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Abstract. — Summoned by Grothendieck in his Esquisse d’un programme (1985), tame topol-
ogy is supposed to o�er the �exibility of general topology without allowing its “pathological”
constructions. Inspired by mathematical logic and real algebraic geometry, o-minimality is
one solution to this program, proposed by van denDries. �eworks of Peterzil and Starchenko
showed that Serre’s GAGA principle extends: if it is de�nable in an o-minimal structure, a
complex analytic subset of Cn is necessarily algebraic.
In the last 10 years, these ideas have been made fruitful in number theory, where Zannier,

Pila, then Tsimerman, Klingler, Ullmo and Yafaev proved the André-Oort conjecture concern-
ing the geometry of subvarieties of Shimura varieties. An important tool is a counting theorem
by Pila and Wilkie for points of Rn with rational coordinates with bounded numerator and
denominator lying on a subset which is de�nable in an o-minimal structure.
Recently, Klingler, Bakker, Tsimerman, Brunebarbe used these ideas in Hodge theory,

reproving for example a theorem of Cattani, Deligne and Kaplan regarding the algebraicity
of the Hodge loci, or by proving a conjecture of Gri�ths about the quasi-projectivity of the
images of period maps. �e aim of the lectures is to present these notions of diverse origins
and, as far as possible, to describe how they interact.
In the preparation of these notes, I made extensive use of other surveys on various aspects

of this topic, in particular Wilkie (2010); Peterzil & Starchenko (2011); Scanlon (2012);
Bakker (2019); Fresán (2020).
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1. Tame topology

In his 1983 Esquisse d’un programme, published as (Grothendieck, 1997),
Alexandre Grothendieck was advocating for some “tame topology” that
would be �exible enough to “express with ease the topological intuition of
shapes”, while would be freed from the “spurious di�culties related to wild
phenomena”. For Grothendieck, the di�culty of proving Brouwer’s theorem
of invariance of domain, that is, of establishing a good dimension theory for
topological manifolds, is already an indication that the topological theory is
inadequate.
As a possible adequate framework, he mentions Hironaka’s theory of semi-
analytic spaces, as well as real semialgebraic sets. In fact, he even suggests
that there should exist a whole spectrum of tame topologies, for which
semialgebraic sets would possibly form the coarsest such example, and semi-
analytic sets the �nest one. �ese various topologies would be characterized,
Grothendieck expects, by a list of properties, the most delicate of them being
a triangulability axiom.
Such a framework has been proposed by van den Dries (1998), in the
context of “mathematical logic”, which proved extremly fruitful in the two
following decades, that of o-minimal geometry.

De�nition 1.1. — A geometry(1) is the datum, for every integer n, of a setDn
of subsets of Rn, satisfying the following properties:
(1) For every n,Dn is a boolean algebra: it contains the empty set, is stable

under union, intersection and complement;
(2) For every n and every A ∈ Dn, the subsets A × R and R × A of Rn+1

belong toDn;
(3) For every n and every A ∈ Dn+1, the image p(A) of A under the projec-

tion p∶Rn+1 → Rn belongs toDn;
(1)�e standard word for this concept is structure, but that word has already too many meanings,
even in model theory. Actually, the de�nition admits slight variations in the litterature; for example,
van den Dries (1998) doesn’t impose at the onset that the graphs of addition and multiplication
belong toD3, allowing “piecewise linear” geometries, but the hypothesis appears soon a�er.
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(4) �e setD1 contains all singletons {a}, for a ∈ R;
(5) �e setD2 contains the set {(x , y) ; x < y};
(6) �e graphs of addition and of multiplication belong toD3;
(7) For every n and every i , j such that 1 ≤ i < j ≤ n, the set {x ∈ Rn ; xi =
x j} belongs toDn.
�us, a geometry is the datum of the sets we are interested in, subject to a
list of compatibilities which allow us to construct new sets from previous
ones.
Using projections and intersections, one sees that whenever the graph of
a function f ∶Rn → Rm belongs to Dn+m, the image f (A) of a set A ∈ Dn
belongs toDm. Similarly, if the graphs of functions f ∶Rn → Rm and g∶Rp →
Rn belong to Dm+n and Dn+p, then the graph of their composition f ○ g
belongs to Dm+p. Since the graphs of addition and multiplication belong
to D3, this implies that Dn+1 contains the graph of every polynomial in
n variable.

1.2. — Given a geometry (Dn), the subsets of Rn that belong to Dn are
called de�nable and the functions f ∶Rm → Rn whose graph belongs toDm+n
are called de�nable.
First order logic interprets boolean operations in Rn by logic connec-
tors, intersection corresponds to conjunction (and), union to disjunction
(or), and complement to negation (not). It also interprets projection by
existential quanti�ers: if a set A ⊂ Rn+1 is de�ned in Rn+1 by a formula
φ(x1, . . . , xn , xn+1) in (n + 1) free variables x1, . . . , xn+1, and p∶Rn+1 → Rn is
the projection given by p(x1, . . . , xn+1) = (x1, . . . , xn), then p(A) is de�ned
by the formula

∃xn+1φ(x1, . . . , xn , xn+1)
in the n free variables x1, . . . , xn.
�is gives another point of view on de�nable sets, that explains the use of
this adjective — these are those sets which can be de�ned using well formed
formulas using logical connectors, quanti�ers, and a given set of functions
comprising all polynomials.
A consequence of this correspondence between de�ning formulas and
de�nable subsets is that the closure, the interior, the boundary of a de�nable
subset are again de�nable. Indeed, the closure can be de�ned by the classic
ε-δ formula.
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1.3. — At this stage, we could take for the de�nable sets of a geometry the
family of all possible sets, settingDn =P(Rn), but this trivial solution does
not give any insight.
It is a fundamental theorem of Tarski that one obtains a geometry in
taking forDn the set of all semialgebraic subsets of Rn, those sets which are
de�ned by polynomial equalities and inequalities. Indeed, Tarski proved
that the image of a semialgebraic subset still is semialgebraic. �is geometry
is denoted by Ralg.
By theorems of Łojasiewicz, Gabrielov and Hironaka, one also obtains
a geometry in taking for Dn all so-called “�nitely subanalytic” sets. �ese
sets are de�ned in three steps: �rst, semianalytic sets are subsets of Rn
locally de�ned by equalities and inequalities involving analytic functions;
then, subanalytic sets are subsets of Rn which, locally, can be de�ned as the
projection of a bounded semianalytic set; �nally, �nitely subanalytic sets are
preimages of subanalytic subsets by the semialgebraic map

(x1, . . . , xn) ↦ (x1/
√
1 + x21 , . . . , xn/

√
1 + x2n)

(a semialgebraic bijection from Rn to ]−1; 1[n). Equivalently, one adds to
the semialgebraic sets all graphs of restrictions to the hypercube [0; 1]n of
real analytic functions on an open neighborhood of that hypercube. �is
geometry is denoted by Ran.
�ose two theories are also called o-minimal as they satisfy the following
axiom— the letter “o” is for order.

De�nition 1.4. — A geometry is o-minimal if any de�nable set in R is a �nite
union of intervals.
�ere are two alternative ways to reformulate this axiom:
– De�nable sets in R coincide with semialgebraic sets;
– De�nable sets in R have �nitely many connected components.
It is a remarkable discovery of van den Dries (1998) that this elementary
property implies strong tameness properties in any dimension. Here is a
small sample.
It follows from the de�nition that if a real-valued function f de�ned on a
real interval ]a; b[ is de�nable in an o-minimal geometry, its set of zeroes
de�nable ( f −1(0)) is a �nite union of intervals. More generally:
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Proposition 1.5. — Let f ∶ ]a; b[ → R be a function which is de�nable in an o-
minimal geometry. Let p be an integer. �en there is a �nite strictly increasing
sequence (a0, . . . , an), with a = a0 and an = b such that for each k, f is either
constant, or C p and strictly monotone, on ]ak−1; ak[.

�eorem 1.6 (Cylindric decomposition theorem). — Let A ⊂ Rn+1 be a
subset which is de�nable in an o-minimal geometry. �ere exists a �nite family
(A j) of de�nable subsets ofRn, and for each j, a �nite family ( f j,k) of de�nable
functions from A j to R, such that A is the union of sets of the form
– {(x , t) ; x ∈ A j and t = f j,k(x)};
– {(x , t) ; x ∈ A j and f j,k−1(x) < t < f j,k(x)};
– {(x , t) ; x ∈ A j and t < f j,k(x)};
– {(x , t) ; x ∈ A j and t > f j,k(x)}.
In particular, a function which is de�nable in an o-minimal geometry is

“piecewise” of class C p, though it may not be piecewise C∞.

�eorem 1.7 (Triangulation theorem). — Let A ⊂ Rn be a subset which is
de�nable in an o-minimal geometry. �en there exists a de�nable homeomor-
phism from A to a simplicial subspace of Rn.
I recall that a simplicial subspace is a union of a �nite set of disjoint “open”
simplices in Rn such that the set of corresponding closed simplices satisfy
the following property: the intersection of any two of them is a face of each
of them and belongs to the set.
In particular, if a subset of Rn, de�nable in an o-minimal geometry, is
discrete, or even countable, then it is �nite.

1.8. — For these statements to be practically useful, one needs to prove that
the relevant sets be de�nable in some o-minimal geometry. As we will see in
the rest of the course, this is o�en a major result in itself. We have seen that
semialgebraic sets and semianalytic sets give rise to o-minimal geometry.
�e previous results imply that not everything is o-minimal. For example,
no o-minimal geometry can contain the graph of the sine function, since
its set of zeroes (which would be de�nable) has in�nitely many connected
components.
�e fundamental results are:
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– �ere exists an o-minimal geometry Rexp that contains the graph of the
exponential function (Wilkie, 1996) (proved in 1991);
– �ere exists an o-minimal geometry Ran,exp that contains all compact
semianalytic sets and the graph of the exponential function (van den Dries
& Miller, 1994; van den Dries et al, 1994).
Regarding their proofs, let us just quote Wilkie (1996):
It is dicult to see how conventional analytic or di�erential geometric
methods could be used to establish this result because of the essential
singularity of the exponential function at in�nity. �e proof given
here uses model-theoretic methods to analyse large zeros of systems
of exponential-algebraic equations.

By model-theoretic methods, it is implied that one has to study not only
de�nable subsets of Rn, but also sets de�ned by the same formulas in real
closed �elds that extend R. Since such �elds are nonarchimedean, one tool
at disposal is asymptotic analysis via valuation theory.
It is thus necessary to develop model-theoretic analogues of all important
topological concepts (connectedness, compacity, etc.), with the potential
gain that classic theorems which are false for arbitrary subsets of real closed
�elds (with the order topology) now hold true. For example, one proves that
any two points of a de�nably connected subset are connected by a continuous
de�nable map from [0; 1], or that a de�nable subset is de�nably compact if
and only if it is bounded and closed.
On the other hand, the universe of all o-minimal geometries is complicated,
perhaps more than what Grothendieck had envisioned. For example, there
are pairs of o-minimal geometries which are not contained in a common
o-minimal geometry (Le Gal, 2010; Rolin et al, 2003).

2. Complex analysis in an o-minimal setting

2.1. — When we identify the �eld C of complex numbers as R2 (real part,
imaginairy part), addition and multiplication are expressed by polynomials,
and modulus by a semialgebraic formula (

√
x2 + y2). In a series of papers,

Peterzil & Starchenko (2001, 2003, 2008, 2009) developed an o-minimal
theory of complex analysis: studying fonctions on de�nable open subsets
of C which are complex analytic and de�nable in an o-minimal geometry
when viewed as functions from (a subset of) R2 to itself, and, more generally,
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studying analytic subspaces ofCn and functions on themwhich are de�nable
in an o-minimal geometry.
Actually, such a theory had been developed earlier by Knebusch (1982)
and Huber (1984), see (Huber & Knebusch, 1990), albeit in the more
restrictive context of semialgebraic geometry.
�eir discovery is that not only such a study is possible at all, which means
that there is a model-theoretic approach to complex function theory over
real closed �elds, avoiding various topological and analytic tools which are
unavailable in this general context, but also the theory is rich and fruitful —
there are many nontrivial examples, and the consequences are o�en fantastic.
�is will be the main source of tension of the later chapters,
Without speci�c mention of the opposite, we assume given some o-
minimal geometry is given, to which the adjective “de�nable” will refer.
We insist that when a subspace of Cn is called de�nable, it means that it is
de�nable as a subspace of R2n, with respect to the standard identi�cation
of C with R2, although any semialgebraic identi�cation might do.

Example 2.2. — �ese elementary examples show that the theory is both
�exible and restrictive.
– Polynomials on Cn, more generally on a de�nable subset of Cn, are
de�nable.
– Let U be an open subset of Cn, and let f ∶U → C be a holomorphic
function. For every open subspace V of U which is relatively compact in U,
then f ∣V is de�nable in Ran.
– �e complex exponential function on C is not de�nable. Otherwise, the
discrete subspace 2iπZ of R, which is de�ned by ez = 1, would be de�nable,
while every discrete subset which is de�nable in an o-minimal geometry is
�nite.

Example 2.3 (Weierstrass’s j-function). — �is is a a holomorphic func-
tion on the upper half-plane h which is invariant under the action of group
Γ = SL(2,Z), inducing a bijection from h/Γ to C.
It is not de�nable since it takes j−1(0) is discrete and in�nite.
On the other hand, the action of SL(2,Z) admits a well known fundamen-
tal domain D, de�ned by the semialgebraic relations ∣z∣ ≥ 1 and − 12 ≤R(z) <
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1
2 . Let us prove, following (Pila, 2011; Scanlon, 2012), that the restriction
to D of j is de�nable in Ran,exp.
Since j(z + 1) = j(z), the j function admits a Fourier expansion in terms
of q = e2iπz, which takes the form

j(z) = J(q) = 1
q
+ 744 + 196884q + 21493760q2 + 864299970q3 + . . .

�e radius of convergence of qJ(q) is equal to 1; when z = x + iy ∈ D, one
has y ≥ √3/2, hence ∣q∣ = e−2πy ≤ e−π√3 < 1. In other words, the restriction
of J to the closed disk of radius e−π√3 is de�nable in Ran. Consider the
relation q = e−2πye2iπx over D. We observe that x remains bounded, so that
the second factor e2iπx is de�nable in Ran; however, the �rst factor e−2πy is
de�nable inRexp, but not less. Consequently, over D, q is a de�nable function
of (x , y) in the o-minimal geometry Ran,exp.
Consequently, j∣D is de�nable in Ran,exp.

2.4. — Amain feature of the theory of de�nable analytic function theory
is its interaction with algebraicity.
By Bianconi (2005), a germ of an analytic function which is de�nable
in Rexp is semialgebraic.

�eorem 2.5. — (1) An analytic function on Cn which is de�nable is a
polynomial (Peterzil & Starchenko, 2003, theorem 2.17).
(2) An analytic subspace of Cn which is de�nable is algebraic (Peterzil &

Starchenko, 2008, theorem 5.1).
�e second statement is an analogue of the theorem of Chow that claimes
that closed analytic subspaces of Pn(C) are algebraic.
It is important to stress that these results are given independent proofs,

valid in arbitrary real closed �elds. However, as explained by Bakker (2019),
they can o�en be proved by using advanced properties of complex function
theory.
For example, an analytic function on C which is de�nable cannot have
an essential singularity at in�nity (otherwise, by Picard’s Great theorem, it
would take almost all values in�nitely many o�en), hence it is a polynomial
by the Casorati–Weierstrass theorem.
Similarly, if we view a de�nable analytic subspace of dimension d of Cn as
a subspace of Pn(C), the cylindric decomposition theorem implies that it
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has bounded d-dimensional Hausdor� measure; then a theorem of Bishop
implies that its closure is an analytic subspace of Pn(C), which is algebraic
by the standard form of Chow’s theorem.

2.6. — �e scope of these results has been enlarged by Bakker,
Brunebarbe & Tsimerman (2019) to a “de�nable GAGA” theorem
that compares de�nable analytic spaces and their sheaf cohomology with
their natural one.
De�nable open subsets of Cn, together with �nite coverings, induce a
Grothendieck topology on Cn, giving rise to the de�nable site Cndef of Cn. If
U is a de�nable open subset of Cn, one can consider the subspace OdefCn (U)
of OCn(U) consisting of those analytic functions which are de�nable. By
restriction, these rings give rise to a sheaf OdefCn on the de�nable set Cndef.
�e basic de�nable analytic spaces are the closed subspaces of a de�nable
open subset U of Cn de�ned by �nitely many de�nable analytic functions
on U, in other words, a �nitely generated ideal I of OCn(U). We then form
the locally ringed site (∣V(I)∣ ,OU/I).
More generally, a de�nable analytic space is a locally ringed site which has
a �nite covering by basic de�nable analytic space.
�ere is a natural notion of a coherent sheaf on a de�nable analytic space.
In fact, the de�nable analogue of Oka’s theorem (Bakker et al, 2019, theo-
rem 2.16) implies that if X is a de�nable analytic space, then the structure
ring OX is coherent, and �nitely presented OX-modules are coherent.
Quotients of de�nable analytic spaces by a closed étale equivalence rela-
tions exist in the category of de�nable analytic spaces (Bakker et al, 2019,
corollary 2.19).

2.7. — A complex algebraic variety X, more generally, a complex algebraic
spaces, gives rise to a de�nable analytic space Xdef, and a coherent sheafF
on X gives rise to a coherent sheafF def on Xdef.
A de�nable analytic space X gives rise to an analytic space Xan, and a
coherent sheafF on X gives rise to a coherent sheafF an on Xan.
�ese assignments are functorial.

2.8. — If X is a complex algebraic variety, then (Xdef)an is nothing but the
analyti�cation Xan of X, as de�ned in (Serre, 1956) and analogously for
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coherent sheaves. If X is projective, Serre’s gaga theorems (Serre, 1956,
théorèmes 2 and 3) assert that the analyti�cation functor induces an equiva-
lence of abelian categories Coh(X) → Coh(Xan), and the theorem of Chow
follows as an immediate consequence. As showed byGrothendieck, it su�ces
to assume that X is proper.
It may interesting to re�ne this comparison and study what happens in
the two steps, �rst from X to Xdef, and then from Xdef to (Xdef)an.

�eorem2.9 (Bakker, Brunebarbe&Tsimerman, 2019, theorem2.22)
Let X be a de�nable analytic space. �e analyti�cation functorF ↦F an

from Coh(X) to Coh(Xan) is faithful and exact.
�is theorem relates de�nable coherent analytic sheaves with general
coherent analytic sheaves. If X is compact, de�nability inRan is automatic, so
that this functor is an equivalence of categories when the chosen o-minimal
geometry contains Ran. One cannot expect that this holds true in general,
since there may be analytic functions which are not de�nable (violating full
faithfulness for the structure sheaf), and there may be coherent analytic
sheaves which are not de�nable (violating essential surjectivity).
�e following theorems relate algebraic geometry with de�nable analytic
geometry, and the picture is more complete.

�eorem 2.10. — (1) Let X be a complex algebraic space. �e de�nabiliza-
tion functorF ↦F def from Coh(X) to Coh(Xdef) is fully faithful and exact;
its essential image is closed under taking subobjects and quotients (Bakker,
Brunebarbe & Tsimerman, 2019, theorem 3.1).
(2) Let M be an algebraic space and let X ⊂ Mdef be a closed de�nable
analytic subspace. �en there is a unique closed algebraic subspace ofM of
which X is the de�nabilization (Bakker et al, 2019, corollary 3.8).
(3) Let X, Y be algebraic spaces and let f ∶Xdef → Ydef be a de�nable analytic
map; there exists a unique algebraic morphism φ∶X → Y such that f = φdef
(Bakker et al, 2019, corollary 3.9).
Note the necessity of introducing algebraic spaces: there are many exam-
ples of quotients of étale equivalence relation on a complex algebraic variety
which do not exist as a scheme but do exist as an algebraic space; on the
other hand, these quotients exist in the context of de�nable analytic spaces
(see §2.6).
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�eorem 2.11 (Bakker, Brunebarbe&Tsimerman, 2019, theorem 4.2)
Let X be an algebraic space, let M be a de�nable analytic space and let

f ∶Xdef → M be a de�nable analytic map. If f is proper, then there exists a
unique factorization f = j ○ φdef, where φ∶X → Y is a proper dominant(2)
morphism of algebraic spaces and j∶Ydef →M a closed immersion. Moreover,
f an(Xan) = jan(Yan).
Being the image of a de�nable analytic map f , the set f an(Xan) is of course
de�nable on M. Via the identi�cation with with the image of the closed
immersion jan, this theorem induces on that de�nable set the structure of
an algebraic space coming from that of Y.

3. Bi-algebraicity

3.1. — Many conjectures or theorems in diophantine geometry can be
phrased in terms of subvarieties of abelian varieties. For example, theMordell
conjecture, a theorem of Faltings (1983), is a particular case of a conjecture
by Lang (1974) about the rational points of subvarieties of abelian varieties,
the Manin–Mumford conjecture, proved by Raynaud (1983a,b), is about the
torsion points of abelian varieties which belong to a given subvariety.
Pila & Zannier (2008) proposed a new strategy for proving such re-
sults that builds on properties of tame geometry, together with a number
theoretical theorem of Pila &Wilkie (2006), see theorem 4.6 below.

3.2. — Another input of this strategy is a fresh look at theorems of Ax (1971,
1972) that provide a functional analogue to the Schanuel conjecture according
to which, if α1, . . . , αn are Q-linearly independent complex numbers, then
the transcendence degree overQ of the �eld generated by

α1, . . . , αn , eα1 , . . . , eαn

is at least n. Note that this conjectures impliesmany important transcendence
results as particular cases; the Lindemann–Weierstrass theorem corresponds
to the casewhere α1, . . . , αn are algebraic. Already for n = 1, it implies that if α
is algebraic and nonzero, then eα is transcendental, hence e is transcendental
(taking α = 1) as well as π (taking α = 2πi).
(2)A morphism φ of algebraic space is called dominant if the canonical morphism of sheaves OY →
φ∗OX is injective.
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�eorem 3.3 (Ax (1971)). — Let f ∶Cn → (C∗)n be the map that sends
(z1, . . . , zn) to (ez1 , . . . , ezn) and let Dn be its graph; it is a closed irreducible
analytic subspace of Cn × (C∗)n. Let p∶Cn × (C∗)n → (C∗)n be the projection
onto the second factor. LetM ⊂ Cn × (C∗)n be an algebraic subvariety and
let V be a connected component ofM ∩Dn, as a closed analytic subspace. If
p(V) is not contained in a translate of a strict subtorus of (C∗)n, then

dim(M) ≥ dim(V) + n.
Note that (C∗)n is an algebraic group; its closed algebraic subgroups are
de�ned by families monomial equations za11 . . . zann = 1; subtori are connected
algebraic subgroups. Consequently, an irreducible analytic subspace U
of (C∗)n is contained in a translate of a strict subtorus if and only if there ex-
ists a nonzero (a1, . . . , an) ∈ Zn such that themonomial za11 . . . zann is constant
on U.
When p(V) is contained in a translate of a strict subtorus, a change of
coordinates reduces us to the case where that subtorus is (C∗)m × {1}. �en
the theorem implies the weaker inequality dim(M) ≥ dim(V) +m, and this
is optimal in general.
�e relation between Schanuel’s conjecture and this theorem is as follows:
if d = dim(V), then around a smooth point, the analytic space V can be
locally parameterized as ( f1, . . . , fn , e f1 , . . . , e fn), where f1, . . . , fn are n con-
verging power series in d variables. �e transcendence degree of the �eld
generated by ( f1, . . . , fn , e f1 , . . . , e fn) is the dimension of the smallest alge-
braic subvariety M′ of Cn × (C∗)n that contains V; since M′ ⊂M, it is thus
smaller than dim(M). If we replace M by M′, which does not change V, the
inequality of theorem 3.3 implies that the transcendence degree overC of the
�eld generated by ( f1, . . . , fn , e f1 , . . . , e fn) is at least n + d. �is strengthens
Schanuel’s conjecture — under the stronger hypothesis that ( f1, . . . , fn) are
linearly independent modulo constants.

3.4. — In the same way as the Lindemann–Weierstrass theorem is a conse-
quence of the Schanuel conjecture, applied to algebraic numbers and their
exponentials, Ax’s theorem 3.3 admits as corollary the following statement,
known as the Ax–Lindemann theorem: Let U be an algebraic subvariety
of (C∗)n and let V be a maximal irreducible algebraic subvariety of Cn such
that exp(V) ⊂ U. �en V is a translate of a Q-rational vector subspace of Cn,
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and exp(V) is a translate of an algebraic subgroup of (C∗)n. (Here, exp is the
exponential map from Cn to (C∗)n).
Indeed, we may assume that exp(V) is not contained in any translate of
a strict subtorus of (C∗)n; the goal is then to show that U = (C∗)n and
V = Cn. If one applies theorem 3.3 to M = V ×U, one obtains that M ∩Dn is
isomorphic to V; then dim(V) + dim(U) = dim(M) ≥ dim(V) + n, so that
dim(U) ≥ n. Necessarily U = (C∗)n, hence V = Cn, as was to be shown.
�is can be generalized slightly further: Let V be an irreducible algebraic
subvariety of Cn and letM be the Zariski closure of its image under the map
z ↦ (z, exp(z)) fromCn to (C∗)n; then there exists a translate T of a subtorus
of (C∗)n such thatM = V × T. Explicitly, the subtorus T has for Lie algebra
the the smallest Q-rational subspace of Cn such that V is contained in a
translate of L.

3.5. — As already noted by Ax (1972), this paradigm holds in more general
contexts than that of the exponential function. A general framework, would
consider complex algebraic varieties S and T, an analytic map f ∶S → T,
and the question would ask: if M is an algebraic subvariety of S × T, V an
irreducible algebraic variety contained in the intersection M ∩ Γf of M with
the graph of Γ, can one prove a pertinent lower bound for dim(M)−dim(V)
providedV is “generic”? Conversely, can one describe the “special” varietiesV
for which dim(M) < dim(V) + dim(T)?
Actually, S and T need not be algebraic varieties themselves, it is su�cient
for the question to make sense that they be semialgebraic open subsets of
algebraic varieties S′, T′. �en, an irreducible algebraic subvariety of S×T can
be de�ned as an irreducible component, in the sense of analytic geometry,
of the the trace on S × T of an algebraic subvariety of S′ × T′.
And we can broaden the picture still a little bit by replacing the pair (S ×

T, Γf ) by a pair (U,A), whereU is a semialgebraic open subset of an algebraic
variety and A is an irreducible analytic subvariety of U; given an irreducible
algebraic subvariety of U, and an irreducible algebraic variety V contained
in U ∩A, are there pertinent lower bounds for dim(M) − dim(V)?
And, at this point, one could even dream about nonarchimedean compan-
ions.
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3.6. — Ax (1972) treated the case of the complex exponential map,
expG∶L → G of an algebraic group G, where L is its Lie algebra. Special
varieties of G are those which are contained in a translate of a strict algebraic
subgroup. His techniques belong to di�erential algebra.
In their new proof of the Manin–Mumford conjecture, Pila & Zannier
(2008) gave a new proof of Ax’s theorem for abelian varieties which builds
on o-minimal arguments (the de�nability of expG in the o-minimal geome-
try Ran,exp) and the number theoretical result of Pila &Wilkie (2006). Note
also the purely o-minimal proof of Peterzil & Starchenko (2018).
In his proof of the André–Oort conjecture for a product of modular curves,
Pila (2011) gave a new statement of Ax–Lindemann–Weierstrass type, where
f is the uniformization of a product ofmodular curves, that is, S is a power hn
of the upper half-plane and f (z1, . . . , zn) = ( j(z1), . . . , j(zn)), where j is
Weierstrass’s j-function.
�is result has been extended by Ullmo & Yafaev (2014) for the uni-
formization of compact Shimura varieties, Pila & Tsimerman (2014) for
the uniformization of the Siegel modular variety, Klingler et al (2016) for
the uniformization of general Shimura varieties, and Gao (2017) for “mixed”
Shimura varieties.
�e general Ax–Schanuel theorem for Shimura varieties is due to Mok,
Pila&Tsimerman (2019). Previously, Pila&Tsimerman (2016) had treated
the case of the j-function. See also Tsimerman (2015) for an o-minimal
approach of Ax’s theorem about the classical exponential function.
A signi�cant part of these papers consists in proving that the relevant
analytic maps, restricted to adequate fundamental domains, are de�nable in
the o-minimal geometry Ran,exp.

3.7. — In the rest of this section, we explain the proof of the Ax–Lindemann
theorem for the exponential map of abelian varieties, following Peterzil
& Starchenko (2018). �e word “de�nable” will refer to the o-minimal
geometry Ran.
Let A be an abelian variety, let T be its Lie algebra and let e∶T→ A be its
exponential map. �e kernel of e is a lattice Λ in T. Let F be a fundamental
parallelogram for this lattice; it is compact and the restriction of e to F is
de�nable.
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Let X be an irreducible algebraic subvariety of T and let Z be the Zariski
closure of e(X) in A; we wish to prove that Z is a translate of an abelian
subvariety of A. Let B be the neutral component of the stabilizer of Z, it is
an abelian subvariety of A and let L be its Lie algebra.
Let Z′ be the preimage of Z in T; it is a Λ-invariant complex analytic
subspace of V. Its intersection with F, Z′ ∩ F, is de�nable.
All proofs in this kind of business introduce at some point some set like
the following one: let Σ be the set of all v ∈ T such that (v + X) ∩ F is a
nonempty subset of Z′; it is de�nable.
(1) One has X ⊂ F − (Σ ∩ Λ).
Let x ∈ X; there exists λ ∈ Λ such that x+ λ ∈ F, because F is a fundamental
domain; consequently, (λ+X)∩F is nonempty. Moreover, e(λ+X) = e(X) ⊂
Z, hence λ + X ⊂ Z′. �is shows that λ ∈ Σ ∩ Λ. �en x = (x + λ) − λ ∈
F − (Σ ∩ Λ).
(2) One has e(Σ) + Z = Z.
Let v ∈ Σ. �e analytic space Z′ contains an open subset of the irreducible
algebraic set v + X, hence it contains all of it, so that X ⊂ −v + Z′. �en
e(X) ⊂ −e(v) + e(Z′) = −e(v) + Z. Since Z is the Zariski closure of e(X),
this implies that Z ⊂ −e(V) + Z, hence e(v) + Z ⊂ Z. Since Z is irreducible
and closed, one has the equality e(V) + Z = Z.
(3) If the stabilizer of Z is �nite, then X is a point.
Assume that stabilizer of Z is �nite; by the previous step, e(Σ) is �nite.

�en Σ is contained in a �nite union of translates of Σ, hence it is discrete.
Since Σ is de�nable in an o-minimal geometry, it is �nite. �en, step 2
implies that X is contained in a �nite union of translates of F by elements Λ;
since F is bounded, this implies that X is bounded. Since it is an irreducible
algebraic subvariety of an a�ne space, it is reduced to a point.
(4) Conclusion of the proof.
�e previous step was the case B = 0. �e stabilizer of Z is of the form
S+B, where S is a �nite subset of A. Since the exponential map e is surjective,
there exists a �nite subset ∆ of T such that S = e(∆). �en

e(Σ) ⊂ S + B = e(∆ + L),

so that

Σ ⊂ ∆ + Λ + L.
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�e set ∆ + Λ is discrete; in particular, it is countable. �e image of Σ in
T/L is de�nable and contained in the image of ∆ + Λ, which is countable.
Consequently, there exists a �nite subset ∆′ of ∆ such that Σ ⊂ ∆′ + L. �en
X ⊂ F − (Σ ∩ Λ) ⊂ F − ∆′ + L.
Consider the image of X modulo L; it is an irreducible constructible subset
of T/L, which is contained in the image of F−∆′, hence is relatively compact.
As above, this implies that the image of X modulo L is a point, so that there
exists ξ ∈ T such that X ⊂ ξ +L. �en Z ⊂ e(ξ) +B, and, �nally, Z = e(ξ) +B.

Corollary 3.8. — Let V be an algebraic subvariety of an abelian variety A, let
X be a maximal irreducible subvariety of T such that e(X) ⊂ V. �en e(X) is
a translate of an abelian subvariety of A.
Proof. — Let W be the Zariski closure of e(X); by the Ax–Lindemann
theorem, it is a translate of an abelian subvariety of A. It is also contained inV.
Consequently, e−1(W) is an irreducible algebraic subvariety of T contained
in e−1(V). By maximality, one has e−1(W) = X, hence e(X) =W.

4. Points of bounded height in de�nable sets

We now turn to interaction of o-minimal geometries with number theory.

4.1. — �e height of a rational number α is de�ned by H(α) = sup(∣p∣ , ∣q∣)
is α = p/q is written as a fraction in lowest terms. It measures the arithmetic
complexity of that number, at least in the sense that for every T > 0, there
are �nitely many rational numbers α such that H(α) ≤ T.
�e notion extends naturally to heights of points inQn by setting

H(α1, . . . , αn) = sup(H(α1), . . . , H(αn))
if α1, . . . , αn are rational numbers. Again, for every T > 0, there are �nitely
many rational points α ∈ Qn such that H(α) ≤ T.
It also extends to rational points projective varieties, and satis�es approxi-
mate functorial properties.
�is notion, close variants of it, as well as technically involved elabora-
tions of it, is a standard tool of diophantine theory, from Fermat’s proofs
by in�nite descent, to Mordell–Weil’s theorem, to the proofs of Mordell’s
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conjecture by Faltings (1983); Vojta (1991); Bombieri (1990), and many
other important results.

4.2. — A classic theorem of Dirichlet asserts that when T goes to in�nity,
the number of α ∈ Q such that H(α) ≤ T is asymptotically equivalent to
12/π2 ⋅ T2. �e idea is that there roughly 2T2 pairs of integers (p, q) such
that ∣p∣ , ∣q∣ ≤ T and q ≥ 1, but one should sieve out 1/4th of it (those pairs
consisting of even integers), and also 1/9th of the remaining lot (those pairs
consisting of integers divisible by 3), and so on for all primes, leading to the
expansion

2 ⋅ ∏
p prime

(1 − 1
p2

) ⋅ T2 = 2/ζ(2) ⋅ T2 = 12/π2 ⋅ T2.

InQn, one gets a similar result, growing as T2n. . .

4.3. — When it is impossible to prove that a diophantine equation has
�nitely many solutions, more generally that a subset X ⊂ Rn contains �nitely
many rational points, one can at least try to prove that when T grows to
in�nity, the cardinality of the set

X(Q; T) = {α ∈ X ∩Qn ; H(α) ≤ T}
grows much smaller than what is a priori possible.
If X is the a�ne line, we have seen that the cardinality of X(Q; T) grows
like T2. If X is an elliptic curve, the cardinality of X(Q; T) grows like log(T)r,
where r is the rank of the �nitely generated abelian group X(Q). Before
it was known that X(Q) is �nite, Mumford (1965) had proven that on a
curve X of genus g ≥ 2, the cardinality of X(Q; T) has a log-logarithmic
upper bound.
Starting with Jarník (1926), there have also been investigations when X
is a more general than an algebraic variety. In this section, we describe a
theorem of Pila &Wilkie (2006) that says in essence that if X is de�nable
in some o-minimal geometry, then X(Q; T) is small unless it is explained by
semialgebraic subsets of X.

4.4. — Let X be a subset of Rn. �e algebraic part Xalg of X is the union of
all its connected in�nite semialgebraic subsets. �e complement X Xalg is
called its transcendental part and is denoted by Xtr.
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�e algebraic part Xalg contains the topological interior of X. Its precise
determination may be delicate; theorems of Ax–Schanuel type may be useful.
Here is an elementary and classical example, given in Pila &Wilkie (2006),
see also Bhardwaj & van den Dries (2021) for a complete and detailed
exposition.

Example 4.5. — Let X be the set of all (x , y, z) ∈ R3 such that 1 < x , y < 2
and z = x y. It is de�nable in Rexp.
For every rational number b = p/q ∈ ]1; 2[, the set Xb of all (x , y, z) ∈ X
such that y = b can be de�ned by 1 < x < 2, y = b and zq = x p, hence Xb is a
semialgebraic curve contained in X.
Conversely, let us consider a semialgebraic curve contained in X. Cel-
lular decomposition shows that it can be parameterized under the form
(t, y(t), z(t)), or (a, t, z(t)), or (a, b, t) where t varies in some open real
interval, and y(t), z(t) represent C 1-semialgebraic functions, while a, b are
real numbers. Let us analyse all three cases:
(1) Case (a, b, t): it is incompatible with the equation z = x y = ab;
(2) Case (a, t, z(t)): it implies z(t) = at, but the exponential function is
not semialgebraic, hence t ↦ at is not semialgebraic unless a = 1;
(3) Case (t, y(t), z(t)): then z(t) = ty(t) = e y(t) log(t) is semialgebraic,
hence its logarithmic derivative z′(t)/z(t) = y′(t) log(t) + y(t)/t is semi-
algebraic as well. Since y(t) and y′(t) are semialgebraic but log(t) is not
semialgebraic, we get that y′(t) = 0. �e considered cell takes the form
(t, b, z(t)) and z(t) = tb is semialgebraic, which implies that b is a rational
number.
Indeed, if z(t) = tb is algebraic on some interval, there is a nontrivial
polynomial P ∈ R[X, Y] such that P(t, tb) vanishes an open, possibly smaller,
interval. By analytic continuation, this implies that P(t, tb) vanishes iden-
tically on R+. If P = ∑ cm,nXmYn, we get ∑ cm,ntm+nb ≡ 0. If b is irrational,
then all exponentsm+nb are distinct, so that P(t, tb) behaves like cm,ntm+nb,
where (m, n) is the unique pair such that cm,n ≠ 0 that makes m + nb maxi-
mal. �is concludes the proof.
We thus have proved that Xalg is the union of all these semialgebraic
curves Xb, for b ∈ ]1; 2[.
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�eorem 4.6 (Pila &Wilkie, 2006, theorem 1.9)
Let X ⊂ Rn be a set de�nable in an o-minimal geometry. For every ε > 0,

there exists a real number c such that

Card(Xtr(Q; T)) ≤ c ⋅ Tε

for all T > 1.
Here, the constant c depends on X and ε.
Actually, and this is very important for applications, Pila &Wilkie (2006)
established various re�nements of this theorem in two directions. Firstly,
they can allow the de�nable set X to vary in a de�nable family, and the
constant c is uniform in this family. Secondly, they can de�ne a an exceptional
set Z which is de�nable and contained in Xalg, so that Card(X Z(Q; T)) ≤
c ⋅Tε; the interest is that the set Xalg is not de�nable in general, as the previous
example shows. �ey can also combine these two generalizations.
�e �nal statement, due to Pila (2009), makes use of the notion of “block
families”, and is probably too technical to be worth being quoted here.

4.7. — From the number theoretical side, the proof of theorem 4.6 relies
on the “determinant method” that is sometimes attributed to the paper of
Bombieri & Pila (1989), but is in fact much older since underlies all the
transcendental number theory of the 20th century, from the work of Thue
(1909) on diophantine approximation to elaborate versions in Arakelov ge-
ometry. In fact, very close arguments can already be found in the elementary
proof of Hilbert’s irreducibility theorem by Dörge (1927)(3).
�e initialization step, simpli�ed from (Pila, 2004, prop. 4.2), is as follows.

Lemma 4.8. — Consider n smooth functions f1, . . . , fn from the hypercube
[0; 1]m to R and let X be the image of f = ( f1, . . . , fn). Let ε > 0. �ere exists
an integer d ≥ 1 and a real number c such that for every T > 1, the set X(Q; T)
is contained in at most c ⋅ Tε hypersurfaces of degree d.
Proof. — Let N = (d+nn ) be the number of monomials of degree ≤ d in
n indeterminantes. Fix a small hypercube Q of size r contained in [0; 1]m
and consider N points p1, . . . , pN in Q with f (p j) ∈ X(Q; T). We consider

(3)�at paper is in German. See also Lang (1960) for a nice and concise exposition in French,
and Chambert-Loir (2005) for a textbook presentation in English.
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the determinant
∆ = det( f (p j)µ)µ, j

indexed by monomials µ of degree ≤ d and j ∈ {1, . . . , N}. �e equality
∆ = 0 means that the points f (p j) belong to a common hypersurface of
degree d; so assume that ∆ ≠ 0. Let b j ∈ N∗ be the smallest strictly positive
integer such that b j f (p j) ∈ Zn; by de�nition of the height of f (p j), b j and
b j fi(p j) are integers of absolute value ≤ T. In particular, ∆ ⋅ ∏Nj=1 bdj is a
rational integer; since it is nonzero, its absolute value is at least 1, so that

∣∆∣ ≥ T−Nd .
On the other hand, since the points p j all belong to the hypercube Q, they are
at distance at most r

√
m one from the other. To evaluate the determinant ∆,

one can perform column operations on its matrix so as to eliminate more
andmore terms of the Taylor expansion. �is gives rise to an upper bound of
the form ∣∆∣ ≤ c ⋅rB, for some integer B which only depends onN, hence on d,
and some real number c which depends on the size of the derivatives of f
on the hypercube Q. According to Pila (2004), the number of derivatives of
the f j that need to be considered grows as dn/m, and B grows as dn(m+1)/m.
For r < T−Nd/Bc−1/B, we get a contradiction; that is, the points p1, . . . , pN
belong to a common hypersurface of degree d.
Taking r = T−Nd/Bc−1/B/2, say, we cover the hypercube [0; 1]m by 1/rm =
TNdm/Bcm/B2m small hypercubes Q. Finally, the set X(Q; T) is covered by
TNdm/Bcm/B2m hypersurfaces of degree d.
It remains to pay attention to the numerology and to observe that when
d → +∞, the exponent Nd/B tends to 0. By the expressions given above
for N and B, one has Nd/B ≈ dα, with

α = n + 1 − nm + 1
m

= 1 − n
m

< 0.

�at concludes the proof.

4.9. — �is lemma, rather a more precise version of it, allows to start an
induction process, replacing the initial de�nable set X by the �nitely many
intersectionsX∩Hwith hypersurfaces of degree d that comeout of the lemma.
For those hypersurfaces H such that X∩H has dimension 0, the intersection
is �nite, and uniformly bounded when H varies, leading to a O(Tε) bound.
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To go on when dim(X ∩H) ≥ 1, it is necessary to parameterize these sets
further, while having some control on the derivatives of the parameterization.
A second input of Pila &Wilkie (2006) is thus an o-minimal version of
a “reparametrization lemma” due to Gromov (1987) and Yomdin (1987a,b).
One di�culty is that it needs to be applied to all possible X ∩H, uniformly
when H varies among all relevant hypersurfaces of degree ≤ d, consequently
requiring a version with parameters.
It is in this inductive step that the o-minimality assumption shows its
strength, in the uniformity that it allows.

4.10. — For the applications, a more general version of the counting the-
orem is necessary, where one takes into account not only rational points
of X, but also points with coordinates in algebraic �elds of given degree. �e
height machine extends naturally to algebraic numbers: the height of an al-
gebraic number is essentially the maximum of the heights of the coe�cients
of its minimal polynomial. �en Northcott’s theorem guarantees that for
any integer d and any real number T, the set of algebraic numbers α such
that [Q(α) ∶ Q] ≤ d and H(α) ≤ T is �nite. Extending the methods of Pila
&Wilkie (2006) to this framework, Pila (2009) showed that for any ε > 0,
there is a real number c such that the number of points x = (x1, . . . , xn) ∈ Xtr
such that [Q(x j) ∶ Q] ≤ d and H(x j) ≤ T for all j is smaller than cTε.

4.11. — It is a natural question to strengthen the counting theorem 4.6 to
an upper bound of the form

Card(Xtr(Q; T)) ≤ c(log(T))N.
�is is in fact conjectured by Pila & Wilkie (2006) when X is de�nable
in Rexp.
As already remarked by Pila&Wilkie (2006), for every strictly decreasing
function ε∶R+ → R which tends to 0 at in�nity, there exists a transcendental
analytic function f on [0; 1] and a sequence (T j) of going to in�nity such
that

Card(Xtr(Q; T j)) ≥ Tε(T j)
j .

Taking ε(t) = 1/
√
log(t), one has tε(t) = e

√

( log(t))) is not bounded from
above by any power of log(t), so that the above question would have a nega-
tive answer without any restriction on the considered o-minimal geometry.
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More recently, Binyamini & Novikov (2017) have proved such a result
when X is de�nable in the o-minimal geometry generated by the restrictions
exp ∣[0;1] and sin ∣[0;π].

5. Special points and special subvarieties

5.1. — To this day, the most stunning application of o-minimal geometry to
diophantine geometry is probably the proof of theAndré–Oort conjecture for
Shimura varieties, following a strategy of Pila&Zannier (2008), that started
with a paper of Pila (2011) for products of modular curves, and was rapidly
generalized by twomain teams of mathematicians, Pila & Tsimerman (2013,
2014); Tsimerman (2018) and Ullmo & Yafaev (2014); Gao (2017) that lead
to a proof of the André–Oort conjecture for arbitrary (mixed) Shimura under
the Generalized Riemann hypothesis(4), and unconditionally for Shimura
varieties of Siegel type. �eir work builds on the proof of the already evoked
“hyperbolic Ax–Lindemann theorem”. �ey also need height estimates for
cm-points which follow from the Generalized Riemann hypothesis, but
could be deduced from of an averaged version of a conjecture of Colmez
regarding the height of abelian varieties with complex multiplication. A
proof of these height estimates has just been announced by Pila, Shankar
& Tsimerman (2021).
In this section, I describe this André–Oort conjecture in the particular
case of modular curves and present a sketch of its proof.

5.2. — To motivate the arguments, I start with a sketch of the proof of the
Manin–Mumford conjecture following Pila & Zannier (2008).

Proposition 5.3. — Let A be a complex abelian variety and let V be a subva-
riety of A. If V does not contain any translate of an abelian subvariety of A of
strictly positive dimension, then V ∩Ators is �nite.
Proof. — We assume that A is de�ned over a number �eld K, the general
case can be deduced from it by some spreading-out argument; see for exam-
ple (Raynaud, 1983a, beginning of §7).

(4)Earlier, a proof of the conjecture conditional under GRH had already been proposed by Edix-
hoven & Yafaev (2003).
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Let e∶T→ A be the exponential map of A and let F ⊂ T be a bounded open
subset which contains a fundamental domain for the action of the lattice
Λ = ker(e); since e is analytic and F is bounded, the map e∣F is de�nable
in Ran, and X = e−1(V) ∩ F is an analytic set contained in F, de�nable in Ran.
It follows from the Ax–Lindemann theorem for abelian varieties that Xalg
is empty. Indeed, if e−1(V) contains an in�nite connected semialgebraic
set, it contains its Zariski closure Y, because X is an analytic subset. �en
the Zariski closure of e(Y) is translate b + B of an abelian subvariety of A,
contained in V, hence B = 0 and Y is a point; contradiction.
Let us identify T with R2g in such a way that Λ is mapped to Z2g , and F to
some open neighborhood of [0; 1]2g . �e points of T whose image in A are
torsion points correspond to the points ofQ2g .
On the other hand, arguing by contradiction, let us assume that V contains
in�nitely many torsion points. It then contains points a of arbitrarily high
order N. A theorem of Masser (1984) gives a lower bound for the degree
of the �eld of de�nition of a, of the form [K(a) ∶ K] ≫ Nρ, for some real
number ρ > 0. �e Galois orbit of a thus contains that many points, which
are all contained in V, giving rise to the same number of points in X∩[0; 1[2g .
�ese points have coordinates of the formm/N, with 0 ≤ m < N, hence their
heights are bounded by N. In particular, Card(X(Q;N)) ≫ Nρ.
Since X = Xtr and N can be taken arbitrarily large, this contradicts the
counting theorem 4.6.

5.4. — From that statement and various reductions, Pila&Zannier (2008)
deduce the full form of the Manin–Mumford conjecture. Namely, if A is
a complex abelian variety and V an irreducible algebraic subvariety of A,
then the Zariski closure of V ∩Ators is a �nite union of translates of abelian
subvarieties of A by torsion points.
One �rst proves that the set of translates of abelian subvarieties of A which
are contained in V has only �nitely many maximal elements. �eir union
is an algebraic subvariety of V, which we call its special locus and denote
by Vspec. As in the previous proposition, one then proves that V Vspec has
only �nitely many torsion points. In fact, with the notation of the proof,
the Ax–Lindemann theorem implies that the algebraic part of X is equal to
e−1(Vspec) ∩ F.
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On the other hand, if V = ⋃(b j + B j), where B j is an abelian subvariety
of A and b j ∈ A, then either b j is a torsion point in A/B j, in which case b j+B j
contains a Zariski dense set of torsion points, or b j is not a torsion point
in A/B j and b j + B j does not contain any torsion point.
�e conclusion is that up to a �nite number of torsion points, the Zariski
closure of V ∩Ators is the union of those b j + (B j)tors for those j such that
b j ∈ (A/B j)tors.

5.5. — We now pass to the André–Oort conjecture. Let E be a complex
elliptic curve, presented as a one-dimensional complex torus C/Λ, where
Λ is a lattice in C. Endomorphisms of E are induced by homotheties of C
that stabilize the lattice Λ; usually, there are no other endomorphisms than
the integer multiplications z ↦ nz, for n ∈ Z, but some exceptional elliptic
curves have more endomorphisms.
When Λ is normalized so that it has a basis of the form (1, τ), where τ ∈ h
belongs to the Poincaré upper half-plane, they correspond to the case where τ
generates an imaginary quadratic �eld. �en, the ring End(E) is an order in
that quadratic �eldQ(τ), the curve E is said to admit complexmultiplication,
or to be a cm-elliptic curve, and the j-invariant j(τ) is an algebraic number.
Also, any elliptic curve which is isogeneous to a cm-elliptic curve is still cm,
with the same imaginary quadratic �eld.
By the way, a theorem in transcendental number theory independently
proved by Gel’fond and Schneider characterizes cm-elliptic curves as those
curves C/(Z + Zτ), for which both τ ∈ h and j(τ) is an algebraic number.

5.6. — Let N ≥ 1 be an integer. �e holomorphic functions j(z) and j(Nz)
are not algebraically independent, and there exists an irreducible polynomial
ΦN ∈ Z[X, Y] such that ΦN( j(z), j(Nz)) = 0. �is polynomial is symmetric
in X and Y, homogeneous of degree ψ(N) = N∏p∣N (1+ 1

p). �e plane curve
that it de�nes in C2 is birational to the modular curve X0(N) that parameter-
izes isogenies between elliptic curves with a cyclic kernel of degree N, the two
projections to C corresponding to the two natural morphisms from X0(N)
to X0(1).
Say that an algebraic subvariety V of Cn is special if it is an irreducible
component of an algebraic subvariety de�ned by equations of the form za = c,
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for c some j-invariant of a cm-elliptic curve, or ΦN(za , zb) = 0, for N ≥ 1,
and a, b ∈ {1, . . . , n}.
Assume that V is a special subvariety of Cn. Using the fact that cm j-
invariants are dense in C, and that the j-invariants of two isogeneous elliptic
curves are simultaneously cm or not-cm, one observes that V contains a
Zariski dense set of points of the form (z1, . . . , zn), all of whose coordinates
of which are cm j-invariants.
Conversely, when restricted to products of modular curves, the An-
dré–Oort conjecture characterizes special subvarieties of Cn as those
algebraic subvarieties which satisfy this density property.

5.7. — Let V be an irreducible algebraic subvariety of Cn containing a
Zariski-dense set of cm-points. Since cm-points are algebraic numbers,
the variety V is de�ned over a number �eld, say F.
Consider the map induced coordinatewise by Weierstrass’s j-function,
from hn to Cn and that we still denote by j. Let D be the standard semialge-
braic fundamental domain for the action of SL2(Z) on h; as we have seen in
example 2.3, the map j∣D is de�nable in the o-minimal geometry Ran,exp,
so that the map j∶Dn → Cn is de�nable in Ran,exp. �e inverse image
X = j−1(V) ∩Dn is thus de�nable.
Every cm-point z in V is the image by j of exactly one point τ ∈ X, and
each coordinate of τ is imaginary quadratic. For any automorphism σ ofQ
that is the identity on the de�nition �eld K of V, one has σ(z) ∈ K, so
that each such point z gives rise to [K(z) ∶ K]-distinct points on V, and
[K(z) ∶ K]-distinct points on X. If τ is imaginary quadratic, then the the
theory of complex multiplication and Siegel’s theorem on class numbers
imply that [Q( j(τ)) ∶ Q] ≫ H(τ)1/2−ε.
�e counting theorem 4.6 then implies that up to �nitely exceptions, all of
these points τ belong to Xalg.

5.8. — On the other hand, the “hyperbolic Ax–Lindemann–Weierstrass”
theorem furnishes a description of Xalg as traces on Dn of a �nite union of
geodesic subvarieties of hn, meaning irreducible components of (the trace
on hn of) algebraic subvarieties of Cn de�ned by equations of the form
zb = γ ⋅ za for 1 ≤ a, b ≤ n and γ ∈ SL2(Q), or zb = c, for c ∈ h.
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If a geodesic subvariety contains cm-points, the points c ∈ h that appears in
equations of the form zb = c are necessarily themselves cm-points. Ultimately,
this implies that this geodesic subvariety gives rise to a special subvariety
of V.
�is concludes the sketch of Pila’s proof of the André–Oort conjecture.

6. De�nability of period mappings
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