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archimedean ones;

• Phenomena of bad reductions, absence of good models;
• Equidistribution theorems of points of small height, resp.
in algebraic dynamics.

• Asymptotic aspects of archimedean geometry
• Conjectures of Kontsevich–Soibelman;
• Degenerations of archimedean dynamics towards
non-archimedean dynamics;

• Asymptotic expansions of integrals.
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First step

We build a theory of real valued differential forms and
currents on analytic spaces in the sense of Berkovich giving
rise to:

• (p,q) forms for p,q 6 n (dimension of space);
• integration of (n,n)-forms;
• by duality, currents;
• classical formulas, such as the Poincaré–Lelong formula;
• theory of metrized line bundles, their curvature forms,...
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Further developments

• Study of the tropical Dolbeauly cohomology of Berkovich
spaces, relation with Chow groups (Jell, Wanner; Liu,
Mikami);

• Tropical intersection theory (Gubler, Künnemann);
• Asymptotic expansions of archimedean integrals (Ducros,
Hrushovski, Loeser);

• Non-archimedean degenerations of archimedean
algebraic dynamics (Boucksom, Favre, Jonsson)…
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Analogies

Rn Cn

convex functions plurisubharmonic functions

Monge–Ampère operator

det ∂2

∂xi∂xj
det ∂2

∂zi∂zj

“supercalculus” differential calcul wrt dz,dz.
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Superforms (after Lagerberg)

Let U be an open subset of Rn.

A (super)form of type (p,q) on U is an element of

A p,q(U) = C∞(U)⊗
p∧
(Rn)∗ ⊗

q∧
(Rn)∗.

In coordinates:

α =
∑
|I|=p
|J|=q

αIJ(x)d′ xi1 ∧ · · · ∧ d
′ xip ⊗ d

′′ xj1 ∧ · · · ∧ d
′′ xjq .

Bigraded algebra: A (U) =
⊕

p,q A p,q(U), exterior product ∧

Involution J defined by J d′ x = d′′ x, J d′′ x = −d′ x.

Notion of symmetric form: Jα = α.
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Supercalculus

Differential operators:

d′ : A p,q(U)→ A p+1,q(U), d′′ : A p,q(U)→ A p,q+1(U).

Examples: for f ∈ A 0,0(U) = C∞(U),

d′d′′ f =
∑
i,j

∂2f
∂xi∂xj

d′ xi ⊗ d′′ xj

(d′d′′ f )n = n!det
(

∂2f
∂xi∂xj

)
d′ x1 ∧ d′′ x1 ∧ · · · ∧ d′ xn ∧ d′′ xn.
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Supercurrents

Integral: For α = f d′ x1 ∧ d′′ x1 ∧ · · · ∧ d′ xn ∧ d′′ xn ∈ A n,n(U),
set ∫

U
α =

∫
U
f (x)dx1 · · ·dxn.

— depends on the choice of affine coordinates.

Currents:

• currents = (continuous) linear forms on superforms;
• differential calculus defined by duality;
• (p,q)-forms define (n− p,n− q)-currents;
• positive forms, positive currents and their products (à la
Bedford–Taylor), and formulas, such as:

(d′d′′ logmax(0, x1, . . . , xn))n = δ0.
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Analytic spaces in the sense of Berkovich

Let k be a field, complete for a non-archimedean absolute
value.

With a k-algebra A (either of finite type, or affinoid), Berkovich
associates an analytic spectrum M (A):

M (A) is a set of multiplicative seminorms p on A, functions
p : A→ R+ such that

• p(f + g) 6 p(f ) + p(g) for f ,g ∈ A;
• p(fg) = p(f )p(g) for f ,g ∈ A;
• p(λ) = |λ| for λ ∈ k.

Topology: the coarsest such that all maps f 7→ p(f ) are
continuous

Notation: p is viewed as a point of M (A), hence p(f ) is written
|f (p)|. 11



Analytic spaces in the sense of Berkovich (continued)

Interests of Berkovich’s theory:

• Good topology (locally contractible, locally compact);
• Interesting/fruitful interaction with real numbers;
• Possess both a topology and a Grothendieck topology.

Other theories:

• Naïve: has not enough local compactness for our work;
• Tate: has not enough points;
• Raynaud: lacks a “visualization framework”
• Huber: has too many points.
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Tropicalizations

Let k be a field, complete for a non-archimedean absolute
value.

Torus: Gm = M (k[T, T−1]);

tropicalization: continuous map Gm → R, x 7→ log |T(x)|

Definition
Let X be a k-analytic space. A moment on X is a morphism
f : X → Gdm.

Tropicalization: ftrop : X → Rd.

If X is compact, then ftrop(X) is a compact polyhedral subspace
of Rd.
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Smooth functions

Let X be a k-analytic space.

Definition
A function ϕ on X is (G-)smooth if (G-)locally, there exist
– a moment f : X → Gdm,
– a smooth function u on an open neighborhood of ftrop(X)
in Rd

such that ϕ = u ◦ ftrop.

If X is locally holomorphically separated, topologically
separated, then there are plenty of smooth functions:

1. Stone–Weierstrass: C∞
(c)(X) is dense in C(c)(X) for the

compact open topology;
2. If X is paracompact, then every open covering admits a
smooth partition of unity. 14



Differential forms

Formal construction of a sheaf A p,q
X and a G-sheaf A p,q

XG from
tropical charts: from

X ⊃ U f−→ Gdm, P ⊃ ftrop(U), α ∈ A p,q(P)

get f ∗α.

Lemma
ftrop = gtrop implies f ∗α = g∗α.

More or less formally, one obtains a d′,d′′ differential calculus,
a notion of currents...
Theorem (Jell)

(A 0,∗
X ,d′′) is a resolution of RX .
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Skeletons

Gauss point ηr ∈ Gdm, associated with r = (r1, . . . , rn) ∈ Rd:

it is the (semi)norm given by
∑
amTm 7→ supm |am| emr

Skeleton of Gnm: S(Gdm) = {ηr ; r ∈ Rd} ' Rd (as a top. space)

Let f : X → Gdm be a moment, n = dim(X) (X equidimensional)

Characteristic polyedron of f , Σf =
⋃

p : Gdm→Gnm

(p ◦ f )−1(S(Gnm))

It has a canonical polyhedral structure (Ducros).

ftrop : Σf → Rd is a polyhedral immersion.

x ∈ Σf trop. dimx(f ) = n (tropical dim. of f at x)⇒⇐
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Support of (n,n)-forms

Let α ∈ A n,n(X).

Locally, the support of α is contained in a polyhedral
subspace of X, built from local skeletons.

One wants to integrate α on this polyhedral subspace, cell by
cell.

Difficulty: Lagerberg’s definition of the integral of an
(n,n)-superform on Rn depends on the choice of a basis.

Solution: define “calibrations” of the cells.
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Cellular decomposition

f : X → Gdm, Σf
C , convenient cellular decomposition of Σf :

• the intersection of two cells, the boundary of a cell, are
unions of cells;

• for every cell C, ftrop : C
∼−→ ftrop(C), convex polyhedron

of Rd;
• ∂(X) does not meet open n-cells;
• each open n-cell is open in Σf .
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Cellular decomposition: projections

Basic diagram for an n-cell C:

C X Gdm ftrop(C) Rd

Gnm (p ◦ f )trop(C) Rn

←↩ → ←→
f

←
→p◦f
←→ p ←→ '

←↩ →

←→ptrop

←↩ →

←→σp

where σp is the unique affine section of p ◦ f with image
〈ftrop(C)〉.
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Calibration

C X Gdm ftrop(C) Rd

Gnm (p ◦ f )trop(C) Rn

←↩ → ←→
f

←

→p◦f

←→ p ←→ '

←↩ →

←→ptrop

←↩ →

←→σp

Theorem

• p ◦ f is finite and flat of some degree dC(p ◦ f ) at each
point of C̊.

• Up to sign, the n-vector
dC(p ◦ f ) · σp,∗(e1 ∧ · · · ∧ en) ∈

∧n〈ftrop(C)〉 does not
depend on the choice of p.

→ canonical calibration of the cell C. 21



Calibration and integration

The canonical calibration of a cell C allows to integrate:

• any (n,n)-form on C
• any (n− 1,n)-form on ∂(C) (sign convention: outer
normal)

By summing the contributions of n-cells of a convenient
cellular decomposition, one gets:

• an integration map, A n,n
c (X)→ R, ω 7→

∫
X
ω =

∑
C

∫
C
ω

• a boundary integration map, A n−1,n
c (X)→ R,

ω 7→
∫
∂(X)

ω =
∑
C

∫
∂(C)

ω

22



Integration

Theorem
The support of boundary integration is contained in ∂(X).

More or less equivalent to the balancing condition in tropical
geometry.

Theorem (Stokes formula)

For ω ∈ A n−1,n
c (X), one has

∫
X
d′ ω =

∫
∂(X)

ω.

23
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Definition

Let X be equidimensional, dim(X) = n, without boundary

As in differential geometry, currents are defined as
(continuous) linear forms on differential forms:

Dp,q(X) = (A p,q
c (X))∗ = Dn−p,n−q(X).

d′,d′′-differential calculus, involution J — by duality (with a
sign)

α ∈ A (X), T ∈ D(X), T ∧ α : ω 7→ 〈T, α ∧ ω〉.

Sheaf property
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Integration currents

Integration currents: ϕ : Y → X topologically proper map,
dim(Y) = m,

ϕ∗δY

(
: α 7→

∫
Y
ϕ∗α

)
∈ Dm,m(X)

ϕ∗δ∂(Y)

(
: α 7→

∫
∂(Y)

ϕ∗α

)
∈ Dm−1,m(X)

26



Poincaré–Lelong equation

Functions u : X → R ∪ {−∞} which are integrable on every
compact skeleton define currents, e.g., continuous outside of
a Zariski closed subset of empty interior.

Theorem
For f ∈M (X)×, regular meromorphic function on X,

d′d′′[log |f |] = δdiv(f ).
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Other currents

In complex analysis, d′d′′ log sup(|z| , r) is the integration
current on the circle of radius r.

Theorem
For f : X → A1, r ∈ R,

d′d′′
[
sup

(
log |f | , r

)]
= δf−1(ηr),

integration current over the H (ηr)-analytic space f−1(ηr).
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Metrized line bundles

Let L = (L, ‖·‖) be a line bundle on X with a smooth metric.

Curvature form, locally defined by c1(L) = d′d′′ log ‖s‖−1, for
any local non-vanishing section s of L.

Proposition
Let X be a proper k-scheme, L a line bundle on X ; take
(X, L) = (X an,L an). Then∫

X
c1(L)n = (c1(L )n|X ).

Remark (Y. Liu): There are cycle classes in d′′-cohomology,
defined using the Gersten complex.
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Formal metrics and their curvature

Let X be a proper formal k◦-scheme (normal, say),

let L be a line bundle on X

take (X, L) = (Xη,Lη).

Then L has a natural “formal” metric which is continuous,

but not smooth in general, so that c1(L) is a (1, 1)-current.
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Formal metrics and their volume

Translating Bedford-Taylor theory from complex analysis to
the current framework, we can consider products of these
currents c1(L), using smooth approximations.

Theorem
Assume that k is endowed with a nontrivial discrete absolute
value. Then

c1(L)n =
∑
ξ∈X

mξ(c1(L )n|Vξ)δξ.

Here, ξ runs over points of X which reduce to the generic
point of a component Vξ of the special fiber X̃ , and mξ is its
multiplicity.
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Curvature forms of formal metrics (cont’d)

The currents c1(L)p can be described in two different ways:

• By integration on suitable polyhedral subspaces of X —
theory of PL currents, which enjoys similar properties to
tropical intersection theory;

• On a large open subset (which carries all of its mass), as a
sum of integration currents on fibers;
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Perspectives

• Non-archimedean Arakelov geometry
(Gubler–Künnemann);

• Local heights via analytic geometry rather than formal
models;

• Relation with Chow groups and K-theory (Liu, Mikami);
• Study of psh functions (Thuillier, Maculan, Jell, Wanner,
Boucksom–Favre–Jonsson,...);

• Monge–Ampère problem (Kontsevich–Tschinkel, B-F-J,
Jell–Martin–G–K...);

• Non-archimedean limits of archimedean integrals
(Ducros, Hrushovski, Loeser).
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