn]
is noetherian.

Proof. — Let I be an ideal of A[X]. For every integer m, let Jm be the set of
leading coefficients of elements of I whose degrees are equal to m (the leading
coefficient of the zero polynomial being 0); one checks that is an ideal of A.
For every integer m, the ideal Jm is finitely generated. We may thus fix a finite

set Qm of polynomials belonging to Im whose leading coefficients generate Jm.
Moreover, the family (Jm)m⩾0 is increasing. Since A is noetherian, there exists
an integer n such that Jm = Jn for every integer m such that m ⩾ n.
Let Q be the finite set Q = Q0 ∪ ⋅ ⋅ ⋅ ∪ Qn and let I′ be the ideal of A[X] it

generates. One has I′ ⊆ I; it suffices to prove that I = I′. Let thus P ∈ I and let
us prove by induction on deg(P) that P ∈ I′. Let m = deg(P), and let a ∈ Jm be
the leading coefficient of P. Let p = min(m, n); one has a ∈ Jp. By definition
of Qp, there exists a polynomial P′ of degree p which is a linear combination of
polynomials in Qp (hence an element of I′) whose leading coefficient is equal
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to a. The polynomial P−Tm−pP′ belongs to I and its degree is < m; by induction,
it belongs to I′. Consequently, P belongs to I′, as was to be shown.

1.10. Irreducible components

Definition (1.10.1). — Let X be a topological space. One says that X is irreducible
if it is not empty and if it is not the union of two closed subsets ofX, both non-empty
and distinct from X. One says that a subspace of X is irreducible if the induced
subspace is irreducible.

In other words, a subset Z of X is irreducible if and only if it is non-empty
and if for every two closed subsets Y1 and Y2 of X such that Z ⊆ Y1 ∪ Y2, one has
Z ⊆ Y1 or Z ⊆ Y2.
If Z is irreducible, then Z is connected.
This notion is very useful in the framework of algebraic geometry, where the

Zariski topology plays a prominent rôle. However, it has little interest for the
classical topological spaces; for example, the only irreducible subspaces of Rn

are singletons.

Proposition (1.10.2). — Let A be a ring.
a) The topological space Spec(A) is irreducible if and only if the nilradical of A

is a prime ideal.
b) Let I be an ideal of A. The closed subset V(I) of Spec(A) is irreducible if and

only if
√
I is a prime ideal.

Proof. — Assertion a) is the particular case of b) for I = {0}. Conversely, if
I is an ideal of A, V(I) is homeomorphic to Spec(A/I) by proposition 1.5.10;
moreover, the nilradical of A/I is equal to

√
I/I, hence is prime if and only if

√
I

is a prime ideal of A.
It thus suffices to treat part a). Since Spec(A/n) is homeomorphic to Spec(A),

we may even assume that A is reduced.
Let us assume that Spec(A) is reducible. Let Y1 and Y2 be closed subsets

of Spec(A), distinct from Spec(A), such that Spec(A) = Y1 ∪ Y2; let I1 and I2
be radical ideals such that Y1 = V(I1) and Y2 = V(I2). Since Y1 and Y2 are not
equal to Spec(A), one has I1 ≠ {0} and I2 ≠ {0}; let then a ∈ I1 and b ∈ I2 be any
two non-zero elements. Since Spec(A) = Y1 ∪Y2 = V(I1 ∩ I2) = V(0), one has
I1 ∩ I2 = {0}. In particular, ab = 0, which shows that A is not an integral domain.
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Conversely, let a, b be non-zero elements of A such that ab = 0. Then,
Spec(A) = V(0) = V(ab) = V(a) ∪ V(b). Since a ≠ 0 and n = 0, there
exists a prime ideal p of A such that a /∈ p; in particular, V(a) ≠ Spec(A). The
element a is not a unit (for, otherwise, b = 0, a contradiction); consequently,
V(a) ≠ ∅. Similarly, V(b) is neither empty, nor equal to Spec(A). This implies
that Spec(A) is not irreducible.

Proposition (1.10.3). — Let X be an irreducible topological space and let U be a
non-empty open subset of X.
a) The open subset U is dense in X, and is irreducible;
b) The map Z↦ Z ∩U defines a bijection between the set of irreducible closed

subsets of X which meet U and the set of irreducible closed subsets of U. Its inverse
bijection is given by Z↦ Z.

Proof. — a) By definition of an irreducible topological space, the union of two
closed subsets distinct from X is distinct from X. Considering the complemen-
tary subsets, the intersection of two non-empty open subsets of an irreducible
topological space is non-empty. In particular, U meets every non-empty open
subset of X, which means that U is dense.
Let us now prove that U is irreducible. Let Z1 and Z2 be closed subsets of X

such that U ⊆ Z1 ∪ Z2. It then follows that X = U ⊆ Z1 ∪ Z2, so that X = Z1 or
X = Z2. In particular, U ⊆ Z1 or U ⊆ Z2.
b) Let Y be an irreducible closed subset of U and let Z be its closure in X; let

us observe that Y = Z ∩U. Indeed, since Y is closed in U, there exists a closed
subset Z′ of X such that Y = U ∩ Z′. By definition of the closure, we have Z ⊆ Z′.
Then, Y ⊆ Z ∩U ⊆ Z′ ∩U = Y, hence Y = Z ∩U.
Since Y is irreducible, it is non-empty, hence the set Z is not empty. Let

Z1 and Z2 be closed subsets of X such that Z ⊆ Z1 ∪ Z2. Then Y = U ∩ Z ⊆
(U∩Z1)∪ (U∩Z2). Since Y is irreducible, one has Y ⊆ U∩Z1 or Y ⊆ U∩Z2. In
the first case, Z1 is a closed subset of X containing Y, hence Z ⊆ Z1; in the other
case, Z ⊆ Z2. This shows that Z is irreducible.
We may now conclude the proof of the proposition. By what precedes, setting

α(Y) = Y defines a map from the set of irreducible closed subsets of U to the set
of irreducible closed subsets of X.
Applied to an irreducible subset Z of X and to its open subspace Z∩U, part a)

implies that if Z ∩U ≠ ∅, then it is irreducible and Z ∩U = Z. Consequently,
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one defines a map from the set of irreducible closed subsets of X which meet U
to the set of irreducible closed subsets of U by setting β(Z) = Z ∩U. Moreover,
if Z is a closed subset of X which meets U, then α ○ β(Z) = Z ∩U = Z; if Y is a
closed subset of U, then we had already proved that β ○ α(Y) = Y ∩U = Y. This
shows that α and β are bijections, inverse one of the other.

Definition (1.10.4). — An irreducible component of a topological space is a
maximal irreducible subset.

Lemma (1.10.5). — Let X be a topological space.
a) The closure of an irreducible subset of X is irreducible. In particular, every

irreducible component of X is closed.
b) Every irreducible subset of X is contained in some irreducible component. In

particular, X is the union of its irreducible components.

Proof. — a) Let A be an irreducible subset of X and let Z1, Z2 be closed subsets
of X such that A ⊆ Z1 ∪ Z2. Consequently, A ⊆ Z1 ∪ Z2, hence A ⊆ Z1 or A ⊆ Z2.
Since Z1 and Z2 are closed, one thus has A ⊆ Z1 or A ⊆ Z2. This proves that A is
irreducible.
b) Let C be the set of irreducible subsets of X which contain A. Let us show

that the set C , ordered by inclusion, is inductive. It is non-empty since A ∈ C .
Let (Yi)i∈I be a non-empty totally ordered family of irreducible subsets of X
containing A and let Y be its union. One has A ⊆ Y, because I ≠ ∅. Let us show
that Y is irreducible. First, Y ≠ ∅. Let then Z1 and Z2 be closed subsets of X such
that Y ⊆ Z1 ∪ Z2. Let us assume that Y /⊆ Z2, let y ∈ Y be such that y /∈ Z2 and let
j ∈ I be such that y ∈ Y j. Let i ∈ I and let us show that Yi ⊆ Z1. If Y j ⊆ Yi , one has
Yi ⊆ Y ⊆ Z1 ∪ Z2, and Yi /⊆ Z2 since Yi contains Y j; since Yi is irreducible, one
thus has Yi ⊆ Z1. In particular, Y j ⊆ Z1. On the other hand, if Yi ⊆ Y j, we have
Yi ⊆ Y j ⊆ Z1. Consequently, Y = ⋃i∈IYi ⊆ Z1. This shows that Y is irreducible,
hence that C is inductive. By Zorn’s lemma, C has a maximal element; this
is a maximal irreducible subset of X, hence an irreducible component of X; it
contains A by construction.
For every x ∈ X, {x} is irreducible. By what precedes, every point of X is

contained in an irreducible component. This means exactly that X is the union
of its irreducible components, as claimed.
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Example (1.10.6). — An irreducible component of Spec(A) is a closed subset
of the form V(p), where p is aminimal prime ideal of A.
More generally, if I is an ideal of A such that I ≠ A, the closed subset V(I) is

nonempty, and its irreducible components are of the form V(p) where p a prime
ideal of A which is minimal among the prime ideals of A that contain I.
As a consequence of lemma 1.10.5, every prime ideal of A contains a minimal

prime ideal of A.

Definition (1.10.7). — One says that a topological space is noetherian if every
strictly decreasing sequence of closed subsets is finite.

Equivalently, a topological space is noetherian if and only if every non-empty
family of closed subsets has a minimal element.

Example (1.10.8). — Indeed, the property for Spec(A) of being noetherian
means that every non-empty family of radical ideals of A has a maximal element.
In particular, we see that if A is a noetherian ring, then Spec(A) is a noetherian
topological space.

Proposition (1.10.9). — Let X be a noetherian topological space.
a) Every subspace of X is noetherian;
b) The space X has finitely many irreducible components, and X is their union.
c) Every irreducible component of X contains a non-empty open subset of X.

Proof. — a) Let A be a subspace of X and let (An) be a stricly decreasing
sequence of closed subsets of A. By definition of the induced topology, there
exists for each n a closed subset Yn of X such that An = A ∩ Yn. Set Zn =
Y0 ∩ Y1 ∩ ⋅ ⋅ ⋅ ∩ Yn; the sequence (Zn) is decreasing. Since one has An = A ∩ Zn
for each n, this sequence is in fact stricly decreasing, hence is finite because X is
noetherian. This implies that the sequence (An) is finite, as was to be shown.
b) Since every subspace of X is noetherian, the assertion should hold for

every subspace of X. We will thus prove the desired result by contradiction by
considering aminimal subspace of X which is a counterexample.
Precisely, let C be the set of closed subsets of X which cannot be written as a

finite union of irreducible closed subspaces of X. Assume by contradiction that
C is non-empty. Since X is a noetherian topological space, the set C, ordered by
inclusion, admits a minimal element W. By construction, W is a closed subset
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of X which is not a finite union of irreducible closed subspaces of X, but every
closed subspace of W (distinct fromW) is such a finite union.

The spaceW is not irreducible. Since the empty space is the union of the empty
family, one hasW ≠ ∅. Consequently, there exist closed subsetsW1 andW2 ofW,
non-empty and distinct fromW, such that W =W1 ∪W2. By the minimality
of W, W1 andW2 can be written as a finite union of irreducible closed subspaces
of W; consequently, W is also a finite union of irreducible closed subspaces of W,
a contradiction!
In particular, there exists a finite family (X1, . . . , Xn) of irreducible closed

subsets of X such that X = X1 ∪ ⋅ ⋅ ⋅ ∪Xn. Up to removing Xi from this family if
necessary, we may assume that for j ≠ i, Xi is not a subspace of X j.
Before we terminate the proof of b), let us prove that every irreducible subset Z

of X is contained in one of the Xi. Since Z = ⋃n
i=1(Z ∩ Xi), there exists i ∈

{1, . . . , n} such that Z = Z ∩Xi , this means that Z ⊆ Xi .
This implies in particular that everymaximal element of the family (X1, . . . , Xn)

is maximal among all closed irreducible subsets of X, so that X1, . . . , Xn are the
irreducible components of X.
c) Let Y be an irreducible component of X, let Y′ be the union of the other

irreducible components, and let U = Y (Y ∩ Y′). Since X has finitely many
irreducible components, Y′ is closed, so that U is open. If, by contradiction,
U is empty, then Y ∩ Y′ = Y, hence Y ⊆ Y′. By the argument used at the end
of the proof of b), this implies that Y is contained in some other irreducible
component of X, contradicting the definition of an irreducible component. So
U is a non-empty open subset of X contained in Y.

Corollary (1.10.10). — Let A be a reduced noetherian ring. Then A has finitely
many minimal prime ideals. Their intersection is equal to {0} and their union is
the set of zero divisors of A.

Proof. — Since A is noetherian, the topological space Spec(A) is noetherian.
Consequently, A has finitely manyminimal prime ideal, say p1, . . . , pn, and every
prime ideal contains a minimal prime ideal. In particular, the nilradical of A,
which is the intersection of all prime ideals of A, is equal to the intersection of
all minimal prime ideals. Since A is reduced, this intersection is equal to {0}.
It remains to show that an element a ∈ A is a zero divisor if and only if it

belongs to one of the pi. One has V(⋂ j≠i p j) = ⋃ j≠i V(p j) ≠ Spec(A), hence
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the ideal ⋂ j≠i p j contains a non-zero element, say x. Then ax belongs to the
intersection of all minimal prime ideals of A, hence ax = 0; this shows that a
is a zero divisor. Conversely, let a ∈ A be a zero divisor and let x ∈ A {0} be
such that ax = 0. Since x ≠ 0, there exists i ∈ {1, . . . , n} such that x /∈ pi. The
equality ax = 0 then implies that a ∈ pi .

1.11. Dimension

1.11.1. — Let E be a partially ordered set.
A chain in E is a stricly increasing family x0 < x1 < ⋅ ⋅ ⋅ < xn. The length of that

chain is equal to n, it starts at x0 and ends at xn.
The dimension of E, denoted by dim(E), is the supremum of the lengths of

chains in E.
Let x ∈ E. The height (resp. the coheight) of x is the supremum of the length

of chains ending (resp. starting) at x. They are denoted ht(x) and coht(x)
respectively.

Definition (1.11.2). — Let X be a topological space.
The Krull dimension of X, denoted dim(X), is the dimension of the set C(X) of

all irreducible closed subsets of X, ordered by inclusion.
Let Z be a closed irreducible subset of X. The codimension of Z in X, denoted

codim(Z), is the coheight of Z in the partially ordered set C.

The following facts follow directly from these definitions:
a) The dimension of X is the supremum of the dimensions of its irreducible

components;
b) Each irreducible component of X has codimension 0;
c) For every closed irreducible subset Z of X, one has codim(Z) + dim(Z) ⩽

dim(X);
d) If Y and Z are irreducible closed subsets of X such that Y ⊆ Z, then

dim(Y) ⩽ dim(Z) and codim(Z) ⩽ codim(Y).
In view of these facts, one may define the codimension of an arbitrary closed

subset Z as the infimum of the codimensions of its irreducible components.

1.11.3. — Let A be a ring and let X = Spec(A). Every closed irreducible subset Z
of X is of the form Z = V(p), for some unique prime ideal p of A; in fact,
p = j(Z) = j({p}), so that V(p) = {p}. Moreover, if p and q are prime ideals,
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thenV(q) ⊆ V(p) if and only if p ⊆ q. Consequently, the three following partially
ordered sets are isomorphic:
– The set C of closed irreducible subsets of X, ordered by inclusion;
– The set of all prime ideals of A, ordered by containment;
– The set Spec(A), ordered by the relation x ≺ y if and only if x ∈ {y}.
It follows that the dimension of X is equal to the supremum of the lengths of

chains of prime ideals of A, the Krull dimension dim(A) of the ring A.
For every prime ideal p of A, the codimension of V(p) in Spec(A) is equal

to the height ht(p) of p, defined as the supremum of the lengths of chains of
prime ideals of A ending at p. By the correspondence between prime ideals of
the localized ring Ap and prime ideals of A contained in p, one also has

ht(p) = dim(Ap).

Moreover, one has dim(V(p)) = dim(A/p), hence the inequality

ht(p) + dim(A/p) ⩽ dim(A).

Theorem (1.11.4) (First theorem of Cohen-Seidenberg)
Let B be a ring and let A be a subring of B. Assume that B is integral over A.
a) Let q be a prime ideal of B and let p = q ∩A. Then p is a maximal ideal of A

if and only if q is a maximal ideal of B.
b) Let q ⊆ q′ be prime ideals of B such that q ∩A = q′ ∩A. Then q = q′.
c) The canonical map from Spec(B) to Spec(A) is surjective: for every prime

ideal p of A, there exists a prime ideal q of B such that q ∩A = p.

Proof. — a) Passing to the quotients, one gets an integral extension of integral
domains A/p ⊆ B/q. By lemma 1.4.5, A/p is a field if and only if B/q is a field; in
other words, p is maximal in A if and only if q is maximal in B.
b) Let p = q ∩A and let us consider the integral extension of rings Ap ⊆ Bp

induced by localization by the multiplicative subset A p. (It is indeed injective:
if a fraction a/s in Ap maps to 0 in Bp, there exists t ∈ A p such that at = 0,
hence a = 0.) Observe the obvious inclusion pAp ⊆ qBp. On the other hand, the
ideal qBp does not contain 1, hence is contained in the maximal ideal pAp of the
local ring Ap. This shows that qBp ∩Ap = pAp. Similarly, q′Bp ∩Ap = pAp.
Since pAp is maximal, qBp and q′Bp are maximal ideals of Bp. However, the

inclusion q ⊆ q′ implies qBq ⊆ q′Bq. Necessarily, these two maximal ideals of Bp

are equal.
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Since localization induces a bijection from the set of prime ideals of B disjoint
from A p to the set of prime ideals of Bp, one gets q = q′.
c) Let p be a prime ideal of A and let us consider the extension Ap ⊆ Bp

obtained by localization with respect to the multiplicative subset A p. Since
Bp ≠ 0, wemay consider amaximal idealm of Bp. There exists a prime ideal q ⊆ B
disjoint from A p such that m = qBp. Considering the integral extension
Ap ⊆ Bp, part a) implies thatm∩Ap is a maximal ideal of Ap, hencem∩Ap = pAp.
Let us show that q ∩ A = p. Indeed, let b ∈ q ∩ A; then b/1 ∈ qBp ∩ Ap, so

that there exists a ∈ A p such that ab ∈ p. Since p is a prime ideal, b ∈ p.
Conversely, if a ∈ p, then a/1 ∈ pAp hence a/1 ∈ qBp. Consequently, there exists
a′ ∈ A p such that aa′ ∈ q. Observe that a′ /∈ q, for otherwise, one would have
a′ ∈ q ∩A = p, which does not hold. Since q is a prime ideal, a ∈ q.

Corollary (1.11.5). — Let B be a ring, letA be a subring of B. If B is integral overA,
then dim(A) = dim(B).

Proof. — Let q0 ⊊ ⋅ ⋅ ⋅ ⊊ qn be a chain of prime ideals of B. Let us intersect these
ideals with A; this gives an increasing family (q0 ∩A) ⊆ ⋅ ⋅ ⋅ ⊆ (qn ∩A) of prime
ideals of A. By part b) of theorem 1.11.4, this is even a chain of prime ideals, so
that dim(A) ⩾ dim(B).
Conversely, let p0 ⊊ ⋅ ⋅ ⋅ ⊊ pn be a chain of prime ideals of A. For each m ∈
{0, . . . , n}, let us construct by induction a prime ideal qm of B such that qm∩A =
pm and such that q0 ⊆ ⋅ ⋅ ⋅ ⊆ qn. This will imply that dim(B) ⩾ dim(A), hence
the corollary.
By part c) of theorem 1.11.4, there exists a prime ideal q0 of B such that q0 ∩

A = q0. Assume q0, . . . , qm are defined. Let us consider the integral extension
A/pm ⊆ B/qm of integral domains. By theorem 1.11.4, applied to the prime
ideal pm+1/pm of A/pm, there exists a prime ideal q of the ring B/qm such that
q∩ (A/pm) = pm+1/pm. Then, there exists a prime ideal qm+1 containing qm such
that q = qm+1/qm. Moreover, qm+1 ∩A = pm+1.

This concludes the proof.

The following theorem lies at the ground of dimension theory in algebraic
geometry.
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Theorem (1.11.6). — Let K be a field and let A be a finitely generated K-algebra.
Assume that A is an integral domain and let F be its field of fractions. One has
dim(A) = tr. degK(F).

Proof. — We prove the theorem by induction on the transcendence degree of F.
If tr. degK(F) = 0, then A is algebraic over K. Consequently, dim(A) =

dim(K) = 0.
Now assume that the theorem holds for finitely generated K-algebras which

are integral domains and whose field of fractions has transcendence degree
strictly less than tr. degK(F).
By theNoether normalization lemma (theorem 1.6.1), there exist an integer n ⩾

0, elements a1, . . . , an of A such that the morphism f ∶K[X1, . . . , Xn]→ A such
that f (Xi) = ai is injective, and such that A is integral over its subring B =
K[a1, . . . , an] = f (K[X1, . . . , Xn]). Moreover, n = tr. degK(F). By corollary 1.11.5,
it suffices to prove that the dimension of the polynomial ring K[X1, . . . , Xn] is
equal to n.
Observe that

(0) ⊆ (X1) ⊆ ⋅ ⋅ ⋅ ⊆ (X1, . . . , Xn)
is a chain of prime ideals of K[X1, . . . , Xn]; since its length is equal to n, this
shows that dim(K[X1, . . . , Xn]) ⩾ n. Conversely, let

(0) ⊊ p1 ⊊ ⋅ ⋅ ⋅ ⊊ pm
be a chain of prime ideals of K[X1, . . . , Xn] and let us set A′ = K[X1, . . . , Xn]/p1.
Then A′ is a finitely generated K-algebra and dim(A′) ⩾ m − 1. Since p1 is a
prime ideal, A′ is an integral domain; let F′ be its field of fractions. Any non-zero
polynomial P ∈ p1 furnishes gives a non-trivial algebraic dependence relation
between the classes x1, . . . , xn of X1, . . . , Xn in A′. Consequently, tr. degK(F′) ⩽
n − 1. By induction, tr. degK(F′) = dim(A′), hence m − 1 ⩽ n − 1, and m ⩽ n.
This concludes the proof.

In the course of the proof of theorem 1.11.6, we established the following
particular case.

Corollary (1.11.7). — For any field K, one has dim(K[X1, . . . , Xn]) = n.

Proposition (1.11.8). — LetK be a field and letA, B be finitely generatedK-algebras.
One has dim(A⊗K B) = dim(A) + dim(B).
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Proof. — By the Noether normalization lemma (theorem 1.6.1), there exist
integers m, n ⩾ 0 and injective integral morphisms f ∶K[X1, . . . , Xm]→ A and
g∶K[Y1, . . . , Yn]→ B. One has m = dim(A) and n = dim(B). Since A and B are
finitely generated, these morphisms are even finite. It follows that the natural
morphism

K[X1, . . . , Xm , Y1, . . . , Yn] ≃ K[X1, . . . , Xm]⊗K K[Y1, . . . , Yn]→ A⊗K B

is injective and finite. Consequently, dim(A⊗K B) = m + n = dim(A)+ dim(B).

Remark (1.11.9). — Dimension theory of rings has a lot of subtleties which do
not occur for finitely generated algebras over a field.
a) There are rings of infinite dimension, for example the ring A =

K[T1, T2, . . . ] of polynomials in infinitely many indeterminates. Worse,
while all strictly increasing sequences of ideals in a noetherian ring are finite,
their lengths may not be bounded. In fact, Nagata has given the following
example of a noetherian ring whose dimension is infinite. Let (mn) be a stricly
increasing sequence of positive integers such that mn+1 − mn is unbounded;
for each n, let pn be the prime ideal of A generated by the elements Ti, for
mn ⩽ i < mn+1. Let S be the intersection of the multiplicative subsets Sn = A pn.
Then S−1A is noetherian, but dim(S−1A) = +∞.
We shall prove below that noetherian local rings are finite dimensional.
b) There is a beautiful formula due to Grothendieck: let K be a field and let L

and M be extensions of K. Then

dim(L⊗K M) = inf(tr. degK(L), tr. degL(M)).
This is proved in (Grothendieck, 1967, p. 349, remarque (4.2.1.4)).
c) If A is a finitely generated algebra over a field, proposition 1.11.8 asserts that

dim(A[X]) = dim(A) + 1; in fact, this holds under the weaker assumption that
A is noetherian, see (Serre, 1965, III, prop. 13). However, in the general case, it
lies between dim(A) + 1 and 2dim(A) + 1, and all possibilities appear!

1.12. Artinian rings

1.12.1. — Let k be a ring. One says that a k-module M is artinian if every
strictly decreasing sequence of submodules of M is finite or, equivalently, if every
non-empty family of submodules of M has a minimal element.
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One says that a ring A is artinian if it is artinian as a module over itself; this
means that every strictly decreasing sequence of ideals of A is finite. This also
implies that every strictly increasing sequence of closed subsets of Spec(A) is
finite.

1.12.2. — Let P be a submodule of M. Then M is artinian if and only if both P
and M/P are artinian. In particular, finite direct sums of artinian modules are
artinian.

1.12.3. — Let A be a ring. An A-module M is said to be simple if its only
submodules are {0} and M; this is equivalent to the existence of a maximal
idealm of A such that M ≃ A/m.

The length of an A-module M is the dimension of the partially ordered set of
its submodules. It is denoted by lengthA(M), or even length(M) if the ring A is
clear from the context.

Proposition (1.12.4). — LetM be an A-module and let N be a submodule ofM. If
two of the modulesM, N andM/N have finite length, then so does the third one,
and one has the equality

lengthA(M) = lengthA(N) + lengthA(M/N).

Proof. — Let N0 ⊊ N1 ⊊ ⋅ ⋅ ⋅ ⊊ Na and M0/N ⊊M1/N ⊊ ⋅ ⋅ ⋅ ⊊Mb/N be chains of
submodules of N and M/N, then Then,

N0 ⊊ N1 ⊊ ⋅ ⋅ ⋅ ⊊ Na ⊊M1 ⊊ ⋅ ⋅ ⋅ ⊊Mb

is a chain of length a+b of submodules of M, hence the inequality lengthA(M) ⩾
lengthA(N) + lengthA(M/N). In particular, if M has finite length, then so do N
and M/N.
Conversely, let us assume that N andM/N have finite length; we want to prove

that M has finite length and that lengthA(M) = lengthA(N) + lengthA(M/N).
Let thus M0 ⊊M1 ⊊ ⋅ ⋅ ⋅ ⊊Ma be a chain of submodules of M. One observes that
for every two submodules P′ and P′′ of M such that P′ ⊆ P′′, P′ ∩N = P′′ ∩N and
P′ +N = P′′ +N, then P′ = P′′. It follows that for every integer i ∈ {0, . . . , a − 1},
at least one of the two inclusions

Mi ∩N ⊆Mi+1 ∩N and Mi +N ⊆Mi+1 +N
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is strict. This implies that lengthA(N) + lengthA(M/N) ⩾ a. It follows that
lengthA(N) + lengthA(M/N) ⩾ lengthA(M), whence the proposition.

1.12.5. — An A-module has finite length if and only if it is artinian and noethe-
rian. Moreover, every maximal chain of submodules of such an A-module M
has length lengthA(M).

Example (1.12.6). — Let K be a field and let M be a K-vector space. Then
the length of a M is nothing but its dimension. Moreover, the three following
properties are equivalent: (i) dim(M) is finite; (ii) M is artinian; (iii) M is
noetherian.

Lemma (1.12.7). — Let A be an artinian ring.
a) If A is an integral domain, then A is a field;
b) Every prime ideal of A is maximal;
c) Spec(A) is finite.

Proof. — a) Let us assume that A is an integral domain. Let x ∈ A {0}. The
infinite decreasing sequence of ideals A ⊇ (x) ⊇ (x2) ⊇ . . . cannot be strictly
decreasing, hence there exists an integer n ⩾ 0 such that (xn) = (xn+1). Let
a ∈ A be such that xn = axn+1. Since x ≠ 0 and A is an integral domain, we may
simplify by xn, hence ax = 1. This shows that x is invertible.
b) Let p be a prime ideal of A. Then, A/p is an artinian ring which is an

integral domain. By part a), it is a field, hence p is a maximal ideal.
c) Since every prime ideal of A is maximal, every point of Spec(A) is closed.

If Spec(A) were infinite, there would exist an infinite sequence (xn) of pairwise
distinct points in Spec(A). The infinite sequence

∅ ⊆ {x1} ⊆ {x1, x2} ⊆ . . .

of closed subsets of Spec(A) is then strictly increasing, which contradicts the
hypothesis that A is an artinian ring.

Theorem (1.12.8) (Akizuki). — Let A be a ring. The following properties are
equivalent:
(i) The ring A is artinian;
(ii) The A-module A has finite length;
(iii) The ring A is noetherian and dim(A) = 0.
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Proof. — Condition (ii) implies that every sequence of ideals of A which is
either strictly increasing or strictly decreasing is finite, hence that A is artinian
(condition (i)) and noetherian (the first half of condition (iii)).
Moreover, if A is artinian, then we have seen in lemma 1.12.7 that every prime

ideal of A is maximal, hence dim(A) = 0.
Let us assume that A is noetherian and that dim(A) = 0. Let p1, . . . , pn be

the minimal prime ideals of A, so that V(p1), . . . , V(pn) are the irreducible
components of Spec(A). Since dim(A) = 0, pi is a maximal ideal and V(pi) =
{pi}; in particular, Spec(A) is a finite and discrete topological space.
Let n be the nilradical of A. One has n = p1∩⋅ ⋅ ⋅∩pn, so that the A-module A/n

embeds into the finite product of the A-modules A/pi , for 1 ⩽ i ⩽ n. In particular,
lengthA(A/n) ⩽ n. It follows from this that every A/n-module which is finitely
generated has finite length.
For every integer d ⩾ 0, the ideal nd is finitely generated, because A is

noetherian. This implies that nd/nd+1 is a finitely generated A/n-module, hence
length(nd/nd+1) is finite.
Every element of n is nilpotent. Since A is noetherian, the ideal n is finitely

generated, hence there exists an integer e ⩾ 0 such that ne = 0. Consequently,

lengthA(A) ⩽
e−1
∑
d=0

length(nd/nd+1)

is finite, which concludes the proof of implication (iii)⇒(ii).

It remains to show that an artinian ring has finite length. By lemma 1.12.7,
we known that Spec(A) consists of finitely many maximal ideals, say p1, . . . , pn.
Let J be their product; it is equal to the Jacobson radical of A. The decreasing
infinite sequence of ideals (A, J, J2, . . . ) cannot be strictly decreasing, so that
there exists an integer s ⩾ 0 such that Js = Js+1. Let us prove that Js = 0. Let thus
I = (0 ∶ Js) be the set of a ∈ A such that aJs = 0; we will prove that I = A.
Assume otherwise. Since A is artinian and A ≠ I, there exists an ideal I′ of A

such that I ⊊ I′ and which is minimal for this property. Let now a ∈ I′ I.
Observe that aJ + I ⊊ aA + I; indeed, by corollary 1.3.3 to Nakayama’s lemma,
applied to the submodules aA and I of A, the relation aJ + I = aA + I would
imply that a ∈ I. Consequently, we have I ⊆ aJ + I ⊊ aA + I ⊆ I′, hence I = aJ + I
by minimality of I′. We thus have shown that aJ ⊆ I. For every b ∈ J, we then
have ab ∈ I, hence abJs = 0; this shows that aJs+1 = 0. Since Js = Js+1, we have
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aJs = 0, hence a ∈ I. This contradiction proves that A = I. Consequently, Js = 0,
as claimed.
Now consider the decreasing sequence of ideals

A ⊇ p1 ⊇ ⋅ ⋅ ⋅ ⊇ p1 . . . pn = I ⊇ Ip1 ⊇ ⋅ ⋅ ⋅ ⊇ Ip1 . . . pn = I2 ⊇ I2p1 ⊇ ⋅ ⋅ ⋅ ⊇ Is = 0.

Each successive quotient is a noetherian A-module of the form M/mM, where
m is maximal ideal of A, hence a finite dimensional A/m-vector space; its length
as an A-module is thus finite. Consequently, the length of A is finite, as was to
be shown.

1.13. Codimension

Lemma (1.13.1). — Let A be a ring, let n ⩾ 1 be an integer and let p1, . . . , pn be
prime ideals of A. If I is an ideal of A such that I ⊆ p1 ∪ ⋅ ⋅ ⋅ ∪ pn, there exists an
integer i such that I ⊆ pi.

Proof. — We prove the lemma by induction on n. The result is obvious if n = 1.
Assume that I is contained in none of the ideals pi . By induction, for every i, one
has I /⊆ ⋃ j≠i p j, hence there exists xi ∈ I such that xi /∈ p j, if j ≠ i. This implies
that xi ∈ pi for every i. Let a = x1 + x2 . . . xn. Since x1 ∈ p1 and x2, . . . , xn do not
belong to p1, one has a /∈ p1. Let i ⩾ 2; then x1 /∈ pi but x2 . . . xn ∈ pi , so that a /∈ pi .
Consequently, a does not belong to the union of the ideals pi , in contradiction
with the fact that it belongs to I.

Proposition (1.13.2). — Let K ⊆ F be a finite normal extension of fields. Let A be
a subring of K which is integrally closed in K and let B be the integral closure of A
in F. Let G be the group of automorphisms of F which restrict to identity on K.
a) For every σ ∈ G, one has σ(B) = B;
b) For every point x ∈ Spec(A), the group G acts transitively on the fiber
(aφ)−1(x) in Spec(B).

Proof. — a) Let b ∈ B. Then σ(b) belongs to F and is integral over A. One
thus has σ(b) ∈ B. This shows that σ(B) ⊆ B. Similarly, one has σ−1(B) ⊆ B,
hence B ⊆ σ(B).
b) By the first theorem of Cohen-Seidenberg (theorem 1.11.4), the map

aφ∶ Spec(B) → Spec(A) is surjective, so that the fiber (aφ)−1(x) is non-empty.
Let y, y′ be two elements of this fiber; let q, q′ be the corresponding prime ideals
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of B. Let b ∈ q′. The product a = ∏σ∈G σ(b) is an element of F which is fixed
by G. By Galois theory, it is radicial over K: there exists an integer q ⩾ 1 such
that aq ∈ K. (In fact, q = 1 if the extension F/K is separable, and otherwise q is a
power of the caracteristic of K.) Since b is integral over A, each σ(b) is integral
over A, and a is integral over A, as well as aq. Since A is integrally closed in K,
one has aq ∈ A. Moreover, aq ∈ q′∩A = p = q∩A; in particular, aq ∈ q. Since q is
a prime ideal, there exists σ ∈ G such that σ(b) ∈ q. This shows that b ∈ σ−1(q),
hence q′ ⊆ ⋃σ∈G σ(q).
By lemma 1.13.1, there exists σ ∈ G such that q′ ⊆ σ(q). Since σ(q) ∩ A =

σ(q ∩A) = σ(p) = q′ ∩A, proposition 1.13.2 shows that q′ = σ(q). This proves
the proposition.

Theorem (1.13.3) (Second theorem of Cohen-Seidenberg)
Let B be an integral domain and let A be a subring of B. Assume that A

is integrally closed in its field of fractions and that B is a finite A-module. Let
p0 ⊆ ⋅ ⋅ ⋅ ⊆ pn be a chain of prime ideals of A and let qn be a prime ideal of B such
that qn ∩A = pn. There exists a chain of prime ideals q0 ⊆ ⋅ ⋅ ⋅ ⊆ qn−1 ⊆ qn such that
qi ∩A = pi for every i.

Proof. — Let K be the field of fractions of A and let F be that of B. Let F′ be a
finite extension of F which is normal over K, let B′ be the integral closure of A
in F′. By the first Cohen-Seidenberg theorem (theorem 1.11.4), there exists a
chain q′0 ⊆ ⋅ ⋅ ⋅ ⊆ q′n of prime ideals of B′ such that pi = q′i ∩A for every i. Let q̃n
be a prime ideal of B′ such that q̃n ∩ B = qn.
By proposition 1.13.2, there exists an automorphism σ of F′ such that σ ∣K = id

and σ(q′n) = q̃n. For every integer i such that 0 ⩽ i ⩽ n − 1, let qi = σ(q′i) ∩ B.
Then q0 ⊆ ⋅ ⋅ ⋅ ⊆ qn is a chain of prime ideals of B. For every integer i, one has

qi ∩A = σ(q′i) ∩ B ∩A = σ(q′i ∩A) = σ(pi) = pi ,

hence the theorem.

Corollary (1.13.4). — Let B be an integral domain, letA be a subring of B such that
B is a finite A-module. Assume that A is integrally closed in its field of fractions.
Then, for every prime ideal q of B, one has

htB(q) = htA(q ∩A).
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Lemma (1.13.5). — Let A be a unique factorization domain and let p be a prime
ideal of A. If ht(p) = 1, then there exists a prime element a ∈ A such that p = (a).

Proof. — Let a ∈ p be an arbitrary non-zero element. Since p is a prime ideal, a
is not a unit, hence it admits a decomposition a = b1 . . . bn be a decomposition as
a product of irreducible elements. Necessarily, p contains one of these factors, so
that we may assume that a is irreducible. Since A is a ufd, the ideal (a) is then a
prime ideal. Since ht(p) = 1, the inclusion 0 ⊊ (a) ⊆ p implies that p = (a).

Theorem (1.13.6). — Let K be a field. Let A be a finitely generated K-algebra
which is an integral domain. For every prime ideal p of A, one has dim(A) =
dim(A/p) + ht(p).

In other words, for every irreducible closed subset Z of X = Spec(A), one
has the familiar relation dim(X) = dim(Z) + codim(Z). In spectra of finitely
generated K-algebras, dimension and codimension behave as expected.

Proof. — We have already explained that dim(A) ⩾ dim(A/p) + ht(p). On the
other hand, by the Noether normalization lemma (theorem 1.6.1), there exists an
integer n ⩾ 0 and an injective and integral morphism f ∶K[X1, . . . , Xn]→ A. Let
B be the image of f and let p = q∩B. One thus has dim(A) = n and dim(A/p) =
dim(B/q) (corollary 1.11.5), as well as htA(q) = htB(p) (corollary 1.13.4). It thus
suffices to prove the result when A = k[X1, . . . , Xn]. By induction on dim(A), it
even suffices to prove the case when htA(p) = 1.
In this case, lemma 1.13.5 asserts that there exists an irreducible polynomial

f ∈ A such that p = ( f ). The transcendence degree of the field of fractions
of A/( f ) is then at least n − 1: if the indeterminate Xn appears in f , then
the images x1, . . . , xn−1 of X1, . . . , Xn−1 are algebraically independent in A/( f ),
since an algebraic dependence relation P(x1, . . . , xn−1) = 0 in A/( f )means that
P ∈ ( f ), and this implies P = 0 if degXn

( f ) ≠ 0. By theorem 1.11.6, one has
dim(A/p) ⩾ n − 1, hence the inequality ht(p) + dim(A/p) ⩾ n, as was to be
shown.

Corollary (1.13.7). — Let K be a field and let A be a finitely generated K-algebra
which is an integral domain. Every maximal chain of prime ideals of A has
length dim(A).

Proof. — Let p0 ⊆ ⋅ ⋅ ⋅ ⊆ pn is a maximal chain of prime ideals of A. We argue
by induction on n. One has p0 = (0), because A is an integral domain. If
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n = 0, then A is a field, hence dim(A) = 0. Let us assume that n ⩾ 1. The
chain p0 ⊆ p1 of prime ideals is maximal among those ending at p1. Since every
maximal chain of prime ideals ending at p1 begins at (0) = p0, one has ht(p1) = 1.
Moreover, the quotient ring A/p1 is an integral domain and a finitely generated
K-algebra. In this ring, the increasing sequence p1/p1 ⊆ ⋅ ⋅ ⋅ ⊆ pn/p1 is a maximal
chain of prime ideals. By induction, one has dim(A/p1) = n − 1. Consequently,
n = 1 + dim(A/p1) = 1 + dim(A) − ht(p1) = dim(A), as was to be shown.

1.14. Krull’s Hauptidealsatz and regular rings

Theorem (1.14.1) (Krull’s Hauptidealsatz). — Let A be a noetherian ring and
let f be an element of A. The prime ideals of A which are minimal among those
containing f have height at most 1.

If f is not a zero-divisor, then f does not belong to any minimal prime ideal
of A (see the proof of corollary 1.10.10, the hypothesis that A be reduced is not
used for this assertion), so that the prime ideals of A which are minimal among
those containing f have height exactly 1.

Proof. — Let p be a prime ideal of A, minimal among those containing f ; we
need to prove that ht(p) ⩽ 1, that is, that there does not exist a chain q′ ⊊ q ⊊ p
of prime ideals of A. Let us argue by contradiction, considering such a chain.
If we quotient by q′, we may moreover assume that q′ = {0}, i.e., that A is an
integral domain; we then have to prove that {0} and p are the only prime ideals
of A which are contained in p. The ring of fractions Ap is noetherian too, and its
maximal ideal pAp is minimal among its prime ideals containing f /1. Replace
the ring A by its fraction ring Ap and f by its image in Ap, we may thus assume
that A is a local, noetherian, integral domain, and that p is its maximal ideal.
Let thus q be a prime ideal of A, distinct from p, and let us show that q = {0}.

Since p is minimal among the prime ideals of A which contain f , one has f /∈ q.
For every integer n ⩾ 0, let qn = A ∩ qnAq; this ideal is called the nth symbolic
power of q. It consists in the elements a ∈ A for which there exists b /∈ b such that
ab ∈ qn. For every integer n such that n ⩾ 0, one has qn+1 ⊆ qn, hence qn+1 ⊆ qn.
By the correspondence between the prime ideals of the ring A/ fA and the

prime ideals of A which contain f , we see that (p + fA)/ fA is the only prime
ideal of A/ fA, so that dim(A/ fA) = 0. Since this ring A/ fA is noetherian, it is
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then artinian, hence the sequence (qn+ fA/ fA)n of ideals of A/ fA is eventually
constant. Let then n be an integer such that

qn + fA = qn+1 + fA.

Let x ∈ qn. By this relation, there exists a ∈ A such that x + a f ∈ qn+1; it follows
in particular that a f ∈ qn, hence a ∈ qn since f /∈ q. Consequently, x ∈ qn+1+ f qn,
whence the equality

qn = qn+1 + f qn .
Since f ∈ p, this implies

qn = qn+1 + pqn .
It now follows from Nakayama’s lemma (corollary 1.3.3), that qn = qn+1. In
particular, one has

qnAq = qnAq = qn+1Aq = qn+1Aq = q ⋅ qnAq.

By Nakayama’s lemma again, one has qnAq = 0. Since q is a prime ideal, this
implies qAq = 0, hence q = 0, as was to be shown.

Corollary (1.14.2). — Let A be a noetherian ring, let n be an integer and let
f1, . . . , fn be elements of A. Let p be a prime ideal of A which is minimal among
those containing ( f1, . . . , fn); then ht(p) ⩽ n. In particular, the height of p is finite.

Geometrically: for every irreducible component Z of V( f1, . . . , fn), one has
codim(Z) ⩽ n.
Proof. — In the noetherian local ring Ap, the maximal ideal pAp is minimal
among those containing the images of f1, . . . , fn. Moreover, the height of pAp

in Ap is equal to the height of p in A. We may thus assume that A is local and
that p is its maximal ideal.
Let p′ be a prime ideal of A such that p′ ⊊ p; let us prove that ht(p′) ⩽ n − 1.

Since A is noetherian, there exists a prime ideal p′1 such that p′ ⊆ p′1 ⊊ p and
which is maximal among these ideals. Since one has ht(p′) ⩽ ht(p′1), it suffices
to prove that ht(p′1). We may thus assume that p′ = p′1.
Since p′ ≠ p, there exists i ∈ {1, . . . , n} such that fi /∈ p′. By simplicity of

notation, we assume that i = 1. Then p′ ⊊ p′ + ( f1) ⊆ p, so that p is the unique
prime ideal of A which contains p′ + ( f1). Consequently, every element of p is
nilpotent modulo p′ + ( f1); let m ∈ N, let g2, . . . , gn ∈ p′ and a2, . . . , an ∈ A be
such that f mi = gi + ai f1 for every i ∈ {2, . . . , n}.
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One thus has p ⊇ ( f1, g2, . . . , gn); In fact, a prime ideal of A containing
( f1, g2, . . . , gn) contains f m2 , . . . , f mn , hence contains f2, . . . , fn, so that p is the
unique prime ideal of A containing ( f1, g2, . . . , gn). Let B = A/(g2, . . . , gn)
and let q be the image of p in B. The prime ideal q is the unique prime ideal
which contains the image of f1, hence htB(q) ⩽ 1, by Krull’s Hauptidealsatz
(theorem 1.14.1). The inclusions (g2, . . . , gn) ⊆ p′ ⊊ p then imply that the prime
ideal p′ is minimal among those containing (g2, . . . , gn).
By induction, one thus has ht(p′) ⩽ n − 1, as claimed. Since p′ is maximal

among the set of prime ideals of A distinct from p, one then has ht(p) ⩽ n, as
was to be shown.
Let now p be any prime ideal of A. Since A is noetherian, there exists a finite

family ( f1, . . . , fn) of elements of A such that m = ( f1, . . . , fn). Then p is the
smallest prime ideal of A containing f1, . . . , fn, hence ht(p) ⩽ n.

Corollary (1.14.3). — Let A be a noetherian ring and let p be a prime ideal of A.
The height of p is the smallest integer n such that there exist elements f1, . . . , fn ∈ A
such that V(p) is an irreducible component of V( f1, . . . , fn).

Proof. — Since A is noetherian, there exists an integer n and elements f1, . . . , fn
of A such that V(p) is an irreducible component of ( f1, . . . , fn); it suffices, for ex-
ample, that p = ( f1, . . . , fn). By the preceding corollary, we then have ht(p) ⩽ n.
Conversely, let n = ht(p), and let p′ be a prime ideal of A such that p′ ⊊ p

and ht(p′) = n − 1. By induction, there exist elements g2, . . . , gn ∈ A such that
V(p′) is an irreducible component of V(g2, . . . , gn). Let (p′i) be the family of
minimal prime ideals of A containing (g2, . . . , gn). Since A is noetherian, it is
finite. Moreover, one has p /⊆ p′i for every i, since the inclusion p ⊆ p′i would
imply that ht(p) ⩽ ht(p′i) ⩽ n − 1. By lemma 1.13.1, one has p /⊆ ⋃p′i, hence
there exists an element g1 ∈ p such that g1 /∈ p′i for every i. Then (g1, . . . , gn) ⊆ p;
moreover, any prime ideal q which satisfies this relation and which is contained
in p contains p′, but cannot be equal to p′, hence is equal to p. This shows that
V(p) is an irreducible component of V(g1, . . . , gn).

Corollary (1.14.4). — The dimension of a local noetherian ring is finite. More
precisely, if A is a local noetherian ring, with maximal idealm, then

dim(A) ⩽ dimA/m(m/m2).
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Proof. — One has dim(A) = ht(m); consequently, dim(A) is finite if A
is noetherian. Let f1, . . . , fn be elements of m which generate m/m2. By
Nakayama’s lemma, one has m = ( f1, . . . , fn). It then follows from corol-
lary 1.14.2 that dim(A) = ht(m) ⩽ n.

Definition (1.14.5). — Let A be local noetherian ring, letm be its maximal ideal
and let k be its residue field. One says that A is regular if dimk(m/m2) = dim(A).

Let A be a noetherian ring. One says that A is regular if the local ring Am is
regular, for everymaximal idealm of A. If A is regular, an important theorem
of Serre implies that Ap is a regular local ring, for every prime ideal p of A
(see Serre (1965), chap. IV, prop. 23).

Proposition (1.14.6). — Let A be a local noetherian ring. If A is regular, then A is
an integral domain.

Proof. — We establish the result by induction on the dimension of A. Letm be
its residue field and let k = A/m be its residue field.
If dim(A) = 0, thenm = 0, hence A is a field.
Let us now assume that dim(A) > 0 and let (p1) be the family of minimal

prime ideals of A. Since dim(A) > 0, one has m ≠ pi for every i; moreover,
m ≠ m2. By the prime avoiding lemma, there exists an element a ∈ m such that
a /∈ m2 ∪ ⋃pi. Let B = A/(a); this is a noetherian local ring, because a ∈ m.
Let n = mB be its maximal ideal; the canonical map from A/m to B/n is an
isomorphism.
Prime ideals of B correspond to prime ideals of A which contain (a); thus

dim(A) − dim(B) is the maximal height of a minimal prime ideal of A contain-
ing (a). Since a does not belong to any minimal prime ideal, the latter have
height 1; one thus has dim(B) = dim(A) − 1. On the other hand, since a /∈ m2,
the vector space n/n2 is a strict quotient ofm/m2. Consequently,

dim(A) − 1 = dim(B) ⩽ dimk(n/n2) < dimk(m/m2) = dim(A).

It follows that dim(B) = dimk(n/n2), hence B is a regular local ring. By induc-
tion, B is an integral domain, hence (a) is a prime ideal of A.
Let pi be a minimal prime ideal of A which is contained in (a). Since a /∈ pi ,

one has pi ⊊ (a). Let then x ∈ pi ; there exists y ∈ A such that x = ay, hence y ∈ pi
since pi is a prime ideal which does not contain a. This shows that pi = api ⊆ mpi ,
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hence pi = mpi. By Nakayama’s lemma, one then has pi = (0). In particular,
(0) is a prime ideal, hence A is an integral domain.

1.15. Associated ideals

Definition (1.15.1). — Let A be a ring and letM be an A-module. One says that a
prime ideal p of A is associated withM if there exists an element m ∈M such that
p is minimal among the prime ideals of A that contain AnnA(m).

The set of associated ideals of M is denoted by AssA(M).

Example (1.15.2). — Let A be a ring, let M be an A-module and let m ∈M.
If m = 0, then no prime ideal of A contains AnnA(m) = A; in particular,

AssA(0) = ∅.
On the other hand, if m ≠ 0, then AnnA(m) ≠ A and it follows from

lemma 1.10.5 and example exem.minimal-prime that there exists a prime ideal
of A which is minimal among those containing AnnA(m); such a prime ideal is
associated with M.

This proves that AssA(M) = ∅ if and only if M = 0.

Example (1.15.3). — Let p be a prime ideal of A. Let us show that AssA(A/p) =
{p}.
Let m ∈ A/p be the class of an element a ∈ A.
If m = 0, then AnnA(m) = A and no prime ideal of A contains it.
Let us assume that m ≠ 0 and let us prove that AnnA(m) = p. The inclusion

p ⊆ AnnA(m) is obvious. Conversely, let b ∈ AnnA(m); then bm is the class
of ba, so that ba ∈ p. Since m ≠ 0, we have a ∉ p, hence b ∈ p by definition of a
prime ideal. As a consequence, p is the only minimal prime ideal among those
containing AnnA(m), hence {p} = AssA(A/p).

Lemma (1.15.4). — Let A be a ring and letM be an A-module. Let S be a multi-
plicative subset of A and let j∶ Spec(S−1A)→ Spec(A) be the canonical injection.
One has j−1(AssA(M)) = AssS−1A(S−1M).

Proof. — Let p be a prime ideal of A which is associated with M and is disjoint
from S. We need to prove that p ∈ AssA(M) if and only if S−1p ∈ AssS−1A(M).
Let m ∈ M be such that p is minimal among the prime ideals contain-

ing AnnA(m). Let us prove that S−1p is a prime ideal of S−1A which is minimal
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among those containing AnnS−1A(m/1). Let thus q′ be a prime ideal of S−1A
such that AnnS−1A(m/1) ⊆ q′ ⊆ S−1p. There exists a prime ideal q of A such that
q′ = S−1q, and q ⊆ p. Let a ∈ AnnA(m); since a/1 ∈ AnnS−1A(m/1), we have
a/1 ∈ q′, so that there exists s ∈ S such that as ∈ q. Since s ∉ q, this implies a ∈ q.
We thus have AnnA(m/1) ⊆ q ⊆ p, and by minimality, this implies q = p. In
particular, S−1p ∈ AssS−1A(S−1M).
Conversely, let m ∈ M and s ∈ S be such that S−1p is minimal among the

prime ideals containing AnnS−1A(m/s). Since Ann(m/s) = Ann(m/1), we may
assume that s = 1. Let q be a prime ideal of A which is contained in p, and is
minimal among those containing AnnA(m). Then q is disjoint from S and, by
what precedes, we have q = p. In other words, p ∈ AssA(M).

Corollary (1.15.5). — Let A be a ring and letM be an A-module. A prime ideal
of A belongs to SuppA(M) if and only if it contains some element of AssA(M).

Proof. — Let p ∈ Spec(A). By definition, p ∈ SuppA(M) is equivalent to Mp ≠ 0,
hence to AssAp

(Mp) ≠ ∅. Taking S = A p in the preceding lemma, we see that
it is equivalent to AssA(M)∩ Spec(Ap) ≠ ∅. The corollary then follows from the
fact that Spec(Ap) is the set of prime ideals which are contained in p.

Corollary (1.15.6). — One has the inclusion AssA(M) ⊆ SuppA(M), and both
sets have the same minimal elements.

Proof. — This is essentially a reformulation of the preceding corollary.
Let p ∈ AssA(M). Then the inclusion p ⊇ p shows that p ∈ SuppA(M). Conse-

quently, AssA(M) ⊆ SuppA(M).
In particular, a minimal element of AssA(M) is also a minimal element

of SuppA(M). Conversely, let q be a minimal element of SuppA(M). By the
preceding corollary, there exists a prime ideal p ∈ AssA(M) such that p ⊆ q.
Then p ∈ SuppA(M), hence p = q byminimality. In particular, q ∈ AssA(M).

Proposition (1.15.7). — Let A be a ring and letM be an A-module; let a ∈ A.
a) The homothety (a)M is injective if and only if AssA(M) ∩V(a) = ∅.
b) One hasMa = 0 if and only if AssA(M) ⊆ V(a).

Proof. — a) Let us assume that the homothety (a)M is not injective, and let
m ∈M be such that am = 0 butm ≠ 0. Let p be an prime ideal which is minimal
among those containing AnnA(m). In particular, a ∈ p.
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Conversely, let p ∈ AssA(M) ∩V(a) and let m ∈M be such that p is minimal
among the prime ideals containing AnnA(m). Let S be the set of elements of
the form anb, with n ∈ N and b ∈ A p; it is a multiplicative subset of A that
contains A p. Assume AnnA(m) ∩ S = ∅. Then the element m/1 of S−1M
is not equal to zero, so that there exists a prime ideal q′ of S−1A containing
AnnS−1A(m/1). This ideal corresponds to a prime ideal q of A which is disjoint
from S, and one has AnnA(m) ⊆ q. Since S contains A p, one has q ⊆ p, and
the minimality of p implies that q = p. On the other hand, a ∈ p, hence a ∈ q,
which contradicts the fact that q is disoint from S, because a ∈ S. Consequently,
AnnA(m) ∩ S is nonempty; let n ∈ N and b ∈ A p be such that anbm = 0,
where n is chosen to be minimal.
If n = 0, then bm = 0, hence b ∈ AnnA(m); since b ∉ p, this contradicts the

hypothesis that AnnA(m) ⊆ p. Consequently, n ⩾ 1, an−1bm ≠ 0 by minimality,
and the relation a ⋅ an−1bm = 0 shows that the homothety (a)M is not injective.
b) We know that the relations Ma = 0 and AssAa(Ma) = ∅ are equivalent.

Since AssAa(Ma) = AssA(M) ∩D(a), this implies that Ma = 0 is equivalent to
the inclusion AssA(M) ⊆ V(a).

Example (1.15.8). — Assume that A is a local ring with maximal ideal p. Then
p ∈ AssA(M) if and only if there exists m ∈M such that p =

√
AnnA(m).

Let m ∈M. We know that
√
AnnA(m) is the intersection of all prime ideals

of A which contain AnnA(m). If this intersection is equal to the uniquemaximal
ideal p of A, this means that p is the only prime ideal containing AnnA(m). In
particular, it is a minimal such ideal and p ∈ AssA(M).
Conversely, if p is minimal among the prime ideals containing AnnA(m), then

it is the only such ideal, and p =
√
AnnA(m).

Proposition (1.15.9). — Let A be a ring, let M be an A-module and let N be a
submodule ofM. One has the inclusions

AssA(N) ⊆ AssA(M) ⊆ AssA(N) ∪AssA(M/N).

Proof. — The inclusion AssA(N) ⊆ AssA(M) is elementary.
Let m ∈ M and let p be a prime ideal of A, minimal among those contain-

ing AnnA(m). Let m′ ∈M/N be the class of m; one has AnnA(m) ⊆ AnnA(m′).
If AnnA(m′) ⊆ p, then p is also a minimal prime ideal among those contain-
ing AnnA(m), hence p ∈ AssA(M/N).
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Otherwise, one has AnnA(m′) /⊆ p, and there exists b ∈ A such that bm′ = 0,
hence bm ∈ N, and b ∉ p.
Let us observe that AnnA(m) ⊆ AnnA(bm) ⊆ p. The first inclusion is elemen-

tary. Let then a ∈ AnnA(bm); then abm = 0, hence ab ∈ AnnA(m), so that
ab ∈ p; since b ∉ p, we thus have a ∈ p. Consequently, p is a minimal prime ideal
among those containing AnnA(bm), so that p ∈ AssA(N).

Theorem (1.15.10). — Let A be a noetherian ring and letM be an A-module. A
prime ideal p ∈ Spec(A) belongs to AssA(M) if and only if there exists m ∈ M
such that p = AnnA(m).

Proof. — The sufficiency of this condition is obvious, so let p ∈ AssA(M) and
let us prove that there exists m ∈M such that p = AnnA(m).
We first treat the case where A is a local ring and p is its maximal ideal.

By example ??, there exists m ∈ M such that p =
√
AnnA(m); in particular,

AnnA(m) ⊆ p. Since A is noetherian, the ideal p is finitely generated and there
exists an integer n such that pn ⊆ AnnA(m). Let us consider a minimal such
integer n. Since AnnA(m) ⊆ p, one has n ⩾ 1 and pn−1 /⊆ AnnA(m). Let thus
b ∈ pn−1 be such that bm ≠ 0. Then for any a ∈ p, one has ab ∈ pn ⊆ AnnA(m),
so that p ⊆ AnnA(m), and the converse inclusion is obvious. We thus have
AnnA(m) = p, and this concludes the proof in this case.
Let us now consider the general case. Let (a1, . . . , ar) be a finite family of

elements of A such that p = ⟨a1, . . . , ar⟩. By the local case, we choose an element
m ∈M such that AnnAp

(m/1) = pAp. One has AnnA(m) ⊆ p.
For each i ∈ {1, . . . , r}, one has ai ∈ p, hence aim/1 = 0 in Mp; consequently,

there exists bi ∈ A p such that aibim = 0. Set b = b1 . . . br and m′ = bm; by
construction, one has b ∉ p. For every i ∈ {1, . . . , r}, one has aim′ = 0, so that
p ⊆ AnnA(m′). On the other hand, let a ∈ AnnA(m′); one then has abm = 0,
hence abm/1 = 0 in Mp. By construction, this implies ab ∈ p, hence a ∈ p
because b ∉ p.

Corollary (1.15.11). — Let A be a noetherian ring and letM be a finitely generated
A-module. There exists a finite sequence (M0, . . . ,Mn) of submodules ofM such
that 0 = M0 ⊆ M1 ⊆ ⋅ ⋅ ⋅ ⊆ Mn = M and prime ideals p1, . . . , pn of A such that
Mr/Mr−1 ≃ A/pr for every r ∈ {1, . . . , n}.

Proof. — If M = 0, then we set n = 0 and M0 = 0. Otherwise, we may consider
an element p1 ∈ AssA(M). By the preceding theorem, there exists m1 ∈M such
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that p1 = AnnA(m1). Set M1 = ⟨m1⟩; observe that M1 ≃ A/p1. Applying the same
argument toM/M1, we construct a strictly increasing sequence (M0 = 0,M1, . . . )
of submodules of M, and a sequence of prime ideals (p1, . . . ) of M such that
Mr/Mr−1 ≃ A/pr. Since A is noetherian and M is finitely generated, the process
has to stop, and this proves the corollary.

Corollary (1.15.12). — LetA be a noetherian ring and letM be a finitely generated
A-module. Then AssA(M) is a finite set.

Proof. — We consider a finite sequence (M0, . . . ,Mn) of submodules of M, and
a finite sequence (p1, . . . , pn) of prime ideals of A, as given by the preceding
corollary. One has

AssA(M) ⊆ AssA(M1) ∪AssA(M/M1) ⊆ ⋅ ⋅ ⋅ ⊆
n
⋃
r=1

AssA(Mr/Mr−1).

Moreover, for every prime ideal p of A, one has AssA(A/p) = {p}. In other
words,

AssA(M) ⊆ {p1, . . . , pn}.



CHAPTER 2

CATEGORIES AND HOMOLOGICAL ALGEBRA

2.1. The language of categories

2.1.1. — A categoryC consists in the following data:
– A collection ob(C ) of objects;
– For every two objects M,N, a setC (M,N) calledmorphisms from M to N;
– For every three objects M,N, P, a composition mapC (M,N) ×C (N, P),
( f , g)↦ g ○ f ,
so that the following axioms are satisfied:
(i) For every object M, there is a distinguished morphism idM ∈ C (M,M),

called the identity;
(ii) One has idN ○ f = f for every f ∈C (M,N);
(iii) One has g ○ idN = g for every g ∈C (N, P);
(iv) For every four objects M,N, P,Q, and every three morphisms

f ∈ C (M,N), g ∈ C (N, P), h ∈ C (P,Q), the two morphisms h ○ (g ○ f ) and
(h ○ g) ○ f inC (M,Q) are equal (associativity of composition).
A common notation for C (M,N) is also HomC (M,N). Finally, instead of
f ∈C (M,N), one often writes f ∶M→ N.

2.1.2. — Let f ∶M → N be a morphism in a category C . One says that f is
left-invertible, resp. right-invertible, resp. invertible, if there exists a morphism
g∶N→Msuch that g○ f = idM, resp. f ○ g = idN, resp. g○ f = idM and f ○ g = idN.
One proves in the usual way that if f is both left- and right-invertible, then it

is invertible. An invertible morphism is also called an isomorphism.

Example (2.1.3). — The category Set of sets has for objects the sets, and for
morphisms the usual maps between sets.
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Example (2.1.4). — The categoryGr of groups has for objects the groups and
for morphisms the morphisms of groups. The categoryAb of abelian groups
has for objects the abelian groups and for morphisms the morphisms of groups.
Observe that objects of Ab are objects of Gr , and that morphisms in Ab

coincide with those inGr ; one says thatAb is a full subcategory ofGr .

Example (2.1.5). — The categoryRing of rings has for objects the rings and
for morphisms the morphisms of rings.

Example (2.1.6). — Similarly, there is the category Field of fields and, if k is
a field, the categoryVeck of k-vector spaces. More generally, for every ring A,
there is a category ModA of right A-modules, and a category AMod of left
A-modules.

Example (2.1.7). — LetC be a category; its opposite categoryC o has the same
objects thanC , but the morphisms ofC o are defined byC o(M,N) =C (N,M)
and composed in the opposite direction.
It resembles the definition of an opposite group. However, a category is usually

different from its opposite category.

Example (2.1.8). — Let I be a partially ordered set. One attaches to I a category I
whose set of objects is I itself. Its morphisms are as follows: let i , j ∈ I; if i ⩽ j,
then I (i , j) has a single element, say the pair (i , j); otherwise, I (i , j) is empty.
The composition of morphisms is the obvious one: ( j, k)○ (i , j) = (i , k) if i , j, k
are elements of I such that i ⩽ j ⩽ k.

Remark (2.1.9). — While, in this course, categories are mostly a language to
state algebraic results of quite a formal nature, an adequate treatment of category
theory involves set theoretical issues. Indeed, there does not exist a set containing
all sets, nor a set containing all vector spaces, etc., so that the word collection in
the above definition cannot be replaced by the word set (in the sense of Zermelo-
Fraenkel’s theory of sets). However, the theory of sets only considers sets! There
are at least three ways to solve this issue:
a) The easiest one is to treat object of category theory as formulas, in the

sense of first order logic. For exampleRing is a formula φRing with one free
variable A that expresses that A is a ring. This requires to encode a ring A and
all its laws as a tuple: for example, one may consider a ring to be a tuple (A, S, P)
where A is the ring, S is the graph of the addition law and P is the graph of the
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multiplication law. The formula φRing(x) then checks that x is a triplet of the
form (A, S, P), where S ⊆ A3 and P ⊆ A3, that S is the graph of a map A ×A→ A
which is associative, commutative, has a neutral element, and for which every
element has an opposite, etc.
Within such a framework, one can also consider functors (defined below), but

only those which can be defined by a formula.
This treatment would be sufficient at the level of this course.
b) One can also use another theory of sets, such as the one of Bernays-Gödel-

von Neumann, which allows for two kinds of collections: sets and classes. Sets,
obey to the classical formalism of sets, but classes are more general, so that one
can consider the class of all sets (but not the class of all classes). Functors are
defined as classes.

This is a very convenient possibility at the level of this course. However, at a
more advanced development of algebra, one is lead to consider the category of
categories, or categories of functors. Then, this approach becomes unsufficient
as well.
c) Within the classical Zermelo-Fraenkel theory of sets (with choice),

Grothendieck introduced universes which are very large sets, so large than
every usual construction of sets does not leave a given universe. One also
needs to refine the axiom of choice, as well as to add the axiom that there is
an universe, or, more generally, that every set belongs to some universe. This
axiom is equivalent to the existence of inaccessible cardinals, an axiom which is
well studied and often used in advanced set theory.

Remark (2.1.10). — LetC be a category. One says thatC is small if ob(C ) is a
set and ifC (M,N) is a set for every pair (M,N) of objects ofC .
A categoryC such that the collectionC (M,N) is a set for every pair (M,N)

of objects is said to be locally small. In practice most categories considered in
general mathematics, such as the categories of sets, of groups, abelian groups, of
modules over a fixed ring, of vector spaces, etc., are locally small, but not small.
A locally small categoryC is said to be essentially small if the isomorphism

classes of object ofC form a set, that is, if there exists a set such that every object
ofC is isomorphic to one and only one member of this set.
For example, the category of finitely generated modules over a ring R is essen-

tially small: for every finitely generated R-module M there is an integer n ⩾ 0
such that M is isomorphic to a quotient of Rn. The pairs (n, N) where n ⩾ 0
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and N is a submodule of Rn form a set; if we take the quotient of this set by
the equivalence relation for which (n, N) ≃ (p, P) if Rn/N ≃ Rp/P, we get a set
representing all isomorphism classes of finitely generated R-modules.

Definition (2.1.11). — Let C be a category, let M,N be objects of C and let
f ∈C (M,N).
One says that f is a epimorphism if for every object P ofC and everymorphisms

g1, g2 ∈C (N, P) such that g1 ○ f = g2 ○ f , one has g1 = g2.
One says that f is an monomorphism if for every object L of C and every

morphisms g1, g2 ∈C (P,M) such that f ○ g1 = f ○ g2, one has g1 = g2.

Exercise (2.1.12). — a) Prove that monomorphisms and epimorphisms in
Set or in categories of modules are respectively injections and surjections.
b) Prove that in the category of rings, monomorphisms are the injective

morphisms. However, show that the canonical morphism f ∶Z → Q is an epi-
morphism of rings.

2.2. Functors

Functors are to categories what maps are to sets.

2.2.1. — LetC andD be two categories.
A functor F fromC toD consists in the following data:
– an object F(M) ofD for every object M ofC ;
– a morphism F( f ) ∈D(F(M), F(N)) for every objets M,N ofC and every

morphism f ∈C (M,N),
subject to the two following requirements:
(i) For every object M ofC , F(idM) = idF(M);
(ii) For every objects M,N, P ofC and every morphisms f ∈C (M,N) and

g ∈C (N, P), one has
F(g ○ f ) = F(g) ○ F( f ).

A contravariant functor F fromC toD is a functor fromC o toD . Explicitly,
it consists in the following data
– an object F(M) ofD for every object M ofC ;
– a morphism F( f ) ∈D(F(N), F(M)) for every objets M,N ofC and every

morphism f ∈C (M,N),
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subject to the two following requirements:
(i) For every object M ofC , F(idM) = idF(M);
(ii) For every objects M,N, P ofC and every morphisms f ∈C (M,N) and

g ∈C (N, P), one has
F(g ○ f ) = F( f ) ○ F(g).

2.2.2. — One says that such a functor F is faithful, resp. full, resp. fully faith-
ful if for every objects M,N of C , the map f ↦ F( f ) from C (M,N) to
C (F(M), F(N)) is injective, resp. surjective, resp. bijective. A similar defi-
nition applies for contravariant functors.
A functor F is essentially surjective if for every object P ofD , there exists an

object M ofC such that F(M) is isomorphic to P in the categoryD .

Example (2.2.3) (Forgetful functors). — Many algebraic structures are defined
by enriching other structures. Often, forgetting this enrichment gives rise to a
functor, called a forgetful functor.
For example, a group is already a set, and a morphism of groups is a map.

There is thus a functor that associates to every group its underlying set, thus
forgetting the group structure. One gets a forgetful functor fromGr to Set .
It is faithful, because a group morphism is determined by the map between
the underlying sets. It is however not full because there are maps between two
(non-trivial) groups which are not morphism of groups.

Example (2.2.4). — The construction of the spectrum of a ring defines a con-
travariant functor from the category Ring of rings to the category Top of
topological spaces.
In the other direction, set O(X) to be the ring of continuous complex-valued

functions on a topological space X. If f ∶X→ Y is a continuousmap of topological
spaces, let f ∗∶O(Y)→ O(X) be the morphism of rings given by f ∗(u) = u ○ f .
This defines a contravariant functor from the categoryTop to the category of
algebras over the field of complex numbers.

2.2.5. — Let F and G be two functors from a categoryC to a categoryD . A
morphism of functors α from F to G consists in the datum, for every object M
of C , of a morphism αM∶F(M) → G(M) such that the following condition
holds: For every morphism f ∶M→ N inC , one has αN ○ F( f ) = G( f ) ○ αM.
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Morphisms of functors can be composed; for every functor F, one has an
identity morphism from F to itself. Consequently, functors fromC toD form
themselves a category, denotes F(C ,D).

2.2.6. — LetC andD be categories, let F be a functor fromC toD and let
G be a functor fromD toC . One says that F and G are quasi-inverse functors
if the functors G ○ F and F ○G are isomorphic to the identity functors of the
categories respectivelyC andD .
One says that a functor F∶C →D is an equivalence of categories if there exists

a functor G∶D →C such that F and G are quasi-inverse functors.

Proposition (2.2.7). — For a functor F∶C →D to be an equivalence of categories,
it is necessary and sufficient that it be fully faithful and essentially surjective.

Proof. — Let G∶D → C be a functor such that F and G are quasi-inverse.
For every object P of D , F ○ G(P) is isomorphic to P, hence F is essentially
surjective. Moreover, for every objects M,N of C , the functor G ○ F, being
isomorphic to idC , induces a bijection fromC (M,N) to itself. This bijection is
the composition of the map ΦF∶C (M,N)→D(M,N) induced by F and of the
map ΦG∶D(M,N)→C (M,N) induced by G. This implies that ΦF is injective
and ΦG is surjective. By symmetry, ΦF is surjective too, so that it is bijection. In
other words, the functor F is fully faithful.
Let us now assume that F is fully faithful and essentially surjective. For every

object M ofD , let us choose an object G(M) ofC and an isomorphism αM∶M→
F ○ G(M). Let M,N be objects of D and let f ∈ D(M,N); since F is fully
faithful, there exists a uniquemorphism f ′ ∈C (G(M), G(N)) such that F( f ′) =
αN ○ f ○ α−1M ; set G( f ) = f ′. Since αM ○ idM ○α−1M = idF○G(M) = F(idG(M)), one has
G(idM) = idG(M). Similarly, if M,N, P are objects ofD and f ∈D(M,N) and
g ∈D(N, P), one has

αP ○ g ○ f ○ α−1M = (αP ○ g ○ α−1N ) ○ (αN ○ f ○ α−1M)
= F(G(g)) ○ F(G( f ))
= F(G(g) ○G( f )),

hence G(g ○ f ) = G(g) ○G( f ). Consequently, the assignment M↦ G(M) and
f ↦ G( f ) is a functor fromD toC . Moreover, the maps αM∶M → F ○G(M)
define an isomorphism of functors from the functor IdD to the functor F ○G.
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Let us now construct an isomorphism of functors from IdD to G ○ F. Let M
be an object ofC . Since F is fully faithful, there exists a unique morphism βM ∈
C (M,G ○ F(M)) such that F(βM) = αF(M). Since αF(M) is an isomorphism, βM
is an isomorphism as well. Moreover, if M,N are objects ofC and f ∶M→ N is
a morphism, then

F(G ○ F( f ) ○ βM) = αF(N) ○ F( f ) ○ α−1F(M) ○ F(βM)
= αF(N) ○ F( f )
= F(βN ○ f ).

Since F is fully faithful, one thus has βN ○ f = G ○ F( f ) ○ βM. In other words, the
isomorphisms βM, for M ∈ ob(C ), define an isomorphism of functors from IdC
to G ○ F.
As a consequence, the functor G is a quasi-inverse of the functor F , hence F

is an equivalence of categories.

Example (2.2.8) (Linear algebra). — Let K be a field. Traditionally, undergradu-
ate linear algebra only considers as vector spaces the subspaces of varying vector
spaces Kn, and linear maps between them. This gives rise to a small category,
because for every integer n, the subspaces of Kn form a set.

The obvious functor from this category to the category of finite dimensional
K-vector spaces is an equivalence of categories. It is fully faithful (knowing that
vector spaces lie in some Kn does not alter the linear maps between them). It
is also essentially surjective: since vector spaces have bases, every finite dimen-
sional K-vector space V is isomorphic to Kn, with n = dim(V). Consequently,
the (small) ‘‘category of undergraduate linear algebra’’ is equivalent to the (large)
category of finite dimensional vector spaces.

Example (2.2.9) (Covering theory). — Let X be a topological space, and let
x ∈ X. LetCovX be the category of coverings of X. For every covering p∶E→ X,
the fundamental group π1(X, x) acts on the fiber p−1(x). This defines a functor
(‘‘fiber functor’’) F∶E↦ F(E) = p−1(x) from the categoryCovX to the category
of π1(X, x)-sets.
If X is connected and locally pathwise connected, then this functor is fully faith-

ful. If, moreover, X has a simply connected cover (one says that X is ‘‘délaçable’’;
for example, locally contractible topological spaces are délaçable), then it is an
equivalence of categories.
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Example (2.2.10) (Galois theory). — Let K be a perfect field and let Ω be an
algebraic closure of K; let GK be the group of K-automorphisms of Ω. For every
finite extension L of K, let S(L) = HomK(L, Ω), the set of K-morphisms from L
to Ω. This is a finite set, of cardinality [L ∶ K], and the group GK acts on it by the
formula g ⋅ φ = g ○ φ, for every φ ∈ S(L) and every g ∈ GK; moreover, the action
of GK is transitive.
Every morphism of extensions f ∶L → L′ induces a map f ∗∶S(L′) → S(L)

which is compatible with the actions of GK. The assignments L ↦ S(L) and
f ↦ f ∗ define a contravariant functor from the category of finite extensions of K
to the category of finite sets endowed with a transitive action of GK.
Galois theory can be summaried by saying that this functor is an equivalence

of categories. An inverse functor F assigns to a set Φ endowed with an action
of GK the subfield F(Φ) of Ω which is fixed by the kernel of the action of GK
on Φ. Moreover, the automorphism group of the functor S is the group GK.
By analogy with covering theory, it may look preferable to have a category

equivalent to the full category of finite GK-sets. To that aim, one just needs
to replace in the previous definitions the category of finite extensions of K by
the category of finitely dimensional reduced K-algebras (aka ‘‘finite étale K-
algebras’’, which are nothing but finite products of finite extensions of K).

2.3. Limits and colimits

2.3.1. — A quiver Q is a tuple (V, E, s, t) where V and E are sets, and s, t are
maps from E to V. Elements of V are called vertices; elements of E are called
arrows; for an arrow e ∈ E, the vertices s(e) and t(e) are the source and the
target of e.
Every small categoryC has an underlying quiver, whose set of vertices is the

set of objects ofC , and whose set of arrows is the set of morphisms ofC .

2.3.2. Diagrams. — Let Q = (V, E, s, t) be a quiver and letC be a category. A
Q-diagram A inC consists in a family (Av)v∈V of objects ofC and in a family
( fe)e∈E of morphisms ofC such that for every arrow e ∈ E, fe ∈C (As(e), At(e)).

2.3.3. Limits. — A cone on a diagram A is the datum of an object A of C
and of morphisms fv ∶A → Av, for every v ∈ V, such that fe ○ fs(e) = ft(e) for
every e ∈ E. Such a cone is said to be a limit if for every cone (B, (gv)v∈V) of the
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diagram A , there exists a unique morphism g∶B→ A inC such that gv = fv ○ g
for every v ∈ V.
Let (A, ( fv)) and (A′, ( f ′v)) be two limits of a diagram A . Then there exists a

unique morphism φ∶A′ → A such that f ′v = fv ○φ for every v ∈ V; this morphism
is an isomorphism. In other words, when they exist, limits of diagrams are
unique up to a unique isomorphism.
A limit of a diagram A is sometimes denoted by lim←Ð(A ).

2.3.4. — Let Q = (V, E, s, t) be a quiver, let Qo = (V, E, t, s) be the opposite
quiver in which the source and target maps are exchanged. Every Q-diagram A

in a categoryC is naturally a Qo-diagram in the opposite categoryC o, which
we denote by A o. A colimit of the diagram A is a limit of the diagram A o.
Explicitly, a colimit of the diagram A = ((Av), ( fe)) consists in an object A

of C , and in morphisms fv ∶Av → A, for v ∈ V such that ft(e) ○ fe = fs(e) for
every e ∈ E (such a family (A, ( fv)) can be called a cocone on the diagram A ),
which satisfies the universal property: for every object B ofC and every family
(gv ∶B→ Av) of morphisms such that gt(e) ○ fe = gs(e) for every e ∈ E, there exists
a unique morphism g∶A→ B inC such that gv = g ○ fv for every v ∈ V.
When they exists, colimits of a diagram A are unique up to a unique isomor-

phism. A colimit of a diagram A is sometimes denoted by limÐ→(A ).

Example (2.3.5). — a) Let Q be the empty quiver (no vertex, no arrow). Let
us consider the unique Q-diagram; it consists in nothing. By definition, a cone
on this diagram is just an object A of C , and A is a limit if and only if there
exists a unique morphism inC (B, A), for every object B ofC . Consequently, a
limit of this diagram in the categoryC is called an terminal object ofC .
Dually, if A is a colimit of this diagram, it is an object such that, for every

object B of C , there exists a unique morphism C (A, B); it is called a initial
object.
In the category of sets, the empty set is an initial object, while singletons are

terminal objects. In the category of groups, or in the category of A-modules, the
trivial group (with one element) is both an initial and a terminal object. In the
categoryRing of rings, the ring Z is an initial object (for any ring A, there is
exactly one morphism from Z to A), and the ring 0 is a terminal object.
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b) Let Q be the quiver ● ● (two vertices, no arrow). AQ-diagramA consists
in a pair (A,A′) of objects ofC . A colimit of this diagramA is called a coproduct
of this diagram, and a limit is called a product.

This generalizes to quivers Q = (V,∅, s, t) whose set of arrows is empty: a
Q-diagram is a family A = (Av)v∈V of objects indexed by V, a colimit of A is a
coproduct, while a limit of A is a product.
A coproduct A is endowed with maps fv ∶Av → A and satisfies the following

universal property: for every object B ofC and every family (gv ∶Av → B) of
morphisms, there exists a unique morphism φ∶A → B such that gv = φ ○ fv
for every v ∈ V. Dually, a product A is endowed with maps fv ∶A → Av and
satisfies the following universal property: for every object B of C and every
family (gv ∶B → Av) of morphisms, there exists a unique morphism φ∶B → A
such that gv = fv ○ φ for every v ∈ V.
c) Let Q be the quiver ● ●

←→←→ . A Q-diagram A consists in two objects
M,N ofC and two morphisms f , g∶M→ N inC , hence can be represented as

A = ( M N

←→f←→g ).
A limit of this diagram A is called an equalizer of the pair ( f , g). IfC is the

category of sets, or the category of groups, the subset E of M consisting ofm ∈M
such that f (m) = g(m) is an equalizer of the diagram A .
A colimit of A is called a coequalizer of the pair ( f , g). IfC is the category

of sets, then the quotient of N by the smallest equivalence relation such that
f (m) ∼ g(m) for every m ∈M is a coequalizer of the diagram A . IfC is the
category of groups, then the quotient of N by the smallest normal subgroup
containing the elements f (m)g(m)−1, form ∈M, is a coequalizer of this diagram.
IfC is the category of abelian groups, or the category of modules over a ring,
then the cokernel of f − g is a coequalizer of this diagram.

Exercise (2.3.6). — Let A be a ring, let S be a multiplicative subset of A. Let Q be
the quiver whose vertex set is S and whose set of arrows is S × S, an arrow (s, t)
having source s and target st. Let M be an A-module and let M = ((Ms), fs,t)
be the Q-diagram such that Ms = M for every s, and fs,t is the multiplication
by t. Show that the module S−1M, endowed with the morphism fs∶Ms → S−1M
given by m ↦ m/s, is a colimit of the diagram M .

Proposition (2.3.7). — In the category of sets, every diagram has a limit and a
colimit.
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Proof. — Let Q = (V, E, s, t) be a quiver and let A = ((Av), ( fe)) be a Q-
diagram of sets.

a) Construction of a limit. Let A∗ = ∏v∈VAv and let A be the subset of A∗
consisting of families (av)v∈V such that fe(as(e)) = at(e) for every e ∈ E. For
every v ∈ V, let fv ∶A→ Av be the map deduced by restriction of the canonical
projection from A∗ to Av. By construction, one has fe ○ fs(e) = ft(e) for every
e ∈ E.
Let now B be a set and let (gv)v∈V be a family such that fe ○ gs(e) = gt(e) for

every e ∈ E. Let φ∗∶B → A∗ be the map given by φ∗(b) = (gv(b))v∈V. By
the definition of A, one has φ∗(b) ∈ A for every b ∈ B; the map φ∶B → A
deduced from φ∗ satisfies gv = fv ○ φ for every v ∈ V. Moreover, if ψ∶B → A
is a map such that gv = fv ○ ψ for all v ∈ V, then fv(ψ(b)) = gv(b), hence
ψ(b) = (gv(b))v∈V = φ(b). Consequently, (A, ( fv)) is a limit of the diagram A ,
as was to be shown.
b) Construction of a colimit. Let A∗ be the set of pairs (v , a), where v ∈ V and

a ∈ Av. Let ∼ be the smallest equivalence relation on A∗ such that (s(e), a) ∼
(t(e), fe(a)) for every e ∈ E and every a ∈ As(e); let A = A∗/ ∼ be the quotient
set; one writes [v , a] for the class in A of an element (v , a) ∈ A∗. For every v ∈ V,
let fv ∶Av → Abe themap given by a ↦ [v , a]. For every e ∈ E and every a ∈ As(e),
one has

ft(e)( fe(a)) = [t(e), fe(a)] = [s(e), a] = fs(e)(a),

so that ft(e)○ fe = fs(e); this shows that (A, ( fv)) is a cocone of the Q-diagramA .
Let (B, (gv)) be a cocone of this diagram. Let φ∶A → B be a map such that

φ ○ fv = gv for every v ∈ V. For v ∈ V and a ∈ Av, one thus has φ([v , a]) =
φ( fv(a)) = gv(a). Since the map from A∗ to A is surjective, thus shows that
there exists at most one map φ∶A→ B such that φ ○ fv = gv for every v ∈ V. Let
us prove its existence. Let φ∗∶A∗ → B be the map given by φ∗((v , a)) = gv(a),
whenever v ∈ V and a ∈ Av. For every e ∈ E and every a ∈ As(e), one has
φ∗((t(e), fe(a))) = gt(e)( fe(a)) = gs(e)(a) = φ∗((s(e), a)). Consequently, the
map φ∗ is compatible with the equivalence relation ∼ and there exists a map
φ∶A→ B such that φ([v , a]) = φ∗((v , a)) = gv(a) for every v ∈ V and every a ∈
Av. For every v ∈ V and every a ∈ Av, one has φ( fv(a)) = φ∗((v , a)) = gv(a),
hence φ ○ fv = gv .
This concludes the proof of the proposition.
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Corollary (2.3.8). — LetC be a category among the following: groups, abelian
groups, rings, modules over a given ring, algebras. Then every diagram inC has a
limit.

Proof. — Let Q = (V, E, s, t) be a quiver and let ((Av), ( fe)) be a Q-diagram
inC . The objects Av are sets endowed with additional laws. The proof of the
corollary consists in first considering the limit of the corresponding Q-diagram
in the category of sets, and in observing that it is naturally an object of the
categoryC which is a limit of the diagram in that category. We keep the notation
introduced in the proof of proposition 2.3.7.
An arbitrary product of groups, rings, etc., has a canonical structure of a group,

a ring, etc., so that the set A∗ =∏v∈VAv is really an object of the categoryC , and
the projections A∗ → Av are morphisms in that category. Moreover, since the
maps fe are morphisms in the categoryC , one checks readily that its subset A
consisting of families (av) ∈ A∗ such that fe(as(e)) = at(e) is a subobject, hence
an object ofC , and the maps fv ∶A→ Av are morphisms ofC . By inspection of
the proof, one checks that the map φ∶A→ B constructed there is a morphism in
the categoryC , so that (A, ( fv)) is a limit of the diagram A in the categoryC .

Remark (2.3.9). — Let C be a category of algebraic structures, such as sets,
groups, rings, modules, algebras,... It holds true that every diagram inC has
a colimit. However, the colimit of this diagram in C , which is a set with an
algebraic structure, does in general not coincide with the colimit of the corre-
sponding diagram of sets.
For example, the trivial group {e} with one element is an initial object of the

category of groups, while the initial object of the category of sets is the empty
set.
Similarly, the coproduct of a family of sets is its ‘‘disjoint union’’, while the

coproduct of a family of groups is its free product, and the coproduct of a family
of abelian groups is its direct sum.
Coequalizers give another examples of this phenomenon: the coequalizer of

a diagram of groups H G

←→f←→g is the quotient of G by the smallest normal

subgroup containing the elements of the form f (x)g(x)−1, for x ∈ H. For
example, if G is simple and f ≠ g, then Coequal( f , g) is the trivial group, while
the coequalizer of this diagram in the category of sets is generally larger.
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We now describe a particular type of quivers (associated to so called filtrant
partially ordered sets), for which the colimit of a diagram in a category of a given
algebraic structure is an algebraic structure on the set which is the colimit of the
same diagram, viewed as a diagram of sets.

2.3.10. — Let I be a partially ordered set. An I-diagram consists in a family
(Ai)i∈I of objects ofC , and ofmorphisms fi j∶Ai → A j whenever i , j are elements
of I such that i ⩽ j, subject to the conditions:
– One has fii = idAi for every i ∈ I;
– One has f jk ○ fi j = fik for every triple (i , j, k) of elements of I such that

i ⩽ j ⩽ k.
In other words, this is a functor from the category I associated with the partially
ordered set I (see example 2.1.8) to the categoryC . The morphisms fi j are often
omitted from the notation.
Let E be the set of pairs (i , j) of elements of I such that i ⩽ j and let I be the

quiver (I, E, s, t), where s and t are given by s((i , j)) = i and t((i , j)) = j. An
I-diagram naturally gives rise to an I -diagram, whose eventual colimit (resp.
limit) is called its colimit (resp. its limit).
Explicitly, a colimit of an I-diagram ((Ai), ( fi j)) is an object A of the cate-

gory C endowed with morphisms fi ∶Ai → A satisfying f j ○ fi j = fi for all i , j
such that i ⩽ j, and such that object B ofC , and every family (gi ∶Ai → B) of
morphisms such that g j ○ fi j = gi , there exists a unique morphism φ∶A→ B such
that φ ○ fi = gi for every i ∈ I.
Similarly, a limit of an I-diagram ((Ai), ( fi j)) is an object A of the category C

endowed with morphisms fi ∶A→ Ai satisfying fi j ○ fi = f j for all i , j such that
i ⩽ j, and such that object B ofC , and every family (gi ∶B→ Ai) of morphisms
such that fi j ○ gi = g j, there exists a unique morphism φ∶A → B such that
gi = fi ○ φ for every i ∈ I.

2.3.11. — Let I be a partially ordered set. One says that I is filtrant if every finite
subset has an upper bound in I. This means that I is non-empty and for every
two elements i , j ∈ I, there exists k ∈ I such that i ⩽ k and j ⩽ k.
If I is a filtrant partially ordered set, an I-diagram is also called a direct system,

or an inductive system. In this case, colimits are also called direct limits or
inductive limits, and limits are also called inverse limits or projective limits.
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Proposition (2.3.12). — LetC be a category among the following: groups, abelian
groups, rings, modules, algebras. Every direct system inC has a colimit.

Proof. — Let I be a filtrant partially ordered set and let A = ((Ai), ( fi j)) be a
direct system indexed by I. Let I be the quiver associated with I, so that A is
an I -diagram. The objects ofC are sets endowed with additional maps (binary
laws, operations,...) subject to algebraic conditions. The proof consists in first
considering a colimit (A, ( fi ∶Ai → A) of the diagram A in the category of sets,
as given by proposition 2.3.7, and in observing that it is naturally a colimit in
the categoryC . For this, the hypothesis that the partially ordered set I is filtrant
is essential. Let us keep the notation of the proof of proposition 2.3.7.
Let ⊺ be one of the binary laws of objects of the categoryC , for example the

group law ifC is the category of groups. While A∗ has not particular structure,
let us prove that there is a unique law ⊺ on A such that fi(a⊺b) = fi(a)⊺ fi(b)
if i ∈ I and a, b ∈ Ai. Indeed, we first define a map from A∗ × A∗ to A by
((i , a), ( j, b)) ↦ [k, fik(a)⊺ f jk(b)], whenever k is an element of I such that
i ⩽ k and j ⩽ k. It is well defined; indeed, if i ⩽ k′ and j ⩽ k′, let k′′ ∈ I be such
that k ⩽ k′′ and k′ ⩽ k′′; since fkk′′ is compatible with the law ⊺, one has

[k′′, fik′′(a)⊺ f jk′′(b)] = [k′′, fkk′′( fik(a)⊺ f jk(b))] = [k, fik(a)⊺ f jk(b)],

and [k′′, fik′′(a)⊺ f jk′′(b)] = [k′, fik′(a)⊺ f jk′(b)] by symmetry.
We then observe that this map passes to the quotient by the equivalence

relation ∼ and defines a desired law ⊺ on A.
If the laws ⊺ on the Ai are commutative (resp. associative), one proves that

the obtained law ⊺ on A is commutative (resp. associative) as well. Assume that
for every i, the law ⊺ has a neutral element ei in Ai ; then, the classes [i , ei] (for
i ∈ I) are equal to a single element e of A which is a neutral element. Similarly, if
every element of Ai has an inverse for the law ⊺, then every element of A has an
inverse: the inverse of a class [i , a] is the class [i , b], where b is an inverse of a
in Ai .

This treats the cases of groups and abelian groups. The case of rings is analo-
gous: by what precedes, the colimit A is endowed with a natural addition and a
natural multiplication compatibly with the maps fi ∶Ai → A; one then checks
that the multiplication distributes over the addition.
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Similarly, whenC is the category of R-modules (for some ring R), one checks
that A has a unique structure of R-module such that x ⋅ [i , a] = [i , x ⋅a] for every
x ∈ R, every i ∈ I and every a ∈ Ai .
To conclude the proof of the corollary, it remains first to observe that the

maps fi are morphisms in the categoryC , and second to check that the map γ
constructed in the proof of proposition 2.3.7 is a morphism in the categoryC .

2.3.13. — LetC andD be categories, let F∶C →D be a functor.
Let Q be a quiver and let A = ((Av), (φe)) be a Q-diagram inC . Assume

that this diagram has a colimit (A, (φv)). Then F(A ) = ((F(Av)), (F(φe))) is
a Q-diagram inD and the object F(A), equiped with the family of morphisms
(F(φv)), is a cocone on that diagram.
One says that the functor F commutes with colimits if for every such situation,

the cocone (F(A), ((φv))) is a colimit of the diagram F(A ).
The definition, for the functor F, of commuting with limits is analogous: this

means that for every diagram A as above which has a limit (A, (φv)), the cone
(F(A), (F(φv))) on the diagram F(A ) is a limit.

Definition (2.3.14). — One says that a functor is right exact if it commutes with
every finite colimit, and that it is left exact if it commutes with every finite limit.
One says that a functor is exact if it is both left exact and right exact.

If F∶C →D is a contravariant functor, one considers it as a functor fromC o

toD , so that we also have a definition of right or left exact contravariant functors.

Example (2.3.15). — Let A be a ring, let S be a multiplicative subset of A. Let us
consider the functor from the category of A-modules to that of S−1A-modules
which is given by (M ↦ S−1M, f ↦ S−1 f ). Let us show that it commute with
every colimit and with every finite limit.
We begin with the case of colimits. Let Q = (V, E) be a quiver, let M =
((Mv), (φe)) be a Q-diagram of A-modules and let (M, (φv) be its colimit.
Let us then show that the cocone (S−1M, (S−1φv)) on the diagram S−1M =
((S−1Mv), (S−1φe)) satisfies the universal property of a colimit. Let (N, (ψv))
be a cocone on this diagram, where N is an S−1A-module. For every v ∈ V, ψv is
a morphism from S−1Mv to N such that ψt(e) ○ (S−1φe) = ψs(e) for every e ∈ E.
For every v ∈ V, let ψ′v ∶Mv → N be the morphism given by m ↦ ψv(m/1); then
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(N, (ψ′v)) is a cocone on the initial diagram M , so that there exists a unique
morphism ψ′∶M→ N such that ψ′ ○φv = ψ′v for every v ∈ V. Since every element
of S acts by automorphism on N, there exists a unique morphism ψ∶ S−1M→ N
such that ψ(m/s) = (1/s)ψ′(m) for every m ∈ M and every s ∈ S. For every
v ∈ V, every m ∈M and every s ∈ S, one has ψv(m/1) = ψ′v(m) = ψ′(φv(m)) =
ψ(S−1φv(m/1)), henceψv = ψ○S−1φv . Conversely, everymorphism ψ̃∶ S−1M→ N
such that ψ̃ ○ S−1φv = ψv for every v must satisfy ψ̃(φv(m)/1) = ψ(φv(m/1)) for
every v. Since M is a colimit of the diagram M , the compositions of ψ and ψ̃
with the canonical morphism from M to S−1M coincide with ψ′. This implies
that ψ = ψ̃.
Let us now prove that the functor M↦ S−1M commutes with every finite limit.

Let thus Q = (V, E) be a finite quiver and M = ((Mv), (φe)) be a Q-diagram
of A-modules; let (M, (φv)) be a limit of this diagram. Then (S−1M, (S−1φv))
is a cone on the diagram S−1M , and we need show that it satisfies its universal
property. Let thus N be an S−1A-module and let (ψv)v∈V be a family, where
ψv ∶N → S−1Mv is a morphism of A-mdules such that S−1φe ○ ψs(e) = ψt(e) for
every e ∈ E.
Let n ∈ N. For every v ∈ V, let mv ∈M and sv ∈ S be such that ψv(n) = mv/sv ;

since V is finite, we may replace sv by∏v∈V sv and assume that all elements sv are
equal to a single element s ∈ S. For every e ∈ E, one then has (S−1φe)(ms(e)/s) =
mt(e)/s, hence there exists s′e ∈ S such that seφe(ms(e)) = s′emt(e). Since E is
finite, there exists an element s′ ∈ S such that s′φe(ms(e)) = s′mt′(e) for every
e ∈ E. It then follows from the universal property of a limit, applied to the
morphisms A→Mv , a ↦ as′mv , that there exists a unique element m ∈M such
that s′mv = φv(m) for every v ∈ V. One then has ss′ψv(n) = s′mv = φv(m).
Define ψ(n) = m/ss′; this is an element of S−1Mwhich does not depend on

the choices of the elements s and s′ such that ψv(n) = mv/s for every v ∈ V and
s′φe(ms(e)) = s′mt′(e) for every e ∈ E. The map ψ∶N → S−1M is a morphism of
S−1A-modules and one has (S−1φv) ○ ψ = ψv for every v ∈ V.
It is moreover the unique such morphism. Let indeed ψ̃ be a morphism of

A-modules from N to S−1M such that (S−1φv)○ ψ̃ = ψv for every v ∈ V. Let n ∈ N,
let m ∈M and s ∈ S be such that ψ̃(n) = m/s. One then has ψv(n) = φv(m)/s
for every v ∈ V, so that, in the definition of ψ, one can take for s, s′, (mv),m the
elements s, 1, (φv(m)),m, which shows that ψ(n) = m/s = ψ̃(n).
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2.4. Representable functors. Adjunction

2.4.1. — LetC be a locally small category and let P be an object ofC .
One defines a contravariant functor hP from the category C to the cate-

gory Set of sets, sometimes denoted HomC (●, P), as follows:
– For every object M ofC , one sets hP(M) =C (M,P);
– For every morphism f ∶M → N in C , hP( f ) is the map u ↦ u ○ f from

C (N, P) toC (M,P).
One says that a contravariant functor G∶C o → Set is representable if it is
isomorphic to a functor of the form hP; one then says that P represents the
functor G.
Moreover, the assignment P ↦ hP is a functor from the category C to the

category (C o,Set) of contravariant functos fromC to Set .

2.4.2. — One can also define a functor kP from the categoryC to the category
of sets as follows:
– For every object M ofC , one sets kP(M) =C (P,M);
– For every morphism f ∶M → N in C , kP( f ) is the map u ↦ f ○ u from

C (P,M) toC (P,N).
This is functor is also denoted by HomC (P, ●). It is also the functor hP rep-
resented by the object P of the opposite categoryC o. Every functor which is
isomorphic to a functor of this form is called a corepresentable functor. If F is
isomorphic to kP, one also says that P corepresents the functor F.
In fact, one often writes ‘‘representable’’ instead of ‘‘corepresentable’’, for the

covariance of the functor immediately resolves the ambiguity.

2.4.3. — Algebra is full of universal properties: the free module on a given
basis, quotient ring, quotient module, direct sum and product of modules,
localization, algebra of polynomials on a given set of indeterminates. They are
all of the following form: “in such algebraic situation, there exists an object and
a morphism satisfying such property and such that every other morphism which
satisfies this property factors through it”.

The property for an object I to be an initial object can be rephrased as a
property of the corepresentable functor HomC (I, ●), namely that this functor
coincides with (or, rather, is isomorphic to) the functor F that sends every object
ofC to a fixed set with one element.
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This allows to rephrase the definition of an initial object as follows: an object
I is an initial object if it corepresents the functor F defined above.
Objects that represent a given contravariant functor (resp. corepresent a given

functor) are unique up to a unique isomorphism:

Proposition (2.4.4) (Yoneda’s lemma). — LetC be a category, let A and B be
two objects ofC .
a) For any morphism of functors φ from hA to hB, there is a unique morphism

f ∶A → B such that φM(u) = f ○ u for every objectM of C and any morphism
u ∈C (M,A). Moreover, φ is an isomorphism if and only if f is an isomorphism.
b) For any morphism of functors φ from kA to kB, there is a unique morphism

f ∶B → A such that φM(u) = u ○ f for every objectM of C and any morphism
u ∈C (A,M). Moreover, φ is an isomorphism if and only if f is an isomorphism.

Proof. — a) If there exists a morphism f such that φM(u) = f ○ u for every
u ∈ C (M,A), then one has f = f ○ idA = φA(idA), hence the uniqueness of
a morphism f as required. Conversely, let us show that the morphism f =
φA(idA) ∈C (A, B) satisfies the given requirement. To that aim, let us first recall
the definition of a morphism of contravariant functors: for every object M ofC ,
one has a map φM∶hA(M) → hB(M) such that hB(u) ○ φN = φM ○ hA(u) for
every two objects M and N ofC and every morphism u∶M→ N. In the present
case, this means that for every object M ofC , φM is a map fromC (M,A) to
C (M,B) and that

φN(v) ○ u = hB(u) ○ φN(v) = φM ○ (hA(u))(v) = φM(v ○ u),

for every v ∈C (N,A) and every u ∈ (M,N). Consequently, taking N = A and
v = idA in the above formula, one obtains

f ○ u = φA(idA) ○ u = φM(idA ○u) = φM(u),

for every object M and every morphism u ∈C (M,A).
Let us assume that f is an isomorphism and that g is its inverse. Then the

assignement γM(u) = g○u defines amorphism of functors γ fromhB to hA which
is an inverse of φ. Consequently, φ is an isomorphism. Conversely, assume that
φ is an isomorphism and let ψ be its inverse. By what precedes, there is a unique
morphism g∶B→ A such that ψM(u) = g ○ u for every object M ∈C and every
u ∈C (M,B). The morphism of functors ψ ○ φ is the identity of hA, and is given
by ψM ○ φM(u) = (g ○ f ) ○ u for every M ∈ C and every u ∈ C (M,A). By the
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uniqueness property, one has g ○ f = idA. Similarly, f ○ g = idB. This shows that
f is an isomorphism.
b) This follows from a), applied in the opposite categoryC o.

2.4.5. Adjunction. — LetC andD be two categories, let F be a functor from
C toD and G be a functor fromD toC .
An adjunction for the pair (F,G) is the datum, for every object M ofC and

every object N ofD , of a bijection

ΦM,N∶C (M,G(N)) ∼Ð→D(F(M), N),

subject to the following relations: for every objects M,M′ ofC , every morphism
f ∈ C (M′,M), every objects N,N′ ofD , every morphism g ∈D(N,N′), and
every morphism u ∈C (M,G(N)), one has the relation

ΦM′ ,N′(G(g) ○ u ○ f ) = g ○ΦM,N(u) ○ F( f )

inD(F(M′), N′).
If there exists an adjunction for the pair (F,G), one says that it is an adjoint

pair of functors, or a pair of adjoint functors. One also says that F is a left adjoint
of G, and that G is a right adjoint of F.

Proposition (2.4.6). — LetC andD be two categories, let G be a functor from
D toC . The following properties are equivalent:
(i) The functor G has a left adjoint;
(ii) For every objectM ofC , the functorHomC (M,G(●)) fromD to Set is

representable.

Proof. — (i)⇒(ii). Let F be a functor fromC toD which is a left adjoint of G
and let (ΦM,N) be an adjunction for the pair (F, G).
Let M be an object of C . Then, the bijections ΦM,N, for every object N

of D , define an isomorphism of functors from the functor C (M,G(●)) to
the functorD(F(M), ●). Consequently, the object F(M) ofD represents the
functor HomC (M,G(●)) fromD to Set .
(ii)⇒(i). Assume conversely that for every object M of C , the functor

HomC (M,G(●)) from D to Set is representable. For every such object M,
let us choose an object F(M) ofD as well as an isomorphism of functors ΦM,●
from C (M,G(●)) to D(F(M), ●). Let f ∶M′ → M be a morphism in C ,
let F( f ) be the unique morphism f ′∶F(M) → F(N) in D such that for
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every u ∈ C (M,G(N)), one has ΦM′ ,N(u ○ f ) = ΦM,N(u) ○ f ′. Since
ΦM,N(u ○ idM) = ΦM,N(u) = ΦM,N(u) ○ idF(M), one has F(idM) = idF(M).
Moreover, if f ∶M′ →M and g∶M′′ →M′ are morphisms inC , then

ΦM′′ ,N(u ○ g ○ f ) = ΦM,N(u ○ g) ○ F( f ) = ΦM,N(u) ○ F(g) ○ F( f ),
so that F(g ○ f ) = F(g) ○ F( f ). Consequently, the assignement M↦ F(M) and
f ↦ F( f ) is a functor, and the morphisms ΦM,N form an adjunction for the pair
(F, G). In particular, G has a left adjoint.

Example (2.4.7). — Many universal constructions of algebra are particular
instances of adjunctions when one of the functors is obvious.
a) Let G be the forgetful functor from the category of A-modules to the

category of sets. Let F be the functor that associates to every set S the free A-
module A(S) on S, with basis (εs)s∈S. For every A-module M, every set S and
and every function f ∶S → M, there exists a unique morphism of A-modules
φ∶A(S) →Mwhich maps εs to f (s) for every s ∈ S. More precisely, the maps

ΦS,M∶HomA(A(S),M)→ Fun(S,M), φ ↦ (s ↦ φ(s))
define an adjunction, so that (F, G) is an adjoint pair.
b) The forgetful functor from the category of groups to the category of sets

has a left adjoint which associates to every set S the free group on S.
c) Let A be a ring. The forgetful functor from the category of A-algebras to

the category of sets has a left adjoint. It associates with every set S the ring of
polynomials A[(Xs)s∈S] with coefficients in A in the indeterminates (Xs)s∈S.

Example (2.4.8). — Let A and B be rings and let f ∶A → B be a morphism of
rings. Let G∶ModB →ModA be the forgetful functor, that associates with a
B-module M the associated A-module (the same underlying abelian group, with
the structure of an A-module given by a ⋅m = f (a)m, for a ∈ A and m ∈M). In
the other direction, the tensor product induces a functor F∶ModA →ModB:
one sets F(M) = M ⊗A B for every A-module M, and F( f ) = f ⊗ idB for
every morphism f ∶M → N of A-modules. For every A-module M and every
B-module N, and every A-linear morphism u∶M → N, there exists a unique
B-linear morphism v∶M ⊗A B → N such that v(m ⊗ b) = bu(m) for every
m ∈M and every b ∈ B. (Indeed, the map (m, b)↦ bu(m) fromM × B to N is
A-bilinear.) Set ΦM,N(u) = v. The maps

ΦM,N∶HomA(M,N)→ HomB(M⊗A B,N)
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define an adjunction for the pair (F, G).

Exercise (2.4.9). — Let F∶C →D and G∶D →C be functors such that the pair
(F, G) is adjoint.
Let Q = (V, E, s, t)) be a quiver, let A = ((Av), ( fe)) be a Q-diagram inC .

Let A = limÐ→A be a colimit of A and let ( fv ∶Av → A) be the family of canonical
maps. Prove that the family F(A ) = ((F(Av)), (F( fe))) is a Q-diagram and that
(F(A), (F( fv))) is a colimit of the Q-diagram F(A ). One says that F respects
all colimits.
Similarly, prove that G respects all limits.

2.5. Exact sequences and complexes of modules

2.5.1. — An exact sequence of A-modules is a sequence ( fn∶Mn → Mn−1), in-
dexed by n ∈ Z, of morphisms of A-modules such that Im( fn+1) = Ker( fn)
for every integer n. One sometimes represents such an exact sequence by the
diagram

⋅ ⋅ ⋅→Mn+1
fn+1ÐÐ→Mn

fnÐ→Mn−1 → . . .

If it is an eact sequence, one has in particular fn ○ fn+1 = 0 for every integer n.
An exact sequence is said to be short if Mn = 0 except for (at most) three

consecutive integers. One thus writes a short exact sequence as

0→ N iÐ→M
pÐ→ P→ 0,

omitting the other null terms. The conditions for this diagram to be a short exact
sequence are the following:
– The morphism i is injective;
– The image of i coincides with the kernel of p;
– The morphism p is surjective.

Consequently, the morphism i identifies N with a submodule of M, the ker-
nel Ker(p) of p, and the morphism p identifies P with the Cokernel Coker(i) =
M/ Im(i) of i.
It could be said that homological algebra is the science of creation andmanage-

ment of exact sequences. A first example is given by the following proposition.
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Proposition (2.5.2) (Snake lemma). — Let us consider a diagram of morphisms
of A-modules:

0 N M P 0

0 N′ M′ P′ 0

←→

←→f

← →i

←→g

← →p ←→

←→ h

←→ ←→i
′ ←→p

′ ←→

in which the two rows are exact sequences, and the two squares are commutative,
meaning that i′ ○ f = g ○ i and p′ ○ g = h ○ p.
By restriction, the morphisms i and p induce morphisms i∗∶Ker( f )→ Ker(g)

and p∗∶Ker(g) → Ker(h); by passing to the quotients, the morphisms i′ and p′
induce morphisms i′∗∶Coker( f ) → Coker(g) and p′∗∶Coker(g) → Coker(h).
There exists a unique morphism ∂∶Ker(h)→ Coker( f ) of A-modules such that
∂(p(x)) = cl(y) for every (x , y) ∈M ×N′ such that g(x) = i′(y). Moreover, the
diagram

0→ Ker( f ) i∗Ð→ Ker(g) p∗Ð→ Ker(h) ∂Ð→
∂Ð→ Coker( f ) i′∗Ð→ Coker(g) p′∗Ð→ Coker(h)→ 0

is an exact sequence.

Proof. — Let x ∈ Ker( f ); then g(i(x)) = i′( f (x)) = i′(0) = 0, so that i(x) ∈
Ker(g). Similarly, let y ∈ Ker(g); one has h(p(x)) = p′(g(x)) = p′(0)) = 0, so
that p(x) ∈ Ker(h). This shows the existence of the morphisms i∗ and p∗.
Let x′ ∈ Im( f ) and let x ∈ N be such that x′ = f (x); then i′(x′) = i′ ○

f (x) = g(i(x)), i′(x′) ∈ Im(g). Consequently, the kernel of the composition
N′ i′Ð→ M′ → M′/ Im(g) = Coker(g) contains Im( f ). Passing to the quotient,
one obtains a morphism i′∗ from M′/im( f ) = Coker( f ) to Coker(g).
One constructs the morphism p′∗∶Coker(g)→ Coker(h) in the same way.
The morphism i∗ is injective: let x ∈ N be such that i∗(x) = 0; Then i(x) = 0,

hence x = 0.
Moreover, for every x ∈ Ker( f ), one has p∗(i∗(x)) = p(i(x)) = 0, hence

i∗(x) ∈ Ker(p∗). On the other hand, let y ∈ Ker(p∗); then y ∈ Ker(g) and
p(y) = 0; since Ker(p) = Im(i), there exists x ∈ N such that y = i(x); one has
i( f (x)) = g(i(x)) = g(y) = 0, hence f (x) since i is injective; consequently,
y ∈ Im(i∗). This shows that Im(i∗) = ker(p∗).
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We write cl(x) to denote the class in Coker( f ) of an element x ∈ N′, and simi-
larly for the other two cokernels. Let x ∈ N′; then p′∗(i′∗(cl(x)) = cl(p(i(x))) =
0; consequently, Im(i′∗) ⊆ ker(p′∗). Let y ∈ M′ be such that cl(y) ∈ ker(p′∗);
one thus has cl(p′(y)) = p′∗(cl(y)) = 0 in Coker(h), so that p′(y) ∈ Im(h);
let then x1 ∈ P be such that p′(y) = h(x); since p is surjective, there exists
x ∈M such that x1 = p(x); one has p′(g(x)) = h(p(x)) = h(x1) = p′(y), hence
y − g(x) ∈ ker(p′); therefore, there exists z ∈ N′ such that y = g(x) + i′(z); this
implies that cl(y) = cl(i′(z)) = i′∗(cl(z)) ∈ Im(i′∗). We thus have shown that
ker(p′∗) = Im(i′∗).
Moreover, let y ∈ Coker(p′), let y′ ∈ P′ be such that y = cl(y′); since p′ is

surjective, there exists x′ ∈M′ such that y′ = p′(x′); one then has y = cl(y′) =
cl(p′(y′)) = p′∗(cl(y′)), which shows that p′∗ is surjective.
It remains to construct the homomorphism ∂ and to show that Im(p∗) =

ker(∂) and Im(∂) = ker(i′∗). Let Q be the submodule of M ×N′ consisting of
pairs (x , y) such that g(x) = i′(y). If (x , y) ∈ Q, then h(p(x)) = p′(g(x)) =
p′(i′(y)) = 0, hence p(x) ∈ ker(h). Let q∶Q → ker(h) be the morphism of
A-modules given by q(x , y) = p(x); it is surjective. Let indeed z ∈ ker(h); since
p is surjective, there exists x ∈Msuch that z = p(x); then p′(g(x)) = h(p(x)) =
h(z) = 0, hence there exists y ∈ N′ such that g(x) = i′(y), and z = q(x , y), as
was to be shown. Consequently, there exists at more one morphism ∂∶ker(h)→
Coker( f ) such that ∂(q(x , y)) = cl(y) for every (x , y) ∈ Q. To prove the
existence of the morphism ∂, it suffices to show that if (x , y) ∈ Q satisfies
q(x , y) = 0, then cl(y) = 0; but then, p(x) = 0, hence x ∈ Im(i), so that there
exists z ∈ N such that x = i(z); it follows that i′( f (z)) = g(i(z)) = g(x) = i′(y),
hence y = f (z) since i′ is injective; consequently, y ∈ Im( f ) and cl(y) = 0.
Let x ∈ Ker(g); then (x , 0) ∈ Q, so that ∂(p∗(x)) = ∂(q(x , y)) = cl(0) = 0;

this shows that ∂ ○ p∗ = 0. Conversely, let z ∈ ker(∂); let (x , y) ∈ Q be such
that q(x , y) = z; one has ∂(z) = cl(y), hence y ∈ Im( f ); consequently, there
exists t ∈ N such that y = f (t) and g(x) = i′(y) = i′( f (t)) = g(i(t)), so that
u = x − i(t) ∈ ker(g);; then z = p(x) = p(u + i(t)) = p(u) ∈ Im(p∗). We have
shown that ker(∂) = Im(p∗).
For every (x , y) ∈ Q, one has i′∗(cl(y)) = cl(i′(y)) = cl(g(x)) = 0

in Coker(g), so that i′∗ ○ ∂ = 0. Conversely, let y′ ∈ ker(i′∗); let y ∈ N′ be
such that y′ = cl(y); by definition, 0 = i′∗(y′) = cl(i′(y)) in Coker(g), so
that there exists x1 ∈ M such that i′(y) = g(x); one then has (x , y) ∈ Q and
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y′ = cl(y) = ∂(p(x)); we thus have shown that Im(∂) = ker(i′∗) and this
concludes the proof of the snake lemma.

Corollary (2.5.3). — a) If f and h are injective, then g is injective. If f and h
are surjective, then g is surjective.
b) If f is surjective and g is injective, then h is injective.
c) If g is surjective and h is injective, then f is surjective.

Proof. — a) Assume that f and h are injective. The exact sequence given by
the snake lemma begins with 0→ 0 i∗Ð→ ker(g) p∗Ð→ 0. Necessarily, ker(g) = 0.
If f and h are surjective, the exact sequence ends with 0

i′∗Ð→ Coker(g) p′∗Ð→ 0,
so that Coker(g) = 0 and f is surjective.
b) If f is surjective and g is injective, one has ker(g) = 0 and Coker( f ) = 0.

The middle of the exact sequence can thus be rewritten as 0
p∗Ð→ ker(h) ∂Ð→ 0, so

that h est injective.
c) Finally, if g is surjective and h is injective, we have ker(h) = 0, Coker(g) =

0, hence an exact sequence 0 ∂Ð→ Coker( f ) i′∗Ð→ 0, which implies that Coker( f ) =
0 and f is surjective.

2.6. Differential modules and their homology

2.6.1. — To construct exact sequences, it appears important to consider dia-
grams as in the definition but where one relaxes the conditions Im( fn+1) =
Ker( fn) of an exact sequence and only assumes the inclusions Im( fn+1) ⊆
Ker( fn). Such diagrams are called complexes, but it will be technically con-
venient to define them as graded differential modules.

Definition (2.6.2). — Let A be a ring.
A differential A-module is an A-moduleM endowed with an endomorphism dM

such that dM ○ dM = 0.
Let (M, dM) and (N, dN) be differential A-modules. A morphism f ∶M→ N is

a morphism of differential modules if dN ○ f = f ○ dM.

Let Ã = A[T]/(T2) and let ε be the class of T in Ã. With any differential
module (M, dM) one associates a Ã-module M̃ by setting M̃ =M, endowed with
the structure of module given by (a + εb) ⋅m = am + bdM(m). Conversely, any
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Ã-module defines a differential A-module with the same underlying A-module,
and the differential being induced by the multiplication by ε.
A morphism of differential modules f ∶M→ N is nothing but a morphism of

the associated Ã-modules.
Let (M, d) and (N, d) be differential A-modules and let f ∶M→ N be a mor-

phism of differential modules. Then ker( f ) is a differential submodule ofM, and
Im( f ) is a differential submodule of N. Moreover, Coker( f ) has a unique struc-
ture of a differential module such that the canonical surjection N→ Coker( f )
is a morphism of differential modules.

2.6.3. — Let (M, d) be a differential A-module. One associates with M the
following A-modules:
– The module of cycles, Z(M) = ker(d);
– The module of boundaries, B(M) = Im(d);
– The module H(M) = Z(M)/B(M) of homologies.
Observe that f (Z(M)) ⊆ Z(N), and f (B(M)) ⊆ B(N). Consequently, f

induces a morphism H( f )∶H(M)→ H(N).
Let M,N, P be differential A-modules, let let f ∶M → N and g∶N → P be

morphisms of differential modules. Then g ○ f is a morphism of differential
modules and H(g ○ f ) = H(g) ○H( f ).

2.6.4. — Let A be a ring. A graded A-module is an A-module M together with
a family (Mn) of submodules, indexed by Z, of which M is the direct sum.
Elements of Mn are called homogeneous of degree n, the module Mn is called
the homogeneous component of degree n of M.

The graduation is said to be bounded from below (resp. from above) if there
exists an integer m ∈ Z such that Mn = 0 for n ⩽ m (resp. for n ⩾ m); it is
bounded if it is bounded both from above and from below.
A submodule N of M is said to be graded if N is the direct sum of the submod-

ules Nn = N ∩Mn. If this is the case, the quotient module P = M/N admits a
natural graduation such that Pn =MN/Nn for every integer n.
LetM,N be gradedA-modules and let f ∶M→ Nbe amorphism of A-modules.

One says that f is graded of degre r if f (Mn) ⊆ Nn+r for every n ∈ Z. One also
calls the induced morphism fn∶Mn → Nn+r the homogeneous component of
degree n of f . If f is a graded morphism of graded A-modules, then Ker( f ) is a
graded submodule of M and Im( f ) is a graded submodule of N, and Coker( f )
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has a natural structure of a graded module such that the canonical projection
N→ Coker( f ) is graded of degree 0.

Definition (2.6.5). — Let A be a ring. A graded differential A-module is a
differential A-module (M, dM) such that dM is homogeneous of some degree r.

Let (M, d) be a graded differential A-module, let r ∈ Z be such that d has
degree r. For every integer n, let Mn and dn∶Mn →Mn+r be the homogeneous
components of degree n of M and d. Then dn+r ○ dn = 0.
Conversely, let (Mn) is a family of A-modules, let r ∈ Z, and, for every n,

let dn∶Mn →Mn+r be a morphism of A-modules. If dn+r ○ dn for each n, then
one defines a complex (M, d) of A-modules by setting M =⊕Mn and letting d
be the unique endomorphism of M such that d∣Mn = dn.
When r = −1, a graded differential A-module amounts to a diagram

⋅ ⋅ ⋅→Mn+1
dn+1ÐÐ→Mn

dnÐ→Mn−1 → . . .

of morphisms of A-modules such that dn ○ dn+1 = 0 for all n. One speaks of a
homological complex, or simply a complex.
When r = 1, a graded differential A-module amounts to a diagram

⋅ ⋅ ⋅→Mn−1
dn−1ÐÐ→Mn

dnÐ→Mn+1 → . . .

of morphisms of A-modules such that dn ○ dn−1 = 0 for all n. One speaks of a
cohomological complex. In this case, the custom is to indicate the grading as an
upper index, as in the diagram

⋅ ⋅ ⋅→Mn−1 dn−1
ÐÐ→Mn dn

Ð→Mn+1 → . . .

Amorphism of graded differential modules is a morphism of differential mod-
ules which is a graded morphism of degree 0 of the underlying graded modules.

Lemma (2.6.6). — Let (M, d) be a graded differential A-module of degree r.
a) The modules Z(M) and B(M) are graded submodules of (M, d), and

Bn(M) = B(M) ∩Mn = d(Mn−r).
b) The moduleH(M) is a graded A-module in a natural way, whose homoge-

neous component of degree n is given byHn(M) = Zn(M)/Bn(M).
c) Let (N, d) be a graded differential A-module of degree r and let f ∶M→ N

be a morphism of graded differential A-modules. Then the induced morphism
H( f )∶H(M)→ H(N) is graded of degree 0.
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Proof. — For every n, let Zn(M) = Z(M) ∩Mn and Bn(M) = B(M) ∩Mn.
Let x ∈ Z(M) and let (xn) be the homogenous components of x; one has

d(x) = ∑ d(xn); for every n, d(xn) ∈ Mn+r, hence d(xn) = 0 for all n. Conse-
quently, xn ∈ Zn(M) for each n. This shows that Z(M) =⊕Zn(M).

The inclusion d(Mn−r) ⊆ Bn is obvious since d has degree r. Conversely, let
x ∈ Bn(M) and let y ∈M be such that x = d(y). Let (ym) be the homogeneous
components of y; one has d(y) = ∑ d(ym) = x. Since d(ym) ∈ Mm+r and
x ∈Mn, this implies that d(ym) = 0 for m ≠ n − r and d(yn−r) = x. This shows
that x ∈ d(Mn−r), so that d(Mn−r) = Bn.
Consequently,⊕Bn =⊕ d(Mn−r) = d(M) = B(M), so that B(M) is a graded

submodule of M.
Let f ∶M→ N be a morphism of graded differential modules. Since f (Mn) ⊆

Nn, one has f (Zn(M)) ⊆ Zn(N), hence H( f )(Hn(M)) ⊆ Hn(N), showing that
H( f ) is a graded morphism of degree 0.

2.6.7. — One says that f is injective (resp. surjective) if it is injective (resp.
surjective) as a morphism of A-modules.
Similarly, an exact sequence of complexes is a sequence of morphisms
( fn∶Mn →Mn−1) of complexes such that the associated sequence of A-modules
is an exact sequence.

Theorem (2.6.8). — Let (M, dM), (N, dN), (P, dP) be differentialA-modules lying
in an exact sequence

0→M iÐ→ N
pÐ→ P→ 0

of differential modules. Then there is a unique morphism ∂∶H(P)→ H(M) of A-
modules such that ∂(cl(p(y))) = cl(x) for every pair (x , y) ∈ Z(M)× p−1(Z(P))
such that dN(y) = i(x).
One has ker(H(i)) = Im(∂), ker(H(p)) = Im(H(i)) and ker(∂) =

Im(H(p)).
Moreover, ifM,N, P are graded differential A-modules whose differential have

degree r, and if the morphisms i and p are graded of degree 0, then ∂ has degree r.
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In other words, one has an ‘‘exact triangle’’

H(P)

H(M) H(N)

←→∂

← →H(i)
←

→H(p)

When M,N, P are homological complexes, one has r = −1 and this triangle
can be rewritten as the long exact sequence

⋅ ⋅ ⋅→ Hn+1(P)
∂Ð→ Hn(M)

Hn(i)ÐÐÐ→ Hn(N)
Hn(p)ÐÐÐ→ Hn(P)

∂Ð→ Hn−1(M)→ . . .

When M,N, P are cohomological complexes, one has r = 1 and this triangle
can be rewritten as the long exact sequence

⋅ ⋅ ⋅→ Hn−1(P)
∂Ð→ Hn(M)

Hn(i)ÐÐÐ→ Hn(N)
Hn(p)ÐÐÐ→ Hn(P)

∂Ð→ Hn+1(M)→ . . .

Proof. — Let Q be the submodule of M ×N consisting of pairs (x , y) such that
x ∈ Z(M), i(x) = dy and p(y) ∈ Z(P). Let ζ ∈ H(P) and let z ∈ Z(P) be such
that ζ = cl(z). Since p is surjective, there exists y ∈ N such that p(y) = z; then
p(d(y)) = d(p(y)) = d(z) = 0, so that d(y) ∈ ker(p). Consequently, there
exists x ∈ M such that d(y) = i(x); since i(d(x)) = d(i(x)) = d2(y) = 0
and i is injective, one has d(x) = 0, that is, x ∈ Z(M). This shows that map
from Q→ Z(P) given by (x , y)↦ p(y) is surjective.
As a consequence, there exists at most one morphism ∂∶H(P) → H(M)

such that ∂(cl(p(y))) = cl(x) for every (x , y) ∈ Q. Noreover, to prove that
such a morphism exists, it suffices to show that for every (x , y) ∈ Q such that
p(y) ∈ B(P), one has x ∈ B(M). So let (x , y) be such a pair; let z′ ∈ P be such
that p(y) = d(z′) and let y′ ∈ N be such that z′ = p(y′); one has p(y) = d(z′) =
d(p(y′)) = p(d(y′)), hence there exists x′ ∈ M such that y = d(y′) + i(x′);
then i(x) = d(y) = d(i(x′)) = i(d(x′)), hence x = d(x′)) since i is injective;
consequently, x ∈ B(M) as was to be shown.
Let us show that ∂ is homogeneous of degree r. Let ζ ∈ Hn(P). Let us revisit

the argument showing that the map (x , y) ↦ cl(p(y)) from Q to H(P) is
surjective. Let z ∈ Zn(P) be such that ζ = cl(z). Since p is surjective, there
exists y ∈ N such that z = p(y); let (ym) be the homogeneous components
of y; one has y = ∑ ym, hence z = p(y) = ∑ p(ym); since z is homogeneous
of degree n, and p(ym) is homogeneous of degree m, one has p(ym) = 0 for
m ≠ n; consequently, z = p(yn). Since p(d(yn)) = d(p(yn)) = 0, there exists
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x ∈ M such that d(yn) = i(x); let (xm) be the homogeneous components
of M; one has d(yn) = ∑ i(xm). Since d(yn) is homogeneous of degree n + r
and i(xm) is homogeneous of degree m, one has d(yn) = i(xn+r). Moreover,
i(d(xn+r)) = d(i(xn+r)) = d2(yn) = 0, so that d(xn+r) = 0 because i is injective.
Then (xn+r , yn) ∈ Q, ζ = cl(p(yn)), hence ∂(ζ) = cl(xn+r) ∈ Hn+r(P), which
shows that ∂ is homogeneous of degree r, as claimed.
To shorten notation, we write i∗ = H(i) and p∗ = H(p); let us show that

Im(i∗) = ker(p∗). Since p○ i = 0, one has p∗○ i∗ = 0. Conversely, let η ∈ ker(p∗)
and let y ∈ H(N) be such that η = cl(y); one has p∗(η) = cl(p(y)), hence
p(y) ∈ B(P). Let z′ ∈ P be such that p(y) = d(z′) and let y′ ∈ N be such that
z′ = p(y′); one has p(y) = d(z′) = d(p(y′)) = p(d(y′)), so that there exists
x ∈M such that y − d(y′) = i(x). Then η = cl(y) = cl(i(x)) = i∗(cl(x)), hence
η ∈ Im(i∗).
Let us now show that Im(p∗) = ker(∂). Let ζ ∈ Im(p∗); let η ∈ H(N) be such

that ζ = p∗(η) and let y ∈ Z(N) be such that ζ = cl(y). Then d(y) = i(0), so
that (0, x) ∈ Q. One thus has ∂(ζ) = cl(0) = 0. Conversely, let ζ ∈ ker(∂). Let
(x , y) ∈ Q be such that cl(p(y)) = ζ . One has cl(x) = ∂(ζ) = 0 in H(M) so that
x ∈ B(M). Consequently, there exists x′ ∈ M such that x = d(x′); let y′ = y −
i(x′); one has p(y′) = p(y) and d(y′) = d(y)−d(i(x′)) = d(y)− i(d(x′)) = 0,
so that y′ ∈ Z(N). This implies that ζ = cl(p(y′)) = p∗(cl(y′)) ∈ Im(p∗).
Let us finally show that Im(∂) = ker(i∗). Let (x , y) ∈ Q; one has ∂(cl(p(y)) =

cl(x), hence i∗(∂(cl(p(y)))) = cl(i(x)) = cl(d(y)) = d(cl(y)) = 0.
Conversely, let ξ ∈ ker(i∗) and let x ∈ Z(N) be such that ξ = cl(x).
Since i∗(ξ) = cl(i(x)), there exists y ∈ N such that d(y) = i(x). Then
d(p(y)) = p(d(y)) = p(i(x)) = 0, so that p(y) ∈ N. This implies that
(x , y) ∈ Q and that ∂(cl(p(y)) = ξ, so that ξ ∈ Im(∂).

Remark (2.6.9). — Let M,M′, N, N′, P, P′ be differential modules and let

0 M N P 0

0 M′ N′ P′ 0

←→ ← →i

←→ f

← →p

←→ g

←→

←→ h

←→ ←→i
′ ←→p

′ ←→
be a commutative diagram of differential modules whose two rows are exact
sequences. Then the morphism ∂∶H(P) → H(M) and ∂′∶H(P′) → H(M′)
satisfy

∂′ ○H(h) = H( f ) ○ ∂.
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Let indeed (x , y) ∈ Z(M)× p−1(Z(P)) such that dN(y) = i(x). The definition
of ∂ thus implies that

H( f ) ○ ∂(cl(p(y)) = H( f )(cl(x)) = cl( f (x)).

On the other hand, one has f (x) ∈ Z(M′), since dM′( f (x)) = f (dM(x)) = 0,
(p′)(g(y)) ∈ Z(P′), since dP′(p′(g(y)) = dP′(h(p(y)) = h(dP(p(y)) = h(0) =
0. Moreover, dN′(g(y)) = g(dN(y)) = g(i(x)) = i′( f (x)), and it follows from
the definition of ∂′ that

∂′ ○H(h)(cl(p(y)) = ∂′(cl(h(p(y)))) = ∂′(cl(p′(g(y)))) = cl( f (x)).

This shows that ∂′ ○H(h) = H( f ) ○ ∂, as claimed.

Definition (2.6.10). — Let (M, dM) and (N, dN) be differential modules. Let f , g
be morphisms of differential modules fromM to N. An homotopy from f to g is
an A-linear morphism u∶M→ N such that g − f = dN ○ u + u ○ dM. One says that
f and g are homotopic if there exists a homotopy from f to g.

Lemma (2.6.11). — Assume that f and g are homotopic. ThenH( f ) = H(g).

Proof. — Let ξ ∈ H(M) and let x ∈ Z(M) be such that ξ = cl(x). Then f∗(ξ) =
cl( f (x)) and g∗(ξ) = cl(g(x)), hence

g∗(ξ) − f∗(ξ) = cl(g(x) − f (x)) = cl(d(u(x))) + cl(u(d(x)) = 0

since d(x) = 0 and d(u(x)) ∈ B(N).

2.7. Projective modules and projective resolutions

Definition (2.7.1). — Let A be a ring and let P be an A-module. One says thatM
is projective if every surjective homomorphism p∶M → P has a section, that is,
there exists a morphism s∶P→M such that p ○ s = idP.

Proposition (2.7.2). — Let A be a ring and let P be an A-module. The following
properties are equivalent.
(i) The A-module P is projective;
(ii) For every surjective morphism ofA-modules p∶M→ N and every morphism

f ∶P→ N, there exists a morphism φ∶P→M such that f = p ○ φ;
(iii) The module P is a direct summand of a free A-module: there exists an

A-module Q such that P⊕Q is a free A-module.
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Moreover, ifM is projective and finitely generated, thenM is a direct summand of
a free finitely generated A-module.
In particular, a free A-module is projective.

Proof. — (i)⇒(ii). Let us assume that P is projective. Let p∶M → N be a
surjective morphism of A-modules and let f ∶P→ N be a morphism. Let Q be
the submodule of P ×M consisting of pairs (x , y) such that f (x) = p(y) and
let q∶Q→ P be the morphism induced by the first projection. For every x ∈ P,
there exists y ∈M such that p(y) = f (x), because p is surjective; consequently,
(x , y) ∈ Q, q(x , y) = x and q is surjective. Since P is a projective A-module,
there exists an A-morphism s∶P → Q such that q ○ s = idP; for x ∈ P, write
s(x) = (x , φ(x)). Then φ is a morphism from P to M; for every x ∈ P, one has
(x , φ(x)) ∈ Q, hence p(φ(x)) = f (x).
(ii)⇒(i). Indeed, the property of the definition of a projective module is the

particular case of (ii) where N = P and f = idP.
(i)⇒(iii). Let F be a free A-module and let p∶F→ P be a surjective homomor-

phism; if P is finitely generated, let us choose F to be finitely generated too. Let
r∶P→ F be a section of p and let F1 = r(P). Since r is injective, P is isomorphic
to F2. Let F2 = ker(p); this is a submodule of F. Let us check that F = F1⊕F2. For
every x ∈ F, one has x = r(p(x)) + (x − r(p(x))); by definition, r(p(x)) ∈ F1,
while p(x − r(p(x))) = p(x) − (p ○ r)(p(x)) = p(x) − p(x) = 0, so that
x−r(p(x)) ∈ F2; consequently, F = F1+F2. Letmoreover x ∈ F1∩F2. Then there ex-
ists y ∈ P such that x = r(y) and p(x) = 0; one thus has y = p(r(y)) = p(x) = 0,
hence x = 0. This shows that (i)⇒(iii), as well as the two additional assertions.
(iii)⇒(i). Let p∶M → P be a surjective morphism of A-modules. Let Q

be a A-module such that P ⊕ Q is a free A-module. Let (ei)i∈I be a basis of
P⊕Q; for every i, write ei = (xi , yi). For every i ∈ I, let us choose an element
zi ∈M such that p(zi) = xi . Since (ei) is a basis of P⊕Q, there exists a unique
morphism f ∶P ⊕Q → M such that f (ei) = zi for every i. Let x ∈ P, let (ai)
be the coordinates of (x , 0) ∈ P⊕Q in the basis (ei). One has x = ∑ aixi and
0 = ∑ ai yi, hence f (x , 0) = ∑ aizi and p( f (x , 0)) = ∑ aixi = x. This shows
that the map r∶ x ↦ f (x , 0) is a morphism from P to M such that p ○ r = idP.
Consequently, P is projective.

Corollary (2.7.3). — A direct sum of projective A-modules is projective.
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Theorem (2.7.4) (Kaplansky). — Let A be a local ring. Every projective A-module
is free.

Proof. — Let M be a projective A-module. We only prove the proposition
under the additional assumption that M is finitely generated. Let m be the
maximal ideal of A and let k = A/m be its residue field. Then M/mM is a finitely
generated vector space over the field k; let (x1, . . . , xn) be a family of elements
of M whose classes modulomM form a basis of that vector space. Let us show
that (x1, . . . , xn) is a basis of M. Letting p∶An →M be the morphism given by
p(a1, . . . , an) = a1x1 + ⋅ ⋅ ⋅ + anxn, we need to prove that p is an isomorphism.
Let N be the image of p, that is, the submodule of M generated by (x1, . . . , xn).

By construction, one has M = N + mM, hence the quotient A-module M/N
satisfies M/N = m(M/N). By Nakayama’s lemma, one thus has M/N = 0, hence
N =M: the morphism p is surjective and the family (x1, . . . , xn) generates M.
Since M is projective, there exists a morphism r∶M→ An such that p ○ r = idM.

Let M′ = r(M) and N = ker(p); as shown in the proof of proposition 2.7.2, one
has An = M′ ⊕ N; in particular, N is isomorphic to a quotient of An, hence
is finitely generated. One has kn ≃ An/mAn ≃ (M′/mM′) ⊕ (N/mN). By
construction, M′ is isomorphic to M, hence M′/mM′ is an n-dimensional vector
space over k. This implies that N/mN = 0, hence N = mN; by Nakayama’s
lemma, one has N = 0 hence p is injective. This concludes the proof.

Definition (2.7.5). — LetA be a ring and letM be anA-module. A projective (resp.
free) resolution ofM is a homological complex (P, d) such that Pn is projective
(resp. free) for every n, Pn = 0 for n < 0, together with a morphism p∶P0 → M,
such that the diagram

⋅ ⋅ ⋅→ P1
d1Ð→ P0

pÐ→M→ 0
is exact.

Theorem (2.7.6). — a) Every module has a free resolution;
b) If A is a noetherian ring andM is finitely generated A-module, then there

exists a free resolution (P, d) ofM such that Pn is finitely generated for every n;
c) Let (P, d , p) and (P′, d′, p′) be projective resolutions of modulesM andM′,

and let f ∶M→M′ be an A-morphism. There exists a morphism of graded differ-
ential modules φ∶P→ P′ such that p′ ○ φ0 = f ○ p;
d) Two morphisms φ and ψ of graded differential modules from P to P′ such

that p′ ○ φ0 = p′ ○ ψ0 = f ○ p are homotopic.
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Proof. — We prove a) and b) at the same time. Let P0 be a free A-module
together with a surjective homomorphism p∶P0 →M; if M is finitely generated,
we choose P0 to be finitely generated too. Let P′0 = ker(p); if M is finitely
generated and A is noetherian, then P1 s finitely generated. We then choose a
free A-module P1 together with a morphism d1∶P1 → P0 whose image is P′0; in
the ‘‘finitely generated case’’, we choose P1 to be finitely generated. By induction,
we construct the desired homological complex.
c) Since P0 is projective and p′∶P′0 →M′ is surjective; applying property (ii) of

proposition 2.7.2 to the morphism f ○ p∶P0 →M′, we conclude that there exists
a morphism φ0∶P0 → P′0 such that p′ ○ φ0 = f ○ p.
In particular, one has p′ ○ φ0 ○ d1 = f ○ p ○ d1 = 0 and Im(φ0 ○ d1) ⊆ ker(p′) =

Im(d′1). Applying property (ii) of proposition 2.7.2 to the projective module P1,
to the surjective morphism from P′1 to Im(d′1) deduced from d′1, and to the
morphism φ0 ○ d1∶P1 → Im(d′1), there exists a morphism φ1∶P1 → P′1 such that
d′1 ○ φ1 = φ0 ○ d1.
By induction on n, we construct φn∶Pn → P′n such that d′n ○ φn = φn−1 ○ dn−1

if n ⩾ 1. Then the morphism φ∶P → P′ which restricts to φn on Pn is a graded
morphism of differential modules, and one has f ○ p = p′ ○ φ0.
d) Let φ and ψ be morphisms of graded differential modules such that f ○ p =

p′ ○ φ0 = p′ ○ψ0. For every n, let αn = ψn − φn; this is a morphism of A-modules
from Pn to P′n. Set un = 0 for n < 0.
One has p′ ○ α0 = p′ ○ ψ0 − p′ ○ φ0 = 0, hence Im(α0) ⊆ ker(p′) = Im(d′1).

Applying property (ii) of proposition 2.7.2, there exists a morphism u0∶P0 → P′1
of A-modules such that α0 = d′1 ○ u0.
One has

d′1 ○ u0 ○ d1 = α0 ○ d1 = d′1 ○ α1,

hence the image of the morphism α1 − u0 ○ d1∶P1 → P′1 is contained in ker(d′1) =
Im(d′2). Since P1 is projective, there exists a morphism u1∶P1 → P′2 such that
α1 − u0 ○ d1 = d′2 ○ u1.
Assume that there exists, for each integer m < n, a morphism um∶Pm → P′m+1

such that αm = d′m+1 ○um +um−1 ○ dm, In particular, αn−1 = d′n ○un−1 +un−2 ○ dn−1,
so that

d′n ○ un−1 ○ dn = (αn−1 − un−2 ○ dn−1) ○ dn = αn−1 ○ dn = d′n ○ αn .
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As a consequence, the image of themorphism αn−un−1○dn∶Pn → P′n is contained
in ker(d′n) = Im(d′n+1). Since Pn is a projective module, there exists a morphism
un∶Pn → P′n+1 such that αn = un−1 ○ dn + d′n+1 ○ un.
By induction, this shows the existence of a graded morphism u∶P → P′ of

graded degree 1 such that α = u ○ d + d′ ○ u. This is the required homotopy.

2.8. Injective modules and injective resolutions

Definition (2.8.1). — Let A be a ring and let I be an A-module. One says that I is
injective if every injective homomorphism i∶ I→M has a retraction, that is, there
exists a morphism r∶M→ I such that r ○ i = idI.

Proposition (2.8.2). — Let A be a ring and let I be an A-module. The following
properties are equivalent.
(i) The A-module I is injective;
(ii) For every injective morphism of A-modules i∶M→ N and every morphism

f ∶M→ I, there exists a morphism φ∶N→ I such that f = φ ○ i;
(iii) For every ideal J of A and every morphism f ∶ J→ I, there exists an element

x ∈ I such that f (a) = ax for every a ∈ J.

Proof. — (i)⇒(ii). Let us assume that I is injective. Let i∶M→ N be an injective
morphism of A-modules and let f ∶M→ I be a morphism. Let Q be the submod-
ule of I ×N consisting of pairs of the form ( f (z),−i(z)), for z ∈M; let us write
[x , y] for the class in (I ×N)/Q of an element (x , y) ∈ I ×N. The morphism
x ↦ [x , 0] from I to (I×N)/Q is injective; indeed, if (x , 0) ∈ Q, then there exists
z ∈M such that x = f (z) and i(z) = 0; since i is injective, one has z = 0, hence
x = 0. Since I is an injective module, there exists a morphism g∶ (I ×N)/Q→ I
such that g([x , 0]) = x for every x ∈ I. Let φ∶N→ I be the morphism given by
φ(y) = g([0, y]). For every z ∈M, one has

φ(i(z)) = g([0, i(z)]) = g([ f (z), 0]) − g([ f (z),−i(z)]) = f (z),
hence f = φ ○ i.
(iii) is a particular case of (ii), where i∶M → N is the injection of the ideal J

into the ring A.
(iii)⇒(i). Let f ∶ I →M be an injective morphism and let us show that there

exists a morphism r∶M → I such that r ○ f = idI. Let F be the set of all
pairs (N, g), where N is a submodule of M containing f (I) and g∶N → I is
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a morphism of A-modules such that g ○ f = idI. We order F by decreeing
that (N, g) ≺ (N′, g′) if N ⊆ N′ and g′∣N = g. Since f is injective, it induces
an isomorphism from I onto its image f (I); if g0∶ f (I)→ I denotes the inverse
isomorphism, then ( f (I), g0) is the unique minimal element of F .
Let us show that the partially ordered set F is inductive. Let indeed (Nα , gα)

be a totally ordered family of elements of F . Let N′ = f (I) ∪⋃αNα; this is a
submodule of M. Moreover there exists a unique morphism g∶N′ → I such that
g∣Nα = gα for every α and g∣ f (I) = g0. The pair (N, g) belongs to F and is an
upper bound of the family (Nα , gα).
By Zorn’s lemma, the set F has a maximal element (N, g). Let us prove by

contradiction that N = M. Otherwise, let m ∈ M N, let N′ = N + Am and
let J = {a ∈ A ; am ∈ N}. Let i∶ J → I be the morphism given by i(a) = g(am)
for a ∈ J; by assumption, there exists an element z ∈ I such that i(a) = az
for every a ∈ J. Let x ∈ N and a ∈ J be such that x + am = 0; one then has
g(x) = −g(am) = −i(a) = −az, so that g(x) + az = 0. It follows that there
exists a unique morphism g′∶N′ → I such that g′(x + am) = g(x)+ az for every
x ∈ N and every a ∈ J. The pair (N′, g′) is an element of F which contradicts
the hypothesis that (N, g) is a maximal element. Consequently, N = M and
g∶M→ I is a morphism of A-modules such that g ○ f = idI. This concludes the
proof of the proposition.

Corollary (2.8.3). — Products of injective A-modules are injective.

Proof. — Let (Mi)i∈I be a family of injective A-modules; let M = ∏i Mi; for
every i, let pi ∶M → Mi be the projection of index i. Let J be an ideal of A, let
f ∶ J→M be a morphism. Then pi ○ f is a morphism from J to Mi , hence there
exists an element xi ∈Mi such that pi( f (a)) = axi for every a ∈ J. Let x = (xi);
one has f (a) = (pi( f (a)) = (axi) = ax for every a ∈ J. This proves that M is
an injective module.

Corollary (2.8.4). — IfA is a principal ideal domain, then anA-module is injective
if and only if it is divisible. In particular, Q/Z is an injective Z-module.

Proof. — Let M be an injective A-module, let m ∈M, let a ∈ A be any non-zero
element. Let f ∶ (a) → M be the morphism given by f (ab) = bm, for b ∈ B.
Since M is injective, there exists an element x ∈ M such that f (ab) = abx for
every b ∈ B; in particular, f (a) = m = ax. This shows that M is divisible.
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Conversely, let M be a divisible A-module and let us prove, assuming that A is
a principal ideal domain, that M is an injective module. Let J be an ideal of A,
let f ∶ J →M be a morphism of A-modules. Since A is a pid, there exists a ∈ A
such that J = (a). If a = 0, then one can set m = 0. Let m = f (a) and let x ∈M
be such that m = ax; for every b ∈ A, one has f (ab) = b f (a) = bm = abm. By
proposition 2.8.2, this shows that M is an injective A-module.
Since the Z-module Q is divisible, so is its quotient Q/Z. The ring Z being

a pid, this implies thatQ/Z is an injective Z-module.

2.8.5. — For every A-module M, one writes M∗ = HomZ(M,Q/Z), with its
structure of A-module given by a ⋅ φ = (x ↦ φ(ax)) for every a ∈ A, φ ∈ M∗
and x ∈M.

Lemma (2.8.6). — LetM be an A-module.
a) For every non-zero x ∈M, there exists φ ∈M∗ such that φ(x) ≠ 0.
b) IfM is a free A-module, thenM∗ is an injective A-module.

Proof. — a) Let J = {a ∈ Z ; ax = 0} and let n be the positive generator of
this ideal, so that Zx ≃ Z/nZ; since x ≠ 0, one has n = 0 or n ⩾ 2. Let then
f ∶Zx → Q/Z given by f (ax) = 1

2a (mod Z) if n = 0, and by f (ax) = 1
na

(mod Z) if n ⩾ 2; one has f (x) ≠ 0 by construction. SinceQ/Z is an injective
Z-module, there exists a morphism of abelian groups φ∶M → Q/Z such that
φ∣Zx = f . One has φ ∈M∗ and φ(x) = f (x) ≠ 0.
b) We first show that A∗ is an injective A-module. Let J be an ideal of A and

let f ∶ J → A∗ be a morphism. For every x ∈ J, f (x) is an additive map from A
to Q/Z; let f̃ (x) = f (x)(1). This defines a morphism f̃ ∶ J → Q/Z of abelian
groups. SinceQ/Z is an injectiveZ-module, there exists amorphism g̃∶A→ Q/Z
such that g̃∣J = f̃ . For every x ∈ A, let g(x) be the element y ↦ g̃(xy) of A∗;
the map g∶A → A∗ is additive. It is in fact A-linear since for every a, x , y ∈ A,
one has g(ax)(y) = g̃(axy) and (a ⋅ g)(x)(y) = g(x)(ay) = g̃(axy). Let us
show that g∣J = f : let x ∈ J and y ∈ A; one has g(x)(y) = g̃(xy) = f̃ (xy) since
xy ∈ J; consequently, g(x)(y) = f (xy)(1) = f (x)(y) because f is A-linear; this
shows that g(x) = f (x). By proposition 2.8.2, we thus have proved that A∗ is an
injective A-module.
Let now M be a free A-module. It is isomorphic to a direct sum A(I) of copies

of A, hence M∗ ≃ (A∗)I is a product of copies of A∗. By corollary 2.8.3, M∗ is an
injective module.
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Proposition (2.8.7). — LetM be anA-module. There exists an injectiveA-module I
and an injective morphism i∶M→ I.

Proof. — Let F be a free A-module and let p∶F→M∗ be a surjective morphism
of A-modules. Then F∗ is an injective A-module. Let p∗∶ (M∗)∗ → F∗ be the
map given by φ ↦ φ ○ p; it is an injective morphism of A-modules, because p is
surjective.
For every x ∈ M, let j(x) ∈ (M∗)∗ be the map from M∗ to Q/Z given by

φ ↦ φ(x); this defines a morphism of A-modules j∶M→ (M∗)∗. Let x ∈ ker( j);
this means that φ(x) = 0 for every φ ∈ M∗. It thus follows from lemma 2.8.6
that x = 0. Consequently, j is injective.

The composition p ○ j∶M → F∗ is an injective morphism from M into an
injective A-module, hence the proposition.

Definition (2.8.8). — Let A be a ring and letM be an A-module. An injective
resolution of M is a cohomological complex (I, d) such that In is injective for
every n, In = 0 for n < 0, together with an injective morphism i∶M→ I0, such that
the diagram

0→M iÐ→ I0
d0Ð→ I1

d1Ð→ I2 → . . .

is exact.

Theorem (2.8.9). — a) Every module has an injective resolution;
b) Let (I, d , i) and (I′, d′, i′) be injective resolutions of modulesM andM′, and

let f ∶M→M′ be an A-morphism. There exists a morphism of graded differential
modules φ∶ I→ I′ such that φ0 ○ i′ = i ○ f .
c) Two morphisms φ and ψ of graded differential modules from P to P′ such

that φ0 ○ i′ = ψ0 ○ i′ = i ○ f are homotopic.

Proof. — The proof is absolutely analogous to the proof of properties a), c),
and d) of theorem 2.7.6.

2.9. Abelian categories

The theory of abelian categories abstracts the main properties of modules over
a ring within the framework of category theory.
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2.9.1. Preadditive categories. — Let C be a category. One says thatC is a
preadditive category if for every objects M,N ofC , the setC (M,N) is endowed
with the structure of an abelian group such that for every three objects M,N, P
ofC , the composition mapC (M,N) ×C (N, P)→C (M,P) is bilinear.

Lemma (2.9.2). — If (M, (pi)) and (M′, (p′i)) are products of the family (Mi),
there exists a unique isomorphism f ∶M′ →M such that p′i = pi ○ f for every i.

Proof. — Since M is a product, there exists a unique morphism f ∶M′ → M
such that p′i = pi ○ f for every i. Since M′ is a product, there exists a morphism
g∶M → M′ such that pi = p′i ○ g for every i. Then f ○ g ∈ C (M,M) and
pi ○ f ○ g = p′i ○ g = pi = pi ○ idM for every i; since M is a product, one thus has
f ○ g = idM. Reversing the rôles of M and M′, one proves that g ○ f = idM′ . This
shows that f is an isomorphism.

2.9.3. — Let (Mi)i∈I be a family of objects of the categoryC . If it exists, one
denotes by∏i∈IMi (resp. by⊕i∈IMi) the product (resp. the coproduct) of the
family (Mi).
One says that the categoryC admits products (resp. finite products) if every

family (resp. every finite family) of objects ofC has a product.
One says that the categoryC admits coproducts (resp. finite coproducts) if

every family (resp. every finite family) of objects ofC has a coproduct.

Lemma (2.9.4). — LetC be a preadditive category. Let (Mi)i∈I be a finite family
of objects ofC and let (M, (pi)) be a product of this family. There exists a family
(qi), where qi ∈C (Mi ,M), such that (M, (qi)) is a coproduct of the family (Mi).

Proof. — Let j ∈ I. Since M is a product, there exists a unique morphism
q j ∈C (M j,M) such that pi ○ q j = 0 if i ≠ j and p j ○ q j = idM j .
For i ∈ I, let ui = qi ○ pi ; one has ui ∈C (M,M); let u = ∑i∈I ui . For j ∈ I, one

has
p j ○ u = p j ○ (∑

i∈I
qi ○ pi) =∑

i∈I
p j ○ qi ○ pi = p j = p j ○ idM .

Since M is a product, this implies that u = idM.
Let now Q be an object ofC and let ( fi)i∈I be a family, where fi ∈C (Mi , Q);

let us show that there exists a uniquemorphism f ∈C (M,Q) such that f ○qi = fi
for every i. Let f = ∑i∈I fi ○ pi; this is an element ofC (M,Q). For every j ∈ I,



2.9. ABELIAN CATEGORIES 91

one has

f ○ q j = (∑
i∈I

fi ○ pi) ○ q j =∑
i∈I

fi ○ pi ○ q j = fi ○ idMi = fi .

Conversely, let g ∈C (M,Q) be such that g ○ qi = fi for every i. One has

g = g ○ (∑
i∈I

qi ○ pi) =∑
i∈I

q ○ qi ○ pi =∑
i∈I

fi ○ pi = f .

This concludes the proof.

Corollary (2.9.5). — Let C be a preadditive category. Let (Mi)i∈I be a finite
family of objects ofC and let (M, (qi)) be a coproduct of this family. There exists
a family (pi), where pi ∈ C (M,Mi), such that (M, (pi)) is a product of the
family (Mi).

Proof. — This follows from lemma 2.9.4 by passing the opposite category, which
is also a preadditive category.

2.9.6. Additive categories. — LetC be a preadditive category. One says that
it is an additive category if every finite family of objects ofC has a product and
a coproduct.
A functor F∶C →D between additive categories is said to be additive if for

all objects M,N ofC , the mapC (M,N)→D(M,N) induced by F is additive.

Exercise (2.9.7). — LetC be an additive category.
a) Show that the product of an empty family inC is both a terminal object

and an initial object. It is denoted by 0.
b) Let M,N be objects ofC and let f , g ∈C (M,N). Construct a canonical

commutative square

M N

M⊕M N⊕N

← →f+g

←→ ∆M

←→
f⊕g

← →∆′N

inC , where ∆M, ∆′N and f ⊕ g are defined solely in terms of the structure of
category of C. Conclude that the group laws on the morphism sets of an additive
category is intrinsic.
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2.9.8. Kernels. — LetC be an additive category and let u∶M→ N be a mor-
phism inC .
For u to be amonomorphism, it is necessary and sufficient that for every object

P ofC , v = 0 is the only element ofC (P,M) such that u ○ v = 0. The necessity
of this condition is obvious; conversely, if it holds and if f , g ∈C (P,M) satisfy
u ○ f = u ○ g, then u ○ ( f − g) = 0, so that f − g = 0 and f = g.
A kernel of u an equalizer of the pair (u, 0); this is an object P together with a

morphism i∶P→M such that u○ i = 0 and such that for every object Q ofC and
every morphism f ∶Q→M such that u ○ f = 0, there exists a unique morphism
φ∶Q→ P such that i ○ φ = f . One sometimes says that i is a kernel of u. If (P, i)
and (P′, i′) are kernels of u, there exists a unique morphism φ∶P→ P′ such that
i ○ φ = i′, and φ is an isomorphism.
Let (P, i) be a kernel of u. Then i is a monomorphism. Let indeed f ∶Q→ P

be a morphism such that i ○ f = 0. Applying the definition of a kernel to the
morphism 0 = i ○ f ∶Q→M, we observe φ = 0 is the only element ofC (Q, P)
such that i ○ φ = 0; consequently, f = 0. Let us also observe that P represents
the functor Q↦ Ker(u∗∶C (Q,M)→C (Q,N)).

2.9.9. Cokernels. — Let C be an additive category and let u∶M → N be a
morphism in C . The definition and the basic properties of a cokernel are
obtained by passing to the opposite category.
For u to be an epimorphism, it is necessary and sufficient that for every object P

ofC and every v ∈C (N, P) such that v ○ u = 0, one has v = 0.
A cokernel of u is a coequalizer of the pair (u, 0); this is an object P together

with a morphism p∶N→ P such that p ○ u = 0 and such that for every object Q
ofC and every morphism f ∶N→ Q such that f ○ u = 0, there exists a unique
morphism φ∶P → Q such that φ ○ p = f . It is a kernel of u in the opposite
categoryC o.
If (P, p) and (P′, p′) are cokernels of u, then there exists a unique morphism

φ∶P→ P′ such that φ ○ p = p′, and φ is an isomorphism.
If (P, p) is a cokernel of u, then p is an epimorphism.

2.9.10. — LetC be an additive category. One says thatC is an abelian category
if the following properties hold:
– Every morphism inC has a kernel and a cokernel;
– Every monomorphism is the kernel of some morphism;
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– Every epimorphism is the cokernel of some morphism.

Exercise (2.9.11). — LetC be an abelian category and let u∶M→ N be a mor-
phism inC . Show the following properties:
a) The morphism u is a monomorphism if and only if its kernel is 0;
b) The morphism u is an epimorphism if and only if its cokernel is 0;
c) The morphism u is an isomorphism if and only if it is both an epimorphism

and a monomorphism.

Example (2.9.12). — Let A be a ring, possibly noncommutative. The category
ModA of (left) A-modules is an abelian category.

This is indeed a preadditive category. Moreover, in this category, all products
exist and are given by the usual products of A-modules, all coproducts exist and
are given by the direct sums of A-modules. Monomorphisms are the injective
morphisms, epimorphisms are the surjective morphisms. Kernels and cokernels
exist, and correspond to the usual notions. Moreover, an injective morphism
i∶M→ N is the kernel of its cokernel, the morphism p∶N→ Coker(i). Similarly,
a surjective morphism p∶N → P is the cokernel of its kernel i∶ker(p) → N,
hence the assertion.
One proves in a similar way that if A is (left) noetherian, then the category of

finitely generated (left) A-modules is an abelian category.

Exercise (2.9.13). — LetC be an abelian category. Show that every monomor-
phism is the kernel of its cokernel, and that every epimorphism is the cokernel
of its kernel.

2.10. Exact sequences in abelian categories

LetC be an abelian category.

Lemma (2.10.1). — LetM,N be objects of C and let f ∶M → N be a morphism
ofC . Let p∶N→ Coker( f ) be a cokernel of f and let j∶Ker(p)→ N be a kernel
of p.
a) There exists a unique morphism f1∶M→ Ker(p) such that f = j ○ f1.
b) For every object P′ ofC , every monomorphism j′∶P′ → N and every mor-

phism f ′1 ∶M→ P′ such that f = j′○ f ′1 , there exists a uniquemorphism g∶Ker(p)→
P′ such that f ′1 = g ○ f1 and j = j′ ○ g; moreover, g is a monomorphism.
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c) The morphism f1 is an epimorphism.

Proof. — a) One has p○ f = 0 by the definition of a cokernel; by the definition
of the kernel Ker(p), there exists a unique morphism f1 such that f = j ○ f1.
b) Since j′ is amonomorphism, there exists an object N1 ofC and amorphism

p′∶N → Q′ such that (P′, j′) is a kernel of p′. Then p′ ○ f = p′ ○ j′ ○ f ′1 = 0;
consequently, there exists a unique morphism v∶Coker( f ) → Q′ such that
p′ = v ○ p. Then one has p′ ○ j = v ○ p ○ j = 0; since (P′, j′) is a kernel of p′, there
exists a unique morphism u∶Ker(p) → P′ such that j = j′ ○ u. One then has
j′ ○ f ′1 = f = j ○ f1 = j′ ○ u ○ f1. Since j′ is a monomorphism, this implies that
f ′1 = u ○ f1.

Q′

M Ker(p) N Coker(p)

P′

← →

f

←→f1←

→f ′1

←→ g
↩→j

←

→p′

←→p

← →v

←

→
j′

Conversely, let u′∶Ker(p)→ P′ be a morphism such that j = j′ ○ u′. One thus
has j′ ○ u′ = j = j′ ○ u, hence u = u′ because j′ is a monomorphism.
Finally, since j = j′ ○ u and j is a monomorphism, the morphism u is a

monomorphism as well.
c) Let (Q1, p1) be a cokernel of f1 and let (Ker(p1), j1) be a kernel of p1. Since

p1 ○ f1 = 0, there exists a unique morphism f ′1 ∶M→ Ker(p1) such that f1 = j1 ○ f ′1 .
One then has f = ( j○ j1)○ f ′1 , and j○ j1 is amonomorphism. By part b), there exists
a monomorphism g∶Ker(p)→ Ker(p1) such that f ′1 = g ○ f1 and j ○ j1 ○ g = j.

M N Coker( f )

Ker(p)

Ker(p1) Coker( f1)

← →f

←

→f1

←

→

f ′1

← →p

← →j

←

→
p1←

→ g

← →j1

Since j is a monomorphism, this implies that j1 ○ g = idKer(p). Consequently,
p1 = p1 ○ j1 ○ g = 0, hence f1 is an epimorphism.
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Lemma (2.10.2). — LetM,N be objects of C and let f ∶M → N be a morphism
ofC . Let i∶Ker( f )→M be a kernel of f and let q∶M→ Coker(i) be a cokernel
of i.
a) There exists a unique morphism f1∶Coker(i)→ N such that f = f1 ○ q.
b) For every objectQ′ ofC , every epimorphism q′∶M→ Q′ and everymorphism

f ′1 ∶Q′ → N such that f = f ′1 ○q′, there exists a unique morphism g∶Q′ → Coker(i)
such that f ′1 = f1 ○ g and q = g ○ q′; moreover, g is an epimorphism.
c) The morphism f1 is a monomorphism.

Proof. — It follows from lemma 2.10.1 by passing to the opposite categoryC o.

Proposition (2.10.3). — Let M,N be objects of C and let f ∶M → N be a mor-
phism. Let (Ker( f ), i) be a kernel of f , let (Coker( f ), q) be a cokernel of f , let
(Ker(q), j) be a kernel of q and let (Coker(i), p) be a cokernel of i. There exists
a unique morphism φ∶Coker(i) → Ker(q) such that f = j ○ φ ○ p, and it is an
isomorphism.

Proof. — First observe that there exists at most one such morphism φ. Indeed,
if f = j○φ′ ○ p, then j○φ○ p = j○φ′ ○ p; since j is a monomorphism, this implies
φ ○ p = φ′ ○ p; since p is an epimorphism, this implies φ = φ′.

Ker( f ) M N Coker( f )

Coker(i) Ker(q)

← →i ← →f

←→ p

← →q

←→φ
↩→ j

To construct such a morphism φ, let f1∶Coker(i) → N be the unique mor-
phism such that f = f1 ○ p; it is a monomorphism (lemma 2.10.2). Then
q ○ f1 ○ p = q ○ f = 0. Since p is an epimorphism, q ○ f1 = 0 and there ex-
ists a unique morphism φ∶Coker(i)→ Ker(q) such that f1 = j ○ φ. Since f1 is a
monomorphism, φ is a monomorphism as well. One has f = f1 ○ p = j ○ φ ○ p.
Let f2∶M→ Ker(q) be the unique morphism such that f = j ○ f2; it is an epi-

morphism (lemma 2.10.1). Then j○ f2 ○ i = f ○ i = 0. Since j is a monomorphism,
one has f2 ○ i = 0, hence there exists a unique morphism ψ∶Coker(i)→ Ker(q)
such that f2 = ψ ○ p. Since f2 is an epimorphism, ψ is an epimorphism as well.
One has f = j ○ f2 = j ○ ψ ○ p.
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Consequently, φ = ψ. It is both a monomorphism and an epimorphism, hence
it is an isomorphism.

Remark (2.10.4). — The objects Coker(i) and Ker(q) of the proposition are
called the image of f and the coimage of f respectively, are are denoted Im( f )
andCoim( f ). To justify this terminology, observe that whenC is the abelian cat-
egoryModA of A-modules over some ring A, one has Coker(i) =M/Ker(i) ≃
Im( f ).
In some books, the statement of the proposition is taken as a definition of an

abelian category.

2.10.5. — Let C be an abelian category, let M,N, P be objects of C and let
f ∶M→ N and g∶N→ P be morphisms ofC such that g ○ f = 0.
Let i∶Ker(g) → N be a kernel of g; since g ○ f = 0, there exists a unique

morphism f ′∶M→ Ker(g) such that f = i ○ f ′.
Let p∶N→ Coker( f ) be a cokernel of f ; since g ○ f = 0, there exists a unique

morphism g′∶Coker( f )→ P such that g = g′ ○ p.
Let (H1, q) be a cokernel of f ′ and let (H2, j) be a kernel of g′. The morphism

u = p ○ i∶Ker(g)→ Coker( f ) satisfies
g′ ○ u ○ f ′ = (g′ ○ p) ○ (i ○ f ′) = g ○ f = 0,

hence there exists a unique morphism v∶H1 → H2 such that u = p ○ i = j ○ v ○ q.
We shall prove that the morphism v is an isomorphism by identifying it with the
canonical isomorphism from Coim(u) to Im(u). In the case of a category of
modules, observe that H1 = Ker(g)/ Im( f ), while H2 = ker(g′∶N/ Im( f )→ P),
and the morphism v is the obvious isomorphism between this modules. The
proof for abelian categories is unfortunately more involved.
Let k∶ Im( f ) → N and f = k ○ f1 be the factorization of f given by

lemma 2.10.1; the morphism f1 is an epimorphism and there exists a unique
morphism φ∶ Im( f )→ Ker(g) such that f ′ = φ ○ f1 and k = i ○ φ; one then has
f = i ○ f ′ = i ○ φ ○ f1.
Let ℓ∶Ker(u) → Ker(g) be a kernel of u. One has u ○ φ ○ f1 = p ○ i ○ φ ○ f1 =

p ○ f = 0, hence u ○ φ = 0 since f1 is an epimorphism. Consequently, there
exists a unique morphism φ′∶ Im( f ) → Ker(u) such that φ = ℓ ○ φ′; since φ is
a monomorphism, φ′ is a monomorphism as well. Then p ○ i ○ ℓ = u ○ ℓ = 0,
hence i ○ ℓ factors through the kernel of p, which, by definition, is the coimage
of f . By proposition 2.10.3, (Im( f ), k) represents the kernel of p, hence there
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exists a unique morphism i′∶Ker(u)→ Im( f ) such that k ○ i′ = i ○ ℓ; since i ○ ℓ
is a monomorphism, i′ is a monomorphism too. Now, k = i ○ φ = k ○ i′ ○ φ′;
since k is a monomorphism, one has i′ ○ φ′ = idIm( f ). This implies that i′ is an
epimorphism; moreover, i′ ○ φ′ ○ i′ = i′, hence φ′ ○ i′ = idKer(u). We have shown
that φ′ is an isomorphism from Im( f ) to Ker(u).
One has f ′ = φ○ f1 = ℓ○φ′○ f1. By definition, the pair (H1, q) is a cokernel of f ′,

but since φ′ ○ f1 is an epimorphism, (H1, q) is also a cokernel of ℓ∶Ker(u) →
Ker(g). In other words, we have identified H1 with the coimage of u.
We can now apply the previous argument in the opposite category, or rework it

patiently by reversing all arrows, and exchanging kernels and cokernels, images
and coimages. This identifies (H2, j) with the image of u.

The morphism v is then the unique morphism Coim(u)→ Im(u) such that
u = q ○ v ○ j. By proposition 2.10.3, it is an isomorphism.

Ker(u)

Im( f ) Ker(g) H1 = Coim(u)

M N P

Im(u) = H2 Coker( f ) Im(g)

Coker(u)

←→ ℓ

← →φ

←
→

k ←→ i
← →q

← →f

← → f1

← →g

←→q

←

→
g1

← →m

←→

←→ψ

← →k

Definition (2.10.6). — The homology of a sequence M
fÐ→ N

gÐ→ P such that
g ○ f = 0 is the objectH1 defined above.

One says that this sequence is exact at N if H1 = 0. With the above notation,
the following properties are equivalent:

(i) The sequence M
fÐ→ N

gÐ→ P is exact at N;
(ii) One has H1 = 0;
(iii) The morphism f ′∶M→ Ker(g) deduced from f is an epimorphism;
(iv) One has H2 = 0;
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(v) The morphism g′∶Coker( f )→ P deduced from g is a monomorphism.

2.10.7. — The notion of complex in an abelian categoryC can be developed
in analogy with the corresponding concept for modules over a ring, However,
some abelian categories do not always admit infinite coproducts, it is better
to have a naïve definition of a graded differential object inC which avoids to
considering a coproduct. So we shall just consider families (Mn)n∈Z of objects
ofC related by morphisms dn∶Mn →Mn+r such that dn+r ○dn = 0 for all n. One
speaks of a cohomological complex if r = 1, and of a homological complex if
r = −1.

The definition of a morphism of complexes can be copied verbatim, as can
that of a homotopy between two morphisms of complexes.

2.10.8. — Let M = (Mn) be a homological complex inC . Its homologies are
defined by Hn(M) = H(Mn−1 →Mn →Mn+1). A complex is an exact sequence
if and only if is exact at each term, that is if and only if its homologies are 0.
A morphism of homological complexes f = ( fn∶Mn → Nn) induces mor-

phisms Hn( f )∶Hn(M)→ Hn(N). Two homotopic morphisms induce the same
morphism.

Example (2.10.9). — Let 0 →M
fÐ→ N

gÐ→ P → 0 be a complex. The following
properties are equivalent:
(i) This complex is an exact sequence;
(ii) The morphism f is a monomorphism and p is a cokernel of f ;
(iii) The morphism g is an epimorphism and f is a kernel of g.

Definition (2.10.10). — LetC andD be abelian categories and let F∶C → D

be an additive functor. One says that F is left exact if for every exact sequence
0 → M

fÐ→ N
gÐ→ P → 0, the complex 0 → F(M) F( f )ÐÐ→ F(N) F(g)ÐÐ→ F(P) is exact.

One says that the functor F is right exact if for every such short exact sequence, the
complex F(M) F( f )ÐÐ→ F(N) F(g)ÐÐ→ F(P)→ 0 is exact. One says that the functor F is
exact if it is both left and right exact.(1)

If F is a contravariant additive functor fromC toD , it is viewed as a functor
from the opposite categoryC o to the categoryD , and this leads to analogous

(1)Compare with definition 2.3.14!
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definitions. For example, such a contravariant functor F is left exact if for
every short exact sequence 0 → M

fÐ→ N
gÐ→ P → 0 as above, the complex

0→ F(P) F(g)ÐÐ→ F(N) F( f )ÐÐ→ F(M) is exact.

Example (2.10.11). — LetC be an abelian category and let M be an object ofC .
a) The functorC (M, ●) given byN↦C (M,N) is a covariant left exact functor

fromC to the categoryAb of abelian groups.
Let 0 → N1

fÐ→ N2
gÐ→ N3 → 0 be a short exact sequence in C and let us

consider the complex

0→C (M,N1)
f ′Ð→C (M,N2)

g′Ð→C (M,N3)

deduced by application of the functor C (M, ●). Let u ∈ C (M,N2) be a mor-
phism such that g′(u) = 0, that is, g ○ u = 0. Since f is a kernel of g, there exists
a unique morphism v ∈C (M,N1) such that u = f ○ v = f ′(v). This shows that
f ′ is injective and that Im( f ′) = Ker(g′), as required.
b) The functorC (●,M)∶N ↦ C (N,M) is a contravariant left exact functor

fromC toAb .
This is deduced from the preceding case by considering the opposite cate-

goryC o.

Remark (2.10.12). — Let F be an additive functor between abelian categories.
Assume that F has a right adjoint. Then F respects all colimits. Since a cokernel

of amorphism f ∶M→ N is a colimit of the diagram M N

←→f←→0 , the functor F
respects cokernels. Consequently, it is right exact.
By symmetry, if F has a left adjoint, it respects all limits, hence it respects

kernels, so that it is left exact.

Exercise (2.10.13). — Let F be an additive functor between abelian categories. If
F is left (resp. right) exact, prove that F respects all finite limits (resp. colimits).
That is, for every finite quiver Q and every Q-diagramA which has a limit (resp.
a colimit) A, then F(A) is a limit (resp. a colimit) of F(A ).

Remark (2.10.14). — As the first propositions of this section have shown, the
manipulation of diagrams in abelian categories leads to much more involved
arguments than what we are used to in the abelian category of modules over a
ring. Indeed, in a category such asModA, to prove that a kernel is 0, it suffices
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to prove that each element of this kernel is 0. To that aim, we may do some
‘‘diagram chasing’’, pushing the element along morphisms, and lifting it along
epimorphisms. This kind of argument is forbidden in general abelian categories
whose objects have no elements to work with.
However, a theorem of Freyd–Mitchell shows that every (small) abelian cate-

goryC possesses a fully faithful and exact functor F to a category of modules
over some ring R. The properties of many canonical diagrams can then be
established after applying the functor F, where classical proofs are possible.

2.11. Injective and projective objects in abelian categories

LetC be an abelian category. We have seen in example 2.10.11 that the functors
C (M, ●) and C (●,M) are left exact. They are not right exact in general and
the definition of injective or projective objects in an abelian category essentially
copies the one given for modules (definitions 2.7.1 and 2.8.1).

Definition (2.11.1). — LetC be an abelian category.
a) An object I of C is said to be injective if the left-exact functor C (●, I) is

exact.
b) An object P ofC is said to be projective if the left-exact functorC (P, ●) is

exact.

In other words, an object I is injective if and only if, for every monomorphism
j∶X → Y and every morphism f ∶X → I, there exists a morphism g∶Y → I
such that f = g ○ j. Taking X = I and f = idI, we see in particular that any
monomorphism j∶X→ I admits a retraction, and one proves in the same way as
for modules that this condition suffices.
Similarly, an object P is projective if and only if, for every epimorphism p∶X→

Y and every morphism f ∶P → Y, there exists a morphism g∶P → X such that
f = p ○ g. Taking Y = P and f = idP, we see in particular that any epimorphism
p∶X→ P admits a section, and one proves in the same way as for modules that
this condition suffices.

Definition (2.11.2). — LetC be an abelian category.
a) One says thatC has enough injectives if, for every object X ofC , there exists

an injective object I ofC and a monomorphism j∶X→ I.
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b) One says that C has enough projectives if, for every object X of C , there
exists a projective object P ofC and an epimorphism p∶P→ X.

Example (2.11.3). — Let k be a ring. The injective (resp. projective) objects of
the categoryMod k are exactly the injective (resp. projective) k-modules. Given
proposition 2.8.7, this category has enough injectives. Similarly, any k-moduleM
admits an epimorphism p∶P→Mwith source a free k-module, for example the
canonical morphism from k(M) to M which maps the basis element em to m, for
every m ∈M. Since free modules are projective (proposition 2.7.2), this implies
that the categoryMod k has enough projectives.

2.11.4. — The description of injective/projective objects in concrete abelian
categories is generally a difficult question, as is the existence of such (nonzero)
objects. Grothendieck introduced additional axioms on abelian categories which
imply that a category has enough injectives (resp. projectives).

Definition (2.11.5). — LetC be an abelian category.
a) A right resolution of an objectA is a complex (Xn , dX

n ) inC such that Xn = 0
for n < 0, together with a morphism ε∶A→ X0 such that the complex

0→ A→ X0 → X1 → . . .

is exact.
b) A right resolution is said to be injective of the objects Xn are injective, for all

n ∈ N.
c) A morphism of right resolutions is a morphism of complexes.

Consider a complex X = (Xn) such that Xn = 0 for n < 0 together with a
morphism ε∶A → X0 in C . Viewing the object A as a complex, whose only
nonzero term is in degree 0, the morphism ε defines a morphism of complexes
A→ X, which we still denote by ε. Then (X, ε) is a resolution if and only if the
morphism of complexes ε∶A→ X is a homologism.

Proposition (2.11.6). — LetC be an abelian category with enough injectives.
a) Every object A inC has an injective resolution.
b) Let ε∶A→ X and η∶B→ Y be resolutions, let f ∶A→ B be a morphism inC .

If Yn is injective for every n, then there exists a morphism of resolutions φ∶X→ Y
that extends f .
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c) Let φ,ψ∶X→ Y twomorphisms of resolutions that extend amorphism f ∶A→
B. If Yn is injective for every n, then φ and ψ are homotopic: there exist morphisms
hn∶Xn → Yn−1, for all n ∈ N, such that φn − ψn = dY

n−1hn + hn+1dX
n for every n.

Proof. — The proof is analogous to the one made for projective resolutions of
modules.
a) Since the abelian categoryC has enough injective, there exists a monomor-

phism ε∶A→ X0 from A to an injective object X0. Denote by p0∶X0 → X′1 its cok-
ernel, so that we have an exact sequence 0→ A→ X0 → X′1 → 0. Let ε1∶X′1 → X1
be a monomorphism from X′1 to an injective object X1, let d0 = ε1 ○ p0∶X0 → X1
and let p1∶X1 → X′2 be a cokernel of d0. One has d0 ○ ε = ε1 ○ p0 ○ ε = 0; moreover,
since ε1 is a monomorphism, the kernel of d0 = ε1 ○ p0 is that of p0, that is,
the image of ε; in particular, the complex A → X0 → X1 is exact at X0. Hav-
ing constructed an exact sequence 0 → A → X0

d0Ð→ . . . dn−1ÐÐ→ Xn
pnÐ→ X′n+1 → 0,

where X0, . . . , Xn−1 are injective objects ofC , we can then introduce amonomor-
phism εn from X′n to an injective object Xn, define the morphism dn∶Xn → Xn+1
as the composition εn ○ pn, and a morphism pn+1∶Xn+1 → X′n+2 as the cokernel
of dn. By induction, this furnishes the desired injective resolution.
b) The morphism ε∶A → X0 is a monomorphism; applying the definition

of an injective object to the morphism η ○ f ∶A → Y0, we see that there exists
a morphism f0∶X0 → Y0 such that f0 ○ ε = η ○ f . Assume that morphisms
fm∶Xm → Ym have been defined, form ⩽ n satisfying fm ○ dX

m−1 = dY
m−1 ○ fm−1, for

all integersm such that 1 ⩽ m ⩽ n, and let us define amorphism fn+1∶Xn+1 → Yn+1
such that fn+1 ○ dX

n = dY
n ○ fn. Since one has dY

n ○ fn ○ dX
n−1 = dY

n ○ dY
n−1 ○ fn−1 = 0,

the morphism dY
n ○ fn∶Xn → Yn vanishes on Im(dX

n−1), thus factors through
a morphism f ′n∶Xn/ Im(dX

n−1) → Yn+1. By definition of an exact sequence, the
morphism dn factors through a monomorphism d′n∶Xn/ Im(dn−1)→ Xn+1. Since
Yn+1 is injective, there exists amorphism fn+1∶Xn+1 → Yn+1 such that fn+1○d′n = f ′n.
Since Xn → Xn/ Im(dn−1) is an epimorphism, this imples that fn+1 ○ dX

n = dY
n ○ fn.

By induction, we obtain a sequence ( fn) ofmorphisms inC which is amorphism
of resolutions and extends f .
c) We define h0 as the zero morphism. By definition of a morphism of resolu-

tions, one has φ0 ○ ε = η ○ f = ψ0 ○ ε, so that (φ0 − ψ0) ○ ε = 0. Consequently,
the morphism φ0 − ψ0 induces a morphism h′0∶X0/ Im(ε)→ Y0. By definition
of an exact sequence, the morphism dX

0 ∶X0 → X1 induces a monomorphism
d′0∶X0/ Im(ε) → X1. Since Y0 is injective, there exists a morphism h1∶X1 → Y0
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such that h1 ○ d′0 = h′0; since X0 → X0/ Im(ε) is an epimorphism, one then has
h1 ○ dX

0 = φ0 − ψ0.
Assume that we have constructed morphisms h0, . . . , hn such that φm − ψm =

dY
m−1hm + hm+1dX

m for every integer m such that 0 ⩽ m < n. Then one has

(φn−ψn−dY
n−1○hn)○dX

n−1 = dY
n−1○(φn−1−ψn−1−hn ○dX

n−1) = dY
n−1○dY

n−2hn−1 = 0,

so that φn −ψn − dY
n−1 ○ hn factors through a morphism h′n+1∶Xn/ Im(dX

n−1)→ Yn.
By definition of an exact sequence, the morphism dX

n ∶Xn → Xn+1 induces a
monomorphism d′n∶Xn/ Im(dX

n−1) → Xn+1. Since Yn is injective, there exists a
morphism hn+1∶Xn+1 → Yn such that hn+1 ○ d′n = h′n+1; since Xn → Xn/ Im(dX

n−1)
is an epimorphism, one then has hn+1 ○ dX

n = φn − ψn − dY
n−1 ○ hn.

By induction, we have constructed a family (hn) of morphisms satisfying the
desired relations.

2.12. Derived functors

2.12.1. — LetC be an abelian category admitting enough injectives, letD be
an abelian category and let F∶C →D be an additive functor.
a) For every object A ofC , we choose an injective resolution εA∶A→ X and

set
RnF(A) = Hn(F(X)),

where F(X) is the complex 0→ F(X0)→ F(X1)→ . . . .
b) Let f ∶A → B be a morphism in the category C . Consider a morphism

φ∶X→ Y on the chosen injective resolutions of A and B that extends the mor-
phism f . It gives rise to a morphism of complexes F(φ)∶F(X)→ F(Y); set

RnF( f ) = Hn(F(φ))∶RnF(A) = Hn(F(X))→ Hn(F(Y)) =RnF(B).

If ψ∶X→ Y is another morphism that extends the morphism f , we know that
the morphisms φ and ψ are homotopic: there exists morphisms hn∶Xn+1 → Yn
such that φn − ψn = dY

n−1 ○ hn + hn+1 ○ dX
n for all n ∈ N. Since the functor F is

additive, one has

F(φ)n − F(ψ)n = dF(Y)
n−1 ○ F(hn) + F(hn+1) ○ dF(X)

n

for all n ∈ N, so that the morphisms of complexes F(φ) and F(ψ) are homo-
topic. In particular, the maps they induce on the cohomology objects coincide:



104 CHAPTER 2. CATEGORIES AND HOMOLOGICAL ALGEBRA

Hn(F(φ)) = Hn(F(ψ)) for all n ∈ N. In other words, the morphismsRnF( f )
do not depend on the choice of the morphisms of resolutions φ.
c) Let us show that these data define functors RnF∶C → D . We need to

prove thatRnF(idA) = idRnF(A) and thatRnF(g ○ f ) = RnF(g) ○RnF( f ) for
morphisms f ∶A→ B and g∶B→ C inC .
For the first relations, observe that if A → X is an injective resolution of A,

then idX defines a morphism of resolutions which extends idA. By definition,
one thus hasRnF(idA) = Hn(F(idX)) = idHn(F(X)) = idRnF(A).
Let now A → X, B → Y and C → Z be injective resolutions of objects A,

B and C. Fix a morphism of complexes φ∶X → Y that extends f , as well as
a morphism of complexes ψ∶Y → Z that extends g. Then ψ ○ φ∶X → Z is a
morphism of complexes inC that extends g ○ f . Consequently,

RnF(g ○ f ) =H n(F(ψ ○ φ)) =H n(F(ψ) ○ F(φ))
=H n(F(ψ)) ○H n(F(φ)) =RnF(g) ○RnF( f ),

as was to be proved.
d) Let us show that these functors RnF are additive. Let f , g∶A → B be

two morphisms inC and let φ,ψ∶X → Y be two of complexes on the chosen
injective resolutions of A and B which extend f and g. Then φ+ψ extends f + g.
Consequently, Rn( f + g) = Hn(F(φ + ψ)) = Hn(F(φ) + F(ψ)), because F is
additive, henceRn( f + g) = Hn(F(φ)) +Hn(F(ψ)) =RnF( f ) +RnF(g).

These additive functorsRnF∶C →D are called the (right) derived functors
RnF of F.

2.12.2. — Let A be an object of C and let ε∶A → X be the chosen injective
resolution of A. By definition, the kernel of F(X0)→ F(X1) is the objectR0F(A).
Applying the functor F to the exact sequence 0 → A → X0 → . . . gives rise
to a complex 0 → F(A) → F(X0) → F(X1) → . . . , so that the morphism
F(A)→ F(X0) factors throughR0F(A).

This furnishes a morphism of functors (a “natural transformation”) F→R0F.
Assume that F is left exact. Applying F to the short exact sequence 0→ A→

X0 → X1, we obtain a short exact sequence 0 → F(A) → F(X0) → F(X1). That
means that F(ε)∶F(A)→ F(X0) induces an isomorphism F(A) ≡R0F(A). In
other words, the canonical morphism F→R0F is an isomorphism.
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2.12.3. — Let us consider an arbitrary right resolution η∶A→ Y of an object A.
Because the chosen resolution ε∶A→ X is injective, there exists a morphism of
resolutions φ∶Y → X that extends idA. Applying the additive functor F to the
morphism of complexes φ gives a morphism F(φ)∶F(Y) → F(X). Passing to
the cohomology objects, we then obtain morphisms Hn(F(Y))→ Hn(F(X)) =
RnF(A).
As above, these morphisms do not depend on the choice of the morphism φ.

We shall call them canonical.
If, moreover, Y is an injective resolution, we can obtain in the same way a mor-

phism of resolutions ψ∶X → Y, inducing morphisms Hn(F(X)) = RnF(A) →
Hn(F(Y)). The morphism ψ ○ φ∶Y→ Y is a morphism of injective resolutions
that extends idA, so that it is homotopic to idY. This imples that F(ψ ○ φ) is
homotopic to F(idY) = idF(Y) and one has Hn(F(ψ)) ○Hn(F(φ)) = idHn(F(Y)).
Similarly, the morphism φ ○ψ∶X→ X is a morphism of injective resolutions that
extends idA, so that it is homotopic to idX. This imples that F(φ○ψ) is homotopic
to F(idX) = idF(X) and one has Hn(F(φ)) ○Hn(F(ψ)) = idRnF(A). Consequently,
the two morphisms HnF(φ)∶Hn(F(Y)) → RnF(A) and HnF(ψ)∶RnF(A) →
Hn(F(Y)) are inverse the one of the other. They are thus isomorphisms.
Informally, this shows that the derived functorsRnF do not depend on the

choices of the injective resolutions of the objects ofC .

Lemma (2.12.4). — Let 0 → A
fÐ→ B

gÐ→ C → 0 be an exact sequence in the
category C . Let ε∶A → X be an injective resolution of A; let η∶C → Z be a
resolution of C.

There exists an resolution ζ ∶B→ Y of B satisfying the following properties:

(i) For every n ∈ N, one has Yn = Xn ⊕ Zn;
(ii) The canonical morphisms in∶Xn → Yn and pn∶Yn → Zn induce morphisms

of complexes i∶X → Y and p∶Y → Z fitting in an exact sequence 0 → X → Y →
Z→ 0;
(iii) One has ζ ○ f = i○ε and p○ζ = η○ g: the morphisms i and p are morphisms

of resolutions.

Proof. — Denote by f ∶A→ B and g∶B→ C the morphisms that appear in the
given exact sequence. Since X0 is injective, there exists a morphism u0∶B→ X0
such that u0 ○ f = ε. Let ζ ∶B→ Y0 be the morphism (u0, η ○ g).
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Let us prove that it is amonomorphism. PretendingC is a category ofmodules,
if an element b ∈ B belongs to ker(ζ), then η(g(b)) = 0, hence g(b) = 0
because η is a monomorphism; then there exists a ∈ A such that b = f (a) and
0 = u0(b) = u0( f (a)) = ε(a), so that a = 0; consequently, b = 0.

The canonical morphisms X0 → Y0 and Y0 → Z0 induce morphisms
f0∶X0/ Im(ε) → Y0/ Im(ζ) and g0∶Y0/ Im(ζ) → Z0/ Im(η), and the snake
lemma implies that the complex

0→ X0/ Im(ε)
f0Ð→ Y0/ Im(ζ)

g0Ð→ Z0/ Im(η)→ 0

is an exact sequence.
We apply the same argument to this exact sequence and the monomorphisms

dX′
0 ∶X0/ Im(ε) → X1 and dZ′

0 ∶Z0/ Im(η) → Z1 deduced from the resolutions
ε∶A → X and η∶C → Z. This furnishes a monomorphism dY′

0 ∶Y0/ Im(ζ) → Y1
such that dY′

0 ○ f0 = (dX′
0 , 0) and dZ′

0 ○ g0 = p2 ○ dY′
0 . Define the morphism dY

0 as
the composition of dY′

0 with the canonical epimorphism Y0 → Y0/ Im(ζ).
This defines the first two levels of the complex Y, and we go on by induction.

2.12.5. — Let 0 → A
fÐ→ B

gÐ→ C → 0 be an exact sequence in the categoryC .
Let ε∶A → X and η∶C → Z be the chosen injective resolution of A and C. The
preceding lemma furnishes a resolution ζ ∶B→ Y of B which fits into an exact
sequence of complexes 0 → X → Y → Z → 0, with Yn = Xn ⊕ Zn for all n.
Applying the functor F, it follows that F(Yn) = F(Xn)⊕ F(Zn), and we obtain
an exact sequence of complexes 0→ F(X)→ F(Y)→ F(Z)→ 0. The associated
long exact sequence of cohomology objects writes

0→R0F(A)→ H0(F(Y))→R0F(C)→R1F(A)→ . . .

Since Xn and Zn are injective objects, so is their sum Yn (any product of
injective objects is injective, and a Yn is also the product Xn × Zn). This shows
that the resolution ζ ∶B→ Y of B is injective, so that the canonical morphisms
Hn(F(Y)) → RnF(B) are isomorphisms. Replacing the objects Hn(F(Y)) by
them, we obtain the canonical long exact sequence of cohomology of derived
functors:

0→R0F(A)→R0F(B)→R0F(C)→R1F(A)→ . . .
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If, moreover, F is left exact, thenwe can replaceR0F by F in this exact sequence,
and we have

0→ F(A)→ F(B)→ F(C)→R1F(A)→R1F(B)→R1F(C)→R2F(A)→ . . .

2.12.6. — These long exact sequences are functorial.

Definition (2.12.7). — One says that a resolution ε∶A → X is F-acyclic of an
object A ifRpF(Xn) = 0 for every n and every p > 0.

For any integer d, we say that such a resolution is acyclic in degrees ⩽ d if
Rp+1F(Xn) = 0 for all integers p, n such that p + n ⩽ d.

Proposition (2.12.8). — Let F be an additive left exact functor. Let ε∶A → X be
a resolution of an object A. If it is F-acyclic in degrees ⩽ d, then the canonical
morphismsHn(F(X))→RnF(A) are isomorphisms, for all integers n such that
n ⩽ d.

Proof. — The case n = 0 is banal. The resolution ε∶A → X induces a short
exact sequence 0 → A → X0 → X1; since F is left exact, applying F to that
sequence furnishes a short exact sequence 0→ F(A)→ F(X0)→ F(X1), hence
an isomorphism F(A) ∼Ð→ H0(F(X)).
For any integer n ⩾ 0, let in∶Zn → Xn be a kernel of dX

n ∶Xn → Xn+1. Sice
dX
n+1 ○ dX

n = 0, the morphism dX
n factors through Zn+1; this furnishes complexes

0 → Zn
inÐ→ Xn

pnÐ→ Zn+1 → 0, for all n ∈ N. Since ε∶A → X is a resolution, these
complexes are exact sequences; moreover, ε induces an isomorphism A ∼Ð→ Z0.
Let n be an integer such that 1 ⩽ n ⩽ d. Consider the short exact sequence

0 → Zn−1 → Xn−1 → Zn → 0. By the F-acyclicity condition on Xn−1, we have
R1F(Xn−1) = 0, so that the long exact sequence associated with that short exact
sequence starts as

0→ F(Zn−1)
F(in−1)ÐÐÐ→ F(Xn−1)

F(pn−1)ÐÐÐ→ F(Zn)→R1F(Zn−1)→ 0.

We now observe that this exact sequence identifiesR1F(Zn−1) with the coho-
mology object Hn(F(X)). Indeed, in∶Zn → Xn is a kernel of dX

n , and since F
is left exact, F(in)∶F(Zn) → F(Xn) is a kernel of F(dX

n ). On the other hand,
dX
n−1 = in ○ pn−1, so that F(dX

n−1) = F(in) ○ F(pn−1), which shows that the image
of F(pn−1) coincides with the image of F(Xn−1) inside F(Zn).
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When n = 1, this furnishes the desired isomorphismR1F(A) ≃ R1F(Z0) ≃
H1(F(X)).
Let us assume that n ⩾ 2. Let m be an integer such that 0 ⩽ m ⩽ n − 2 and

consider the short exact sequence 0 → Zm → Xm → Zm+1 → 0; taking the
corresponding long exact sequence associated with the functor F and its derived
functors, we obtain isomorphisms RpF(Zm+1) → Rp+1F(Zm), for all integers
p,m such thatRpF(Xm) = Rp+1F(Xm) = 0. By the F-acyclicity condition on
the resolution ε∶A→ X, we may take (p,m) = (1, n−2), (2, n−3), . . . , (n− 1, 0),
and the composition of these isomorphisms is an isomorphism R1F(Zn−1) ≃
RnF(Z0) ≃RnF(A). Combining this isomorphismwith the above isomorphism
R1F(Zn1) ≃ Hn(F(X)), we obtained an isomorphism Hn(F(X)) ∼Ð→RnF(A).
However, this does not exactly prove that the canonical morphism

Hn(F(X)) → RnF(A) is an isomorphism. To that aim, we follow the
same reasoning on the chosen injective resolution η∶A → I. Since the resolu-
tion η∶A → I is injective, there exists a morphism of complexes φ∶X → I such
that φ ○ ε = η. Let Tn = ker(dI

n), we obtain in the same way exact sequences
0 → Tn → In → Tn+1 → 0; moreover, the morphism φ induces morphisms
φ′n∶Zn → Tn which induce, for each n, a morphism from the exact sequence
0 → Zn → Xn → Zn+1 → 0 to the exact sequence 0 → Tn → In → Tn+1 → 0. By
fonctoriality of the cohomology long exact sequence, and keeping track of all
morphisms introduced, we obtain a commutative diagram

Hn(F(X)) Rn(F(A))

Hn(F(I)) Rn(F(A))

←→∼

←→ φ ←→

←→∼

on the two horizontal arrows are the isomorphisms constructed in the proof,
and the right vertical one is the identity. It follows that the left vertical arrow,
which is the canonical morphism, is an isomorphism.



CHAPTER 3

SHEAVES AND THEIR COHOMOLOGY

3.1. Presheaves and sheaves

Definition (3.1.1). — LetX be a topological space. A presheafF onX is the datum
of a set F (U) for every open subset U of X, and of maps ρUV∶F (U) →F (V)
for every pair (U,V) of open subsets of X such that V ⊆ U subject to the following
conditions:
– If U,V,W are open subsets of X such that W ⊆ V ⊆ U, one has ρUW =

ρVW ○ ρUV;
– For every open subset U of X, one has ρUU = idF (U).

Let U be an open subset of X. The set F (U) is also denoted by Γ(U,F );
its elements are called the sections of F on U. The maps ρUV are called the
restriction maps.; when s ∈F (U), one also writes s∣V for ρUV(s).
Indeed, the basic intuition for presheaves is that of ‘‘generalized functions’’.

Namely elements of F (U) have to be thought as of functions on U, and for
s ∈F (U), the element ρUV(s) of F (V) is a kind of restriction of s to V.
To avoid some possible confusions, the restriction maps of the presheaf F

are sometimes denoted by ρF
UV.

Definition (3.1.2). — Let F ,G be presheaves on the topological space X. A mor-
phism of presheaves f ∶F → G is the datum, for every open subset U of X, of a
map f (U)∶F (U) → G (U) such that f (V) ○ ρF

UV = ρG
UV ○ f (U) for every pair

(U,V) of open subsets of X such that V ⊆ U.

When the maps F (U) is a subset of G (U) for every U, and the maps f (U)
are the inclusion maps, one says that F is a sub-presheaf of G .
Morphisms of presheaves can be composed, etc., so that presheaves on the

topological space X form a categoryPreShX.



110 CHAPTER 3. SHEAVES AND THEIR COHOMOLOGY

3.1.3. — Let X be a topological space and letF be a presheaf on X. One says that
F is a presheaf in abelian groups if the sets F (U) are endowed with structures
of abelian groups and if the maps ρUV are morphism of abelian groups. A
morphism of presheaves in abelian groups is a morphism of presheaves f such
that the maps f (U) are morphisms of abelian groups, for all open subsets U
of X.
Similar definitions can be given for more general algebraic structures, such as

modules, or rings, and even for general categories. A presheaf F with values
in a categoryC is the datum of objects F (U) ofC and of morphisms ρUV ∈
C (F (U),F (V)) satisfying the previous relations. A morphism of presheaves
f ∶F → G with values in the categoryC is the datum of morphisms f (U) inC
satisfying the previous composition relations.
One can in fact give a compact definition of a presheafwith value in an arbitrary

category C . To this aim, define the category OpenX of open subsets of X as
follows: its objects are the open subsets of X, and its maps are the inclusions
between open subsets. Explicitly, OpenX(V,U) is empty if V /⊆ U, and has
exactly one element if V ⊆ U. A presheaf with values in a category C is a
contravariant functor from the categoryOpenX to the categoryC ; a morphism
of presheaves is a natural transformation of functors.

Definition (3.1.4). — Let F be a presheaf on the topological space X. Let A be
a subspace of X and let UA be the set of open neighborhoods of A in X, endowed
with the partial ordered opposite to inclusion. The colimit of the direct sytem of sets
(F (U))U∈UA is called the set of germs of sections of the sheafF onA; it is denoted
by FA. If U is an open neighborhood of A in X and s ∈ F (U), the canonical
image sA of s in FA is called the germ of s on A.

When A is reduced to a single point {x}, the set FA is called the stalk of F at
the point x, and is denoted by Fx .
IfF is a presheaf in abelian groups thenFA is an abelian group, and the maps

s ↦ sA from F (U) to FA are morphisms of abelian groups.
Let f ∶F → G be a morphism of presheaves on the topological space X. By

the universal property of the limit, there exists a unique map fA∶FA → GA
between the sets of germs of sections at A such that fA(sA) = f (s)A for every
open neighborhood U of A and every section s ∈F (U). If f is a morphism of
presheaves of abelian groups, then fA is a morphism of abelian groups.
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Similar results hold for presheaves in algebraic structures, such as rings or
modules, for which the notion of (filtrant) colimit makes sense.

Definition (3.1.5). — Let X be a topological space and let F be a presheaf on X.
One says that F is a sheaf if the following property holds: For every open subsetU
of X, every family (Ui)i∈I of open subsets of X such that U = ⋃i∈IUi, every family
(si)i∈I, where si ∈ F (Ui) for every i, such that si ∣Ui∩U j = s j∣Ui∩U j , there exists a
unique element s ∈F (U) such that s∣Ui = si for every i ∈ I.

In words, a presheaf F is a sheaf provided every family (si) of sections of F
on open subsets Ui of X which coincide on the intersections Ui ∩ U j can be
‘‘glued’’ uniquely to a section s of F on the union of the sets Ui .

This definition needs to be adapted for presheaves with values in a general
category. Thus let F be a presheaf on X with values in a categoryC . One says
that F is a sheaf if for every open subset U of X and every family (Ui)i∈I of
open subsets of X such that U = ⋃i∈IUi , every object M ofC and every family
( fi ∶M→F (Ui))i∈I of morphisms inC such that ρUi ,Ui∩U j ○ fi = ρU j ,Ui∩U j ○ f j
for every i , j ∈ I, there exists a unique morphism f ∶M→F (U) inC such that
ρU,Ui ○ f = fi for every i ∈ I.
Let Q be the quiver whose vertex set V is I × I, whose set of arrows E is

I × I × {0, 1}, and whose source and target maps are given by

s((i , j, 0)) = (i , i), s((i , j, 1)) = ( j, j), t((i , j, 0)) = t((i , j, 1)) = (i , j).

The presheaf F gives rise to a Q-diagram in the categoryC whose value at the
vertex (i , j) is F (Ui ∩U j), whose value at an arrow (i , j, 0) is the restriction
morphism ρUi ,Ui∩U j . and whose value at an arrow (i , j, 1) is the restriction
morphism ρU j ,Ui∩U j . The above sheaf condition means that the object F (U)
ofC , endowed with the morphisms ρUUi for i ∈ I, represents the colimit of this
Q-diagram.

3.1.6. — A morphism of sheaves is just a morphism of the underlying
presheaves. In other words, sheaves of X form a full subcategory ShX of the
category of presheaves on X.

Example (3.1.7). — Let X be an open subset of Rn, or a differentiable manifold
of class C p for some p ⩾ 1.
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a) Functions of class C p on X give rise to a sheaf C p
X on X. Precisely, for every

open subset U of X, let C p
X (U) be the set of all functions φ∶U→ R of class C p;

for V ⊆ U, let ρUV∶C p
X (U) → C

p
X (V) be the restriction map. This defines a

presheaf C p
X in R-algebras on X; this presheaf is a sheaf.

Indeed, let U be an open subset of X, let (Ui)i∈I be a family of open subsets of X
whose union is U, and let (si) be a family of sections of C p

X , where si ∈ C
p
X (Ui),

such that si ∣Ui∩U j = s j∣Ui∩U j . There exist a unique function s∶U → R such that
s(x) = si(x) for x ∈ Ui. This function s satisfies s∣Ui = si for every i, and is of
classC p. Indeed, if x ∈ U and i ∈ I is such that x ∈ Ui , then Ui is a neighborhood
of x in U on which the restriction of s is of class C p.
b) Bounded functions on X give rise to a presheaf BX on X, where BX(U) is

the set of all functions s∶U→ R which are bounded. However, this presheaf is
generally not a sheaf, unless X is finite (hence 0-dimensional). Let indeed a ∈ X
be a point which is not isolated, let U = X {a}, and let s∶U→ R be the function
x ↦ 1/d(a, x), where d is a distance on X compatible with its topology. For
every integer m ⩾ 1, let Um be the set of points x ∈ U such that d(a, x) ⩾ 1/m.
The union of the open sets Um is equal to U, the restriction of s to Um is bounded
for every m, but s is not bounded.
c) Vector fields, distributions, etc. furnish other natural examples of sheaves

on X. Tempered distributions form a sub-presheaf of the sheaf of distributions,
but do not form a sheaf themselves.

Example (3.1.8). — Let X be a topological space and let F be a presheaf on X.
Let Y be an open subspace of X. One defines a presheaf F ∣Y on Y by set-
ting F ∣Y(U) = F (U) for every open subset U of Y, and by keeping the
same restriction maps. If f ∶F → G is a morphism of presheaves, the maps
f (U)∶F (U) → G (U), for every open subset U of Y, define a morphism of
presheaves f ∣Y∶F ∣Y → G ∣Y.
If F is a presheaf of abelian groups, then so is F ∣Y.
If F is a sheaf, then so is F ∣Y.

Example (3.1.9). — Let X be a topological space and let F ,G be presheaves
of abelian groups on X. One defines a presheaf of abelian groups H on X by
setting, for every open subset U of X, H (U) = Hom(F ∣U,G ∣U). (Note that
H (U) is a set of morphism of sheaves from F ∣U to G ∣U, and should not be
confused with the morphisms of abelian groups from F (U) to G (U).) The
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restriction maps ρUV are defined as follows: let U and V be open subsets of X
such that V ⊆ U and let f ∈H (U); one sets ρUV( f ) = fV. This is the presheaf of
morphisms from F to G ; it is denoted by H om(F ,G ).
Assume that G is a sheaf; then H om(F ,G ) is a sheaf . Let indeed U be an

open subset of X, let (Ui)i∈I be a family of open subsets of X such that U = ⋃i∈IUi ,
let (φi) be a family, where φi ∈ H (Ui), such that φi ∣Ui∩U j = φ j∣Ui∩U j . Let us
show that there exists a unique morphism of presheaves φ∶F ∣U → G ∣U such
that φ∣Ui = φi for every i.
Let V be an open subset of U and let s ∈F (U); for every i, set Vi = V ∩Ui

and ti = φi(s∣Vi) ∈ G (Vi). For i , j ∈ I, one has
ti ∣Vi∩V j = φi(s∣Vi)∣Vi∩V jφi(s∣Vi∩V j) = φ j(s∣Vi∩V j) = t j∣Vi∩V j ;

since G is a sheaf, there exists a unique section t ∈ G (V) such that t∣Vi = ti for
every i ∈ I. Set φ(V)(s) = t. This defines a map φ(V)∶F (V) → G (V). For
s, s′ ∈F (V) and i ∈ I, one has

φ(V)(s + s′)∣Vi = φi(s∣Vi + s′∣Vi)
= φi(s∣Vi) + φi(s∣Vi)
= (φ(V)(s) + φ(V)(s′))∣Vi ;

consequently, φ(V)(s + s′) = φ(V)(s) + φ(V)(s′), hence φ(V) is a morphism
of abelian groups. Moreover, if V and W are open subsets of U such that W ⊆ V,
then

φ(W)(s∣W)∣W∩Ui = φi(s∣W∩Ui)
= φi(s∣V∩Ui)∣W∩Ui

= φ(s)∣W∩Ui

= (φ(s)∣W)∣W∩Ui

for every i. Consequently, φ(W)(s∣W) = φ(W)(s)∣W. This shows that the family
φ = (φ(V)) is a morphism of presheaves of abelian groups from F ∣U to G ∣U.
Conversely, a morphism φ′∶F ∣U → G ∣U such that φ′∣Ui = φ is equal to φ.

Indeed, for V ⊆ U and s ∈F (V), one has
φ′(V)(s)∣V∩Ui = φ′(V)(s∣V∩Ui) = φi(s∣V∩Ui = φ(v)(s)∣V∩Ui ,

so that φ′(V)(s) = φ(V)(s); this shows that φ′ = φ, as claimed.

Lemma (3.1.10). — Let X be a topological space and let U be an open subset of X.
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a) Let F be a sheaf on X and let s, t ∈F (U) be two sections such that sx = tx
for every x ∈ U. Then s = t.
b) LetF ,G be presheaves onX and let f , g∶F → G bemorphisms of presheaves

on X such that fx = gx for every x ∈ X. If G is a sheaf, then f = g.

Proof. — a) Let x ∈ U; since sx = tx , there exists an open subset Ux of U
containing x such that s∣Ux = t∣Ux . By the definition of a sheaf, applied to the
family (Ux)x∈U of open subsets of X and to the family (s∣Ux), the section t is the
unique element of F (U) whose restriction to Ux is equal to s∣Ux . One thus has
s = t.
b) Let U be an open subset of X and let s ∈ F (U). We need to prove that

s has the same image under the maps f (U) and g(U); let t = f (U)(s) and
t′ = g(U)(s). For every x ∈ U, one has tx = fx(sx) = gx(sx) = t′x . Since G is a
sheaf, it follows from a) that t = t′, as claimed.

Lemma (3.1.11) (Glueing sheaves and morphisms of sheaves)
Let X be a topological space, let (Ui)i∈I be a family of open subsets of X such

that X = ⋃i∈IUi.

a) LetF and G be presheaves on X; assume that G is a sheaf. For every i ∈ I, let
φi ∶F ∣Ui → G ∣Ui be a morphism of presheaves. Assume that for every i , j ∈ I, the
morphisms φi and φ j coincide on Ui ∩U j. Then there exists a unique morphism
of presheaves φ∶F → G such that φi = φ∣Ui for every i ∈ I.
If both F and G are sheaves and φi is an isomorphism for every i ∈ I, then φ is

an isomorphism.
b) For every i ∈ I, let Fi be a sheaf on Ui; for every pair (i , j) of elements of I,

let φi j∶Fi ∣Ui∩U j →F j∣Ui∩U j be an isomorphism of sheaves. Assume that following
properties hold:

(i) For i ∈ I, one has φii = IdFi ;
(ii) For i , j ∈ I, one has φi j = φ−1ji ;
(iii) For i , j, k ∈ I, the morphisms φ jk ○ φi j∣Ui∩U j∩Uk and φik∣Ui∩U j∩Uk coin-

cide.
Then there exists a sheaf F on X, and for every i ∈ I, an isomorphism φi ∶F ∣Ui →
Fi , such that φi j○φi ∣Ui∩U j = φ j∣Ui∩U j for every pair (i , j) of elements of I. Moreover,
if G is a sheaf on x and (ψi) a family of isomorphisms from GUi to Fi satisfying
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these requirements, there exists a unique morphism of sheaves ψ from F to G

such that ψ∣Ui = ψ−1i ○ φi, and it is an isomorphism.
Analogous results are valid for presheaves of abelian groups, rings, modules, etc.

Proof. — a) Let U be an open subset of X, let s ∈F (U). For every i ∈ I, one
has φi(U ∩Ui)(s) ∈F (U ∩Ui) and for i , j ∈ I, one has

φi(U ∩Ui)(s)∣U∩Ui∩U j = φi(U ∩Ui ∩U j)(s∣U∩Ui∩U j)
= φ j(U ∩Ui ∩U j)(s∣U∩Ui∩U j)
= φ j(U ∩U j)(s)∣U∩Ui∩U j .

Since G is a sheaf, there exists a unique section φ(U)(s) ∈ G (U) such that
φ(U)(s)∣Ui = φi(U ∩Ui)(s) for every i ∈ I. This defines a map φ(U)∶F (U)→
G (U). The family φ = (φ(U)) is a morphism of presheaves such that φ∣Ui = φi .
It is the unique such morphism.
Assume that both F and G are sheaves, and that φi is an isomorphism for

every i. Then there exists a unique morphism of sheaves φ′∶G →F such that
φ′∣Ui = φ−1i for every i. One has φ′ ○ φ = IdF , because it is the unique morphism
of sheaves from F to itself whose restriction to Ui is the identity, for every i ∈ I.
Similarly, φ ○ φ′ = IdF . This shows that φ is an isomorphism and concludes the
proof of a).
b) Let U be an open subset of X; let F (U) be the set of all families (si) ∈
∏i∈I Fi(U ∩Ui) such that

s j∣U∩Ui∩U j = φi j(U ∩Ui ∩U j)(si ∣U∩Ui∩U j)
for every i , j ∈ I. If U and V are open subsets of X such that V ⊆ U, let
ρUV∶F (U)→F (V) be the map defined by ρUV((si)) = (si ∣V∩Ui). Then F is a
presheaf on X.
Let us show that F is a sheaf. Let (Vλ)λ∈L be a family of open subsets of X,

let V = ⋃λ∈LVλ; for every λ ∈ L, let sλ ∈F (Uλ); assume that sλ∣Uλ∩Uµ = sµ∣Uλ∩Uµ

for every λ, µ ∈ L. One has sλ = (sλ,i)i∈I. Fix i ∈ I; for every λ ∈ L, one has
sλ,i ∈Fi(Vλ ∩Ui); for every λ, µ ∈ L, one has

sλ,i ∣Vλ∩Vµ∩Ui = sµ,i ∣Vλ∩Vµ∩Ui .

Consequently, there exists a unique element si ∈Fi(V∩Ui) such that si ∣Vλ∩Ui =
sλ,i for every λ ∈ L. Then

s j∣V∩Ui∩U j = φi j(V ∩Ui ∩U j)(si ∣V∩Ui∩U j),
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since for every λ ∈ L, one has
s j∣Vλ∩Ui∩U j = φi j(Vλ ∩Ui ∩U j)(si ∣Vλ∩Ui∩U j).

This implies that s = (si)i∈I is an element of F (V). Moreover, for every λ ∈ L,
one has

s∣Vλ = (si ∣Vλ∩Ui) = (sλ,i) = sλ .
The section s is the only section of F on V such that s∣Vλ = sλ for every λ ∈ L.
This concludes the proof that F is a sheaf on X.
Let k ∈ I. For every open subset of X such that U ⊆ Uk, let φk(U)∶F (U) →

Fk(U) be the map given by (si)i∈I ↦ sk. The family (φk(U)) is a morphism
of sheaves from F ∣Uk to Fk. By definition, for s = (si) ∈F (U), and i ∈ I, the
section si ∈Fi(U ∩Ui) satisfies (recall that U ⊆ Uk)

si = φki(U ∩Ui)(sk∣U∩Ui).
Conversely, let s ∈F (Uk); for every i ∈ I define si = φki(U ∩Ui)(s∣U∩Ui). Since
φkk = Id, one has sk = s. Moreover, for every i , j ∈ I, one has

φi j(U ∩Ui ∩U j)(si ∣U∩Ui∩U j)
= φi j(U ∩Ui ∩U j)(φki(U ∩Ui)(sk∣U∩Ui)∣U∩Ui∩U j)
= φk j(U ∩Ui ∩U j)(sk∣U∩Ui∩U j)
= s j∣U∩Ui∩U j .

Consequently, the family (si) belongs toF (U) and is the unique element preim-
age of F (U) such that φk(U)((si)) = s. This implies that φk is an isomorphism
of sheaves.
For j, k ∈ I, every open subset U of U j ∩Uk, and every family (si) ∈ F (U)

one also has

φ jk(U) ○ φk(U)((si)) = φ jk(U)(sk) = s j = φ j(U)((si)),
hence φ jk ○ φk∣U j∩Uk = φ j∣U j∩Uk .

This concludes the proof of the first part of assertion b). The rest of the assertion
follows from a). Let indeed G be a sheaf on X and let (ψi) be a family, where
ψi ∶G ∣Ui →Fi such that φi j ○ ψi ∣Ui∩U j = ψ j∣Ui∩U j for every i , j ∈ I. For every i ∈ I,
θ i = φ−1i ○ ψi is a morphism of sheaves from G ∣Ui to F ∣Ui ; For i , j ∈ I, one has

θ i ∣Ui∩U j = φ−1i ○ ψi ∣Ui∩U j = φ−1j ∣Ui∩U j ○ φi j ○ φ ji ○ ψ j∣Ui∩U j

= θ j∣Ui∩U j .
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By a), there exists a unique morphism of sheaves θ∶G →F such that θ∣Ui = θ i
for every i, and it is an isomorphism.

3.2. Some constructions of sheaves

3.2.1. Limits. — Let Q = (V, E, s, t) be a quiver and let FQ = ((Fv), (φe)) be
a diagram of presheaves on a topological space X.
For every open subset U of X, this diagram induces a diagram FQ(U) =
((Fv(U)), (φe(U))) of sets. We denote its limit by F (U); for v ∈ V, let
φv(U)∶F (U)→Fv(U) be the canonical map.
Let U and V be open subsets of X such that V ⊆ U. The family of maps
(ρFv

UV ○ φv(U)) is a cone on the diagram FQ(V). Consequently, there exists a
unique map ρF

UV∶F (U) → F (V) such that φv(V) ○ ρF
UV = ρFv

UV ○ φv(U) for
every v.

The family of sets (F (U)) and the family of maps (ρF
UV) form a presheaf F

on X.

Proposition (3.2.2). — a) The presheaf F is a limit of the diagram FQ in the
category of presheaves on X.
b) If the Fv are sheaves, then F is a sheaf, and is a limit of the diagram FQ in

the category of sheaves on X.
c) The analogous results hold when FQ is a diagram of presheaves in abelian

groups, in rings, in A-modules, etc.

Proof. — a) Let (G , (ψv)) be a cone on the diagram FQ of presheaves. For
every open subset U of X, the set G (U), with the maps ψv(U), is a cone on the
diagramFQ(U) of sets. Consequently, there exists a uniquemap θ(U)∶G (U)→
F (U) such that φv(U) ○ θ(U) = ψv(U) for every v.
Let U and V be open subsets of X such that V ⊆ U. Since ψv is a morphism of

presheaves, one has

φv(V) ○ θ(V) ○ ρG
UV = ψv(V) ○ ρG

UV = ρFv
UV ○ ψv(U) = ρFv

UV ○ φv(U) ○ θ(U)
for every v. Consequently, θ(V) ○ ρG

UV = ρF
UV ○ θ(U).

This shows that the family (θ(U)) is the unique morphism of presheaves from
G to F such that ψv = φv ○ θ for every v.
b) Let (Ui)i∈I be a family of open subsets of X and let U be its union. For

every i ∈ I, let si ∈ F (Ui); assume that si ∣Ui∩U j = s j∣Ui∩U j for every i , j and let
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us show that there exists a unique element s ∈ F (U) such that s∣Ui = si for
every i ∈ I.
For every v, one has φv(si) ∈ Fv(Ui) and φv(si)∣Ui∩U j = φv(s j)∣Ui∩U j . Since

Fv is a sheaf, there exists a unique element sv ∈Fv(U) such that sv ∣Ui = φv(si)
for every i ∈ I.
For every arrow e of Q, with source v and target v′ one has φe(sv) = sv′,

because these two sections ofFv′ have the same restriction on Ui , for every i ∈ I.
Consequently, there exists a unique element s ∈F (U) such that φv(s) = sv for
every v.
Let i ∈ I. One has s∣Ui = si , because both sections of F (Ui)map to φv(si), for

every v. Conversely, if s′ is a section of F over U such that s′∣Ui = si for every i.
One then has φv(s′)∣Ui = φv(s′∣Ui) = φv(si) = φv(s)∣Ui , hence φv(s′) = φv(s),
because Fv is a sheaf. By definition of the presheaf F , one then has s′ = s.
c) Assume that the (pre)sheavesFv are (pre)sheaves in abelian groups and the

morphisms φe are morphisms of presheaves in abelian groups. For every open
subset U of X, the set F (U) has a natural structure of an abelian group such
that the morphisms φv(U)∶F (U)→Fv(U) are morphisms of abelian groups.
Moreover, the maps ρF

UV are morphisms of abelian groups, so that F is really a
presheaf in abelian groups. In the proof of a), one checks that if morphisms ψv
are morphisms of presheaves of abelian groups, then so is the morphism θ that
we constructed.

The cases of (pre)sheaves of rings, etc. are analogous.

Example (3.2.3). — Let G be a presheaf on X and let (Fi)i∈I be a family of sub-
presheaves of G . Their intersection F = ⋂i Fi is defined by F (U) = ⋂i Fi(U)
for every open subset U of X; it is a sub-presheaf of G . This presheaf is the
colimit of the diagram of presheaves whose arrows are the inclusion morphisms
Fi ↪ G .
If the Fi are sheaves, then so is F .

3.2.4. — If G is a sheaf and F is a sub-presheaf of G , there exists a smallest
subsheaf F ′ of G which contains F , called the subsheaf of G generated by F .
It is the intersection of all sub-sheaves of G which contain F . For every open
subset U of X, F ′(U) is the set of sections s ∈ G (U) such that every point x ∈ U
has an open neighborhood V contained in x such that s∣V ∈F (V).
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Let indeed F ′
0(U) be this subset. The family F ′

0 = (F ′
0(U)) is a sub-presheaf

of G which contains F . It also contains every sheaf that contains F , hence
containsF ′. It thus suffices to show thatF ′

0 is a subsheaf of G . Let then U be an
open subset of X, let (Ui)i∈I be a family of open subsets of X such that U = ⋃i∈IUi ,
let (si) be a family, where si ∈ F ′

0(Ui) for every i, such that si ∣Ui∩U j = s j∣Ui∩U j ,
for every i , j ∈ I. Since G is a sheaf, there exists a unique section s ∈ G (U) such
that s∣Ui = si , for every i ∈ I. Moreover, s ∈F ′

0(U); let indeed x ∈ U, let i ∈ I be
such that x ∈ Ui , and let V be an open neighborhood of x contained in Ui such
that si ∣V ∈F (V); then s∣V = si ∣V ∈F (V); consequently, s ∈F ′

0(U), as claimed.

3.2.5. Image of a morphism of sheaves. — Let φ∶F → G be a morphism of
presheaves on X. For every open subset U of X, let Ipre(U) = φ(U)(F (U)).
Then Ipre is a sub-presheaf of G .
Assume that G is a sheaf; one defines the subsheaf image of φ as the smallest

subsheaf of G which contains the presheaf Ipre. It is denoted by Im(φ).
If F and G are (pre)sheaves in abelian groups and φ is a morphism of

presheaves in abelian groups, then Im(φ) is subsheaf in abelian groups. Similar
results hold for (pre)sheaves in rings, modules, etc.

Remark (3.2.6). — When G is a sheaf, the presheaf Ipre is generally not a
subsheaf of G , even if F itself is a sheaf. For example, let F and G be both
equal to the sheaf CX of complex valued continuous functions on X, and let
φ∶CX → CX be given by φ(U)( f ) = exp( f ), for f ∈ C (U;C). If X = C∗, there
does not exist a continuous function f ∶X → C such that x = exp( f (x)), for
every x ∈ C∗. However, for every open subset U of X, small enough to be
contained in a contractible subset of C∗, there exists a function fU∶U→ C such
that x = exp( fU(x)) for every x ∈ U. In other words, the identity function g
(given by g(x) = x) does not belong to Ipre(X), although every point of C∗ has
a neighborhood U such that g∣U belongs to Ipre(U).

Theorem (3.2.7). — Let X be a topological space. Let F be a presheaf on X. There
exists a sheaf F + on X and a morphism of presheaves j∶F →F + which satisfies
the following universal property: for every sheaf G on X and every morphism
f ∶F → G of presheaves, there exists a unique morphism of sheaves φ∶F + → G

such that f = φ ○ j.
Moreover, for every x ∈ X, the map jx ∶Fx →F +

x is a bijection.
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If (F +, j) and (F ○, j′) are two morphisms satisfying this universal property,
there exists a unique morphism φ∶F + → F ○ such that j′ = φ ○ j, and this
morphism is an isomorphism. This can be proved by the usual kind of arguments.
One can also observe that the above universal property says that the sheaf F +

represents the functor G ↦ Hom(F ,G ) on the category of sheaves on X.
The sheaf F + is called the sheaf associated with F .

Proof. — One first defines a presheaf E on X such that E (U) = ∏x∈U Fx , for
every open subset U on X, the restriction morphisms being the obvious ones:
if V ⊆ U and s = (sx)x∈U ∈ E (U), then s∣V = (sx)x∈V. There is a morphism of
presheaves j∶F → E , given by s ↦ (sx)x∈U, whenever U is an open subset of X
and s ∈F (U).

This presheaf E is in fact a sheaf. Let indeed U be an open subset of X, (Ui)i∈I
a family of open subsets of X such that U = ⋃i∈IUi, and (si)i∈I a family, where
si ∈ E (Ui), such that si ∣Ui∩U j = s j∣Ui∩U j for every i , j ∈ I. For i ∈ I, write
si = (si ,x)x∈Ui . Let x ∈ U; if i , j ∈ I are such that x ∈ Ui ∩U j, then si ,x = s j,x ; let sx
be this common value and let s = (sx)x∈U. Then s is an element of E (U) such
that s∣Ui = (sx)x∈Ui = (si ,x)x∈Ui = si , and it is the unique such element.
Let now F + be the image of the morphism j; it is the smallest subsheaf of E

such that F +(U) contains j(F (U)) for every open subset U of X. Moreover,
a section s ∈ E (U) belongs to F +(U) if and only if U can be covered by open
subsets V for which there exists t ∈F (V) such that s∣V = j(t).
By construction the morphism of presheaves j∶F → E factors through a

morphism from F to F +, which we still denote by j. It remains to show that
for every x ∈ X, the map jx ∶Fx →F +

x is a bijection and that the pair (F +, j)
satisfies the desired universal property.
Let x ∈ X. For every open subset U that contains X, let pU∶F +(U)→Fx be

the canonical projection, given by s ↦ sx . If U and V are open neighborhoods
of x such that V ⊆ U, one has pV(s∣V) = pU(s). By definition of the limit
lim←ÐF +(U), there exists a unique map p∶F +

x →Fx which maps the germ at x
of a section s = (sy)y∈U ∈F +(U) to sx for every open neighborhood U of x. By
construction, p ○ jx is the identity. In particular, jx is injective. Let us show that
jx is surjective. Let s ∈F +

x be the germ of a section t ∈F +(U), for some open
neighborhood U of x. By definition ofF +, there exists an open neighborhood V
of x such that V ⊆ U and a section t′ ∈ F (V) such that ty = j(t′)y for every
y ∈ V. By definition of the sheaf E , one thus has t∣V = j(t′). Moreover, t and t∣V
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have the same germ at x, so that s = jx(t′). This concludes the proof that the
map jx ∶Fx →F +

x is an isomorphism.
Let us now prove that the pair (F +, j) satisfies the universal property of the

theorem. Let G be a sheaf on X and let f ∶F → G be a morphism of presheaves.
Let U be an open subset of X and let t ∈F +(U). Let I be the set of pairs (V, s),
where V is an open subset of U and s ∈F (V) is such that sx = tx for every x ∈ V.
Let i = (V, s) and j = (V′, s′) ∈ I and let W = V ∩V′. For every x ∈W, one has

f (s)x = fx(sx) = fx(tx) = fx(s′x) = f (s′)x .

Since G is a sheaf, lemma 3.1.10 implies that f (s)∣W = f (s′)∣W.
For i = (V, s) ∈ I, let Ui = V and ui = f (s) ∈ G (V). By the definition of a

sheaf, applied to the family (Ui)i∈I of open subsets of X and to the family (ui)
of sections G , there exists a unique section u ∈ G (U) such that u∣V = f (V)(s)
for every pair (V, s) ∈ I. Set φ(U)(t) = u. This defines a map φ(U)∶F +(U)→
G (U).

Themorphism jmaps a section s ∈F (U) to the section t = j(U)(s) = (sx)x∈U
of F +. By construction, one thus has φ(U)( j(U)(s)) = f (U)(s) for every
s ∈F (U).
If U′ is an open subset of U, the definitions of φ(U′) and φ(U) imply at once

that φ(U′)(s∣U′) = φ(U)(s)∣U′ . We thus have defined a morphism of sheaves φ
from F + to G , and φ ○ j = f .
Finally, let φ,ψ be two morphisms of sheaves from F + to G such that f =

φ ○ j = ψ ○ j, and let us show that φ = ψ. For every point x ∈ X, one has
fx = φx ○ jx = ψx ○ jx , hence φx = ψx since jx is bijective. It follows from
lemma 3.1.10 that φ = ψ.

3.2.8. Colimits. — Let Q be a quiver and let FQ = ((Fv), (φe)) be a Q-
diagram of presheaves on X. For every open subset U of X, let Fpre(U) =
limÐ→(FQ(U)) be the colimit of the diagram of sets ((Fv(U)), (φe(U))); let
φv(U)∶Fv(U) → F (U) be the canonical map. For every open subsets U,V
of X such that V ⊆ U, there exists a unique map ρFpre

UV ∶Fpre(U) → Fpre(V)
such that ρFpre

UV ○ φv(U) = φv(V) ○ ρFpre
UV . The family Fpre = ((Fpre(U)), (ρF

UV))
is a presheaf; by construction, the maps φv(U)∶Fv(U) → Fpre(U) form a
morphism of presheaves φv ∶Fv →Fpre.
Endowed with the family of morphisms (φv), the presheaf Fpre is a colimit of

the diagram FQ. Let indeed (G , (ψv)) be a cocone on this diagram. For every
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open subset U of X, the setG (U) is a cocone on the diagramFQ(U), hence there
exists a unique map θ(U)∶Fpre(U)→ G (U) such that θ(U) ○ ψv(U) = φv(U)
for every v. Let V and U be open subsets of X such that V ⊆ U. For every v, one
has

ρG
UV ○ θ(U) ○ φv(U) = ρG

UV ○ ψv(U)
= ψv(V) ○ ρFv

UV

= θ(V) ○ φv(V) ○ ρFv
UV

= θ(V) ○ ρFpre
UV ○ φv(U).

It follows that ρG
UV ○ θ(U) = θ(V) ○ ρ

Fpre
UV , which proves that the family of maps

θ = (θ(U)) is a morphism of presheaves. It satisfies ψv = θ ○ φv for every v, and
it is the unique such morphism of presheaves.

3.2.9. — LetFQ be a Q-diagram of sheaves. Generally, the presheafFpre which
is the colimit of this diagram in the category of presheaves is not a sheaf. One
thus defines the sheaf limÐ→(FQ) to be the sheaf associated to this presheaf Fpre.
It is indeed a colimit of the diagram FQ in the category of sheaves on X.

3.2.10. — Similarly, every diagramFQ of sheaves of abelian groups has a colimit
which is computed as follows. One begins by defining a presheaf Fpre on X
such that Fpre(U) is the limit of the diagram FQ(U) of abelian groups deduced
from FQ. Then one shows that the sheaf F associated with this presheaf Fpre
is a colimit of the initial diagram.
An analogous result for sheaves of rings, of modules, etc.

3.2.11. — Let Q be a quiver, let FQ = ((Fv), (φe)) be a diagram of sheaves.
Let x ∈ X. Taking the stalks at x, one obtains a natural diagram FQ,x =
((Fv ,x), (φe ,x)) of sets.
If (F , (φv)) is a colimit of the diagram FQ, then (Fx , (φv ,x)) is a colimit of

the diagram FQ,x .
Let indeed jx ∶{x}→ X be the inclusion of the point x. Sheaves of sets (resp.

modules,...) on a topological space reduced to one point x can be identify with
the set (resp. module,...) of its global sections. Consequently, the stalk Fx of
a sheaf F at x identifies with the sheaf j−1Fx . Since the functor j−1x associated
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with the continuous map jx has a right adjoint (namely, the functor jx ,∗), it
commutes with arbitrary colimits.
If (F , (φv)) is a limit of the diagram FQ and if the quiver Q is finite, then
(Fx , (φv ,x)) is a limit of the diagram FQ,x .
Let (G, (ψv)) be a cone on the diagram FQ,x ; let us show that there exists a

unique map ψ∶G→Fx such that ψv = φv ,x ○ψ for every vertex v of Q, Let g ∈ G.
For every vertex v, let Uv be an open neighborhood of x and sv ∈ Fv(Uv) be
such that ψv(g) is the germ of sv at x; since Q has finitely many vertices, we
may replace each Uv be the intersection U of the family (Uv)v and sv by sv ∣U;
we thus assume that sv ∈ Fv(U) for every v. For every arrow e of Q, one has
the equality φe ,x(so(e),x) = st(e),x of germs at x; consequently, there exists an
open neighborhood Ue of x contained in U such that φe(Ue)(so(e)∣Ue) = st(e)∣Ue .
Since Q has finitely many arrows, we may replace U by the intersection ⋂e Ue .
Since F is a limit of the diagram FQ, there exists a unique section ψ0(g) ∈
F (U) such that φv(U)(ψ0(g)) = s for every vertex v. Let ψ(g) be the germ
of ψ0(g) at x. It does not depend of the choice of the open neighborhood U
of x and of the sections sv ∈Fv(U) such that ψv(g) = sv ,x for every vertex v and
φe(U)(so(e)) = st(e) for every arrow e of Q. By construction, themapψ∶G→Fx
satisfies φv ,x ○ ψ = ψv , and it is the unique such map.

3.3. Direct and inverse images of sheaves

Let f ∶X→ Y be a continuous map of topological spaces.

3.3.1. — LetF be a presheaf on X. For every open subset V of Y, the set f −1(V)
is open in X, because f is continuous. One thus defines a presheaf f∗F on Y
be setting ( f∗F )(V) = F ( f −1(V)) for every open subset V of Y. If U and V
are open subsets of Y such that V ⊆ U, the restriction map ρ f∗F

UV from f∗F (U)
to f∗F (V) is the map ρF

f −1(U), f −1(V) from F ( f −1(U)) to F ( f −1(V)).

Lemma (3.3.2). — If F is a sheaf, then f∗F is also a sheaf.

Proof. — Let indeed V be an open subset of Y, let (Vi)i∈I be a family of open
subsets of Y such that V = ⋃i∈IVi and let (si) be a family of sections of f∗F ,
where si ∈ ( f∗F )(Vi), such that the restrictions of si and s j to Vi ∩V j coincide.
Set U = f −1(V) and Ui = f −1(Vi). By definition of the presheaf f∗F , si is an
element of F (Ui) which we denote by ti . One has f −1(Vi ∩V j) = Ui ∩V j, and
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the restriction of ti to Ui ∩U j corresponds with the restriction of si to Vi ∩V j.
Consequently, one has ti ∣Ui∩U j = t j∣Ui∩U j for every pair (i , j) of elements of I.
Since F is a sheaf, there is a unique element t ∈ F (U) such that t∣Ui = ti for
every i. This element t corresponds to a section s ∈ ( f∗F )(V) and one has
s∣Ui = si for every i; moreover, s is the only section possessing that property. This
concludes the proof that the presheaf F is a sheaf.

3.3.3. — Let F and G be presheaves on X and let u∶F → G be a morphism
of presheaves. For every open subset V of Y, denote by ( f∗u)(V) the map
u( f −1(V)) from ( f∗F )(V) =F ( f −1(V)) to ( f∗G )(V) = G ( f −1(V)). This is a
morphism of presheaves.
One has f∗ idF = id f∗F . If v∶G → H is another morphism of presheaves,

then f∗(v ○ u) = ( f∗v) ○ ( f∗u).
Consequently, the assignments F → f∗F and u ↦ f∗u define a functor from

the categoryPreShX of presheaves on X to the categoryPreShY of presheaves
on Y, and a functor from the category ShX of sheaves on X to the category ShY
of sheaves on Y.

3.3.4. — If F is a (pre)sheaf in abelian groups on X, then f∗F has a natural
structure of a (pre)sheaf in abelian groups. If u∶F → G is a morphism of
(pre)sheaves in abelian groups on X, then f∗u is a morphism of (pre)sheaves in
abelian groups on Y. In other words, one also has a functor (still denoted by f∗)
from the categoryAbX of sheaves of abelian groups on X to the categoryAbY
of sheaves of abelian groups on Y.
A similar result holds more generally for (pre)sheaves with values in a category.

3.3.5. — Let G be a presheaf on Y. Let U and V be open subsets of X such that
U ⊆ V. Then f (U) ⊆ f (V); consequently, there exists a unique map ρUV from
the set G f (V) of germs of sections of G at f (V) to the set G f (U) of sets of germs
of sections of G at f (U) which associates with the germ at f (V) of a section s
of G on a neighborhood of f (V) the germ of this section at f (U).

The family (G f (U)) together with the maps ρUV is a presheaf on X, which we
denote (temporarily) by f −1pre(G ).

Definition (3.3.6). — If G is a sheaf on Y, one defines the sheaf f −1G on X as the
sheaf associated with this presheaf f −1preG .
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In other words, for every sheaf F on X and every morphism v∶ f −1preG →F

of presheaves of X, there exists a unique morphism v′∶ f −1G → F such that
v = v′ ○ j, where j∶ f −1preG → f −1G is the canonical morphism of presheaves.

3.3.7. — Let u∶F → G be amorphism of presheaves onY. There exists a unique
morphism of presheaves from f −1pre(F ) to f −1pre(G )which, for every open subset U
of X, every open subset V of Y containing f (U) and every section s ∈ F (U),
associates with the germ of the section s at f (U) the germ of the section u(U)(s).
We (temporarily) denote this morphism by f −1pre(u).
Denote by j and k the canonical morphisms from f −1preF to f −1F and f −1preG

to f −1G respectively. By the universal property of the associated sheaf, there
exists a unique morphism of sheaves f −1u∶ f −1F → f −1G such that ( f −1u ○ j) =
k ○ ( f −1preu).
One has f −1 idF = id f −1F . If v∶G → H is a morphism of sheaves, one has

f −1(v ○ u) = ( f −1v) ○ ( f −1u).
In other words, the assignments F ↦ f −1F and u ↦ f −1u define a functor

from the category of sheaves on Y to the category of sheaves on X.

3.3.8. — IfG is a sheaf in abelian groups on Y, then f −1G has a natural structure
of a sheaf in abelian groups. If u∶F → G is a morphism of sheaves in abelian
groups, then f −1u is also a morphism of sheaves in abelian groups. This gives a
functor, still denoted by f −1, from the categoryAbY of sheaves of abelian groups
on Y to the categoryAbX.
An analogous result holds for sheaves in rings, modules, etc., forwhich colimits

of direct systems is compatible with the colimit of the underlying direct system
of sets.
A similar construction can also be made for sheaves with coefficients in a

categoryC , provided that colimits of direct systems exist in the categoryC .

3.3.9. — Let F be sheaf on X. Let U be an open subset of X and let s ∈F (U).
Let V be an open subset of Y which contains f (U); then f −1(V) contains U, so
that there the restriction morphism ρF

f −1(V),U defines a map from ( f∗F )(V) =
F ( f −1(V)) to F (U). When V runs along the family of open neighborhoods
of f (U) in Y, these maps give rise to a map from the set ( f∗F ) f (U) of germs of
sections of f∗F at f (U) to F (U), hence to a map αpre(U) from f −1pre( f∗F )(U)
to F (U). The family of maps (αpre(U)) is a morphism of presheaves from
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the presheaf from f −1pre( f∗F ) to the sheaf F . Consequently, there exists a
unique morphism of sheaves αF ∶ f −1( f∗F ) → F such that αpre = αF ○ j,
where j∶ f −1pre( f∗F )→ f −1( f∗F ) is the canonical morphism.

3.3.10. — Let G be a sheaf on Y. Let V be an open subset of Y, let s ∈ G (V) and
let U = f −1(V). Since f (U) ⊆ V, one may consider the germ of s at f (U) which
is an element of f −1preG (U); let β(V)(s) be its image in f −1G (U) = f∗( f −1G )(V).
The maps β(V) define a morphism of sheaves βG from G to f∗( f −1G ).

Theorem (3.3.11). — Let F be a sheaf on X, let G be sheaf on Y, and let
u∶G → f∗F be a morphism of sheaves. There exists a unique morphism of
sheaves v∶ f −1(G )→F such that u = f∗(v) ○ βG .
If u is a morphism of sheaves of abelian groups (resp. of rings, etc.), then so is v.

In other words, the map

Hom( f −1G ,F )→ Hom(G , f∗F ), u ↦ f∗(u) ○ βG

is a bijection, so that the pair ( f −1, f∗) of functors between the categories of
sheaves on X and on Y is adjoint.

Proof. — Let v∶G → f∗F be a morphism of sheaves on Y and let u∶ f −1G →F

be the morphism given by u = αF ○ ( f −1v).
Let U be an open subset of X, let V be an open subset of Y such that f (U) ⊆ V;

one has U ⊆ f −1( f (U)) ⊆ f −1(V). Let us consider the commutative diagram of
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maps

G (V) ( f∗F )(V) F ( f −1(V))

G f (U) ( f∗F ) f (U)

f −1preG (U) f −1pre( f∗F )(U) F (U),

f −1G (U) f −1 f∗F (U)

←→ germ

← →v(V)

←→ germ

⇐ ⇐

←

→
restr.

← →
v f (U)

⇐⇐ ⇐⇐

←→
v f (U)

←→ can.

← →restr.

←→ can.

← →( f −1v)(U)

←

→

u(U)

←

→
αF (U)

where the arrows indicated ‘‘germ’’ map a section on V to its germ at f (U),
the vertical arrow indicated ‘‘restr.’’ maps a section of F on f −1(V) to its
restriction on U, the horizontal arrow indicated ‘‘restr.’’ is the morphism in-
duced by the natural restriction maps from the members of the directed system
( f∗F )(W))W⊇ f (U) = (F ( f −1(W)))W⊇ f (U) to F (U), and the arrows indicated
‘‘can.’’ are the canonical morphisms from a presheaf to the associated sheaf.
Let us assume that U = f −1(V) and let s ∈ G (V). Since f (U) = V is open in Y,

the maps ‘‘germ’’ in the diagram are bijections, as well as the vertical restric-
tion map. The definition of βG shows that βG (s) is the image of s in f −1G (U)
under the composition of arrows of the left hand column of the above dia-
gram. Consequently, u(U)(βG (s)) is the section v(s) ∈ F (U) = f∗F (V).
Since f∗u(V) = u(U), it follows that v(s) = ( f∗u)(V)(βG (s)). This shows that
v = ( f∗u) ○ βG .
Conversely, letu1, u2 bemorphisms from f −1G toF such that v = ( f∗u1)○βG =
( f∗u2) ○ βG . Let W be an open subset of X, let t be a section of f −1G on W; let
us prove that u1(t) = u2(t) in F (W). Since F is a sheaf, it suffices to prove
that every point x of W has a neighborhood U such that u1(t)∣U = u2(t)∣U. By
definition of the sheaf f −1G , there exists an open neighborhood U of x in X, an
open subset V of Y such that f (U) ⊆ V and a section s ∈ G (V) such that t∣U is
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the image of s under the composition:

G (V) germÐÐ→ G f (U) = f −1preG (U)
canÐ→ f −1G (U).

Observe that βG (s) is an element of f∗ f −1G (V) = f −1G ( f −1(V)); by the defini-
tion of βG , its restriction to U is thus equal to t∣U. Consequently,

u1(t)∣U = u1(t∣U) = u1(βG (s)) = v(s) = u2(βG (s)) = u2(t∣U) = u2(t)∣U.

This implies that u1(t) = u2(t) and concludes the proof that u1 = u2.

3.4. The abelian category of abelian sheaves

In this section, we show that the category of abelian sheaves is an abelian
category. In fact, we treat a more general case.

3.4.1. — Let X be a topological space and let A be a sheaf of rings on X. An A -
(pre)module is a (pre)sheaf F in abelian groups such that for every open subset
U of X, F (U) is endowed with a structure of an A (U)-module, compatibly
with the restriction maps: for every pair (U,V) of open subsets of X such that
V ⊆ U, every a ∈ A (U) and every s ∈F (U), one has a∣V ⋅ s∣V = (a ⋅ s)∣V.
Equivalently, F is an abelian (pre)sheaf endowed with the datum of a mor-

phism of (pre)sheaves in (possibly non-commutative) rings: A → End(F ).

3.4.2. — LetF ,G beA -modules. Amorphism ofA -(pre)modules φ∶F → G

is a morphism of (pre)sheaves in abelian groups such that φ(U)(a ⋅ s) = a ⋅
φ(U)(s) for every open subset U of X, every a ∈ A (U) and every s ∈F (U).

The identity is a morphism; the composition of two morphisms of A -
(pre)modules is a morphism ofA -(pre)modules. Consequently,A -premodules
and A -modules form categories which we denote byPreModA andModA .
They are additive category.
IfF is anA -premodule, then the associated sheafF + has a unique structure

of an A -module such that the canonical morphism j∶F →F + is A -linear.

3.4.3. — Let F be an A -module on X. Let x ∈ X. The stalk Fx has a unique
structure of Ax-module for which ax ⋅ sx = (a ⋅ s)x , for every open neighbor-
hood U of x, every a ∈ A (U) and every s ∈F (U).
Let φ∶F → G be a morphism of A -modules. For every x ∈ X, the map

φx ∶Fx → Gx is a morphism of Ax-modules.
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3.4.4. — Let A be a ring and let AX be the constant sheaf with value A. Every
AX-module is naturally a sheaf in A-modules. This gives rise to an equivalence
of categories from the category of AX-modules to the category of sheaves in
A-modules.

3.4.5. — Every diagram of sheaves of A -modules has a limit and a colimit. In
particular, the category of A -modules admits finite products and coproducts.

The limit is computed on each open set.
To compute the colimit, one first computes a presheaf of abelian groups and

then takes the associated sheaf, which has a natural structure of an A -module.
Let x ∈ X. The functor ‘‘stalk at x ’’ fromModA toModAx commutes with

all colimits, and with all finite limits.

3.4.6. Images, kernels and cokernels. — Let φ∶F → G be a morphism of
A -modules.
Its image Im(φ) is the subsheaf of G generated by the sub-presheaf given by

U↦ φ(U)(F (U)). It is a sub-A -module of G .

The kernel of φ is the A -submodule Ker(φ) of F whose sections over an
open subset U of X are the elements of Ker(φ(U)).
To justify the terminology, let j be the inclusion of Ker(φ) in F , and let us

show that (Ker(φ), j) is an equalizer of the pair (φ, 0) of morphisms from F

toG . Themorphism j is amonomorphism and one has φ○ j = 0 = 0○ j. Let more-
over k∶H →F be amorphismofA -modules such that φ○k = 0; for every open
subset U of X and every section s ∈H (U), one has φ(U)(k(U)(s)) = 0, hence
k(U)(s) = 0; this shows that k(U)(s) ∈ Ker(φ)(U), so that the morphism k
factors, necessarily uniquely, through Ker(φ).
A coequalizer Coker(φ) of the pair (φ, 0)) is called a cokernel of φ. The

canonical morphism from G to Coker(φ) is an epimorphism.

Proposition (3.4.7). — Let X be a topological space, let A be a sheaf of rings on X,
let F and G be A -modules and let φ∶F → G be a morphism of A -modules. Let
j∶Ker(φ)→F and p∶G → Coker(φ) be the canonical morphisms.
a) The following properties are equivalent:

(a) The morphism φ is a monomorphism;
(b) One has Ker(φ) = 0;
(c) For every x ∈ X, the morphism φx is injective;
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(d) The pair (F , φ) is a kernel of p.
b) The following properties are equivalent:

(a) The morphism φ is an epimorphism;
(b) One has Coker(φ) = 0;
(c) For every x ∈ X, the morphism φx is surjective;
(d) One has Im(φ) = G ;
(e) The pair (G , φ) is a cokernel of the morphism j.

c) The morphism φ is an isomorphism if and only if it is both a monomorphism
and an epimorphism.

Proof. — Recall that j is a monomorphism and p is an epimorphism.

a) (i)⇔(ii). One has φ ○ j = 0; consequently, if φ is a monomorphism, then
j = 0 and Ker(φ) = 0. Conversely, assume that Ker(φ) = 0 and let ψ∶H →F

be a morphism ofA -modules such that φ○ψ = 0; then ψ factor through Ker(φ),
so that ψ = 0.
(ii)⇔(iii). Since passing to stalks commute with finite limits, one has isomor-

phism Ker(φ)x ≃ Ker(φx) for every x ∈ X. If Ker(φ) = 0, this implies that
Ker(φx) = 0, hence φx is injective; conversely, if φx is injective for every x ∈ X,
then all stalks of the sheaf Ker(φ) are 0, hence Ker(φ) = 0.

The implication (iv)⇒(i) is obvious, because kernels are monomorphisms.
b) (i)⇒(ii). One has p ○ φ = 0; if φ is an epimorphism, then p = 0 and

Coker(φ) = 0.
(ii)⇔(iii)⇔(iv). Let x ∈ X. Passing to stalks commute with colimits, hence

Coker(φ)x ≃ Coker(φx); moreover, the stalk of the subsheaf Im(φ) of G at x is
equal to Im(φx). If Coker(φ) = 0, then for every x ∈ X, one has Coker(φx) = 0,
so that φx is surjective. If φx is surjective for every x, then the subsheaf Im(φ)
then has the same stalks as G , so that one has Im(φ) = G . Finally, if Im(φ) = G ,
then their stalks coincide, so that φx is surjective for every x; this implies that
every stalk ot the sheaf Coker(φ) is zero, hence Coker(φ) = 0.
(iii)⇒(i). Let us assume that φx is surjective for every x and let ψ∶G →H

be a morphism of A -modules such that ψ ○ φ = 0; let us prove that ψ = 0. For
every x ∈ X, one has ψx ○ φx = 0, hence ψx = 0 because φx is surjective. This
implies that ψ = 0, as claimed.

The implication (v)⇒(i) is obvious, because cokernels are epimorphisms.
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c) In any category, every epimorphism is a monomorphism and an epimor-
phism. Conversely, if φ is both a monomorphism and an epimorphism, then φx
is bijective for every x ∈ X, so that φ is an isomorphism.
It remains to prove the implications (i)⇒(iv) in a) and (i)⇒(v) in b).
Since p ○ φ = 0, one has Im(φ) ⊆ Ker(p). Moreover, one has Ker(p)x =

Im(φ)x = for every x. This implies that Im(φ) = Ker(p). The morphism
φ′∶F → Ker(p) induced by φ is thus an epimorphism. If φ is a monomorphism,
then φ′ is a monomorphism as well, hence an isomorphism.
Let k∶F → Coker( j) be a cokernel of j. Since one has φ ○ j = 0, there exists

a unique morphism φ′∶Coker( j)→ G such that φ = φ′ ○ k. Moreover, one has
Ker(kx) = Im( jx), so that Ker(φ′x) = 0 for every x ∈ X; this implies that φ′ is
a monomorphism. If φ is an epimorphism, then φ′ is an epimorphism as well,
hence it is an isomorphism.

Theorem (3.4.8). — Let X be a topological space and let A be a sheaf of rings
on X. The category of A -modules is an abelian category.

Proof. — The category of A -modules is additive. We constructed kernels and
cokernels, and proved that every monomorphism is a kernel, and that every
epimorphism is a cokernel. The axioms defining an abelian category are satisfied,
hence the theorem.

3.4.9. — Let F and G be A -modules.
Recall that the presheaf H omA (F ,G ) of homomorphisms is defined by

H omA (F ,G )(U) = HomA ∣U(F ∣U,G ∣U).
It is in fact an abelian sheaf. If, moreover, A is commutative, then it is a sheaf of
A -modules.
Observe that for every U, there is a canonical morphism

H omA (F ,G )(U)→ HomA (U)(F (U),G (U)).
This morphism is neither surjective, nor injective in general.

3.4.10. — Let us assume thatA is commutative. The tensor product sheafF⊗A

G is an A -module endowed with an universal bilinear morphism from F × G .
To prove its existence, we first define a presheaf Tpre of A (U)-modules by

the formula
Tpre(U) =F (U)⊗A (U) G (U),
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for every open subset U of X, and the restriction morphism ρTpre
UV is defined as

ρF
UV ⊗ ρG

UV whenever U and V are open subsets of X such that V ⊆ U. Let T

be the sheaf associated with this presheaf and let j∶Tpre → T be the canonical
morphism. Then T is an A -module. Moreover, the family (b(U)) of maps
given by b(U)( f , g) = j(U)( f ⊗ g), for every open subset U of X, every f ∈
F (U) and every g ∈ G (U) is a morphism of sheaves b∶F × G → T . This
morphism is A -bilinear.
Let us prove that the pair (T , b) satisfies the following universal property:

for every A -module, every A -bilinear morphism c∶F × G →P , there exists
a unique A -linear morphism γ∶T → G such that c = γ ○ b. Let U be an open
subset of X. The morphism c(U)∶F (U) × G (U)→P(U) is A (U)-bilinear;
consequently, there exists a unique morphism γpre(U)∶F (U)⊗A (U) G (U)→
P(U) such that γpre(U)( f ⊗ g) = c(U)( f , g) for every f ∈ F (U) and every
g ∈ G (U). The family (γpre(U)) is a morphism of presheaves in A -modules
from Tpre to P . Consequently, there exists unique morphism γ∶T → P of
A -modules such that γpre = γ ○ j. One has

γ(U) ○ b(U)( f , g) = γ(U) ○ j(U)( f ⊗ g) = γpre(U)( f ⊗ g) = c(U)( f , g)

for every open subset U of X, every f ∈F (U) and every g ∈ G (U); this shows
that γ ○ b = c. Conversely, this property implies that γ ○ j = γpre, so that γ is the
unique morphisms of A -modules which enjoys it.

3.4.11. — Let φ∶Y→ X be a continuous map of topological spaces, let A be a
sheaf of rings on X and let B be sheaf of rings on Y.
Observe that φ∗B is a sheaf of rings on X, and that φ−1A is a sheaf of rings

on Y. Let moreover φ♯∶A → φ∗B be a morphism of sheaves of rings; it would
be equivalent to give oneself the morphism φ♭∶φ−1(A )→B associated with φ♯
by adjunction.
Let F be an A -module and let G be an B-module.
The sheaf φ∗G has a canonical structure of a φ∗B-module. Using the mor-

phism φ, we view it as an A -module.
Similarly, the sheaf φ−1F on Y has a canonical structure of a φ−1(A )-module.

Define a B-module by the formula

φ∗F =B ⊗φ−1(A φ−1F .
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The assignments G ↦ φ∗G and φ∗∶F → φ∗F give rise to functors between
the category of A -modules and that of B-modules.
Let u∶F → φ∗G be a morphism of A -modules; let u♭∶φ−1F → G be the

morphism of sheaves which is deduced from u by the adjunction property of the
pair (φ−1, φ∗). Then u♭ is a morphism of φ−1A -modules. Consequently, there
exists a unique morphism φ∗u∶φ∗F → G ofB-modules such that φ∗u(V)(b⊗
f ) = b ⋅ u♭( f ) for every open subset V of Y, every b ∈ B(V) and every f ∈
φ−1F (V).

The map u ↦ φ∗u is a bijection from HomA (F , φ∗G ) to HomB(φ∗F ,G ).
When F and G vary, these maps define an adjunction for the pair of func-
tors (φ∗, φ∗).

3.5. Support, extension by zero

Definition (3.5.1). — LetF be a sheaf of abelian groups on X and let s ∈ Γ(X,F ).
The support of s is the intersection of all closed subsetsA ofX such that the restriction
of s to X A is zero. It is denoted by Supp(s).

Proposition (3.5.2). — Let F be a sheaf of abelian groups on X and let s ∈F (X).
a) The support of s is the smallest closed subset A such that the restriction of s to

X A is zero.
b) For every x ∈ X, one has x ∈ Supp(s) if and only if sx = 0.
c) Let u∶F → G be a morphism of abelian sheaves on X. The support of u(s)

is contained in the support of s.

Proof. — a) Since Supp(s) is defined as the intersection of a family of closed
subsets, it is a closed subset of X. Taking complements, we see that X Supp(s)
is the union of all open subsets U of X such that s∣U = 0. In particular, if U is
an open subset of X such that s∣U = 0, then U ⊆ X Supp(s). Conversely, the
family of open sets U such that s∣U = 0 is an open covering of X Supp(s); by
the sheaf property of F , the restriction of s to X Supp(s) vanishes.
b) By construction of the fibers of a sheaf, sx = 0 means that there exists

an open neighborhood U of x such that s∣U = 0, so that U ⊆ X Supp(s)
and x /∈ Supp(s). Conversely, if x /∈ Supp(s), then U Supp(s) is an open
neighborhood of x to which the restriction of s vanishes; in particular, sx = 0.
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c) Let U = X Supp(s). By definition of a morphism of abelian sheaves, one
has u(s)∣U = u(s∣U) = u(0) = 0. Consequently, U is disjoint from the support
of u(s). This means exactly that Supp(u(s)) ⊆ Supp(s), as claimed.

3.5.3. — Let X be a topological space, let A be a subset of X; let us write j∶A→ X
for the inclusion.
Let F be a sheaf of abelian groups on A. For every open subset U of X, let

j!F (U) be the set of all sections s ∈F (A ∩U) whose support is closed in U.
By proposition 3.5.2, the support of any s ∈F (A∩U) is a closed subset of A∩U.

If A is closed in X, it is therefore closed in U, hence j!F (U) =F (U) = j∗F (U).

Proposition (3.5.4). — Let A be a locally closed subset of X and let j∶A → X be
the inclusion. Let F be an abelian sheaf on A.
a) The assignment U↦ j!F (U) is a subsheaf of j∗F .
b) For every x ∈ X A, one has ( j!F )x = 0.
c) For every x ∈ A, the inclusion j!F ⊆ j∗F induces an isomorphism on fibers:
( j!F )x = ( j∗F )x =Fx .

Proof. — a) Since j∗F (U) =F ( j−1U) =F (A∩U) for every open subset U
of X, we observe that jF is a subassignment of j∗F .
Let us show that it is a sub-presheaf. Let U and V be open subsets of V such

that U ⊆ V and let us consider a section of j∗F (V). Considered as an element s
of F (A ∩V), its support S is closed in V. The restriction of that section to U is
the restriction s∣A∩U whose support is S ∩U. It is therefore closed in U.
Let us show that it is a sub-sheaf of j∗F . Let U be an open subset of X, let

s ∈ j∗F (U) =F (A ∩U) and let us assume that for every x ∈ U, there exists an
open neighborhood Ux of x in U such that the support of s∣A∩Ux is closed in Ux ;
let us proove that the support S of s is closed in U. By assumption, S ∩Ux is
closed in Ux , because it is the support of s∣A∩Ux . If x /∈ S, then x /∈ S ∩Ux , hence
Ux (S∩Ux) is a neighborhood of x, so that U S is a neighborhood of x. This
implies that s ∈ j!F (U).
b) Let x ∈ X be such that x ∉ A, let U be an open neighborhood of x and let

s ∈ j!F (U). Consider s as an element of F (A ∩U) and let S be its support; by
assumption, this is a closed subset of A ∩U which is also closed as a subset of U.
Since x ∉ A, one has x ∉ S. Consequently, there exists an open neighborhood V
of x which is contained in U such that the restriction of s to A ∩ V vanishes;
then s∣V = 0 in j!F (V). Consequently, ( j!F )x = 0.
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c) Let x ∈ A, let U be an open neighborhood of x and let sx ∈ ( j∗F )x .
By assumption, there exists an open neighborhood U of x and a section s ∈
j∗F (U) =F (A∩U)with germ sx at x. Let S be the support of s; this is a closed
subset of A ∩U.
Since A is locally closed, there exists an closed subset F of X and an open

subset O of X such that A = F ∩ O; since x ∈ A, one has x ∈ F and x ∈ O.
The intersection U ∩ O is an open neighborhood of x; the restriction of s to
that open set corresponds to s∣A∩U∩O, and its support is S ∩ (U ∩O). Since S
is closed in A ∩U, S ∩ (U ∩O) is closed in A ∩ (U ∩O). On the other hand,
A ∩ (U ∩O) = F ∩ (U ∩O) is closed in U ∩O, so that S ∩ (U ∩O) is closed
in U ∩O. This implies that s∣U∩O belongs to j!F (U ∩O), and this section has
the prescribed germ at x.

3.5.5. — Let A be a locally closed subset of X and let u∶F → G be a morphism
of abelian sheaves on A. The morphism j∗u∶ j∗F → j∗G maps j!F into j!G .
Indeed, if s ∈ j!F (U) ⊆ F (A ∩ U), then Supp(u(s)) ⊆ Supp(s), so that its
closure in U, being contained in the closed subset Supp(s), is contained in A∩U;
since Supp(u(s)) is closed in A ∩U, it is therefore closed in U. This defines an
additive functor j!∶AbA →AbX.

Proposition (3.5.6). — Let A be a locally closed subset of X and let j∶A → X be
the inclusion. The additive functor j!∶AbA →AbX is exact and fully faithful. It
induces an equivalence of categories fromAbA to the subcategory of abelian sheaves
on X whose fibers outside of A are zero. The functor j−1 furnishes a quasi-inverse.

Proof. — At the level of fibers, the functor j! induces the identity functor, or
the zero functor; it is in particular exact.
LetG be an abelian sheaf onX such thatGx = 0 for every x ∈ X A. Let us show

that the canonical morphism βG ∶G → j∗ j−1G factors through j! j−1G . Let indeed
U be an open subset of X. Then j∗ j−1G (U) = j−1G (A ∩U) and the morphism
βG (U)∶G (U)→ j−1G (A ∩U) factors through the morphism s ↦ (s∣V)V from
G (U) to j−1preG (A ∩U) = colimV⊇A∩U G (V) ≃ colimU⊇V⊇A∩U G (V). Moreover,
for every s ∈ G (U), the support of s is closed in U, hence the support of s∣V
is closed in V, for every open subset V of X such that U ⊇ V ⊇ A ∩ U. This
implies that the image of s belongs to j! j−1G (U). The resulting morphism of
sheaves, G → j! j−1G , induces an isomorphism on fibers: this is tautological for
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x ∈ A, and follows from the fact that Gx = 0 otherwise. This morphism is thus
an isomorphism.
Let then F be an abelian sheaf on A. Since j!F ⊆ j∗F , the canonical mor-

phism αF ∶ j−1 j∗F → F induces a morphism εF ∶ j−1 j!F → F . Let O be an
open subset of X containing A such that A is closed in O. Let V be an open
subset of A. The canonical morphisms

j−1pre j!F (V) = colimU⊇V
j!F (U) ≃ colimO⊇U⊇V

j!F (U)

→ colim
O⊇U⊇V

j∗F (U) = colimO⊇U⊇V
F (A ∩U)→F (V)

are isomorphisms. They induce an isomorphism from the presheaf j−1pre j!F
to the sheaf F , so that the corresponding morphism from j−1 j!F to F is an
isomorphism as well.
Let F and G be abelian sheaves on A and let v∶ j!F → j!G be a morphism

of abelian sheaves. There exists a a unique morphism of sheaves u∶F → G the
diagram

j−1 j!F j−1 j!G

F G .
←→j−1v

←→εF ←→ εG
← →u

Since j!u induces the morphism vx on the fibers at x, one then has j!u = v.
This concludes the proof of the proposition.

3.5.7. — Let A be a locally closed subset of X and let j∶A→ X be the inclusion.
Let us construct a right adjoint j! to the functor j!.
Let G be an abelian sheaf on X. For every open subset U of X, let ΓA(U;G )

be the subset of all s ∈ G (U) whose support is contained in A ∩ U. This is a
subgroup of Γ(U;G ). The assignment U↦ ΓA(U;G ) defines a subsheaf ΓA(G )
of G . This construction is functorial in G .
If x ∈ X A and s ∈ ΓA(U;G ), then x /∈ Supp(s), so that there exists an open

neighborhood V of x which is contained in U such that s∣V = 0. In particular,
sx = 0. This proves that the fibers of ΓA(G ) vanish at all points x of X A.
We set j!G = j−1ΓA(G ); this defines a functor from AbX to AbA. By the

preceding proposition, one has functorial isomorphisms j! j!G ≃ ΓA(G ), hence
a monomorphism εG ∶ j! j!G → G .
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Let F be an abelian sheaf on A and let u∶ j!F → G be morphism of abelian
sheaves. Since the fibers of j!F outside A are zero, the morphism u factors
uniquely through a morphism u′∶ j!F → ΓA(G ) = j! j!G , and there exists a
unique morphism v∶F → jG such that u′ = j!v. This furnishes the desired
adjunction for ( j!, j!).
Its unit and counit are the morphisms

εG ∶ j! j!G → G

and
ηF ∶F → j! j!F

respectively. The counit is an isomorphism of functors, the unit is a monomor-
phism; consequently, j! is fully faithful, and j! is full.

Example (3.5.8). — There are two important particular cases of this pair ( j!, j!)
of functors.
First of all, if A is closed, then j! coincides with j∗. Since j∗ has a right adjoint,

it is right exact, which allows to recover that this functor is exact.
On the other hand, if A is open, then j! coincides with j−1. Note that j−1 is

exact and has both a left adjoint and a right adjoint, namely j! and j∗ respectively.

3.5.9. — Let A be a closed subset of X and let U = X A be its complementary
subset; let i∶A → X and j∶U → X be the inclusion maps. Let F be an abelian
sheaf on X. The unit of the ( j!, j!) adjunction and the counit of the (i−1, i∗)
furnish an exact sequence

0→ j! j!F →F → i∗i−1F → 0.

Indeed, exactness can be checked on fibers; for x ∈ A, this sequence reduces to
0→ 0→Fx →Fx → 0, and for x ∈ U, it reduces to 0→Fx →Fx → 0→ 0.

The abelian sheaves j! j!F and i∗i−1F on X are generally denoted by FU
and FA.

3.6. Cohomology of abelian sheaves

3.6.1. — Let X, Y be topological spaces, let A be a sheaf of rings on X and let
B be sheaf of rings on Y. Let φ∶Y → X be a continuous map together with a
morphism of sheaves of rings φ♯∶A → φ∗(B) or, equivalently, a morphism
of sheaves of rings φ♭∶φ−1(A ) → B. In the terminology of definitions 4.2.1
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and 4.2.2, we say that (X,A ) and (Y,B) are ringed spaces, and that the pair
(φ, φ♯) is a morphism of ringed spaces.

This datum induces a functor φ∗∶ModB →ModA which, as we have seen,
admits a left adjoint φ∗. In particular, the functor φ∗ is left exact.
However, it is not right exact in general; applying the theory of derived functors

to the functor φ∗, we will be able to quantify this defect of right exactness. To
apply that machinery, we need to prove that the abelian categoryModA has
enough injectives.

Theorem (3.6.2) (Grothendieck). — Let X be a topological space and let A be
a sheaf of rings on X. The abelian category ModA of A -modules has enough
injectives.

The proof proposed by Grothendieck (1957) consists in applying the general
existence theorem, by showing that the categoryModA has a generator (namely,
the direct sum⊕U( jU)∗OU, indexed by all open subsets U of X) and satisfies
the axiom (AB5). The following proof, due to Godement (1958), is more direct.

Proof. — Let M be an A -module. For every point x ∈ X, its fiber Mx is an
Ax-module. By the existence of injective modules, there exists an embedding
of Mx into an injective Ax-module Ix . For every point x ∈ X, let ix ∶{x} to X
be the inclusion and let I be the sheaf on X given by ∏x∈X jx ,∗(Ix), where
we view Ix as a sheaf on {x}; Its sections on an open subset U of X identifies
with the product set∏x∈U Ix , the restriction maps being given by the canonical
projections. It is in fact a sheaf in abelian groups. Moreover, the Ax-module
structures on the module Ix , for every x ∈ X, endow it with the structure of an
A -module.
Moreover, the injections Mx ↪ Ix furnish a morphism of A -modules M →

I which is a monomorphism.
Let us prove thatI is an injective object in the abelian category ofA -modules.

We have to prove that the functor HomA (⋅,I ) is exact. Using the definition
ofI as a product and the adjunctions (i∗x , ix ,∗), this functor is isomorphic to the
functor F ↦ ∏x∈XHomAx(Fx , Ix). Since a product of exact functor is exact,
it suffices to prove that for every x ∈ X, the functor F ↦ HomAx(Fx , Ix) is
exact. On the other hand, this functor is the composition of the fiber functor
F ↦Fx , which is exact, and the functor F ↦ HomAx(F, Ix), which is as well
exact, because Ix is an injective Ax-module. This concludes the proof.
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3.6.3. — Let X be a topological space and let A be a sheaf of rings on X. By the
preceding theorem, the categoryModA is known to have enough injectives;
consequently, one can apply the theory of derived functors to any additive left
exact functor on this category. In particular, we have the following ones:

– The functor of global sections F ↦ Γ(X,F ), from ModA to ModA,
where A = Γ(X,A ). Its derived functors are called the cohomology modules
and are denoted by Hn(X,F ).
– But we can also forget the A-module structure and consider this functor

fromModA toAb .
– More generally, one can consider global sections with support in a closed

subspace W of X; this gives rise to cohomology with support Hn
W(X,F ).

– More generally, functors of the formF ↦ HomA (E ,F ), where E is anA -
module; the derived functors are called the Ext-modules of F , and are denoted
ExtnA (E ,F ).
– The direct image functor φ∗∶ModA →ModB, whenever φ∶X → Y be a

continuous map of topological spaces, B is a sheaf of rings and φ♯∶B → φ∗A
be a morphism of sheaves of rings on Y. Its derived functors are called higher
direct images, and are denoted by F ↦Rnφ∗F .

The definition of these functors depends of the choice of A and B, so that
their derived functors a priori depend on these sheaves of rings. The definition of
the derived functors implies that the dependence on B is mostly irrelevant: the
abelian sheaves underlying the cohomology objects of a complex of B-modules
are the cohomology objects of the same complex, viewed as a complex of abelian
sheaves.

These functors do not really depend on A : for example, the global sections
of an A -module coincide with its global sections as an abelian sheaf. However,
the categoriesModA andAbX differ, and they don’t have the same injective
objects, so that the cohomology of an A -module F and that of the underlying
abelian sheaf could differ in principle. The theory of flasque sheaves will allow
us to see that this discrepancy does not happen.

3.6.4. — Cohomology is not only functorial with respect to morphism of
sheaves, but also with respect to morphism of schemes. Let f ∶Y→ X be contin-
uous map and let F be an abelian sheaf on X. Let us construct a morphism of
abelian groups f ∗∶Hn(X,F )→ Hn(Y, f −1F ).
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Let ε∶F → I0 → I1 → . . . be the injective resolution chosen to compute
Hn(X,F ).
By definition, one has Hn(X,F ) = Hn(Γ(X,Y●)).
The definition of the sheaves f −1Im furnishes morphisms Γ(X,Im) →

Γ(Y, f −1Im) from which we deduce a morphism of complexes Γ(X,I●) →
Γ(Y, f −1I●) and morphisms of cohomology groups

Hn(Γ(X,I●))→ Hn(Γ(Y, f −1I●)).

Since the functor f −1∶AbX → AbY is exact, it induces a resolution
f −1ε∶ f −1F → f −1I0 → . . . of f −1F . We thus have a canonical morphism

Hn(Γ(Y, f −1I●))→ Hn(Y, f −1G ).

Combining these two morphisms furnishes the desired morphisms
f ∗∶Hn(X,F )→ Hn(Y, f −1F ), for n ∈ N.
If f = idX, then f ∗ is the identity. If g∶Z→ Y is another continuous map, then

one has ( f ○ g)∗ = g∗ ○ f ∗.

3.6.5. —

Proposition (3.6.6). — Let F be an abelian sheaf on X and let n be an integer
such that n ⩾ 1 and let ξ ∈ Hn(X,F ). For every point x ∈ X, there exists an open
neighborhood U of x such that ξ∣U = 0.

In other words, cohomology vanishes locally.

Proof. — Let ε∶F → I● be an injective resolution of F . By definition,
Hn(X,F ) is the nth cohomology group of the complex Γ(X,I●). The class ξ
is represented by an element c ∈ Γ(X,In) such that dn(c) = 0. Since n ⩾ 1,
the complex I● is exact at In and one has ker(dn) = Im(dn−1). The class c
belongs to the image sheaf dn−1(In−1). Since the fiber of this sheaf at x is the
image dn−1(In−1,x), there exists an element c′x ∈In−1,x such that cx = dn−1(c′x).
There exists an open neighborhood U of x and c′ ∈In−1(U) with germ c′x at x;
then one has cx = dn−1(c′)x , so that c∣U and dn−1(c′) have the same germ at x.
Consequently, there exists an open neighborhood V of x such that V ⊆ U and
such that c∣V = dn−1(c′)∣V = dn−1(c′∣V). The cohomology class ξ∣V is represented
by c∣V = dn−1(c′∣V), hence it vanishes.
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3.7. Flasque sheaves

Definition (3.7.1). — One says that a sheaf F on X is flasque(1) if for every open
subset U of X, the restriction map F (X)→F (U) is surjective.

Example (3.7.2). — On an irreducible topological space, every constant sheaf
(with non-empty fiber) is flasque.
Let S be a non-empty set and let SX be the constant sheaf on X with value S;

by definition, its sections over an open subset U of X are the locally constant
functions from U to S.
Let U be an open subset of X and let f ∈ SX(U). If U = ∅, any constant

function from X to S restricts to f ; since S is non-empty, this proves that the
restriction map from SX(X) to SX(U) is surjective. Otherwise, U is irreducible
(proposition 1.10.3), hence is connected; consequently, the locally constant func-
tion f is constant, and it extends (uniquely, U being non-empty) to a constant
function from X to S.

Lemma (3.7.3). — Let X be a topological space.
a) Let F be a flasque sheaf on X. The sheaf F ∣U is flasque, for every open

subset U of X.
b) Let f ∶X→ Y be a continuous map and letF be a sheaf on X. The sheaf f∗F

on Y is flasque.
c) Let (Fi)i∈I be a family of flasque sheaves on X. Their product ∏i∈I Fi is

flasque.
d) LetF be a flasque sheaf on X and letF ′ be retract ofF . ThenF ′ is flasque.

Proof. — a) Let V be an open subset of U and let s ∈ F (V). Since F is
flasque, there exists s′ ∈ F (X) such that s′∣V. Then t = s′∣U is an element
of F (U) such that t∣V = s. This proves that F ∣U is flasque.
b) Let U be an open subset of Y and let s ∈ f∗F (U). By definition, s is a

section t of F ( f −1(U)). Since F is flasque, there exists a section t′ ∈ F (X)
such that t′∣ f −1(U) = t. Then t′ can be viewed as a section s′ of F (Y) and t′∣U = t.
This proves that f∗F is flasque.
c) Let U be an open subset of Y and let s be a section of∏i∈I Fi(U), corre-

sponding to a family (si), where si ∈Fi(U) for all i. For every i ∈ I, there exists

(1)This is the French word used by Godement (1958); some authors say flabby.
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a section ti ∈Fi(X) such that ti ∣U = si, because Fi is flasque. Then the family
t = (ti) is a section of∏Fi on X such that t∣U = s.
d) By assumption, F ′ is a subsheaf of F and there exists a morphism of

sheaves r∶F →F ′ which is the identity on F ′. Let U be an open subset of X
and let s′ ∈F ′(U). Let t ∈F (X) be a global section extending s′, as a section
of F . Then r(t) ∈F ′(X) and r(t)∣U = r(t∣U) = r(s′) = s′. This proves that F ′

is flasque.

Example (3.7.4). — If X is discrete, every section of an étale space is continuous,
so that a sheaf F on X is flasque if and only if its fibers Fx are non-empty, for
all x ∈ X. Indeed, In particulier, every sheaf on X is flasque in this case.
Let Xδ be the set X endowed with the discrete topology. The identity p∶Xδ → X

is continuous. For every abelian sheaf F on X, one lets G(F ) = p∗p∗F . This
is a flasque sheaf on X, and the unit ηF ∶F → G(F ) is a monomorphism.
Explicitly, one has G(F )(U) = ∏x∈U Fx , for every open subset U of X, the
restriction morphisms are the morphisms ∏x∈U Fx → ∏x∈V Fx , for V ⊆ U
which are surjective. In fact, they even have a section.

Example (3.7.5). — An injective sheaf F on X is flasque.
Let indeed U be an open subset of X and let s ∈F (U). Let j∶U → X be the

canonical inclusion; let f ∶ j!ZU →F be the unique morphism corresponding
to the morphism ZU → j∗F which maps 1 to s. The canonical morphism
u∶ j!ZU → ZX is injective; since F is injective, there exists a unique morphism
g∶ZX →F such that g ○ u = f ; it corresponds to a section t ∈F (X) such that
t∣U = s. Consequently, the restriction morphism F (X)→F (U) is surjective,
as as to be shown.

Proposition (3.7.6). — LetF be a sheaf onX. Assume that for every open subsetU
of X and every s ∈ F (U), there exists an open covering V of X such that for
every V ∈ V , there exists tV ∈F (V) such that tV∣U∩V = s∣U∩V. Then F is flasque.

Proof. — Let U be an open subset of X and let s ∈F (U). Let us show that there
exists t ∈ F (X) such that t∣U = s. Let R be the set of pairs (V, t), where V is
an open subset of X and t ∈F (V). The relation ⪯ defined by (V, t) ⪯ (V′, t′)
if and only if V ⊆ V′ and t′∣V = t is an ordering relation on R; moreover, the
ordered set R is inductive. By Zorn’s lemma, we may consider a maximal
element (W, t) of R such that (U, s) ⪯ (W, t); let us show that W = X. By
hypothesis, there exists an open covering V of X and, for every V ∈ V , an
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element tV ∈ F (V) such that tV∣U∩W = t∣W∩V. If W ≠ X, there exists an open
subset V ∈ V such that V /⊆W; then, there exists a unique section t′ ∈ (W ∪V)
which restricts to t onW and to tV on V. In particular, (W∪V, t′) is an element
of R such that (W, t) ⪯ (W ∪V, t′), contradicting the hypothesis that (W, t)
were maximal.

Corollary (3.7.7). — Let F be a sheaf on X. Assume that there exists an open
covering V of X such that F ∣V is flasque, for every V ∈F . Then F is flasque.

Proof. — Indeed, the condition of the proposition is satisfied: since F ∣V is
flasque, there exists t ∈F (V) which restricts to s∣U∩V.

Proposition (3.7.8). — Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of
abelian sheaves. Assume that F ′ is flasque.
a) For every open subset U of X, the sequence 0 → F ′(U) → F (U) →

F ′′(U)→ 0 is exact.
b) If F is flasque, then F ′′ is flasque as well.

Proof. — a) It suffices to treat the case where U = X, the general case follows
from it by applying the result to the sheaves deduced by restriction to U.
It is a general fact that the sequence 0 →F ′(X) →F (X) →F ′′(X) → 0 is

exact, except possibly at F ′′(X).
Let s ∈F ′′(X). Let us show that there exists t ∈F (X) with image s. Let Fs

be the subsheaf of F consisting of sections t with image s in F ′′. The exact
sequence 0 → F ′ → F → F ′′ → 0 implies that Fs is locally isomorphic
to F ′: whenever U is an open subset of X such that s∣U has a lift t ∈F (U), the
morphismF ′∣U →Fs∣U is an isomorphism of sheaves, hence is flasque, because
F ′∣U is flasque. Consequently, Fs is flasque and admits a global section t. By
construction, t ∈F (X)maps to s in F ′′(X).
b) Assume now that F is flasque as well; let us show that F ′′ is flasque. Let

U be an open subset of X and let s ∈ F ′′(U). By what precedes, there exists
t ∈F (U) which maps to s. Since F is flasque, there exists t′ ∈F (X) such that
t′∣U = t. Then the image s′ of t′ in F ′′(X) satisfies s′∣U = s. Consequently, F ′′ is
flasque.

3.7.9. — To be added :
a) Existence of flasque resolutions
b) Injective sheaves are flasque
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c) Acyclicity of flasque sheaves for Γ or f∗
d) Cohomology of anA -module coincides with its cohomology as an abelian

sheaf.
e) Mayer–Vietoris exact sequence
f) Cohomology of a sheaf on a closed subset and cohomology of its extension

by zero.
g) Higer direct images and cohomology of preimages.
h) Cohomology and directed colimits

3.8. Cohomological dimension

The main objective of this section is to prove a theorem of Grothendieck
(1957) about the vanishing of the cohomology groups of abelian sheaves.

Definition (3.8.1). — Let X be a topological space. The cohomological dimension
of X is the least upper bound of all integers n such that there exists an abelian
sheaf F on X Hn(X,F ) ≠ 0. We denote it as cohdim(X).

This is an element of N ∪ {+∞}. It follows from the definition that for any
integer n > cohdim(X) and any abelian sheaf F on X, one has Hn(X,F ) = 0.

Proposition (3.8.2). — Let X be a topological space and let (Fi)i∈I be a direct
system of sheaves on X.
a) IfX is quasi-compact, then the canonicalmap colimi Fi(X)→ (colimi Fi)(X)

is injective.
b) If X is noetherian, then this map is bijective.

Proof. — Let us denote by F the colimit sheaf colimi Fi .
a) Let s, s′ ∈ colimi Fi(X) be two elements having the same image in F (X).

By definition, s and s′ are represented by some elements si ∈ Fi(X) and s′j ∈
F j(X), for some i , j ∈ I. Since I is a directed set, there exists k ∈ I such that i ⪯ k
and j ⪯ k. Up to replacing si and s′j by their images in Fk, we may assume that
i = j = k.

There exists an open covering (Uα)α∈A of X such that s∣Uα = s′∣Uα in
colimi Fi(Uα), for any α ∈ A. Let α ∈ A. The equality s∣Uα = s′∣Uα implies that
there exists an element kα ∈ I such that i ⪯ kα and such that the images of si ∣Uα

and s′i ∣Uα in Fkα(Uα) coincide.
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Since X is quasi-compact, there exists a finite subset A′ of A such that X =
⋃α∈A′Uα. Let k ∈ I be an element such that kα ⪯ k for all α ∈ A′. The images
of si ∣Uα and s′i ∣Uα in Fk(Uα) coincide for all α ∈ A′. Since the Uα, for α ∈ A′,
cover X, it follows that the images of si and s′i in Fk(X) coincide. Consequently,
s = s′ in colimi Fi(X)
b) Let s ∈F (X). By definition, the sheaf F , is associated with the presheaf

U ↦ colimi Fi(U); consequently, there exists an open covering (Uα)α∈A of X
and, for any α ∈ A, an element iα ∈ I and an element sα ∈ Fiα(Uα) that repre-
sents s∣Uα. Since X is quasicompact, there exists a finite subset A′ of A such
that the Uα, for α ∈ A′, cover X. Changing notation, we may thus assume that
A = {1, . . . , n}. For any integer p such that 0 ⩽ p ⩽ n, set Vp = U1 ∪ ⋅ ⋅ ⋅ ∪Up.
By induction, we will construct an element jp ∈ I and a section sp ∈F jp(Vp)

whose class in colimi Fi(Vp)maps to s∣Vp .
For p = 0, one has V0 = ∅, and we take for j0 an arbitrary element of I (which

is non-empty) and for s0 the only section of Fi0(∅).
Assume that 1 ⩽ p ⩽ n and that jp−1, sp−1 have been constructed. Let also

t ∈F jp(Up) whose class in colimi Fi(Up) represents s∣Up . The restrictions to
Vp−1 ∩Up of sp−1 and t define clases in colimi Fi(Vp−1 ∩Up) which both map
to s∣Vp−1∩Up in F (Vp−1 ∩ Up). Since X is a noetherian topological space, the
open subset Vp−1 ∩ Up is quasi-compact, and assertion a) implies that there
exists an element jp ∈ I such that jp−1 ⪯ jp, ip ⪯ jp and such the images of
sp−1∣Vp−1∩Up and t∣Vp−1∩Up in F jp(Vp−1 ∩Up) coincide. Consequently, the images
of sp−1 in F jp(Vp−1) and of t in F jp(Up) coincide on Vp−1 ∩ Up, hence there
exists a unique section sp ∈F jp(Vp) which coincides with them on Vp−1 and Up.
The image of sp in F (Vp) is equal to s∣Vp since it restricts to s∣Vp−1 on Vp−1 and
to s∣Up on Up. This concludes the induction step.
When p = n, we have Vn = X and an element sn ∈ F jn(X) which incudes s

in F (X). This concludes the proof of the proposition.

Corollary (3.8.3). — Let X be a noetherian topological space and let (Fi)i∈I be a
direct system of sheaves on X. The presheaf colimi Fi is a sheaf.

Proof. — Let Fpre be the presheaf colimi Fi and let F be the associated sheaf.
By definition, Fpre(U) = colimi Fi(U) for every open subset U of X. Since X
is noetherian, any open subset of X is noetherian, and proposition 3.8.2 asserts
that the canonical morphism of presheaves Fpre → F induces a bijection
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Fpre(U)→F (U), for any open subset U of X. Consequently, this morphism is
an isomorphism and Fpre is a sheaf.

Corollary (3.8.4). — Let X be a noetherian topological space. The colimit
colimi Fi of a direct system (Fi)i∈I of flasque sheaves on X is flasque.

Proof. — Let U be an open subset of X and let s ∈ (colimi Fi)(U). By the
proposition, applied to the noetherian topological space U, there exists an el-
ement i ∈ I and a section si ∈ Fi(U) with image s. Since Fi is flasque, there
exists a section ti ∈Fi(X) such that ti ∣U = si , and tts image t in F (X) satisfies
t∣U = s. This proves that the sheaf colimi Fi is flasque.

Corollary (3.8.5). — Let X be a noetherian topological space, let (Fi) be a di-
rected system of abelian sheaves on X. For any integer n, the canonical morphism
colimi Hn(X,Fi)→ Hn(X, colimi Fi) is an isomorphism of abelian groups.

Proof. — Let F = colimi Fi be the colimit sheaf of this directed system. For
every i ∈ I, consider the Godement resolution Fi → G●(Fi) by flasque sheaves.
By functoriality, we obtain a morphism F → colimG(Fi) which, by right-
exactness of direct colimits, is a resolution of F . By the preceding corol-
lary, the sheaves colimi Gn(Fi) are flasque, for all n ∈ N. By the proposition,
the complex with terms (colimi Gn(Fi))(X) coincides with the complex with
terms colimi(Gn(Fi)(X)). By exactness of direct colimits, its cohomology is
colimi Hn(X,Fi), as claimed.

Theorem (3.8.6). — Let X be a noetherian topological space and let n ∈ N. The
following assertions are equivalent:
(i) One has n ⩽ cohdim(X);
(ii) For any integer m such that m > n and any abelian sheaf F on X, one has

Hm(X,F ) = 0;
(iii) For any open subset U of X and any integer m such that m > n, one has

Hm(X,ZU) = 0;

Proof. — The equivalence (i)⇔(ii) is exactly the definition 3.8.1 of the cohomo-
logical dimension.
Assertion (iii) is the particular case of (ii), applied with F = ZU = j!Z, where

j∶U→ X is the inclusion map.
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Let us now prove the implication (iii)⇒(ii). Let us assume that Hm(X,ZU) = 0
for any open subset U of X and any integer m > n. Let F be an abelian sheaf
on X and let us prove that Hm(X,F ) = 0 for any integer m > n.
We split the proof in four steps.
a) Let us prove the result under the assumption that there exists a locally

closed subset A of X such that F = ZA.
By definition of a locally closed subset, there exists an open subset U of X such

that A is closed in U. Consequently, there exists an open subset V of U such that
A = U V. One then has an exact sequence

0→ ZV → ZU → ZA → 0

of abelian sheaves on X. Let m be an integer such that m > n; we have a short
exact sequence

Hm(X,ZU)→ Hm(X,ZA)→ Hm+1(X,ZV),

as a part of the long exact sequence of cohomology associated with the initial
short exact sequence. By assumption, Hm(X,ZU) = Hm+1(X,ZV) = 0; conse-
quently, Hm(X,ZA) = 0.
b) Let us prove the result under the assumption that there exists an open

subset U of X such that F is an abelian subsheaf of ZU.
By lemma 3.8.7 below, there exists a finite sequence (L0, . . . ,Lp) of sub-

sheaves of L such that 0 = L0 ⊆ ⋅ ⋅ ⋅ ⊆ Lp = L , and for every integer q such
that 1 ⩽ p ⩽ p, a locally closed subset Aq of U such that Lq/Lq−1 ≃ ZAq .
Let us prove by induction on q that Hm(X,Lq) = 0 for all integers m > n.

This is trivial if q = 0, since L0 = 0. Let us assume that q ⩾ 1 and that the result
holds for q − 1.
Let m be an integer such that m > n. From the long exact sequence in coho-

mology associated with the short exact sequence 0 →Lq−1 →Lq → ZAq → 0,
we get a short exact sequence

Hm(X,Lq−1)→ Hm(X,Lq)→ Hm(X,ZAq).

By induction, the first term is zero, and step a) asserts that the third term vanishes
as well. Consequently, Hm(X,Lq) = 0, as was to be shown.
For q = p, we obtain Hm(X,L ) for all integers m > n, as claimed.
c) Let us now prove that the result holds under the assumption that there

exists an open subset U of X and an epimorphism ZU →F .
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Let L be its kernel. For any integer m such that m > n, one has the short
exact sequence

Hm(X,ZU)→ Hm(X,F )→ Hm+1(X,L ),

as a part of the long exact sequence of cohomology associatedwith the short exact
sequence 0→L →ZU →F → 0. By assumption (iii), one has Hm(X,ZU) = 0,
and by step b), we have Hm+1(X,L ) = 0. Consequently, Hm(X,F ) = 0.
d) We now treat the general case. Let I be the set of all pairs (U, s), where U is

an open subset of X and s ∈F (U); for i = (U, s) ∈ I, we write Ui = U and si = s
and let ji ∶Ui → X be the inclusion map. For any i ∈ I, the section si ∈ F (Ui)
defines a morphism Z → j−1i F , hence, using the adjunction for ( ji!, j!i), a
morphism ZUi = ji!Z →F . The direct sum of these morphisms

⊕
i∈I

ZUi →F

is an epimorphism. For any finite subset L of I, let FL be the image of⊕i∈LZUi

in F . The set of all finite subsets of I is a directed set, and the family (FL)L of
subsheaves of F is a direct system, with colimit F . By corollary 3.8.5, it suffices
to prove that Hm(X,FL) = 0 for all integers m such that m > n.
We may thus assume that there exists an integer p, open subsets U1, . . . , Up

of X, and sections si ∈F (Ui) inducing an epimorphism⊕p
i=1ZUi →F . For any

integer q such that 0 ⩽ q ⩽ p, let Fq be the image of the direct sum⊕q
i=0ZUi .

This gives rise to a filtration

0 =F0 ⊆F1 ⊆ ⋅ ⋅ ⋅ ⊆ Fp =F ,

and for every integer q ∈ {1, . . . , p}, the quotient sheaf Fq/Fq−1 is a quotient
of ZUq .
We now argue by induction on q that Hm(X,Fq) = 0 for all integers q such

that 0 ⩽ q ⩽ p and all integers m > n. The case q = 0 is trivial, since F0 = 0.
Now assume that q ⩾ 1 and that the result holds for q − 1. Let us consider the
exact sequence 0 →Fq−1 →Fq →Fq/Fq−1 → 0 of abelian sheaves on X. Let
m be an integer such that m > n. From the associated long exact sequence of
cohomology, we get an exact sequence

Hm(X,Fq−1)→ Hm(X,Fq)→ Hm(X,Fq/Fq−1).

By induction, one hasHm(X,Fq−1) = 0, and step c) asserts thatHm(X,Fq/Fq−1) =
0. Consequently, Hm(X,Fq) = 0. This concludes the proof by induction.
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For q = p, we have Fp = F , so that Hm(X,F ) = 0 for all integers m such
that m > n. This concludes the proof of the implication (iii)⇒(ii).

Lemma (3.8.7). — LetX be a noetherian topological space, letU be an open subset
of X and let L be a subsheaf of ZU. There exists a finite sequence (L0, . . . ,Ln)
of subsheaves of L such that 0 = L0 ⊆ L1 ⊆ ⋅ ⋅ ⋅ ⊆ Ln = L and, for every
m ∈ {1, . . . , n}, a locally closed subset Am of U such that Lm/Lm−1 ≃ ZAm .

Proof. — It suffices to treat the case U = X.
For every x ∈ X, the fiber Lx is a subgroup of Zx = Z, so that there exists a

unique integer n(x) ∈ N such that Lx = n(x)Z.
Let x ∈ X; there exists an open neighborhood U of x and a section s ∈L (U)

with fiber n(x) at x. Then, for every y ∈ U, one has sy = n(x) ∈Ly = n(y)Z, so
that n(y) divides n(x). In particular, if n(x) ≠ 0, this implies that 1 ⩽ n(y) ⩽
n(x).
Let U be the set of x ∈ X such that n(x) ≠ 0; by what precedes, this is an open

subset of X. For every n ∈ N, let Un be the set of x ∈ U such that n(x) ⩽ n; by
what precedes, it is an open subset of U and the sequence (Un)n is increasing.
For m ⩾ 1, set Am = Um Um1 ; this is a locally closed subset of X and one has an
isomorphism LUm/LUm1 ≃ ZAm .

The union of the sets Un is equal to U. Since X is noetherian, U is quasi-
compact, so that there exists n ∈ N such that Un = U. Then L =LU =LUn and
the sequence (LU0 , . . . ,LUn) satisfies the conditions of the lemma.

Theorem (3.8.8). — Let X be a noetherian topological space. One has
cohdim(X) ⩽ dim(X).

Proof. — There is nothing to prove if dim(X) =∞. We may thus assume that
the dimension of X is finite and prove the result by induction on this dimension,
assuming that it holds for all noetherian topological spaces of dimension <
dim(X).
a) We first prove the theorem under the assumption that X is irreducible. Let

us prove that Hn(X,ZU) = 0 for all open subsets U of X and all integers n such
that n > dim(X). If U = ∅, then ZU = 0 and the result is obvious. Otherwise, set
A = X U; this is a closed subset of X, distinct from X. Since X is irreducible,
any strictly increasing sequence of irreducible subsets of A can be extended by
adding X, so that dim(A) < dim(X). We now consider the long exact sequence



150 CHAPTER 3. SHEAVES AND THEIR COHOMOLOGY

in cohomology associated with the canonical exact sequence

0→ ZU → Z→ ZA → 0;

this furnish in particular a short exact sequence

Hm−1(X,ZA)→ Hm(X,ZU)→ Hm(X,Z).

Since A is closed, one has Hm−1(X,ZA) = Hm−1(A,Z), which is zero by the
induction hypothesis for A. Since X is irreducible, the constant sheaf Z is flasque
(example 3.7.2) and one has Hm(X,Z) = 0. Consequently, Hm(X,ZU) = 0.
b) Let us now prove the general case. Since X is noetherian, it has only finitely

many irreducible components (proposition 1.10.9, say X1, . . . , Xm. Let F be an
abelian sheaf on X. The inclusions Xp → X induce, by adjunction, morphisms
F → FXp whose fiber at a point x is an isomorphism if x ∈ Xp, and is zero
otherwise. Consider the inducedmorphism φ∶F →⊕m

p=1 FXp ; by the preceding
description, its fiber at a point x is injective, and it is an isomorphism if x belongs
to exactly one irreducible component. Denoting its cokernel by G , we obtain a
short exact sequence

0→F →
m
⊕
p=1

FXp → G → 0

is an exact sequence. Let Y = ⋃1⩽p<q⩽m(Xp ∩Xq); this is a closed subset of X and
we have Gx = 0 for x ∉ Y, because φx is then an isomorphism, so that G = GY.
Moreover, one has dim(Y) < dim(X), because any strictly increasing sequence
of irreducible closed subsets of Y is contained in some Xp ∩ Xp, and can be
extended by adding Xp.
Let now n ∈ N be such that n > dim(X). The long exact sequence of coho-

mology associated with the short exact sequence 0 → F → ⊕FXp → G → 0
furnishes a short exact sequence

Hn−1(X,G )→ Hn(X,F )→
m
⊕
p=1

Hn(X,FXp).

Since Y is closed, we then have Hn(X,G ) = Hn(X,GY) = Hn(Y, i−1G ), where
i∶Y → X is the inclusion map. Since n > dim(X) and dim(X) > dim(Y), one
has n − 1 > dim(Y), so that the induction hypothesis implies Hn−1(Y, i−1G ) = 0.
This proves that Hn−1(X,G ) = 0.
Let p ∈ {1, . . . ,m}. Since Xp is closed, one has Hn(X,FXp) = Hn(Xp, i−1p F ),

where ip∶Xp → X is the inclusion map. By hypothesis, one has n > dim(X) ⩾
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dim(Xp), so that step a) implies Hn(Xp, i−1p F ) = 0, so that Hn(X,FXp) = 0.
Consequently, Hn(X,⊕p FXp) = 0.

This implies that Hn(X,F ) = 0, as was to be shown.





CHAPTER 4

SCHEMES

4.1. Sheaves associated to modules on spectra of rings

4.1.1. — Let A be a ring and let X = Spec(A) be its spectrum. Recall that it is
the set of prime ideals of A, endowed with the spectral (or Zariski) topology
whose closed subsets are those of the form

V(E) = {p ∈ Spec(A) ; E ⊆ p},

for some subset E of A. For every subset Z of Spec(A), we also defined

j(Z) = ⋂
p∈Z

p = {a ∈ A ; a ∈ p, ∀p ∈ Z},

and that the operations V and j define bijections, inverse one from the other,
from the set of radical ideals of A to the set of closed subsets of Spec(A).

The algebraic geometry of schemes considers these topological spaces Spec(A)
as its building blocks. In some sense, the prime spectrum of a ring is seen as a
more fundamental object than the ring itself. This suggests an adjustment of the
notation.
As in any topological space, elements of X are called points; a point of X is

thus denoted by a letter, such as x, and the corresponding prime ideal of A will
be denoted px . With this notation, one thus has

j(Z) = ⋂
x∈Z

px .

Then, the quotient ring A/px is an integral domain, and its field of fractions will
be denoted κ(x); it is called the residue field of X at x. One has morphisms of
rings:

A→ A/px → κ(x).
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For f ∈ A and x ∈ Spec(A), one writes f (x) for the image of f in the residue
field κ(x); with this notation, the condition f ∈ px is then equivalent to the
condition f (x) = 0. For E ⊆ A and Z ⊆ Spec(A), one thus has

V(E) = {x ∈ X ; f (x) = 0∀ f ∈ E} and j(Z) = { f ∈ A ; f (x) = 0∀x ∈ Z}.

For f ∈ A, one also has

V( f ) = {x ∈ X ; f (x) = 0} and D( f ) = {x ∈ X ; f (x) ≠ 0}.

The subsets D( f ), for f ∈ A, form a basis of open subsets of Spec(A). For
f , g ∈ A, the conditions (i) g ∈

√
( f ), (ii) V(g) ⊇ V( f ), and (iii) D(g) ⊆ D( f ),

are equivalent.

4.1.2. — Let A be a ring and let M be an A-module. Let us define a presheaf of
A-modules M̃pre on X.
Let U be an open subset of Spec(A) and let S(U) be the set of all f ∈ A such

that f (x) ≠ 0 for every x ∈ U. The set S(U) is a multiplicative subset of A. It
contains 1. Moreover, if f , g ∈ S(U) and x ∈ U, then ( f g)(x) = f (x)g(x) in the
residue field κ(x), hence ( f g)(x) ≠ 0. Let jU∶M→ S(U)−1M be the canonical
morphism of A-modules, given by m ↦ m/1.
Let U and V be open subsets of Spec(A) such that V ⊆ U. By definition, one

has S(U) ⊆ S(V). Let ρMUV∶ S(U)−1M → S(V)−1M be the unique morphism of
A-modules such that jV = ρMUV ○ jU.
Consequently, the modules M̃pre(U) = S(U)−1M and the morphisms ρMUV

define define a presheaf of A-modules on X.
Let u∶M → N be a morphism of A-modules. The morphisms S(U)−1M →

S(U)−1N deduced from u form a morphism of presheaves upre
∗ ∶ M̃pre → Ñpre.

One has (IdM)pre∗ = Id and (v ○ u)pre∗ = vpre∗ ○ upre
∗ .

4.1.3. — If B is an A-algebra, then B̃pre is even a presheaf of A-algebras. Indeed,
the A-modules of fractions S(U)−1B are A-algebras, and the morphisms ρBUV are
morphisms of A-algebras.
If u∶B → C is a morphism of A-algebras, then the associated morphism

upre
∗ ∶ B̃pre → C̃pre of presheaves of A-modules is a morphism of presheaves of

A-algebras.

Remark (4.1.4). — Let A be a ring and let M be an A-module. Let f ∈ A and
let U = D( f ). By assumption, an element g belongs to S(U) if and only if
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V(g) ⊆ V( f ), that is if and only if f ∈
√
(g). In particular, the multiplicative

subset S f = {1, f , f 2, . . . } is contained in S(U). Let us observe that the canonical
morphism φ from S−1f M to S(U)−1M is an isomorphism.
Letm ∈M and n ⩾ 0 be such that φ(m/ f n) = 0 in S(U)−1M. Then there exists

g ∈ S(U) such that gm = 0. Since f ∈
√
(g), there exists p ⩾ 0 and h ∈ A such

that f p = gh; then f pm = 0, hence m/ f n = 0 in S−1f M.
Conversely, let m ∈M and let g ∈ S(U). By the same argument, there exists

p ⩾ 0 and h ∈ A such that f p = gh. One has f , g , h ∈ S(U) and m/g = mh/gh =
mh/ f p in S(U)−1M. Consequently, m/g = φ(mh/ f p) belongs to the image of φ.

Definition (4.1.5). — Let A be a ring and letM be an A-module. One defines the
sheaf M̃ to be the sheaf of A-modules associated with this presheaf M̃pre.

If u∶M→ N is a morphism of A-modules, the morphism of sheaves M̃→ Ñ
associated with the morphism upre

∗ of presheaves is denoted u∗, or ũ.
If B is an A-algebra, then the sheaf B̃ is a sheaf of A-algebras. If u∶B→ C is a

morphism of A-algebras, then the associated morphism u∗ is a morphism of
sheaves of A-algebras.
If B is an A-algebra and M is a B-module, then M̃ is a B̃-module.

Lemma (4.1.6). — Let x ∈ X and let Sx be the multiplicative subset A px of A.
Let M be an A-module. The canonical morphism from M to M̃x induces an
isomorphism of Apx -modules from the stalk M̃x of the sheaf M̃ with the module of
fractionsMpx = S−1x M deduced fromM and the multiplicative subset Sx . IfM is an
A-algebra, then this isomorphism is an isomorphism of Apx -algebras.

Proof. — Since the canonical morphism from M̃pre,x to M̃x is an isomorphism,
it suffices to prove that the canonical morphism from M to M̃pre,x is itself an
isomorphism. By definition, M̃pre,x is the colimit limÐ→ S(U)−1M, where U ranges
over all open subsets of X which contain x. For every such U, one has S(U) ⊆
A px ; let φ∶ M̃pre,x → Mpx be the canonical morphism. It is surjective: for
f ∈ A px and m ∈ M, the element m/ f of Mpx is the image by φ of the
class of the element m/ f of S(D( f ))−1M. It is also injective: if, for an open
neighborhood U of x, f ∈ S(U), and m ∈M, one has φ([m/ f ]) = 0, there exists
g ∈ A px such that gm = 0; this implies that m/ f = 0 in S(D(g))−1M, hence
[m/ f ] = 0 in M̃pre,x .
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Remark (4.1.7). — Let A be a ring, let X = Spec(A) be its spectrum; let f ∈ A;
let M be an A-module. Recall (proposition 1.5.10) that the canonical morphism
of rings A → A f induces a homeomorphism from Spec(A f ) to the open sub-
set D( f ) of Spec(A). Under this homeomorphism, the sheaf M̃ f on Spec(A f )
identifies with the restriction M̃∣D( f ) to D( f ) of the sheaf M̃ on X.
Indeed, for every g ∈ A, one has D( f g) ⊆ D( f ), M̃pre(D( f g)) =M f g , while

M̃ f pre(D(g)) = (M f )g , so that both presheaves M̃pre∣D( f ) and M̃ f pre on D( f )
are canonically identified.

Theorem (4.1.8). — Let A be a ring, let X = Spec(A) be its spectrum; letM be
an A-module and let M̃ be the associated sheaf of OX-modules. For every open
subset U of X, let θU∶ S(U)−1M→ M̃(U) be the canonical morphism.
For every f ∈ A, the morphism θD( f ) is an isomorphism. In particular, the

canonical morphism fromM to M̃(X) is an isomorphism.

Proof. — Let f ∈ A and let U = D( f ).
We first show that θU is injective. Let m ∈ M and let g ∈ S(U) be such that

θU(m/g) = 0. In particular, for every x ∈ U, its germ θU(m/g)x at x vanishes,
hence m/g = 0 in Mpx . Let I be the set of elements a ∈ A such that am = 0; it
is an ideal of A. By assumption, for every x ∈ U, there exists a ∈ A px such
that am = 0, that is, V(I) ∩U = ∅. In other words, one has V(I) ⊆ V( f ), hence
f ∈
√
I. Consequently, there exists an integer n ⩾ 0 such that f n ∈ I. One has

f nm = 0, hence m/g = 0 in M f , and m/g = 0 in S(U)−1M since f ∈ S(U).
Let us now show that θX is surjective. Let µ ∈ M̃(X) and let us show that

there exists m ∈ M such that µ = θX(m). Let x ∈ X; by the construction of
the sheaf associated to a presheaf, there exists an open neighborhood Ux of x,
elements fx ∈ S(Ux) and mx ∈M such that µ∣Ux = θUx(mx/ fx).
Since the open sets of the form D(h) form a basis of open subsets of X, there

exists hx ∈ A such that D(hx) ⊆ Ux ∩D( fx) and x ∈ D(hx). Then hx /∈ px and
one has µ∣D(hx) = θD(hx)(mx/ fx). Moreover, since D(hx) ⊆ D( fx), there exists
gx ∈ A such that fx gx = hnx

x . Then mx/ fx = gxmx/hnx
x . We may then replace fx

and hx by hnx
x , and replace mx by gxmx ; this simplifies the notation in so that

Ux = D( fx) and µ∣Ux = θUx(mx/ fx).
Let x , y ∈ X. One has µ∣Ux∩Uy = θUx∩Uy(mx/ fx) = θUx∩Uy(my/ fy). Conse-

quently, themorphism θUx∩Uy maps the elementmx/ fx−my/ fy of S(Ux∩Uy)−1M
to 0. Since Ux ∩Uy = D( fx fy), the injectivity part implies that mx/ fx = my/ fy
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in S(Ux ∩ Uy)−1M; by the remark 4.1.4, one even has mx/ fx = my/ fy in the
module M fx fy . By the definition of modules of fractions, this means that there
exists an integer nxy ⩾ 0 such that ( fx fy)nx y fymx = ( fx fy)nx y fxmy.
Since x ∈ D( fx), the open sets D( fx) cover Spec(A), hence the intersection of

the sets V( fx) is empty. This implies that the family ( fx)x∈X generates the unit
ideal of A; as a consequence, there exist a finite subset Σ of X which generates
the unit ideal. Let n = supx ,y∈Σ(nxy); for every x , y ∈ Σ, one has f n+1x f ny my =
f nx f n+1y mx . Since the family ( f n+1x )x∈Σ generates the unit ideal, there exists a
family (hx)x∈Σ such that∑x∈Σ f n+1x hx = 1. Let then

m =∑
x∈Σ

hx f nx mx .

For every x ∈ Σ, one has

f n+1x m =∑
y∈Σ

f n+1x f ny hymy =∑
y∈Σ

f nx f n+1y hymx = f nx mx∑
y∈Σ

f n+1y hy = f nx mx .

Consequently, m/1 = mx/ fx in M fx and θUx(m/1) = θUx(mx/ fx) = θUx(µ) in
M̃(Ux). Since the open sets (Ux)x∈Σ cover X and M̃ is a sheaf, this shows that
µ = θX(m) and concludes the proof that the map θX is surjective.
It remains to show that the map θD( f ) is surjective for every element f ∈ A.

Given remark 4.1.7, this can be deduced from the preceding part by replacing A
by the ring of fractions A f and M with the module of fractions M f . One can
also redo explicitly the proof. In both cases, details are left to the reader.

Corollary (4.1.9). — Let A be a ring and let X = Spec(A). LetM be an A-module
and let N be a Ã-module. For every morphism φ∶M → N (X) of A-modules,
there exists a unique morphism φ̃∶ M̃→N of Ã-modules such that φ̃(X) = φ.

This corollary has two important consequences.
Firstly, it can be reformulated as saying that the pair of functors (M ↦

M̃,N ↦ N (X)) from the category ModA of A-modules to the cate-
goryMod Ã of Ã-modules on X is adjoint. In particular, the functor M ↦ M̃
respects all colimits, and the functor N ↦ N (X) respects all limits (exer-
cise 2.4.9).
Secondly, implied to Ã-modules of the form N = Ñ, it implies that the

functor given byF ↦F (Spec(A)) from the full subcategory of the category of
Ã-modules on X whose objects are of the form M̃, to the category of A-modules
is an equivalence of categories. Indeed, the functor M↦ M̃ is a quasi-inverse.
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Proof. — Let φ∶M → N (X) be a morphism of A-modules. For every open
subset U of X, let φ̃pre(U)∶ S(U)−1M→N (U) be the morphism of A-modules
given by φ̃pre(m/s) = (1/s)φ(m), where, for s ∈ S(U), 1/s is considered as an
element of Ã(U). The family (φ̃pre(U)) is a morphism of presheaves on X.
Let j∶ M̃pre → M̃ be the canonical morphism from the presheaf M̃pre to the
associated sheaf. There exists a unique morphism of sheaves φ̃∶ M̃ →N such
that φ̃(U)( j(U)(m/s)) = φ̃pre(U)(m/s) = (1/s)φ(m) for every m ∈ M, every
open subset U of X and every s ∈ S(U). This is a morphism of Ã-modules,
and one has φ̃(X) = φ. Conversely, let ψ∶ M̃ → N be any morphism of Ã-
modules such that ψ(X) = φ. For every open subset U of X, every m ∈M and
every s ∈ S(U), one necessarily has

ψ(U)( j(U)(m/s)) = (1/s) ⋅ ψ(U) ○ j(U)(m/1)
= (1/s) ⋅ φ(X)(m)∣U = φ̃(U)( j(U)(m/s)),

hence ψ ○ j = φ̃ ○ j. Consequently, ψ = φ̃, as claimed.

Corollary (4.1.10). — Let A be a ring. The assignmentM ↦ M̃ and φ ↦ φ̃ is a
functor from the category of A-module to the category of Ã-modules. This functor
commutes with all colimits, with all finite limits, and is fully faithful.

Proof. — We have already noted that this functor is fully faithful. Since it has a
right adjoint, it commutes with every colimit, finite or not (see exercise 2.4.9).
Let us now show that it commutes with every finite limit.
Let Q = (V, E) be a finite quiver and let M = (Mv) be a Q-diagram of A-

modules, let (M, (φv)) be its limit. Let (N , (ψv)) be a cone on the diagram M̃

of Ã-modules which is associated with M .
By definition, for every v, ψv ∶ Ñ → M̃v is a morphism of Ã-modules such

that ψt(e) ○ ψ̃e = φs(e) for every e ∈ E. Then (N (X), (ψv(X))) is a cone on the
diagram M of A-modules, hence there exists a unique morphism of A-modules
θ∶N (X)→M such that ψv(X) = φv ○ θ for every v ∈ V.
Let a ∈ A and let Sa be the multiplicative subset Sa = {1, a, a2, . . . } of A. Since

the functorM↦ S−1a Mcommutes with finite limits (it is exact, see example 2.3.15),
the cone (S−1a M, (S−1a φv)) is a limit of the diagram (S−1a Mv). Since the canonical
morphism fromS−1a Mv to M̃(D(a)) is an isomorphism, the cone (S−1a M, (S−1a φv))
is a limit of the diagram (M̃(D(a)). Since (N (D(a)), (ψv(D(a)))) is also
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a cone on this diagram, there exists a unique morphism of S−1a A-modules
θa∶N (D(a))→ S−1a M such that ψv(D(a)) = φv(D(a)) ○ θa for every v ∈ V.
Let now U be an open subset of X. There exists a unique morphism of OX(U)-

modules θ(U)∶N (U) → M̃(U) such that θ(U)(s)∣D(a) = θa(s∣D(a)) for ev-
ery a ∈ A such that D(a) ⊆ U. Moreover, the family (θ(U)) is a morphism
of OX-modules from N to M̃ such that ψv = φv ○ θ, and it is the unique such
morphism.

Example (4.1.11). — Here are two particularly important examples:
a) Let φ∶M → N be a morphism of A-modules, and let φ̃∶ M̃ → Ñ be the

associated morphism between the corresponding Ã-modules on Spec(A). Then
the Ã-modules associated with Ker(φ) and Coker(φ) are respectively a kernel
and a cokernel of φ̃.
b) Let (Mi) be a family of A-modules, and let M =⊕i∈IMi be its direct sum

(coproduct). Then M̃ is a direct sum of the family (M̃i) of Ã-modules.

4.2. Locally ringed spaces

Definition (4.2.1). — A ringed space is a topological space X endowed with a
sheaf of rings OX, which is called its structure sheaf.

When we talk of a ringed space, we often omit the sheaf of rings from the
notation.

Definition (4.2.2). — Let (X,OX) and (Y,OY) be ringed spaces. Amorphism
of ringed spaces from X to Y is a pair (φ, φ♯) consisting of a continuous map
φ∶X→ Y and morphism of sheaves of rings φ♯∶OY → φ∗OX.

Concretely, given a continuous map φ of topological space, the morphism φ♯
amounts to the datum, for every open subset U of Y, of a morphism of rings
φ♯(U)∶OY(U) → OX(φ−1(U)), subject to the following compatibility with re-
strictions: if U and V are open subsets of Y such that V ⊆ U, then φ♯(V)(s∣V) =
φ♯(U)(s)∣V for every s ∈ OY(U).
Instead of φ♯∶OY → φ∗OX, it is equivalent to give oneself the morphism

φ♭∶φ−1OY → OX deduced by the adjunction property of the pair of functors
(φ−1, φ∗) (theorem 3.3.11).
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4.2.3. — Let (φ, φ♯) be a morphism of ringed spaces from (X,OX) to (Y,OY).
Let x ∈ X and let y = φ(x). There is a unique morphism of rings φ♯x ∶OY,y → OX,x
such that φ♯x( fy) = φ♯(U)( f )x for every open neighborhood U of y and every
section f ∈ OY(U).

Definition (4.2.4). — A locally ringed space is a ringed space such that the stalks
of its structure sheaf are local rings.
Amorphism from a locally ringed space (X,OX) to a locally ringed space (Y,OY)

is a morphism (φ, φ♯) of ringed spaces such that for every x ∈ X, the associated
morphism φ♯x ∶OY,φ(x) → OX,x is a local morphism of local rings.

Recall from §1.1.7 that a morphism of local rings is said to be local if the image
of every non-invertible element is not invertible.
We keep the notation of the previous definition. Let (X,OX) be a locally ringed

space. For every point x ∈ X, the residue field of the local ring OX,x is usually
denoted by κ(x). The image in κ(x) of a germ f ∈ OX,x is denoted by f (x); for
every open neighborhood U of x and every section f ∈ OX(U), the image of the
germ fx in κ(x) is denoted by f (x).
Let (φ, φ♯) be a morphism of locally ringed spaces. Let x ∈ X. Since the mor-

phism φ♯x is local, it induces, by passing to the residue fields, a morphism of fields
from κ(φ(x)) to κ(x). If U is an open neighborhood of φ(x) and f ∈ OY(U),
then the element φ♯(U)( f )(x) of κ(x) is the image of the element f (φ(x))
of κ(φ(x)).

4.2.5. — Let φ∶X → Y and ψ∶Y → Z be morphisms of locally ringed spaces.
Their composition ψ ○ φ is defined as follows: the underlying continuous map is
the usual composition, and the morphism of sheaves (ψ ○φ)♯∶OZ → (ψ ○φ)∗OX
is given by ψ∗(φ♯) ○ ψ♯. For every x ∈ X, the morphism

(ψ ○ φ)♯x ∶OX,x → OZ,ψ(φ(x))

is the composition of φx ∶OX,x → OY,φ(x) and of ψφ(x)∶OY,φ(x) → OZ,ψ(φ(x)); it is
thus a morphism of local rings.
Locally ringed spaces form a category.

Example (4.2.6). — a) Let X be an open subset of Rn or, more generally, a
C∞-manifold. LetC∞X be the sheaf ofC∞-functions on X. For every point x ∈ X,
the ring C∞X,x is the ring of germs of C∞-functions in a neighborhood of x; this
is a local ring whose maximal idealmx is the ideal of germs of functions which
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vanish at x. In particular, the residue field κ(x) is equal to R, and for every open
neighborhood U of x, the ‘‘value’’ φ(x) ∈ κ(x) of a section φ ∈ C∞X (U) is the
actual value of φ at x.
Let X and Y be C∞-manifolds. The definition of a morphism f ∶X→ Y says

that f is a continuous map such that for every open subset V of Y and every C∞-
function φ on V, the composition φ ○ f is C∞ on f −1(V). Then the assignment
φ ↦ φ ○ f induces a morphism of sheaves f ♯∶C∞Y → f∗C∞X , so that the pair
( f , f ♯) is a morphism of locally ringed spaces.
Conversely, let ( f , f ♯)∶ (X,C∞X )→ (Y,C∞Y ) be a morphism of locally ringed

spaces. This first implies that f is continuous. Moreover, we have explained
that for every open subset V of Y and every function f ∈ C∞Y (V), one has
f ♯(V)(φ)(x) = φ( f (x)). Consequently, the morphism of sheaves f ♯ is given
by composition of functions.
In conclusion, morphisms of C∞-manifolds coincide with the morphisms of

the associated locally ringed spaces.
b) Let (X,OX) be a locally ringed space and let U be an open subset of X. The

pair (U,OX∣U) is a locally ringed space.
Let j∶U → X be the inclusion. For every open subset V of X, one has
( j∗(OX∣U))(V) = OX(U ∩ V); let j♯(V) be the restriction morphism. This
defines a morphism of sheaves j♯∶OX → j∗OX∣U. For every x ∈ U, the morphism
j♯x ∶OX,x → (OX∣U)x induced by j♯ is an isomorphism. Consequently, ( j, j♯) is a
morphism of locally ringed spaces.
Let moreover f ∶Y→ X be a morphism of locally ringed spaces. If f (Y) ⊆ U,

there exists a unique morphism of locally ringed spaces g∶Y → U such that
f = j ○ g.
c) Let A be a ring. Endowed with the sheaf of rings Ã, the topological

space Spec(A) is a locally ringed space. (Such locally ringed spaces are the
fundamental bricks of algebraic geometry, and are called affine schemes.) Recall
indeed from lemma 4.1.6 that the stalk of the sheaf Ã at a point x ∈ Spec(A)
identifies with the local ring Apx .
d) Let A be a ring. For every f ∈ A, the canonical homeomorphism of D( f )

to Spec(A f ) identifies the restriction to D( f ) of the structure sheaf Ã with the
structure sheaf Ã f of Spec(A f ). As a consequence, D( f ) is an affine scheme.
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Lemma (4.2.7). — Let X be locally ringed space, let OX be its structure sheaf. Let
U be an open subset of X, let f ∈ OX(U) and letD( f ) = {x ∈ U ; f (x) ≠ 0}. Then
D( f ) is the largest open subset of U the restriction to which f is invertible.

Proof. — Let V be an open subset of U such that f ∣V is invertible and let g ∈
OX(V) be such that f ∣Vg = 1. Then, for every x ∈ V, one has f (x)g(x) = 1,
hence x ∈ D( f ); consequently, V ⊆ D( f ).
Let x ∈ D( f ). Since f (x) ≠ 0, the germ fx of f at x is invertible, because it

does not belong to the maximal ideal of the local ring OX,x . Consequently, fx
is invertible, hence there exists an open neighborhood V of x contained in U
and an element g ∈ OX(V) such fx gx = 1. This implies that there exists an open
neighborhood W of x contained in V such that f ∣Wg∣W = 1: this shows that f ∣W
is invertible. In particular, W ⊆ D( f ), so that D( f ) is open in U.
For every x ∈ D( f ), let Wx be an open neighborhood of x contained in D( f )

and let gx ∈ OX(Wx) be an inverse of f ∣Wx . For every pair (x , y) of elements
of D( f ), the restrictions of gx and gy to Wx ∩Wy are both equal to the inverse
of f ∣Wx∩Wy . By the sheaf condition, there exists a unique element g ∈ OX(D( f ))
such that g∣Wx = gx for every x ∈ D( f ). One then has ( f g)∣Wx = f ∣Wx gx = 1
for every x, hence f ∣D( f )g = 1 since the union of the open subsets Wx is equal
to D( f ).

Theorem (4.2.8). — Let (X,OX) be a locally ringed space; letA be a ring. For every
morphism of rings u∶A→ OX(X), there exists a unique morphism φ = (φ, φ♯) of
locally ringed spaces from X to Spec(A) such that u = φ♯(Spec(A)).

Proof. — We first establish the uniqueness of such a morphism (φ, φ♯) by
analysing properties which follow from the condition φ♯(Spec(A)) = u.
For every point x ∈ X, let px be the kernel of the canonicalmorphism f ↦ f (x)

fromOX(X) to κ(x); it is a prime ideal ofOX(X), because κ(x) is a field, hence an
integral domain. For f ∈ A, one has f (φ(x)) = φ♯(Spec(A))( f )(x) = u( f )(x),
so that the conditions f ∈ pφ(x) and u( f ) ∈ px are equivalent. In other
words, one has the equality pφ(x) = u−1(px). This shows that the point φ(x)
of Spec(Spec(A)) is the prime ideal u−1(px) of A. This also shows that
φ−1(D( f )) = D(u( f )). Since u( f ) is invertible on D(u( f )), there ex-
ists a unique morphism of rings from u f ∶A f → OX(D(u( f ))) such that
u f (a/1) = u(a)∣D(u( f )) for every a ∈ A. Since OSpec(A)(D( f )) = A f , this also
implies the equality φ♯(D( f )) = u f . Since the open subsets of Spec(A) of the



4.2. LOCALLY RINGED SPACES 163

form D( f ) constitute a basis of open subsets, we conclude from this analysis
that there exists at most one morphism (φ, φ♯) of locally ringed spaces such
that φ♯(Spec(A)) = u.
Let us now show its existence.
For x ∈ X, define px as above. We first construct a map φ∶X → Spec(A) by

defining φ(x) ∈ Spec(A) as the prime ideal u−1(px) of A.
By construction, a point x ∈ X belongs to φ−1(D( f )) if and only if

f /∈ u−1(px), that is, if and only if u( f )(x) ≠ 0; in other words, we have
φ−1(D( f )) = D(u( f )); it is thus open in X. Since the open subsets of Spec(A)
of the form D( f ) constitute a basis of open subsets of Spec(A), this implies that
the map φ is continuous.
Let us now show that there exists a morphism of sheaves φ♯∶OSpec(A) → φ∗OX

such that φ♯(Spec(A)) = u. For every f ∈ A, the restriction to D(u( f ))
of the element u( f ) ∈ OX(X) is invertible and we define φ♯(D( f )) to be
the unique morphism of rings from OSpec(A)(D( f )) = A f which maps a/1
to u( f )∣D(u( f )). If f and g are elements of A such that D(g) ⊆ D( f ), one has
φ♯(D( f ))(a)∣D(g) = φ♯(D(g))(a∣D(g)), for every a ∈ A f , because both sides
coincide on the image of A in A f . Let U be an open subset of Spec(A); let
( fi)i∈I be a family of elements of A such that U = ⋃i∈ID( fi); one then has
φ−1(U) = ⋃i∈ID(u( fi)). Let a ∈ OSpec(A)(U); for i ∈ I, let ai = a∣D( f i). For
i , j ∈ I, one has D( fi)∩D( f j) = D( fi f j), andD(u( fi))∩D(u( f j)) = D(u( fi f j));
moreover, φ♯(D( fi))(ai) ∈ OX(D(u( fi)) and φ♯(D( f j))(a j) ∈ OX(D(u( f j)))
coincide with φ♯(D( fi f j))(a∣D( f i f j)) on D(u( fi f j)). Consequently, there exists
a unique element φ♯(U)(a) ∈ OX(φ−1(U)) whose restriction to D(u( fi)) is
equal to φ♯(D( fi))(ai). The map φ♯(U) is a morphism of rings. The family
(φ♯(U)) of morphisms is a morphism of rings of sheaves fromOSpec(A) to φ∗OX.
By construction, one has φ♯(Spec(A)) = u. This concludes the proof.

Lemma (4.2.9) (Glueing locally ringed spaces). — Let (Xi)i∈I be a family of
locally ringed spaces. For every pair (i , j) of elements of I, let Xi j be an open subset
of Xi and let φi j∶Xi j → X ji be an isomorphism of locally ringed space. Assume that
the following properties hold:
(i) For every i, one has Xii = Xi and φii = Id;
(ii) For every i and j, one has φi j = φ−1ji ;
(iii) For every i, j, k, one has φi j(Xi j ∩ Xik) = X ji ∩ X jk and the restriction

of φik to the open subset Xi j ∩Xik of Xi coincides with the restriction of φ jk ○ φi j.
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Then there exists a locally ringed space X, a family (Ui)i∈I of open subsets of X,
and a family (φi)i∈I such that for every i , j ∈ I, the following properties hold:
(i) The morphism φi is an isomorphism of locally ringed space from Ui to Xi;
(ii) One has Xi j = φi(Ui ∩U j);
(iii) The morphisms φi j ○ φi and φ j coincide on Ui ∩U j.

Proof. — Let us first define the topological space X∗ to be the union of the
family (Xi)i∈I: a point of X∗ is a pair (i , x) such that x ∈ Xi. One then defines
a relation on X∗ by setting (i , x) ∼ ( j, y) if x ∈ Xi j and y = φi j(x). This is an
equivalence relation. Let X be the quotient topological space X∗/ ∼: this is the set
of equivalence classes of points of X∗ endowed with the quotient topology, for
which a subset Ω of X is open if and only if its preimage in X∗ by the canonical
map π∶X∗ → X is itself open. The map π is continuous.
Let i ∈ I and let U be an open subset of Xi ; one has

π−1(π({i} ×U)) =⋃
j∈I
{ j} × φi j(Xi j ∩U),

so that π−1(π(U)) is open in X∗. By definition of the quotient topology, π(U) is
open in X. Since every open subset of X∗ is a union of open subsets of the form
{i} ×Ui , where Ui is an open subset of Xi , this shows that π is an open map.
For every i ∈ I, let Ui = π({i} ×Xi); it is an open subset of X and the family
(Ui)i∈I is an open covering of X. Moreover, the map π induces a continuous and
open bijection πi from Xi to Ui ; as a consequence, πi is a homeomorphism.
For i ∈ I, let OUi be the sheaf of rings πi ,∗OXi on Ui; equivalently, one has

OXi = π−1i OUi . For i , j ∈ I, the isomorphism φi j of locally ringed spaces induces
an isomorphism of sheaves of rings

θ i j∶OUi ∣Ui∩U j = (πi ,∗OXi)∣Ui∩U j = (πi ∣Xi j)∗(OXi ∣Xi j)
φ♯i jÐ→ φi j(π j∣X ji)∗(OX j ∣X ji) = OU j ∣Ui∩U j .

Assumptions (i), (ii), (iii) imply that these isomorphisms satisfy the relations of
lemma 3.1.11. Consequently, there exists a sheaf of rings OX on X and isomor-
phisms θ i ∶OX∣Ui ≃ OUi such that θ i j ○ θ i ∣Ui∩U j = θ j∣Ui∩U j .
Let x ∈ X, let i ∈ I be such that x ∈ Ui; let y ∈ Xi be such that πi(y) = x. The

isomorphism θ i induces an isomorphism of the stalk OX,x with the stalk OUi ,x
which is itself isomorphic to OXi ,y; in particular, it is a local ring. This shows
that (X,OX) is a locally ringed space.
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Remark (4.2.10). — The locally ringed space X defined by the lemma is called
the locally ringed space defined by glueing the family (Xi)i∈I along the open sub-
spaces Xi j by means of the isomorphisms φi j. It satisfies the following universal
property: For every locally ringed space Y, every family of morphisms (ψi)i∈I,
whereψi ∶Xi → Y is amorphism of locally ringed spaces such thatψ j○φi j = ψi ∣Xi j ,
there exists a unique morphism ψ∶X→ Y such that ψ ○ φi = ψi .

4.3. Schemes

Definition (4.3.1). — Let (X,OX) be a locally ringed space.
a) One says that X is an affine scheme if it is isomorphic to (Spec(A), Ã).
b) One says that X is a scheme if every point of X has an open neighborhood U

such that the locally ringed space (U,OX∣U) is an affine scheme.
c) Amorphism of schemes is a morphism of the underlying locally ringed spaces.

Example (4.3.2). — a) Every affine scheme is a scheme. If a schemeX is affine,
then it is isomorphic to Spec(OX(X)).
b) The locally ringed space induced on every open subset of an affine scheme

is a scheme. Indeed, if X = Spec(A) and U is an open subset of X, then every
point of x has a neighborhood in U of the form D( f ), for some f ∈ A. By
remark 4.1.7, the locally ringed spaced induced on D( f ) is an affine scheme,
isomorphic to Spec(A f ).
In particular, the set of open subsets U of X such that (U,OX∣U) is an affine

scheme is a basis of the topology of X.
c) The coproduct (disjoint union) of a a family of schemes is a scheme.
d) Let (X,OX) be a scheme and let U be an open subset of X. Then (U,OX∣U)

is a scheme; one says that it is an open subscheme of X. If, moreover, U is affine,
then one says that it is an affine open subscheme of X.

Example (4.3.3). — Let X and Y be schemes; assume that Y is an affine scheme,
say Y = Spec(A). By theorem 4.2.8, for every morphism of rings u∶A→ OX(X),
there exists a unique morphism of schemes f ∶X→ Y such that f ♯(Y) = u.
In particular, there exists a uniquemorphism of schemes f ∶X→ Spec(OX(X))

such that f ♯ = Id. Moreover, X is an affine scheme if and only if f is an isomor-
phism.
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Exercise (4.3.4). — Let k be a field, let A = k[x , y] and let X = Spec(A). Let
U = X V(x , y). Then, (U,OX∣U) is a locally ringed space which is not an affine
scheme.

Definition (4.3.5). — Let S be a scheme. An S-scheme is a schemeX equipped with
a morphism of schemes f ∶X→ S. If (X, f ) and (Y, g) are S-schemes, a morphism
of S-schemes φ∶X→ Y is a morphism of schemes such that g ○ φ = f .

If (X, f ) is an S-scheme, the morphism f is called the structural morphism
of X. In practice, the morphism f is omitted from the notation; for example,
one thus may write: ‘‘Let X be an S-scheme; let f be its structural morphism.’’
Assume that k is a ring and that S = Spec(k). An S-scheme is also called

a k-scheme, and a morphism of S-schemes is also called a k-morphism. By
definition, a k-scheme is just a scheme X equipped with a morphism of rings
from k to OX(X), so that the structure sheaf of X is a sheaf in k-algebras. In
particular, an affine k-scheme is the spectrum of a k-algebra. Moreover, a
morphism of schemes φ∶X→ Y is a morphism of k-schemes if the morphism of
sheaves φ♯∶OY → φ∗OX is a morphism of sheaves in k-algebras.

Example (4.3.6). — The category of locally ringed spaces admits coproducts
(disjoint unions), and the coproduct of any family of schemes is a scheme.
Let us moreover remark that the coproduct of a finite family of affine schemes

is affine. So let (Ai)i∈I be a finite family of rings; for every i, let Xi = Spec(Ai).
Let A = ∏i∈IAi and let X = Spec(A); for every i, the projection of index i,
pi ∶A→ Ai , induces a morphism ji from Xi to X.
For every i, let εi be the element of A all of whose components are 0, except for

the component of index i which is equal to 1. Let m ∈ I. One has j−1m(D(εm)) =
D(pm(εm)) = D(1) = Xm. Moreover, the morphism pm extends to a surjective
morphism from Aεm to Am; this morphism is in fact an isomorphism, so that jm
induces an isomorphism from Xm to D(εm).
Finally, εmεn = 0 for every pair (m, n) of distinct elements of I, so that D(εm)∩

D(εn) = ∅.
This proves that the affine scheme X = Spec(∏i∈IAi) is the coproduct of the

(finite) family (Spec(Ai)) in the category of locally ringed spaces.

Proposition (4.3.7) (Glueing schemes). — Let (Xi)i∈I be a family of schemes. For
every i ∈ I, let Xi j be an open subschemes of Xi ; for every pair (i , j) of elements of I,
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let φi j∶Xi j → X ji be an isomorphism of schemes. Assume that these isomorphisms
satisfy the conditions of lemma 4.2.9. Then the locally ringed space X obtained by
glueing the schemesXi along the open subschemesXi j bymeans of the isomorphisms
φi j is a scheme.

Proof. — Indeed, X is the union of open subsets which are isomorphic, as locally
ringed spaces, to the schemes Xi . Consequently, every point of X has an open
neighborhood which is an affine scheme, hence X is a scheme.

Example (4.3.8) (Affine spaces). — Let k be a ring. The affine space of dimen-
sion n over k is defined by An

k = Spec(k[T1, . . . , Tn]). Since k[T1, . . . , Tn] is a
k-algebra, this is k-scheme.
For every k-scheme X, one has Homk(X,An

k) = OX(X)n. In particular, for
every k-algebra A, one has Homk(Spec(A),An

k) = An.

Example (4.3.9) (Projective spaces). — Let k be a ring. The projective space
of dimension n over k is defined by glueing n + 1 affine schemes U0, . . . , Un
isomorphic to An

k . Precisely, let U = An+1
k = Spec(k[T0, . . . , Tn]) and, for ev-

ery i ∈ {0, . . . , n}, let Ui = Spec(k[T0, . . . , Tn]/(Ti − 1)) = V(Ti − 1).
For every pair (i , j), let Ui j be the open subscheme D(T j) of Ui ; it is affine, iso-

morphic to Spec(k[T0, . . . , Tn]/(Ti−1)[1/T j]). There exists a uniquemorphism
of schemes φi j∶Ui j → U ji such that

φ♯i j∶ k[T0, . . . , Tn]/(T j − 1)[1/Ti]→ k[T0, . . . , Tn]/(Ti − 1)[1/T j]
maps Tm to TiTm/T j for every m. Indeed, the morphism from k[T0, . . . , Tn]
to k[T0, . . . , Tn]/(Ti − 1)[1/T j]which maps Tm to TiTm/T j for everymmaps T j
to Ti = 1, hence it passes to the quotient by (T j − 1), and it maps Ti to 1/T j which
is invertible, hence it extends to k[T0, . . . , Tn]/(T j − 1)[1/Ti].
One can check that the glueing conditions of proposition 4.3.7 are satisfied.

The scheme obtained is called the projective space of dimension n over k; it is
denoted byPn

k . Since the schemesUi are k-schemes, and are glued viamorphisms
of k-schemes, this is a k-scheme.
We shall prove later that Pn

k is not an affine scheme when n ⩾ 1.

Example (4.3.10). — Let X be a scheme. Let x be a point of X and let κ(x) be
its residue field. Let us define a canonical morphism φ from Spec(κ(x)) to X.

The space Spec(κ(x)) has exactly one point, and the underlying continuous
map of topological spaces is just the one with image x. Let us now describe
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the morphism φ♯∶OX → φ∗OSpec(κ(x)). For every open subset U of X which
contains x, one has φ∗(OSpec(κ(x)))(U) = κ(x), and φ♯(U) is the canonical
‘‘evaluation morphism’’ OX(U) → κ(x). On the other hand, if U is an open
subset of X such that x /∈ U, then φ∗(OSpec(κ(x)))(U) = 0, and φ♯(U) is the zero
morphism.
Let us give an alternate description. The morphism φ factors through every

open subscheme of X which contains x. Let thus U be an affine open subscheme
of X such that x ∈ U and let A be a ring such that U = Spec(A). The point x
corresponds to a prime ideal px of A, and the morphism φ∶ Spec(κ(x)) →
Spec(A) is nothing but the morphism deduced from the ring morphism A→
A/px → κ(x).

4.4. Some properties of schemes

Definition (4.4.1). — One says that a scheme X is reduced if for every x ∈ X,
the local ring OX,x is reduced. One says that it is integral if it is irreducible and
reduced.

Recall that a ring is said to be reduced if no-nonzero element is nilpotent.
Since the fraction rings of a reduced ring are reduced, the spectrum of a ring A
is a reduced ring if and only if the affine scheme Spec(A) is reduced. Moreover,
the affine scheme Spec(A) is integral if and only if the ideal (0) is its (necessarily
unique) minimal prime ideal, that is, if and only if A is an integral domain.
An open subscheme of a reduced scheme is reduced.
Since a non-empty open subset of an irreducible topological space is irre-

ducible (prop. 1.10.3), a non-empty open subscheme of an integral scheme is
integral.

Proposition (4.4.2). — Let X be a scheme.
a) Let f ∈ OX(X) be such that V( f ) = X. If X is reduced, then f = 0.
b) If X is reduced, then the ring OX(U) is reduced for every open subscheme U

of X.
c) Conversely, if every point of X has an affine open neighborhood U such that

OX(U) is reduced, then X is reduced.

Proof. — a) Let U = Spec(A) be an affine open subscheme of X and let
a = f ∣U. One has V(a) = Spec(A), hence a is nilpotent in A. This implies that



4.4. SOME PROPERTIES OF SCHEMES 169

fx is nilpotent in OX,x for every x ∈ U, hence fx = 0. Consequently, the germ
of f at every point of X vanishes, hence f = 0.
b) Let us assume that X is reduced and let us prove that OX(U) is reduced for

every open subset U of X. Let f ∈ OX(U) and let n be a positive integer such
that f n = 0. One then has V( f ) = V( f n) = X, hence f = 0 by a).
c) Let U be an affine open subscheme of X and let A = OX(U). Under the

canonical isomorphism from U with Spec(A), a point x ∈ U corresponds to a
prime ideal p of A, and the local ring OX,x corresponds to the ring of fractions
Ap. Let f ∈ Ap be a nilpotent element; let a ∈ A and s ∈ A p be such that
f = a/s and let n ∈ N be such that f n = 0. Then an/sn = 0, hence an/1 = 0 in Ap,
so that there exists t ∈ A p such that tan = 0; one then has (ta)n = 0. If A is
reduced, then ta = 0, hence a/s = 0; this proves that Ap is reduced.

Proposition (4.4.3). — Let X be a non-empty scheme. The following conditions
are equivalent:
(i) The scheme X is integral;
(ii) For every non-empty open subset U of X, the ring OX(U) is an integral

domain;
(iii) For every non-empty affine open subscheme U of X, the ring OX(U) is an

integral domain.
(iv) The scheme X is connected, and every point of X has an affine open neigh-

borhood U such that OX(U) is an integral domain.

Proof. — (i)⇒(ii). Let us assume that X is an integral scheme and let us prove
that the ringOX(U) is an integral domain for every non-empty open subset of X;
we may assume that U = X. Since 1 is invertible in OX(X), one has D(1) = X
(see lemma 4.2.7), hence 1 ≠ 0; this shows that OX(X) ≠ 0. Let then f and g be
elements of OX(X) such that f g = 0. Then X = V( f g) = V( f ) ∪V(g). Since X
is irreducible, this implies that X = V( f ) or X = V(g). Since X is reduced, one
has f = 0 or g = 0.
(ii)⇒(iii) is obvious.
(iii)⇒(iv). Let us assume that OX(U) is an integral domain for every non-

empty affine open subset U of X, and let us prove that X is irreducible; this will
imply that X is connected and non-empty. First of all, it is non-empty: indeed,
the empty scheme is, and its ring of functions, being equal to 0, is not an integral
domain. By contradiction, let us consider two distinct irreducible components Y
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and Z of X; by definition of an irreducible component, one has Y ∩ Z ≠ Y and
Y ∩ Z ≠ Z, for these equalities mean that one of Y or Z is contained in the other.
Let then y ∈ Y and z ∈ Z be points such that y /∈ Z and z /∈ Y. Let U be an affine
open neighborhood of y which is contained in Y (Y∩Z) and let V be an affine
open neighborhood of z which is contained in Z (Y ∩ Z). Then U and V are
disjoint open subsets of X and U ∪V is isomorphic to Spec(OX(U) ×OX(V))
(see example 4.3.6), hence is affine. Since the ring OX(U) × OX(V) is not an
integral domain (one has (1, 0) ⋅ (0, 1) = (0, 0) = 0), we obtain a contradiction.
This proves that X is irreducible.
(iv)⇒(i). The conditions imply that X is reduced, so that we need to prove

that it is irreducible. It is non-empty by hypothesis.
To prove that it irreducible, we prove that every non-empty open subset U

of X is dense. Let x ∈ U and let V be an affine open neighborhood of x such that
OX(V) is an integral domain. Then V is irreducible, hence its open subset U∩V
is dense. Since U ∩V is a closed subset of V which contains U ∩V, we deduce
that V ⊆ U. We have proved that U is open in X. Since U is non-empty and X is
connected, this implies that U = X, hence U is dense in X. Consequently, X is
irreducible.

Example (4.4.4). — Let k be an integral domain.
a) The affine space An

k is the spectrum of the integral domain k[T1, . . . , Tn],
hence it is an integral scheme.
b) The projective space Pn

k is an integral scheme.
Indeed, by its very construction, Pn

k is the union of (n + 1) open affine sub-
schemesU0, . . . , Un, and each of them is isomorphic to the affine spaceAn

k , hence
is integral. Moreover, for every pair (i , j) of integers such that 0 ⩽ i < j ⩽ n,
Ui ∩U j is isomorphic to Spec(k[T1, . . . , Tn , 1/Tn]), hence is non-empty. This
implies that Pn

k is connected. It thus follows from the previous proposition that
Pn
k is an integral scheme.

Proposition (4.4.5). — Let X be a scheme. For every closed irreducible subset Z
of X, there exists a unique point z ∈ X such that Z = {z}.

This point is called the generic point of Z.

Proof. — Let x be a point of Z and let U be an affine open subscheme of X such
that x ∈ U. Let A be a ring such that U = Spec(A). By proposition 1.10.3, Z ∩U
is an irreducible closed subset of U, and one has Z = Z ∩U. It then follows from
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proposition 1.10.2 that there exists a prime ideal p of A such that Z ∩U = V(p).
Let z be the point of Z corresponding to the prime ideal p ∈ Spec(A) = U. One
has V(p) = {p} in Spec(A), so that {z} contains Z ∩U; since it is closed in X, it
also contains Z ∩U = Z. Conversely, z ∈ Z and Z is closed, hence {z} ⊆ Z.
Conversely, let z′ be a point of Z such that {z′} = Z. Since X U is a closed

subset of X which does not contain Z, it does not contain z′, hence z′ ∈ U.
Consequently, z′ corresponds to a prime ideal p′ of A, and

Z ∩U = {z′} ∩U = V(p′) = V(p)

in Spec(A). This implies that p′ = p, hence z′ = z.

Proposition (4.4.6). — An affine scheme is quasi-compact. More generally, a
scheme is quasi-compact if and only if it is the union of finitely many affine open
subschemes.

Recall that a topological space X is said to be quasi-compact if every open cover
of X admits a finite sub-cover, namely if for every family (Ui)i∈I of open subsets
of X such that X = ⋃i∈IUi , there exists a finite subset J of I such that X = ⋃i∈JUi .
This is the French terminology, where ‘‘compact’’ means ‘‘quasi-compact and
Hausdorff’’, hence ‘‘compact’’ in the American terminology for which compact
spaces are called ‘‘compact Hausdorff’’.
A subset of a topological space is said to be quasi-compact if it is so with the

induced topology. It follows readily from the definition that a finite union of
quasi-compact subsets of a topological space is quasi-compact.

Proof. — LetA be a ring and let X = Spec(A). Let (Ui)i∈I be a family of open sub-
sets of X such that X = ⋃i∈IUi . For every i ∈ I, let ( fi , j)Ji be a family of elements
of A such that Ui = ⋃ j∈Ji D( fi , j). Let J be the union of the family (Ji); an element
of J is just a pair (i , j) where i ∈ I and j ∈ Ji. One thus has X = ⋃(i , j)∈JD( fi , j),
hence ∅ = ⋂(i , j)∈JV( fi , j). Consequently, the ideal of A generated by the fi , j con-
tains 1, and there exists a finite subset J0 of J and a family (ai , j)(i , j)∈J0 of elements
of A such that 1 = ∑(i , j)∈J0 ai , j fi , j. This implies Spec(A) = ⋃(i , j)∈J0 D( fi , j). If I0
is the image of J0 by the projection (i , j)↦ i, one then has Spec(A) = ⋃i∈I0 Ui .
This shows that affine schemes are quasi-compact.
Conversely, let X be a scheme and let (Ui)i∈I be a covering of X by open affine

subschemes. If X is quasi-compact, there exists a finite subfamily of (Ui) which
covers X; if I is finite, then X is quasi-compact since Ui is quasi-compact for
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every i, and every finite union of quasi-compact subsets of a topological space
is quasi-compact.

Proposition (4.4.7). — Any non-empty quasi-compact scheme possesses a closed
point.

Proof. — Let X be a non-empty quasi-compact scheme. It can be written as a
finite union of affine open subschemes, say n, and we argue by induction on n.
We may write X = U ∪V, where U is a non-empty affine scheme and V is a

union of strictly less than n open subschemes.
Consequently, there exists a ring A such that U = Spec(A). Since U ≠ ∅, the

ring A is nonzero, hence admits a maximal ideal which, in turn, corresponds
to a closed point x of U. Let Z be the closure of {x} in X. If Z = {x}, then x is
a closed point of X. Let us assume that Z ≠ {x}. Since x is a closed point of U,
one has Z ∩U = {x} and Z {x} is a non-empty closed subset of Z which is
contained in V. By induction, there exists a point y ∈ Z {x} which is closed
in Z. In particular, y is a closed point of X. Otherwise, by induction, we may
write X = U ∪V,

Lemma (4.4.8). — Let f ∶X→ S be a morphism of schemes. The following proper-
ties are equivalent:
(i) For every quasi-compact open subset U of S, f −1(U) is quasi-compact;
(ii) For every affine open subset U of S, f −1(U) is quasi-compact;
(iii) Every point of S has an affine open neighborhood U such that f −1(U) is

quasi-compact.

If these properties hold, one says that the morphism f is quasi-compact.
Observe that a morphism of affine schemes is quasi-compact. Let indeed

φ∶A → B be a morphism of rings. For every a ∈ A, the equality aφ−1(D(a)) =
D(φ(a)) proves that aφ−1(D(a)) is affine. Since every quasi-compact open sub-
set U of Spec(A) is the union of a finite family of open subsets of the form D(a),
this implies that aφ−1(U) is quasi-compact.
Moreover, if a morphism f ∶Y → X is quasi-compact, then for every open

subset U of X, the induced morphism fU∶ f −1(U)→ U is quasi-compact as well.

Proof. — The implication (i)⇒(ii) follows from the fact that affine schemes are
quasi-compact, and the implication (ii)⇒(iii) holds true because every point
of S has an affine open neighborhood.
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Let us now assume that (iii) holds true.
Let U be an affine open subset of S such that f −1(U) is quasi-compact. Let A be

a ring such that U = Spec(A). Since f −1(U) is quasi-compact, it can be written as
a finite union of affine open subsets V1, . . . , Vn of f −1(U). For every i, let Bi be a
ring such thatVi = Spec(Bi); themorphism f ∣Vi corresponds to a ringmorphism
ui ∶A→ Bi . For every a ∈ A, one has ( f ∣Vi)−1(D(a)) = D(ui(a)) = Spec(Au i(a)),
so that ( f ∣Vi)−1(D(a)) is affine; consequently, f −1(D(a)) = ⋃n

i=1( f ∣Vi)−1(D(a))
is quasi-compact.
Let nowW be a quasi-compact open subset of S. Let s ∈ S; let U = Spec(A) be

an affine open neighborhood of s such that f −1(U) is quasi-compact and let Ws
be an open subset of U of the form D(a), for a ∈ A, such that Ws ⊆ U ∩W. By
what precedes, f −1(Ws) is quasi-compact. Since W is the union of the family
(Ws)s∈W of open sets and is quasi-compact, there exists a finite subset Σ of S
such that W = ⋃s∈ΣWs. Then f −1(W) = ⋃s∈Σ f −1(Ws) is quasi-compact, as was
to be shown.

Definition (4.4.9). — Let f ∶X → S be a morphism of schemes. One says that
f is quasi-separated if for every affine open subscheme U of S and every pair
(V,V′) of affine open subsets of X contained in f −1(U), the intersection V ∩V′ is
quasi-compact.
One says that a scheme X is quasi-separated if the canonical morphism from X

to Spec(Z) is quasi-separated.

In other words, a scheme X is quasi-separated if and only if the intersection of
any two quasi-compact open subsets of X is quasi-compact.

Definition (4.4.10). — One says that a scheme is locally noetherian if every point
has a neighborhood isomorphic to the spectrum of a noetherian ring. One says
that it is noetherian if it is locally noetherian and quasi-compact.

Proposition (4.4.11). — a) The underlying topological space of a noetherian
scheme is noetherian.
b) Every open subscheme of a locally noetherian scheme is locally noetherian.
c) Every open subscheme of a noetherian scheme is noetherian.
d) Let X be an affine scheme. If X is noetherian, then OX(X) is a noetherian

ring.
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Proof. — a) If X is a noetherian scheme, it is the union of finitely many
open subschemes which are spectra of noetherian rings. Each of them being a
noetherian topological space, X is a noetherian topological space.
b) Let X be a locally noetherian scheme and let U be an open subscheme of X.

Let x ∈ U and let W = Spec(A) be an affine open neighborhood of x, where A is
a noetherian ring. Let a ∈ A be such that x ∈ D(a) and D(a) ⊆ U ∩W. Then
D(a) ≃ Spec(Aa) is an affine open neighborhood of x contained in U; moreover,
the ring Aa is generated by 1/a over A, hence is a noetherian ring. This shows
that U is locally noetherian.
c) With the same notation, U is both quasi-compact (because it is a noetherian

topological space) and locally noetherian, hence is noetherian.
d) Let A be a ring, let X = Spec(A). Let (In) be an increasing sequence of

ideals of A. Every point x ∈ X has an affine open neighborhood Ux in X such
that O(Ux) is a noetherian ring. Let then ax ∈ A be such that x ∈ DX(ax) ⊆ Ux ;
one thus has DX(ax) = DUx(ax), hence O(DX(ax)) = O(Ux)ax = Aax . Since
O(Ux)ax is generated by 1/ax over O(Ux), it is a noetherian ring. Consequently,
Aax is a noetherian ring. Since X is quasi-compact, there exists a finite family
(ai) of elements of A such that X = ⋃i D(ai) and Aa i is a noetherian ring for
every i.
Let us now show that A is noetherian. Let (In) be a strictly increasing sequence

of ideals of A, and let I be its union. For every i, there exists an integer ni such
that In = I for n ⩾ ni . Let n ⩾ sup(ni) and let us show that In = I. Let thus u ∈ I
and let J be the set of elements v ∈ A such that uv ⊆ In; this is an ideal of A.
Moreover, for every i, one has v/1 ∈ In ⋅ Aak , hence there exists an integer ki
such that ak ii ∈ J. Let k = sup(ki). Since X = ⋃i D(ai), the ideal of A generated
by the family (ai) contains 1, as does the ideal generated by the family (aki ).
Consequently, 1 ∈ J and u ∈ In.

4.4.12. — Let X be a scheme and let Z be a subset of X; let x ∈ Z. We introduced
in definition 1.11.2 the dimension of Z and its dimension at x, respectively de-
noted by dim(Z) and dimx(Z), as well as its codimension, denoted by codim(Z).
Recall that dim(Z) is the supremum of the lengths of chains of closed irreducible
subsets of Z, while dimx(Z) is the supremum of the lengths of chains of closed
irreducible subsets of Z containing x. On the other hand, if Z is a closed irre-
ducible subset of X, then codim(Z) is the supremum of the lengths of chains
of closed irreducible subsets of X containing Z. in particular, if x is the generic
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point of Z, then codim(Z) = dimx(X). In general, one defines codim(Z) as the
infimum of the codimensions of the closed irreducible subsets of X contained
in Z.
Recall also the following properties, for an arbitrary closed subset Z of X:
a) The dimension of Z is the supremum of the dimensions of its irreducible

components;
b) Each irreducible component of X has codimension 0 in X;
c) For every closed irreducible subset Z of X, one has codim(Z) + dim(Z) ⩽

dim(X);
d) If Y and Z are irreducible closed subsets of X such that Y ⊆ Z, then

dim(Y) ⩽ dim(Z) and codim(Z) ⩽ codim(Y).
e) If X = Spec(A) is affine and Z = V(p), then codim(V(p)) = dim(Ap).
f) For every open subset U of X such that Z ∩U ≠ ∅, one has codim(Z) =

codimU(Z ∩U) and dimx(Z) = dimx(Z ∩U) for every x ∈ Z ∩U. In particular,
for every point x ∈ U, one has dimx(U) = dimx(X). This follows from the fact
that the map Z ↦ Z ∩U induces a bijection from the set of closed irreducible
subsets of X which meet U to the set of closed irreducible subsets of U.

Example (4.4.13). — Let k be a field and let X be an integral k-scheme of finite
type. By this, we mean that X is irreducible and that every point of X has an
affine open neighborhood U such that OX(U) is an integral domain which is
finitely generated as a k-algebra.
Let x be the generic point of X. Let U be an affine open neighborhood of x such

that A = OX(U) is a finitely generated k-algebra and an integral domain. The
point x of X corresponds to the prime ideal (0) of A, hence the local ring OX,x ,
isomorphic to the ring of fractions A(0) = Frac(A), is a finitely generated field
extension of k. It is called the field of rational functions on X and is denoted
by R(X). By theorem 1.11.6, one has dim(U) = tr. degk(R(X)). It then follows
from the definition of the dimension that dim(X) = tr. degk(R(X)).
Let Z be an irreducible closed subset of X, let z be its generic point and let

U = Spec(A) be an affine open neighborhood as above such that z ∈ U. Let p be
the prime ideal of A corresponding to Z. One thus has

dimz(X) = dimz(U) = codim(Z) = dim(Ap)

and
dim(Z) = dim(Z ∩U) = dim(A/p).
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It then follows from theorem 1.13.6 that

dim(Z) + codim(Z) = dim(X).

Moreover, all maximal chains of closed irreducible subsets of X have
lengths dim(X). One says that X is catenary.

Example (4.4.14). — Let K be a field. It follows from corollary 1.11.7 that for
every integer n ⩾ 0, one has dim(An

K) = n. By the preceding example, one also
has dim(Pn

K) = n.

4.5. Products of schemes

4.5.1. — LetC be a category. Let S be an object ofC , and let (Xi)i∈I be objects
ofC endowed with morphisms fi ∶Xi → S inC . Let Q be the quiver whose set
of vertices is the disjoint union of I and a point s, and with exactly one arrow
from every point i ∈ I to s, and none other. The morphisms fi give rise to a
Q-diagram inC . By definition, a limit of this diagram is called a fiber product
of the family (Xi , fi). Explicitly, a fiber product is an object P ofC , equipped
with morphisms pi ∶P → Xi for every i, and p∶P → S, such that p = fi ○ pi for
every i, and such that for every object T ofC , and every family (gi)i∈I, where
gi ∶T→ Xi is a morphism inC , every morphism g∶T→ S such that fi ○ gi = g
for every i ∈ I, there exists a unique morphism ψ∶T→ P such that gi = pi ○ψ for
every i and g = p ○ ψ.
When I has two elements, the above diagram takes the form

Y

X S

←→ g

←→f

and a fiber product is usually denoted X ×S Y. One also says that the (commuta-
tive) square

X ×S Y Y

X S

←→p

←→ q ←→ g

← →f

is cartesian. Then, for every object T of C , the maps p and q induce maps
pT∶C (T, X ×S Y)→C (T, X) and qT∶C (T, X ×S Y)→C (T, Y). The resulting
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map
(pT, qT)∶C (T, X ×S Y)→C (T, X) ×C (T, Y)

is a bijection fromC (T, X×SY) to the subsetC (T, X)×C (T,S)C (T, Y) of pairs
(φ,ψ) inC (T, X) ×C (T, Y) such that f ○ ψ = g ○ φ.

This can also be rephrased by introducing the category CS of objects of C
‘‘over S’’, whose objects are pairs (X, f ), where f ∶X → S is a morphism, and
whose morphisms from (X, f ) to (Y, g) is a morphism φ∶X→ Y inC such that
g ○ φ = f . Rephrasing the previous definition, a fiber product of a family (Xi) of
objects over S is nothing but a product of this family in the categoryCS.

Lemma (4.5.2). — Let k be a ring, let S = Spec(k). Let I be a finite set; for every
i ∈ I, let Ai be a k-algebra and let Xi = Spec(Ai). Let A = ⊗i Ai be the tensor
product of these k-algebras; for every i ∈ I, it is an Ai-algebra. Then the affine
scheme Spec(A) is a product of the family (Xi) of S-schemes.

Proof. — For every i ∈ I, let fi ∶Xi → S be the morphism induced by the mor-
phism k → Ai (i.e., by the structure of k-algebra of Ai). Let T be a scheme, let
g∶T→ S be a morphism of schemes, and let (gi)i∈I be a family, where gi ∶T→ Xi
is a morphism of S-schemes; we thus have fi ○ gi = g for every i ∈ I.
Let γ∶ k → OT(T) be the morphism g♯(Spec(k)). For every i, let γi ∶Ai →

OT(T) be themorphism g♯i(Spec(Ai)); this is amorphismof k-algebras, because
fi ○ gi = g. The map

(ai)i∈I ↦∏
i∈I

γi(ai)

is k-multilinear. Consequently, there exists a unique morphism of k-algebras

u∶⊗
i∈I

Ai → OT(T)

such that u(⊗i∈Iai) =∏i∈I γi(ai). By theorem 4.2.8, there exists a unique mor-
phism φ∶T → Spec(A) such that u = φ♯(Spec(A)). It is a morphism of S-
schemes, because u is a morphism of k-algebras.
Let i ∈ I. The morphism g♯i(Spec(Ai))∶Ai → OT(T) is the composition of

f ♯i (Spec(Ai))∶Ai → A and of u = φ♯(Spec(A)); by theorem 4.2.8, one has
fi ○ φ = gi .
Conversely, every morphism ψ∶T → Spec(A) of k-schemes such that fi ○

ψ = gi for every i induces a morphism ψ♯(Spec(A))∶A → OT(T) such that
ψ♯(Spec(A)) ○ f ♯i (Spec(k)) = g♯i(Spec(k)). Since A is generated by the images
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of the algebras Ai , one has ψ♯(Spec(A)) = u. By theorem 4.2.8, this implies that
ψ = φ.

Lemma (4.5.3). — Let S be a scheme, let S1 be an open subscheme of S, let (Xi)i∈I be
a finite family of S1-schemes; for every i, let fi ∶Xi → S1 be the structural morphism.
Assume that this family of S1-schemes admits a product P; for every i, let pi ∶P→ Xi
be the canonical morphism.
Let V be an open subscheme of S; for every i ∈ I, let Ui be an open subscheme

of Xi such that fi(Ui) ⊆ V. Let Q = ⋂i∈I p−1i (Ui). It is an open subset of P and the
induced scheme (Q,OP∣Q) is a fiber product of the family (Ui , fi ∣Ui) of V-schemes.

Proof. — Since pi is continuous and Ui is open, Q is an open subset of P. Let
(T, g) be a V-scheme; for every i, let gi ∶T→ Ui be a morphism of V-schemes.
Composing g with the inclusion from V to S, and, for every i, the morphism gi
with the inclusion from Ui to Xi, we can view T as an S-scheme endowed for
every i with an S-morphism to Xi .
Since g = fi ○ g, one has in fact g(T) ⊆ S1, which allows us to view T as an

S1-schemes, and the morphisms gi as morphisms of S1-schemes. Consequently,
there exists a unique morphism ψ1∶T → P of S-schemes such that pi ○ ψ1 = gi
for every i. Since the image of gi is contained in Ui , one has ψ(T) ⊆ p−1i (Ui) for
every i, hence ψ1(T) ⊆ Q. Consequently, the morphism ψ1 induces a morphism
ψ∶T→ Q of S1-schemes such that pi ∣Q ○ ψ = gi for every i. It is also a morphism
of S-schemes.

This is in fact the unique such morphism. Let indeed ψ̃∶T→ Q be a morphism
of S-schemes such that pi ∣Q ○ ψ̃ = gi for every i. Then ψ̃ can be considered as
a morphism of S1-schemes from T to P and one has pi ○ ψ̃ = gi = pi ○ ψ for
every i. Since P is a product of the family (Xi) of S1-schemes, this implies that
ψ̃ = ψ.

Theorem (4.5.4). — The category of schemes admits all finite fiber products.

Proof. — Let I be a finite set, let S be scheme, let (Xi)i∈I be a family of S-schemes;
for every i, let fi ∶Xi → S be the structural morphism. We need to show that
the family (Xi) of S-schemes has a product. By lemma 4.5.2, this family has a
product if S and all the schemes Xi are affine. In general, the construction of the
desired product will consist in glueing the fiber products of families (Ui → V)i∈I,
where V is an open affine subscheme of S and, for every i, Ui is an open affine
subscheme of Xi such that fi(Ui) ⊆ V.
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Let (Sλ)λ∈L be an covering of S by open affine subschemes. For every λ ∈ L and
every i ∈ I, let (Ui ,m)m∈Mi ,λ be a covering of f −1i (Sλ) by open affine subschemes.
Let M be the union of the family Mi ,λ: an element of M is a pair (λ, (mi)) where
λ ∈ L and mi ∈Mi ,λ for every i ∈ I.
For every m = (λ, (mi)) ∈ M, let Pm be the product of the family (Ui ,m i)i∈I

of affine Sλ-schemes; by lemma 4.5.3, it is also a product of this family in the
category of S-schemes. For every i, let pm,i ∶Pm → Xi be the canonical morphism
(its image is contained in Ui ,m i ). Let also gm∶Pm → S be the morphism fi ○ pm,i ,
for every i ∈ I; one has gm(Pm) ⊆ Sλ.
Let m = (λ, (mi)) and m′ = (λ′, (m′i)) be elements of M. For every i ∈ I, let

Vi = Ui ,m i ∩U′i ,m i
, and let Pmm′ = ⋂i∈I(pm,i)−1(Vi); by lemma 4.5.3, the open

subscheme Pmm′ of Pm is a product of the family (Vi). By symmetry, Pm′m is
also a product of this family. Consequently, there exists a unique morphism of
S-schemes φmm′ ∶Pmm′ → Pm′m such that pm′ ,i ○ φmm′ = pm,i for every i ∈ I, and
it is an isomorphism.
Let P be the scheme obtained by glueing the family of schemes (Pm)m∈M

along their open subschemes Pmm′ via the isomorphisms φmm′. For every m ∈
M, let φm∶Pm → P be the canonical morphism; by definition, it induces an
isomorphism of Pm onto an open subschemeWm of P, and one has φm′ ○φmm′ =
φm for every pair (m,m′) of elements of M. For every i ∈ I, there exists a
unique morphism of schemes pi ∶P → Xi such that pi ○ φm = pm,i for every
m ∈ P. Similarly, there exists a unique morphism of schemes g∶P→ S such that
g ○ φm = gm for every m ∈M; one has g = fi ○ pi for every i ∈ I. Consequently, P
is an S-scheme (via g) and the morphisms pi are morphisms of S-schemes.
Let m ∈ M and let Um = ⋂i∈I p−1i (Ui ,m i). Let us show that Um = Wm. The

inclusion Wm ⊆ Um follows from the equality pi ○ φm = pi ,m i , for every i ∈ I.
Conversely, let m′ ∈ M. By lemma 4.5.3 the isomorphism φm′ ∶Pm′ → Wm′

induces an isomorphism from Pm′m with Um ∩Wm′ . Since φm′ = φm ○ φmm′ , it
follows that Um ∩Wm′ = φm(Pmm′) ⊆Wm. Consequently,

Um = Um ∩ ( ⋃
m′∈M

Wm′) = ⋃
m′∈M
(Um ∩Wm′) ⊆Wm .

This shows that Um =Wm, as claimed.
Let us now show that the S-scheme P, equipped with the family of morphisms
(pi)i∈I is a product of the family (Xi)i∈I of S-schemes. We need to check the
universal property: Let T be an S-scheme; for every i ∈ I, let hi ∶T → Xi be an
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S-morphism; let us show that there exists a unique morphism of S-schemes
ψ∶T→ P such that pi ○ ψ = hi for every i.
For every m ∈ M, let Tm = ⋂i∈I h−1i (Ui ,m i). Since Pm is a product of the

family (Ui ,m i)i of S-schemes, there exists a unique morphism of S-schemes
ψ′m∶Tm → Pm such that pm,i ○ ψ′m = hi ∣Tm for every i ∈ I. Let ψm = φm ○ φ′m.
Let m,m′ ∈ M and let V = Tm ∩ Tm′, so that the morphism ψ′m∣V factors

through Pmm′ , Then, the morphism φmm′ ○ ψ′m∣V from V to Pm′ satisfies

pm′ ,i ○ φmm′ ○ ψ′m∣V = pm,i ○ ψ′m∣V = hi ∣V = pm′ ,i ○ ψ′m′ ∣V.
Since Pm′ is a product of the family (Ui ,m′i)i of S-schemes, one thus has ψ′m′ ∣V =
φmm′ ○ ψ′m∣V. In particular, the morphisms ψm = φm ○ ψm and ψm′ = φm′ ○ ψ′m′
coincide on V. As a consequence, there exists a unique morphism of S-schemes
ψ∶T→ P such that ψ∣Tm = ψm for every m ∈M. Moreover, for every such m and
every i ∈ I, one has

pi ○ ψ∣Tm = pi ○ φm ○ ψ′m = pm,i ○ ψ′m = hi ∣Tm .

This implies that pi ○ ψ = hi for every i ∈ I.
Conversely, let ψ̃∶T → P be a morphism such that pi ○ ψ̃ = hi for every i ∈ I.

Let us show that ψ̃ = ψ. Let m ∈ M. Observe that one has Tm = ψ−1(Um) =
ψ̃−1(Um) = ⋂i∈I(pi ○ ψ̃)−1(Ui ,m i) = ⋂i∈I h1i(Ui ,m i) = ψ−1(Um) = Tm. Moreover,
pi ○ ψ̃∣Tm = hi ∣Tm = pi ○ ψ∣Tm . Since Um is a product of the family (Ui ,m i)i of
S-schemes, the two morphisms from Tm to Um induced by ψ and ψ̃ are equal.
In other words, ψ∣Tm = ψ̃∣Tm . Since the family (Tm)m∈M of open subschemes
cover P, this implies that ψ̃ = ψ.

Corollary (4.5.5). — Let S be a scheme, let X and Y be S-schemes. Every non-
empty finite family ( fi)i∈I of S-morphisms from X to Y has an equalizer in the
category of S-schemes.

Recall that an equalizer (Z, g) of the family ( fi) is a scheme Z endowed with
a morphism g∶Z→ X such that all morphisms fi ○ g are equal, and such that for
every scheme T and every morphism h∶T→ X such that all morphisms fi ○ h
are equal, there exists a unique morphism k∶T→ Z such that h = g ○ k.
Proof. — Let YI be the product of I copies of X over S; for every i ∈ I, let
pi ∶YI → Y be the projection of index i. Let f ∶X→ YI be the unique S-morphism
such that pi ○ f = fi for every i ∈ I. Let also δ∶Y→ YI be the diagonal morphism,
namely, the unique morphism such that pi ○ δ = idY for every i ∈ I; it is an
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S-morphism. Let Z be the fiber product of the morphisms f and g; let p∶Z→ X
and q∶Z→ Y be the canonical projections. Let us show that (Z, p) is an equalizer
of the family ( fi).
By definition, for every i ∈ I, one has fi ○ p = pi ○ f ○ p = pi ○ g ○ q = q, so that

all morphisms fi ○ p are equal. Let T be a scheme, let h∶T→ X be a morphism
of schemes such that all morphisms fi ○ h are equal to a common morphism
j∶T → Y. Then pi ○ f ○ h = fi ○ h = j = pi ○ g ○ j, so that there exists a unique
morphism k∶T→ Z such that h = p ○ k and j = q ○ k. Conversely, if k′∶T→ Z is
a morphism such that h = p ○ k′, then g ○ q ○ k′ = f ○ p ○ k′ = f ○ h. For every
element i of I, one then has q ○ k′ = pi ○ g ○ q ○ k′ = pi ○ f ○ h = fi ○ h = j; Since I
is non-empty, this proves that q ○ k′ = j. By the definition of the fiber product Z,
one then has k′ = k.

Remark (4.5.6). — If the morphisms fi ∶Xi → S are quasi-compact, then the
morphism g∶P → S from the fiber product of the family (Xi) to S is quasi-
compact as well.
Indeed, the construction of P shows that for every λ ∈ L, the open sub-

set f −1i (Sλ) of Xi is the union of a finite family of affine open subschemes, so
that one can assume that the sets Mi ,λ are finite, for every i ∈ I and every λ. For
every λ, g−1(Sλ) is the union of the affine schemes P(λ,(m i)), for (mi) ∈∏i Mi ,λ.
Consequently, g−1(Sλ) is quasi-compact. This concludes the proof.

4.5.7. — Let f ∶X → S be a morphism of schemes. Let T be a scheme and let
u∶T → S be a morphism of schemes. Let XT be the fiber product X ×S T, and
let fT∶XT → T be the second projection. The T-scheme (XT, fT) is called the
T-scheme deduced from X by base change to T.
Let Y be an S-scheme and let g∶Y → S be its structural morphism. and

let φ∶X → Y be a morphism of S-schemes. There exists a unique morphism
φT∶XT → YT of T-schemes such that q ○ φT = φ ○ p, where p∶XT → X and
q∶YT → Y are the first projections. This morphism φT is called themorphism
deduced from φ by base change to T.

The assignments X↦ XT and φ ↦ φT define a functor u∗ from the category
SchS of S-schemes to the category SchT of T-schemes.
Let s be a point of S and let js∶ Spec(κ(s)) → S be the associated morphism.

The Spec(κ(s))-schemeX×SSpec(κ(s))→ Spec(κ(s)) is called thefiber of f at s;
it is denoted by Xs. This terminology is justified by the fact that the underlying
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continousmap to the first projection Xs → X induces a homeomorphism fromXs
to the closed subset f −1(s) of X with the induced topology.

4.6. Group schemes

4.6.1. — Let C be a category which admits finite products and a terminal
object p.
By Yoneda’s lemma (proposition 2.4.4), the datum of a morphism m∶G ×

G→ G is equivalent to the data of functorial maps mA∶C (A,G) ×C (A,G)→
C (A,G), that is, such thatmB( f , g)○φ = mA( f ○φ, g ○φ) for every pair (A, B)
of objects ofC , every morphism φ ∈C (A, B) and every pair ( f , g) inC (B,G).
A group object in the categoryC is an object G ofC endowedwith amorphism

m∶G ×G→ G such that for every object A ofC , the map mA is a group law on
the setC (A,G). Let m be such a morphism.

The associativity of the group laws mA means that mA ○ (mA × idC (A,G)) =
mA ○ (idC (A,G) ×mA) for every object A ofC . Applying again Yoneda’s lemma,
it thus translates into the equality

(4.6.1.1) m ○ (m × idG) = m ○ (idG ×m)

of morphisms from G ×G ×G to G.
Let eA ∈ C (A,G) be the unit element of the group law mA and let

iA∶C (A,G) → C (A,G) be its inversion. For every morphism φ∶A → B,
the map C (B,G) → C (A,G) deduced from φ is a morphism of groups. In
particular, it maps eB to eA; in other words, eB ○ φ = eA. Similarly, for every
f ∈C (B,G), one has iB( f ) ○ φ = iA( f ○ φ). Consequently, the family of maps
(iA) is a morphism of functors from hG to itself. By Yoneda’s lemma, there
exists a unique morphism i∶G → G such that iA( f ) = i ○ f for every object A
ofC and every f ∈C (A,G). Concretely, one has i = iG(idG).

The fact that for every object A, the map iA is the inversion of C (A,G) is
equivalent to the relation

(4.6.1.2) m ○ (i × idG) = m ○ (idG ×i) = eG = e ○ tG
inC (G,G).
Similarly, the formula eB ○ f = eA means that the assignment A ↦ eA is a

morphism of functors from the functor hp (such that hp(A) is a set with one
element, for every object A) to the functor hG. Consequently, there exists a
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unique morphism e∶ p → G such that eA = e ○ tA for every object A ofC , where
tA∶A→ p is the unique morphism to the terminal object p. Similarly, the fact
that eA is the neutral element ofC (A,G), for every object A, translates into the
formula

(4.6.1.3) m ○ (idG ×e) = m ○ (e × idG) = idG .

Conversely, if G is an object ofC , endowed with three morphismsm∶G×G→
G, e∶ p → G and i∶G→ G satisfying the relations (4.6.1.1), (4.6.1.3) and (4.6.1.2),
then it is a group object inC .
Furthermore, the group laws mA are commutative if and only if one has

(4.6.1.4) m ○ s = m,

where s∶G × G → G × G is the unique morphism such that p1 ○ s = p2 and
p2 ○ s = p1. One then says that this group object is commutative.

Definition (4.6.2). — Let S be a scheme. A (commutative) S-group scheme is a
(commutative) group object in the category SchS of S-schemes.

4.6.3. The additive group. — Let Ga = Spec(Z[T]). For every scheme A, one
has

Hom(A,Ga) = Hom(Z[T],OA(A)) = OA(A),

and this set is naturally an additive group, functorially in A. It thus defines a com-
mutative group scheme (Ga,m)The morphism m∶Ga ×S Ga → Ga corresponds
to the morphism of rings Z[T]→ Z[T]⊗Z Z[T] given by T↦ 1⊗ T + T⊗ 1.

4.6.4. The multiplicative group. — Let Gm = Spec(Z[T, 1/T]) be the open
subscheme D(T) of Ga. For every scheme A, one has

Hom(A,Gm) = Hom(Z[T, 1/T],OA(A)) = OA(A)×.

Again, this set is naturally a group for multiplication, functorially in A, so that
Gm is a commutative group scheme. Its multiplication m∶Gm ×Spec(Z) Gm →
Gm corresponds to the unique morphism of rings Z[T, 1/T] → Z[T, 1/T] ⊗Z

Z[T, 1/T] given by T↦ T⊗ T.
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4.6.5. The general linear group. — Let n be an integer and let ∆ ∈
Z[(Ti , j)1⩽i , j⩽n] be the determinant polynomial; let G be the open subset
D(∆) in Spec(Z[(Ti , j)1⩽i , j⩽n]). In particular, G is affine, and one has

OG(G) = Z[(Ti , j), 1/∆].

For every scheme A, Hom(A,G) is the set of matrices M with coefficients in
the ring OA(A) such that det(M) is invertible. It thus identifies with the group
GL(n,OA(A)). When A varies, the group laws on these groups endows the
scheme G with a structure of an S-group scheme (non-commutative if n ⩾ 2).
The morphism m∶G ×G→ G corresponds to the morphism

Z[(Ti , j), 1/∆]→ Z[(Ti , j), 1/∆]⊗ Z[(Ti , j), 1/∆]

given by

Ti , j ↦
n
∑
k=1

Ti ,k ⊗ Tk, j.

4.6.6. — Let G and H be two group schemes over S. A morphism of group
schemes φ∶G→ H is a morphism of S-schemes such that for every S-scheme T,
the map φT∶G(T)→ H(T) is a morphism of groups. Note that by the Yoneda
lemma, a functorial family (φT) of morphism of groups comes from a unique
morphism of S-schemes, hence from a unique morphism of group schemes.
Equivalently, a morphism of schemes φ∶G → H is a morphism of group

schemes if one hasmH○(φ, φ) = φ○mG, wheremG∶G×SG→ GandmH∶H×SH→
H are the group laws.
For example, there is a unique morphism of group schemes det∶GL(n)→ Gm

such that detT is the determinant morphism from GL(n,OT(T)) to Gm(T) =
OT(T)×.

4.6.7. — Let G and H be two group S-schemes. Then the product G ×S H
has a unique structure of group scheme such that the canonical projections
from G ×S H to G and H are morphisms of group schemes.

4.7. Coherent and quasi-coherent modules on schemes

Definition (4.7.1). — Let (X,OX) be a locally ringed space and let M be an OX-
module. One says that M is quasi-coherent if every point x ∈ X has an open
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neighborhood U such that M ∣U is isomorphic to the cokernel of a morphism of
OX∣U-modules of the form

O(J)U → O(I)U .

Theorem (4.7.2). — Let A be a ring, let X be the affine scheme Spec(A) and let
M be an OX-module on X. The following properties are equivalent:
(i) The OX-module M is quasi-coherent;
(ii) For every f ∈ A, the canonical morphism M (X) f → M (D( f )) is an

isomorphism of A f -modules.
(iii) There exists an A-moduleM such that M is isomorphic to M̃;

Observe that property (ii) is the conjonction of two properties:
(ii′) For every f ∈ A and every section s ∈M (D( f )), there exists a section

s′ ∈M (X) and an integer n ⩾ 0 such that sn f = s′∣D( f );
(ii′′) For every f ∈ A and every section s ∈M (X) such that s∣D( f ) = 0, there

exists an integer n ⩾ 0 such that sn f = 0.

Proof. — Let us assume that (ii) holds and let M =M (X). Let us consider the
canonical morphism of sheaves θ∶ M̃→M . By the definition of the OX-module
M̃, θ(U) is an isomorphismwhenever U is an open subset of X of the formD( f ).
Since these subsets form a basis of open subsets of X, this implies that θ is an
isomorphism. We thus have shown the implication (ii)⇒(iii).
Assume that M = M̃ and let us show that it is a quasi-coherent Ã-module. Let

p∶A(I) →M be a surjective morphism of A-modules, and let φ∶A(J) → A(I) be
a morphism of A-modules such that Im(φ) = Ker(p), so that M ≃ Coker(p).
Since the functor M↦ M̃ commutes with all colimits and with all finite limits
(corollary 4.1.10, see also example 4.1.11), the Ã-module M̃ is a cokernel of the
morphism φ̃∶O(J)X → O(I)X of OX-modules. This proves that (iii)⇒(i).
Finally, let M be a quasi-coherent OX-module on X. Let (Uλ) be a family

of open subsets of X such that X = ⋃λ∈LUλ and such M ∣Uλ is isomorphic to
a cokernel of a morphism of OUλ-modules, say φλ∶O(Iλ)Uλ

→ O(Jλ)Uλ
. We may

assume that Uλ is a distinguished open subset of the form D( fλ), for some
fλ ∈ A. By corollary 4.1.10, there exists an A fλ-module Mλ and an isomorphism
M̃λ ≃M ∣D( fλ) of OD( fλ)-modules.
Since Spec(A) is quasi-compact, there exists a finite subset L′ of L such that
⋃λ∈L′D( fλ) = X; we may thus assume that the set L is finite.



186 CHAPTER 4. SCHEMES

Let f ∈ A and let s ∈M (X) be such that s∣D( f ) = 0. For every λ ∈ L, consider
the section sλ = s∣D( fλ). Since sλ∣D( f ) = 0, there exists an integer nλ ⩾ 0 such that
f nλs∣D( fλ) = 0. Let n = supλ∈L(nλ). One has f ns∣D( fλ) = 0 for every λ ∈ L, hence
f ns = 0.
Let f ∈ A and let s ∈ M (D( f )). For every λ ∈ L, consider the section

s∣D( f fλ) of the sheaf M ∣D( fλ) on its distinguished open subset D( fλ f ) = D( f ) ∩
D( fλ). There exists a section s′λ ∈M (D( fλ)) and an integer nλ ⩾ 0 such that
f nλs∣D( f fλ) = s′λ∣D( f fλ). Let n = supλ∈L(nλ); let us replace nλ by n and s′λ by
f n−nλs′λ, we assume that f ns and sλ coincide on D( f fλ). As a consequence, for
λ, µ ∈ L, the sections sλ and sµ coincide on D( f fλ fµ). This implies that there
exists an integer m(λ, µ) such that f m(λ,µ)(sλ − sµ) = 0. Let m = sup(m(λ, µ));
replace n by n + m and sλ by f msλ. Then has f ns and sλ coincide on D( f fλ);
sλ and sµ coincide on D( fλ fµ). Consequently, there exists a unique section
s′ ∈M (X) such that s′∣D( fλ) = sλ for every λ ∈ L. Since s′∣D( f fλ) = f ns∣D( fλ) for
every λ, this implies that s′∣D( f ) = f ns. We thus have proved the implication
(i)⇒(ii).

Corollary (4.7.3). — (1) Let X be scheme, let M be a quasi-coherent sheaf on X
and let f ∈ Γ(X,OX).

The restriction morphism Γ(X,M )→ Γ(X f ,M ) of Γ(X,OX)-modules extends
uniquely to a morphism φ∶ Γ(X,M ) f → Γ(X f ,M ).
a) If X is quasi-compact, then φ is injective.
b) If X is quasi-compact and quasi-separated, then φ is bijective.

Corollary (4.7.4). — Let X be a scheme. A colimit of a diagram of quasi-coherent
OX-modules is quasi-coherent, a limit of a finite diagram of quasi-coherent OX-
modules is quasi-coherent. In particular, for every morphism φ∶M → N of
quasi-coherent OX-modules, the OX-modules Ker(φ), Im(φ) and Coker(φ) are
quasi-coherent.

Proof. — Let U be an affine open subscheme of X, say U = Spec(A) for some
ring A. Let D be a diagram of quasi-coherent OX-modules and let M be its
colimit. By passing to the A-modules of sections onU, the diagramD furnishes a
diagramD(U) of A-modules. Moreover, if M is the colimit of this diagram, then

(1)To be proved. In fact, extract this corollary from the proof of the theorem and reorganize the beginning
of this section. . .
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M̃ is the colimit of the diagram D ∣U of OU-modules. This implies that M ∣U is
isomorphic to M̃, hence is quasi-coherent. Consequently, M is quasi-coherent.
In particular, the cokernel of a morphism of quasi-coherent OX-modules is

quasi-coherent.
If D is finite, the same argument shows that a limit of D is quasi-coherent.

This implies that the kernel of a morphism φ∶M →N of quasi-coherent OX-
modules is quasi-coherent. Since the image of φ is isomorphic to the kernel of
the canonicalmorphism fromN to Coker(φ), it is a quasi-coherentOX-module
as well.

Corollary (4.7.5). — a) Let A be a ring and let X = Spec(A); let M and N
be A-modules. There exists a unique isomorphism of OX-modules φ∶ M̃ ⊗OX

Ñ→ M̃⊗A N such that φ(X) induces the canonical homomorphism M̃(X)⊗Ã(X)
Ñ(X)→M⊗A N.
b) The tensor product of two quasi-coherent OX-modules on a scheme is quasi-

coherent.

Proof. — a) Recall that the sheaf M̃ ⊗Ã Ñ is the sheaf associated with the
presheaf on Spec(A) given by

U↦ M̃(U)⊗Ã(U) Ñ(U).

The canonical morphism S(U)−1M → M̃(U) In particular, For every open
subset U of X, let φU∶M⊗A N→ M̃⊗Ã Ñ(U) be the morphism of A-modules
induced by the bilinear map (m, n)↦ m∣U ⊗ n∣U. It induces a morphism
b) Let X be a scheme, let F and G be quasi-coherent OX-modules. Let U be

an open subset of X such that (U,OX∣U) is an affine scheme, isomorphic to the
spectrum of a ring A. Then the restriction to U of the sheafF ⊗OX G is the sheaf
F ∣U ⊗OX∣U G ∣U. Let M and N be A-modules such that F ∣U and G ∣U are equal
with M̃ and Ñ respectively. By part a), the sheaf F ∣U ⊗OX∣U G ∣U is associated
with the A-module M⊗A N. It is thus quasi-coherent. By definition of a scheme,
every point of X has a neighborhood U which is an affine scheme. This proves
that F ⊗OX G is a quasi-coherent OX-module.

Corollary (4.7.6). — Let A and B be rings, let X = Spec(A), let Y = Spec(B); let
φ∶A→ B be a morphism of rings and let f ∶ Spec(B)→ Spec(A) be the associated
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morphism of schemes. For every quasi-coherent OY-module M , f∗M is a quasi-
coherent OX-module.

Note that if a priori, f∗M is a f∗OY-module, we can use the canonical mor-
phism f ♯∶OX → f∗OY to view it as an OX-module.

Proof. — Let M be the B-module M (Y); since M is quasi-coherent, we may
assume that M = M̃. One has f∗M (X) =M ( f −1(X)) =M, where we view M
as an A-module via the morphism φ.
Let then a ∈ A. By definition, one has

f∗M (D(a)) =M ( f −1(D(a))) =M (D(φ(a))) =Mφ(a),

so that the canonical morphism ( f∗M )(X)a → ( f∗M )(D(φ(a))) identifies
with the tautological isomorphism from Ma to Mφ(a). This implies that f∗M is
a quasi-coherent OX-module.

Corollary (4.7.7). — Let f ∶Y → X be a morphism of schemes and let M be a
quasi-coherent OX-module. Then the OY-module f ∗M is quasi-coherent.
Moreover, for every affine open subscheme V of Y and every affine open sub-

scheme U of X such that f (V) ⊆ U, the canonical homomorphism OY(V)⊗OX(U)
M (U)→ f ∗M (V) is an isomorphism.

Proof. — Let y ∈ Y and let x = f (y), let U be an open neighborhood of x
such that M ∣U is isomorphic to the cokernel of a morphism φ∶OX∣(J)U → OX∣(I)U .
Let V = f −1(U). Since the functor f ∗ is right exact and commutes with direct
sums, the OY∣V-module f ∗M ∣V is isomorphic to the cokernel of the morphism
f ∗φ∶OY∣(J)V → OY∣(I)V deduced from φ. This proves that f ∗M ∣V is quasi-coherent.
Let now U and V be affine open subschemes of X and Y respectively such that

f (V) ⊆ U. Let A = OX(U) and B = OY(V); let M =M (U), so that one can
identifyM ∣Uwith M̃. Moreover, one has ( f ∗M )∣V = g∗(M ∣U), where g∶V→ U
is the morphism of schemes deduced from f by restriction. Let φ∶A(J) → A(I) be
a morphism of A-modules such that M = Coker(φ). By what precedes, the OV-
moduleN ∣V = g∗M ∣U is the cokernel of the morphism g∗φ∶O(J)V → O(I)V . Since
V is affine, N (V) is the cokernel of the morphism g∗φ(V)∶B(J) → B(I) deduced
from φ by base-change to B. It is thus isomorphic to B⊗A M, as claimed.
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4.7.8. — Let X be a ringed space. Let M be an OX-module. Let (si)i∈I be a
family of global sections of M .
Let O(I)X be the direct sum of copies of OX, indexed by I; for i ∈ I, denote

by ji ∶OX → O(I)X the canonical injection with index i. For every i ∈ I, there
exists a unique morphism ofOX-modules, φi ∶OX →M , such that φi(X)(1) = si .
Consequently, there exists a unique morphism of OX-modules φ∶O(I)X →M

such that φ ○ ji = φi for every i ∈ I. It is in fact the unique morphism of
OX-modules such that φ(X) ○ ji(X)(1) = si .
By construction, the OX-module O(I)X can be identified with the submodule of

O I
X whose sections over an open subset U consist of families ( fi)i∈I of elements

of OX(U) such that for every point x ∈ U, there exists an open neighborhood V
of x in U such that fi ∣V = 0 for all but finitely many i ∈ I. Consequently, the
morphism φ is given by φ(U)(( fi)) = ∑i∈I fisi ∣U for every open subset U of X
and every section ( fi)i∈I ∈ O(I)X (U); the sum looks infinite but is locally finite.
One says that the family (si)i∈I generates M (resp. is a frame of M ) if this

morphism φ is an epimorphism (resp. an isomorphism). If such a family exists,
then one says that M is globally generated (resp. is free).

Definition (4.7.9). — Let X be a ringed space and let M be an OX-module.

a) One says that M is locally free (resp. invertible) if every point x ∈ X has a
neighborhood U such that M ∣U is a free OU-module (resp. is isomorphic to OU).
b) One says that M is of finitely generated (or of finite type) if every point

of X has a neighborhood U such that M ∣U is generated by a finite family of global
sections.
c) One says that M is of finitely presented (or of finite presentation) if every

point of X has a neighborhood U such that M ∣U is isomorphic to the cokernel of a
morphism p∶O J

U → O I
U, where I and J are finite sets.

We notice that if U is an open neighborhood of x satisfying each of the given
conditions, then any open subset contained in V satisfies them as well.

The definition of a finitely presented OX-module is the same as that of a quasi-
coherent OX-module, the only difference being on the requirement that I and J
be finite sets. In particular, a finitely presented OX-module is quasi-coherent.
Moreover, condition c) can also be rephrased by saying that M ∣U is globally
generated by some finite family (si) of sections of M (U), and that the kernel
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of the associated morphism φ∶O I
X →M is itself generated by a finite family of

global sections.

Proposition (4.7.10). — Let X be a ringed space and let 0→M
kÐ→N

pÐ→P → 0
be an exact sequence of OX-modules.
a) If N is finitely generated, then P is finitely generated.
b) If M and P are finitely generated, then N is finitely generated.
c) If P is finitely presented and N is finitely generated, then M is finitely

generated.

Proof. — a) Let x ∈ X. Let U be an open neighborhood of x and let (si)i∈I be a
finite family of sections ofN (U) such that themorphism φ∶OX∣IU →N ∣U given
by ( fi)↦ ∑ fisi is an epimorphism. Then the morphism p ○ φ∶OX∣IU →PU is
an epimorphism as well, which implies that P is finitely generated.
b) Let x ∈ X, let U be an open neighborhood of x, small enough so that

there exists a finite family (si)i∈I of sections of P(U) which generates P ∣U,
and a finite family (t j) j∈J of sections of M (U) which generates M ∣U. Since the
morphism p is surjective, there exists for each i ∈ I an open neighborhood Ui
of x in U and a section s′i ∈N (Ui) such that p(Ui)(s′i) = si ∣Ui . Replacing U by
the open neighborhood⋂i∈IUi of x, the sections s′i and t j by their restrictions, we
assume that si = p(U)(s′i) for every i. Let us then prove that N ∣U is generated
by the union of the families (k(t j)) j∈J and (s′i)i∈I. Let indeed V be an open
subset of U and let s ∈N (V). Let y ∈ V. By assumption, there exists an open
neighborhoodV′ of y in V and elements ( fi)i∈I ofOX(V′) such that p(V)(s)∣V′ =
∑ fisi ∣V′ . Let t = s∣V′ −∑ fisi ∣V′ ; by construction, p(V′)(t) = 0, so that t belongs
to ker(p)(V′). Consequently, there exists an open neighborhood V′′ of y in V′
and elements (g j) j∈J of OX(V′′) such that t∣V′′ = ∑ g jk(t j)∣V′′. Then s∣V′′ =
∑ g jk(t j)∣V′′ +∑ fi ∣V′′s′i ∣V′′ , which concludes the proof that the the union of the
families (k(t j)) j∈J and (s′i)i∈I generates N ∣U.
c) Let x ∈ X. Let us choose an open neighborhood U of x and a presentation

Om
U

ψÐ→ On
U

φÐ→P ∣U. There exists an open neighborhood U of x and a morphism
u∶On

U → N ∣U such that p ○ u = φ. Then p ○ u ○ ψ = φ ○ ψ = 0; it follows that
there exists a unique morphism v∶Om

U →M ∣U such that u ○ ψ = k ○ v.
Let us now observe that the canonical morphism k∶Coker(v) → Coker(u)

deduced from k is an isomorphism. While this can be proved by a variant of
the snake lemma in the category of abelian sheaves, let us do it by hand. Since
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the stalk of the cokernel is the cokernel of the morphism induced between
stalks, (Coker(v)y = Coker(vy), and similarly for u), it suffices to prove that
for every point y ∈ U, the induced morphism ky∶Coker(vy) → Coker(uy) is
an isomorphism. Let thus m ∈ My be such that ky(m) = 0, where m is the
image of m in Coker(vy); let then s ∈ On

X,y by such that ky(m) = uy(s); one
has φy(s) = py ○ uy(s) = py ○ ky(m) = 0, hence there exists t ∈ Om

X,y such that
s = ψ(t); this implies that ky(m) = uy ○ ψy(t) = ky ○ vy(t); since ky is injective,
one thus has m = vy(t), hence m = 0; this shows that ky is injective. Let then
n ∈Ny; since φy is surjective, there exists s ∈ On

X,y such that py(n) = φy(s); then
py(n − uy(s)) = 0, so that there exists m ∈My such that n = uy(s) + ky(m);
one then has n = ky(m) in Coker(uy), which shows that ky is surjective.
Since N ∣U is finitely generated, so is Coker(u), which proves that Coker(v)

is finitely generated. Applying assertion a) to the exact sequence 0 → Om
U

vÐ→
M ∣U → Coker(v)→ 0, we conclude that M ∣U is finitely generated, as claimed.

Proposition (4.7.11). — Let A be a ring, let X = Spec(A), letM be an A-module.
The OX-module M̃ is finitely generated (resp. finitely presented) if and only if the
A-moduleM is finitely generated (resp. finitely presented).

Proof. — Let us assume that the A-module M is finitely generated, let (si)i∈I
be a finite generating family of elements of M, and let φ∶O I

X → M̃ be the asso-
ciated morphism. For every f ∈ A, the morphism φ(D( f )) identifies with the
morphism from AI

f to M f deduced from the morphism φ(X) by passing to the
modules of fractions; it is thus surjective. Since the open subsets of X of the
form D( f ) constitute a basis of open subsets of X, this implies that Im(φ) = M̃,
hence φ is an epimorphism. Consequently, M̃ is a finitely generated OX-module.
Assume now that M is a finitely presented A-module. If (si) is as above, then

the kernel K of the canonical morphism from AI to M is finitely generated. By
what precedes, K̃ is a finitely generated OX-module. Since M̃ is the cokernel of
the morphism K̃→ O I

X, we conclude that M̃ is finitely presented.
Conversely, let us assume that M̃ is a finitely generatedOX-module. Let (Ui)i∈I

be a family of open subsets of X such that M ∣Ui is generated by finitely many
sections and such that X = ⋃i∈IUi . We may assume that there exists fi ∈ A such
that Ui = D( fi). Since Spec(A) is quasi-compact, there exists a finite subset I′
of I such that X = ⋃i∈I′Ui . We thus may assume that I is a finite set.
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For every i, let (si , j) j∈Ji be a finite family of elements of M (Ui) =M f i which
generates M ∣Ui . For every i ∈ I and every j ∈ J, there exists an integer ni , j such
that f n i , j

i si , j belongs to the image of M in M f i , say f n i , j
i si , j = mi , j/1, for some

mi , j ∈M. Let M′ be the submodule of M generated by the family (mi , j) i∈I
j∈Ji
. For

every i ∈ I, one has M′f i = M f i , so that (M/M′) f i = 0. Every global section of
the quasi-coherent OX-module associated with the A-module M/M′ is locally 0,
hence is 0; consequently, M/M′ = 0 and M′ =M. This shows that M is finitely
generated.
Assume now that M̃ is finitely presented. It is thus finitely generated, so that

the A-module M is finitely generated. Let (si)i∈I be finite generating family
of elements of M and let φ∶AI →M be the associated surjective morphism of
A-modules and let K = Ker(φ). Let then φ̃∶O I

X → M̃ be the corresponding
morphism of OX-modules; it is surjective and its kernel is K̃. By prop. 4.7.10,
its kernel K̃ is a finitely generated OX-module. By what precedes, K is a finitely
generated A-module; this shows that M is finitely presented, as claimed.

Proposition (4.7.12). — Let X be a scheme and let M and N be quasi-coherent
OX-modules. If M is finitely presented, then the OX-module H omOX(M ,N ) is
quasi-coherent.

Proof. — It suffices to treat the case where X is affine; let then A = OX(X),
M = M (X) and N = N (X). Let us define a morphism of A-modules
φ∶HomA(M,N)→H omÃ(M̃, Ñ). Let thus f ∈ HomA(M,N); since Ñ(X) = N,
there exists a unique morphism of sheaves f̃ ∶ M̃→ Ñ such that f̃ (X) = f . The
map f ↦ f̃ is a morphism of A-modules from HomA(M,N) to HomÃ(M̃, Ñ).
The latter module being the set of global section of the sheaf H omÃ(M̃, Ñ),
there exists a unique morphism of sheaves of A-modules

Φ∶ ̃HomA(M,N)→H omÃ(M̃, Ñ)

such that Φ(X)( f ) = f̃ for every f ∈ HomA(M,N).
For every a ∈ A, the morphism Φ(D(a)) is the canonical morphism

from HomA(M,N)a to HomAa(Ma , Na); by lemma 4.7.13 below, it is an
isomorphism.
Since the subsets of Spec(A) of the form D(a) are a basis of open subsets, this

implies that the morphism Φ is an isomorphism of sheaves.
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Lemma (4.7.13). — Let A be a ring, let S be a multiplicative subset of A, letM
and N be A-modules. There exists a unique morphism of A-modules,

θ∶ S−1HomA(M,N)→ HomS−1A(S−1M, S−1N),

which, for u ∈ HomA(M,N), maps u/1 to the morphism given by m/s ↦ u(m)/s.
IfM is finitely generated, then θ is injective; ifM is finitely presented, then θ is an
isomorphism.

Proof. — Let θ1∶HomA(M,N)→ HomS−1A(S−1M, S−1N) being the map under-
lying the functor S ↦ S−1M; by definition, θ1(u)(m/s) = u(m)/s, for u ∈
HomA(M,N),m ∈M, and s ∈ S. Since the target of θ1 consists of an S−1A-module,
there exists a unique morphism θ∶ S−1HomA(M,N) → HomS−1A(S−1M, S−1N)
such that θ(u/s) = s−1θ1(u).
Let us now assume that M is finitely generated and let us show that the

morphism θ is injective. Let (m1, . . . ,mr) be a finite generating family; let
ψ∶Ar → M be the morphism given by (a1, . . . , ar) ↦ ∑ aimi. Consider an el-
ement of Ker(θ); let us write it as u/s, where s ∈ S and u ∈ HomA(M,N). By
assumption, for every i ∈ {1, . . . , r}, one has u(mi/1) = 0 hence there exists an
element si ∈ S such that siu(mi) = 0. Let t = s1 . . . sr; one has tu(mi) = 0 for
every i, hence tu(m) = 0 for every m ∈M. In other words, tu = 0; this implies
that u/s = 0.
Let us now assume that M is finitely presented. Let P = Ker(ψ); it is a

finitely generated A-module. Let v∶ S−1M → S−1N be a morphism of S−1A-
modules. There exists an element s ∈ S and a family (n1, . . . , nr) of elements
of N such that v(mi/1) = ni/s, for every i. Let u1∶Ar → N be the morphism
given by u1(a1, . . . , ar) = ∑ aini. For every p = (a1, . . . , ar) ∈ P, one has
u1(p) = v(ψ(p) = v(0) = 0 in S−1N; since P is finitely generated, there ex-
ists an element t ∈ S such that tu1(p) for every p ∈ P. Passing to the quotient
by P, there exists a morphism u∶M → N such that u ○ ψ = tu1. It follows
that u(m)/1 = (t/s)v(m/1), for every m ∈ M, hence θ(u) = (t/s)v. Finally,
v = θ(ts−1u), which shows that θ is surjective.

Exercise (4.7.14). — Give examples of a ring A, of a multiplicative subset S of A
and of A-modules M and N such that the canonical morphism θ of lemma 4.7.13
is not injective (resp. is injective but not bijective).
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Definition (4.7.15). — Let X be a ringed space and let M be an OX-module. One
says that M is coherent if it is of finite type and if, for every open subset U of X,
and every finite family (si)i∈I of elements of M (U), the kernel of the associated
morphism φ∶O I

X →M is of finite type.

It follows from the definition that a coherent OX-module is finitely presented;
in particular, it is quasi-coherent. Similarly, any finitely generated submodule of
a coherent OX-module is coherent.

Exercise (4.7.16). — Let X be a ringed space. Let φ∶F → G be a morphism of
OX-modules.
a) Assume that F is finitely generated and G is coherent. Then Im(φ) is

coherent and Ker(φ) is finitely generated.
b) If F and G are coherent, then Ker(φ) and Coker(φ) are coherent.
c) If, out of Ker(φ), F , and Im(φ), two OX-modules are coherent, then so is

the third one.

Lemma (4.7.17). — Let A be a ring and let X = Spec(A). Assume that the
scheme X is noetherian. Then the following properties hold:
a) The ring A is noetherian;
b) The sheaf of rings OX is coherent.
c) For every A-moduleM, the quasi-coherent module M̃ is coherent if and only

ifM is finitely generated.

Proof. — a) Let J be an ideal of A; let us prove that J is finitely generated.
let us prove that the associated sheaf of ideals J̃ ⊆ OX is a finitely generated
OX-module. Let thus x ∈ X and let U be an affine open neighborhood of x of the
form Spec(B), where B is a noetherian ring. Then J̃(U) is an ideal of OX(B) = B;
since B is noetherian, it is finitely generated, so that J̃∣U is a finitely generatedOU-
module. This implies that the OX-module J̃ is finitely generated and it follows
from proposition 4.7.11 that the ideal J is finitely generated.
b) The sheafOX is generated by its global section 1, hence it is finitely generated.

Let U be an open subset of X, let (si)i∈I be a finite family of elements of OX(U)
and let φ∶O I

U → OX be the associated morphism. We need to show that Ker(φ)
is finitely generated.
Let x ∈ U and let f ∈ A be an element such that x ∈ D( f ) ⊆ U. Then

Ker(φ)∣D( f ) is a quasi-coherent OX-module associated to the kernel K f of the
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morphism φ(D( f )) of A f -modules given by (ai)↦ ∑i aisi ∣D( f ). Observe that
for every f ∈ A, the ring of fractions A f is noetherian, because it is generated
by 1/ f as an A-algebra. Consequently, the A f -module K f , being a submodule of
the finitely generated A f -module AI

f , is finitely generated as well. This implies
that Ker(φ)∣D( f ) is finitely generated, and concludes the proof that Ker(φ) is
finitely generated.
c) If M̃ is coherent, it is finitely generated; by prop. 4.7.11, the A-module M is

finitely generated. Conversely, let us assume that M is finitely generated, so that
there exists an integer n ⩾ 0, a submodule P of An such that M is isomorphic
to the quotient An/P. This implies that the OX-module M̃ is isomorphic to the
quotient of On

X by the finitely generated submodule P̃. Since OX is coherent,
assertion c) of exercise 4.7.16 implies that On

X is coherent; it then follows from
assertion b) of that exercise that M̃ is coherent.

Theorem (4.7.18). — Let X be a locally noetherian scheme and let M is a quasi-
coherent OX-module. The following properties are equivalent:

(i) The OX-module M is coherent;
(ii) The OX-module M is finitely presented;
(iii) The OX-module M is finitely generated.

Proof. — The implications (i)⇒(ii) and (ii)⇒(iii) have already been discussed.
Assuming that M is finitely generated, it remains to prove that it is coherent.
Let x ∈ X and let U be an affine open neighborhood of X. Since X is locally
noetherian, U is isomorphic to the spectrum of a noetherian ring A (one has
A = OX(U)). Since M is finitely generated, proposition 4.7.11 implies that
the A-module M (U) is finitely generated. Consequently, M ∣U is a coherent
OU-module. This concludes the proof that M is coherent.

4.8. Schemes associated with graded algebras

4.8.1. — Let A be a graded ring. By definition, there exists a family (An)n∈N
of additive subgroups of A such that A =⊕An and such that An ⋅Am ⊆ An+m
for every n,m ∈ N. Elements of An are said to be homogeneous of degree n.
For a ∈ A, one can write a = ∑n∈N an, where an ∈ An for every integer n. The
element an is called the homogeneous component of degree n of a.
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If A is a k-algebra and all subgroups An are k-submodules, then we say that A
is a graded k-algebra.
An A-moduleM is said to be graded if there exists a family (Mn)n∈Z of additive

subgroups of M such that M =⊕Mn and An ⋅Mm ⊆Mn+m for every n ∈ N and
every m ∈ Z. The homogeneous components of an element of M are defined
similarly as those of an element of A.
A submodule N of a graded module M is called to be graded if is equal to the

direct sum⊕n∈Z(N ∩Mn).

4.8.2. — An ideal I of A is said to be homogeneous if it satisfies the equivalent
conditions:
(i) The ideal I is generated by homogeneous elements;
(ii) The homogeneous components of every element of I belong to I;
(iii) The ideal I is a graded submodule of A.
The subgroup A+ = ⊕n>0An of A is a homogeneous ideal of A, called the

irrelevant ideal.

Lemma (4.8.3). — The radical of a homogeneous ideal of A is a homogeneous
ideal.

Proof. — Let I be a homogeneous ideal of A. Let f ∈
√
I and let ( fn) be the

family of its homogenous components; we need to show that fn ∈
√
I for every

integer n ⩾ 0. Otherwise, there exists a largest integer d such that fd /∈
√
I. Let

f ′ = ∑n⩽d fn; by assumption, one has f − f ′ ∈
√
I, hence f ′ ∈

√
I. Let e ⩾ 0 be an

integer such that ( f ′)e ∈ I. The homogeneous component of degree de of f ′ is
equal to ( fd)e ; since I is a homogeneous ideal, one has ( fd)e ∈ I, hence fd ∈

√
I.

This contradicts the definition of d.

Lemma (4.8.4). — Let A be a graded ring and let I be a homogeneous ideal of A
which does not contain A+. Assume that for every pair (a, b) of homogeneous
elements of A such that a /∈ I and b /∈ I, one has ab /∈ I. Then I is a prime ideal.

Proof. — One has I ≠ A. Let a, b be elements of A I and let us show that
ab /∈ I. Let (an) and (bn) be their homogeneous components; there exists a
largest integer d such that ad /∈ I and a largest integer e such that ae /∈ I. Let
a′ = ∑n⩽d an and b′ = ∑n⩽e bn; one has a − a′ ∈ I and b − b′ ∈ I, so that

c = a′b′ = a′(b′ − b) + a′b = a′(b′ − b) + (a′ − a)b + ab ∈ I
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On the other hand, the homogeneous components (cn) of c are given by

cn = ∑
p⩽d

n−p⩽e

apbn−p;

in particular, cd+e = adbe /∈ I. Since I is a homogenous ideal, this implies that
c /∈ I, as was to be shown.

4.8.5. — Let Proj(A) be the set of homogeneous prime ideals of A which do
not contain the irrelevant ideal A+.
For every subset E of A consisting of homogeneous elements, one defines

V+(E) as the set of p ∈ Proj(A) such that E ⊆ p, and D+(E) = Proj(A) V+(E).
The subsets of Proj(A) of the form V+(E) are the closed subsets of a topology

on Proj(A), called the Zariski topology. In fact, one has Proj(A) ⊆ Spec(A),
and it is the topology induced by the Zariski topology of Spec(A).

The topological space Proj(A) is called the homogeneous spectrum of A.
For every subset Z of Proj(A), let j+(Z) be the set of all f ∈ A+ such that

Z ⊆ V+( f ). This is a homogeneous ideal of A, contained in A+, which is equal
to its radical.

4.8.6. — Let A be a graded algebra and let M be a graded A-module. Let S be a
multiplicative subset of A consisting of homogeneous elements. The A-module
S−1M inherits of a graduation, such that, for any homgeneous element m ∈M
and any s ∈ S, the degree of a fractionm/s is equal to deg(m)−deg(s). Let M(S)
be the submodule of S−1M consisting of elements of degree 0, that is to say, of
the form m/s, where m ∈M and s ∈ S are homogeneous of the same degree.

This construction applies in particular when M = A. Then A(S) is a subring of
S−1A that contains A0.
In general, M(S) is an A(S)-module.
This construction M↦M(S) gives rise to a functor on the category of graded

A-modules, with respect to the homomorphisms that preserve the degree. This
functor is exact. Indeed, if 0 → M′ → M → M′′ → 0 is an exact sequence of
graded A-modules, it induces an exact sequence 0→M′S →MS →M′′S → 0, by
exactness of classical localization. Taking the elements of degree 0, we obtain
the exact sequence 0→M′

(S) →M(S) →M′′
(S) → 0.

Example (4.8.7). — Let A be a graded ring, let M be a graded A-module and let
f ∈ A be a homogeneous element of degree 1.
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In the quotient module M/( f − 1)M, the element f acts by identity, so that
the A-module M/( f − 1)M inherits from a structure of an A f -module hence.
Moreover, there exists a unique morphism of A f -modules M f →M/( f − 1) that
extends the canonical morphism M →M/( f − 1). By restriction, it induces a
morphism of A( f )-modules, φ∶M( f ) →M/( f − 1).
In the other direction, there exists a unique morphism of abelian groups

fromM to M( f ) that maps an homogeneous element m ∈Md to m/ f d , for every
d ∈ Z. For any homogeneous element m ∈ Md , it maps ( f − 1)m = f m − m
to f m/ f d+1 −m/ f d = 0 (recall that f m ∈ Md+1). Consequently, there exists a
unique morphism of abelian groups ψ∶M/( f − 1)→M( f ) that maps the class of
an element m ∈Md to m/ f d . This morphism ψ is A( f )-linear.
In the particular case where M = A, these are morphism of A0-algebras.
Let d ∈ Z and let m ∈Md ; then

ψ ○ φ(m/ f d) = ψ([m]) = m/ f d ,

so that ψ ○ φ = id. Similarly, for m ∈Md , one has

φ ○ ψ([m]) = φ(m/ f d) = [m],

so that φ ○ ψ = id. In particular, the morphisms φ and ψ are isomorphisms.

4.8.8. — Let A be a graded ring, let f be a homogeneous element of A of strictly
positive degree, say d. The natural diagram of rings

A A f A( f )

←→ →↩

gives rise to a commutative diagram of topological spaces

Proj(A) D+( f )

Spec(A) D( f ) Spec(A f ) Spec(A( f )),

↩→

→↩ ←

→
ψ f↩→

→ ↩ ← →∼ ←→a j

in which the dashed arrow represents a continuous map ψ f ∶D+( f ) →
Spec(A( f )); we will prove that the map ψ f is a homeomorphism.
Concretely, the map ψ f is defined as follows. Let p be a homogeneous prime

ideal of A which does not contain f . Then the ideal ψ f (p) is the set of elements
of A( f ) of the form a/ f n, where a ∈ p ∩And and n ∈ N.
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It follows from its definition that map ψ f is continuous. More precisely, let
n ∈ N and let g ∈ And , let us show the two relations

ψ−1f (D(g/ f n)) = D+( f g) and ψ f (D+( f g)) = ψ f (D+( f )) ∩D(g/ f n).

If g ∈ p, then g/ f n ∈ ψ f (p) by definition of this prime ideal. Conversely, if
g/ f n ∈ ψ f (p), there exists an integer m ⩾ 0 and a ∈ p ∩Adm such that g/ f n =
a/ f m; this implies that there exists p ⩾ 0 such that f m+pg = f n+pa; in particular,
f m+pg ∈ p, hence g ∈ p since p is a prime ideal which does not contain f . Since
D+( f g) = D+( f )∩D+(g), this concludes the proof of the two indicated relations.
The first one implies that ψ f is continuous, and the second one that it induces
an open map onto its image.
Let us now show that ψ f is injective. Let q, q′ ∈ D+( f ) be such that ψ f (q) =

ψ f (q′); let us show that q = q′. Let a be a homogeneous element of q and let
n be its degree; then ad is an element of degree nd of q, so that ad/ f n ∈ A( f );
the definition of ψ f (p) shows that ad/ f n ∈ ψ f (p), hence ad/ f n ∈ ψ f (q′), hence
ad ∈ q′. Since q′ is a prime ideal of A, one then has a ∈ q′. This implies
the inclusion q ⊆ q′, and the other follows by symmetry. Consequently, ψ f is
injective.
Let q be a prime ideal of A( f ). For every integer n ⩾ 0, let pn be the set of

elements x ∈ An such that xd/ f n ∈ q. Observe that pn is an additive subgroup
of An. Let indeed x , y ∈ An; it follows from Newton’s binomial formula that
(x − y)2d/ f 2n ∈ q; since q is a prime ideal, we thus have (x − y)d/ f n ∈ q, hence
x − y ∈ pn. Let then p = ⊕n⩾0 pn. If a ∈ Am and x ∈ pn, then (ax)d/ f n+m =
(ad/ f m)(xd/ f n) ∈ q, hence ax ∈ p; this implies that p is a homogeneous ideal
of A. Since 1 /∈ q, one has f /∈ p. Let a ∈ Am and b ∈ An be such that ab ∈ p; then
(ab)d/ f n+m = (ad/ f m)(bd/ f n) ∈ q; since q is prime, at least one of ad/ f m and
bd/ f n belongs to q, which means that a ∈ p or b ∈ p. Consequently, p is a prime
ideal, hence a member of D+( f ).
Let us show that ψ f (p) = q. Let indeed n be an integer and x ∈ pnd ; by

assumption, xd/ f nd ∈ q, hence x/ f n ∈ q because q is a prime ideal; consequently,
ψ f (p) ⊆ q. Conversely, an element of q has the form x/ f n, with n ∈ N and
x ∈ And ; then xd/ f nd ∈ q, hence x ∈ p by definition of p; consequently, x/ f n ∈
ψ f (p).
We have shown that ψ f is a continuous, bijective, and open map from D+( f )

to Spec(A( f )). Therefore, it is a homeomorphism.
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Proposition (4.8.9). — Let A be a graded ring.

a) Let E be a set of homogeneous elements of A+, let f ∈ A+. The following
propositions are equivalent:

(i) One has D+( f ) ⊆ D+(E);
(ii) One has V+( f ) ⊇ V+(E);
(iii) There exists an integer n ⩾ 0 such that f n belongs to the homogeneous

ideal of A generated by E.
b) The maps E ↦ V+(E) and Z ↦ j+(Z) induce bijections, inverse one of the

other, between the set of closed subsets of Proj(A) and the set of homogeneous
radical ideals of A which are contained in A+.

Proof. — a) The equivalence (i)⇔(ii) is obvious, and it follows from the
definitions of V+( f ) and V+(E) that (iii) implies (i). Let us now show that (i)
implies (iii).
Let E be a set of homogeneous elements of A contained in A+, let I be the

homogeneous ideal of A generated by E, and let f ∈ A+ be a homogeneous
elements of A. Let d be the degree of f . For every homogeneous element g ∈ A, of
degree n, set g′ = gd/ f n ∈ A( f ). Let E′ be the set of elements g′, for g ∈ E. We have
proved that ψ f (D+( f ) ∩D+(g)) = V(g′); consequently, ψ f (D+( f ) ∩V+(E)) =
V(E′).
Assume now that D+( f ) ⊆ D+(E) or, equivalently, such that D+( f )∩V+(E) =
∅. It follows that V(E′) = ∅, hence the ideal I′ of A( f ) generated by E′ contains 1.
There thus exists an almost null family (bg)g∈E of elements of A( f ) such that
1 = ∑ bg g′. Each element bg is of the form c/ f m, for some homogeneous ele-
ment c of degree md; consequently, there exists an almost null family (cg)g∈E
of homogeneous elements of A and an integer m ⩾ 0 such that f m = ∑ cg gd . In
particular, f m ∈ I and f ∈

√
I.

b) Let I be a homogeneous ideal of A and let I+ = I ∩ A+; let us show that
V+(I) = V+(I+). The inclusion V+(I) ⊆ V+(I+) follows from the definition, since
I+ ⊆ I. Conversely, let p ∈ V+(I+). One thus has I+ ⊆ p but p /⊇ A+. Let f ∈ A+ be
such that f /∈ p. For every a ∈ I0, one has a f ∈ I+, hence a f ∈ p; since p is prime,
this implies that a ∈ p; consequently, I0 ⊆ p. Since p is a homogeneous ideal of A,
one has I ⊆ p, hence p ∈ V+(I). We thus have shown that V+(I) = V+(I+), as
claimed.
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Let E be a family of homogeneous elements of A and let Z = V+(E). Let I be
the ideal generated by E; one has Z = V+(I). Moreover, Z = V+(

√
I) since, for a

prime ideal p, the conditions I ⊆ p and
√
I ⊆ p are equivalent.

Moreover,
√
I is a homogeneous ideal of A, and one has Z = V+(

√
I). One has√

I∩A+ ⊆ j+(Z). Moreover, it follows from a) that every element f of j+(Z)∩A+
belongs to

√
I. This shows that j+(Z) =

√
I ∩A+.

Consequently, for a homogeneous radical ideal I ⊆ A+, one has j+(V+(I)) = I.
Let Z be a closed subset of Proj(E). By what precedes, there exists a radical

and homogeneous ideal I of A, contained in A+ such that V+(I) = Z. One then
has j+(Z) = I, hence V+(j+(Z)) = V+(I) = Z.

4.8.10. — Let U be an open subset of Proj(A) and let S(U) be the set of ho-
mogeneous elements s ∈ A such that s /∈ p, for every homogeneous prime ideal
p ∈ U. If V ⊆ U, one has S(U) ⊆ S(V). One defines the sheaf M̃ on Proj(A) as
the sheaf associated with the presheaf given by U↦M(S(U)).
For every integer p ∈ Z, the twist of order p of M is the graded A-module

M(p) whose underlying A-module is M, but whose grading is shifted by p:
M(p)n =Mp+n for every integer n.

Lemma (4.8.11). — Let A be a graded algebra, let f be a homogeneous element
of A of degree d > 0 and let U = D+( f ). The element f belongs to S(U). For
every graded A-moduleM, the canonical morphism of graded modules fromM f
toMS(U) is an isomorphism. In particular, it induces an isomorphism fromM( f )
toM(S(U)).

Proof. — One has f ∈ S(U) by the very definition of D+( f ). Let φ∶M f →MS(U)
be the canonical morphism.
Let x ∈ M f ; there exists m ∈ M and an integer n ⩾ 0 such that x = m/ f n. If

x ∈ Ker(φ), there exists s ∈ S(U) such that sm = 0. Since s ∈ S(U), D+( f ) is
contained in D+(s), so that there exists an integer p ⩾ 0 and t ∈ A such that
f p = st. Consequently, f pm = 0, hence x = 0. This shows that φ is injective.
Let x be an element of MS(U); let m ∈M and s ∈ S(U) be such that x = m/s.

By the preceding argument, there exists an integer p ⩾ 0 and t ∈ A such that
f p = st. Then x = (tm)/ f p, so that x ∈ Im(φ).
Since φ is compatible with the natural gradings of M f and MS(U), it induces

an isomorphism fromM( f ) to M(S(U)).
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Proposition (4.8.12). — Let A be a graded ring, let f be a homogeneous element
of A of strictly positive degree and letM be a graded A-module.

a) Under the homeomorphism ψ f , the sheaf M̃∣D+( f ) is transformed to the quasi-
coherent sheaf on Spec(A( f )) associated to the A( f )-moduleM( f ).
b) The ringed space (Proj(A), Ã) is a scheme.
c) For every graded A-module M, the Ã-module M̃ on Proj(A) is quasi-

coherent.

Proof. — a) Let d be the degree of f . For every homogeneous element g ∈ A
of strictly positive degree n, denote by Ug the open subset D+( f ) ∩D+(g) =
D+( f g) of D+( f ). By the previous lemma, the module of fractions M(S(Ug))

identifies with M( f g). Observe also that the natural morphism from M( f )
to M( f g) induces an isomorphism from (M( f ))gd/ f n to M( f g). On the other
hand, we have proved that ψ f (Ug) = D(gd/ f n). Consequently, the presheaf
given by U↦M(S(U)) on D+( f ) identifies, via ψ f , with the sheaf M̃( f ), at least
on distinguished open subsets. This identifies the associated sheaf M̃∣D+( f ) with
the sheaf M̃( f ).
b) By a), the restriction of the ringed space (Proj(A), Ã) to the open sub-

set D+( f ) is an affine scheme. By definition of the homogeneous spectrum,
the open subsets of this form cover Proj(A), since for every p ∈ Proj(A), there
exists f ∈ A+ such that f /∈ p. Consequently, the ringed space (Proj(A), Ã) is a
scheme.
c) Let M be a graded A-module. The restriction to D+( f ) of the Ã-module

M̃ is quasi-coherent, since it identifies with the quasi-coherent OD+( f )-module
associated to the A( f )-module M( f ). Consequently, it is quasi-coherent.

Example (4.8.13). — Let k be a ring and let A = k[T0, . . . , Tn] be the ring of
polynomials in (n + 1) indeterminates with coefficients in k. Let us endow the
ring A with the graduation by degree.
For every i ∈ {0, . . . , n}, let Ui be the open subset D+(Ti) of Proj(A)

and let ψi be the k-isomorphism from D+(Ti) to the affine scheme Xi =
Spec(k[U0, . . . , Un]/(Ui − 1)) such that ψ♯i(U j) = T j/Ti for every j. For
every pair (i , j), let Xi j be the open subscheme D(U j) of Xi. One has
ψi(D+(TiT j)) = D(U j) = Xi j = Spec(k[U0, . . . , Un]/(Ui − 1)[1/U j]) and the
isomorphism ψi j = ψ j ○ ψ−1i from the open subscheme Xi j = D(U j) of Xi to the
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open subscheme X ji = D(Ui) of X j is given by

ψ♯i j(Um) = (ψ−1i )♯ ○ ψ♯j(Um) = (ψ−1i )♯(Tm/T j) = Um(ψ−1i )♯(Ti/T j) = UmUi/U j.

By definition, the scheme Pn
k is defined by gluing the family (Xi) along the open

subschemes (Xi j) by means of the isomorphisms ψi j. For every i, let φi ∶Xi → X
be the canonical open immersion and let Ui be its image. By what precedes,
there exists a unique morphism φ∶Proj(A) → Pn

k such that φ∣D+(Ti) = φi ○ ψi
and it is an isomorphism.

Proposition (4.8.14). — Assume that A0 is a noetherian ring and that A is a
finitely generated A0-algebra.
a) For every strictly positive integer d, the ring⊕d∣nAn is noetherian;
b) The scheme Proj(A) is noetherian (ie, quasi-compact and locally noetherian);
c) For every finitely generated gradedA-moduleM, the Ã-module M̃ onProj(A)

is coherent.

Proof. — a) Let f1, . . . , fm be homogeneous elements of A such that A =
A0[ f1, . . . , fm]. By hypothesis, themorphismofA0-algebrasφ∶A0[T1, . . . , Tm]→
A such that φ(Ti) = fi for every i is surjective. Since the ring A0[T1, . . . , Tm] is
noetherian (theorem 1.9.3), so is A. This also implies that for every integer n,
the A0-module An is generated by the elements of the form f n1

1 . . . f nm
m such that

n1d1 + ⋅ ⋅ ⋅ + nmdm = n, hence is finitely generated.
Let d be a strictly positive integer and let us consider the graded ring A′ =
⊕d∣nAn. Writing ni = qid + ri , with 0 ⩽ ri < d, we have

f n1
1 . . . f nm

m = ( f d1 )q1 . . . ( f dm)qm( f r11 . . . f rmm ),

so that the A0-algebra A′ is generated by f d1 , . . . , f dm and by the finite set of
elements of the form f r11 . . . f rmm such that d divides∑ diri .
b) Let f be a homogeneous element of strictly positive degree and let us show

that the ring A( f ) is noetherian. The isomorphism A[T]/( fT − 1) ≃ A f implies
that A f is noetherian. If f has degree 1, then every element of A f can be written
uniquely under the form a f n, where a ∈ A( f ) and n ∈ Z, so that the ring A( f )
is isomorphic to the quotient of the ring A f by its (non-homogeneous) ideal
( f − 1). This implies that A( f ) is a noetherian ring. In fact, note that

A( f ) ≃ A f /( f − 1) ≃ A[T]/( fT − 1, f − 1) ≃ A[T]/(T − 1, f − 1) ≃ A/( f − 1).
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Let us now treat the general case; let d be the degree of f . Similarly, every
element of A f of degree divisible by d can be written uniquely under the form
a f n, where a ∈ A( f ) and n ∈ Z, so that the ring A( f ) is isomorphic to the quotient
of the graded ring A′f =⊕d∣n(A f )n by the (non-homogeneous) ideal ( f − 1). By
a), A′ is a noetherian ring, hence so are A′f and A( f ) ≃ A′f /( f − 1).

This shows that the affine open subscheme D+( f ) of Proj(A) is the spec-
trum of a noetherian ring. It first follows that Proj(A) is a locally noetherian
scheme. Since the ring A is noetherian, its ideal A+ is finitely generated, say
A+ = ( f1, . . . , fm). Consequently, one has Proj(A) = ⋃m

i=1D+( fi), which shows
that it is quasi-compact.
c) Let M be a finitely generated graded A-module. For every homogeneous

element f of strictly positive degree, say d, the restriction M̃∣D+( f ) identifies
with the quasi-coherent module on Spec(A( f )) associated with the A( f )-module
M( f ).
First assume that d = 1. In that case, M f is finitely generated as an A f -module.

Moreover, every element of M f can be written uniquely under the form f nm,
where m ∈M( f ) and n ∈ Z. Consequently, M f /( f − 1)M f is isomorphic to M( f ).
This implies that M( f ) is a finitely generated A( f )-module.
In the general case, one proves as above that M′ =⊕d∣nMd is finitely generated

as anA′-module, whereA′ =⊕d∣nAd . ThenM′f is a finitely generatedA
′
f -module,

and M( f ) =M′( f ) ≃M′f /( f − 1) is a finitely generated A( f )-module.
This proves that M̃ is a coherent Ã-module on Proj(A).

4.8.15. — Let A be a graded ring. The assignment M↦ M̃ is a functor from the
category of graded A-module to the category of quasi-coherent Ã-modules on
the homogeneous spectrum Proj(A). This functor is exact, but has less good
properties than the analogous functor on spectra (which is an equivalence of
categories). In particular, it is neither fully faithful, nor essentially surjective in
general.

Definition (4.8.16). — Let A be a graded ring and letM be a graded A-module.

a) We say thatM is almost null if there exists m ∈ N such that An = 0 for n ⩾ m.
b) We say thatM is almost finitely generated if there a finitely generated graded

submodule N ofM such thatM/N is almost null.
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c) A morphism u∶M → N of graded A-modules is said to be almost injective
(resp. almost surjective) if ker(u) is almost null (resp. if Coker(u) is almost null).

The class of almost null graded A-modules is a thick(2) subcategory of the
categoryModA, andwe can consider the quotient category obtained by inverting
all almost isomorphisms.

Proposition (4.8.17). — Let A be a graded ring and letM be a graded A-module.
a) IfM is almost null, then the quasi-coherent sheaf M̃ on Proj(A) is null.
b) IfM is almost finitely generated, then the quasicoherent sheaf M̃ is finitely

generated.

Proof. — a) Let us assume that M is almost null and let us prove that M̃ = 0.
It suffices to prove that all of its fibers are 0. So let x ∈ Proj(A) and let P be
the corresponding homogeneous prime ideal. By construction, elements of
M̃x are fractions of the form m/ f , where f ∈ A P is homogeneous of some
degree n > 0 and m ∈Mn. For every integer q, one has m/ f = mf q/ f 1+q; since
mf q ∈M(n+1)q, we have mf q = 0 for q large enough, so that m/ f = 0. We thus
have M̃x = 0 for all x ∈ Proj(A), hence M̃ = 0.
b) Let M′ be a graded submodule of M which is finitely generated and such

that M/M′ is almost null. By a), one then has M̃/M′ = 0, so that M̃′ ≃ M̃. It thus
suffices to prove that the quasi-coherent sheaf M̃′ is finitely generated. Changing
notation, we may thus assume that M itself is finitely generated.

Then, for every homogeneous element f whose degree is strictly positive, the
A( f )-module M( f ) is finitely generated

Proposition (4.8.18). — LetA be a graded ring whose irrelevant idealA+ is finitely
generated and letM be a graded A-module which is almost finitely generated.
If M̃ = 0, thenM is almost null.

Proof. — Let N be a finitely generated graded submodule of M such that M/N
is almost null. Then M̃/N = 0, so that M̃ = Ñ = 0, by exactness of the functor
M↦ M̃. It suffices to prove that N is almost null, so that we may assume that M
is finitely generated.
Let m be any homogeneous element of M, let n be its degree, and let J =

AnnA(m); this is a homogeneous ideal of A.

(2)Define?
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Let us prove that V+(J) = ∅. Let x ∈ Proj(A). We viewm as a global section µ
of M̃(n). Since A is generated by A1, one has M̃(n) = M̃ ⊗ O(n), and the
vanishing of M̃ implies that M̃(n) = 0. In particular, µ = 0. In particular,m/1 = 0
in the localized module Mx , which means that there exists a homogeneous
element f ∈ A such that f m = 0 and f /∈ Px . In other words, J /⊆ Px , hence
x /∈ V+(J).
As a consequence,

√
J = A+.

Applying this property to a finite family of homogeneous generators of M, we
conclude that

√
AnnA(M) = A+. Since the ideal A+ is finitely generated, there

exists an integer p ⩾ 0 such that (A+)p ⊆ AnnA(M).
Let T be a finite family of homogeneous generators of M and letm be an upper

bound for their degrees. By what precedes, we have Mn = 0 for every integer
n ⩾ m + p. Consequently, M is almost null.

Corollary (4.8.19). — Let A be a graded ring.
a) If A is almost null, then Proj(A) = ∅.
b) If Proj(A) = ∅ and if the ideal A+ is finitely generated, then A is almost null.

Proof. — Indeed, the equality Proj(A) = ∅means that Ã = 0. By the preceding
proposition, this holds if and only if A is almost null.

4.9. Locally free modules

4.9.1. — Let X be a scheme and let M be an OX-module. For every x ∈ X, let
dM (x) = dimκ(x)(Mx ⊗OX,x κ(x)).

Proposition (4.9.2). — Let X be a scheme and let M be a finitely generated
quasi-coherent OX-module. The function dM is upper semi-continuous: for every
n ∈ N, the set of points x ∈ X such that dM (x) ⩾ n is closed in X, and the set of
points x ∈ X such that dM (x) ⩽ n is open in X.

The result does not hold without the hypothesis that M finitely generated,
and quasi-coherent.

Proof. — We may assume that X is affine, say X = Spec(A); let M be the A-
module M (X). Let n ∈ N and let x ∈ X be such that dM (x) ⩽ n; let p be the
corresponding prime ideal of A. Let thus m1, . . . ,mn be elements of M which
generate M⊗A κ(p); let N be the submodule of M generated bym1, . . . ,mn. One
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has κ(p) = Ap/pAp; moreover, M⊗A κ(p) =Mp ⊗Ap
κ(p), and similarly for N.

Consequently, we have
Mp = Np + pMp.

By Nakayama’s lemma (corollary 1.3.3), this implies the equality Mp = Np.
Let (xi) be a finite generating family for M; for every i, there exists si ∈ A p

such that sixi ∈ N. Let s be the product of the si ; one has sxi ∈ N for every i, hence
sM ⊆ N. Consequently, Ms is generated by the family (m1/1, . . . ,mn/1). There-
fore, for every y ∈ D(s), M⊗A κ(py) is generated by the images of m1, . . . ,mn,
so that dM (y) ⩽ n.

4.9.3. — If M is free, i.e., if there exists a set I such that M ≃ O(I)X , then
dM (x) = Card(I) for every x ∈ X: the function dM is constant on X.
Recall that one says that M is locally free if, for every x ∈ X, there exists

an open neighborhood U of x such that M ∣U is a free OX∣U-module. In that
case, the function dM is locally constant on X. If, moreover, dM (x) is finite for
every x ∈ X, then M is finitely generated and one says that M is locally free of
finite rank. One says that M is locally free of rank n if it is locally free and if
dM (x) = n for every point x ∈ X.
When X = Spec(A) is affine and M is an A-module, one says that M is locally

free (resp. locally free of rank n) if theOX-moduleM is locally free (resp. locally
free of rank n).

Proposition (4.9.4). — Let A be a ring, let X = Spec(A), and let M be an A-
module. The following properties are equivalent:
(i) The OX-module M̃ is locally free of finite rank;
(ii) The A-moduleM is finitely generated and projective.
(iii) There exists an integer n and an A-module N such thatM⊕N ≃ An.
(iv) The A-module M is finitely presented, and for every p ∈ Spec(A), the

Ap-moduleMp is free;
(v) For every p ∈ Spec(A), there exists an element f ∈ A p such thatM f is a

finitely generated free A f -module;

Proof. — (i)⇒(ii). Let p∶N→ N′ be a surjective morphism of A-modules and
let f ∶M→ N′ be a morphism of A-modules. We need to show that there exists a
morphism g∶M→ N such that f = p○ g. To that aim, let us set P = HomA(M,N),
P′ = HomA(M,N′), and let p∗∶P→ P′ be the morphism of A-modules induced
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by p. It suffices to prove that p∗ is surjective and, to that aim, that the morphism
of sheaves p̃∗∶ P̃→ P̃′ is surjective. Since M is finitely generated, the canonical
morphism from P̃ to HomOX(M̃, Ñ) is an isomorphism, as is the canonical
morphism from P̃′ to HomOX(M̃, Ñ′) Let f is an element of A such that M̃∣D( f )
is free; then p̃∗∣D( f ) is surjective. This implies that p̃∗∶ P̃ → P̃′ is a surjective
morphism of quasi-coherent OX-modules. In particular, the morphism p∗ =
p̃∗(X)∶P→ P′ is surjective, as was to be shown.
(ii)⇒(iii). This follows from proposition 2.7.2, (ii)⇒(iii).
(iii)⇒(iv). Since they are isomorphic to a quotient module of An, both A-

modules M and N are finitely generated; consequently, M is finitely presented.
For every p ∈ Spec(A), one has an isomorphism Mp ⊕Np ≃ An

p . In particular,
Mp is a finitely generated projective Ap-module, hence is free (theorem 2.7.4).
(iv)⇒(v). Let p ∈ Spec(A), let n ∈ N and let m1, . . . ,mn be elements

of M such that (m1/1, . . . ,mn/1) is a basis of Mp. Let φ∶An → M be the
morphism of A-modules defined by φ(a1, . . . , an) = ∑ aimi. One has
Coker(φ)p = Coker(φp) = 0. Since M is finitely generated, Coker(φ) is finitely
generated too, hence there exists an element f ∈ A p such that Coker(φ) f = 0.
This implies that φ f is surjective. Then, M f being finitely presented, the kernel
of φ f is finitely generated. Moreover, one has Ker(φ f )p = 0. Consequently, there
exists g ∈ A p such that Ker(φ f g) = Ker(φ f )g = 0. This implies that φ f g is an
isomorphism. Consequently, M f g is free and finitely generated.
(v)⇔(i). The quasi-coherent sheaf M̃ on X associated to a free A-module

M = A(I) is isomorphic to Ã(I), so that M̃ is free if and only if M is free. Moreover,
M̃ is finitely generated if and only if M is finitely generated. Let now f ∈ A.
Applying this remark to the A f -module M f , we see that the OX∣D( f )-module
M̃∣D( f ) is free of finite rank if and only if M f is free and finitely generated. This
shows that (i) and (v) are equivalent.

Corollary (4.9.5). — Let A be a principal ideal domain and let X = Spec(A).
Every locally free OX-module of rank n is trivial, i.e., is isomorphic to On

X.

Proof. — If A is a principal ideal domain and m is an integer, then every sub-
module of Am is free.

Corollary (4.9.6). — Let X be a scheme, let M and N be locally free finitely
generated OX-modules and let φ∶M →N be a surjective homomorphism. Then
Ker(φ) is locally free; moreover, if X is affine, then φ has a section.
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Proof. — Let us first assume that X is affine. Let A = OX(X), let M =M (X)
and N =N (X), and let f ∶M→ N be the morphism φ(X). The A-modules M
and N are finitely generated and projective, and the morphism f is surjective.
In particular, there exists a morphism g∶N → M such that f ○ g = idN, hence
M is isomorphic to N ⊕ Ker( f ). Since M is projective and finitely generated,
there exists an integer m and an A-module M′ such that M ⊕M′ ≃ Am; then
(M′ ⊕N) ⊕ Ker( f ) ≃ Am, which shows that Ker( f ) is projective and finitely
generated. In this case, this shows that Ker(φ) is a finitely generated locally free
OX-module, and that φ has a section.
In general, this implies that for every affine open subscheme U of X, Ker(φ)∣U

is a finitely generated locally free OX∣U-module. Consequently, Ker(φ) is a
finitely generated locally free OX-module, as claimed.

Proposition (4.9.7). — Let X be a scheme and let M be a quasi-coherent OX-
module of finite presentation.
a) If M is locally free, then the function x ↦ dM (x) on X is locally constant.
b) Conversely, if X is reduced and the function dM is locally constant, then M

is locally free.

Proof. — If M is free, then dM is constant. It thus suffices to prove that M is
locally free if dM is constant and X is reduced. We may even assume that X is an
affine scheme. Let then A = OX(X) and M =M (X); the ring A is reduced, the
A-module M is finitely presented and we need to prove that it is locally free of
rang n, assuming that for every p ∈ Spec(A), one has dimκ(p)(M⊗A κ(p) = n.
By proposition 4.9.4, we need to prove that for every prime ideal p of A, the
Ap-module Mp is free of rank n. Replacing A by Ap and M by Mp, we may thus
assume that A is a local ring; letm be its maximal ideal.
Let (m1, . . . ,mn) be elements of M whose images in M ⊗A κ(m) constitute

a basis of that vector space. Let f ∶An → M be the morphism of A-modules
given by f (a1, . . . , an)∑ aimi. One has M = Im( f ) +mM, by assumption; it
thus follows from Nakayama’s lemma (corollary 1.3.3) that f is surjective. Let
N be its kernel. Let p be a prime ideal of A. Let f (p)∶ κ(p)n → M ⊗A κ(p) be
the morphism deduced from f ; it is surjective by right exactness of the tensor
product; since, M ⊗A κ(p) has dimension n, by assumption, this implies that
f (p) is an isomorphism. Now, the injection j from N to An induces a mor-
phism j(p)∶N→ κ(p)n whose image is zero, since it is contained in Ker( f (p)).
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Necessarily, N ⊆ pn. This holds for every prime ideal p ∈ Spec(A), and the
intersection of them is {0}, because A is reduced. Consequently, N = 0 and f is
an isomorphism.

4.9.8. — All standard constructions from linear algebra (direct sums of mod-
ules over some ring, tensor products, symmetric and exterior powers, sheaves of
homomorphisms, duals,. . . ) associate free modules with free modules. Thanks
to the above proposition, they translate from the context of free modules over a
ring to that of locally free sheaves of finite rank over a scheme.
Assume that M and N are locally free sheaves of ranks m and n on X. Then

M ⊕N is locally free of rank m + n; Hom(M ,N ) and M ⊗N are locally
free of rankmn. In particular, M ∨ =H omOX(M ,OX) is locally free of rankm;
moreover, the canonical morphism from M ∨ ⊗OX N to H omOX(M ,N ) is
an isomorphism. For every integer p ⩾ 0, the exterior power ⋀p M is locally
free of rank (mp), and the symmetric power SpM is locally free of rank (m+p−1p ).
In particular, the ‘‘maximal’’ exterior power of M is locally free of rank 1;

it is called the determinant of M and is denoted by det(M ). One has an
isomorphism det(M ⊕N ) ≃ det(M )⊗ det(N ).

Proposition (4.9.9). — Let X be a scheme and let M be a quasi-coherent OX-
module. The following properties are equivalent:
(i) The OX-module M is locally free of rank 1;
(ii) The canonical morphism M ∨ ⊗OX M → OX is an isomorphism;
(iii) There exists a quasi-coherent OX-module N such that M ⊗OX N is iso-

morphic to OX.

Proof. — (i)⇒(ii). We may assume that M is free, hence possesses a frame (ε);
then M ∨ is free as well, and possesses a frame (φ), characterized by the relation
φ(ε) = 1. The indicated canonicalmorphismmaps (aφ)⊗(bε) to ab; it identifies
with the isomorphism of OX⊗OX with OX.
(ii)⇒(iii). Indeed, one may take N =M ∨.
(iii)⇒(i). We may assume that X is affine, say X = Spec(A); then M =M (X)

and N = N (X) are two A-modules such that there exists an isomorphism
φ∶M⊗A N ≃ A.
Let us assume for the moment that there exists a split tensor m ⊗ n such that

φ(m ⊗ n) = 1. Let us consider the unique morphism ψ from M ⊗A N ⊗A M
to M such that ψ(x , y, z) = φ(z ⊗ y)x for every x ∈M, y ∈ N and z ∈M. Now,
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if x ∈ M is such that x ⊗ n = 0, one has x = ψ(x ⊗ n ⊗m) = ψ(0) = 0. Then,
for every x ∈ M, the element x′ = x − φ(x ⊗ n)m of M satisfies φ(x′ ⊗ n) =
φ(x ⊗ n) − φ(x ⊗ n)φ(m ⊗ n) = 0; since φ is an isomorphism, one has x′ ⊗ n,
hence x′ = 0. This shows that the map fromM to A given by x ↦ φ(x ⊗ n) is an
isomorphism, with inverse given by a ↦ am. Consequently, m is a basis of M.
In general, since φ is an isomorphism, there exist families (mi) and (ni) of

elements of M and N respectively such that φ(∑mi ⊗ ni) = 1. For every i, let us
set ai = φ(mi⊗ni). By localization, φ induces an isomorphism φa i ∶Ma i⊗Aai

Na i ,
which maps the split tensor a−1i mi ⊗ ni in Ma i ⊗Aai

Na i to 1. Consequently, Ma i
is a free Aa i-module of rank 1.
Since 1 = ∑ ai, the open subsets D(ai) cover Spec(A). Consequently, M is

locally free of rank 1.

4.9.10. — Let X be a scheme. In view of the preceding proposition, a locally
free OX-module of rank 1 is also called an invertible sheaf. Let Pic(X) be the set
of isomorphism classes of invertible sheaves. The tensor product of OX-modules
endowes Pic(X) with the structure of a group. The neutral element is the class
of the sheaf OX. If M is an invertible sheaf, the inverse of the class of M is the
class of its dual M ∨.

4.9.11. Locally free sheaves and cohomology. — Let X be a scheme, let n be
an integer and let M be a locally free OX-module of rank n on X.
LetU be an covering of X by open subschemes of X. We say thatM isU -free

on U if for every open subscheme U ∈ U , the restriction M ∣U is free, i.e., is
isomorphic to OX∣nU.
Let us assume that this is the case. For every U ∈ U , let us choose an isomor-

phism sU∶On
U →M ∣U.

Let U,V ∈ U . Since sU∣U∩V and sV∣U∩V are two isomorphism from On
U∩V

to M ∣U∩V, there exists a unique isomorphism AUV ∈ GL(n,O(U ∩ V)) such
that sU∣U∩V ○AUV = sV∣U∩V. Let U, V,W ∈ U ; on U ∩V ∩W, one has

sU ○AUW = sW = sV ○AVW = sU ○AUV ○AVW;

consequently, the family z1(s) = (AUV)U,V∈U satisfies the following cocycle rela-
tion:

AUW = AUVAVW in GL(n,O(U ∩V ∩W)).
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In particular, one has AUU = In and AUV = A−1VU. Let Z1(U , GL(n)) be the set of
all families (AUV) satisfying this cocycle relation. An element of Z1(U , GL(n))
is called a Čech 1-cocycle with values in GL(n) on X, and the element z1(s) is
called the Čech 1-cocycle associated to the family s = (sU)U∈U of trivializations.
Let (tU)U∈U be another family, where tU is an isomorphism from On

U to M ∣U.
For every U ∈ U , there exists a unique matrix BU ∈ GL(n,O(U)) such that
tU = sU ○ BU. Let then (U,V) be a pair of elements of U ; on U ∩V, one has

tV = sV ○ BV = sU ○AUV ○ BV = tU ○ B−1U ○AUV ○ BV.

Consequently, the Čech 1-cocycle z1(t) associated to the family t = (tU)U∈U is
given by

z1(t) = (B−1UAUVBV)U,V∈U .

Let B1(U , GL(n)) be the set of families (BU)U∈U , where BU ∈ GL(n,O(U)).
This is a group, and this group acts on Z1(U , GL(n)) by the above formula:
(BU) ⋅ (AUV) = (B−1UAUVBV). The set of equivalence classes is denoted by
H1(U , GL(n)) and is called the first set of Čech cohomology of U with values
in GL(n).

The set Z1(U , GL(n)) admits a privileged element, namely the 1-cocycle given
by AUV = In for every pair (U,V). Its class in H1(U , GL(n)) is called the trivial
class.
When n = 1, the set Z1(U , GL(n)) has a natural structure of an abelian groups,

and the abelian group B1(U , GL(n)) acts on Z1(U , GL(n)) via a morphism of
groups. Consequently, the set H1(U , GL(n)) has a natural of an abelian group;
the trivial class is its neutral element.

Theorem (4.9.12). — Let X be a scheme and let U be an open covering of X. The
previous construction furnishes a bijection cU from the set of isomorphism classes
of U -free sheaves of rank n on X to the set H1(U , GL(n)). When n = 1, this
bijection is an isomorphism of abelian groups.

4.9.13. — Let us define a category whose objects are open coverings of X. Let
U and V be open coverings of X; call any map j∶U → V such that U ⊆ j(U)
for every U ∈ U . amorphism from U to V . Such a map j exists if and only the
open covering U is finer than the open overing V .
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Moreover, the map j allows to define maps

j∗∶Z1(V , GL(n))→ Z1(U , GL(n)),(4.9.13.1)
j∗∶B1(V , GL(n))→ B1(U , GL(n)),(4.9.13.2)

and
j∗∶H1(V , GL(n))→ H1(U , GL(n)).(4.9.13.3)

In fact, associating to a given open covering U the set of Čech cocycles and the
first Čech cohomology group is a contravariant functor from the category to
open coverings to the category of (pointed) sets, and to the category of groups
when n = 1.
Finally, we define the first Čech cohomology set of X with values in GL(n) by

the colimit
H1(X,GL(n)) = limÐ→

j∗
H1(U , GL(n)),

indexed by the category of open coverings of U .

Corollary (4.9.14). — There exists a unique map M ↦ c(M ) from the set of
locally free sheaves of rank n on X toH1(X,GL(n)) such that c(M ) is the class of
the Čech cohomology class c(U ,M ), for every open covering U of X and every
U -trivial sheaf of rank n,M . It is bijective, and an isomorphism of abelian groups
if n = 1.

Proof. — Weobserve that if j∶U → V is amorphismof open coverings of X and
M is a locally free sheaf of rank n on X which is V -trivial, then j∗(cV (M )) =
cU (M ). This implies the existence of the map M ↦ c(M ). Its bijective
character follows from the fact that the maps cU are bijective, and that for every
locally free sheaf of rank n, M , on X, there exists an open covering U such that
M is U -trivial.

Remark (4.9.15). — The constructions from linear algebra described in §4.9.8
associate free modules with free modules. on locally free sheaves of finite rank
have a reflection on cohomology classes. For example, if M and N are locally
free sheaves of ranks m and n on X, and U is an open covering of X such that
M and N are U -trivial, then M ⊕N , H omOX , M ⊗N ,. . . are U -trivial as
well.
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For example, assume that M and N are represented by cocycles zU (N ) ∈
Z1(U , GL(m)) and zU (N ) ∈ Z1(U , GL(n)), associated with given trivial-
izations. The proof that M ⊕ N , etc., are U -trivial furnishes explicit U -
trivializations of these OX-modules, hence a particular cocycle. More precisely,
the following formulas hold:

zU (M ⊕N ) = (zU (M )
zU (N )

) ,(4.9.15.1)

zU (M ∨) = (zU (M ∨)t)−1(4.9.15.2)
zU (M ⊗N ) = zU (M )⊗ zU (N ) (Kronecker product),(4.9.15.3)
zU (det(M )) = det(zU (M )), . . .(4.9.15.4)

Remark (4.9.16) (Comparison with differential geometry)
Let M be a C k-manifold; denote its sheaf of C k-functions by C k

X . Let n be
an integer. A vector bundle of rank n on M is a manifold E endowed with a
morphism p∶E→M, structures of real vector spaces on the fibers Ex = p−1(x),
for x ∈ M, satisfying the following local triviality property: for every point x
of M, there exists an open neighborhood U of x, an isomorphism of manifolds
φU∶ p−1(U)→ Rn ×U such that pr2 ○φU = pU and such that for every y ∈ U, the
map pr1 ○φU induces a linear bijection from p−1(y) to Rn.
Given an open covering U of M and such a trivialization φU, for every open

subset U ∈ U , one defines a C k-map fUV∶U ∩ V → GL(n,R), for every pair
(U,V) of elements of U . Equivalently, one can view fUV as an element of
GL(n,C k(U ∩ V)). The family ( fUV) satisfies the cocycle relation: on U ∩
V ∩W, one has fUV fVW = fUW. The cohomology classes of this cocycle in
H1(U , GL(n)) and in H1(X,GL(n)) do not depend on the choice of the local
trivializations φU and on the chosen open covering U .
Let then E be the sheaf of C k-sections of E: for every open subset U of X,

E (U) is the set of all C k-morphisms s∶U→ E such that p ○ s = idU. The vector
space laws on the fibers p−1(m) endow this sheaf with the structure of a sheaf in
R-vector spaces. In fact, it is naturally a C k

M-module, and this module is locally
free of rank n.

The sheaf of sections of a projection pr2∶Rn ×U→ U identifies with the sheaf
(C k

U)n. Consequently, the trivialization φU of E on an open set U ∈ U gives rise
to an isomorphism of E ∣U with C k

U. In particular, E is U -trivial; moreover its
cohomology class coincides with that of E.
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Conversely, given a locally free sheafF of rank n onM, one can define a vector
bundle of rank n on M whose sheaf of sections is equal to F . For that, it suffices
to choose an open covering U of M such that F is U -trivial, trivialisations
sU, for U ∈ U , and to use the associated cocycle zU (F ) to glue trivial vector
bundles Rn ×U.

This more geometric point of view on locally free sheaves given by the notion
of vector bundle has an analogue in algebraic geometry.
Namely, if X is a scheme, a vector bundle of rank n on X is a scheme E endowed

with an affine morphism p∶E → X, a locally free sheaf of rank n, E , and an
isomorphism Sym∗ E ∼Ð→ p∗OE of quasi-coherent OX-algebras. Then the sheaf
of sections of p is isomorphic to the dual sheaf E ∨ of E , and the X-scheme E is
isomorphic to the spectrum Spec(Sym∗ E ∨) of the quasi-coherent OX-algebra
Sym∗ E ∨.

The reason for this duality can be explained as follows. Observe that if k is a
ring, thenAn

k ≃ Spec(k[T1, . . . , Tn]), and k[T1, . . . , Tn] is the symmetric algebra
on a free k-module V of rank n, and then, T1, . . . , Tn are linear forms on V.

4.10. Invertible sheaves and divisors

Proposition (4.10.1). — Let A be a unique factorization domain and let K be its
field of fractions.
a) If dim(A) = 1, then A is a principal ideal domain.
b) Let x ∈ K be such that x ∈ Ap for every prime ideal p of height 1 in A. Then

x ∈ A.

Proof. — a) Let a, b be non-zero elements of A; assume that a and b are
coprime and let I = (a, b). Assume that I ≠ A and let p be a maximal ideal
of A containing I. Since dim(A) = 1, one has ht(p) = 1. Since A is a unique
factorization domain, there exists an irreducible element π ∈ A such that p = (π);
this implies that π∣a and π∣b, and contradicts the hypothesis that a and b are
coprime. Consequently, I = A. More generally for every pair (a, b) of non-zero
elements of A, the ideal (a, b) they generate is the principal ideal generated by
their gcd.
For any non-zero element a ∈ A, let ν(a) denote the number of irreducible

factors of a, counted with multiplicities. One thus has ν(a) = 0 if a is a unit,
ν(a) = 1 if a is irreducible, and ν(ab) = ν(a) + ν(b). Let I be a non-zero ideal
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of A and let a ∈ I {0} be an element such that ν(a) is minimal. Let b ∈ I {0}
and let d = gcd(a, b). One has d ∈ (a, b) ⊆ I, and ν(d) ⩽ ν(a). By the choice
of a, one has ν(d) = ν(a). Since d divides a, this implies that there exists a
unit u ∈ A× such that a = ud; then a∣b. We thus have shown that I = (a).
b) Let us write x = a/b, where a, b are coprime elements of A. Let π be an

irreducible factor of b. The ideal (π) is prime, and its height is equal to 1. By
assumption, there exists c ∈ A (π) such that cx ∈ A. Set d = cx; one has
ac = bd. Since π divides b, it is prime to a; since it divides ac it divides c. This
contradiction imples that no irreducible element of A divides b, so that b is a
unit. We thus have shown that x ∈ A.

4.10.2. — Let X be an integral noetherian scheme and let K = R(X) be the
field of rational functions on X. Let us moreover assume that OX,x is a unique
factorization domain, for every x ∈ X.
Let X(1) be the set of points x ∈ X such that dim(OX,x) = 1. The closure {x} of a

point x ∈ X(1) is an integral closed subscheme of codimension 1 in X; conversely,
the generic point of an irreducible closed subset of X belongs to X(1).
Let x ∈ X(1). By proposition 4.10.1, the local ring OX,x is a principal ideal ring

with field of fractions R(X). Let px be any generating element of the maximal
ideal of OX,x . For every non-zero element f of R(X), there exists a unique
integer n ∈ Z such that f /pnx is a unit in OX,x ; we denote this integer by ordx( f )
and we call it the order of vanishing of f along D, where D = {x}. The map
ordx ∶R(X)× → Z given by f ↦ ordx( f ) is a morphism of abelian groups.

Lemma (4.10.3). — Let f ∈ R(X)×.
a) The set of elements x ∈ X(1) such that ordx( f ) ≠ 0 is finite;
b) One has f ∈ OX(X) if and only if ordx( f ) ⩾ 0 for every x ∈ X(1);
c) One has f ∈ OX(X)× if and only if ordx( f ) = 0 for every x ∈ X(1);

Proof. — a) There exists non-empty open subscheme U of X such that f
belongs to the image of O(U)× in R(X)×. One has ordx( f ) = 0 for every
point x ∈ X(1) ∩U. Since X is noetherian, the closed subset X U has finitely
many irreducible components, all of codimension ⩾ 1; in particular X(1)∩(X U)
is finite.
b) If f ∈ OX(X), then f ∈ OX,x for every x ∈ X; in particular, ordx( f ) ⩾ 0 for

every x ∈ X(1). Conversely, assume that ordx( f ) ⩾ 0 for every x ∈ X(1). Let y
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be a point of X; it follows from proposition 4.10.1 that f ∈ OX,y. Consequently,
f ∈ OX(X).
c) Let g = f −1. One has f ∈ OX(X)× if and only if f ∈ OX(X) and g ∈ OX(X). It

thus follows from b) that f ∈ OX(X)× if and only if ordx( f ) ⩾ 0 and ordx(g) ⩾ 0
for every x ∈ X(1). Since ordx(g) = −ordx( f ) for every x ∈ X(1), this is equivalent
to ordx( f ) = 0 for every x ∈ X(1).

4.10.4. — Let Div(X) = Z(X(1)) be the free abelian group on X(1); an element
of Div(X) is called a cycle of codimension 1, or a divisor, on X. Formally, a divisor
is a function with finite support from X(1) to Z, but it is customary to write a
divisor under the form∑ nDD, where D ranges over the set X(1) or, equivalently,
over the set of irreducible closed subsets of codimension 1 in X.
A divisor∑ nDD is said to be effective if nD ⩾ 0 for every D.
By the preceding lemma, there is a morphism of abelian groups

div∶R(X)× → Div(X), div( f ) = ∑
x∈X(1)

ordx( f )[x].

Moreover, f ∈ OX(X) if and only if div( f ) is effective; and f ∈ OX(X)× if and
only if div( f ) = 0.
Let U be a non-empty open subscheme of X. Then U(1) = U ∩ X(1), and the

restriction of functions induces a morphism of abelian groups from Div(X)
to Div(U). Similarly, the generic point of X belongs to U and the restriction
map from R(X) to R(U) induces an isomorphism of fields. For every f ∈ R(X)×,
one has

divX( f )∣U = divU( f ∣U).
In particular, f ∈ OX(U) if and only if div( f )∣U is effective, and f ∈ OX(U)× if
and only if div( f )∣U = 0.

Lemma (4.10.5). — Let X be a noetherian integral scheme, let ξ be its generic
point, let L be an invertible OX-module. There exists a unique map

Lξ {0}→ Div(X), s ↦ div(s)
such that, for every open subset U of X, every basis ε of L ∣U, and every rational
function f on X, div( f ε)∣U = div( f )∣U.

Proof. — By definition of an invertible OX-module, the scheme X is covered
by open subsets U such that L ∣U has a basis ε; then the map f ↦ f εξ is a
bijection from R(X) to Lξ. The given formula thus defines div(s)∣U, hence the
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uniqueness of such a map. To prove its existence, let ε′ be a second basis of L ∣U.
Then there exists an element u ∈ OX(U)× such that ε′ = uε, hence div(u)∣U = 0.
For f , f ′ ∈ R(X)×, the relation f ε = f ′ε′ is equivalent to the relation f = u f ′; it
implies that

div( f )∣U = div(u)∣U + div( f ′)∣U.

Lemma (4.10.6). — Let A be a unique factorization domain and let M be an
invertible A-module. Let f and g be coprime elements of A; such thatM f andMg
are free. ThenM is free.

Proof. — Let m, n be elements such that m/1 is a basis of M f and n/1 is a basis
of Mg . Then m/1 and n/1 are bases of M f g , hence there exists an invertible
element a/b ∈ A×f g such that (a/b)n/1 = m/1. Since M is torsion-free, this
implies an = bm, and we may moreover assume that a and b are coprime. The
irreducible factors of a and b are among those of f g; let us write a = a1a2 and
b = b1b2, where the irreducible factors of a1 and b1 divide f , and the irreducible
factors of a2 and b2 divide g. Then a1a2n = b1b2m b2m/1 = (a1a2/b1)n/1 in Mg ,
so that b1 divides a1a2 in Ag , hence b1 divides a1, hence we may assume that
b1 = 1. Similarly, we may assume that a2 = 1. In other words, the irreducible
factors of b divide g, and those of a divide f . Now, an/1 generates M f , and
bm/1 generates Mg . This implies that the restriction of the invertible sheaf M̃ to
Spec(A) V( f , g) is free.

4.10.7. — Let X be a locally noetherian integral scheme. For simplicity, we
assume that X is noetherian and integral. Let κ(X) be its field of fractions;
this is the local ring of X at its generic point. Let also MX be the constant
sheaf on X with value κ(X): for every non-empty open subset U of X, one has
MX(U) = κ(X). If U is affine, say U = Spec(A), then κ(X) = Frac(A) is an
A-algebra, and MX∣U = κ̃(X); in particular, MX is a quasi-coherent OX-module.

Theorem (4.10.8). — LetA be a unique factorization domain and letX = Spec(A).
Then Pic(X) = 0: every invertible sheaf on X is free.

Proof. — Let L be an invertible OX-module. Let U be an open covering of X
such that L is U -trivial; since X is quasi-compact, we may also assume that U
is finite and that every open subset U ∈ U is of the form D(a), for some a ∈ A.
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Let us show the following result: let a1, a2 ∈ A be non-zero elements and
let a be their gcd; if L ∣D(a1) and L ∣D(a2), then L ∣D(a) is trivial. For i ∈ {1, 2},
let indeed si be an isomorphism from OX∣D(a i) to L ∣D(a i); let f be the unique
element of OX(D(a1) ∩D(a2)) such that s1∣D(a1)∩D(a2) = f s2∣D(a1)∩D(a2).
(Unfinished)

4.11. Graded modules and quasi-coherent sheaves on homogeneous spectra

Lemma (4.11.1). — Let k be a ring and letA be a graded k-algebra; letX = Proj(A).
LetM be a graded A-module, let d be an integer such that d ⩾ 0.
a) There exists a uniquemorphism of quasi-coherent sheaves, θ∶ M̃⊗OXOX(d)→

M̃(d), such that θ((m/ f p) ⊗ (g/ f q)) = gm/ f p+q for every homogeneous ele-
ment f ∈ A+, every homogeneous element g ∈ A such that deg(g) = q deg( f ) + d,
and every homogeneous element m ∈M such that deg(m) = pdeg( f ).
b) For every m ∈Md , there exists a unique section sm ∈ Γ(X, M̃(d)) such that

sm∣D+( f ) = m/1, for every f ∈ A+. The map m ↦ sm is a k-morphism from Md

to Γ(X, M̃(d)).
c) Let f ∈ Ad . The section s f ∣D+( f ) is a basis of OX(d)∣D+( f ), and the restriction

to D+( f ) of the morphism θ is an isomorphism.

Proof. — a) The given formula describes the restriction of θ to an arbitrary
affine open subset D+( f ). It thus suffices to check that these requirements are
compatible, a verification left to the reader.(3)
b) This is straightforward.
c) Let us first prove that for every open subscheme U of D+( f ), and every

section s ∈ Γ(U, M̃(d)), there exists a unique element t ∈ Γ(U, M̃) such that
s = θ(t ⊗ s f ). We may assume that there exists g ∈ A+ such that U = D+( f g);
then there exists an homogeneous element m ∈M such that s = m/( f g)p, and
d = deg(m)− pdeg( f )− pdeg(g). The formula s = f (gm)/( f g)p+1 expresses s
as θ(t⊗s f ), where t ∈ Γ(U, M̃) is represented by (gm)/( f g)p+1, a homogeneous
fraction of degree 0. Since A( f ) is a subring of A f in which the element f is
invertible, this is the unique such expression.
Applied to M = A, this shows that s f is a basis of OX(d)∣D+( f ).

(3)...!



220 CHAPTER 4. SCHEMES

Proposition (4.11.2). — Let k be a ring and let A be a graded k-algebra which is
generated by A1 as an A0-algebra; let X = Proj(A).
a) For every integer d ∈ Z, the quasi-coherent sheaf OX(d) is invertible.
b) For every graded A-moduleM and every integer d, the canonical morphism

θ∶ M̃⊗OX(d)→ M̃(d) is an isomorphism.
c) In particular, for every pair (d , e) of integers, one has an isomorphism

OX(d)⊗OX(e) ≃ OX(d + e).

Proof. — Let d ∈ N. For every f ∈ A1, the restriction of OX(d) to the open
subscheme D+( f ) = D+( f d) of X is locally free of rank 1. Since A is generated
by elements of A1, these affine open subschemes consistute an open covering
of X, so that OX(d) is locally free of rank 1. For the same reason, the morphism
θM∶ M̃⊗OX(d)→ M̃(d) is an isomorphism. In particular, for every integer e ∈ Z,
themorphism θA(e) is an isomorphism fromOX(e)⊗OX(d) toOX(d+e). Taking
e = −d, this implies thatOX(−d) is isomorphic to the dual ofOX, hence is locally
free of rank 1 as well.

This establishes the proposition, except for the isomorphism of part c) when
d < 0. To prove this remaining case, we can start from the isomorphismOX(e) ≃
OX(−d)⊗OX(d+ e); tensoring both sides byOX(d), we obtain an isomorphism

OX(d)⊗OX(e) ≃ OX(d)⊗OX(−d)⊗OX(d + e),
hence the required isomorphism if we use the fact that OX(d) ⊗ OX(−d) is
isomorphic to OX.

Example (4.11.3). — Let k be a ring; the case of X = Pn
k = Proj(k[T0, . . . , Tn])

is extremly important for algebraic geometry. The graded k-algebra
A = k[T0, . . . , Tn] being generated by elements of degree 1, namely, T0, . . . , Tn,
the quasi-coherent sheaf OX(1) is locally free of rank 1.
Moreover, let us show that for every integer d, the k-linear morphism P↦ sP

from Ad to Γ(Pn
k ,OX(d)) is an isomorphism; in particular, Γ(Pn

k ,OX(d)) = 0
for d < 0. Let thus σ ∈ Γ(Pn

k ,OX(d)). For every i ∈ {0, . . . , d}, there is a unique
polynomial Pi ∈ k[T0/Ti , . . . , Tn/Ti] such that σ ∣D+(Ti) = Pis⊗dTi

. On D+(TiT j),
one thus has sTi = (Ti/T j)sT j , leading to the equality PiTd

i = P jTd
j of rational

functions. Let P be this common rational function; looking at the formula
P = PiTd

i , we see that its denominator is a power of Ti; but switching to j ≠ i
shows that its denominator is a power of T j. Consequently, P is a polynomial.
Since Pi is homogeneous of degree 0, P is homogeneous of degree d; in particular,
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one has P = 0 if d < 0, and σ = 0. Finally, viewed as an element of A(d)(Ti)
, one

has sTi ∣D+(Ti) = Ti/1, hence σ ∣D+(Ti) = PiTd
i /1 = P/1, so that σ ∣D+(Ti) = sP∣D+(Ti);

consequently, σ = sP, and the polynomial P is the unique one such that this
relation holds.

4.11.4. — Let us assume that A is generated by A1 as an A0-algebra. For every
quasi-coherent sheaf F on Proj(A), we define a graded abelian group by

Γ(F ) =⊕
n∈Z

Γ(Proj(A),F (n)).

Any homogeneous element a ∈ A of degree m defines a global section of O(m);
consequently, for m ∈ Γ(Proj(A),F (n)), we have a ⊗m ∈ Γ(Proj(A),F (m +
n)). This endows the graded abelian group Γ(F ) with the structure of a graded
A-module.

The association F ↦ Γ(F ) is functorial.

4.11.5. — Let M be a graded A-module. There is a canonical morphism of
graded A-modules αM∶M→ Γ(M̃). It associates with a homogeneous element
m ∈Mof degree n the corresponding global section of M̃(n)). Thesemorphisms
are functorial in M.
Let F be a quasi-coherent sheaf on Proj(A). Let f ∈ A be a homogeneous

element with degree n > 0. On D+( f ), a section of Γ̃(F ) takes the form
s/ f p, where s ∈ Γ(Proj(A),F (np)). On the other hand, we may view f as a
global section of O(n), and it does not vanish on D+( f ), so that s/ f p may be
interpreted as a section of F on D + ( f ). This defines a morphism of sheaves
βF ∶ Γ̃(F )→F . It is functorial in F .
For any graded A-module M, one has

βM̃ ○ α̃M = idM̃ .

For any quasi-coherent sheaf F on Proj(A), one has
Γ(βΓ(F )) ○ αΓ(F ) = idΓ(F ) .

Proposition (4.11.6). — Assume that the ideal A+ is generated by finitely many
elements of degree 1. Then, for every quasi-coherent sheaf F on Proj(A), the
morphism βF ∶ Γ̃(F )→F is an isomorphism.

Corollary (4.11.7). — Assume that the ideal A+ is generated by finitely many
elements of degree 1.
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a) Every quasi-coherent sheaf on Proj(A) is of the form M̃, for some graded
A-moduleM.
b) Every finitely generated quasi-coherent sheaf on Proj(A) is of the form M̃,

for some finitely generated graded A-moduleM.



CHAPTER 5

MORPHISMS OF SCHEMES

5.1. Morphisms of finite type, morphisms of finite presentation

Definition (5.1.1). — Let A be a ring and let B be an A-algebra. One says that B
is a finitely presented A-algebra if there exists a family (b1, . . . , bn) of elements
of B such that the unique morphism of A-algebras φ∶A[T1, . . . , Tn]→ B such that
φ(Ti) = bi for every i is surjective and its kernel is a finitely generated ideal.

Recall that one says that B is a finitely generated A-algebra if there exists a finite
family (b1, . . . , bn) of elements of B such that the morphism φ∶A[T1, . . . , Tn] of
A-algebras such that φ(Ti) = bi for every i is surjective.
If the ring A is noetherian, then the ring A[T1, . . . , Tn] is noetherian as well,

so that every finitely generated A-algebra is finitely presented.
If f ∶A→ B is a ringmorphism, it endowes B with the structure of an A-algebra

and we also say that f is of finite type (resp. is of finite presentation) to mean
that the A-algebra B is of finite type (resp. of finite presentation).

Example (5.1.2). — We have seen in example a) of §1.2.5 that for every element a
of A, the morphism φ∶A[T]→ Aa of A-algebras such that φ(T) = 1/a is surjec-
tive and its kernel is generated by (1 − aT). Consequently, the A-algebra Aa is
finitely presented.

Lemma (5.1.3). — Let A be a ring and let B be a finitely presented A-algebra. For
every integer m, the kernel of every surjective morphism φ∶A[X1, . . . , Xm]→ B of
A-algebras is finitely generated.

Proof. — Let φ∶A[X1, . . . , Xm]→ B be a surjective morphism of A-algebras. Let
n be an integer and let ψ∶A[Y1, . . . , Yn] → B be a surjective morphism whose
kernel is finitely generated.
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For every i ∈ {1, . . . ,m}, let Pi ∈ A[Y1, . . . , Yn] be a polynomial such that
ψ(Pi) = φ(Xi); let α∶A[X]→ A[Y] be the unique morphism of A-algebras such
that α(Xi) = Pi , for every i; one has ψ ○ α = φ. For every j ∈ {1, . . . , n}, let Q j ∈
A[X1, . . . , Xm] be a polynomial such that φ(Q j) = ψ(Yi); let β∶A[Y] → A[X]
be the unique morphism of A-algebras such that β(Y j) = Q j, for every j; one
has φ ○ β = ψ.
Let (Nk) be a finite family of polynomials in A[Y] which generates Ker(ψ)

and let I be the ideal of A[X] generated by the polynomials Xi − β ○ α(Xi) and
the polynomials β(Nk). It is is finitely generated, by construction; to conclude
the proof of the lemma, it suffices to prove that it equals Ker(φ).
Observe that for every polynomial P ∈ A[X], one has P − β ○ α(P)) ∈ Ker(φ),

since φ ○ β ○ α(P) = ψ ○ α(P) = φ(P). Moreover, β(Nk) ∈ Ker(φ), for every k,
since φ ○ β(Nk) = ψ(Nk) = 0. In particular, the ideal I is contained in Ker(φ).
Let us then observe that for every polynomial P ∈ A[X], one has P − β ○

α(P) ∈ I. Indeed, if p∶A[X] → A[X]/I is the canonical surjection, then p
and p ○ α ○ β are two morphisms of A-algebras from A[X] to A[X]/I which
coincides on X1, . . . , Xm; Their equalizer is a sub-algebra of A[X]which contains
the indeterminates X1, . . . , Xn, hence is equal to the whole of A[X]. Let finally
P ∈ Ker(φ). Then α(P) ∈ Ker(ψ), since ψ ○ α(P) = φ(P) = 0. Since the ideal I
contains the image by β of a generating family of Ker(ψ), one has β(α(P)) ∈ I.
Finally, the relation P = (P−β○α(P))+β○α(P) shows that P ∈ I. This concludes
the proof.

Lemma (5.1.4). — Let A be a ring, let B be an A-algebra and let C be a B-algebra.
a) If B is finitely generated over A and C is finitely generated over B, then C is

finitely generated over A.
b) If C is finitely generated over A, then it is finitely generated over B.
c) If B is finitely presented over A and C is finitely presented over B, then C is

finitely presented over A.

Proof. — We write f ∶A→ B and g∶B→ C for the canonical ring morphisms.
a) Let b1, . . . , bm ∈ B such that B = A[b1, . . . , bm]; let c1, . . . , cn ∈ C such that

C = B[c1, . . . , cn]. Then, the subring A[g(b1), . . . , g(bm), c1, . . . , cn] of C is a
finitely generated A-algebra which contains the image of B under g, as well
as c1, . . . , cn; it is thus equal to C, which shows that C is a finitely generated
A-algebra.
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b) Let c1, . . . , cn be elements of C such that C = A[c1, . . . , cn]. Then one
has C = B[c1, . . . , cn], since this subring of C contains the image of A and the
elements c1, . . . , cn. Consequently, C is a finitely generated B-algebra.
c) Let b1, . . . , bm ∈ B such that B = A[b1, . . . , bm]; let φ∶A[X1, . . . , Xm] → B

be the unique morphism of A-algebras such that φ(Xi) = bi for every i; by
lemma 5.1.3, Ker(φ) is finitely generated. Similarly, let c1, . . . , cn ∈ C such that
C = B[c1, . . . , cn] and let ψ∶B[Y1, . . . , Yn] → C be the unique morphism of B-
algebras such that ψ(Y j) = c j for every j; then Ker(ψ) is finitely generated. Let
θ∶A[X1, . . . , Xm , Y1, . . . , Yn]→ C be the unique morphism of A-algebras such
that θ(Xi) = g(bi) for every i and θ(Y j) = c j for every j.
To shorten the notation, we write A[X] for A[X1, . . . , Xm], etc. Let (P1, . . . , Pr)

be polynomials in A[X] generating Ker(φ). Let (Q1, . . . , Qs) be polynomi-
als in B[Y] generating Ker(ψ). Let us extend φ to a morphism φ′ from
A[X1, . . . , Xm , Y1, . . . , Yn] to B[Y1, . . . , Yn] such that φ(Xi) = φ′(Xi) for ev-
ery i, and φ′(Y j) = Y j for every j; it is surjective. Consequently, there exist
polynomials (Q′1, . . . , Q′s) in A[X, Y] such that φ′(Q′j) = Q j for every j.
One has P1, . . . , Pr , Q′1, . . . , Q′s ∈ Ker(θ). Conversely, let R ∈ Ker(θ). Since

θ = ψ○φ′, one hasψ(φ′(R)) = 0. Consequently, there are polynomials R j ∈ B[Y]
such that φ′(R) = ∑R jQ j. Since φ′ is surjective, there are polynomials R′j ∈
A[X, Y] such that R j = φ(R′j) for every j. Then R −∑R′jQ′j ∈ Ker(ψ), so that
there are polynomials Si in A[X] such that R = ∑ SiPi +∑R′jQ′j. This shows
that Ker(θ) ⊆ (P1, . . . , Pr , Q′1, . . . , Q′s), hence the equality. This proves that C is
a finitely presented A-algebra, as claimed.

Lemma (5.1.5). — Let A be a ring, let B and C be A-algebras.

a) If B is finitely generated (resp. finitely presented), then B ⊗A C is a finitely
generated (resp. finitely presented) C-algebra;
b) If B and C are finitely generated (resp. finitely presented), then so is B⊗A C.

Proof. — a) Let n be an integer and let φ∶A[X1, . . . , Xn] → B be a surjec-
tive morphism of A-algebras. Then the morphism φ ⊗A idC∶A[X1, . . . , Xn]⊗A
C → B is surjective. Since the natural morphism from A[X1, . . . , Xn] ⊗A C to
C[X1, . . . , Xn] is an isomorphism, this implies that B⊗A C is a finitely generated
C-algebra.
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Assume that B is finitely presented and let N = ker(φ); it is a finitely generated
ideal of A[X1, . . . , Xn]. Since the kernel of φ⊗A idC is generated by N, it is finitely
generated as well, and B⊗A C is a finitely presented C-algebra.
b) Assertion b) then follows from a) and from lemma 5.1.4.

Definition (5.1.6). — Let f ∶Y→ X be a morphism of schemes.
One says that f is locally of finite type (resp. is locally of finite presentation) if

for every point y of Y, there exists an affine open neighborhood V of y in Y and an
affine open neighborhood U of f (y) in X such that OY(V) is a finitely generated
OX(U)-algebra (resp. a finitely presented OX(U)-algebra).
One says that f is of finite type (resp. is of finite presentation) if it is locally of

finite type (resp. locally of finite presentation) and quasi-compact.(1)

Remark (5.1.7). — If f is locally of finite type and X is locally noetherian, then
f is locally of finite presentation.
Let indeed y ∈ Y and let x = f (y). Let U be an affine open neighborhood

of x and let V be an affine open neighborhood of y contained in f −1(U) such
that OY(V) is a finitely generated OX(U)-algebra. Since U is locally noetherian,
OX(U) is a noetherian ring. Consequently, OY(V) is a finitely presentedOX(U)-
algebra.

Lemma (5.1.8). — Let f ∶Y → X be a morphism of schemes. Assume that f is
locally of finite type (resp. locally of finite presentation). Let y ∈ Y, let x = f (y),
let U be an affine open neighborhood of x and let V be an open neighborhood of y.
There exists an affine open neighborhood V′ of y which is contained in f −1(U)∩V
such that OY(V′) is a finitely generated (resp. a finitely presented) OX(U)-algebra.

Proof. — By assumption, there exists an affine open neighborhood V1 of y in Y,
and an affine open neighborhood U1 of x in X such that OY(V1) is a finitely
generated OX(U1)-algebra (resp. a finitely presented OX(U1)-algebra).
Let a ∈ OX(U1) be such that x ∈ D(a) and D(a) ⊆ U ∩U1; let U2 = D(a) and

let V2 = f −1(U2)∩V1. Then U2 and V2 are affine open neighborhoods of x and y
respectively such that f (U2) ⊆ V2. One has OX(U2) = OX(U1)a, OY(V2) =
OY(V1)a ≃ OY(V1)⊗OX(U1) OX(U2), so that the morphism OX(U2)→ OY(V2)

(1)The standard definition of a morphism of finite presentation imposes that it be quasi-separated. I need
to correct this at some point.
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is deduced from the morphism OX(U1) → OY(V1) by base change; it is thus
finitely generated (resp. finitely presented).
Let then a′ ∈ OX(U) be such that x ∈ D(a′) and D(a′) ⊆ U2; let U3 =

D(a′) and let V3 = f −1(U3) ∩V2. By the same argument, U3 and V3 are affine
open neighborhoods of x and y respectively, one has f (U3) ⊆ V3 and the
corresponding morphism OX(U3)→ OY(V3) is finitely generated (resp. finitely
presented).
Let now b ∈ OY(V3) be such that y ∈ D(b) and D(b) ⊆ V ∩V3; let V′ = D(b).

Then V′ is an affine open neighborhood of y contained in V. By example 5.1.2,
the morphism OY(V3)→ OY(V′) = OY(V3)b is finitely presented, as well as the
morphism OX(U)→ OX(U3) = OX(U)a′ . Consequently, the composition

OX(U)→ OX(U3)→ OY(V3)→ OY(V′)

is finitely generated (resp. is finitely presented). This concludes the proof of the
lemma.

Corollary (5.1.9). — Let f ∶Y→ X be a morphism of schemes. Let U be an open
subscheme of X and let V be an open subscheme of f −1(U). If f is locally of finite
type (resp. locally of finite presentation), then the morphism f ∣V∶V→ U deduced
from f by restriction is locally of finite type (resp. locally of finite presentation) as
well.

Corollary (5.1.10). — If f is of finite type (resp. of finite presentation), then for
every open subscheme U of X, the morphism fU∶ f −1(U)→ U deduced from f is
of finite type (resp. of finite presentation).

Proof. — By corollary 5.1.9, the morphism fU is locally of finite type (resp. of
finite presentation). Since it is also quasi-compact, this implies the corollary.

Proposition (5.1.11). — Let A be a ring, let B be an A-algebra, let X = Spec(A),
let Y = Spec(B) and let f ∶Y→ X be the associated morphism of schemes. If f is
of finite type (resp. of finite presentation), then B is a finitely generated (resp. a
finitely presented) A-algebra.

Proof. — By lemma 5.1.8, every point y of Y has an affine open neighborhoodV′y
such thatOY(V′y) is a finitely generated (resp. a finitely presented) A-algebra. Let
then by ∈ B be an element such that y ∈ D(by) and D(by) ⊆ V′y; let Vy = D(by).
One has OY(Vy) = OY(V′y)b′y , where b′y = by∣Vy . Consequently, OY(Vy) is a
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finitely generated (resp. finitely presented) A-algebra; observe moreover that
OY(Vy) = Bby .
Since Y is affine, it is quasi-compact and there exists a finite subset Σ of Y

such that Y = ⋃y∈ΣVy. The ideal of B generated by the family (by)y∈Σ contains 1,
hence there exists a family (cy)y∈Σ of elements of B such that 1 = ∑y∈Σ bycy.
Let us now prove that the A-algebra B is finitely generated. For every y ∈ Σ, let

Sy be a finite subset of B such that the A-algebra Bby is generated by Sy and 1/by.
Let S be a finite subset of B containing the sets Sy, the elements by, as well as the
elements cy, for y ∈ Σ. Let then φ∶A[(Xs)s∈S]→ B be the unique morphism of
A-algebras such that φ(Xs) = s for every s ∈ S.
Let B′ = Im(φ) and let us show that B′ = B. Let M = B/B′; this is a B′-module

such that Mby = 0 for every y ∈ Σ. Since B′ contains the elements cy, the ideal
of B′ generated by the elements by contains 1; therefore, one has M = 0, hence
B′ = B.
Let us now assume that for every y ∈ Σ, the A-algebra Bby is finitely presented.

Let us then prove that the kernel N of φ is a finitely generated A[X]-module; for
this, it suffices to prove that the quasi-coherent sheaf Ñ on Spec(A[X]) is finitely
generated.
Let y ∈ Σ and let Py ∈ A[X] be such that φ(P) = by (for example, one may take

P = Xby). Then D(Py) = Spec(A[X, T]/(1 − TPy)); moreover, the morphism φy
from A[X, T] to Bby that coincides with φ on A[X] and such that φ(T) = 1/by is
surjective, and its kernel Ny is finitely generated since Bby is a finitely presented
A-module. Since Ñ(D(Py)) is the image of Ny in A[X, T]/(1−TPy), it is finitely
generated as well.
Let V = ⋃y∈ΣD(Py). Let us show that V is an open subset of Spec(A[X])

which contains V(N). Let indeed p be a prime ideal of A[X] which contains N.
Its image φ(p) in B is a prime ideal of B, because φ is surjective. Consequently,
there exists y ∈ Σ such that by /∈ φ(p), because these elements by generate the
unit ideal of B, hence p ∈ D(Py).
Let then U = Spec(A[X]) V(N) be the complementary open subset to V(N).

One has Ñ∣U = OSpec(A[X])∣U, hence Ñ∣U is finitely generated.
We thus have shown that the quasi-coherent sheaf Ñ on Spec(A[X]) is finitely

generated. By proposition 4.7.11, the A[X]-module N is finitely generated. In
other words, N is a finitely generated ideal, and B is a finitely presented A-
algebra.
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Corollary (5.1.12). — Let f ∶Y→ X be a morphism of schemes. Assume that f is of
finite type (resp. of finitely presentation). For every affine open subsetU of X, there
exists a finite family (Vi) of affine open subschemes of Y such that f −1(U) = ⋃i Vi
and OY(Vi) is a finitely generated (resp. a finitely presented) OX(U)-algebra for
every i.

Proof. — Since the open subscheme f −1(U) is quasi-compact, it is the union of
a finite family (Vi) of affine open subschemes. For each i, themorphism fromVi
to U induced by f is locally finitely generated (resp. locally finitely presented); by
the preceding proposition, the OX(U)-algebra OY(Vi) is then finitely generated
(resp. finitely presented). This concludes the proof of the corollary.

Proposition (5.1.13). — Let S be a scheme, let X, Y be S-schemes, let f , g be their
structural morphisms.
a) Let h∶X → Y be a morphism of S-schemes. If f is locally finitely generated,

then h is locally finitely generated.
b) If h and g are locally finitely generated (resp. locally finitely presented), then

f is locally finitely generated (resp. locally finitely presented).
c) If f is locally finitely generated (resp. locally finitely presented), then so is

f ×S idY∶X ×S Y→ Y.
d) If both f and g are locally finitely generated (resp. locally finitely presented),

then so is f ×S g∶X ×S Y→ S.

5.2. Subschemes and immersions

Definition (5.2.1). — Let φ∶Y→ X be a morphism of schemes.
a) One says that it is an open immersion if it is a homeomorphism from Y to an

open subset of X and if for every y ∈ Y, the morphism of local rings φ♯y is bijective.
b) One says that φ is an immersion if it induces a homeomorphism from Y to

a locally closed subspace of X and if for every y ∈ Y, the morphism of local rings
φ♯y∶OX,φ(y) → OY,y is surjective.
c) One says that it is an closed immersion if it is an immersion and if φ(Y) is

closed in X.

Let X be a topological space. Recall that a subspace Z of X is said to be locally
closed if it can be written as the intersection of an open and of a closed subspace.
This means that for every point x ∈ Z, there exists an open neighborhood U of x
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in X such that Z ∩U is closed in U. The union of all such open sets is the largest
open subset U of X such that T ∩U is closed in U.
Consequently, if φ∶Z→ X is an immersion and if U is the largest open subset

of X such that φ(Z) is closed in U, then φ induces a closed immersion from Z
to U.
If φ∶Z→ X is an immersion of schemes whose underlying map of topological

spaces is an inclusion, we also say that Z is a subscheme of X.

Remark (5.2.2). — An immersion is a monomorphism in the category of
schemes.

Example (5.2.3). — a) Let X be a scheme and let U be an open subset of X.
Then (U,OX∣U) is a scheme and the canonical morphism φ∶U → X of locally
ringed spaces is an open immersion.
b) Let A be a ring, let X = Spec(A); let I be an ideal of A, let Y = Spec(A/I)

and let φ∶Y → X be the morphism of schemes deduced from the canonical
surjection from A to A/I. Let us prove that φ is a closed immersion.
By proposition 1.5.10, we already know that φ induces a homeomorphism

from Y to the closed subset V(I) of X. Let y ∈ Y and let x = φ(y); then px is
a prime ideal of A containing I and py is the corresponding ideal of A/I. The
morphism of local rings φ♯y∶OX,x → OY,y identifies with the canonical morphism
from Apx to (A/I)py , which is indeed surjective.
By construction the ring morphism φ♯(X)∶OX(X)→ φ∗OY(X) identifies with

the canonical surjection from A to A/I. Since X is affine and the OX-modules
OX and φ∗OY are quasi-coherent, the morphism of sheaves φ♯ is surjective.
c) Let φ∶Y→ X be an immersion of schemes. For every open subscheme U

of X, the morphism φU∶φ−1(U)→ U deduced from φ by restriction is an immer-
sion. If, moreover, φ(Y) ∩U is closed in U, then it is a closed immersion.
Conversely, let φ∶Y→ X be a morphism of schemes. Let us assume that every

point of Y has an open neighborhoodU such that themorphism φU∶φ−1(U)→ U
is an immersion. Then φ is an immersion.
Indeed, φ is injective and induces an open map from Y to φ(Y); consequently,

it defines a homeomorphism from Y to its image, which is locally closed in X.
Moreover, for every point y ∈ Y, the morphism φ♯y∶OX, f (y) → OY,y induced by φ
coincides with the morphism φ♯U,y whenever U is an open subset of X such that
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φ(y) ∈ U. If φU is an immersion, then φ♯U,y is surjective, hence φ♯y is surjective
as well.

We shall see that these examples are archetypal immersions.

Lemma (5.2.4). — Let φ∶Y → X be an open immersion. Then φ(Y) is an open
subset of X and φ induces an isomorphism from Y to the scheme (φ(Y),OX∣φ(Y)).

Proof. — By definition of an open immersion, φ induces a homeomorphism
from Y to an open subset V of X. Moreover, for every y ∈ Y, the morphism
φ♯y∶OX,φ(y) → OY,y is an isomorphism of local rings. Let ψ∶Y → V be the
induced morphism of locally ringed spaces; it is a homeomorphism. If we use ψ
to identify Y and V, then φ♯ is a morphism of sheaves on Y which induces an
isomorphism on stalks; it is thus an isomorphism.

Lemma (5.2.5). — Let φ∶Y → X be a morphism of schemes which induces a
homeomorphism from Y to a locally closed subset of X. Let y ∈ Y and let x = φ(y),
letV be an open neighborhood of y inY. There exists an affine open neighborhoodU
of x such that φ−1(U) is an affine open neighborhood of y contained in V.

Proof. — By the definition of a locally closed subset, there exists an open sub-
set Ω of X such that φ(Y) is a closed subset of Ω, and the morphism from Y
to Ω deduced from φ is closed.
Let U1 be an affine open neighborhood of x which is contained in Ω and let V1

be an affine open neighborhood of y contained in φ−1(U1) ∩V. Let φ1∶V1 → U1
be the morphism of schemes deduced from φ by restriction; let A1 = OX(U1),
B1 = OY(V1) and let u = φ♯1 ∶A1 → B1 be the morphism of rings associated with φ1.

Then Z1 = φ(Y) ∩U is closed in U, and φ(V1) is an open subset of Z1; conse-
quently, there exists an open subset U2 of U1 such that φ(V1) = φ(Y) ∩U2. Let
a ∈ A1 be any element such that x ∈ D(a) and D(a) ⊆ U2. Then U = D(a) is an
affine open neighborhood of x in U1, and φ−1(U) is an open neighborhood of y
contained in V1. Moreover, φ−1(U) is affine since it is equal to D(u1(a)); finally,
the relation φ(φ−1(U)) = φ(Y) ∩U shows that it is closed in U.

Proposition (5.2.6). — Let φ∶Y → X be a morphism of schemes. The following
properties are equivalent:
(i) For every affine open subscheme U = Spec(A) of X, there exists an ideal I

of A and an isomorphism of A-schemes ψU∶φ−1(U)→ Spec(A/I);
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(ii) Every point of X has an affine open neighborhood U = Spec(A) such that
there exists an ideal I of A and an isomorphism of A-schemes ψU∶φ−1(U) →
Spec(A/I);
(iii) The morphism φ induces a homeomorphism from Y to a closed subset of X,

and the morphism of sheaves φ♯∶OX → φ∗OY is surjective;
(iv) The morphism φ is a closed immersion.

If they hold, then the OX-algebra φ∗OY is quasi-coherent.

Proof. — In each of these situations, every point of X has an affine open neigh-
borhood U such that φ−1(U) is affine; this is obvious in cases (i) and (ii), and
follows from lemma 5.2.5 in cases (iii) and (iv). Then the restriction to U of the
OX-module φ∗OY is isomorphic to the sheaf (φU)∗(Oφ−1(U)). By corollary 4.7.6,
the latter sheaf is a quasi-coherent OU-module. Consequently, φ∗OY is a quasi-
coherent OX-module.

The implication (i)⇒(ii) follows from the fact that every point of a scheme
has an affine open neighborhood.
Assume that (ii) holds. Let U = Spec(A) be an open affine subscheme of X

and let I be an ideal of A such that there exists an A-isomorphism ψU∶φ−1(U)→
Spec(A/I). By example 5.2.3, b), we see that the morphism φ induces a homeo-
morphism from φ−1(U) to the closed subset V(I) of U, and the morphism of
local rings φ♯y∶OX,φ(y) → OY,y is surjective for every y ∈ φ−1(U). It also follows
from that example that the morphism of local rings φ♯y∶OX,φ(y) → OY,y is surjec-
tive for every y ∈ φ−1(U). Since X is covered by such affine open subsets, this
implies that φ induces a homeomorphism from Y to a closed subset of X, that
φ♯ is surjective, and that φ♯y is surjective for every y ∈ Y. We thus have proved
the implications (ii)⇒(iii) and (ii)⇒(iv).
We now assume (iii). To prove that φ is a closed immersion, it suffices to prove

that the morphism φ♯y∶OX,φ(y) → OY,y is surjective for every y ∈ Y. Let U be
an affine open subset of X such that φ−1(U) is an affine open subset of X. Let
A = OX(U), let B = OY(φ−1(U)) and let u = φ♯(U). Since φ♯ is surjective and
the sheaves OX and φ∗OY are quasi-coherent, the ring morphism u is surjective.
Let then y ∈ φ−1(U); it corresponds to a prime ideal q of B, the point φ(y)
corresponds to the prime ideal p = u−1(q), and the morphism φ♯y identifies with
the morphism Ap → Bq; it is thus surjective.
Let us finally assume that φ is a closed immersion and let us prove (i). To

simplify the notation, we may replace X by U and assume that X = Spec(A).
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Let B = OY(Y) and let u∶A → B be the morphism of rings corresponding to
the morphism of schemes φ∶Y → Spec(A); let I = Ker(u), so that u factors
through the quotient A/I. Let ψ∶Y→ Spec(A/I) be the morphism of schemes
associated with the ring morphism A/I→ B, and let j∶ Spec(A/I)→ Spec(A) be
the closed immersion defined by the ideal I; one has φ = j ○ ψ. It follows from
the definitions that ψ is a closed immersion as well. We may thus assume that
I = (0), in other words, that the morphism u is injective. We then need to prove
that φ, or, equivalently, u, is an isomorphism.
Let us first show that φ is surjective. Let x ∈ X φ(Y). Since φ(Y) is closed,

there exists an affine open neighborhood U of x such that φ(Y) ∩U = ∅, or,
equivalently, that φ−1(U) = ∅. Let a ∈ A be such that x ∈ D(a) and D(a) ⊆ U.
Then φ(Y) ⊆ V(a); in other words, one has φ(a) ∈ q for every prime ideal q
of B. Consequently, φ(a) is nilpotent. Since φ is injective, a is nilpotent as well,
which contradicts the hypothesis that x ∈ D(a).
Since φ is a closed continuous bijection, it is a homeomorphism from Y

to X. In particular, for every y ∈ Y, the canonical morphism from (φ∗OY)φ(y)
to OY,y is an isomorphism. The morphisms φ♯y being surjective, for every y ∈ Y,
the morphism of sheaves φ♯ is surjective. Since X is affine and the sheaves
OX and φ∗OY are quasi-coherent OX-modules, this implies that u is surjective;
therefore, u is an isomorphism. This concludes the proof of the proposition.

Corollary (5.2.7). — Let f ∶Y → X and g∶Z → Y be immersions (resp. closed
immersions, resp. open immersions) of schemes. Then f ○ g∶Z→ X is an immersion
(resp. a closed immersion, resp. an open immersion).

Proof. — Let z ∈ Z, let y = g(z) and x = f (y). Let V be an open neighbhorood
of y in Y such that the map gV∶ g−1(V) → V is closed. Let then U be an open
neighborhood of x in X such that the map fU∶ f −1(U) → U is closed and such
that f −1(U) ⊆ V. The map from g−1( f −1(U)) to f −1(U) deduced from gV is then
closed, hence the map from g−1( f −1(U)) to U deduced from f ○ g by restriction
is closed. Consequently, f ○ g induces a homeomorphism from Z to a locally
closed subset of X.
If f and g are closed immersions, then f ○ g is closed, and f ○ g induces a

homeomorphism from Z to a closed subset of X.
Moreover, the morphism ( f ○ g)♯z∶OX,x → OZ,z is the composition of the

morphisms f ♯y and g♯z; it is thus surjective.
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This shows that f ○ g is an immersion, and a closed immersion if f and g are
closed immersions.
If f and g are open immersions, they induce isomorphisms from Y to an open

subscheme of X, and from Z to an open subscheme of Y. Their composition
induces an isomorphism from Z to an open subscheme of X, hence is an open
immersion.

Corollary (5.2.8). — Let f ∶Y→ X and g∶Z→ X be morphisms of schemes. Let us
prove that if f is an immersion (resp. a closed immersion, resp. an open immersion),
then so is the morphism fZ deduced from f by base change to Z.

Proof. — a) We first assume that f is an open immersion. Then U = f (Y)
is an open subset of X and f induces an isomorphism from Y to U, so that the
morphism fZ identifies with the open immersion from g−1(U) to U.
b) Assume that f is closed immersion. Let U = Spec(A) be an affine open

subset of X, let I be an ideal of A such that V = f −1(U) is X-isomorphic to
Spec(A/I). Let W = Spec(B) be an affine open subset of Z such that g(V) ⊆ U,
in particular, B is anA-algebra. Since the natural ringmorphism from (A/I)⊗AB
to B/IB is an isomorphism, we see that V×UW is an affine open subset of Y×ZX,
isomorphic to Spec(B/IB); by restriction, the morphism fZ induces a morphism
from V ×U W toW which identifies with the closed immersion of Spec(B/IB)
to Spec(B). Since every point of Z has an affine open neighborhood W whose
image is contained in an affine open subset of X, this proves that fZ is a closed
immersion.
c) In the general case, let U be the largest open subset of X such that f induces

a closed immersion from Y to U. Then fZ is the composition of the closed
immersion fromY×U g−1(U) to g−1(U), and of the open immersion from g−1(U)
to Z. It is thus an immersion.

5.2.9. — Let X be a scheme and let Z be a closed subset; let j∶Z → X be the
inclusion.
Let OZ be a sheaf of rings on Z such that (Z,OZ) is a scheme and let j♯∶OX →

j∗OZ be a morphism of sheaves such that ( j, j♯) is an immersion. Then j♯
is surjective, and its kernel I is a quasi-coherent ideal of OX. Moreover, if
U is an affine open subscheme U = Spec(A) of X, then I = I (U) is an
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ideal of A, and j induces a homeomorphism from Z ∩ U to the closed sub-
set V(I (U)) of Spec(A), and ( j, j♯) induces an isomorphism of schemes
from ( j−1(U),OZ∣ j−1(U)) to Spec(A/I).
Conversely, let I be a quasi-coherent ideal of OX such that for every affine

open subscheme U = Spec(A) of X, denoting by I the ideal I (U) of A, one
has V(I) = Z ∩U. Then OZ = j−1(OX/I ) is a sheaf of rings on Z. Let j♯∶OX →
j∗OZ be the morphism of sheaves deduced from the canonical surjection of OX
to OX/I . Then ( j, j♯) is a closed immersion, and I = Ker( j♯).
One says that Z is the closed subscheme of X defined by the quasi-coherent

ideal I , and one denotes it by Z = V(I ).
The inclusion of quasi-coherent ideals gives rise to a natural order relation on

closed subschemes: the larger the ideal, the smaller the subscheme. We will say
that V(I ) is supported by Z to mean that the closed subspace of X underlying
the subscheme V(I ) is equal to Z.

Proposition (5.2.10). — LetX be a scheme and letZ be a closed subset ofX. There is
a unique structure of closed subscheme on Z such that for every x ∈ Z, the local ring
OZ,z has no non-zero nilpotent element. It is defined by the largest quasi-coherent
ideal I such that Z = V(I ).

Proof. — For every open subset U of X, let I (U) be the set of f ∈ OX(U) such
that f (x) = 0 for every x ∈ Z. This defines a a sheaf of ideals I ⊆ OX.
To prove that I is quasi-coherent, it suffices to prove that its restriction to

every affine open subscheme of X is quasi-coherent. Let thus U = Spec(A) be
an affine open subscheme of X and let I =I (U) = j(Z ∩U). Then I is a radical
ideal of A and is the largest ideal of A such that V(I) = Z∩U. Let a ∈ A. One has
Aa = OU(D(a)), and the inclusion Ia ⊆I (D(a)) follows from the definition.
Conversely, let f ∈ I (D(a)); let g ∈ A and n ∈ N be such that f = g/an; by
assumption, one has g ∈ p for every prime ideal p containing I such that a /∈ p; it
follows that ag ∈ I, hence f = ag/an+1 ∈ Ia. This proves thatI is quasi-coherent.

The underlying topological space to the subscheme V(I ) is equal to Z. One
has Z ∩U ≃ Spec(A/I). For every x ∈ Z ∩U, 0 is the only nilpotent element of
OZ,z, because the ideal I is radical.
Moreover, ifJ is a quasi-coherent ideal such that V(J ) has support Z, then

J (U) = j(Z ∩U) =I (U) for every affine open subscheme U of X.
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5.3. Affine morphisms, finite morphisms

Definition (5.3.1). — Let f ∶Y→ X be a morphism of schemes. One says that f is
affine if for every open affine subscheme U of X, f −1(U) is an affine scheme.

5.3.2. — Here is a general way to construct affine morphisms. Let A be a
quasi-coherent OX-algebra.
For every affine open subset U of X, let YU = Spec(A (U)); this is an affine

scheme equiped with a morphism fU to Spec(OX(U)) = U.
For every pair (U,W) of affine open subschemes of X such that W ⊆ U,

the restriction morphism A (U) → A (W) induces a morphism φ′UW∶YW →
YU such that fW ○ φ′UW = fU. Since A is a quasi-coherent OX-algebra, the
restriction morphism induces an isomorphism A (W) ≃ A (U)⊗OX(U)OX(W).
Consequently, the morphism φ′UW induces an isomorphism φUW from YW to
the open subscheme f −1U (W) of YU.
Let U and V be affine open subschemes of X. There exists a unique isomor-

phism of schemes ψUV from the open subscheme f −1U (U ∩V) of YU to the open
subscheme f −1V (U∩V) of YV whose restriction to f −1U (W) is equal to φVW ○φ−1UW,
for every affine open subscheme W of U ∩V.
We can now glue the schemes (YU) along the open subschemes YUV by means

of these isomorphisms ψUV. This defines a scheme Y, as well as a morphism
of schemes ψ∶Y → X, and isomorphisms ψU∶ψ−1(U) → YU for every affine
open subscheme U of X, such that ψ∣U = fU ○ ψU and such that the morphisms
ψUV ○ ψU and ψV coincide on ∣ψ−1(U∩V). This X-scheme is called the spectrum of
the quasi-coherent OX-algebra, and is denoted by Spec(A ).
By construction, for every affine open subscheme U of X, U is isomor-

phic to Spec(OX(U)), ψ−1(U) is isomorphic to Spec(A (U)), and the mor-
phism ψU∶ψ−1(U)→ U identifies with the morphism of affine schemes deduces
with the ring morphism OX(U)→ A (U).

Example (5.3.3). — It follows from proposition 5.2.6 that a morphism f ∶Y→ X
is a closed immersion if and only if it is affine and the morphism f ♯OX → f∗OY
is surjective.
Let, moreover, I be the kernel of the morphism f ♯∶OX → f∗OY. It is a

quasi-coherent OX-module and the quotient sheaf OX/I is a quasi-coherent
OX-algebra. Then f induces an isomorphism from Y to the closed subscheme
V(I ) = Spec(OX/I ).
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5.3.4. — The spectrum of a quasi-coherent sheaf of algebras satisfies a universal
property.
Let f ∶Y→ X be amorphism of schemes, letA be a quasi-coherentOX-algebra

and let u∶A → f∗OY be a morphism of OX-algebras. Let g∶ Spec(A ) → X be
the canonical morphism.
Let U be an affine open subscheme of X and let fU∶ f −1(U)→ U be the mor-

phism deduced from f by restriction. The identification ( fU)∗O f −1(U) = f∗OY∣U
and themorphism g(U)∶A (U)→ f∗OY(U) give rise to a morphism of schemes
φU∶ f −1(U)→ Spec(A (U)) = g−1(U). These morphisms glue together and de-
fine a morphism of X-schemes φ∶Y→ Spec(A ).

Proposition (5.3.5). — Let f ∶Y→ X be a morphism of schemes. Assume that every
point of X has an affine open neighborhood U such that f −1(U) is affine. Then the
OX-algebra f∗OY is quasi-coherent, and there exists an X-isomorphism from Y
to Spec( f∗OY). In particular, the morphism f is affine.

Proof. — Let us first prove that f∗OY is quasi-coherent. Let x ∈ X and let U be
an affine open neighborhood of x such that f −1(U) is affine; let fU∶ f −1(U)→ U
be the morphism of schemes deduced by restriction. By definition, f∗OY∣U
is isomorphic to ( fU)∗O f −1(U). It thus follows from corollary 4.7.6 that the
sheaf f∗OY∣U is a quasi-coherent OU-algebra. Consequently, f∗OY is a quasi-
coherent OX-algebra.
We consider the spectrum Z = Spec( f∗OY) of this algebra, and its canonical

morphism g∶Z→ X to X. Let φ∶Y→ Z be the canonical morphism of X-schemes
associated with f∗OY; let us prove that it is an isomorphism.
Let U be an affine open subscheme of X such that f −1(U) is affine, say Spec(B).

Then one has f∗OY(U) = B, and the morphism φ identifies with the identical
morphism from f −1(U) = Spec(B) to g−1(U) = Spec(B). Consequently, φ is an
isomorphism.

Corollary (5.3.6). — Let f ∶Y→ X be an affine morphism of schemes and let Z be
an X-scheme. The morphism fZ∶YZ → Z deduced from f by base-change to Z is
affine.

Proof. — Let g∶Z → X be the structural morphism. Every point of Z has an
affine open neighborhood U such that g(U) is contained in an affine open
subset V of X. Then f −1Z (U) identifies with to the fiber product f −1(V) ×V U of
affine schemes, hence is affine.
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Definition (5.3.7). — Let f ∶Y→ X be a morphism of schemes. One says that f is
finite if it is affine and if f∗OY is a finitely generated OX-module.

Lemma (5.3.8). — Let f ∶Y→ X be a morphism of schemes. Assume that every
point x ∈ X has an affine open neighborhood U such that f −1(U) is an affine open
subscheme of Y and such that OY( f −1(U)) is a finitely generated OX(U)-module.
Then f is a finite morphism.

Proof. — By proposition 5.3.5, f is an affine morphism. Let A = f∗OY. It
is a quasi-coherent OX-module; let us prove that it is finitely generated. By
hypothesis, every point of X has an affine open neihborhood U such that A (U)
is a finitely generatedOX(U)-module. By proposition 4.7.11,A ∣U is then a finitely
generated OX∣U-module. Consequently, A is a finitely generated OX-module,
as was to be shown.

Remark (5.3.9). — a) Let A be a ring and let B be an A-algebra. Let X =
Spec(A), let Y = Spec(B) and let f ∶Y → X be the associated morphism. The
following properties are equivalent:

(a) The morphism f is finite;
(b) The A-module B is finitely generated;
(c) The A-algebra B is finitely generated and integral.

Assume that they hold, and let I = ker(A → B). The first theorem of Cohen-
Seidenberg (theorem 1.11.4) then implies that f (Y) = V(I).
b) Let k be a field and let A be a non-zero finitely generated k-algebra. Let

n be a nonnegative integer and f ∶ k[T1, . . . , Tn] → A be an integral injective
morphism of k-algebras. The associated morphism of schemes a f ∶ Spec(A)→
An

k is then finite and surjective. This is the geometric formulation of Noether’s
normalization lemma (theorem 1.6.1).
c) Assume that k is infinite and let X be a non-empty closed subscheme ofAm

k .
It follows from exercise 1.6.5 that there exists an integer n such that 0 ⩽ n ⩽ m and
a linear morphism p∶Am

k → An
k which induces a finite and surjective morphism

pX∶X→ An
k .
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5.4. Separated and proper morphisms

Definition (5.4.1). — LetX be an S-scheme and let p1 and p2 be the two projections
from X×SX to X. The diagonal morphism δ is the unique morphism of S-schemes
from X to X ×S X such that p1 ○ δ = p2 ○ δ = idX.

Lemma (5.4.2). — Let f ∶X→ S be a morphism of schemes.
a) The diagonal morphism δ∶X→ X ×S X is an immersion.
b) If f is affine, then δ is a closed immersion.
c) If f is a monomorphism, then δ is an isomorphism.

Proof. — a) Let x ∈ X and let s = f (x). Let U = Spec(A) be an affine open
neighborhood of x in X whose image is contained in an affine open neighbor-
hood V = Spec(R) of s in S. Then W = p−11 (U) ∩ p−12 (U) is an affine open
subscheme of X ×S X which contains δ(x), isomorphic to Spec(A ×R A). More-
over, δ−1(W) = U and the induced morphism δW∶U →W corresponds to the
morphism of R-algebras γ∶A ×R A → A such that γ(a ⊗ b) = ab. Since it
is surjective, the morphism δW is a closed immersion. Consequently, δ is an
immersion.
b) If f is affine, then we may take U = f −1(V), and the open subschemes

of X ×S X of the form W = p−11 (U) ∩ p−12 (U) cover X ×S X. For each such W,
the morphism δW∶ δ−1(W) → W is a closed immersion, so that δ is a closed
immersion.
c) Let T be an S-scheme and let u, v be two S-morphisms from T to X. This

means that f ○ u = f ○ v. Since f is a monomorphism, one then has u =
v. Consequently, for every S-scheme T, the morphism δ induces a bijection
from HomS(T, X) to HomS(T, X) × HomS(T, X) = HomS(X ×S X). In other
words, the morphism δ induces an isomorphism of functors from hX to hX×SX;
by Yoneda’s lemma, δ is an isomorphism.

Corollary (5.4.3). — Let S be a scheme, letX andY be schemes, and let f , g∶Y→ X
be two S-morphisms. Let (Z, j) be an equalizer of the pair ( f , g). Then j∶T→ Y is
an immersion of S-schemes; if X is separated over S, then j is a closed immersion.

Proof. — Recall the construction of an equalizer done in corollary 4.5.5. Let
p and q be the two projections from X ×S X to X; let δ∶X → X ×S X be the
diagonal immersion. Let h∶Y → X ×S X be the unique S-morphism such that
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p ○ h = f and q ○ h = g. Let T = Y ×X×SX X be the fiber product of the pair
(h, δ) of morphisms to X ×S X and let φ∶T→ Y be the first projection. Then φ
is an S-morphism and it is shown in the proof of corollary 4.5.5 that (T, φ) is an
equalizer of the pair ( f , g). We thus observe that φ is the morphism of schemes
deduced from δ by base change to Y. This shows that φ is an immersion, and
is a closed immersion if δ is itself a closed immersion, that is, if X is separated
over S.

Lemma (5.4.4). — A morphism of schemes f ∶X → S is quasi-separated if and
only if its diagonal immersion is quasi-compact.

Proof. —

Definition (5.4.5). — One says that a morphism of schemes f ∶X→ S is separated
if the diagonal immersion is a closed immersion.
One says that a scheme X is separated if the canonical morphism from X

to Spec(Z) is separated.

Since a closed immersion is quasi-compact, a separated morphism is quasi-
separated, and a separated scheme is quasi-separated.

Proposition (5.4.6). — Let f ∶X → S be a morphism of schemes. The following
assertions are equivalent:
(i) The morphism f is separated;
(ii) The image of the diagonal immersion is a closed subset of X ×S X;
(iii) For every S-scheme T and every pair (u, v) of S-morphisms from T to X,

the equalizer of u and v is a closed subscheme of T.

Proof. — (i)⇔(ii). If f is separated, then the diagonal immersion is a closed
immersion by definition, so that its image is a closed subset of X×SX. Conversely,
an immersion is a closed immersion if and only if its image is closed, hence the
converse implication.
(iii)⇒(ii). Let us apply the hypothesis to T = X×SX and to the two projections

to X. Their equalizer being the diagonal subscheme, it follows that f is separated.
The implication (i)⇒(iii) follows from corollary 5.4.3.

Proposition (5.4.7). — a) Let f ∶X→ S be a morphism of schemes. Assume that
every point of S has an open neighborhood U such that the induced morphism
fU∶ f −1(U)→ U is separated. Then f is separated.
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b) An affine morphism, an immersion of schemes is a separated morphism.
c) Let f ∶X→ S be a separated morphism of schemes and let T be an S-scheme.

Then the morphism fT deduced from f by base-change to T is separated.
d) Let f ∶Z→ Y and g∶Y→ X bemorphisms of schemes. If f and g are separated,

then g ○ f is separated; if g ○ f is separated, then f is separated.
e) Let S be a scheme, let f ∶Y→ X and f ′∶Y′ → X′ be morphisms of S-schemes. If

f and f ′ are separated, then the morphism ( f , f ′)∶Y×S Y′ → X×S X′ is separated.

Proof. — a) Let g∶X → X ×S X be the diagonal immersion. To prove that g
is a closed immersion, it suffices to establish that every point of X ×S X has an
open neighborhood V such that gV∶ g−1(V)→ V is a closed immersion. Let z be
point of X ×S X and let s be its image in S; let U be an open neighborhood of s
such that fU is separated. Then V = f −1(U)×U f −1(U) is an open neighborhood
of z, and the immersion gV identifies with the diagonal immersion associated
with the morphism fU∶ f −1(U) → U. By hypothesis, gV is a closed immersion.
This proves that g is a closed immersion, as claimed.
b) If f ∶X→ S is an immersion, then it is a monomorphism hence the diagonal

morphism g∶X→ X ×S X is an isomorphism. Consequently, f is separated.
We have already explained that affine morphisms are separated. In fact, by a),

it would suffice to prove that a morphism of affine schemes is separated, which
is at the heart of the proof that the diagonal morphism is an immersion.
c) The diagonal morphism gT∶XT → XT ×T XT associated with fT is obtained

from the diagonal morphism g∶X → X ×S X by base change to T. If the mor-
phism f is separated, then the diagonal g is a closed immersion, hence so is gT,
so that the morphism fT is separated.
d) Let us assume that f and g are separated and let us show that g ○ f is

separated. We make use of the criterion 5.4.6. Let T be a Z-scheme and let (u, v)
be a pair of Z-morphisms fromT to X. Since g is separated, the equalizer (T1, h1)
of the pair ( f ○ u, f ○ v) is a closed subscheme of T. Since f is separated, the
equalizer (T2, h2) of the pair (u ○ h1, v ○ h2) is a closed subscheme of T2. Let
h = h1 ○ h2∶T2 → T; it is the composition of two closed immersions, hence is a
closed immersion. Let us observe that (T2, h) is the equalizer of the pair (u, v).
One has u ○ h = u ○ h1 ○ h2 = v ○ h1 ○ h2 = v ○ h. Let moreover k∶U → T be
a morphism such that u ○ k = v ○ k and let us show that there exists a unique
morphism k′∶U → T2 such that k = h ○ k′. Since h is a monomorphism, there
exists at most one such morphism, hence we just need to prove its existence.
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One has f ○u ○ k = f ○v ○ k, so that there exists a morphism k1∶U→ T1 such that
k = h1 ○ k1. Consequently, u ○ h1 ○ k1 = v ○ h1 ○ k1, so that there exists a morphism
k2∶U→ T2 such that k1 = h2 ○ k2. It follows that k = h1 ○ h2 ○ k2 = h ○ k2, and the
morphism k2 satisfies the given requirement.
Let us now assume that g ○ f is separated. Let T be a Y-scheme and let
(u, v)∶T→ Z be a pair of morphisms of Y-schemes. Composing its structural
morphism with g, we may view T as an X-scheme; then u and v are morphisms
of X-schemes. Since g ○ f is separated, the equalizer E of the pair (u, v) is then
a closed subscheme of T. This proves that f is separated.
e) Let g∶Y→ Y×X Y and g′∶Y′ → Y′ ×X′ Y′ be the diagonal immersions. Since

f and f ′ are assumed to be separated, they are closed immersions. Let p and
p′ be the projections from X ×S X′ to X and X′ respectively; let q and q′ be the
projections from Y×SY′ to Y and Y′ respectively. Let φ∶Y×SY′ → X×SX′ be the
morphism ( f , f ′): it is characterized by the relations p○φ = f ○q and p′○φ = f ′○
q′. The fiber product (Y×SY′)X×SX′(Y×SY′) identifies with (Y×XY)×S(Y′×X′Y′)
and the diagonal morphism γ∶ (Y ×S Y′)→ (Y ×S Y′)X×SX′(Y ×S Y′) associated
with the morphism (g , g′). It is thus a closed immersion.

Corollary (5.4.8). — Let X and S be schemes and let f ∶X→ S be a morphism of
schemes. The following conditions are equivalent:

(i) The morphism f is separated;
(ii) The inverse image f −1(U) of every affine open subset U of S is a separated

scheme;
(iii) Every point of S has an open neighborhoodU such that f −1(U) is a separated

scheme.

Proof. — Let g∶ S→ Spec(Z) be the canonical morphism.
(i)⇒(ii). Let U be an affine open subset of S, let fU∶ f −1(U)→ U be the mor-

phism deduced from f by restriction, so that the unique morphism from f −1(U)
to Spec(Z) is equal to g∣U ○ fU. If f is separated, then fU is separated; since U
is affine, g∣U is separated; it follows from assertion d) of proposition 5.4.7 that
f −1(U) is a separated scheme.
(ii)⇒(iii) because every point of U has an affine open neighborhood.
(iii)⇒(i). By proposition 5.4.7, a), it suffices to prove that every point of S has

an open neighborhood U such that the morphism fU∶ f −1(U)→ U is separated.



5.4. SEPARATED AND PROPER MORPHISMS 243

Choose U so that f −1(U) is a separated scheme. Then g∣U ○ fU is separated by
definition, and the above proposition, d), implies that fU is separated.

Proposition (5.4.9). — Let f ∶X → S be a morphism of schemes and let (Ui)i∈I
be a family of open subschemes of X such that X = ⋃i∈IUi. For every pair (i , j)
of elements of I, let pi and p j be the two projections from Ui ×S U j to Ui and U j
respectively, and let gi j∶Ui ∩U j → Ui ×S U j be the unique morphism such that
pi○gi j and p j○gi j are the canonical inclusions ofUi∩U j intoUi andU j respectively.
Then f is separated if and only if the morphism gi j is a closed immersion for every
pair (i , j).

Proof. — Let g∶X→ X ×S X be the diagonal immersion. For every pair (i , j) of
elements of I, one has g−1(Ui ×SU j) = Ui ∩U j, and the morphism gi j is deduced
from g by restriction to these open sets. Since the open subsets of X ×S X of the
formUi×SU j cover X×SX, themorphism g is a closed immersion if and only if gi j
is a closed immersion for every pair (i , j). This establishes the proposition.

This statement is helpful to decide the separatedness of schemes which are
constructed by glueing.

Corollary (5.4.10). — Let X be the S-scheme obtained by glueing a family (Xi)i∈I
of S-schemes along open subschemes Xi j by means of isomorphisms φi j. For every
pair (i , j) of elements of I, let γi j∶Xi j → Xi ×S X j be the morphism whose first
component if the injection of Xi j into Xi, and whose second component is the
morphism φi j. Then X is separated if and only if the morphism γi j is a closed
immersion for every pair (i , j).

Proof. — For i ∈ I, let φi ∶Xi → X be the canonical inclusion, and let Ui = φi(Xi),
so that φi induces an isomorphism from Xi to Ui . Under these isomorphisms,
the morphisms gi j of the proposition identify with the morphisms γi j of the
corollary. This concludes the proof.

Corollary (5.4.11). — Let A be a ring and let S = Spec(A). Let X be an A-scheme.
The following properties are equivalent:
(i) The scheme X is separated;
(ii) For every pair (U,V) of affine open subschemes of X, the intersectionU∩V

is affine, and OX(U ∩V) is generated by the images of OX(U) and OX(V) by the
restriction morphisms;
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(iii) There exists an open cover (Ui)i∈I of X by affine open subschemes such that
for every pair (i , j) of elements of I, the scheme Ui ∩ U j is affine, and its ring
OX(Ui ∩U j) is generated by the images of OX(Ui) and OX(U j) by the restriction
morphisms.

Proof. — Let δ∶X→ X ×S X be the diagonal immersion.
(i)⇒(ii). Let us assume that X is separated and let U,V be affine open sub-

schemes of X. Then U×SV is an affine open subscheme of X×SX, and δ−1(U×V)
is equal to U ∩V. Since δ is a closed immersion, by assumption, it follows that
U ∩V is affine. Moreover, OX(U ∩V) is a quotient of OX(U)⊗A OX(V); conse-
quently, it is generated by the images of OX(U) and OX(V).

The implication (ii)⇒(iii) follows from the definition of a scheme, namely,
that every point of X has an affine open neighborhood.
(iii)⇒(ii). By restriction, the diagonal immersion δ induces a morphism

from δ−1(Ui ×S U j) = Ui ∩U j to Ui ×S U j. Under the conditions of (iii) imply,
this is a morphism of affine schemes which is a closed immersion, since the
associated morphism of rings is surjective. Since the family (Ui ×S U j)i , j∈I
covers X ×S X, this implies that δ is a closed immersion. Consequently, X is
separated.

Corollary (5.4.12). — For every ring k, the projective space of dimension n over k,
Pn
k , is separated.

Proof. — Let X = Pn
k ; let us recall that it is the k-scheme obtained by glueing

a family (Xi)0⩽i⩽n of affine schemes, each of them isomorphic to An
k . Let (i , j)

be a pair of elements of {0, . . . , n}. To check the criterion of the previous
corollary, we may assume that i ≠ j and, up to a permutation of indices, that
i = 0 and j = n. Then X0 = Spec(k[S1, . . . , Sn]), Xn = Spec(k[T0, . . . , Tn−1]),
one has X0n = D(Sn) = Spec(k[S1, . . . , Sn , 1/Sn]), Xn0 = D(T0) = Spec(k[T0,→
, Tn−1, 1/T0]) and φ0n∶X0n → Xn0 is the unique morphism of k-schemes such
that φ♯0n(Si) = Ti/T0, for every i ∈ {1, . . . , n − 1} and φ♯0n(Sn) = 1/T0. We
observe that Xn0 is affine and that OX(Xn0) = k[T1, . . . , Tn , 1/Tn] is generated
by OX(Xn) = k[T1, . . . , Tn] and by 1/T0 which belongs to OX(X0) by φ♯0n. This
concludes the proof that Pn

k is separated.

Definition (5.4.13). — Let f ∶X→ S be a morphism of schemes. One says that f is
proper if it is of finite type, separated, and universally closed.
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Let us precise that f is universally closed if and only if for every S-scheme T,
the morphism fT∶XT → T deduced from f by base change to T is closed.

Proposition (5.4.14). — a) Let f ∶X → S be a morphism of schemes. Assume
that every point of S has an open neighborhoodU such that the induced morphism
fU∶ f −1(U)→ U is proper. Then f is proper.
b) A closed immersion of schemes is a proper morphism.
c) Let f ∶X → S be a proper morphism of schemes and let T be an S-scheme.

Then the morphism fT deduced from f by base-change to T is proper.
d) Let f ∶Z→ Y and g∶Y→ X be morphisms of schemes. If f and g are proper,

then g ○ f is proper.
e) Let S be a scheme, let f ∶Y→ X and f ′∶Y′ → X′ be morphisms of S-schemes.

If f and f ′ are proper, then the morphism ( f , f ′)∶Y ×S Y′ → X ×S X′ is proper.

Proof. — a) Assume that every point of S has an open neighborhood U such
that fU∶ f −1(U)→ U is proper. Then f is of finite type and separated. For every
closed subset Z of X, one has f (Z) ∩U = fU(Z ∩ f −1(U)), so that f (Z) ∩U is
closed in U for every open subset U of S such that fU is closed. This implies
that f (Z) is closed, so that f is a closed map. More generally, let (T, g) be an
S-scheme and let W = g−1(U); one has ( fT)−1(W) = f −1(U) ×S W, and the
( fT)W∶ ( fT)−1(W)→Wdeduced from fT identifies with the morphism ( fU)W
deduced from fU by base change to W. If fU is closed, then ( fU)W is closed.
Since T is covered by such open subsets W, this implies that fT is closed.
b) Let f be a closed immersion. It is of finite type and separated, and closed.

For every S-scheme T, fT is again a closed immersion, hence is closed. This
proves that f is a proper morphism.
c) Let f ∶X→ S be a proper morphism and let T be an S-scheme. Then fT is of

finite type, and is separated; it is also closed, and in fact universally closed since
for every T-scheme U, the morphism ( fT)U identifies with the morphism fU
deduced from f by base change to U. Consequently, fT is a proper morphism.
d) Themorphism g○ f is of finite type, and is separated. For every S-scheme T,

one has (g ○ f )T = gT ○ fT; since the composition of closed maps is a closed
map, this implies that g ○ f is universally closed. Consequently, g ○ f is a proper
morphism.
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e) The morphism ( f , f ′) is the composition of the morphism fY′ ∶Y ×S Y′ →
X×S Y′ deduced from f by base change to Y′ and of the morphism f ′X∶X×S Y′ →
X ×S X′ deduced from f ′ by base change to X. It is thus proper.

Proposition (5.4.15). — A finite morphism is proper and has finite fibers.

A difficult theorem of Chevalley asserts the converse: a proper morphism with
finite fibers is finite.

Proof. — Let f ∶Y→ X be a finite morphism. Then f is affine, hence it is sepa-
rated. Let us prove that f is closed. Let Z be a closed subset of Y; to prove that
f (Z) is closed in X, it suffices to prove that for every affine open subscheme U
of X, f (Z)∩U = f ( f −1(U)∩Z) is closed in U. Wemay thus assume that X and Y
are affine, say X = Spec(A) and Y = Spec(B), where B is an A-algebra which
is finitely generated as a B-module. Let J be an ideal of B such that Z = V(J).
Let φ be the composition A → B → B/J and let I be its kernel. The associated
ring morphism A/I→ B/J is injective and integral, since B/J is an finitely gener-
ated A/I-module. By the first theorem of Cohen-Seidenberg (theorem 1.11.4),
the associated morphism from Spec(B/J) to Spec(A/I) is surjective. Since the
canonical surjection from A to A/I induces a homeomorphism from Spec(A/I)
to the closed subset V(I) of Spec(A), this implies that f (Z) = V(I). In particular,
f (Z) is closed in X.
For every X-scheme Z, the morphism of schemes fT∶YZ → Z deduced from f

by base change is finite; by what precedes, it is closed as well. This proves that
the morphism f is proper.
Let us now prove that its fibers are finite. As above, we may assume that

X = Spec(A) and Y = Spec(B). Let x ∈ X; then its fiber f −1(x) identifies with
Spec(B ⊗A κ(x)), where κ(x) is the residue field of X at x. The κ(x)-algebra
B⊗A κ(x) is finitely generated as a κ(x)-vector space, hence it has finite length.
In particular, it is an artinian ring and it follows from lemma 1.12.7 that its
spectrum is finite.

Theorem (5.4.16). — The canonical morphism f ∶Pn
Z → Spec(Z) is proper.

Proof. — This morphism is separated and of finite type, so we just need to
prove that it is universally closed. Let T be a scheme and let fT∶Pn

T → T be the
morphism deduced from f by base-change to T; let us prove that fT is closed.
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It is enough to treat the case where T is an affine scheme, which brings us to
proving that the canonical morphism fk∶Pn

k → Spec(k) is closed for every ring k.
Recall that the scheme Pn

k is isomorphic to the projective spectrum of the
graded ring A = k[T0, . . . , Tn]; let A+ be the ideal (T0, . . . , Tn). Let Z ⊆ Pn

k be a
closed subset and let J = j+(Z) be its homogeneous ideal. For every integer d ⩾ 0,
let Ad ⊆ R[T0, . . . , Tn] be the k-submodule of homogeneous polynomials of
degree d and let Jd = J ∩Ad .
By assumption y /∈ f (Z), hence V+(pR[T0, . . . , Tn]) ∩ Z = ∅. Consequently,

the homogeneous ideal

V+(j+(Z) + pR[T0, . . . , Tn]) = Z ∩V+(pR[T0, . . . , Tn]) = ∅.

Consequently, the smallest radical ideal of A which contains j+(Z) +
pR[T0, . . . , Tn] is equal to A+. In particular, for every i, there exists an
integer di such that di ⩾ 0, a homogeneous polynomial Pi ∈ j+(Z) and a
homogeneous polynomial Qi ∈ pR[T0, . . . , Tn] such that Td i

i = Pi +Qi .
Let d = ∑n

i=0 di. By construction, every monomial of degree m belongs to
j+(Z)+pR[T0, . . . , Tn], hence the equality Ad = Jd+pAd . By Nakayama’s lemma
(corollary 1.3.2) applied to the finitely generated k-module Ad/Jd and the ideal p
of k, there exists an element a ∈ k such that a − 1 ∈ p and such that aAd ⊆ Jd . In
particular, aTd

i ∈ Jd for every integer i ∈ {0, . . . , n}.
This implies that the ideal J contains the ideal a(Td

0 , . . . , Td
n), so that Z =

V+(J) ⊆ V((a)). Consequently, f (Z) ⊆ V(a); moreover, a /∈ p. In other words,
the set Spec(k) f (Z) contains the neighborhood D(a) of p. This shows that
f (Z) is closed and concludes the proof that the morphism f ∶Pn

Z → Spec(Z) is
proper.

Definition (5.4.17). — Let f ∶X→ S be a morphism. One says that f is projective
if there exists an integer n ⩾ 0 and a closed immersion of S-schemes, g∶X →
Pn ×Spec(Z) S.

By theorem 5.4.16, the projection from Pn × S to S is proper. It thus follows
from proposition 5.4.14 that a projective morphism is proper.
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5.5. Flat morphisms

Definition (5.5.1). — Let A be a ring and letM be an A-module. one says that
M is flat (over A) if for every injective morphism u∶N → N′ of A-modules, the
morphism idM⊗u∶M⊗A N→M⊗A N′ is injective.
One says thatM is faithfully flat (over A) if it is flat and ifM⊗AN ≠ 0 for every

non-zero A-module N.

This definition can be reformulated as follows.

Lemma (5.5.2). — LetA be a ring, and let TM be the ‘‘tensorization byM’’ functor,
from the category of A-modules to itself.
a) The A-moduleM is flat if and only if the functor TM is exact.
b) The following assertions are equivalent: (i) The A-moduleM is faithfully flat;

(ii) For any morphism u∶N→ N′ of A-modules, then u is injective if and only if
idM⊗u is injective; (iii) The functor TM is exact and conservative.

An functor T is called conservative if every morphism u such that T(u) is an
isomorphism is itself an isomorphism.

Proof. — a) By definition, the functor TM is given by TM(N) =M⊗A N and
TM(u) = idM⊗u for every A-module N and every morphism u of A-modules.
Recall that this functor is right exact; indeed, the universal property of the tensor
product expresses the functor TM as a left-adjoint of some functor. In particular,
for every exact sequence N′′ → N → N′ → 0 of A-modules, the associated
sequence M⊗A N′′ →M⊗A N→M⊗A N′ → 0 is exact. The definition of a flat
module thus says that M is flat if and only if this functor TM is exact: for every
exact sequence 0→ N′′ → N→ N′ → 0 of A-modules, the associated sequence
0→M⊗A N′′ →M⊗A N→M⊗A N′ → 0 is exact.
b) Assume that M is flat. Let u∶N → N′ be morphism of A-modules. Then

Coker(idM⊗u) = M ⊗A Coker(u), and Ker(idM⊗u) = M ⊗A Ker(u). Con-
sequently, idM⊗u is surjective (resp. injective) if and only if u is surjective
(resp. injective). It follows that idM⊗u is an isomorphism if and only if u is an
isomorphism, that is, if the functor TM is conservative.
Conversely, let us assume that M is flat and that the functor TM is conservative.

Let then N be an A-module such that M⊗A N = 0 and let u∶0→ N be the zero
morphism; then TM(u) = 0 is the isomorphism from 0 to 0 =M⊗AN, so that u
is an isomorphism: this shows that N = 0.
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The same argument shows thatM is faithfully flat over A if and only if, for every
morphism u of A-modules such that TM(u) is injective, then u is injective.

Proposition (5.5.3). — Let A be a ring.
a) The A-module A is faithfully flat.
b) A filtrant colimit of flat A-modules is flat.
c) A direct sum⊕i Mi of a family (Mi) of A-modules is flat if and only ifMi is

flat for every i.
d) Every projective A-module is flat.
e) For every multiplicative subset S of A, the A-module S−1A is flat.
f) LetM and N be flat (resp. faithfully flat) A-modules. ThenM ⊗A N is flat

(resp. faithfully flat).

Proof. — a) Under the canonical isomorphism A⊗AN ≃ N given by a⊗n ↦
an, a morphism idA⊗u identifies with u. In other words, the functor TA is
isomorphic with the identical functor. It is thus exact and conservative.
b) Let ((Mi)i∈I, (φi j) be a diagram of flat A-modules indexed by a filtrant

partially ordered set, and M = limÐ→i
Mi ; for i ∈ I, let φi ∶Mi →M be the canonical

morphism. Let then u∶N→ N′ be an injective morphism of A-modules and let
us show that idM⊗u is injective. Let x be any element of its kernel; there exists
an element i ∈ I and xi ∈Mi ⊗N such that x = (φi ⊗ idN)(xi). Consequently,
one has

(φi ⊗ idN)(TMi(xi)) = (φi ⊗ idN) ○ (idMi ⊗u)(xi)
= φi ⊗ u(xi)
= (idM⊗u) ○ (φi ⊗ idN)(xi)
= TM(u)(x) = 0.

Since the tensor product is a right exact functor, the canonical morphism from
limÐ→(Mi ⊗N) to M⊗N is an isomorphism. This implies that there exists j ∈ I
such that j ⩾ i and such (φi j ⊗ idN)(TMi(xi)) = 0. Let then x j = φi j(xi); one
has TM j(x j) = 0. Since M j is a flat A-module, this implies that x j = 0. Finally,
x = φi(xi) = φ j(φi j(xi)) = φ j(x j) = 0. This shows that the morphism TM(u) is
injective and concludes the proof that M is a flat A-module.
c) Let M be the direct sum of the family (Mi); for every i, let pi ∶M → Mi

be the projection of index i. Under the isomorphism M⊗A N ≃⊕i∈IMi ⊗A N
associated with the family (pi ⊗ idN), a morphism idM⊗u identifies with the
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morphism⊕ idMi ⊗u. Consequently, idM⊗u is injective if and only if idMi ⊗u
is injective for every i.
d) If follows from b) that a free A-module is flat; it is moreover faithfully flat

if it is non-zero. If M is a projective A-module, there exists an A-module N such
that M⊕N is free; then M⊕N is flat; by b), M is flat as well.
e) For every A-module N, there exists a unique morphism from S−1A⊗A N

to S−1N which maps a tensor 1 ⊗ n to the fraction n/1. This morphism is an
isomorphism. Indeed(2), there exists a uniquemorphism from S−1N to S−1A⊗AN
which maps n/1 to 1⊗ n. Both compositions of these morphisms are the identity.
Consequently, the functor TS−1A is isomorphic to the localization functor. By
example 2.3.15, this latter functor is exact, so that S−1A is a flat A-module, as
claimed.
f) Given the associativity isomorphisms (M⊗A N)⊗A P ≃M⊗A (N⊗A P) of

the tensor product, the functor TM⊗AN is the composition TM ○ TN of the exact
functors TM and TN, hence is exact.

Proposition (5.5.4). — Let A be a ring and let B be an A-algebra.
a) For every flat (resp. faithfully flat) A-moduleM, the B-moduleM⊗A B is flat

(resp. faithfully flat).
b) Assume thatB is flat overA. Then for every flatB-moduleM, theA-moduleM

is flat.
c) Assume that B is faithfully flat over A. Then, for every A-module M, the

B-moduleM⊗AB is flat (resp. faithfully flat) if and only ifM is flat (resp. faithfully
flat) over A.

Proof. — a) For every B-module N, there is an isomorphism from (M ⊗A
B) ⊗B N with M ⊗A N, given by (m ⊗ b) ⊗ n ↦ m ⊗ (bn), for m ∈ M, b ∈ B
and n ∈ N. Thanks to these isomorphisms, the functor TM⊗AB identifies with
the composition of the functor TM with the forgetful functor from the category
of B-modules to the category of A-modules. Since the latter functor is exact, this
implies that TM⊗AB is exact is TM is.
Assume moreover that M is faithfully flat and let N be a B-module such that
(M⊗A B)⊗B N = 0. Then M⊗A N = 0, hence N = 0. This shows that M⊗A B is
a faithfully flat B-module.

(2)This should be already in the notes, but I can’t find it!
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b) Let us denote by MA the A-module associated with M. Since B is an A-
algebra, every module of the form B ⊗A N, for an A-module N is naturally a
B-module, and the functor TB can be viewed as a functor from the category of A-
modules to the category of B-modules. Since B is flat over A, this functor is exact.
Under the isomorphisms MA⊗AN ≃M⊗B (B⊗AN), the functor TMA identifies
with the composition of the functor TM and the functor TB. Consequently, it is
exact as well, and MA is a flat A-module.
c) Let us assume that M⊗A B is a flat B-module. Let u∶N→ N′ be an injective

morphism of A-modules; since B is faithfully flat over A, the morphism uB =
u ⊗ idB∶N⊗A B → N′ ⊗A B is injective. Consequently, the morphism idM⊗uB
from M⊗A N⊗A B to M⊗A N′ ⊗A B is injective. Since B is faithfully flat over A,
this implies that the morphism idM⊗u is injective as well. Consequently, M is a
flat A-module.

Proposition (5.5.5). — Let A be a ring and letM be an A-module. The following
properties are equivalent:
(i) The A-moduleM is flat (resp. faithfully flat);
(ii) For every p ∈ Spec(A), the Ap-moduleMp is flat (resp. faithfully flat);
(iii) For everym ∈ Spm(A), the Am-moduleMm is flat (resp. faithfully flat).

Proof. — (i)⇒(ii) follows from the fact that flatness is preserved by base change,
and (ii)⇒(iii) is obvious.
Let us assume that Mm is flat over Am for every m, and let u∶N → N′ be an

injective morphism of A-modules, let v = idM⊗u and let us prove that v is
injective. Let m ∈ Spm(A); the morphism um is injective, hence Mm is a flat
Am-module. Since the morphism vm identifies with idMm

⊗um, we conclude
that vm is injective. By exactness of localization, the canonical morphism from
Ker(v)m Ker(vm) is an isomorphism, hence Ker(v)m = 0. This this holds for
every maximal ideal m of A, one has Ker(v) = 0 (lemma 1.2.9), hence v is
injective.

This shows that the three statements concerning flatness are equivalent. Let
us check thee equivelence of their counterparts for faithfull flatness. Let N be
a A-module such that M ⊗A N = 0. For every prime ideal p of A, one has an
isomorphism of Ap-modules, Mp⊗Ap

Np, so that the implication (i′)⇒(ii′′) holds,
and the implication (ii′)⇒(iii′) is again obvious. Finally, if (iii′) holds and if
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M⊗AN = 0, thenMm⊗Am
Nm = 0 for every maximal idealm of A, hence Nm = 0;

by lemma 1.2.9, one has N = 0.

Exercise (5.5.6). — Let A be a ring and let M be an A-module.
a) Prove that M is flat if and only if, for every ideal I of A, the canonical

morphism from I⊗A M to IM is an isomorphism.
b) Assume that A is a principal ideal domain. Prove that M flat if and only if it

is torsion free. Prove thatQ is a flat Z-module which is not projective.

Exercise (5.5.7). — Let A be a ring and let M be an A-module. A relation in M
is an expression of the form ∑n

i=1 aixi = 0, where (ai) is a family of elements
of A, and (xi) is a family of elements of M. A relation is said to be trivial if there
exists a family (bi j) of elements of A and a family (y j) of elements of M such
that xi = ∑m

j=1 bi jy j for all i, and∑n
i=1 aibi j = 0 for all j.

Prove that M is flat if and only if every relation in M is trivial.

Proposition (5.5.8). — LetA be a ring and letM be a flatA-module. The following
properties are equivalent:
(i) The A-moduleM is faithfully flat;
(ii) For every prime ideal p of A, one hasM⊗A κ(p) ≠ 0;
(iii) For every maximal idealm of A, one hasM⊗A κ(m) ≠ 0.

Proof. — (i)⇒(ii) follows from the definition, since κ(p) ≠ 0.
(ii)⇒(iii) is obvious.
(iii)⇒(i). Let N be an A-module such that M ⊗A N = 0. Let x ∈ N and let

I = {a ∈ A ; ax = 0} be its annihilator. Let g∶A/I→ N be the unique morphism
which maps the class of an element a ∈ A to ax; it is injective. Since M is flat, the
morphism idM⊗g is injective as well, hence M⊗A (A/I) = 0, that is, M = IM. If
I = A, then 1 ∈ I and x = 0. Otherwise, there exists a maximal idealm of A such
that I ⊆ m; one then has M = IM = mM, which contradicts the assumption that
M⊗A κ(m) ≠ 0.

Corollary (5.5.9). — Let f ∶A → B be a flat ring morphism. Then f is faithfully
flat if and only if the map a f ∶ Spec(B)→ Spec(A) is surjective.

Proof. — Let p be a prime ideal of A. The prime ideals q of B such that f −1(q) = p
are in bijection with the prime ideals of Bp which contain pBp. Consequently,
p belongs to the image of a f if and only if Bp/pBp ≠ 0. Since the latter ring
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is isomorphic to B ⊗A κ(p), this shows that a f is surjective if and only if f is
faithfully flat.

Corollary (5.5.10). — A local morphism of local rings which is flat is faithfully
flat.

Proof. — Let f ∶A → B be a flat local morphism of local rings. Let p be the
maximal ideal of A and let q be the maximal ideal of B. By assumption, one
has a f (q) = p, hence B/pB ≠ 0. Consequently, f satisfies the assumption (iii) of
proposition 5.5.8, hence f is faithfully flat.

Definition (5.5.11). — Let X be a scheme and let M be an OX-module. One says
that M is flat if, for every x ∈ X, the OX,x-module Mx is flat.

If M is flat, then M ∣U is a flat OU-module. Conversely, if every point x of X
has an open neighborhood U such that M ∣U is a flat OU-module, then M is
flat.
Together with proposition 5.5.5, these remarks imply the following proposition.

Proposition (5.5.12). — Let X be a scheme and let M be a quasi-coherent OX-
module. The following properties are equivalent:
(i) The OX-module M is flat;
(ii) For every affine open subset U of X, the OX(U)-module M (U) is flat;
(iii) Every point of X has an affine open neighborhood U such that the OX(U)-

module M (U) is flat.

Example (5.5.13). — Let X be a scheme. The following properties of flat OX-
modules follow directly from the definition and from proposition 5.5.3.
a) The OX-module OX is flat.
b) A direct sum⊕Mi of a family (Mi) of OX-modules is flat if and only if

Mi is flat for every i.
c) A finitely presented OX-module is flat if and only if it is locally free.
d) Let M and N be flat OX-modules; then M ⊗OX N is flat.

Definition (5.5.14). — Let f ∶Y→ X be a morphism of schemes. One says that f is
flat if OY,y is a flat OX, f (y)-module, for every y ∈ Y.
One says that f is faithfully flat if it is flat and surjective.
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If Y is an X-scheme, then one also says that Y is flat (resp. faithfully flat) over X
to mean that its structural morphism is flat.

There is a more general definition that is often useful in more advanced topics
of algebraic geometry. Let M be a quasi-coherent OY-module. One says that
M is f -flat at a point y ∈ Y if My is flat over OX, f (y). One says that it is f -flat if
it is f -flat at every point of Y.
Given this definition, saying that f is flat is equivalent to saying that OY is

f -flat.

Lemma (5.5.15). — Let f ∶Y → X be a morphism of schemes. The following
properties are equivalent:
(i) The morphism f is flat;
(ii) For every open affine subscheme U of X and every affine subscheme V of

f −1(U), the ring OY(V) is a flat OX(U)-module;
(iii) For every point y ∈ Y, there exists an affine open neighborhood V of y in Y,

and an affine open neighborhood U of f (y) in X such that f (V) ⊆ U and such
that the ring OY(V) is a flat OX(U)-module.

In particular, a morphism of affine schemes f ∶ Spec(B) → Spec(A) is flat if
and only if B is a flat A-module. By corollary 5.5.9, it is then faithfully flat if and
only if B is a faithfully flat A-module.

Proposition (5.5.16). — a) Let f ∶Y→ X and g∶Z→ Y be flat morphisms, then
f ○ g is flat.
b) Let f ∶Y → X and g∶Z → X be morphisms of schemes. If f is flat, then the

morphism fZ∶YZ → Z deduced from f by base change to Z is flat. If fZ is flat and
g is faithfully flat, then f is flat.
c) Let f ∶Y → X and g∶Z → X be morphisms of schemes. If f and g are flat,

then the canonical morphism h∶Y ×X Z→ X is flat.

Proposition (5.5.17) (Going down for flat morphisms). — Let f ∶A→ B be a flat
morphism of rings. Let (p0, . . . , pn) be a chain of prime ideals of A and let qn be a
prime ideal of B such that a f (qn) = pn. There exists a chain (q0, . . . , qn) of prime
ideals of B such that a f (qm) = pm for every m ∈ {0, . . . , n}.

Proof. — By induction, we may assume that n = 1. Let us then consider the
flat morphism of local rings g∶Ap1 → Bq1 deduced from f by localization. It
is surjective, hence there exists a prime ideal q0 of B contained in q1 such that
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p0Ap1 = g−1(q0Bq1). Necessarily, p0 = f −1(q0), and this concludes the proof of
the proposition.

Proposition (5.5.18). — Let A and B be noetherian local rings, let mA and mB
denote their maximal ideals and let φ∶A→ B be a local morphism. Then

dim(B) ⩽ dim(A) + dim(B/mAB).
If φ is flat, then equality holds:

dim(B) = dim(A) + dim(B/mAB).

Proof. — Let d = dim(A) and let (a1, . . . , ad) be a family of elements
of mAA such that mA =

√
(a1, . . . , ad). Let e = dim(B/mAB), and let

(b1, . . . , be) be elements of mB such that mB =
√
(b1, . . . , be) +mAB. Then

(φ(a1), . . . , φ(ad), b1, . . . , be) is an ideal of B, contained inmAB. Moreover, the
radical of this ideal contains mAB and (b1, . . . , be), hence it is equal to mAB.
This implies that

dim(B) ⩽ d + e = dim(A) + dim(B/mAB).
Let us now assume that φ is flat. Let (p0, . . . , pd) be a chain of prime ideals

of A and let (qd , . . . , qd+e) be a chain of prime ideals of B containing mAB.
By the going-down proposition for flat morphisms (proposition 5.5.17), there
exist prime ideals q0, . . . , qd−1 of B such that aφ(qi) = pi for every i, and such
q0 ⊆ ⋅ ⋅ ⋅ ⊆ qd . Then (q0, . . . , qd , . . . , qd+e) is a chain of prime ideals of B, hence
dim(B) ⩾ d + e.

Theorem (5.5.19). — Let K be a field, let X and Y be K-schemes of finite type;
Assume that X is irreducible and that Y is equidimensional. Let f ∶Y→ X be a flat
K-morphism. For every x ∈ X, the fiber Yx is equidimensional and

dim(Yx) = dim(Y) − dim(X).

Geometrically, this theorem says that given a flat morphism f ∶Y → X as in
the statement of the theorem, all fibers of f have the same dimension which is
the difference of the dimensions of Y and X. Flatness is thus seen as a property
that the fibers of a morphism behave in a reasonable way.

Proof. — Let y be a closed point of Yx . Let Z be an irreducible component of Y
containing y. Since Y is equidimensional, one has dim(Z) = dim(Y), hence

dim(OZ,y) = dim(Z) − dim({y}) = dim(Y) − dim({y}).
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Consequently,
dim(OX,y) = dim(Y) − dim({y}).

On the other hand, y is the generic point of {y}, which is a closed subscheme of Y,
hence is a K-scheme of finite type; we thus have dim({y}) = tr. degK(κ(y)).
Similarly, dim({x}) = tr. degK(κ(x)). Moreover, κ(y) is a finite extension
of κ(x), because y is a closed point of Yx . Consequently,

dim({y}) = tr. degK(κ(y)) = tr. degK(κ(x)) = dim({x}) = dim(X)−dim(OX,x).

This implies the relation

dim(OY,y) − dim(OX,x) = dim(Y) − dim(X).

On the other hand, since y is a closed point of Yx , one has

dimy(Yx) = dim(OYx ,y) = dim(OY,y/mxOY,y),

since
OYx ,y = OY,y ⊗ κ(x) = OY,y/mxOY,y .

Proposition 5.5.18 then shows that dimy(Yx) ⩾ dim(Y) − dim(X), with equality
if f is flat at y. In particular, dim(Yx) ⩾ dim(Y) − dim(X). If f is flat, then
dimy(Yx) = dim(Y) − dim(X) for every closed point y ∈ Yx . It first follows that
dim(Yx) = dim(Y)− dim(X). If Yx were not equidimensional, it would possess
an irreducible component T of dimension < dim(Y) − dim(X); let then y be a
closed point of T which does not belong to the union of the other components;
one has dimy(Yx) = dim(T), a contradiction.

Exercise (5.5.20). — Let f ∶A2
K → A2

K be the morphism given by f (x , y) =
(xy, y). Let U = A2

K V(x , y). Prove that fU∶ f −1(U)→ U is an isomorphism.
Let P = V(x , y). Prove that f −1(P) ≃ A1

K. It thus follows from theorem 5.5.19
that f is not flat; prove this fact directly.

5.6. The module of relative differential forms

Definition (5.6.1). — Let k be a ring, let A be a k-algebra and let M be an A-
module. A map d∶A → M is called a k-derivation if it is k-linear and if one
has

d(ab) = ad(b) + bd(a)
for every pair (a, b) of elements of A.
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For every integer n such that n ⩾ 1 and every a ∈ A, one proves by induction
that

d(an) = nan−1d(a)
Let a, b ∈ A; if b is invertible, then d(b ⋅ (a/b)) = (a/b)d(b)+ bd(a/b), so that

d(a/b) = b−2(bd(a) − ad(b)).

In particular, d(1) = d(1/1) = 0; consequently, d(a) = ad(1) = 0 for every
element a in the image of k.

The set Derk(A,M) of k-derivations from A to M is an A-submodule of the
A-module MA. When k = Z, one simply says that d is a derivation; the module
DerZ(A,M) is simply denoted by Der(A,M).
If f ∶M → N is a morphism of A-modules and d∶A → M is a k-derivation,

then f ○ d is a k-derivation. This defines a map f∗∶Derk(A,M)→ Derk(A,N);
it is a morphism of A-modules.

Example (5.6.2). — Let k be a ring, let I be a set and let A = k[(Ti)i∈I] be the
ring of polynomials with coefficients in k in the family of indeterminates (Ti)i∈I.
a) For every i ∈ I, the map P↦ ∂P/∂Ti is a k-derivation from A to A.
b) Let M be an A-module. The map Derk(A,M) → MI which associates,

with every k-derivation d∶A→M, the family (d(Ti))i∈I is an isomorphism of
A-modules.
Let us denote this map by φ. It is A-linear. Moreover, for every multi-index
(ni) ∈ N(I) and every k-derivation d∶A→M, one has

d(∏
i
Tn i
i ) =∑

i∈I
niTn i−1

i ∏
j∈I
j≠i

Tn j
j d(Ti);

this sum is finite since ni = 0 for all but finitely many elements i ∈ I. Conse-
quently,

d(P) =∑
i∈I

∂P
∂Ti

d(Ti),

where, again, this sum is in fact finite because a polynomial P depends on finitely
many indeterminates, hence ∂P/∂Ti = 0 for all but finitelymany i ∈ I. This shows
that the morphism φ is injective. Moreover, if (mi)i∈I is a family of elements
of M, then the map

P↦∑
i∈I

∂P
∂Ti

mi
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is a k-derivation; consequently, φ is surjective.

Exercise (5.6.3). — Let k be a ring, let A be a k-algebra and letMbe anA-module.
Let Mε be the abelian group Mε = A⊕M, endowed with the multiplication law
given by (a,m) ⋅(a′,m′) = (aa′, am′+a′m). Show that Mε is a ring and that the
map fromMε to A given by (a,m)↦ a is a morphism of rings. Let d∶A→M
be a map. prove that the map from A to Mε given by a ↦ (a, d(a)) is a ring
morphism if and only if d is a derivation.

Proposition (5.6.4). — Let k be a ring and let A be a k-algebra.
a) There exists anA-moduleΩ1

A/k and a k-derivation dA/k∶A→ Ω1
A/k satisfying

the following universal property: for every A-module M and every derivation
d∶A → M, there exists a unique A-linear morphism φ∶Ω1

A/k → M such that
φ ○ dA/k = d.
b) If A is a finitely generated k-algebra, then Ω1

A/k is a finitely generated A-
module.
c) If A is a finitely presented k-algebra, then Ω1

A/k is a finitely presented A-
module.

Any A-module Ω1
A/k such in the proposition is called amodule of differential

forms of A over k. Since it satisfies a universal property, the pair (Ω1
A/k , dA/k) is

well defined up to isomorphism.
In fact, the assignment M ↦ Derk(A,M) is a functor from the category of

A-modules to itself; the functorial isomorphisms

HomA(Ω1
A/k ,M)→ Derk(A,M), f ↦ f ○ dA/k

show that this functor is corepresentable.

Lemma (5.6.5). — Let k be a ring, let B be a k-algebra; Assume that there exists a
pair (Ω1

B/k , dB/k) satisfying the universal property of a module of differentials of B.
Let I be an ideal of B and let A = B/I; let Ω1

A/k be the A-module Ω1
B/k/(IΩ1

B/k +
BdB/k(I)); let p∶B→ A and q∶Ω1

B/k → Ω1
A/k be the canonical surjections.

a) There exists a unique map dA/k∶A → Ω1
A/k such that dA/k(p(a)) =

q(dB/k(a)) for every a ∈ B; it is a k-derivation.
b) The pair (Ω1

A/k , dA/k) satisfies the universal property of a module of differen-
tials of A.
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c) If Ω1
B/k is a finitely generated B-module, then Ω1

A/k is a finitely generated
A-module.
d) If Ω1

B/k is a finitely presented B-module and I is a finitely generated ideal,
then Ω1

A/k is a finitely presented A-module.

Proof. — a) A priori, Ω1
A/k is defined as a B-module; since the elements of I

act by 0 in Ω1
A/k, it is a A-module. Moreover, the map q ○ dB/k is k-linear and

its kernel contains I; consequently, there exists a unique k-linear morphism
dA/k∶A→ Ω1

A/k such that dA/k ○ p = q ○ dB/k.
b) Let now M be a A-module and let d∶A → M be a k-derivation. The

surjective morphism p∶B→ A endowesMwith the structure of a B-module, and
the map a ↦ d(p(a)) is a k-derivation from B to M; consequently, there exists
a B-linear morphism f ∶Ω1

B/k →M such that d ○ p = f ○dB/k. For every a ∈ I, one
has f (dB/k(a)) = d(p(a)) = 0, hence dB/k(I) ⊆ Ker( f ). Moreover, for every
ω ∈ Ω1

B/k and every a ∈ I, one has f (aω) = a f (ω) = 0, since M is an A-module;
consequently, IΩ1

B/k ⊆ Ker( f ). Consequently, there exists a B-linear morphism
g∶Ω1

A/k →M such that f = g ○ q; this is an A-linear morphism. Finally, one has

d ○ p = f ○ dB/k = g ○ q ○ dB/k = g ○ q ○ dB/k = g ○ dA/k ○ p.

Since p is surjective, this implies that d = g ○ dA/k. Finally, if g′∶Ω1
A/k →M is an

A-linearmorphism such that d = g′○dA/k, one has d○p = g′○q○dB/k = g○q○dB/k,
hence g′ ○ q = g ○ q; by the universal property of dB/k. Since q is surjective, this
implies g = g′.
c) Let us assume that Ω1

B/k is finitely generated as a B-module. Since Ω1
A/k is

a quotient of Ω1
B/k, it is finitely generated as a B-module, hence as an A-module

since the morphism from B to A is surjective.
d) Let us finitely assume that Ω1

B/k is finitely presented as a B-module and
that I is a finitely generated ideal. Then Ω1

B/k/IΩ1
B/k is finitely presented as well,

and Ω1
A/k is the quotient of that module by the A-submodule generated by the

images elements of the form dB/k(a), for a ∈ I. Let (b1, . . . , bn) be a finite family
generating I. For every family a ∈ I and every family (a1, . . . , an) of elements
of B such that a = a1b1 + ⋅ ⋅ ⋅ + anbn, one has

dB/k(a) =
n
∑
i=1

aidB/k(bi) +
n
∑
i=1

bidB/k(ai).
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Consequently, Ω1
A/k is isomorphic to the quotient of Ω1

B/k/IΩ1
B/k by the finitely

generated submodule generated by the images of the elements dB/k(bi), for
1 ⩽ i ⩽ n. It is thus finitely presented.

Proof of proposition 5.6.4. — As any k-algebra, A is isomorphic to the quotient
of a polynomial algebra B = k[(Tλ)λ∈L] by an ideal J. For example, the unique
morphism from k[(Ta)a∈A] to A such that Ta ↦ a is surjective. If A is finitely
generated, we may even assume that the set L is finite; if, moreover, A is finitely
presented, then the ideal J is finitely generated. By example 5.6.2, the k-algebra B
admits amodule of differentials, namely themodule Ω1

B/k = B(L). By lemma 5.6.5,
the k-algebra A admits the quotient Ω1

A/k = B(L)/(JB(L) +BdB/k(J)) as a module
of differentials. It also follows from this lemma that Ω1

A/k is a finitely generated
(resp. finitely presented) A-module if A is a finitely generated (resp. finitely
presented) k-algebra.

Remark (5.6.6). — We detail a few consequences of the above explicit construc-
tion of the A-module Ω1

A/k.
a) Let us assume that A = k[(Xλ)]λ∈L is a polynomial algebra. Then the family
(dA/k(Xλ))λ∈L is a basis of ΩA/k; in particular, this A-module is free.
b) Let a = (aλ)λ∈L be a family of elements of A which generates A as a k-

algebra. The family (dA/k(aλ)) generates ΩA/k as anA-module. The kernel of the
associated morphism from A(L) to ΩA/k is generated by families (∂P/∂Xλ(a)),
where P ∈ k[(Xλ)]λ∈L generates the kernel I of the morphism from k[(Xλ)] to A
given by P↦ P(a).
c) Let us put ourselves in the context of lemma 5.6.5. Let x , y ∈ B; in the

A-module A⊗B ΩB/k, one has

1⊗ dB/k(xy) = 1⊗ (xdB/k(y) + ydA/k(x)) = p(x)⊗ dB/k(y) + p(y)⊗ dB/k(x).
In particular, if x , y ∈ I, then p(x) = p(y) = 0 and 1⊗ dB/k(xy) = 0. It follows
that there exists a unique morphism of A-modules, δ∶ I/I2 → A⊗B ΩB/k which
maps the class modulo I2 of an element x ∈ I to 1 ⊗ dB/k(x). Its image is the
quotient of ΩB/k by the submodule generated by IΩB/k and dB/k(I).

There exists a unique morphism q′∶A ⊗B ΩB/k → ΩA/k such that q′(a ⊗
dB/k(b)) = adA/k(p(b)) for every a ∈ A and every b ∈ B. The kernel of the
surjection q∶ΩB/k → ΩA/k is generated by IΩB/k + dB/k(I). Consequently, the
kernel of q′ is generated by the image of δ.
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This shows that the natural diagram of A-modules

I/I2 δÐ→ A⊗B ΩB/k
q′Ð→ ΩA/k → 0

is an exact sequence (conormal exact sequence).

5.6.7. — Let k be a ring and let A be a k-algebra. We give an alternate construc-
tion of the module of k-differentials. It is more abstract, but important; as we
will see, it embodies the algebraic nature of ‘‘first order variation’’ well known
in calculus.
Letm∶A⊗kA→ Abe the uniquemorphism of k-algebras such thatm(a⊗b) =

ab for every pair (a, b) of elements of A, and let I be its kernel.
Let j1 and j2 be the maps from A to A⊗k A given by j1(a) = a⊗ 1 and j2(a) =

1⊗ a; they are morphisms of k-algebras. Obviously, one has j2(a) − j1(a) ∈ I,
for every a ∈ A. Consequently, if u ∈ I, then j1(a)u ≡ j2(a)u (mod I2), for
every a ∈ A: this shows that the two morphisms j1 and j2 induce the same
stucture of an A-module on I/I2. Let then d∶A → I/I2 be the map given by
d(a) = ( j2(a) − j1(a)) (mod I2).
Let us show that the map d is a k-derivation on A. This map is additive;

moreover, for every s ∈ k and every a ∈ A, one has
d(sa) ≡ 1⊗ sa − sa ⊗ 1 ≡ s(1⊗ a − a ⊗ 1) = sd(a) (mod I2).

This shows that d is a k-linear map. Let then a, b ∈ A. One has
j2(ab) − j1(ab) = 1⊗ ab − ab ⊗ 1

= j2(a)(1⊗ b − b ⊗ 1) + b ⊗ a − ab ⊗ 1
= j2(a)( j2(b) − j1(b)) + j1(b)(1⊗ a − a ⊗ 1)
= j2(a)( j2(b) − j1(b)) + j1(b)( j2(a) − j1(a)),

so that d(ab) = ad(b) + bd(a).
Let us then prove that the pair (I/I2, d) satisfies the universal property of a

module of differentials. Let M be an A-module and let f ∶A→Mbe anM-valued
k-derivation on A. First of all, the relation

a ⊗ b = j1(a)(1⊗ b − b ⊗ 1) + ab ⊗ 1

implies that I is generated, as an A-module (under j1), by elements of the form
1⊗ b − b ⊗ 1. As a consequence, the image of d generates I/I2 as an A-module,
so that there exists at most one morphism of A-modules φ∶ I/I2 →M such that
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f = φ ○ d. On the other hand, the map (a, b) ↦ a f (b) from A × A to M is
k-bilinear, so that there exists a unique k-linear morphism g∶A⊗k A→M such
that g(a ⊗ b) = a f (b) for every pair (a, b) ∈ A ×A. When A⊗k A is viewed as
an A-module via j1, this map g is A-linear. Let u, v ∈ I; write u = ∑i ai ⊗ bi and
v = ∑ j a′j ⊗ b′j; by definition, one has∑ aibi = ∑ a′jb′j = 0, hence

g(uv) =∑
i , j

g(aia′j ⊗ bib′j)

=∑
i , j

aia′j f (bib′j)

=∑
i , j

aia′jbi f (b′j) +∑
i , j

aia′jb′j f (bi)

= (∑
i
aibi)

⎛
⎝∑j

a′j f (b′j)
⎞
⎠
+
⎛
⎝∑j

a′jb′j
⎞
⎠
(∑

i
ai f (bi))

= 0.

Consequently, g vanishes on I2. Let φ be the induced A-linear morphism
from I/I2 to M. For every a ∈ A, one has

φ(d(a)) = g(1⊗ a − a ⊗ 1) = f (a) − a f (1) = f (a),

and f = φ ○ d, as claimed.

5.6.8. — Let k be a ring, let A and B be k-algebras and let f ∶A → B be a
morphism of k-algebras. The map dB/k ○ f ∶A → Ω1

B/k is a k-derivation on A;
consequently, there exists a unique A-linear morphism φ∶Ω1

A/k → Ω1
B/k such

that dB/k ○ f = φ ○ dA/k. Let φ∶B⊗A Ω1
A/k → Ω1

B/k be the associated morphism
of B-modules.

Lemma (5.6.9). — Let S be a multiplicative subset of A, let B = S−1A and let
f ∶A→ B be the canonical morphism. Then the associated morphism φ∶ S−1A⊗A
Ω1

A/k → Ω1
B/k is an isomorphism.

Proof. — Let d′1∶ S ×A→ S−1A⊗A Ω1
A/k given by

d′1(s, a) = s−1 ⊗ dA/k(a) − s−2adA/k(s),
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for a ∈ A and s ∈ S. For a ∈ A, s, t ∈ S, one has

d′1(st, at) = (st)−1 ⊗ dA/k(at) − (st)−2atdA/k(st)
= (st)−1tdA/k(a) + (st)−1adA/k(t)
− (st)−2at2dA/k(s) − (st)−2astdA/k(t)

= s−1dA/k(a) − s−2adA/k(s)
= d′1(s, a).

Consequently, if a, b ∈ A and s, t ∈ S are such that a/s = b/t, let u ∈ S such that
uta = sub; then

d′1(s, a) = d′1(stu, uta) = d′1(stu, sub) = d′1(t, b).

This shows that there exists a unique map d′∶ S−1A → S−1A ⊗A Ω1
A/k such

that d′(a/s) = d′1(s, a) for every a ∈ A and every s ∈ S. This map d′ is a
k-derivation (exercise...). Consequently, there exists a unique S−1A-linear
morphism ψ∶Ω1

B/k → B⊗A Ω1
A/k such that d′ = ψ ○ dB/k.

For a ∈ A and s ∈ S, one has

φ ○ ψ(dB/k(a/s)) = φ(d′(a/s))
= φ(s−1 ⊗ dA/k(a) − s−2adA/k(s))
= s−1dB/k(a/1) − s−2adB/k(s/1)
= dB/k(a/s),

so that φ○ψ○dB/k = dB/k; by the universal property of the module of differentials,
one has φ ○ ψ = id. Moreover, for every a ∈ A, one has

ψ ○ φ(1⊗ dA/k(a)) = ψ(dB/k(a/1)) = 1⊗ dA/k(a).

Since the elements of B⊗AΩ1
A/k of the form 1⊗ dA/k(a) generate this B-module,

this implies that ψ ○ φ = id.
We thus have proved that φ is an isomorphism.

5.6.10. — Let k be a ring, let A and B be k-algebras and let f ∶A → B be a
morphism of k-algebras. The map dB/A∶B→ Ω1

B/A is a k-derivation on B; con-
sequently, there exists a unique morphism ψ∶Ω1

B/k → Ω1
B/A of B-modules such

that dB/A = ψ ○ dB/k.
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Proposition (5.6.11). — Let k be a ring, letA and B be k-algebras and let f ∶A→ B
be a morphism of k-algebras. The diagram

B⊗A Ω1
A/k

φÐ→ Ω1
B/k

ψÐ→ Ω1
B/A → 0

is an exact sequence.

Proof. — For every b ∈ B, one has dB/A(b) = ψ(dB/k(b)). Since Ω1
B/A is gener-

ated, as a B-module, by elements of the form dB/A(b), for b ∈ B, the morphism ψ
is surjective. Let M be the image of φ; it is the B-submodule of Ω1

B/k generated
by elements of the form dB/k( f (a)), for a ∈ A. Let us show that M = Ker(ψ).
For every a ∈ A, one has

ψ(dB/k( f (a))) = dB/A( f (a)) = dB/A(a ⋅ 1) = 0

since dB/A is an A-derivation. This shows that M ⊆ Ker(ψ). Let ψ1∶Ω1
B/k/M →

Ω1
B/A be the induced homomorphism. Let d∶B→ Ω1

B/k/M be the map given by
b ↦ [dB/k(b)]. It is a k-linear derivation; in fact, one has d( f (a)) = 0 for every
a ∈ A, by definition of M, so that d is an A-derivation. Consequently, there
exists a unique B-linear morphism θ1∶Ω1

B/A → Ω1
B/k/M such that θ1 ○ dB/A = d.

For every b ∈ B, one has

θ1 ○ ψ1(d(b)) = θ1 ○ ψ1([dB/k(b)]) = θ1(dB/A(b)) = d(b);

since the elements of the form dB/k(b) generate the B-module Ω1
B/k, this implies

that θ1 ○ψ1 = id. In particular, ψ1 is injective, hence M = Ker(ψ). This concludes
the proof of the proposition.

5.6.12. — One can extend to schemes the definition of the module of differen-
tials. Let f ∶Y → X be a morphism of schemes. Recall that the canonical mor-
phism f ♯∶OX → f∗OY induces, by adjunction, a ring morphism f ♭∶ f −1(OX)→
OY. In particular, every OY-module can be considered, via f ♭, as an f −1(OX)-
module. An OY-derivation from OY to a quasi-coherent OY-module M is a
f −1(OX)-linear morphism d∶OY →M such that for every open subscheme U
of Y, every element a, b ∈ OY(U), one has d(ab) = ad(b) + bd(a).

Proposition (5.6.13). — Let f ∶Y→ X be a morphism of schemes.
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There exists a quasi-coherent OY-module Ω1
Y/X on Y and an f −1(OX)-linear

derivation dY/X∶OY → Ω1
Y/X which satisfies the universal property: for every OY-

module M and every OX-derivation d∶OY →M , there exists a unique OY-linear
morphism φ∶Ω1

Y/X →M such that d = φ ○ dY/X.
If f is locally finitely generated, then Ω1

Y/X is a finitely generated OY-module. If
f is locally finitely presented, then Ω1

Y/X is a finitely presented OY-module.

One can construct this sheaf by reduction to the case of affine schemes, where
it reduces to the module ΩA/k. A more geometric construction is also possible,
whose affine counterpart was described in §5.6.7. Translated in the language
of calculus, this construction builds on the following remark: if f is a smooth
function on an open subset U of Rn, Taylor’s formula writes

f (y) − f (x) = (dx f )(y − x) + terms of order ⩾ 2.
The differential term (dx f )(y − x) appear as function f (y) − f (x) on U2 van-
ishing on the diagonal (namely, when x = y) modulo those vanishing at a higher
order. This is the I/I2 of §5.6.7. Let us know describe this construction in the
context of schemes.

Proof. — Let δY/X∶Y→ Y ×X Y be the diagonal immersion. Its image, ∆Y/X, is a
locally closed subscheme of Y ×X Y, and δY/X induces an isomorphism from Y
to ∆Y/X. Let thus W be the largest open subscheme of Y ×X Y in which ∆Y/X is a
closed subscheme, and let I be the ideal sheaf of ∆Y/X in W. One then defines
a quasi-coherent OY-module by the formula

ΩY/X = δ∗Y/X(I /I 2).
Let also dY/X∶OY → ΩY/X be the map given by

dY/X( f ) = pr∗2( f ) − pr∗1 ( f ) (mod I 2),
for every open subscheme U of Y and every f ∈ OY(U).
If f is locally finitely generated (resp. locally finitely presented), then I is a

finitely generated (resp. finitely presented) quasi-coherent OW-module, so that
ΩY/X is a finitely generated (resp. a finitely presented) OY-module.

5.7. Smooth morphisms

5.7.1. — Let X be a locally noetherian scheme and let x be a point of X. One says
that x is regular point of X if the local ring OX,x is regular. The dual (mx/mx)∨
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of the κ(x)-vector spacemx/math f rakm2
x is denoted by Tx(X), and is called

Zariski’s tangent space to X at x. One has dim(OX,x) ⩽ dim(Tx(X)), with
equality if and only if X is regular at x. If this holds, then mx is generated by
dim(OX,x) elements, and the ringOX,x is an integral domain (proposition 1.14.6).

Proposition (5.7.2). — Let k be a field and let X be a k-scheme; let x ∈ X(k). After
the canonical derivation dX/k,x ∶mx → ΩX/k,x induces an isomorphism frommx/m2

x
to κ(x)⊗ΩX/k,x .

Proof. — Let us apply the conormal exact sequence with B = OX,x and I = mx ;
it furnishes an exact sequence

mx/m2
x

δÐ→ k ⊗OX,x ΩX/k,x → Ωk/k → 0.

Since Ωk/k = 0, this shows that δ is surjective.
Let then θ ∈ Tx(X) = Homk(mx/m2

x , k). There exists a unique k-linear map
dθ ∶OX,x → k which maps 1 to 0 and which maps an element a ∈ mx to the image
by θ of its class in mx/m2

x . This map dθ is a k-derivation. Consequently, there
exists a linear OX,x-morphism, φ∶ΩX/k,x → k such that dθ = φ ○ dX/k,x = φ ○ δ.
Moreover, for every a ∈ mx , one has φ ○ δ(a) = dθ(a) = θ(a). Assume that
a ∈ ker(δ); one then has θ(a) = 0 for every θ ∈ Tx(X). Consequently, the image
of a inmx/m2

x vanishes, as was to be shown.



CHAPTER 6

COHOMOLOGY OF QUASI-COHERENT
SHEAVES

6.1. Cohomology of affine schemes

The main theorems of this section and of the next one are variants for schemes
of theorems proved by Serre (1955): for quasi-compact schemes, the vanishing
of the cohomology of all quasi-coherent sheaves characterizes affine schemes.

Theorem (6.1.1) (Serre). — Let X be an affine scheme and let F be an quasi-
coherent sheaf on X. ThenHi(X,F ) = 0 for all i > 0.

The proof is a simplification of the one given by Kempf (1980).

Proof. — We prove by induction on the integer n that Hi(X,F ) = 0 for all
schemes X, all quasi-coherent schemes F on X and all integers i such that
0 < i ⩽ n. Let n be an integer, X be a scheme and F be a quasi-coherent sheaf
on X; let A be the ring such that X = Spec(A). The result is trivial for n = 0, so
we assume n ⩾ 1. By induction we have Hi(X,F ) = 0 for all integers i such that
0 ⩽ i ⩽ n − 1, and it suffices to prove that Hn(X,F ) = 0. Let α ∈ Hn(X,F ) be
any class. By proposition 3.6.6, any point x ∈ X has an open neighborhood Ux
such that α∣Ux = 0. We may assume that Ux is a basic oben set, of the form
D( fx), with fx ∈ A. Since X is quasi-compact (exercise 1.5.9), there exists a finite
subset S of X such that X = ⋃x∈SD( fx). For x ∈ S, write Fx for the sheaf on X
given by ( jx)∗F ∣Ux ; if F is defined by an A-module M, then Fx is defined by
the A-module M fx , hence is quasi-coherent.
Restricting a section s ∈F (U) to the intersections U ∩Ux furnishes a mor-

phism F →⊕x∈S Fx of quasi-coherent sheaves; let G be its cokernel. The long
exact sequence in cohomology furnishes a short exact sequence

⊕
x∈S

Hn−1(X,Fx)→ Hn−1(X,G )→ Hn(X,F )→⊕
x∈S

Hn(X,Fx).
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If n ⩾ 2, then by the induction hypothesis, one has Hn−1(X,G ) = 0, so that the
last map is injective. If n = 1, the first map is surjective, because the functor Γ
is exact on affine schemes; consequently, the map H0(X,G ) → H1(X,F ) is
zero and the last map is injective as well. On the other hand, for any x ∈ S, the
cohomology group Hn(X,Fx) identifies with Hn(Ux ,Fx), the image of α in
that group is α∣Ux . Consequently, that image vanishes, and this proves α = 0.

Corollary (6.1.2). — Let f ∶X→ Y be an affine morphism of schemes and letF be
a quasi-coherent sheaf onX. For every integer i, the canonical mapHi(Y, f∗F )→
Hi(X,F ) is an isomorphism.

Proof. — Let F → G0 → G1 → . . . be a flasque resolution of F . Let V be an
affine open subset of Y; then U = f −1(V) is an affine open subset of X, because
f is affine. By theorem 6.1.1, the sequence

0→F (U)→ G0(U)→ G1(U)→ . . .

is exact, which shows that

f∗F → f∗G0 → f∗G1 → . . .

is a flasque resolution of f∗F . Taking global sections, the complex f∗G●(Y)
thus computes the cohomology H●(Y, f∗F ), but this complex is nothing but
the complex G●(X) which computes H●(X,F ).

6.1.3. — Let F be a abelian sheaf on a topological space X. Let U = (Ui)i∈I be
an open covering of X indexed by a totally ordered set I.
For any finite subset J of I, let UJ = ⋃i∈JUi; it is an open subset and we let

jJ∶UJ → X be the inclusion map. Let also FJ be the abelian sheaf jJ,∗ j−1J F on X.
Moreover, for i ∈ I J, let φJ,i ∶FJ →FJ∪{i} be themorphism of abelian sheaves

induced by s ↦ s∣Ui , and let εJ,i be (−1)m, where m is the number of elements
j ∈ J such that j < i.
For every integer m ∈ {−1} ∪N, one defines an abelian sheaf Fm on X by

Fm = ⊕
∣J∣=m+1

jJ,∗ j−1J F

and a morphism of abelian sheaves

dF
m ∶Fm →Fm+1

which maps a section s ∈FJ to∑ j∈I J εJ,iφJ,i .
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For J = ∅, one has UJ = X and FJ =F , so that F−1 =F . We write εF instead
of dF

−1 .
For m = 0, one has F0 =⊕i∈I Fi and the morphism εF is given by

s ↦⊕
i∈I

s∣Ui .

Form = 1, one has F1 =⊕i< j Fi , j and the morphism dF
0 maps a family (si)i∈I

to the family (si ∣U j − s j∣Ui)i< j.
This defines a complex ČU (F ) on X and it follows from the sheaf condition

on X that this is resolution ofF .(1) It is called the Čech complex ofF associated
with the open covering U ..

Corollary (6.1.4) (Čech cohomology). — Let X be a scheme and let F be a
quasi-coherent sheaf on X. Let U = (U1, . . . , Un) be a finite covering of X by
affine open subschemes all of whose intersections are affine. The Čech complex
ČU (F ) of F associated with U is acyclic and computes the cohomology of F

Note that the hypothesis about the intersections holds if X is separated.(2)

Proof. — All open subsets UJ, for non-empty finite subsets J of {1, . . . , n}, that
appear in the Çech resolution are affine open subsets of X and the morphism
jJ∶UJ → X is affine, because it is affine above every Ui, for i ∈ I. Consequently,
ČU ,m is a finite direct sum of quasi-coherent sheaves of the form jJ,∗ j−1F . They
are thus acyclic.

Corollary (6.1.5). — Let f ∶X → Y be a morphism of schemes which is quasi-
compact and separated. Let F be a quasi-coherent sheaf on X. Then the higher
direct imagesRp f∗F on Y are quasi-coherent sheaves. Moreover, for every affine
open subsetV ofY, the canonicalmorphismHp( f −1(V),F ∣ f −1(V))→Rp f∗F (V)
is an isomorphism.

6.2. Serre’s characterization of affine schemes

Theorem (6.2.1) (Serre). — Let X be a scheme which is quasi-compact and quasi-
separated. The following properties are equivalent:
(1)Move this paragraph to the chapter on sheaves, and give more complete arguments.
(2)This is not proved explicitly, but follows from the definition, because the product of affine schemes is
affine, and their intersection is the preimage under the diagonal morphism, which is a closed immersion
when X is separated.
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(i) The scheme X is affine;
(ii) One has Hi(X,F ) = 0 for every quasi-coherent sheaf F on X and any

integer i > 0;
(iii) One hasH1(X,I ) = 0 for every quasi-coherent sheaf of ideals I on X.

Remark (6.2.2). — Let X be a scheme which is a disjoint union ⋃i∈IUi of affine
subschemes; such a scheme is separated. If X is quasi-compact, there exists a
finite subset S of I such that X = ⋃i∈SUi , and the open sets Ui , for i ∉ S, are empty.
In this case, X is affine. If X is not quasi-compact, then X is not affine, because
affine schemes are quasi-compact. However, one can prove that Hi(X,F ) = 0
for any quasi-coherent sheaf on X and any integer i > 0, so that X satisfies the
hypothesis (ii). Affine schemes are quasi-compact and separated. This shows
that one cannot remove the assumption that the scheme be quasi-compact and
quasi-separated in theorem 6.2.1.
I do not know of an example of a quasi-compact scheme that satisfies (ii) but

isn’t affine.

Proof of theorem 6.2.1. — The implication (i)⇒(ii) is theorem 6.1.1 and the im-
plication (ii)⇒(iii) is obvious. We now assume that X is a quasi-compact scheme
such that H1(X,I ) = 0 for every quasi-coherent sheaf of ideals I on X and
prove that X is an affine scheme. Set A = Γ(X,OX). The proof requires two steps
which we state as independent lemmas.

Lemma (6.2.3). — For every quasi-coherent subsheaf F of On
X, one has

H1(X,F ) = 0.

Proof. — Let us prove the lemma by induction on n, the case n = 0 being
obvious since then F = 0.
Let u∶On

X → OX be the morphism of quasi-coherent sheaves given by
(a1, . . . , an) ↦ an; its kernel is isomorphic to On−1

X . Let F ′ = ker(u) ∩F and
I = u(F ), so that one has an exact sequence

0→F ′ →F →I → 0.

The associated cohomology long exact sequence furnishes an exact sequence

H1(X,F ′)→ H1(X,F )→ H1(X,I ).
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Now,H1(X,F ′) = 0 by induction, andH1(X,I ) = 0 sinceI is a quasi-coherent
submodule of OX, that is, a quasi-coherent ideal sheaf on X. This implies that
H1(X,F ) = 0, as was to be shown.

Lemma (6.2.4). — There exists a finite family ( f1, . . . , fn) in A such that X f i is
affine for every i ∈ {1, . . . , n}, and ⋃n

i=1X f i = X.

Proof. — We first prove that every closed point x ∈ X admits an affine open
neighborhood of the form X f . Let U be an open affine neighborhood of x in X,
let Z be the reduced closed subscheme of X supported by the closed subset
(X U)∪ {x}, and let IZ be its sheaf of ideals. Since x ∉ U, the scheme Z is the
disjoint union of X U and {x}, and there exists a section g ∈ Γ(Z,OZ) such
that g∣X U = 0 and g(x) = 1. The long cohomology exact sequence associated
with the short exact sequence 0 → IZ → OX → OZ → 0 furnishes the short
exact sequence

Γ(X,OX)→ Γ(Z,OZ)→ H1(X,IZ).
Since H1(X,IZ) = 0, by assumption, there exists f ∈ Γ(X,OX) such that f ∣Z = g,
so that f ∣X U = 0 and f (x) = 1. The first equality implies that X f ⊆ U, and the
second one that x ∈ X f . Since X f ⊆ U, the open subscheme X f identifies with
the basic open subscheme D( f ∣U) of U; in particular, X f is affine.
Let us now prove that X is the union of all open subschemes of X of the form X f ,

for f ∈ A, which are affine. Let U be that union and let Z be its complementary
subset; we have to prove that Z = ∅. A closed point of Z is also a closed point
of X, because Z is closed, hence the first part of the proof implies that Z contains
no closed point On the other hand, Z is quasi-compact, as a closed subset of the
quasi-compact scheme X. By proposition 4.4.7, we conclude that Z = ∅.
Since X is quasi-compact, it is covered by a finite subfamily of this family (X f ),

and this concludes the proof of the lemma.

We can now conclude the proof of theorem 6.2.1. Let π∶X→ Spec(A) be the
morphism from theorem 4.2.8 associated to the identity morphism of A; we
have to prove that π is an isomorphism (see example 4.3.3).
Let ( f1, . . . , fn) be a finite family in A such that, for every i, X f i is an open

affine subscheme of X, and such that their union is equal to X.
Let us prove that the ideal ⟨ f1, . . . , fn⟩ it generates is equal toA. Let u∶On

X → OX
be the morphism of quasi-coherent sheaves given by (a1, . . . , an)↦ ∑ ai fi . Its
image is a quasi-coherent ideal sheaf I on X which contains every fi; since
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for every point x ∈ X, there exists x such that x ∈ X f i , we then have ( fi)x ∈Ix ,
hence 1 ∈Ix . Consequently, I = OX. Considering the cohomology long exact
sequence associated with the exact sequence 0→ ker(u)→ On

X → OX → 0, we
obtain an exact sequence

H0(X,On
X)

uÐ→ H0(X,OX)→ H1(X, ker(u)).

By lemma 6.2.3, one has H1(X, ker(u)) = 0, so that the first map is surjective. In
particular, there exists (a1, . . . , an) ∈ H0(X,OX)n = An such that u(a1, . . . , an) =
1, which means∑n

i=1 ai fi = 1, as claimed.
In other words, the union in Spec(A) of the basic open subschemes D( fi),

for i ∈ {1, . . . , n}, is equal to Spec(A). To prove that π∶X → Spec(A) is an
isomorphism, it thus suffices to prove that for every i, the induced morphism
π−1(D( fi))→ D( fi) is an isomorphism.
Fix i ∈ {1, . . . , n}. By construction, one has π−1(D( fi)) = X f i , and the mor-

phism induced by π corresponds with the canonical morphism X f i → D( fi) =
Spec(A f i), by theorem 4.7.2(3). Since X f i is affine, that morphism is an isomor-
phism. This concludes the proof.

6.3. Cohomology of the projective space

6.3.1. — Let k be a ring, let n be a natural integer and let A = k[T0, . . . , Tn],
graded by total degree. The projective space of dimension n over k is the scheme
Pn
k = Proj(A); it is a proper k-scheme, covered by affine schemes D+( f ), for all

homogeneous elements f ∈ A. The affine ring of D+( f ) is denoted by A( f ), and
is the degree-0 part of the classical localization A f .
Every graded A-moduleM gives rise to a quasi-coherent sheaf M̃ on Pn

k . Recall
that for any homogeneous element f ∈ Ad , H0(D+( f ), M̃) identifies with the
degree-0 part of the A-module M f .
Shifting its degree by d (so that its degree m part becomes Mm+d defines

the graded A-module M(d), with associated quasi-coherent sheaf M̃(d). Tak-
ing M = A, we obtain the quasi-coherent sheaves OPn

k
(d), which are locally free

of rank 1; moreover M ⊗OPn
k
(d) is canonically isomorphic to M (d).

(3)more precisely, by the extension of its implication (i)⇒(ii), corollary 4.7.3, to arbitrary quasi-compact
and quasi-separated schemes
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Theorem (6.3.2). — Let k be a noetherian ring, let n be a natural integer such that
n ⩾ 1 and let A = k[T0, . . . , Tn].
a) For any integer d ∈ Z, the canonical morphism Ad → H0(Pn

k ,O(d)) is an
isomorphism.
b) For any integer i such that 0 < i < n and any integer d ∈ Z, one has

Hi(Pn
k ,O(d)) = 0.

c) There exists an isomorphismHn(Pn
k ,O(−n− 1)) ≃ A; for every integer d ∈ Z,

the bilinear map

H0(Pn
k ,O(−n − 1 − d)) ×Hn(Pn

k ,O(d)))→ Hn(Pn
k ,O(−n − 1)) ≃ A

is invertible.

Proof. — One ingredient of the proof consists in proving the theorem for all
integers d at once by considering the graded k-modules

⊕
d∈Z

Hi(Pn
k ,O(d)).

Since Pn
k is noetherian, it follows from corollary 3.8.5 that this direct sum identi-

fies with
Hi(Pn

k ,⊕
d∈Z

O(d)).

The quasi-coherent sheaf O(∗) =⊕d∈Z O(d) is associated with the graded ring

A(∗) =⊕
d∈Z

A(d) = A[T, T−1],

where T is a new homogeneous indeterminate of degree 1. Then, for any homo-
geneous element f , one has

A[T, T−1]( f ) =⊕
p∈Z

A(p)( f )T−p = A f ,

so that by considering all degrees at once, the homogeneous localization appears
as a classical localization.

The affine open subsets D+(Ti), for i ∈ {0, . . . , n}, cover Pn
k ; for all non-empty

subsets I of {0, . . . , n}, the intersections of the D+(Ti), for i ∈ I, is the open
subset D+(∏i∈ITi), hence is affine. We may thus compute the cohomology of
the quasi-coherent sheaf O(∗) using the Čech complex associated with this
covering, namely

n
⊕
i=0

ATi

d0Ð→⊕
i0<i1

ATi0Ti1 →
dn−1ÐÐ→→ AT0 ...Tn .
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Let us now compute the cohomology of that complex of A-modules.
a) To compute H0(Pn

k ,O(∗)), we have to compute the kernel of d0. Let a =
(ai/Tm i

i ) be an element of⊕i ATi such that d0(a) = 0, where a0, . . . , an ∈ A. Let
us prove that for every i, ai is divisible by Tm i

i in A.
Let i ∈ {0, . . . , n}. Since n ⩾ 1, there exists j ∈ {0, . . . , n} such that i ≠ j, and

the relation d0(a) = 0 implies that ai/Tm i
i = a j/Tm j

j in ATiT j . Since all Ti are
regular in A, this implies that Tm j

j ai = Tm i
i a j; in particular, Tm i

i divides Tm j
j ai.

By inspection on the nonzero monomials of ai , we conclude that Tm i
i divides ai .

We may thus assume that a is of the form (a0/1, . . . , an/1), and the relation
d0(a) = 0 implies that ai = a j for all i , j. Consequently, there exists a unique
element f ∈ A such that a = ( f /1, . . . , f /1), and this concludes the proof that
the canonical morphism of graded rings A→ H0(Pn

k ,O(∗)) is an isomorphism.
b) We now treat the case of degree n, that is, we compute the graded k-module

Coker(dn−1) = AT0 ...Tn/ (
n
∑
i=0

AT0 ...T̂i ...Tn
) ,

where T0 . . . T̂i . . . Tn is the product of all T j, with Ti excluded. The k-module
AT0 ...Tn is free, with basis the family of monomials Tp = Tp0

0 . . . Tpn
n , indexed by

all p ∈ Zn+1, and Tp has degree ∣p∣ = p0 + ⋅ ⋅ ⋅ + pn. The submodule AT0 ...T̂i ...Tn
is

generated by these monomials Tp such that pi ⩾ 0. Consequently, Coker(dn−1)
is a free k-module with basis the classes [Tp] of the monomials Tp, for all p ∈ Zn

such that pi ⩽ −1 for all i.
In particular, we observe that Hn(Pn

k ,O(d)) = 0 if d > −n.
The cohomology group Hn(Pn

k ,O(−n − 1)) is the degree-(−n − 1) part of this
module; it is free of rank 1, with basis the monomial T−10 . . . T−1n .
Let us now study the bilinear map β,

H0(Pn
k ,O(−n− 1− d))×Hn(Pn

k ,O(d))→ Hn(Pn
k ,O(−n− 1)) = k[T−10 . . . T−1n ].

The k-module H0(Pn
k ,O(−n − 1 − d)) is free, with basis the family of monomi-

als Tp, with ∣p∣ = −n − 1 − d. For any q ∈ Zn, β(Tp, [Tq]) is the image of [Tp+q],
hence is 1 for q = −p − 1 and is 0 otherwise. Under this bilinear map, the ba-
sis (Tp) of H0(Pn

k ,O(−n − 1 − d)) and the family ([T−1−p]) (both indexed by
p ∈ Nn+1 such that ∣p∣ = −n − 1 − d) are dual bases one of the other.
c) Let us now prove that Hp(Pn

k ,O(d)) = 0 for all integers d and all integers p
such that 0 < p < n. The proof runs by induction on n. The assertion being
trivial for n = 1, we assume that n ⩾ 2.
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We will prove that the multiplication by Tn is both nilpotent and injective on
Hp(Pn

k ,O(∗)).

Lemma (6.3.3). — Let A be a graded ring and letM′ →M→M′′ be a complex of
graded A-modules, where the morphisms are homogeneous of degree 0. For any
homogeneous element f ∈ A, the canonical morphism

H(M′
( f ) →M( f ) →M′′

( f ))→ H(M′ →M→M′′)( f )
is an isomorphism.

Proof. — The analogous statement for localization holds, by exactness of local-
ization: the canonical morphism

H(M′f →M f →M′′f )→ H(M′ →M→M′′) f
is an isomorphism. Since f is homogeneous, the complex M′f →M f →M′′f is a
direct sum of complexes of various degrees, and the complex M′

( f ) →M( f ) →
M′′
( f ) is its subcomplex corresponding to the degree 0 part. This identifies

H(M′f → M f → M′′f ) with the degree 0-part of H(M′ → M → M′′) f , that
is, with H(M′ →M→M′′)( f ), as claimed.

By this lemma, the localization

H●(Pn
k ,O(∗))(Tn)

can be computed as the cohomology of the complex
n
⊕
i=0

ATiTn →⊕
i0<i1

ATi0Ti1Tn → . . .

which identifies withe the Čech complex of the quasi-coherent sheaf O(∗) for
the open covering (D+(TiTn))0⩽i⩽n of D+(Tn). Since D+(Tn) is affine, we thus
have

Hp(Pn
k ,O(∗))(Tn) = 0

for all integers p > 0.
In other words, for every p > 0 and every class ξ ∈ Hp(Pn

k ,O(∗)), there exists
an integer q such that Tq

nξ = 0. To conclude the proof, it suffices to prove that
multiplication by Tn is injective if, moreover, p < n.
Let Z be the closed subscheme V+(Tn), identified with Pn−1

k , with homoge-
neous graded ring A′ = k[T0, . . . , Tn−1]. Let i∶Z → Pn

k be the corresponding
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closed immersion. Multiplication by Tn induces an exact sequence of quasi-
coherent sheaves

0→ O(d − 1) TnÐ→ O(d)→ i∗O(d)→ 0.

us study the associated cohomology long exact sequence. It starts with

0→ Ad−1
TnÐ→ Ad

AÐ→
′

d→ H1(Pn
k ,O(d − 1))

TnÐ→ H1(Pn
k ,O(d));

since the canonical morphism Ad → A′d is surjective, the next morphism

H1(Pn
k ,O(d − 1))

TnÐ→ H1(Pn
k ,O(d))

is injective.
By the induction hypothesis, we also have Hp(Z,O(d)) = 0 for all integers p

such that 0 < p < n − 1. Consequently, if 2 ⩽ p < n, we obtain a short exact
sequence

Hp−1(Z,O(d)) = 0→ Hp(Pn
k ,O(d − 1))

TnÐ→ Hp(Pn
k ,O(d)).

Consequently, for any integer p such that 0 < p < n, multiplication by Tn
induces injective maps

Hp(Pn
k ,O(d − 1))→ Hp(Pn

k ,O(d)),
for all d ∈ Z.
Given a class ξ ∈ Hp(Pn

k ,O(d)) (where 0 < p < n and d ∈ Z) and an integer q
such that Tq

nξ = 0, we thus have ξ = 0. This concludes the proof.

Remark (6.3.4). — Theorem 6.3.2 doesn’t hold as such for n = 0, which is
an exceptional case since P0

k = Proj(k[T0]) = Spec(k) is affine. In this case,
assertion a) is obvious for d ⩾ 0 but false for d < 0, assertion b) is empty, and
assertion c) holds obviously.

Theorem (6.3.5) (Serre). — Let k be a noetherian ring, let n be a natural integer,
let X be a closed subscheme of Pn

k and let F be a coherent sheaf on X.
a) For any integer p,Hp(X,F ) is a finitely generated k-module.
b) There exists an integer d(F ) suchat that for all integers d ⩾ d(F ), F (d)

is generated by its global sections, andHp(X,F (d)) = 0 for all p > 0.

Proof. — By replacing F with i∗F , where i∶X → Pn
k is the canonical closed

immersion, we reduce to the case where X = Pn
k . We deduce from theorem 6.3.2

that the theorem holds for F = O(m), at least if n ⩾ 1. For n = 0, it also holds.
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Indeed, P0
k = Spec(k) is affine, F is of the form M̃, for some finitely generated

k-module M, because k is noetherian, and H0(P0
k ,F ) = M; moreover, any

quasi-coherent sheaf on an affine scheme is generated by its global sections, and
all higher cohomology groups vanish by Serre’s theorem 6.1.1.
For any integer i ∈ {0, . . . , n}, the coherent sheaf on D+(Ti) obtained by

restriction of F is generated by its global sections, because D+(Ti) is affine. Let
Si be a finite subset of Γ(D+(Ti),F ) that generates F ∣D+(Ti). For any s ∈ Si,
there exists an integer ms ⩾ 0 such that Tms

i s is the restriction of a section
t ∈ Γ(Pn

k ,F (ms)). Replacing all the integers ms by their least upper bound, we
have a finite set of sections t ∈ Γ(Pn

k ,F (m)) such that for any i ∈ {0, . . . , n},
the sections t/Tm

i generate F on D+(Ti). These sections furnish a surjective
morphism of coherent sheaves

ON
Pn
k
→F (m)

hence, by tensoring it with O(−m), a surjective morphism

OPn
k
(−m)N →F .

Denoting its kernel by G and taking the tensor prodct by O(d), we thus have
an exact sequences of coherent sheaves

0→ G (d)→ OPn
k
(d −m)N →F (d)→ 0.

We now prove both statements by descending induction on p.
a) Using the Čech complex associated with the open covering (D+(Ti)) of Pn

k ,
we see that Hp(Pn

k ,F ) = 0 for any coherent sheaf F on Pn
k and any integer

p > n; in particular, it is finitely generated.
Taking the cohomology long exact sequence associated to the short exact

sequence
0→ G → OPn

k
(−m)N →F → 0,

we obtain an exact sequence

Hp(Pn
k ,O(−m))N → Hp(Pn

k ,F )→ Hp+1(Pn
k ,G ).

The explicit computation of theorem 6.3.2 shows that Hp(Pn
k ,O(−m)) is finitely

generated, and by induction, Hp+1(Pn
k ,G ) is finitely generated too. Since k is

noetherian, we conclude that Hp(Pn
k ,F ) is finitely generated.

b) Similarly, the Čech complex associated with the open covering (D+(Ti))
of Pn

k shows that Hp(Pn
k ,F (d)) = 0 for p > n and any integer d.
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Assume that for any coherent sheaf F on Pn
k , there exists an integer d(F )

such that Hq(Pn
k ,F (d)) = 0 for all integers d ⩾ d(F )) and all q > p. Let d be

any integer such that d ⩾ sup(m − n, d(G )). Considering the cohomology long
exact sequence associated with the short exact sequence

0→ G (d)→ OPn
k
(d −m)N →F (d)→ 0,

we get an exact sequence

Hp(Pn
k ,O(d −m))M → Hp(Pn

k ,F (d))→ Hp+1(Pn
k ,G (d)).

Since d ⩾ m − n, we have Hp(Pn
k ,O(d − m)) = 0 by theorem 6.3.2; since

d ⩾ d(G ), the induction hypothesis implies that Hp+1(Pn
k ,G (d)) = 0. It follows

that Hp(Pn
k ,F (d)) = 0 for d ⩾ sup(m, d(G )).

We thus obtain that for any coherent sheaf F on Pn
k , there exists an inte-

ger d(F ) such that Hp(Pn
k ,F (d)) = 0 for all d > d(F ) and all p > 0.

Taking p = 0, we obtain that there exists an integer d(F ) such that morphism

H0(Pn
k ,O(d −m))M → H0(Pn

k ,F (d))

is surjective if d ⩾ d(F ). If, moreover, d ⩾ m, we see from theorem 6.3.2 that
the coherent sheaf O(d −m) is generated by its global sections. Consequently,
the same holds for F (d).

Corollary (6.3.6). — Let f ∶X→ Y be a morphism of noetherian schemes. Assume
that f is locally projective: for every point y ∈ Y, there exists an open neighbor-
hood V of y such that f −1(V) is isomorphic, as a V-scheme, to a closed subscheme
of Pn

V.
Then, for every coherent sheafF on X and any integer p, the higher direct image

Rp f∗F is a coherent sheaf on Y.

Proof. — Let p ∈ N. The property for the OY-moduleRp f∗F to be coherent is
local on Y; that allows us to assume that Y is affine, say Y = Spec(k), and X is a
closed subscheme of Pn

k . Since P
n
k is proper over k, we see that f is proper, hence,

in particular, quasi-compact and separated. By corollary 6.1.5 the OY-module
Rp f∗F is quasi-coherent, and corresponds with the k-module Hp(X,F )which
is finitely generated, by theorem 6.3.5. Since Y is a noetherian scheme, the ring k
is noetherian (proposition 4.4.11). It then follows from lemma 4.7.17 thatRp f∗F
is coherent.
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Remark (6.3.7). — Grothendieck has shown that theorem 6.3.5 holds for any
proper k-scheme X, and the preceding corollary holds for any proper morphism
of noetherian schemes. His proof relies on a dévissage from the projective case,
together with Chow’s lemma that if X is a proper k-scheme, there exists a proper
morphism h∶X′ → X and a dense open affine subscheme U of X such that X′ is
isomorphic to a closed subscheme of some projective space Pn

k and h induces
an isomorphism from h−1(U) to U.
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