COHOMOLOGY OF COHERENT SHEAVES ON SCHEMES
Antoine Chambert-Loir
Final Examination - February, 19, 2024 (3 h)

The exercises are independent one of another; you may solve them in any order. You may write your solution in English or in French. You may consult handwritten notes from the lectures.

EXERCICE 1

If A is a ring and M is an A-module, an element $a \in \mathrm{~A}$ is said to be regular in M if the homothety $(a)_{\mathrm{M}}$ is injective. The support of M , its annihilator, its set of associated prime ideals are respectively denoted by $\operatorname{Supp}_{\mathrm{A}}(\mathrm{M}), \operatorname{Ann}_{\mathrm{A}}(\mathrm{M})$ and $\operatorname{Ass}_{A}(\mathrm{M})$,
1 Let A be a ring and let M be an A-module. Let $a \in \mathrm{~A}$ be an element which is not regular in M . Prove that there exists a prime ideal $\mathrm{P} \in \operatorname{Ass}_{\mathrm{A}}(\mathrm{M})$ such that $a \in \mathrm{P}$.
2 Let A be a ring, let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{m}$ be prime ideals of A , let $x_{1}, \ldots, x_{n} \in \mathrm{M}$ and let $\mathrm{N}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. We assume that for every $j \in\{1, \ldots, m\}, \mathrm{N}_{\mathrm{P}_{j}} \not \subset \mathrm{P}_{j} \mathrm{M}_{\mathrm{P}_{j}}$. Prove that there exist $a_{2}, \ldots, a_{n} \in \mathrm{~A}$ such that for every $j \in\{1, \ldots, m\}, x_{1}+\sum_{i=2}^{n} a_{i} x_{i} \notin \mathrm{P}_{j} \mathrm{M}_{\mathrm{P}_{j}}$. (Argue by induction on m.)
In the rest of the exercise, we consider a noetherian ring A and finitely generated A-modules M, N.
3 Prove that $\operatorname{Ass}_{\mathrm{A}}(\mathrm{M}) \cap \operatorname{Supp}(\mathrm{N})=\varnothing$ if and only if $\operatorname{Hom}_{\mathrm{A}}(\mathrm{N}, \mathrm{M})=0$. (Let P be a prime ideal of A such that $\mathrm{P} \in \operatorname{Ass}_{\mathrm{A}}(\mathrm{M}) \cap \operatorname{Supp}_{\mathrm{A}}(\mathrm{N})$; find non trivial morphisms $\mathrm{N}_{\mathrm{P}} \rightarrow \mathrm{A}_{\mathrm{P}} / \mathrm{PA}_{\mathrm{P}}$ and $\mathrm{A}_{\mathrm{P}} / \mathrm{PA}_{\mathrm{P}} \rightarrow \mathrm{M}_{\mathrm{P}}$.)
4 Let I be an ideal of A such that no element of I is regular in M . Prove that there exists a prime ideal $\mathrm{P} \in \operatorname{Ass}_{\mathrm{A}}(\mathrm{M})$ such that $\mathrm{I} \subset \mathrm{P}$.
5 Prove that $\operatorname{Hom}_{A}(N, M)=0$ if and only if $\operatorname{Ann}_{A}(N)$ contains an element which is regular in M.

EXERCICE 2

Let X be an affine scheme and let U be a quasi-compact open subscheme of X . Let $\mathrm{A}=\Gamma\left(\mathrm{X}, \mathscr{O}_{\mathrm{X}}\right)$ and let $\mathrm{B}=\Gamma\left(\mathrm{U}, \mathscr{O}_{\mathrm{X}}\right)$.
We assume that $\mathrm{H}^{p}\left(\mathrm{U}, \mathscr{O}_{\mathrm{X}}\right)=0$ for all $p>0$.
1 Let R be a ring, let $0 \rightarrow \mathrm{M}^{\prime} \rightarrow \mathrm{M} \rightarrow \mathrm{M}^{\prime \prime} \rightarrow 0$ be an exact sequence of R -modules and let N be an R -module. If $\mathrm{M}^{\prime \prime}$ is flat, prove that the induced complex

$$
0 \rightarrow \mathrm{M}^{\prime} \otimes_{\mathrm{R}} \mathrm{~N} \rightarrow \mathrm{M} \otimes_{\mathrm{R}} \mathrm{~N} \rightarrow \mathrm{M}^{\prime \prime} \otimes_{\mathrm{R}} \mathrm{~N} \rightarrow 0
$$

is exact.
2 Let \mathscr{F} be a quasi-coherent sheaf on U and let $f \in \mathrm{~A}$ be such that $\mathrm{D}(f) \subset \mathrm{U}$. Prove that the restriction map induces an isomorphism $\Gamma(\mathrm{U}, \mathscr{F})_{f} \simeq \Gamma(\mathrm{D}(f), \mathscr{F})$.
3 Let $f \in \mathrm{~A}$ be such that $\mathrm{D}(f) \subset \mathrm{U}$. Prove that A_{f} is a flat B -module.
4 Prove that B is a flat A -module.

5 Prove that there exist $n \in \mathbf{N}$ and $f_{1}, \ldots, f_{n} \in \Gamma\left(\mathrm{X}, \mathscr{O}_{\mathrm{X}}\right)$ such that $\mathrm{U}=\bigcup_{i=1}^{n} \mathrm{D}\left(f_{i}\right)$.
6 Denoting by $\mathscr{C}_{\mathscr{U}}\left(\mathscr{O}_{\mathrm{X}}\right)$ the Čech complex of \mathscr{O}_{X} associated with the open covering $\mathscr{U}=$ $\left(\mathrm{D}\left(f_{i}\right)\right)_{1 \leqslant i \leqslant n}$ of U , prove that one has an exact sequence

$$
0 \rightarrow \mathrm{~B} \rightarrow \mathscr{C}_{\mathscr{U}}^{0}\left(\mathscr{O}_{\mathrm{X}}\right) \rightarrow \mathscr{C}_{\mathscr{U}}^{1}\left(\mathscr{O}_{\mathrm{X}}\right) \rightarrow \ldots
$$

whose terms are flat B-modules.
7 Prove that this exact sequence stays exact after tensoring with any B-module M.
8 Let \mathscr{F} be a quasi-coherent sheaf on U . Prove that $\mathrm{H}^{p}(\mathrm{U}, \mathscr{F})=0$ for all $p>0$.
9 Prove that U is affine.
10 Give an example of a quasi-compact open subset U of a scheme X such that $\mathrm{H}^{p}\left(\mathrm{U}, \mathscr{O}_{\mathrm{X}}\right)=0$ for all $p>0$ but such that U is not affine.

EXERCICE 3

Let A be a ring. For $a \in \mathrm{~A}$ and an A-module M , one denotes by $\mathrm{M}[a]$ the submodule of elements $m \in \mathrm{M}$ such that $a m=0$; one says that a is regular in M if $\mathrm{M}[a]=0$. One says that a is regular if $\mathrm{A}[a]=0$.

1 Let M be a flat A-module. Prove that $\mathrm{M}[a]=0$ for any regular element $a \in \mathrm{~A}$. Give an example of an A-module M where a is regular but $\mathrm{M}[a] \neq 0$.
2 Let X be a scheme over $\operatorname{Spec}(\mathrm{A})$ and let \mathscr{F} be a quasi-coherent sheaf on X which is flat over A. For any nonzero divisor $a \in \mathrm{~A}$, construct an exact sequence $0 \rightarrow \mathscr{F} \xrightarrow{a} \mathscr{F} \rightarrow \mathscr{F} / a \mathscr{F} \rightarrow 0$, where the arrow labeled a is induced by multiplication by a on sections.
3 Under the preceding hypotheses, construct exact sequences

$$
0 \rightarrow \mathrm{H}^{p}(\mathrm{X}, \mathscr{F}) / a \mathrm{H}^{p}(\mathrm{X}, \mathscr{F}) \rightarrow \mathrm{H}^{p}(\mathrm{X}, \mathscr{F} / a \mathscr{F}) \rightarrow \mathrm{H}^{p+1}(\mathrm{X}, \mathscr{F})[a] \rightarrow 0
$$

for all integers p.
We now assume that A is a discrete valuation ring (which is not a field). Let s and η be the points of $\operatorname{Spec}(\mathrm{A})$ corresponding respectively to the maximal ideal and the zero ideal of A; let a be a generator of the maximal ideal of A , let $k=\kappa(s)=\mathrm{A} /(a)$ be the residue field of A and let $\mathrm{K}=\kappa(\eta)=\mathrm{A}_{a}$ be its fraction field.
4 Let M be a finitely generated $\mathrm{A}-$ module. Prove that

$$
\operatorname{dim}_{k}\left(\mathrm{M} \otimes_{\mathrm{A}} k\right)-\operatorname{dim}_{k}(\mathrm{M}[a])=\operatorname{dim}_{\mathrm{K}}\left(\mathrm{M} \otimes_{\mathrm{A}} \mathrm{~K}\right)
$$

(Use that M is of the form $\mathrm{L} / \mathrm{L}^{\prime}$, where L is a free finitely generated $\mathrm{A}-$ module and L^{\prime} is a submodule of L .)
5 Assume that X is projective over A. Prove (without using the results discussed in class) that

$$
\operatorname{dim}_{\mathcal{K}(s)} \mathrm{H}^{p}\left(\mathrm{X}_{s}, \mathscr{F}_{s}\right) \geqslant \operatorname{dim}_{\kappa(\eta)} \mathrm{H}^{p}\left(\mathrm{X}_{\eta}, \mathscr{F}_{\eta}\right) .
$$

