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Motivations:

« Non-archimedean aspects of Arakelov geometry
 Put non-archimedean places on the same footing as
archimedean ones;
+ Phenomena of bad reductions, absence of good models;
« Equidistribution theorems of points of small height, resp.
in algebraic dynamics.

+ Asymptotic aspects of archimedean geometry

+ Conjectures of Kontsevich-Soibelman;

+ Degenerations of archimedean dynamics towards
non-archimedean dynamics;

+ Asymptotic expansions of integrals.



We build a theory of real valued differential forms and
currents on analytic spaces in the sense of Berkovich giving
rise to:

* (p,q) forms for p, g < n (dimension of space);

« integration of (n, n)-forms;

+ by duality, currents;

- classical formulas, such as the Poincaré-Lelong formula;

- theory of metrized line bundles, their curvature forms,...



Further developments

« Study of the tropical Dolbeauly cohomology of Berkovich
spaces, relation with Chow groups (Jell, Wanner; Liu,
Mikami);

« Tropical intersection theory (Gubler, Kiinnemann);

- Asymptotic expansions of archimedean integrals (Ducros,
Hrushovski, Loeser);

« Non-archimedean degenerations of archimedean
algebraic dynamics (Boucksom, Favre, Jonsson)...
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Superforms (after Lagerberg)

Let U be an open subset of R".

A (super)form of type (p,q) on U is an element of

API(U) ) ® /\ (R")* ® /\ (R")*
In coordinates:
a= Z ay) d'x, A Ad X, @d X A AdT X
[ll=p
l/l=q
Bigraded algebra: o/(U) = @, , #P9(U), exterior product A
Involution ) defined by Jd'x =d"x, Jd’x=—d'x

Notion of symmetric form: Jo = a.



Supercalculus

Differential operators:

d': PU) —» 2PHU),  d7: APIU) > P ().

Examples: for f € &/%%(U) = €>°(U),

d/d"f _ 82f d x: & d” x:
N ’z; 8x,-0x,— i@ J

o’f
8X,'8Xj

(d’d”f)" = n!det (

)d’x1/\d”x1/\--~/\d’xn/\d"xn.



Integral: For = f d'xq A d” X1 A--- A dXn A Q" Xy € Z™N(U),

set
/Ua:/uf(x)dx1---dxn.

— depends on the choice of affine coordinates.
Currents:

» currents = (continuous) linear forms on superforms;

- differential calculus defined by duality;

* (p,q)-forms define (n — p,n — q)-currents;

- positive forms, positive currents and their products (a la
Bedford-Taylor), and formulas, such as:

(d'd” log max(0, Xy, ...,%n))" = do.
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Analytic spaces in the sense of Berkovich

Let k be a field, complete for a non-archimedean absolute
value.

With a k-algebra A (either of finite type, or affinoid), Berkovich
associates an analytic spectrum .Z(A):

#(A) is a set of multiplicative seminorms p on A, functions
p: A— Ry such that

* p(f +9) < p(f) +p(g) forf,g € A;

* p(fg) = p(f)p(g) for f,g € A;
« p(A) = |\ for A € k.

Topology: the coarsest such that all maps f — p(f) are
continuous

Notation: p is viewed as a point of .#(A), hence p(f) is written

f(p)I. "



Analytic spaces in the sense of Berkovich (continued)

Interests of Berkovich’s theory:

+ Good topology (locally contractible, locally compact);
« Interesting/fruitful interaction with real numbers;

« Possess both a topology and a Grothendieck topology.

12



Analytic spaces in the sense of Berkovich (continued)

Interests of Berkovich’s theory:

+ Good topology (locally contractible, locally compact);
« Interesting/fruitful interaction with real numbers;

« Possess both a topology and a Grothendieck topology.
Other theories:

+ Naive: has not enough local compactness for our work;
« Tate: has not enough points;
« Raynaud: lacks a “visualization framework”

 Huber: has too many points.
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Tropicalizations

Let k be a field, complete for a non-archimedean absolute
value.

Torus: Gy, = .#Z (R[T,T~));

tropicalization: continuous map Gy, — R, x — log|T(x)|
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Tropicalizations

Let k be a field, complete for a non-archimedean absolute
value.

Torus: Gm = .#Z(R[T, T));
tropicalization: continuous map Gy, — R, x — log|T(x)|

Definition

Let X be a k-analytic space. A moment on X is a morphism
f:X—GY.

Tropicalization: firop: X — R,

If X is compact, then fiop(X) is @ compact polyhedral subspace
of RY.
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Smooth functions

Let X be a k-analytic space.

Definition

A function ¢ on X is if (G-)locally, there exist

- amomentf: X — G4,

- a smooth function u on an open neighborhood of firop(X)
in R9

such that ¢ = u o fyrop.

If X is locally holomorphically separated, topologically
separated, then there are plenty of smooth functions:

1. Stone-Weierstrass: 5 (X) is dense in ¢ (X) for the
compact open topology;

2. If X is paracompact, then every open covering admits a
smooth partition of unity. 14



Differential forms

Formal construction of a sheaf "7 and a G-sheaf %% from

: from
XoULGL, P> fuep(U), acaPi(P)
get f*a.
Lemma

firop = Gtrop implies f*a = g*a.

More or less formally, one obtains a d’, d” differential calculus,
a notion of currents...

Theorem (Jell)
()", d") is a resolution of Ry.

15
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Gauss point n, € G4, associated with r = (rq,...,r;) € RY:

it is the (semi)norm given by >~ amT™ +— sup,, |am| e™

Skeleton of Gl\;: S(GZ) = {n; r € R9} ~ RY (as a top. space)
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p: G4 -G,

It has a canonical polyhedral structure (Ducros).

firop: £ — R%is a polyhedral immersion.

X € Iy < trop. dim,(f) =n (tropical dim. of f at x)

if x & 9(X) 17



Support of (n, n)-forms

Let a € &/™"(X).

Locally, the support of « is contained in a polyhedral
subspace of X, built from local skeletons.

One wants to integrate a on this polyhedral subspace, cell by
cell.
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Support of (n, n)-forms

Let a € &/™"(X).

Locally, the support of « is contained in a polyhedral
subspace of X, built from local skeletons.

One wants to integrate a on this polyhedral subspace, cell by
cell.

Difficulty: Lagerberg’s definition of the integral of an
(n, n)-superform on R" depends on the choice of a basis.

Solution: define “calibrations” of the cells.
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Cellular decomposition

f:X—GY,%f
%, convenient cellular decomposition of X;:

- the intersection of two cells, the boundary of a cell, are
unions of cells;

« for every cell C, firop: C %ftrop(C), convex polyhedron
of RY;

« J(X) does not meet open n-cells;

- each open n-cell is open in ;.

19



Cellular decomposition: projections

Basic diagram for an n-cell C:

c——x -1, G¢, firop(C) — RY

PN L = e])”

(Pof)trop(C) —— R"

where o) is the unique affine section of p o f with image

{firop(C))-

20



f

C—— X — G¢ firop(C) — RY
| ' Op
) Ptro
PA 1P lf t pD
G, (P of)trop(€C) —— R"

Theorem

« pof is finite and flat of some degree d¢(p o f) at each
point of C.
« Up to sign, the n-vector

de(pof) - ops(er A Aen) € N {ftrop(C)) does not
depend on the choice of p.

— canonical of the cell C. 2



Calibration and integration

The canonical calibration of a cell C allows to integrate:

< any (n,n)-formon C

- any (n — 1,n)-form on 9(C) (sign convention: outer
normal)

By summing the contributions of n-cells of a convenient
cellular decomposition, one gets:

- an integration map, &/""(X) = R, w — /w = Z/w
X -~ Jc
- a boundary integration map, <~ ""(X) — R,
a(X) ; a(C)

22



Integration

Theorem
The support of boundary integration is contained in 9(X).

More or less equivalent to the balancing condition in

Theorem (Stokes formula)

For w € & ""(X), one has / dw= / w.
X a(X)

23
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Let X be equidimensional, dim(X) = n, without boundary

As in differential geometry, currents are defined as
(continuous) linear forms on differential forms:

PPIX) = (AEIX))* = Dn—pn—q(X).
d’, d”-differential calculus, involution ] — by duality (with a
sign)
acdX), Te 2X), TANa: w— (T,a Aw).
Sheaf property

25



Integration currents

Integration currents: ¢: Y — X topologically proper map,
dim(Y) =m,

@0y <: o / go*a) e 2™™(X)
Y

Px0a(v) (: a |—>/ cp*a) e 2m=m(x)
a(y)
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Poincaré-Lelong equation

Functions u: X — RU {—o0} which are integrable on every
compact skeleton define currents, e.g., continuous outside of
a Zariski closed subset of empty interior.

Theorem
For f € .#(X)*, regular meromorphic function on X,

d'd"[log |f[] = daiv(r)-

27



Other currents

In complex analysis, d'd” logsup(|z|, r) is the integration
current on the circle of radius r.

Theorem
Forf: X —A', r €R,

d’'d” [sup (loglf|,r)] = OF—1(mr)>

integration current over the 27 (n,)-analytic space f " (n).

28



Metrized line bundles

Let L = (L, ||-||) be a line bundle on X with a smooth metric.

locally defined by ¢;(L) = d’d” log ||s|| ", for
any local non-vanishing section s of L.
Proposition

Let 2" be a proper k-scheme, .# a line bundle on 2°; take
(X,L) = (23", £3"). Then

[ a@ = @(2)12).

X

(Y. Liu): There are cycle classes in d”-cohomology,
defined using the Gersten complex.

29



Formal metrics and their curvature

Let 2 be a proper formal k°-scheme (normal, say),
let £ be a line bundle on 2~

take (X, L) = (%5, %)-

Then L has a natural “formal” metric which is continuous,

but not smooth in general, so that ¢i(L) is a (1, 1)-current.

30



Formal metrics and their volume

Translating Bedford-Taylor theory from complex analysis to
the current framework, we can consider of these
currents ¢q(L), using smooth approximations.

Theorem

Assume that R is endowed with a nontrivial discrete absolute
value. Then

a(D)" =Y me(ci(L)"|Ve)de.
Eex

Here, £ runs over points of X which reduce to the generic
point of a component V, of the special fiber 2°, and m¢ is its
multiplicity.
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Curvature forms of formal metrics (cont’d)

The currents ¢1(L)P can be described in two different ways:

« By integration on suitable polyhedral subspaces of X —
theory of PL currents, which enjoys similar properties to
tropical intersection theory;

+ On a large open subset (which carries all of its mass), as a
sum of integration currents on fibers;
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« Non-archimedean Arakelov geometry
(Gubler-Kiinnemann);

« Local heights via analytic geometry rather than formal
models;

« Relation with Chow groups and K-theory (Liu, Mikami);

« Study of psh functions (Thuillier, Maculan, Jell, Wanner,
Boucksom-Favre-Jonsson,...);

« Monge-Ampére problem (Kontsevich-Tschinkel, B-F-J,
Jell-Martin-G-K...);

« Non-archimedean limits of archimedean integrals
(Ducros, Hrushovski, Loeser).
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