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Abstract. — Summoned by Grothendieck in his Esquisse d'un programme (1985), tame topol-
ogy is supposed to offer the flexibility of general topology without allowing its “pathological”
constructions. Inspired by mathematical logic and real algebraic geometry, o-minimality is
one solution to this program, proposed by van den Dries. The works of Peterzil and Starchenko
showed that Serre’s GAGA principle extends: if it is definable in an o-minimal structure, a
complex analytic subset of C" is necessarily algebraic.

In the last 10 years, these ideas have been made fruitful in number theory, where Zannier,
Pila, then Tsimerman, Klingler, Ullmo and Yafaev proved the André-Oort conjecture concern-
ing the geometry of subvarieties of Shimura varieties. An important tool is a counting theorem
by Pila and Wilkie for points of R” with rational coordinates with bounded numerator and
denominator lying on a subset which is definable in an o-minimal structure.

Recently, Klingler, Bakker, Tsimerman, Brunebarbe used these ideas in Hodge theory,
reproving for example a theorem of Cattani, Deligne and Kaplan regarding the algebraicity
of the Hodge loci, or by proving a conjecture of Griffiths about the quasi-projectivity of the
images of period maps. The aim of the lectures is to present these notions of diverse origins
and, as far as possible, to describe how they interact.

In the preparation of these notes, I made extensive use of other surveys on various aspects
of this topic, in particular WILKIE| (2010); [PETERZIL & STARCHENKO| (2011); SCANLON| (2012);
BAKKER| (2019)); [FRESAN| (2020)).
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1. Tame topology

In his 1983 Esquisse dun programme, published as (GROTHENDIECK, 1997),
Alexandre Grothendieck was advocating for some “tame topology” that
would be flexible enough to “express with ease the topological intuition of
shapes”, while would be freed from the “spurious difficulties related to wild
phenomena”. For Grothendieck, the difficulty of proving Brouwer’s theorem
of invariance of domain, that is, of establishing a good dimension theory for
topological manifolds, is already an indication that the topological theory is
inadequate.

As a possible adequate framework, he mentions Hironaka’s theory of semi-
analytic spaces, as well as real semialgebraic sets. In fact, he even suggests
that there should exist a whole spectrum of tame topologies, for which
semialgebraic sets would possibly form the coarsest such example, and semi-
analytic sets the finest one. These various topologies would be characterized,
Grothendieck expects, by a list of properties, the most delicate of them being
a triangulability axiom.

Such a framework has been proposed by vaN DEN DRrIES| (1998)), in the
context of “mathematical logic”, which proved extremly fruitful in the two
following decades, that of o-minimal geometry.

Definition 1.1. — A geometry{(!)]is the datum, for every integer n, of a set 9,
of subsets of R", satisfying the following properties:

(1) For every n, 9, is a boolean algebra: it contains the empty set, is stable
under union, intersection and complement;

(2) For every n and every A € &,, the subsets A x R and R x A of R"*
belong to D,;

(3) Forevery n and every A € D,.,, the image p(A) of A under the projec-
tion p:R"** — R" belongs to D,,;

(1)The standard word for this concept is structure, but that word has already too many meanings,
even in model theory. Actually, the definition admits slight variations in the litterature; for example,
VAN DEN DRIES| (1998) doesn’t impose at the onset that the graphs of addition and multiplication
belong to %, allowing “piecewise linear” geometries, but the hypothesis appears soon after.
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(4) The set 9, contains all singletons {a}, for a € R;

(5) The set 9, contains the set {(x,y); x < y};

(6) The graphs of addition and of multiplication belong to Z;;

(7) For every n and every i, j such that 1< i < j < n, the set {x e R"; x; =
xj} belongs to D,

Thus, a geometry is the datum of the sets we are interested in, subject to a
list of compatibilities which allow us to construct new sets from previous
ones.

Using projections and intersections, one sees that whenever the graph of
a function f:R"” — R™ belongs to %,,.,, the image f(A) of a set A € &,
belongs to Z,,,. Similarly, if the graphs of functions f:R” - R™ and g:R? —
R" belong to Zy4n and %, then the graph of their composition f o g
belongs to Z,,.,. Since the graphs of addition and multiplication belong
to ,, this implies that Z,., contains the graph of every polynomial in
n variable.

1.2. — Given a geometry (%, ), the subsets of R” that belong to &, are
called definable and the functions f: R™ — R” whose graph belongs to Z,,,.,
are called definable.

First order logic interprets boolean operations in R” by logic connec-
tors, intersection corresponds to conjunction (and), union to disjunction
(or), and complement to negation (not). It also interprets projection by
existential quantifiers: if a set A ¢ R"*' is defined in R"** by a formula
O(xy, .. .5 Xy, Xpyy) in (1 +1) free variables x,, . . ., x,.,, and p: R"" — R" is
the projection given by p(x,,...,%x,4;) = (%5,...,%,), then p(A) is defined
by the formula

3% @ (X1s -+ 5 Xy Xpr)
in the n free variables x,, ..., x,,.

This gives another point of view on definable sets, that explains the use of
this adjective — these are those sets which can be defined using well formed
formulas using logical connectors, quantifiers, and a given set of functions
comprising all polynomials.

A consequence of this correspondence between defining formulas and
definable subsets is that the closure, the interior, the boundary of a definable
subset are again definable. Indeed, the closure can be defined by the classic
-4 formula.



4 ANTOINE CHAMBERT-LOIR

1.3. — At this stage, we could take for the definable sets of a geometry the
family of all possible sets, setting 2, = T3(R"), but this trivial solution does
not give any insight.

It is a fundamental theorem of Tarski that one obtains a geometry in
taking for &, the set of all semialgebraic subsets of R”, those sets which are
defined by polynomial equalities and inequalities. Indeed, Tarski proved
that the image of a semialgebraic subset still is semialgebraic. This geometry
is denoted by Ryj,.

By theorems of Lojasiewicz, Gabrielov and Hironaka, one also obtains
a geometry in taking for &, all so-called “finitely subanalytic” sets. These
sets are defined in three steps: first, semianalytic sets are subsets of R”
locally defined by equalities and inequalities involving analytic functions;
then, subanalytic sets are subsets of R” which, locally, can be defined as the
projection of a bounded semianalytic set; finally, finitely subanalytic sets are
preimages of subanalytic subsets by the semialgebraic map

(K15 oo o5 Xn) = (X \/1+ X2, .0, X0 [\/1+ X3)

(a semialgebraic bijection from R” to ]-1;1["). Equivalently, one adds to
the semialgebraic sets all graphs of restrictions to the hypercube [0;1]" of
real analytic functions on an open neighborhood of that hypercube. This
geometry is denoted by R,y,.

Those two theories are also called o-minimal as they satisfy the following
axiom — the letter “o” is for order.

Definition 1.4. — A geometry is o-minimal if any definable set in R is a finite
union of intervals.

There are two alternative ways to reformulate this axiom:

— Definable sets in R coincide with semialgebraic sets;

— Definable sets in R have finitely many connected components.

It is a remarkable discovery of VAN DEN DRIES| (1998)) that this elementary
property implies strong tameness properties in any dimension. Here is a
small sample.

It follows from the definition that if a real-valued function f defined on a
real interval |a; b[ is definable in an o-minimal geometry, its set of zeroes
definable (f*(0)) is a finite union of intervals. More generally:
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Proposition 1.5. — Let f:]a; b[ - R be a function which is definable in an o-
minimal geometry. Let p be an integer. Then there is a finite strictly increasing
sequence (do, ..., ay), with a = a, and a,, = b such that for each k, f is either
constant, or €P and strictly monotone, on |ax_y; ax[.

Theorem 1.6 (Cylindric decomposition theorem). — Let A c R""! be a
subset which is definable in an o-minimal geometry. There exists a finite family
(A;) of definable subsets of R", and for each j, a finite family (f; ) of definable
functions from A to R, such that A is the union of sets of the form

- {(x,t); xeAjandt=fjr(x)};

- {(x,t) s xeAjand fi(x) <t < fix(x)};

- {(x,t); xeAjand t < fjp(x)};

- {(x,t); xeAjand t > f;1(x)}.

In particular, a function which is definable in an o-minimal geometry is
“piecewise” of class €7, though it may not be piecewise € *.

Theorem 1.7 (Triangulation theorem). — Let A c R" be a subset which is
definable in an o-minimal geometry. Then there exists a definable homeomor-
phism from A to a simplicial subspace of R".

I recall that a simplicial subspace is a union of a finite set of disjoint “open”
simplices in R” such that the set of corresponding closed simplices satisfy
the following property: the intersection of any two of them is a face of each
of them and belongs to the set.

In particular, if a subset of R”, definable in an o-minimal geometry;, is
discrete, or even countable, then it is finite.

1.8. — For these statements to be practically useful, one needs to prove that
the relevant sets be definable in some o-minimal geometry. As we will see in
the rest of the course, this is often a major result in itself. We have seen that
semialgebraic sets and semianalytic sets give rise to o-minimal geometry.

The previous results imply that not everything is o-minimal. For example,
no o-minimal geometry can contain the graph of the sine function, since
its set of zeroes (which would be definable) has infinitely many connected
components.

The fundamental results are:
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— There exists an o-minimal geometry Ry, that contains the graph of the
exponential function (WILKIE, 1996) (proved in 1991);

— There exists an o-minimal geometry R, ¢xp that contains all compact
semianalytic sets and the graph of the exponential function (VAN DEN DRIES
& MILLER, [1994; VAN DEN DRIES ET AL,[1994).

Regarding their proofs, let us just quote WILKIE| (1996):
It is dicult to see how conventional analytic or differential geometric
methods could be used to establish this result because of the essential
singularity of the exponential function at infinity. The proof given
here uses model-theoretic methods to analyse large zeros of systems
of exponential-algebraic equations.
By model-theoretic methods, it is implied that one has to study not only
definable subsets of R”, but also sets defined by the same formulas in real
closed fields that extend R. Since such fields are nonarchimedean, one tool
at disposal is asymptotic analysis via valuation theory.

It is thus necessary to develop model-theoretic analogues of all important
topological concepts (connectedness, compacity, etc.), with the potential
gain that classic theorems which are false for arbitrary subsets of real closed
fields (with the order topology) now hold true. For example, one proves that
any two points of a definably connected subset are connected by a continuous
definable map from [o;1], or that a definable subset is definably compact if
and only if it is bounded and closed.

On the other hand, the universe of all o-minimal geometries is complicated,
perhaps more than what Grothendieck had envisioned. For example, there
are pairs of o-minimal geometries which are not contained in a common
o-minimal geometry (LE GAL, 20105 ROLIN ET AL, 2003).

2. Complex analysis in an o-minimal setting

2.1. — When we identify the field C of complex numbers as R? (real part,
imaginairy part), addition and multiplication are expressed by polynomials,
and modulus by a semialgebraic formula (\/x2 + y?). In a series of papers,
PETERZIL & STARCHENKO| (2001, 2003, 2008, 2009)) developed an o-minimal
theory of complex analysis: studying fonctions on definable open subsets
of C which are complex analytic and definable in an o-minimal geometry
when viewed as functions from (a subset of) R* to itself, and, more generally,
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studying analytic subspaces of C" and functions on them which are definable
in an o-minimal geometry.

Actually, such a theory had been developed earlier by KNEBUSCH (1982)
and HUBER| (1984), see (HUBER & KNEBUSCH, 1990), albeit in the more
restrictive context of semialgebraic geometry.

Their discovery is that not only such a study is possible at all, which means
that there is a model-theoretic approach to complex function theory over
real closed fields, avoiding various topological and analytic tools which are
unavailable in this general context, but also the theory is rich and fruitful —
there are many nontrivial examples, and the consequences are often fantastic.
This will be the main source of tension of the later chapters,

Without specific mention of the opposite, we assume given some o-
minimal geometry is given, to which the adjective “definable” will refer.
We insist that when a subspace of C" is called definable, it means that it is
definable as a subspace of R*", with respect to the standard identification
of C with R?, although any semialgebraic identification might do.

Example 2.2. — These elementary examples show that the theory is both
flexible and restrictive.

— Polynomials on C”, more generally on a definable subset of C”, are
definable.

— Let U be an open subset of C”, and let f:U — C be a holomorphic
function. For every open subspace V of U which is relatively compact in U,
then f|y is definable in R,,.

— The complex exponential function on C is not definable. Otherwise, the
discrete subspace 2inZ of R, which is defined by e? = 1, would be definable,
while every discrete subset which is definable in an o-minimal geometry is
finite.

Example 2.3 (Weierstrass’s j-function). — This is a a holomorphic func-
tion on the upper half-plane h which is invariant under the action of group
I = SL(2,Z), inducing a bijection from h/T to C.

It is not definable since it takes j7*(0) is discrete and infinite.

On the other hand, the action of SL(2, Z) admits a well known fundamen-
tal domain D, defined by the semialgebraic relations |z| > 1and -2 < R(z) <
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>. Let us prove, following (PILA, 20115 SCANLON, 2012), that the restriction
to D of j is definable in Ry exp.

Since j(z +1) = j(z), the j function admits a Fourier expansion in terms
of g = €™, which takes the form

: 1
j(z) =1(q) = a + 744 + 1968844 + 21493760q> + 8642999704° + . ..

The radius of convergence of qJ(q) is equal to 1; when z = x + iy € D, one
has y > \/3/2, hence |q| = e < ™3 < 1. In other words, the restriction
of J to the closed disk of radius e V3 is definable in R,,. Consider the
relation g = e>"e>7* over D. We observe that x remains bounded, so that
the second factor e*™* is definable in R,,; however, the first factor e 2" is
definable in Reyp, but not less. Consequently, over D, g is a definable function
of (x, y) in the o-minimal geometry Ry exp.
Consequently, j|g is definable in Ry exp.

2.4. — A main feature of the theory of definable analytic function theory
is its interaction with algebraicity.

By BiaNcoONTI (2005), a germ of an analytic function which is definable
in Reyp is semialgebraic.

Theorem 2.5. — (1) An analytic function on C" which is definable is a
polynomial (PETERZIL & STARCHENKO, 2003, theorem 2.17).

(2) An analytic subspace of C" which is definable is algebraic (PETERZIL &
STARCHENKO, 2008, theorem 5.1).

The second statement is an analogue of the theorem of Chow that claimes
that closed analytic subspaces of P,,(C) are algebraic.

It is important to stress that these results are given independent proofs,
valid in arbitrary real closed fields. However, as explained by BAKKER (2019),
they can often be proved by using advanced properties of complex function
theory.

For example, an analytic function on C which is definable cannot have
an essential singularity at infinity (otherwise, by Picard’s Great theorem, it
would take almost all values infinitely many often), hence it is a polynomial
by the Casorati—Weierstrass theorem.

Similarly, if we view a definable analytic subspace of dimension d of C" as
a subspace of P,,(C), the cylindric decomposition theorem implies that it
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has bounded d-dimensional Hausdorftf measure; then a theorem of Bishop
implies that its closure is an analytic subspace of P,,(C), which is algebraic
by the standard form of Chow’s theorem.

2.6. — The scope of these results has been enlarged by BAKKER,
BRUNEBARBE & TSIMERMAN| (2019) to a “definable GAGA” theorem
that compares definable analytic spaces and their sheaf cohomology with
their natural one.

Definable open subsets of C”, together with finite coverings, induce a
Grothendieck topology on C”, giving rise to the definable site C}; ; of C". If
U is a definable open subset of C", one can consider the subspace OS(U)
of Oc«(U) consisting of those analytic functions which are definable. By
restriction, these rings give rise to a sheaf 0% on the definable set C'..

The basic definable analytic spaces are the closed subspaces of a definable
open subset U of C" defined by finitely many definable analytic functions
on U, in other words, a finitely generated ideal I of ¢« (U). We then form
the locally ringed site (|[V(I)|, Oy/I).

More generally, a definable analytic space is a locally ringed site which has
a finite covering by basic definable analytic space.

There is a natural notion of a coherent sheaf on a definable analytic space.
In fact, the definable analogue of Oka’s theorem (BAKKER ET AL, 2019, theo-
rem 2.16) implies that if X is a definable analytic space, then the structure
ring 0% is coherent, and finitely presented Ox-modules are coherent.

Quotients of definable analytic spaces by a closed étale equivalence rela-
tions exist in the category of definable analytic spaces (BAKKER ET AL, 2019,
corollary 2.19).

2.7. — A complex algebraic variety X, more generally, a complex algebraic
spaces, gives rise to a definable analytic space X9, and a coherent sheaf .#
on X gives rise to a coherent sheaf .% 4¢f on Xdef,

A definable analytic space X gives rise to an analytic space X*", and a
coherent sheaf .% on X gives rise to a coherent sheaf .72 on X",

These assignments are functorial.

2.8. — If X is a complex algebraic variety, then (Xd¢f)an is nothing but the
analytification X*" of X, as defined in (SERRE, 1956)) and analogously for
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coherent sheaves. If X is projective, Serre’s GAGA theorems (SERRE, 1956,
théorémes 2 and 3) assert that the analytification functor induces an equiva-
lence of abelian categories Coh(X) - Coh(X?"), and the theorem of Chow
follows as an immediate consequence. As showed by Grothendieck, it suffices
to assume that X is proper.

It may interesting to refine this comparison and study what happens in
the two steps, first from X to X4¢f, and then from Xdef to (Xdef)an,

Theorem 2.9 (BAKKER, BRUNEBARBE & TSIMERMAN, 2019, theorem 2.22)
Let X be a definable analytic space. The analytification functor & +— F
from Coh(X) to Coh(X?") is faithful and exact.

This theorem relates definable coherent analytic sheaves with general
coherent analytic sheaves. If X is compact, definability in R, is automatic, so
that this functor is an equivalence of categories when the chosen o-minimal
geometry contains R,,. One cannot expect that this holds true in general,
since there may be analytic functions which are not definable (violating full
faithfulness for the structure sheaf), and there may be coherent analytic
sheaves which are not definable (violating essential surjectivity).

The following theorems relate algebraic geometry with definable analytic
geometry, and the picture is more complete.

Theorem 2.10. — (1) Let X be a complex algebraic space. The definabiliza-
tion functor F + 7 %f from Coh(X) to Coh(X%t) is fully faithful and exact;
its essential image is closed under taking subobjects and quotients (BAKKER,
BRUNEBARBE ¢ TSIMERMAN, 2019, theorem 3.1).

(2) Let M be an algebraic space and let X ¢ M9f be a closed definable
analytic subspace. Then there is a unique closed algebraic subspace of M of
which X is the definabilization (BAKKER ET AL, 2019, corollary 3.8).

(3) Let X, Y be algebraic spaces and let f:X9¢f — Y4 be g definable analytic
map; there exists a unique algebraic morphism ¢:X — Y such that f = @d¢f
(BAKKER ET AL, 2019, corollary 3.9).

Note the necessity of introducing algebraic spaces: there are many exam-
ples of quotients of étale equivalence relation on a complex algebraic variety
which do not exist as a scheme but do exist as an algebraic space; on the
other hand, these quotients exist in the context of definable analytic spaces

(see §2.6).
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Theorem 2.11 (BAKKER, BRUNEBARBE & TSIMERMAN, 2019, theorem 4.2)

Let X be an algebraic space, let M be a definable analytic space and let
f:Xdef M be a definable analytic map. If f is proper, then there exists a
unique factorization f = jo ¢, where ¢p: X — Y is a proper dominan
morphism of algebraic spaces and j: Y — M a closed immersion. Moreover,
fan(Xan) — jan(Yan).

Being the image of a definable analytic map f, the set f3(X3") is of course
definable on M. Via the identification with with the image of the closed
immersion j", this theorem induces on that definable set the structure of
an algebraic space coming from that of Y.

3. Bi-algebraicity

3.1. — Many conjectures or theorems in diophantine geometry can be
phrased in terms of subvarieties of abelian varieties. For example, the Mordell
conjecture, a theorem of FALTINGS| (1983)), is a particular case of a conjecture
by LANG|(1974) about the rational points of subvarieties of abelian varieties,
the Manin—-Mumford conjecture, proved by RAYNAUD|(1983a,b), is about the
torsion points of abelian varieties which belong to a given subvariety.

PILA & ZANNIER| (2008) proposed a new strategy for proving such re-
sults that builds on properties of tame geometry, together with a number
theoretical theorem of [P1LA & WILKIE| (2006)), see theorem [4.6] below.

3.2. — Another input of this strategy is a fresh look at theorems of Ax| (1971,
1972)) that provide a functional analogue to the Schanuel conjecture according
to which, if a;, . . ., &, are Q-linearly independent complex numbers, then
the transcendence degree over Q of the field generated by

Lot

[0
Oy ooy O ey, e

is at least n. Note that this conjectures implies many important transcendence
results as particular cases; the Lindemann—-Weierstrass theorem corresponds
to the case where a;, . . . , a, are algebraic. Already for n = 1, it implies that if o
is algebraic and nonzero, then e* is transcendental, hence e is transcendental
(taking o = 1) as well as 7 (taking « = 271).

(2) A morphism ¢ of algebraic space is called dominant if the canonical morphism of sheaves Oy —
9. Ox is injective.
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Theorem 3.3 (AX (1971)). — Let f:C" — (C*)" be the map that sends
(z1,...,2y) to (e*,...,e%) and let D, be its graph; it is a closed irreducible
analytic subspace of C" x (C*)". Let p: C" x (C*)" — (C*)" be the projection
onto the second factor. Let M c C" x (C*)" be an algebraic subvariety and
let V be a connected component of M n D, as a closed analytic subspace. If
p(V) is not contained in a translate of a strict subtorus of (C*)", then

dim(M) > dim(V) + n.

Note that (C*)" is an algebraic groups; its closed algebraic subgroups are
defined by families monomial equations z;" . .. z;," = 1; subtori are connected
algebraic subgroups. Consequently, an irreducible analytic subspace U
of (C*)" is contained in a translate of a strict subtorus if and only if there ex-
ists a nonzero (a,, ..., a,) € Z" such that the monomial z{" . . . z;;" is constant
on U.

When p(V) is contained in a translate of a strict subtorus, a change of
coordinates reduces us to the case where that subtorus is (C*)™ x {1}. Then
the theorem implies the weaker inequality dim(M) > dim(V') + m, and this
is optimal in general.

The relation between Schanuel’s conjecture and this theorem is as follows:
if d = dim(V), then around a smooth point, the analytic space V can be
locally parameterized as (f;, ..., fu, e/, ..., efr), where fi,..., f, are n con-
verging power series in d variables. The transcendence degree of the field
generated by (fi,..., fy, ef,..., efr) is the dimension of the smallest alge-
braic subvariety M’ of C" x (C*)" that contains V; since M’ c M, it is thus
smaller than dim(M). If we replace M by M/, which does not change V, the
inequality of theorem [3.3implies that the transcendence degree over C of the
field generated by (f, ..., fu, e/, ..., e/") is at least n + d. This strengthens
Schanuel’s conjecture — under the stronger hypothesis that (f,,..., f,) are
linearly independent modulo constants.

3.4. — In the same way as the Lindemann-Weierstrass theorem is a conse-
quence of the Schanuel conjecture, applied to algebraic numbers and their
exponentials, Ax’s theorem [3.3/admits as corollary the following statement,
known as the Ax-Lindemann theorem: Let U be an algebraic subvariety
of (C*)" and let V be a maximal irreducible algebraic subvariety of C" such
that exp(V) c U. Then V is a translate of a Q-rational vector subspace of C",



TAME TOPOLOGY IN NUMBER THEORY AND GEOMETRY 13

and exp(V) is a translate of an algebraic subgroup of (C*)". (Here, exp is the
exponential map from C” to (C*)").

Indeed, we may assume that exp(V) is not contained in any translate of
a strict subtorus of (C*)"; the goal is then to show that U = (C*)" and
V = C". If one applies theorem [3.3]to M = V x U, one obtains that M n D,, is
isomorphic to V; then dim(V) + dim(U) = dim(M) > dim(V) + n, so that
dim(U) > n. Necessarily U = (C*)", hence V = C", as was to be shown.

This can be generalized slightly further: Let V be an irreducible algebraic
subvariety of C" and let M be the Zariski closure of its image under the map
z — (z,exp(z)) from C" to (C*)"; then there exists a translate T of a subtorus
of (C*)" such that M = V x T. Explicitly, the subtorus T has for Lie algebra
the the smallest Q-rational subspace of C" such that V is contained in a
translate of L.

3.5. — Asalready noted by Ax (1972), this paradigm holds in more general
contexts than that of the exponential function. A general framework, would
consider complex algebraic varieties S and T, an analytic map f:S - T,
and the question would ask: if M is an algebraic subvariety of S x T, V an
irreducible algebraic variety contained in the intersection M n I'y of M with
the graph of T, can one prove a pertinent lower bound for dim(M) —dim(V)
provided V is “generic”? Conversely, can one describe the “special” varieties V
for which dim(M) < dim(V) + dim(T)?

Actually, S and T need not be algebraic varieties themselves, it is sufficient
for the question to make sense that they be semialgebraic open subsets of
algebraic varieties §', T'. Then, an irreducible algebraic subvariety of Sx T can
be defined as an irreducible component, in the sense of analytic geometry,
of the the trace on S x T of an algebraic subvariety of S’ x T".

And we can broaden the picture still a little bit by replacing the pair (S x
T,T¢) byapair (U, A), where U is a semialgebraic open subset of an algebraic
variety and A is an irreducible analytic subvariety of U; given an irreducible
algebraic subvariety of U, and an irreducible algebraic variety V contained
in U N A, are there pertinent lower bounds for dim(M) — dim(V)?

And, at this point, one could even dream about nonarchimedean compan-
ions.
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3.6. — AXx (1972) treated the case of the complex exponential map,
exps:L — G of an algebraic group G, where L is its Lie algebra. Special
varieties of G are those which are contained in a translate of a strict algebraic
subgroup. His techniques belong to differential algebra.

In their new proof of the Manin—-Mumford conjecture, PILA & ZANNIER
(2008)) gave a new proof of Ax’s theorem for abelian varieties which builds
on o-minimal arguments (the definability of exp in the o-minimal geome-
try Rup,exp) and the number theoretical result of P1LA & WILKIE (2006)). Note
also the purely o-minimal proof of PETERZIL & STARCHENKO) (2018)).

In his proof of the André-Oort conjecture for a product of modular curves,
P1LA (2011) gave a new statement of Ax-Lindemann-Weierstrass type, where
f is the uniformization of a product of modular curves, that is, S is a power h”
of the upper half-plane and f(z,,...,z,) = (j(z,),...,j(z,)), where j is
Weierstrass’s j-function.

This result has been extended by ULLMO & YAFAEV| (2014)) for the uni-
formization of compact Shimura varieties, |P1LA & TSIMERMAN| (2014)) for
the uniformization of the Siegel modular variety, KLINGLER ET AL/ (2016) for
the uniformization of general Shimura varieties, and Gao| (2017) for “mixed”
Shimura varieties.

The general Ax-Schanuel theorem for Shimura varieties is due to MoK,
PILA & TSIMERMAN|(2019). Previously, PILA & TSIMERMAN|(2016) had treated
the case of the j-function. See also [TSIMERMAN (2015) for an o-minimal
approach of Ax’s theorem about the classical exponential function.

A significant part of these papers consists in proving that the relevant
analytic maps, restricted to adequate fundamental domains, are definable in
the o-minimal geometry Ry, exp-

3.7. — Inthe rest of this section, we explain the proof of the Ax-Lindemann
theorem for the exponential map of abelian varieties, following PETERZIL
& STARCHENKO (2018). The word “definable” will refer to the o-minimal
geometry Ryy,.

Let A be an abelian variety, let T be its Lie algebra and let e: T — A be its
exponential map. The kernel of e is a lattice A in T. Let F be a fundamental

parallelogram for this lattice; it is compact and the restriction of e to F is
definable.
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Let X be an irreducible algebraic subvariety of T and let Z be the Zariski
closure of e(X) in A; we wish to prove that Z is a translate of an abelian
subvariety of A. Let B be the neutral component of the stabilizer of Z, it is
an abelian subvariety of A and let L be its Lie algebra.

Let Z' be the preimage of Z in T; it is a A-invariant complex analytic
subspace of V. Its intersection with F, Z' n F, is definable.

All proofs in this kind of business introduce at some point some set like
the following one: let X be the set of all v € T such that (v + X) nFisa
nonempty subset of Z'; it is definable.

(1) OnehasXcF—-(ZnA).

Let x € X; there exists A € A such that x + A € F, because F is a fundamental
domain; consequently, (1+X)NF is nonempty. Moreover, e(A+X) = e(X) c
Z, hence A + X c Z/. This shows that L € ¥ nA. Thenx = (x +A) -1 €
F-(ZnA).

(2) Onehase(X)+7Z="1.

Let v € X. The analytic space Z’ contains an open subset of the irreducible
algebraic set v + X, hence it contains all of it, so that X ¢ —v + Z'. Then
e(X) c —e(v) + e(Z'") = —e(v) + Z. Since Z is the Zariski closure of e(X),
this implies that Z c —e(V) + Z, hence e(v) + Z c Z. Since Z is irreducible
and closed, one has the equality e(V) + Z = Z.

(3) If the stabilizer of Z is finite, then X is a point.

Assume that stabilizer of Z is finite; by the previous step, e(Z) is finite.
Then X is contained in a finite union of translates of X, hence it is discrete.
Since X is definable in an o-minimal geometry, it is finite. Then, step 2
implies that X is contained in a finite union of translates of F by elements A;
since F is bounded, this implies that X is bounded. Since it is an irreducible
algebraic subvariety of an affine space, it is reduced to a point.

(4) Conclusion of the proof.

The previous step was the case B = o. The stabilizer of Z is of the form
S+ B, where S is a finite subset of A. Since the exponential map e is surjective,
there exists a finite subset A of T such that S = e(A). Then

e(X)cS+B=e(A+L),

so that
cA+A+L.
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The set A + A is discrete; in particular, it is countable. The image of X in
T/L is definable and contained in the image of A + A, which is countable.
Consequently, there exists a finite subset A’ of A such that £ c A’ + L. Then
XcF-(ZENnA)cF-A"+L.

Consider the image of X modulo L; it is an irreducible constructible subset
of T/L, which is contained in the image of F — A’, hence is relatively compact.
As above, this implies that the image of X modulo L is a point, so that there
exists £ € T such that X c £+ L. Then Z c e(§) + B, and, finally, Z = e(&) + B.

Corollary 3.8. — Let V be an algebraic subvariety of an abelian variety A, let
X be a maximal irreducible subvariety of T such that e(X) c V. Then e(X) is
a translate of an abelian subvariety of A.

Proof. — Let W be the Zariski closure of e(X); by the Ax-Lindemann
theorem, it is a translate of an abelian subvariety of A. Itis also contained in V.
Consequently, e}(W) is an irreducible algebraic subvariety of T contained
in e7(V). By maximality, one has e (W) = X, hence e(X) = W. O

4. Points of bounded height in definable sets

We now turn to interaction of o-minimal geometries with number theory.

4.1. — The height of a rational number « is defined by H(«) = sup(|p|,|q|)
is « = p/q is written as a fraction in lowest terms. It measures the arithmetic
complexity of that number, at least in the sense that for every T > o, there
are finitely many rational numbers a such that H(«) < T.

The notion extends naturally to heights of points in Q" by setting

H(ay,...,a,) =sup(H(w,),...,H(ay))

if a;, ..., a, are rational numbers. Again, for every T > o, there are finitely
many rational points « € Q" such that H(«) < T.

It also extends to rational points projective varieties, and satisfies approxi-
mate functorial properties.

This notion, close variants of it, as well as technically involved elabora-
tions of it, is a standard tool of diophantine theory, from Fermat’s proofs
by infinite descent, to Mordell-Weil’s theorem, to the proofs of Mordell’s
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conjecture by FALTINGS| (1983); VOJTA| (1991); BOMBIERI (1990)), and many
other important results.

4.2. — A classic theorem of Dirichlet asserts that when T goes to infinity,
the number of & € Q such that H(«a) < T is asymptotically equivalent to
12/7% - T2, The idea is that there roughly 2T? pairs of integers (p, q) such
that |p|,|q| < T and g > 1, but one should sieve out 1/4th of it (those pairs
consisting of even integers), and also 1/9th of the remaining lot (those pairs
consisting of integers divisible by 3), and so on for all primes, leading to the
expansion
1

2 [] (1-=) - T2=2/{(2) - T* = 12/n* - T2

p prime p :

In Q", one gets a similar result, growing as T>"...

4.3. — When it is impossible to prove that a diophantine equation has
finitely many solutions, more generally that a subset X c R” contains finitely
many rational points, one can at least try to prove that when T grows to
infinity, the cardinality of the set

X(Q;T)={aeXnQ"; H(a) < T}

grows much smaller than what is a priori possible.

If X is the affine line, we have seen that the cardinality of X(Q; T) grows
like T2. If X is an elliptic curve, the cardinality of X(Q; T) grows like log(T)",
where r is the rank of the finitely generated abelian group X(Q). Before
it was known that X(Q) is finite, MUMFORD| (1965)) had proven that on a
curve X of genus g > 2, the cardinality of X(Q;T) has a log-logarithmic
upper bound.

Starting with [JARNIK (1926), there have also been investigations when X
is a more general than an algebraic variety. In this section, we describe a
theorem of P1LAa & WILKIE (2006) that says in essence that if X is definable
in some o-minimal geometry, then X(Q; T) is small unless it is explained by
semialgebraic subsets of X.

4-4. — Let X be a subset of R". The algebraic part X of X is the union of
all its connected infinite semialgebraic subsets. The complement X — X8 is
called its transcendental part and is denoted by X".
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The algebraic part X8 contains the topological interior of X. Its precise
determination may be delicate; theorems of Ax-Schanuel type may be useful.
Here is an elementary and classical example, given in PILA & WILKIE| (2006)),
see also BHARDWAJ & VAN DEN DRIES| (2021) for a complete and detailed
exposition.

Example 4.5. — Let X be the set of all (x, y,z) € R¥such that1< x, y < 2
and z = x”. It is definable in Rey,.

For every rational number b = p/q € ]1;2[, the set X, of all (x, y,z) € X
such that y = b can be defined by 1 < x <2, y = b and z7 = xP, hence X; is a
semialgebraic curve contained in X.

Conversely, let us consider a semialgebraic curve contained in X. Cel-
lular decomposition shows that it can be parameterized under the form
(t,y(t),2(t)), or (a,t,z(t)), or (a, b, t) where ¢ varies in some open real
interval, and y(t), z(t) represent ¢*-semialgebraic functions, while a, b are
real numbers. Let us analyse all three cases:

(1) Case (a, b, t): it is incompatible with the equation z = x” = ab;

(2) Case (a,t,z(t)): it implies z(¢) = a’, but the exponential function is
not semialgebraic, hence t — a’ is not semialgebraic unless a = 1;

(3) Case (t, y(t),z(t)): then z(t) = /() = er(D1og(t) is semialgebraic,
hence its logarithmic derivative z/(t)/z(t) = y'(t) log(t) + y(¢t)/t is semi-
algebraic as well. Since y(t) and y’(t) are semialgebraic but log(t) is not
semialgebraic, we get that y’(t) = o. The considered cell takes the form
(t,b,z(t)) and z(t) = t? is semialgebraic, which implies that b is a rational
number.

Indeed, if z(t) = t is algebraic on some interval, there is a nontrivial
polynomial P € R[X, Y] such that P(¢, t?) vanishes an open, possibly smaller,
interval. By analytic continuation, this implies that P(¢, t*) vanishes iden-
ticallyon R,. If P = 3" ¢,,, , X" Y", we get 3. ¢, nt™"0 = 0. If b is irrational,
then all exponents m + nb are distinct, so that P(¢, t*) behaves like c,, ,t"*"?,
where (m, n) is the unique pair such that c,, , # o that makes m + nb maxi-
mal. This concludes the proof.

We thus have proved that X8 is the union of all these semialgebraic
curves X,, for b € J1;2[.
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Theorem 4.6 (P1ILA & WILKIE, 2006, theorem 1.9)
Let X c R" be a set definable in an o-minimal geometry. For every € > o,
there exists a real number ¢ such that

Card(X"(Q;T)) <c-T®

forall T > 1.

Here, the constant ¢ depends on X and «.

Actually, and this is very important for applications, P1LA & WILKIE|(2006)
established various refinements of this theorem in two directions. Firstly,
they can allow the definable set X to vary in a definable family, and the
constant ¢ is uniform in this family. Secondly, they can define a an exceptional
set Z which is definable and contained in X8, so that Card(X = Z(Q; T)) <
c-T¢; the interest is that the set X28 is not definable in general, as the previous
example shows. They can also combine these two generalizations.

The final statement, due to |P1LA (2009), makes use of the notion of “block
families”, and is probably too technical to be worth being quoted here.

4.7. — From the number theoretical side, the proof of theorem |4.6|relies
on the “determinant method” that is sometimes attributed to the paper of
BOMBIERI & P1LA (1989), but is in fact much older since underlies all the
transcendental number theory of the 20th century, from the work of THUE
(1909)) on diophantine approximation to elaborate versions in Arakelov ge-
ometry. In fact, very close arguments can already be found in the elementary
proof of Hilbert’s irreducibility theorem by DORGE (1927)

The initialization step, simplified from (P1LA, 2004, prop. 4.2), is as follows.

Lemma 4.8. — Consider n smooth functions f,, ..., f, from the hypercube
[0;1]™ to R and let X be the image of f = (f,, ..., fu). Let € > o. There exists
an integer d > 1 and a real number c such that for every T > 1, the set X(Q; T)
is contained in at most c - 'T¢ hypersurfaces of degree d.

Proof. — Let N = (d;” ) be the number of monomials of degree < d in

n indeterminantes. Fix a small hypercube Q of size r contained in [0;1]™
and consider N points p,,..., px in Q with f(p;) € X(Q; T). We consider

(3)That paper is in German. See also [LANG, (1960) for a nice and concise exposition in French,
and CHAMBERT-LOIR (2005) for a textbook presentation in English.
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the determinant

A =det(f(pj)")u;

indexed by monomials y of degree < d and j € {1,...,N}. The equality
A = o means that the points f(p;) belong to a common hypersurface of
degree d; so assume that A # o. Let b; € N* be the smallest strictly positive
integer such that b;f(p;) € Z"; by definition of the height of f(p;), b; and
bifi(p;j) are integers of absolute value < T. In particular, A - H;\il b;i is a
rational integer; since it is nonzero, its absolute value is at least 1, so that

|A| > TN,

On the other hand, since the points p; all belong to the hypercube Q, they are
at distance at most rv/m one from the other. To evaluate the determinant A,
one can perform column operations on its matrix so as to eliminate more
and more terms of the Taylor expansion. This gives rise to an upper bound of
the form |A| < ¢-7B, for some integer B which only depends on N, hence on d,
and some real number ¢ which depends on the size of the derivatives of f
on the hypercube Q. According to P1LA (2004), the number of derivatives of
the f; that need to be considered grows as d"/™, and B grows as d"("m+1)/m

For r < T-N4/B¢c=1/B we get a contradiction; that is, the points p,, ..., px
belong to a common hypersurface of degree d.

Taking r = T-N4/B¢c=1/B /5, say, we cover the hypercube [0;1]™ by 1/r" =
TNdm/Bem/Bam small hypercubes Q. Finally, the set X(Q; T) is covered by
TNdm/Bcm[Bym hypersurfaces of degree d.

It remains to pay attention to the numerology and to observe that when
d — +00, the exponent Nd/B tends to o. By the expressions given above
for N and B, one has Nd/B ~ d*, with

m+1 n
=1——<0.
m

x=n+1—n
m

That concludes the proof. []

4.9. — This lemma, rather a more precise version of it, allows to start an
induction process, replacing the initial definable set X by the finitely many
intersections XnH with hypersurfaces of degree d that come out of the lemma.
For those hypersurfaces H such that X n H has dimension o, the intersection
is finite, and uniformly bounded when H varies, leading to a O(T¢) bound.
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To go on when dim(X n H) > 1, it is necessary to parameterize these sets
further, while having some control on the derivatives of the parameterization.

A second input of | P1LA & WILKIE (2006)) is thus an o-minimal version of
a “reparametrization lemma” due to| GRomoV| (1987) and |[YomDIN (1987a,b).
One difficulty is that it needs to be applied to all possible X n H, uniformly
when H varies among all relevant hypersurfaces of degree < d, consequently
requiring a version with parameters.

It is in this inductive step that the o-minimality assumption shows its
strength, in the uniformity that it allows.

4.10. — For the applications, a more general version of the counting the-
orem is necessary, where one takes into account not only rational points
of X, but also points with coordinates in algebraic fields of given degree. The
height machine extends naturally to algebraic numbers: the height of an al-
gebraic number is essentially the maximum of the heights of the coeflicients
of its minimal polynomial. Then Northcott’s theorem guarantees that for
any integer d and any real number T, the set of algebraic numbers a such
that [Q(«) : Q] < d and H(«) < T is finite. Extending the methods of |P1LA
& WILKIE| (2006) to this framework, P1LA|(2009) showed that for any ¢ > o,
there is a real number ¢ such that the number of points x = (x,, ..., x,) € X¥
such that [Q(x;) : Q] < d and H(x;) < T for all j is smaller than cT*.

4.11. — Itis a natural question to strengthen the counting theorem |4.6|to
an upper bound of the form

Card(X"(Q;T)) < c(log(T))N.

This is in fact conjectured by P1LA & WILKIE (2006) when X is definable
in Reyp.

As already remarked byP1LA & WILKIE|(2006)), for every strictly decreasing
function &: R, — R which tends to o at infinity, there exists a transcendental
analytic function f on [o;1] and a sequence (T};) of going to infinity such
that

Card(X"(Q;T;)) > TS,

Taking £(t) = 1/\/log(#), one has t*(!) = ¢V(1g())) js not bounded from
above by any power of log(t), so that the above question would have a nega-
tive answer without any restriction on the considered o-minimal geometry.
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More recently, BINYAMINI & Novikov| (2017) have proved such a result
when X is definable in the o-minimal geometry generated by the restrictions
exP |[o;] and sin [[o;]-

5. Special points and special subvarieties

5.1. — To this day, the most stunning application of o-minimal geometry to
diophantine geometry is probably the proof of the André-Oort conjecture for
Shimura varieties, following a strategy of PILA & ZANNIER|(2008), that started
with a paper of P1LA| (2011) for products of modular curves, and was rapidly
generalized by two main teams of mathematicians, PILA & TSIMERMAN| (2013,
2014); TSIMERMAN| (2018) and [ULLMO & YAFAEV|(2014); GAO|(2017) that lead
to a proof of the André-Oort conjecture for arbitrary (mixed) Shimura under
the Generalized Riemann hypothesi§(4)] and unconditionally for Shimura
varieties of Siegel type. Their work builds on the proof of the already evoked
“hyperbolic Ax-Lindemann theorem”. They also need height estimates for
cM-points which follow from the Generalized Riemann hypothesis, but
could be deduced from of an averaged version of a conjecture of Colmez
regarding the height of abelian varieties with complex multiplication. A
proof of these height estimates has just been announced by P1LA, SHANKAR
& TSIMERMAN (2021)).

In this section, I describe this André—Oort conjecture in the particular
case of modular curves and present a sketch of its proof.

5.2. — To motivate the arguments, I start with a sketch of the proof of the
Manin-Mumford conjecture following |P1LA & ZANNIER/ (2008).

Proposition 5.3. — Let A be a complex abelian variety and let V be a subva-
riety of A. If V does not contain any translate of an abelian subvariety of A of
strictly positive dimension, then V N Ay is finite.

Proof. — We assume that A is defined over a number field K, the general
case can be deduced from it by some spreading-out argument; see for exam-
ple (RAYNAUD) 19834}, beginning of §7).

(4)Earlier, a proof of the conjecture conditional under GRH had already been proposed by Epix-
HOVEN & YAFAEV|(2003).
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Let e: T — A be the exponential map of A and let F c T be a bounded open
subset which contains a fundamental domain for the action of the lattice
A = ker(e); since e is analytic and F is bounded, the map e[ is definable
in Ry, and X = e7*(V) n F is an analytic set contained in F, definable in R,,.

It follows from the Ax-Lindemann theorem for abelian varieties that X8
is empty. Indeed, if e7*(V) contains an infinite connected semialgebraic
set, it contains its Zariski closure Y, because X is an analytic subset. Then
the Zariski closure of e(Y) is translate b + B of an abelian subvariety of A,
contained in V, hence B = o and Y is a point; contradiction.

Let us identify T with R*¢ in such a way that A is mapped to Z>¢, and F to
some open neighborhood of [0;1]2¢. The points of T whose image in A are
torsion points correspond to the points of Q€.

On the other hand, arguing by contradiction, let us assume that V contains
infinitely many torsion points. It then contains points a of arbitrarily high
order N. A theorem of MASSER (1984)) gives a lower bound for the degree
of the field of definition of a, of the form [K(a) : K] > NP, for some real
number p > o. The Galois orbit of a thus contains that many points, which
are all contained in V, giving rise to the same number of points in XN [o;1[28.
These points have coordinates of the form m /N, with o < m < N, hence their
heights are bounded by N. In particular, Card(X(Q; N)) > N¢.

Since X = X" and N can be taken arbitrarily large, this contradicts the

counting theorem O
5.4. — From that statement and various reductions, PILA & ZANNIER|(2008))

deduce the full form of the Manin—-Mumford conjecture. Namely, if A is
a complex abelian variety and V an irreducible algebraic subvariety of A,
then the Zariski closure of V N A, is a finite union of translates of abelian
subvarieties of A by torsion points.

One first proves that the set of translates of abelian subvarieties of A which
are contained in V has only finitely many maximal elements. Their union
is an algebraic subvariety of V, which we call its special locus and denote
by VsPec, As in the previous proposition, one then proves that V = V®P¢¢ has
only finitely many torsion points. In fact, with the notation of the proof,
the Ax-Lindemann theorem implies that the algebraic part of X is equal to
e (VePee) nF.
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On the other hand, if V = U(b; + B;), where B; is an abelian subvariety
of Aand bj € A, then either b; is a torsion point in A/Bj, in which case b; +B;
contains a Zariski dense set of torsion points, or b; is not a torsion point
in A/B; and b; + B; does not contain any torsion point.

The conclusion is that up to a finite number of torsion points, the Zariski
closure of V N Ay is the union of those b; + (B;)ors for those j such that

b] € (A/Bj)tors-

5.5. — We now pass to the André-Oort conjecture. Let E be a complex
elliptic curve, presented as a one-dimensional complex torus C/A, where
A is alattice in C. Endomorphisms of E are induced by homotheties of C
that stabilize the lattice A; usually, there are no other endomorphisms than
the integer multiplications z = nz, for n € Z, but some exceptional elliptic
curves have more endomorphisms.

When A is normalized so that it has a basis of the form (1, 7), where 7 € h
belongs to the Poincaré upper half-plane, they correspond to the case where 7
generates an imaginary quadratic field. Then, the ring End(E) is an order in
that quadratic field Q( 1), the curve E is said to admit complex multiplication,
or to be a cm-elliptic curve, and the j-invariant j(7) is an algebraic number.
Also, any elliptic curve which is isogeneous to a cm-elliptic curve is still cm,
with the same imaginary quadratic field.

By the way, a theorem in transcendental number theory independently
proved by Gel'fond and Schneider characterizes cMm-elliptic curves as those
curves C/(Z + Z), for which both 7 € h and j(7) is an algebraic number.

5.6. — Let N > 1 be an integer. The holomorphic functions j(z) and j(Nz)
are not algebraically independent, and there exists an irreducible polynomial
Oy € Z[X, Y] such that ®y(j(z), j(Nz)) = o. This polynomial is symmetric
in X and Y, homogeneous of degree y(N) = NT[,x (1 + %) The plane curve
that it defines in C? is birational to the modular curve X,(N) that parameter-
izes isogenies between elliptic curves with a cyclic kernel of degree N, the two
projections to C corresponding to the two natural morphisms from X, (N)
to X, (1).

Say that an algebraic subvariety V of C” is special if it is an irreducible
component of an algebraic subvariety defined by equations of the form z,, = ¢,
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for ¢ some j-invariant of a cm-elliptic curve, or ®x(z,,2,) = 0, for N > 1,
and a,be{1,...,n}.

Assume that V is a special subvariety of C". Using the fact that cm j-
invariants are dense in C, and that the j-invariants of two isogeneous elliptic
curves are simultaneously cM or not-cM, one observes that V contains a
Zariski dense set of points of the form (z,, ..., z,), all of whose coordinates
of which are cm j-invariants.

Conversely, when restricted to products of modular curves, the An-
dré-Oort conjecture characterizes special subvarieties of C" as those
algebraic subvarieties which satisfy this density property.

5.7. — Let V be an irreducible algebraic subvariety of C" containing a
Zariski-dense set of cM-points. Since cMm-points are algebraic numbers,
the variety V is defined over a number field, say F.

Consider the map induced coordinatewise by Weierstrass’s j-function,
from h” to C" and that we still denote by j. Let D be the standard semialge-
braic fundamental domain for the action of SL,(Z) on h; as we have seen in
example the map j|p is definable in the o-minimal geometry Ry exps
so that the map j:D" — C”" is definable in Ry exp. The inverse image
X = j1(V) n D" is thus definable.

Every cMm-point z in V is the image by j of exactly one point 7 € X, and
each coordinate of 7 is imaginary quadratic. For any automorphism ¢ of Q
that is the identity on the definition field K of V, one has d(z) € K, so
that each such point z gives rise to [K(z) : K]-distinct points on V, and
[K(z) : K]-distinct points on X. If 7 is imaginary quadratic, then the the
theory of complex multiplication and Siegel’s theorem on class numbers
imply that [Q(j(7)) : Q] » H(z)>=.

The counting theorem |4.6|then implies that up to finitely exceptions, all of
these points 7 belong to X8,

5.8. — On the other hand, the “hyperbolic Ax-Lindemann-Weierstrass”
theorem furnishes a description of X218 as traces on D" of a finite union of
geodesic subvarieties of h”, meaning irreducible components of (the trace
on h” of) algebraic subvarieties of C" defined by equations of the form
zp=Yy-z;,for1<a,b<mandyeSL,(Q),orz,=c, forceh.
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If a geodesic subvariety contains cM-points, the points ¢ € h that appears in
equations of the form z; = ¢ are necessarily themselves cm-points. Ultimately,
this implies that this geodesic subvariety gives rise to a special subvariety
of V.

This concludes the sketch of Pila’s proof of the André-Oort conjecture.

6. Definability of period mappings
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