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Abstract

Diophantine geometry and complex function theory have a long and well known
history of mutual friendship, attested, for example, by the fruitful interactions
between height functions and potential theory.

In the last 50 years, interactions even deepened with the invention of Arakelov
geometry (Arakelov, Gillet/Soulé, Faltings) and its application by
Szpiro/Ullmo/Zhang to equidistribution theorems and the Bogomolov conjecture.

Roughly at the same time, Berkovich invented a new kind of non-archimedean
analytic spaces which possess a rich and well behaved geometric structure. This
opened the way to non-archimedean potential theory (Baker/Rumely,
Favre/Rivera-Letelier, Thuillier…), or to arithmetic/geometric equidistribution
theorems in this case.

More recently, Ducros and myself introduced basic ideas from tropical geometry and
a construction of Lagerberg to construct a calculus of (p,q)-forms on Berkovich
spaces, which is an analogue of the corresponding calculus on complex manifolds,
and seems to be an attractive candidate for being the p-adic side of height function
theory.
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Heights
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Naïve heights

The height of a point x ∈ Pn(Q) is a quantitative measure of
its complexity, roughly the number of bits we need to write it
down: if x = [x0 : · · · : xn], with x0, . . . , xn integer and coprime,
then

h(x) = log sup(|x0| , . . . , |xn|).

Northcott property
For every integer d > 1 and every real number B, the set of
points x ∈ Pn(Q) such that [Q(x) : Q] 6 d and h(x) 6 B is
finite.
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Naïve heights — functoriality

The height has good functorial properties: let F : Pn 99K Pm be
defined by coprime homogeneous polynomials F0, . . . , Fm of
the same degree d, and let BF = V(F0, . . . , Fm) be the
indetermination locus.

• There exists cF ∈ R such that h(F(x)) 6 dh(x) + cF for all
x ∈ Pn(Q) such that x 6∈ BF ;

• For every closed subvariety X of Pn such that X ∩ BF = ∅,
there exists cX ∈ R such that h(F(x)) > dh(x)− cX for all
x ∈ X(Q).
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Weil heights

Weil transformed this functoriality properties into a height
machine:

• For every projective variety X and every line bundle L
on X, a height function hL on X(Q);

• For every morphism f : X → Y , an equality hL ◦ f = hf ∗L.

However: because of the unspecified constants cF , cX , the
height function hL is only defined up to a bounded function,
and the functorial equality only holds up to a bounded error
term.

This is relatively innoccuous when one looks at points of large
height, but forbids of talking of the height of a point in
general.
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Normalizing the height: Algebraic dynamics

In various contexts, it is important to exhibit a specific height
function.
Tate, Silverman…
Given f : X → X, a line bundle L and an integer q > 2 such
that f ∗L ' Lq, there is a unique height function ĥL such that
ĥL(f (x)) = qhL(x) for all x ∈ X(Q).

• If L is ample, preperiodic points are characterized by the
formula ĥL(x) = 0.

• If X is an abelian variety, f = [2]
L is ample and symmetric, then [2]∗L ' L4

and ĥL induces a positive quadratic form on X(Q)⊗ R
(Néron, Tate).

5



Normalizing the height: the Mahler measure

Let t ∈ Q, let F ∈ Z[T] be its minimal polynomial, written as
F = c(T − a1) . . . (T − ad), with a1, . . . ,ad ∈ C, one has

h([1 : t]) = 1
deg(F) log(M(F))

=
1

deg(F)

(
log(|c|) +

d∑
j=1

log(sup(
∣∣aj∣∣ , 1))).

Here M(F) is the Mahler measure of F.

Height zero: t is a unit, all conjugates are inside the unit disk.
Kronecker: t = 0 or t is a root of unity.

Recall the Lehmer conjecture: there should exist cL > 0 such
that h([1 : t]) > cL/deg(t) unless h([1 : t]) = 0.
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Normalizing the height: capacity theory

Fekete/Szegő: replace the unit disk by a (reasonable)
compact K set and log(sup(|·| , 1)) by the potential of K:

• gK is zero on K, harmonic outside of K;
• gK(z) = log(|z| /cK) + o(1) for z → ∞.

The constant cK is the capacity of K, aka its transfinite
diameter.

This gives rise to a height hK and there are theorems
(Fekete/Szegő, Serre, Rumely…) that assert the finiteness of
the set of points of height zero if cK < 1, or the existence of
many points of arbitrarily small height if cK > 1.
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Arakelov geometry



The setup

Arakelov geometry is a slightly hi-tech machinery that
furnishes a geometric framework to specify the height
functions, functorially.

Instead of a projective Q-variety X and a line bundle L on X,
one considers:

• A projective and flat scheme X over Spec(Z);
• A line bundle L on X ;
• Hermitian metrics on the complex line bundle LC over
the complex manifold X(C).
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Arakelov heights

An inductive definition associates to such triples (X ,L , ‖·‖)
specific functions hL that apply to all closed subschemes
of X .

For integral subschemes which are vertical, it is essentially a
geometric degree: if Z ⊂ XFp , one obtains

degLFp
(Z) log(p).

For integral subschemes Z which are horizontal, one obtains
the height of their generic fiber Z (multiplied by its geometric
degree):

(1+ dim(Z))hL (ZQ)degLQ
(Z).
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Normalizing Arakelov heights

What perspective do we get with respect to normalized
heights when X is a projective Q-variety and L is a line bundle
on X? Finding appropriate models and appropriate metrics:

• Néron–Tate height: Néron models, metric with translation
invariant first Chern form;

• Rumely’s potential theory on curves: p-adic capacities via
appropriate models;

• Algebraic dynamics: good reduction is rare, and one still
needs an approximation process (Zhang’s adelic metrics).
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Arakelov heights: applications

Analogues of the Hilbert–Samuel theorem lead to an
important theorem by Zhang that compares the height of a
variety with the essential infimum of the heights of its points:
if L is relatively ample and c1(L ) is a positive (1, 1)-form,
then

sup
Y(X

inf
x∈X(Q)\Y

hL (x) > hL (X).

Szpiro/Ullmo/Zhang observed that this lower bound leads to
an equidistribution theorem when it is sharp.

Ullmo/Zhang used this equidistribution property to establish
the Bogomolov conjecture for curves/subvarieties of abelian
varieties.
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Non-archimedean geometry: motivations

Arakelov geometry

• Put non-archimedean places on the same footing as
archimedean ones;

• Phenomena of bad reductions, absence of good models;
• Equidistribution theorems of points of small height, resp.
in algebraic dynamics.

Asymptotic aspects of archimedean geometry

• Conjectures of Kontsevich–Soibelman;
• Degenerations of archimedean dynamics towards
non-archimedean dynamics;

• Asymptotic expansions of integrals.
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Non-archimedean geometries



Algebraic geometry vs. analytic geometry

Building blocks:

alg. geometry non-arch. geometry

algebra finitely generated
over a field

affinoid algebras

space spectrum Spec(A) analytic spectrum M (A)

points prime ideals multiplicative seminorms

eq. classes of
morphisms to fields

eq. classes of morphisms
to complete valued fields
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Non-archimedean geometry

Affinoid algebras: quotients of the algebra k{T1, . . . , Tr} of
power series whose coefficients converge to 0.

The analytic spectrum M (A) is the set of multiplicative
seminorms p on A, functions p : A→ R+ such that

• p(f + g) 6 p(f ) + p(g) for f ,g ∈ A;
• p(fg) = p(f )p(g) for f ,g ∈ A;
• p(λ) = |λ| for λ ∈ k.

Topology: the coarsest such that all maps f 7→ p(f ) are
continuous

Notation: p is viewed as a point of M (A), hence p(f ) is written
|f (p)|.
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Analytic spaces in the sense of Berkovich (continued)

Interests of Berkovich’s theory:

• Good topology (locally contractible, locally compact);
• Interesting/fruitful interaction with real numbers;
• Possess both a topology and a Grothendieck topology.

Other theories:

• Naïve: has not enough local compactness for our work;
• Tate: has not enough points;
• Raynaud: lacks a “visualization framework”
• Huber: has too many points.
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Berkovich spaces: the affine line

Let’s picture A1,ank = M (k[T]) (k algebraically closed)

There are four sorts of points:
1. (rational points) a ∈ k,
evaluation semi-norm pa : f 7→ |f (a)|;

2. (rational disks) a ∈ k, r ∈ |k×|Q,
Gauss norm pD(a,r) on the disk D(a, r);

3. (irrational disks) a ∈ k, r 6∈ |k×|Q,
Gauss norm pD(a,r) on the disk D(a, r);

4. (the rest) infimums of Gauss norms
associated with decreasing chains of
disks with “empty” intersection.

(from Hrushovski,
Loeser, Poonen, Ens.
Math., 2014)
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Berkovich spaces: skeletons

Berkovich’s framework fits very well with Raynaud’s approach
via formal models:

Formal schemes X over k◦ have a generic fiber Xη.

There is a specialization map: sp : Xη → Xs.

If X is, say, semi-stable, then:

• Composants points of the special fiber Xs have a unique
preimage in Xη (“Gauss points”);

• More generally: there is a canonical embedding of the
dual complex S(Xs) of Xs into Xη — the skeleton;

• There is a canonical retraction deformation from Xη onto
this skeleton.
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Real forms and currents in
non-archimedean geometry



Moments and polyhedra

A moment on an analytic space X is a morphism
f = (f1, . . . , fn) : X → Gnm.

This gives rise to a tropicalization, a continuous map:

ftrop : X → Rn, x 7→ (log(|f1(x)|), . . . , log(|fn(x)|)).

Proposition (Bieri–Groves, Kapranov…)
If X is compact, then ftrop(X) is a compact polyhedral
subspace of Rn, of dimension 6 dim(X).

In a non-Berkovich setup, one would have to consider the
closure of this image.
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Smooth functions

Definition
A function ϕ on X is (G-)smooth if (G-)locally, there exist:

• A moment f : X → Gnm,
• A smooth function u on Rn

such that ϕ = u ◦ ftrop.

If X is top. separated and locally holomorphically separated:

• Stone–Weierstrass: C∞
(c)(X) is dense in C(c)(X) for the

compact open topology;
• If X is paracompact, then every open covering admits a
smooth partition of unity.
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Supercalculus

Analogies:

Rn Cn

convex functions plurisubharmonic functions

Monge–Ampère operator

det ∂2

∂xi∂xj
det ∂2

∂zi∂zj

“supercalculus” differential calculus wrt dz,dz.

Berezin–Lagerberg supercalculus on Rn:
take the tensor product of two copies of the De Rham
complex to obtain a theory of (p,q)-forms.
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Lagerberg differential forms

On an open subset U of Rn, objects of the form∑
I=(i1<···<ip)
J=(j1<···<jq)

αIJ d′ xi1 ∧ · · · ∧ d′ xip ⊗ d′′ xj1 ∧ · · · ∧ d′′ xjq

where αIJ are smooth functions on U.

Differential operators: d′, d′′

Anti-involution: J d′ x = d′′ x, J d′′ x = −d′ x.
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(Super)differential forms on analytic spaces

The idea is simply to “pull-back” superforms by local
tropicalizations.

Local objects f ∗α in tropical charts: open U ⊂ X, moment
f : U→ Gnm, superform α around ftrop(U)

Sheafification process: Sheaves A p,q
X on X, for

0 6 p,q 6 dim(X).

Proposition

• If ftrop = gtrop, then f ∗α = g∗α.
• If f ∗α = 0 and U is compact, then α = 0 on ftrop(U).

Differential operators: d′,d′′; anti-involution J.
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Integration

Let d = dim(X) and consider a local (d,d)-form ω = f ∗α,
where f : V → Rn, U compact.

To define
∫
V f

∗α, integrate α on ftrop(V).

The tropicalization ftrop(V) is piecewise d-dimensional in Rn.

If n = d, one could say∫
hd′ x1 ∧ d′′ x1 ∧ · · · ∧ d′ xn ∧ d′′ xn =

∫
hdx1 . . .dxn,

but this depends on the choice of coordinates.

One needs to define an additional structure on ftrop(V):
calibration. (In tropical geometry: weights.)

There is a balancing condition.
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Currents

Currents are defined as the dual of compactly supported
forms.

Bigraded sheaf.

Differential operators d′, d′′; antiinvolution J.

Functorial push-forward for compact morphisms.

Integration current δX .
More generally u∗δY for compact u : Y → X.

Boundary integration currents: δ∂(X), u∗δ∂(Y).

Stokes formula:
∫
X d

′ ω =
∫
∂(X) ω

More generally u∗δ∂(Y) = d′ u∗δY .
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Poincaré–Lelong formula

Functions u : X → R ∪ {−∞} which are integrable on every
compact skeleton define currents, e.g., continuous outside of
a Zariski closed subset of empty interior.

Theorem (“Poincaré–Lelong”)
For f ∈ M (X)×, regular meromorphic function on X,

d′d′′[log |f |] = δdiv(f ).

div(f ) is the divisor of f
the current δdiv(f ) is defined by additivity.
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Another formula

In complex analysis, d′d′′ log sup(|z| , r) is the integration
current on the circle of radius r.

Theorem
For f : X → A1, r ∈ R,

d′d′′
[
sup

(
log |f | , r

)]
= δf−1(ηr),

integration current over the H (ηr)-analytic space f−1(ηr).

Here, ηr is the Gauss point corresponding to the disk D(0, r).
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Metrized line bundles



Metrized line bundles

Let L = (L, ‖·‖) be a line bundle on X with a smooth metric.

Curvature form, locally defined by c1(L) = d′d′′ log ‖s‖−1, for
any local non-vanishing section s of L.

Proposition
Let X be a proper k-scheme, L a line bundle on X .
Take (X, L) = (X an,L an). Then∫

X
c1(L)n = (c1(L )n|X ).

Remark (Y. Liu): There are cycle classes in d′′-cohomology,
defined using the Gersten complex.
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Formal metrics and their curvature

Let X be a proper formal k◦-scheme (normal, say),
let L be a line bundle on X

take (X, L) = (Xη,Lη).

Then L has a natural “formal” metric which is continuous,
but not smooth in general, so that c1(L) is a (1, 1)-current.
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Formal metrics and their volume

Translating Bedford-Taylor theory from complex analysis to
the current framework, we can consider products of these
currents c1(L), using smooth approximations.

Theorem
Assume that k is endowed with a nontrivial discrete absolute
value. Then

c1(L)n =
∑
ξ∈X

mξ(c1(L )n|Vξ)δξ.

Here, ξ runs over points of X which reduce to the generic
point of a component Vξ of the special fiber X̃ , and mξ is its
multiplicity.
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Curvature forms of formal metrics (cont’d)

The currents c1(L)p can be described in two different ways:

• By integration on suitable polyhedral subspaces of X —
theory of PL currents, which enjoys similar properties to
tropical intersection theory;

• On a large open subset (which carries all of its mass), as a
sum of integration currents on fibers;

The positivity of this current can be characterized in terms of
the numerical positivity of the cycle class c1(Ls)

p on the
special fiber Xs.
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Perspectives

• Non-archimedean Arakelov geometry
(Gubler–Künnemann);

• Local heights via analytic geometry rather than formal
models;

• Relation with Chow groups and K-theory (Liu, Mikami);
• Study of psh functions (Thuillier, Maculan, Jell, Wanner,
Boucksom–Favre–Jonsson,...);

• Monge–Ampère problem (Kontsevich–Tschinkel, B-F-J,
Jell–Martin–G–K...);

• Non-archimedean limits of archimedean integrals
(Ducros, Hrushovski, Loeser).
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