
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Contemporary Mathematics
Volume 605, 2013
http://dx.doi.org/10.1090/conm/605/12115

Diophantine geometry and analytic spaces

Antoine Chambert-Loir

1. Introduction

Diophantine Geometry can be roughly defined as the geometric study of Dio-
phantine equations. Historically, and for most mathematicians, those equations are
polynomial equations with integer coefficients and one seeks for integer, or rational,
solutions; generalizations to number fields come naturally. However, it has been
discovered in the XIXth century that number fields share striking similarities with
finite extensions of the field k(t) of rational functions with coefficients in a field k,
the analogy being the best when k is a finite field. From this point of view, rings
of integers of number fields are analogues of rings of regular functions on a regular
curve. Namely, both rings are Dedekind (i.e., integrally closed, one-dimensional,
Noetherian) domains.

When one studies Diophantine Geometry over number fields, the geometric
shape defined by the polynomial equations over the complex numbers plays an
obvious important role. Be it sufficient to recall the statement of Mordell conjecture
(proved by Faltings [19]): a Diophantine equation whose associated complex shape
is a compact Riemann surface of genus at least 2 has only finitely many solutions.
Over function fields, such a role can only be played by analytic geometry over
non-Archimedean fields, a much more recent theory than its complex counterpart.

The lecture the author gave at the Bellairs Workshop in Number Theory was
devoted to a survey of recent works in Diophantine Geometry over function fields,
where analytic geometry over non-Archimedean fields in the sense of Berkovich [5]
took a significant place. Since this topic was not the main one of the conference,
the talk had been deliberately informal and the present notes aim at maintaining
this character, in the hope that they will be useful for geometers of all obediences,
be it Diophantine, tropical, complex, non-Archimedean. . .

2. The standard height function

In all the sequel, we fix a field F which can be, either the field Q of rational
numbers (arithmetic case), or the field k(T ) of rational functions with coefficients
in a given field k (geometric case). This terminology will be explained later. We
let F be an algebraic closure of F .

2010 Mathematics Subject Classification. 14G40, 14G22, 14K.

c©2013 American Mathematical Society

161



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

162 A. CHAMBERT-LOIR

The standard height function h : Pn(F ) → R is a function measuring the “com-
plexity” of a point in projective space with homogeneous coordinates in F .

We begin by describing it on the subset Pn(F ) of F -rational points.

2.1. Arithmetic case. Let x be a point in Pn(Q). We may assume that its
homogeneous coordinates [x0 : · · · : xn] are chosen so as to be coprime integers;
they are then well defined up to a common sign and one defines

(2.1) h(x) = logmax(|x0|, . . . , |xn|).
One first observes a finiteness property: for any real number B, there are only

finitely many points x ∈ Pn(Q) such that h(x) ≤ B. Indeed, this bound gives only
finitely many possibilities for each coordinate.

The height function behaves well under morphisms. Let f : Pn ��� Pm be a
rational map given by homogeneous forms f0, . . . , fm ∈ Q[X0, . . . , Xn] of degree d,
without common factor. Its exceptional locus E is the closed subspace in Pn defined
by the simultaneous vanishing of all fis. Then, one proves easily that there exists
a constant c such that h

(
f(x)

)
≤ dh(x) + c, for any point x ∈ Pn(Q) such that

x /∈ E. The converse inequality is more subtle and relies on the Nullstellensatz :
Let X be a closed subscheme of Pn such that X ∩ E = ∅; then, there exists a
constant cX such that h

(
f(x)

)
≥ dh(x)− cX for any x ∈ X(Q).

To add on the subtlety behind these apparently simple estimates, let me remark
that it is easy, given an explicit map f , to write down an explicit acceptable con-
stant c; however, giving an explicit constant cX requires a quite nontrivial statement
called the effective arithmetic Nullstellensatz ; see, for example, D’Andrea, Krick,
and Sombra [14] for a recent and sharp version.

2.2. Geometric case. Let now x be a point in Pn
(
k(T )

)
. Again, we may

choose a system of homogeneous coordinates [x0 : · · · : xn] of x consisting of polyno-
mials in k[T ] without common factors. Such a system is unique up to multiplication
by a common nonzero constant. Let us define the height of x by the formula

(2.2) h(x) = max(deg x0, . . . , deg xn).

If the base field k is finite, then the height satisfies a similar finiteness property
as in the arithmetic case: since there are only finitely many polynomials fi ∈ k[T ]
of given degree, the set of points x ∈ Pn

(
k(T )

)
such that h(x) ≤ B is finite, for

any B.
The height function has exactly the same properties with respect to morphism

as in the arithmetic case.

2.3. Geometric interpretation (geometric case). In the geometric case,
the height can be given a geometric interpretation, free of homogeneous coordinates.
Indeed, let C be the projective line over k, that is, the unique projective regular
k-curve with function field F = k(T ). Any point x ∈ Pn(F ) can be interpreted as
a morphism ϕx : C → Pn of k-schemes. When ϕx is generically one-to-one, then
h(x) can be computed as the degree of the the rational curve C, as embedded in Pn

through ϕx. In the general case, one has

(2.3) h(x) = degϕ∗
xO(1),

that is, h(x) is the degree of the pull-back to C of the tautological line bundle
on Pn.
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2.4. Extension to the algebraic closure (geometric case). The previous
geometric interpretation suggests a way to define the height on the whole of Pn(F ).
Namely, let E be a finite extension of F ; it is the field of rational functions on a
projective regular curve CE defined over a finite extension of k. Any point x ∈
Pn(E) can be interpreted as a morphism ϕx : CE → Pn and one sets

(2.4) h(x) =
1

[E : F ]
degϕ∗

xO(1).

One checks that the right-hand side of this formula does not depend on the ac-
tual choice of a finite extension E such that x ∈ Pn(E), thus defining a function
h : Pn(F ) → R.

2.5. Absolute values. Using absolute values, one can give a general defini-
tion of the standard height function, valid for any finite extension of F .

Recall that an absolute value on a field F is a map |·| : F → R≥0 subject to
the following axioms: |0| = 0, |1| = 1, |ab| = |a||b| and |a + b| ≤ |a| + |b| for any
a, b ∈ F . Two absolute values |·| and |·|′ are said to be equivalent if there exists
a positive real number λ such that |a|′ = |a|λ for any a ∈ F . The trivial absolute
value on F is defined by |a|0 = 1 for any a ∈ F ∗.

Let MF be the set of nontrivial absolute values of F , up to equivalence. Any
class v ∈ F possesses a preferred, normalized, representative, denoted |·|v, so that
the product formula holds:

(2.5)
∏

v∈MF

|a|v = 1 for any a ∈ F×.

It connects the nontrivial absolute values (on the left-hand side) and the trivial one
(on the right-hand side).

The field F = Q possesses the usual Archimedean absolute value, denoted |·|∞.
Absolute values nonequivalent to that satisfy the ultrametric inequality |a + b| ≤
max(|a|, |b|), and each of them is associated to a prime number p. The corresponding
normalized p-adic absolute value is characterized by the equalities |p|p = 1/p and
|a|p = 1 for any integer a which is prime to p. Therefore, MQ = {∞, 2, 3, 5, 7, . . . }.
A similar description applies to number fields, the normalized ultrametric absolute
values are in correspondence with the maximal ideals of the ring of integers, while
the Archimedean absolute values correspond to real or pair of conjugate complex
embeddings of the field.

All absolute values of the field F = k(T ) which are trivial on k are ultrametric.
They correspond to the closed points of the projective line P1

k (whose field of
rational functions is precisely F ). For example, there is a unique absolute value
on k(T ) which maps a polynomial P to edeg(P ), and it corresponds to the point at
infinity of P1

k. Similarly, let A ∈ k[T ] be a monic, irreducible, polynomial; there

is a unique absolute value on k(T ) which maps A to e− deg(A) and maps to 1 any
polynomial which indivisible by A; this absolute value corresponds to the closed
point (A) of the affine line.

More generally, if E is a finite extension of F , the set ME is naturally in
bijection with the set of closed points of the unique projective normal curve CE

with function field E.
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The product formula is nothing but the formula that claims that the number
of zeroes of a rational function on a curve is equal to the number of poles (in both
cases, counted with multiplicity).

In this language, the height function on Pn(F ) can be defined as

(2.6) h(x) =
1

[E : F ]

∑
v∈ME

logmax(|x0|v, . . . , |xn|v),

where E is a finite extension of F and x = [x0 : · · · : xn] ∈ Pn(E).

2.6. Properties. In the arithmetic case, or, in the geometric case over a finite
base field k, the height function satisfies an important finiteness principle, due
to [29]: for any real number B and any positive integer d, the set of points x ∈
Pn(F ) such that [F (x) : F ] ≤ d and h(x) ≤ B is finite. Obviously, this property
does not hold in the geometric case, when the base field is infinite.

In all cases, the height function has a similar behavior with respect to mor-
phisms. Let f : Pn ��� Pm be a rational map defined by homogeneous polynomials
(f0, . . . , fm) of degree d, without common factor ; let E ⊂ Pn be the locus defined
by f0, . . . , fm. Then, there exists a constant cf such that h

(
f(x)

)
≤ dh(x) + cf for

any x ∈ Pn(F ) such that x /∈ E. Let X be a closed subscheme of Pn such that
X ∩ E = ∅; then, there exists a real number cX such that h

(
f(x)

)
≥ dh(x) − cX

for any x ∈ X(F ).

3. Heights for line bundles, canonical heights

3.1. Heights for line bundles. For applications, it is important to under-
stand precisely the behavior of heights under morphisms. This is embodied in the
following fact, called the height machine. Let F (X(F );R) be the vector space of
real valued functions on X(F ), and let Fb(X(F );R) be its subspace of bounded
functions. There exists a unique additive map

h : Pic(X)⊗Z R → F (X(F );R)/Fb(X(F );R), L 
→ hL

such that for any closed embedding f : X ↪→ Pn
F of X into a projective space,

hf∗O(1) ≡ hPn ◦ f (mod Fb(X(F );R)),

where we have denoted hPn the height on projective space that we had define in
the previous section.

Uniqueness comes from the fact that Pic(X)⊗ZR is generated by line bundles
of the form f∗O(1), for some closed embedding f . The existence follows from basic
properties of the height on projective spaces, namely its behavior under Segre and
Veronese embeddings.

Moreover, the previous formula holds not only for embeddings f , but for any
morphisms f . As a consequence, one get the desirable functoriality: if f : Y → X
is a morphism of projective algebraic varieties over F and L ∈ Pic(X) ⊗ R, then
hL ◦ f ≡ hf∗L (modulo bounded functions).

Any function in the class hL deserves to be called a height function on X with
respect to L. However, it may be desirable to point out specific height functions
with good properties. In the following paragraphs, we show some cases where this
is indeed possible.
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3.2. Algebraic dynamics (Tate, Silverman). Let X be a projective vari-
ety over F , and assume that it carries a dynamical system ϕ : X → X, and a real
line bundle L ∈ Pic(X)⊗R such that that ϕ∗L 
 Lq, for some real number q > 1.
We shall say that (X,ϕ, L) is a polarized dynamical system, and that q is its weight.
Let h0

L be some arbitrary representative of hL; then, the following formula

ĥL(x) = lim
n→∞

q−nh0
L

(
ϕn(x)

)
defines a height function ĥL on X(F ) with respect to L, which is independent of
the choice of h0

L. Moreover, it satisfies the following functional equation

ĥL

(
ϕ(x)

)
= qĥL(x), for any x ∈ X(F ).

In fact, it is the unique height function with respect to L which satisfies this func-
tional equation. We cal it the canonical height function.

Abelian varieties, that is, projective group varieties, furnish especially beau-
tiful examples of this situation. If X is an Abelian variety over F , let [n] be the
multiplication by an integer n, an endomorphism of X; in particular, [−1] is the
inversion on X. Then, for any ample line bundle L on X which is symmetric (that

is, [−1]∗L 
 L), one has [n]∗L 
 Ln2

for any integer n. The various canonical
height functions, for all integers n ≥ 2, coincide and are called the Néron-Tate
height on X relative to the line bundle L.

Similarly, projective spaces, for the maps [x0 : · · · : xn] 
→ [xq
0 : · · · : xq

n] (for
some integer q ≥ 2) and any line bundle, and more generally toric varieties are also
interesting examples.

There are also nice examples for some K3-surfaces, first described by Silver-
man [35]. (There, it is useful to work with Pic(X)⊗R, rather than Pic(X).)

3.3. Height functions for geometric ground fields. Assume that F =
k(C) is the field of rational functions on a regular curve C which is projective,
geometrically irreducible over a field k. Let X be a projective variety over F and L
be a real line bundle on X. A projective k-variety X together with a flat morphism
π : X → C, the generic fiber of which is X, is called a model of X over C; any line
bundle L ∈ Pic(X )⊗R which gives back L on X is called a model of L.

Now, let x ∈ X(F ); it is defined over a finite extension E of F which is the field
of rational functions on a regular integral curve C ′, finite over C. By projectivity
ofX and regularity of C ′, the point x is the generic fiber of a morphism εx : C

′ → X.
Then, one can define

hL (x) =
1

[C ′ : C]
degC′ ε∗xL .

The function hL is a height function with respect to L.

3.4. Arakelov geometry. This point of view offers a sophisticated, and pow-
erful, way to mimic the geometric case in order to obtain actual height functions
in the arithmetic case. Let X be a projective variety over a number field F , let L
be a real line bundle on X.

Let X be a model of X over the ring of integers oF , let L ∈ Pic(X )⊗R be
a model of L. If we observe the analogy between function fields and number fields
under the point of view offered by the product formula, we see that oF behaves
as the ring of regular functions of an affine curve. Consequently, to get a height
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function, we need to compactify somehow the spectrum of oF taking into account
the Archimedean places of F . This is where Arakelov’s ideas come in.

For any Archimedean place v of F , we set Cv = Fv 
 C and indicate by a
subscript v a v-adic completion, or base change to v-adic completion. Let us endow
the holomorphic line bundle Lv on the complex analytic space X(Cv) deduced
from L with a continuous Hermitian metric. Such a metric is a way to define the
size of sections of Lv. It can be defined as a continuous function on the total space
of Lv inducing a Hermitian norm on each fiber Lv,x 
 Cv above a point x ∈ X(Cv).
In other words, any holomorphic section s of Lv over an open subset U of X(Cv)
is given a norm ‖s‖, which is a continuous function U → R+, in such a way that
‖fs‖(x) = |f(x)|‖s‖(x) for any x ∈ U and any holomorphic function f on U , and
that ‖s‖(x) �= 0 if s(x) �= 0.

Let L =
(
L , (‖·‖v)

)
be the datum of such a model L and of Hermitian

metrics at all Archimedean places v of F . It is called an Hermitian line bundle
over X . (It is customary in Arakelov geometry to impose that these metrics on L
be conjugation invariant, but this hypothesis is not necessary here.) Algebraic
operations on line bundles such as taking duals, or tensor products, can be done

at the level of Hermitian metrics, so that there is a group P̂ic(X ) of isomorphism
classes of Hermitian line bundles on X .

Now, for x ∈ X(F ), there is a finite extension E of F such that x ∈ X(E), and
a morphism εx : Spec oE → X which extends x. We can then define

hL (x) =
1

[E : F ]
d̂eg ε∗xL ,

where d̂eg means the Arakelov degree, an analogue for Hermitian line bundles
over Spec oE of the geometric degree of line bundles over complete curves.

Let us recall shortly the definition of this degree. Let M be a Hermitian line
bundle over Spec oE . The module of global sections is a projective oE-module M
of rank 1 and for any Archimedean place v of E, Mv = M ⊗E Cv is endowed with
a Hermitian scalar product. Then, one has

d̂eg(M ) = log
Card(M/oEm)∏

v‖m‖v
,

the right-hand side being independent of the choice of a nonzero element m ∈ M .
This independence follows from the fact that for any nonzero a ∈ oE , the norm
of the ideal (a) coincides with the absolute value of the norm of a. In fact, it is
an avatar of the product formula that was used to define the height on projective
spaces.

3.5. Adelic metrics. One may push the analogy between number fields and
function fields a bit further and do at non-Archimedean places what Arakelov geom-
etry does at Archimedean places. This gives rise to the technique of adelic metrics,
which works both in the geometric and in the arithmetic settings.

Let X be a projective variety over F . An adelic metric on L is a family (‖·‖v)
of continuous metrics on the line bundle L at all places v of F satisfying some
“adelic” condition.

So let v be a place of F . First, complete F for the absolute value given by v,
then take its algebraic closure; this field admits a unique absolute value extending v;
take its completion for that absolute value. Let Cv be the field “of v-adic complex
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numbers” so obtained; it is complete and algebraically closed. A v-adic metric for
the line bundle L can be defined similarly as in the case of Archimedean absolute
values, as a continuous function on the total space of the line bundle restricting to
the absolute value v on each fiber Lx 
 Cv at each point x ∈ X(Cv).

If L is very ample and (s1, . . . , sn) is a basis of H0(X,L), then there is a unique
metric on L such that

max(‖s1‖v(x), . . . , ‖sn‖v(x)) = 1 for all x ∈ X(Cv).

Such a metric is called standard. A family of metrics on L will be called a standard
adelic metric if it is defined by this formula for all places v of F .

More generally, a metric (or a family of metrics) on L will be called standard
if one can write L 
 L1 ⊗ L−1

2 for two very ample line bundles L1 and L2, in such
a way that the metric on L is the quotient of standard metrics on L1 and L2.

However, the field Cv is not locally compact, so that the resulting metrics
lack good properties. Therefore, one imposes the further condition that the metric
can be written as a standard metric times a function of the form eδv , where δv
is a continuous and bounded function on X(Cv). Considering families of v-adic
metrics, one imposes that the function δv be identically 0 for all but finitely many
places v of F .

4. Level sets for the canonical height

We consider a polarized dynamical system (X,L, ϕ) over F with weight q > 1,

as in §3.2. Let ĥ be its associated canonical height function, satisfying the functional

equation ĥ
(
ϕ(x)

)
= qĥ(x) for any x ∈ X(F ). The most important case will be the

one associated to Abelian varieties.
If Y is a subvariety of X and t is a real number, we let Y (t) be the set of points

x ∈ Y (F ) such that ĥ(x) ≤ t.

4.1. Preperiodic points. Let x ∈ X(F ). Its orbit under ϕ is the sequence
of points of X obtained by iterating ϕ, namely (x, ϕ(x), ϕ(2)(x), . . . ). One says
that x is periodic if there exists p ≥ 1 such that x = ϕ(p)(x). One says that x is
preperiodic if its orbit is finite or, equivalently, if there are integers n ≥ 0 and p ≥ 1
such that ϕ(n)(x) = ϕ(n+p)(x).

When X is an Abelian variety and ϕ is the multiplication by an integer d ≥ 2,
preperiodic points are exactly the torsion points of X. One direction is clear: if
x has finite order, say m, then every multiple of x is killed by the multiplication
by m; since there are finitely many points a ∈ X(F ) such that [m]a = 0, the orbit
of x is finite. Conversely, if the orbit of x is finite, let n and p ≥ 1 be integers such
that ϕ(n)(x) = ϕ(n+p)(x); this implies [dn]x = [dn+p]x, hence [dn(dp − 1)]x = 0, so
that x is a torsion point.

The canonical height of a preperiodic point must be zero. Indeed, let x be
preperiodic and let n and p ≥ 1 be integers such that ϕ(n)(x) = ϕ(n+p)(x). Com-

puting the canonical height of both sides of the equality, we get qnĥ(x) = qn+pĥ(x),

hence ĥ(x) = 0 since q > 1, so that qn �= qn+p.

4.2. Points of canonical height zero. If F is a number field, or a function

field over a finite field, the converse holds. Let x ∈ X(F ) be such that ĥ(x) = 0.
Let E be a finite extension of F such that x ∈ X(E). Any point in the orbit of x
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has canonical height zero; by Northcott’s finiteness theorem, the orbit of x is finite.
In fact, this statement was the main result of Northcott [29]!

However, if F is a function field over an algebraically closed field k, Northcott’s
finiteness theorem is false and this property does not hold anymore. Indeed, we
can consider a “constant” dynamical system (Y,M,ψ) defined over k and view it
over F . Then, all points in Y (k̄) have canonical height zero, unless k is the algebraic
closure of a finite field, they are usually not preperiodic.

In fact, a theorem of Chatzidakis and Hrushovski [11] shows that this obstruc-
tion is essentially the only one. This generalizes an old result of Lang and Néron [28]
for Abelian varieties. Because it is simpler to quote, let us only give the particular
case due to [2]. Let X = P1 and ϕ ∈ F (t) be a rational function of degree q ≥ 2,

then there exists a nonpreperiodic point x ∈ X(F ) such that ĥ(x) = 0 if and only
ϕ is conjugate (by a homography in F ) to a rational function ψ ∈ k(t).

4.3. The geometry of points of canonical height zero. In the 60s, moti-
vated by the conjecture of Mordell and its extension by Lang, Manin and Mumford
had conjectured that an integral subvariety of a complex Abelian variety cannot
contain a dense set of torsion points, unless the subvariety is the translate of an
Abelian subvariety by a torsion point.

This expectation proved to be a theorem, due to Raynaud [31] (there are
many other proofs now). We quote it in the slightly different, but equivalent,
form: Assume that X is an Abelian variety over an algebraically closed field of
characteristic zero and let Y be a closed subvariety of X. Then the Zariski closure
of Y (0) is a finite union of translates of Abelian subvarieties by torsion points. In
fact, the proof relies on techniques from arithmetic geometry, and its crucial part
assumes that X and Y are defined over a number field.

Similarly, the study of the analogue of Manin and Mumford’s question over alge-
braically closed fields of positive characteristic would reduce to the case of function
fields. But there, eventual constant Abelian varieties within X create difficulties.
The precise theorem has been first proved by Scanlon [33,34]. Before the author
states it, let him recall the existence of the Chow trace of X, a “maximal” Abelian
variety X ′ defined over k together with a morphism X ′⊗k F → X. Then, if Y is a
subvariety of X, the Zariski closure of Y (0) is a finite union of varieties Z such that
the quotient of Z by its stabilizer GZ is a translate of a subvariety of (X/GZ)

′⊗k F
defined over k by a torsion point of X/GZ .

4.4. In the context of dynamical systems, the question of Manin and Mumford
generalizes as follows. Let Y be a subvariety of X and let Y (0) be the set of points

x ∈ X(K̄) such that ĥ(x) = 0. Is it true that Y (0) is not dense in Y , unless this is
somewhat explained by the geometry of Y with respect to ϕ, for example, unless
Y is itself preperiodic? However, the answer to this basic expectation was proved
to be false, by an example of Ghioca and Tucker. A subsequent paper by Ghioca,
Tucker, and Zhang [21] tries to correct the basic prediction.

4.5. The conjecture of Bogomolov. Still in conjunction with Mordell’s
conjecture, Bogomolov [7] had strengthtend Manin –Mumford’s question by re-
quiring to prove that over number field, if C is a curve over genus ≥ 2 embedded
in its Jacobian J , there exists a positive real number ε such that C(ε) = {x ∈
C(F ); ĥ(x) ≤ ε} is finite.
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This conjecture has been generalized by Zhang [40] to subvarieties of Abelian
varieties over a number field: if Y is a subvariety of an Abelian variety X, does
there exists a positive real number ε such that Y (ε) is contained in a finite union of
translates of Abelian subvarieties of X by torsion points, contained in Y ? In other
words, is it true that Y (ε) ⊂ Y (0) for small enough ε?

These two questions have been solved positively by Ullmo [37] and Zhang [41]
respectively. They make a crucial use of equidistribution arguments that will be
explained below. Soon after, David and Philippon [15] gave another proof.

The analogous case of function fields is mostly open, the last part of this text
will be devoted to explaining how Gubler had been able to use ideas of equidistri-
bution to prove important cases in this setting. Note that over a function field of
characteristic zero, the case of a curve embedded in its Jacobian (Bogomolov’s orig-
inal on) has been settled positively by Faber [17] and Cinkir [12] using a formula
of Zhang [42] for the height of the Gross – Schoen cycle.

5. Equidistribution (arithmetic case)

5.1. Equidistribution is a prevalent theme of analytic number theory: it is a
(partially) quantitative way of describing how discrete objects collectively model a
continuous phenomenon. The most famous result is probably the equidistribution
modulo 1 of multiples nα of some fixed irrational number α, due to Weyl.

Here, we are interested in algebraic points x ∈ X(F ) of a variety X defined
over F . To have some chance of getting some continuous phenomenon, we consider,
not only the points themselves, but also their conjugates, that is, the full orbit
of those points under the Galois group Gal(F/F ). The continuous phenomenon
requires some topology, so we fix a place v of F and an embedding of F into the
field Cv.

Let x be any point in X(F ). Viewed from the field F , the point x is not
discernible from any of its conjugates x1 = x, . . . , xm which are obtained from x by
letting the group of F -automorphisms of F act. So we define a probability measure
μ(x) on X(Cv) by

μ(x) =
1

m

m∑
j=1

δxj
,

where δxj
is the Dirac measure at the point xj ∈ X(F ) ⊂ X(Cv).

The first equidistribution result in this field is the following.

Theorem 5.2 (Szpiro, Ullmo, and Zhang [36]). Assume that F is a number
field and v is an Archimedean place of F . Let X be an Abelian variety over F and
let (xn) be a sequence of points in X(F ) satisfying the following two assumptions :

• The Néron –Tate height of xn goes to 0 when n → ∞;
• For any subvariety Y of X such that Y �= X, the set of indices n such
that xn ∈ Y is finite.

Then the sequence of probability measures
(
μ(xn)

)
on the complex torus X(Cv)

converges vaguely to the normalized Haar measure of X(Cv).

The proof uses Arakelov geometry and holds in a wider context than that of
Abelian varieties. We shall see more about it shortly but I would like to describe
how Ullmo [37] and Zhang [41] used those ideas to obtain a proof of Bogomolov’s
conjecture.
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5.3. So assume that Y is a subvariety of X, with Y �= X, containing a sequence

(xn) of algebraic points such that ĥ(xn) → 0 and which is dense in Y for the Zariski
topology. We want to show that Y is a translate of an Abelian subvariety of X by
a torsion point. To that aim, we may mod out X and Y by the stabilizer of Y . The
definition of the Néron –Tate height on X comes from some ample line bundle; its
Riemann form on X(Cv) is a positive differential form ω of bidegree (1, 1).

Now, a geometric result implies that there exists a positive integer m such that
the map

ϕ : Y m → Xm−1, (y1, . . . , ym) 
→ (y2 − y1, . . . , ym − ym−1)

is generically finite. From the sequence (xn), one constructs a similar sequence
(yn) of points in Y m(F ) whose heights converge to zero and which are Zariski
dense in Y m; more precisely, for any subvariety Z of Y m such that Z �= Y m, the
set of indices n such that yn ∈ Z(F ) is finite. A variant of Theorem 5.2 (see
also Theorem 5.6 below) implies that the sequence μ(yn) of probability measures
converges to the canonical probability measure on Y m(Cv) given by the differential
form (ω1+· · ·+ωm)md on the smooth locus of Y m. (Here, d = dim(Y ) and ωj means
the differential form on Y m coming from ω on the jth factor of Y m.) Write μ(Y m)
for this measure; in fact, one has μ(Y m) = μ(Y )m. So we have the equidistribution
property

μ(yn) → μ(Y )m.

If we apply the map ϕ, we get automatically

μ(ϕ(yn)) → ϕ∗μ(Y )m.

On the other hand, the sequence
(
ϕ(yn)

)
also satisfies an equidistribution prop-

erty, but the limit measure being μ
(
ϕ(Y m)

)
. This implies an equality of probability

measures

ϕ∗μ(Y )m = μ
(
ϕ(Y m))

)
,

a geometric refinement of the initial fact that ϕ is generically finite with im-
age ϕ(Y m).

However, both sides of this equality come from differential forms, and this equal-
ity implies that the differential forms (ω1+· · ·+ωm)md and ϕ∗(ω1+· · ·+ωm−1)

md

on Y m coincide up to a constant multiple.
The contradiction comes from the fact that (ω1 + · · ·+ ωm) is strictly positive

everywhere (at least, on the smooth locus of Y m) while ϕ∗(ω1 + · · · + ωm−1)
md

vanishes where ϕ is not étale (that is, not a local diffeomorphism), in particular on
the diagonal of Y m. To be resolved, this contradiction requires that md = 0, hence
that Y is a point, necessarily a torsion point.

5.4. Heights for subvarieties. One of the major ingredients in the proof of
the equidistribution theorem is a notion of a height with respect to a metrized line
bundle, not only for points, but for all subvarieties. The definition, first introduced
by Faltings [20], goes as follows.

We assume that X is a projective variety over a number field F and L is a
line bundle on X. Let X be a projective flat model over the ring oF and L be
line bundle on X which is a model of L. We also assume that L is endowed with
smooth Hermitian metrics at all Archimedean places of F .

From these metrics, complex differential geometry defines differential forms
c1(L̄v) on the complex analytic varieties X(Cv), for all Archimedean places v of F .
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This form is called the first Chern form, or the curvature form, of the Hermitian
line bundle L̄v; it is a representative of the first Chern class of L in the de Rham
cohomology of X(Cv). It is really a fundamental tool in complex algebraic geome-
try. For example, when X is smooth, say, the Kodaira embedding theorem asserts
that L is ample if and only if it possesses a Hermitian metric such that its curvature
form is positive definite on each tangent space of X. I refer to §1.4 of [22] for more
details.

Faltings’s definition of the height of an irreducible closed subvariety Y ⊂ X
is by induction on its dimension.

If dim(Y ) = 0, then Y is a closed point; then, its residue field κ(Y ) is a finite
field and one defines

(5.1) hL (Y ) = logCard
(
κ(Y )

)
.

Otherwise, one can consider a (nonzero) meromorphic section s of some power L m

of L on Y . Its divisor div(s) is a formal linear combination of irreducible closed
subschemes Zj of Y , with multiplicities aj (the order of vanishing, or minus the
order of the pole of s along Zj) and

(5.2) hL (Y ) =
1

m

∑
ajhL (Zj) +

∑
v

∫
Y (Cv)

log‖s‖−1/mc1(L̄v)
dimY

where Y = Y ⊗F and v runs over Archimedean places of F . In fact, the right-hand
side of this formula does not depend on the choice of s.

One can prove that this new definition recovers the previous one for points.
More precisely, let y ∈ X(F ), let Y ∈ X be the corresponding closed point and let
Y be its Zariski closure in X . Then,

hL (Y ) = deg(Y )h(y),

where deg(Y ) is the degree of the closed point Y , or the degree of Y as a subvariety
of X with respect to the line bundle L.

Proposition 5.5 (Zhang [40]). Assume that L is ample, that L is relatively
numerically effective and that the curvature forms c1(L̄v) are nonnegative for any
Archimedean place v of F .

Let (xn) be a sequence of points in X(F ). Assume that for any subvariety Y
of X such that Y �= X, the set of indices n such that xn ∈ Y is finite. Then,

(5.3) lim inf
n

hL (xn) ≥
hL (X )

dim(X ) degL(X)
.

This proposition follows easily from a (difficult) theorem in Arakelov geometry
that implies the existence of global sections over X of large powers L m which have
controlled norms. Using those sections in the inductive definition of the height leads
readily to the indicated inequality.

In presence of a sequence (xn) such that hL (xn) converges to the right-hand
side of Inequality 5.3, Szpiro, Ullmo, and Zhang [36] proved that the probability
measures μ(xn) equidistribute towards the measure μX,v = c1(L̄v)

dim(X)/ degL(X)
on X(Cv). The heart of the proof is to apply the fundamental inequality (5.3)
for small perturbations of the Hermitian metrics, as a variational principle. Since
X(Cv) is compact and metrizable, the space of probability measures on X(Cv) is
metrizable and compact, so we may assume that μ(xn) converges to some limit μ
and we need to prove that μ is proportional to c1(L̄v)

dimX .
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Let us multiply the metric on L̄v by some function of the form e−εϕ, where ϕ
is a smooth function on X(Cv). Then, the left-hand side of the inequality (5.3)
becomes

lim
n

(
hL (xn) + ε

∫
X(Cv)

ϕddμ(xn)

)
=

hL (X )

dim(X ) degL(X)
+ ε

∫
X(Cv)

ϕddμ,

while its right-hand side is

hL (X )

dim(X ) degL(X)
+ ε

∫
X(Cv)

ϕ
c1(L̄v)

dimX

degL(X)
+ O(ε2).

Consequently, when ε → 0,

ε
(
μ(ϕ)− μX,v(ϕ)

)
≥ O(ε2).

For small positive ε, we get μ(ϕ) ≥ μX,v(ϕ), and we have the opposite inequality
for small negative ε. Consequently, μ(ϕ) = μX,v(ϕ), hence the equality μ = μX,v.

A subtle point of the proof lies in the possibility of applying Proposition 5.5
to the modified line bundle. When the curvature form c1(L) is strictly positive,
then it remains so for small perturbations, hence the proof is legitimate. This is
what happens in Theorem 5.2, and what is needed for the proof of Bogomolov’s
conjecture by Ullmo and Zhang.

Inspired by an inequality of Siu and the holomorphic Morse inequalities of
Demailly, Yuan [39] proved the following general equidistribution theorem.

Theorem 5.6 (Yuan [39]). Assume that F is a number field and v is an
Archimedean place of F . Let X be an algebraic variety over F , let L̄ be an ample
line bundle on X with a semi-positive adelic metric. Let (xn) be a sequence of
points in X(F ) satisfying the following two assumptions :

• The heights of xn with respect to L̄ converge to 0 when n → ∞;
• For any subvariety Y of X such that Y �= X, the set of indices n such
that xn ∈ Y is finite.

Then the sequence of probability measures (μ(xn)) on the complex space X(Cv)
converges to the unique probability measure proportional to c1(L̄)

dim(X).

I cannot say much more on this here, and I must refer the reader to the paper
of Yuan [39].

Observe anyway that under the indicated hypotheses, c1(L̄) is not necessarily
a differential form, but only a positive current of bidegree (1, 1). Consequently, the
definition of the measure c1(L̄)

dimX requires some work. It goes back to fundamen-
tal work in pluripotential theory by Bedford and Taylor [4] and Demailly [16]. In
our setting, it can be defined by an approximation process, considering sequences
of smooth positive Hermitian metrics on L which converge uniformly to the initial
metric. See my survey [9] for more details.

6. Measures on analytic spaces

6.1. Our setting is that of a global field F . Let X be a projective algebraic
(irreducible) variety over F . For any place v of F , we will consider the analytic
space Xan

v associated to v.
If v is Archimedean, then Xan

v = X(Cv) is the set of complex points of X,
where Cv = C is viewed as an F -algebra via the embedding corresponding to the
place v.
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When v is non-Archimedean, then Xan
v is the analytic space over the complete

algebraically closed field Cv, as defined by Berkovich [5]. I must refer to the
other contributions in this volume for background on Berkovich spaces, as well
as to those of Baker [1] and Conrad [13] in the proceedings of the 2007 Arizona
conference edited by Savitt and Thakur. Here, I will content myself with the
few following comments. First of all, Xan

v is a reasonable topological space: it is
compact and locally pathwise connected. It is even locally contractible; this is the
main theorem of Berkovich [6] when X is smooth, recently extended to the general
case by Hrushovski and Loeser [27]. Moreover, Xan

v contains the set X(Cv) as a
dense subset, and the topology of Xan

v restricts to its natural (totally disconnected)
topology on X(Cv). So Xan

v has many other points than those of X(Cv), some
which will play a crucial role below.

6.2. To fix ideas, assume that we are in the geometric case, so that F = k(C)
is the field of functions on a curve C. Let X be a projective model of X over the
curve C and let L be a line bundle on X ; let L be its restriction to X.

For any place v of F , the model L gives rise to a “v-adic metric on L.” This
notion is similar to what was discuted in the case of X(Cv); in particular, any
section s of L on an open subset U of X has a norm ‖s‖ which is a continuous
function on the corresponding subset Uan

v of Xan
v , and does not vanish if s does not

vanish. The construction of the metric is also similar to that of standard metrics.
Assume first that L be very ample; then, the metric on L is the unique metric such
that for any generating set (s1, . . . , sn) of the module Γ(X ,L ) of integral global
sections, one has

max(‖s1‖(x), . . . , ‖sn‖(x)) = 1 for any x ∈ Xan
v .

In general, one can at least write L as the difference L1 ⊗L −1
2 of two very ample

line bundles on X , and the metric on L is the quotient of the to metrics given by
the models L1 and L2.

I claim that there exists a measure, written c1(L̄)
dimX
v , on Xan

v such that for
any nonzero global section of L,

hL (X ) = hL

(
div(s)

)
+

∑
v

∫
Xan

v

log‖s‖−1
v c1(L̄)

dimX
v ,

where div(s) is the Zariski closure in X of the divisor of s. More generally, if Y is
an integral subvariety of X, with Zariski closure Y in X , and if s is any nonzero
global section of L|Y , one can define a measure c1(L̄)

dimY
v δY on Y an

v such that

hL (Y ) = hL

(
div(s)) +

∑
v

∫
Xan

v

log‖s‖−1
v c1(L̄)

dimY
v δY .

This measure is defined as follows, see [8]; the presentation given here, using
algebraically closed valued fields, is due to Gubler [24].

The analytic space Xv admits a canonical reduction Xv over the residue field
of Cv, which maps to the natural reduction of X . Moreover, there is a reduction
map Xan

v → Xv and the generic point of an irreducible component Z of Xv is the
image of a unique point z of Xan

v . By functoriality, one also has a line bundle
Lv on Xv. The measure c1(L̄)

dimX
v is the following linear combination of Dirac
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measures:

c1(L̄)
dimX
v =

∑
Z

(c1(Lv)
dimX |Z)δz

where the coefficients (c1(Lv)
dimX |Z) are given by usual (numerical) intersection

theory and the sum is over the irreducible components Z of Xv.
This measure is positive if L is relatively ample, and its total mass is equal to

the degree of X with respect to L.
The definition of the measure c1(L̄)

dimY
v δY is analogous.

Up to its measure-theoretic formulation, the validity of the asserted formula
for heights follows from work of Gubler [23].

6.3. Zhang [40] had defined a notion of semipositive metrics, which are defined
as uniform limits of metrics given by models (X ,L ), where L is relatively nu-
merically effective— that is, gives a nonnegative degree to any vertical subvariety.
He also showed that semipositive metrized line bundles allow to define heights of
subvarieties by approximation from the case of models/classical Arakelov geometry.

Adapting this construction I defined in [8] the measures c1(L̄)
dimX
v by approx-

imation from the above definition in the case of models. In the end, the proof is
very close to that of the existence of products of positive (1, 1)-currents by Bedford
and Taylor [4]. (In fact, this article only considers projective varieties over a local
p-adic field; the general case has been treated by Gubler [24], in a similar fashion.)

6.4. As we have shown in [10], these measures can be used to recover the
heights defined by Zhang [40]. Namely, if L̄ is a line bundle on X with a semi-
positive adelic metric, Y is an integral subvariety of X, Zhang defined the height
hL̄(Y ) of Y with respect to L̄. For any regular meromorphic section s of L|Y , one
has

hL̄(Y ) = hL̄(div(s)) +
∑
v

∫
Xan

v

log‖s‖−1
v c1(L̄)

dimY
v δY .

In the case of curves, and a few cases in higher dimensions, I showed in [8] that
they also give rise to equidistribution theorems totally analogous to the one of Spiro,
Ullmo, and Zhang [36]. The article of Yuan [39] proved what can be considered
the most general equidistribution theorem possible in this context. Namely, the
non-Archimedean analogue of Theorem 5.6 still holds. While that paper restricts
to the case of number fields, its ideas have been transposed to the case of function
fields by Faber [18] and Gubler [26].

I also refer to [30] for a general discussion of convergence of measures on the
Berkovich projective space, as well as for a non-Archimedean analogue of Weyl’s
equidistribution criterion.

6.5. In some cases, one can deduce from these equidistribution theorems ex-
plicit results in algebraic number theory. Let us give an example in the case of the
line bundle L = O(1) on the projective line X = P1, with its metrization giving rise
to the standard height. Fix an ultrametric place v of F . Then, the measure c1(L̄)v
on Xan

v is the Dirac measure at a particular point γ, called the Gauss-point because
it corresponds to the Gauss-norm on the algebra Fv[T ] (viewed as the algebra of
functions on the affine line A1 = P1 \ {∞}). So in this case, the equidistribution
theorem asserts that for any sequence (xn) of distinct points on X(F ) such that
h(xn) → 0, the measures μ(xn) on Xan

v converge to the Dirac measure δγ .
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This gives a strong constraint on such sequences. For example, it is impossible
that all xn be totally v-adic (an algebraic point is “totally v-adic” if all of its
conjugates are defined over Fv). Indeed, if xn is totally v-adic, then the measure
μ(xn) is supported by the compact subset X(Fv) of X

an
v . If all xn were totally v-

adic, the limit measure of μ(xn) would be supported by X(Fv), but the Gauss-point
does not belong to X(Fv). Similar results were proved by Baker et Hsia [3].

7. Bogomolov’s conjecture for totally degenerate abelian varieties

7.1. Gubler [25] had the idea of using these measures to attack the unsolved
Bogomolov conjecture over function fields, using equidistribution theorems for
points of small height at some place of the ground field to get a proof of the
conjecture following the strategy of Ullmo [37] and Zhang [41].

So let F be a function field and let v be a place of F . Let X be an Abelian
variety over F , let L̄ be an ample symmetric line bundle on X with its canonical

adelic metric that gives rise to the Néron-Tate height ĥ. Let Y be a closed integral
subvariety of X which is not the translate of an Abelian subvariety by a torsion
point. We want to prove that for some positive ε, Y (ε) is not Zariski-dense. Assume
the contrary. We would then want to construct a sequence (yn) in Y (F ) satisfying

the assumptions of the equidistribution theorem, namely ĥ(yn) → 0 and for any
subvariety Z of Y such that Z �= Y , the set of integers n such that yn ∈ Z is
finite. However, the set of subvarieties of Y may be uncountable, hence such a
sequence may not exist. Anyway, one can construct a net (yn), that is a family
of points indexed by a filtered ordered set N , such that h(yn) → 0 and for any
subvariety Z � Y , the set of indices n such that yn ∈ Z is bounded in N . The
statement and the proof of the equidistribution theorem adapt readily to this case.

We redo the same geometric reduction, assuming that the stabilizer of Y is
trivial, and that the morphism ϕ : Y m → Xm−1 given by (y1, . . . , um) 
→ (y2 −
y1, . . . , ym − ym−1) is generically finite, with image Z. As above, we construct
a generic net (yn) of small points in Y m whose image

(
ϕ(yn)

)
s a generic net

of small points in Z. This gives two equidistribution theorems in the Berkovich
spaces (Y m)anv and Zan

v at the chosen place v, with respect to canonical measures
μv(Y

m) = c1(L̄|Y m)m dimY
v and μv(Z) = c1(L̄|Z)dimZ , where we write L̄|Y m and

L̄|Z for the metrized line bundles on Y m and Z deduced from those naturally given
by L̄ on Xm and Xm−1. By construction, ϕ∗μv(Y

m) = μv(Z).
To get a contradiction, we need to have more information about these measures.

7.2. If X has good reduction at v, the very definition of the measure μv(X)
shows that it is the Dirac measure at a single point of Xan

v . Indeed, let X be the
Néron model of X over the ring of integers ov of Fv; since X has good reduction, X
is proper and smooth, and its special fiber is an Abelian variety. Then, one can show
that the generic point of this fiber has a unique preimage ξ under the reduction map
from the Berkovich space Xan

v to the special fiber. One has μv(X) = degL(X)δξ.
In the case where all of X, Y and Z have good reduction at v (this happens

for almost all places v), the measures μv(Y
m) and μv(Z) are supported at a single

point and the equality of measures ϕ∗μv(Y
m) = μv(Z) gives no contradiction.

Also, if X has good reduction, the measures μv(Y
m) and μv(Z) will be sup-

ported at finitely many points and it will still be difficult to draw a contradiction.
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7.3. Consequently, to succeed, this equidistribution approach needs to consider
places of bad reduction of X. The case treated by Gubler [25] is the one of totally
degenerate Abelian varieties, those being as far as possible from Abelian varieties
of good reduction. Recall that any Abelian variety over F has a canonical model
over the local ring oF,v at the place v, called its Néron model. Possibly after a finite
extension of the ground field, the connected component of the identity of the special
fiber of the Néron model is an extension of torus Ga

m by an Abelian variety; totally
degenerate Abelian varieties are those for which this torus has dimension dim(X).

Assume this is the case and set g = dim(X). Possibly after some finite extension
of F , By theorems of Tate, Raynaud, Bosch, Lütkebohmert in Tate’s setting of
rigid analytic spaces, extended to the Berkovich context in [5, §6.5], the analytic
space Xan

v associated to the Abelian variety X can be written as the quotient of a
torus Gg,an

m,v by a discrete subgroup Ω of rank g in Gg
m(Fv). In fact, the torus Gg,an

m,v

is the universal cover of the Berkovich space Xan
v .

In particular, the topological fundamental group of the analytic space associ-
ated to our totally degenerate Abelian variety X is isomorphic to Zg. This does not
reflect however the richness of étale covers of Abelian varieties— the fundamental
group of a complex Abelian varieties of dimension g his Z2g, while the �-adic fun-
damental group would be Z2g

� (provided � is distinct from the characteristic of the
ground field). This indicates that, in some sense, the reduction at Archimedean
places is at least twice as bad as the worst possible ultrametric places of bad re-
duction.

Here enters tropical geometry.

7.4. We first analyze the tropicalization of a torus. By definition, the Berkovich
space of Gm at the place v is the set of all multiplicative seminorms on the
ring Fv[T, T

−1] which extend the fixed absolute value on Fv. So there is a nat-
ural map from Gan

m,v to the real line R that maps a semi-norm χ to the real number
− log|χ(T )|. In fact, the semi-norm χ is viewed as a point x of Gan

m,v, and |χ(T )| is
viewed as |T (x)|, so that a more natural way to write this map is τ : x 
→ − log|T (x)|.
An even more natural way would be to consider the map x 
→ |T (x)| from Gan

m,v

to R∗
+, because it does not require the choice of a logarithm function.
This “tropicalization” map τ is continuous and surjective. It has a canoni-

cal section σ : R → Gan
m,v for which σ(t) is the Gauss-norm corresponding to the

radius et:

|P (σ(t)| = sup
n∈Z

|an|ent, if P =
∑

anT
n.

This section σ is a homeomorphism onto its image S(Gan
m,v) which is called the

skeleton of Gan
m,v.

In higher dimensions, we have a similar coordinate-wise tropicalization map
τ : Gg,an

m,v → Rg and a section σ whose image S(Gg,an
m,v ) is the skeleton of Gg,an

m,v .
In the case of a uniformized totally degenerate Abelian variety, one can tropi-

calize its universal cover and mod out by the image of the lattice Ω. This gives a
diagram:

Gg,an
m,v

τ ��

��

Rg

��
Xan

v

τX �� Rg/Λ
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where Λ = τ (Ω). Moreover, the section σ descends to a section σX of τX whose
image S(Xan

v ) is called the skeleton of Xan
v . This is a real torus of dimension g

in Xan
v onto which Xan

v retracts canonically.
The proof of the following two theorems is long and difficult and cannot be

described here.

Theorem 7.5 ([24, Corollary 9.9]). The canonical measure c1(L̄)
dimX
v on Xan

v

is the unique Haar measure supported by the real torus S(Xan
v ) of total mass

degL(X).

Theorem 7.6 ([24, Theorem 1.3]). Let Y be an integral subvariety of X; let d
be its dimension.

The image τX(Y an
v ) is a union of simplices of Rg/Λ of dimension d.

Restricted to any of those simplices, the direct image (τX)∗(c1(L̄|Y )dimY
v ) on

Rg/Λ of the canonical measure of Y is a positive multiple of the Lebesgue measure.

7.7. Given the last two theorems, Gubler [25] can complete the proof of the
Bogomolov conjecture when the given Abelian variety has totally degenerate re-
duction at the place v.

Indeed, in the above situation of a generically finite map ϕ : Y m → W ⊂ Xm−1,
one can push the equality of measures ϕ∗μv(Y

m) = μv(W ) to the tropicaliza-
tion (Rg/Λ)m−1. Let νY = (τX)∗(μv(Y )), νW = (τXm−1)∗

(
μv(W ))

)
; these are

measures on (Rg/Λ) and (Rg/Λ)m−1 respectively. Let ψ be the map (Rg/Λ)m →
(Rg/Λ)m−1 given by (a1, . . . , am) 
→ (a2 − a1, . . . , am − am−1). By naturality of
tropicalization, one has τ ◦ ϕ = ψ ◦ τ , hence ψ∗(ν

m
Y ) = νW .

Let δ be a simplex of dimension dim(Y ) appearing in τX(Y ). By Theorem 7.6,
the restriction of the measure νY to δ is a positive multiple of the Lebesgue measure.
In particular, νY (δ) > 0. Then δm is a simplex of τXm(Y m) whose image by ψ is
ψ(δm). However, the definition of ψ shows that ψ(δm) has dimension ≤ m dim(Y )−
dim(Y ) < m dim(Y ) = dim(W ). Indeed, ψ is linear and the simplex δ embedded
diagonally into δm maps to 0. By Theorem 7.6, νW is a sum of Lebesgue measures
of dim(W )-dimensional simplices, so that νW (ψ(δm)) = 0. Since ψ∗(ν

m
Y ) = νW ,

it follows that νY (δ) = 0. This contradiction concludes Gubler’s proof of the
Bogomolov conjecture when there is a place of totally degenerate reduction.

7.8. In our discussion of Manin –Mumford’s conjecture over function fields, it
was necessary to take care of constant Abelian subvarieties. They do not appear in
Gubler’s statement. Indeed, if an Abelian variety has totally degenerate reduction
at some place, it cannot contain any constant Abelian subvariety. However, a
general treatment of Bogomolov’s conjecture over function fields would take them
into account. A precise statement is given in the paper by Yamaki [38], with partial
generalizations of Gubler’s result to cases where there is bad reduction, although
not totally degenerate.
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