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Introduction

Let X be a smooth projective algebraic variety de¢ned over a number ¢eld F and
X �F � the set of rational points of X . Let L be a metrized ample line bundle and

HL : X �F � ! R>0

the associated exponential height (cf. [15, 18]). We are interested in the asymptotic
behaviour of the counting function

N�U;L;B� :� #fx 2 U�F � jHL�x�WBg

as B!1, where U � X is some Zariski open subset. Batyrev and Manin [1] and
Peyre [13] described a conjectural framework for such asymptotics for varieties with
ample (or, more generally, effective) anticanonical class (see also [6, 15] and
references therein). In particular, it is expected that for appropriate X and Zariski
open subsets U � X ,

N�U;Kÿ1X ;B� � Y��X �
r!

B�logB�r�1� o�1��;

as B!1. Here Kÿ1X is the metrized anticanonical line bundle on X ,
r � rk Pic�X � ÿ 1 and Y��X � is a product of a Tamagawa type number t�KX � (which
depends on the metrization), a rational number a��X � de¢ned in terms of the cone
of effective divisors Leff �X � and the order Br�X �=Br�F ��� �� of the nontrivial part
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of the Brauer group. There is a similar description for arbitrary polarizations L
(Batyrev and Tschinkel, cf. [2]).

These conjectures have been proved for £ag varieties ([6]), toric varieties ([2]), and
toric bundles induced from torsors ([21]). The proofs use a precise combinatorial
description of all geometric and arithmetic invariants of the varieties: line bundles,
metrizations of the line bundles etc. (for example, in terms of lattices, cones and
fans). Such a description is possible because representations of reductive groups
are rigid (don't admit deformations). Consequently, the corresponding varieties
don't have moduli.

The only other known approach to asymptotics of rational points on algebraic
varieties is the classical circle method in analytic number theory. Varieties which
can be treated by this method do admit moduli. However, one of the drawbacks
is that so far it works only for varieties which are complete intersections of small
degree d in projective spaces Pn of large dimension (very roughly, n� 2d). In par-
ticular, these complete intersections have Picard group Z. E. Peyre (cf. [16]) has
extended the formalism of the circle method to complete intersections in other var-
ieties (for example, toric varieties). Once the necessary estimates will be established,
this should provide examples of asymptotics for varieties with moduli and with
Pic�X � of higher ranks. As a reference to the circle method let us mention the papers
by H. Davenport, R. Heath-Brown, C. Hooley on smooth cubic hypersurfaces (cf. [5,
9, 10]), by B. Birch and by W. Schmidt on general complete intersections (cf. [3, 20]).

In this paper we prove asymptotics of rational points of bounded height on var-
ieties which admit moduli and which at the same time are closely related to
(nonreductive) linear algebraic groups. More precisely, we consider smooth
equivariant compacti¢cations of the additive group Gn

a. For n � 2 it can be shown
that all such compacti¢cations are obtained as blow-ups of P2, or Hirzebruch
surfaces in points which are ¢xed under the action of G2

a. Notice that a variety (even
P2) may admit non-isomorphic structures as an equivariant compacti¢cation of Gn

a.
A similar `minimal model program' of equivariant compacti¢cations of Gn

a is a
nontrivial problem already for n � 3 (see [8]).

In this paper we study in detail the example of a blow-up of P2 in r Q-rational
points which are all contained in the line at in¢nity P1 (with the equation
x0 � 0). The moduli space of such surfaces X is M0;r. It is easy to see that X is
a smooth projective equivariant compacti¢cation of G2

a with Pic�X � � Zr�1, trivial
Brauer group and a simplicial cone of effective divisors Leff �X �. The constant
a��X � is equal to 1=�3 � 2r�. Denote by U ' G2

a � P2 the complement to x0 � 0. Then
for Re�s� � 0, the series

Z�U;Kÿ1X ; s� �
X

x2U�Q�
HKÿ1X
�x�ÿs

is absolutely and uniformly convergent and de¢nes a holomorphic function.One of
the main results of this paper is the following:
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THEOREM 1. There exists a function h which is holomorphic in the domain
Re�s� > 5=6 such that

Z�U;Kÿ1X ; s� � h�s�
�sÿ 1�r�1 and h�1� � a��X �t�KX � 6� 0:

A standard Tauberian theorem implies that X satis¢es Peyre's re¢nement of
Manin's conjecture:

COROLLARY 2. We have the following asymptotic formula:

N�U;Kÿ1X ;B� � a��X �t�KX �
r!

B�logB�r�1� o�1��;

as B!1.

In fact, we will prove asymptotics for every L on X such that its class is contained
in the interior of Leff �X �. We will also give estimates for the growth of the function
h�s� in vertical strips in the neighborhood of Re�s� � 1. It is well known that this
implies a more precise asymptotic expansion for the counting function
N�U;L;B�, see Corollary 4.17.

We will address the compacti¢cations of Gn
a (with n > 2) in subsequent papers.

1. Geometry

1.1. GENERALITIES

Let G be an algebraic group and X a smooth projective variety with an action of G.
We denote by PicG�X � the (Abelian) group of isomorphism classes of G-linearized
line bundles onX (cf. [12], Chap. 1, Section 3, Def. 1.6). We shall say that the variety
X is an equivariant compacti¢cation of G if X has an open dense subset U which is
equivariantly isomorphic to G. Well known examples are given by toric varieties
which are equivariant compacti¢cations of tori (algebraic groups isomorphic to
Gn

m over the algebraic closure of F , where Gm � Spec�F �x; xÿ1�� is the multiplicative
group scheme).

In this paper, we are interested in equivariant compacti¢cations of Gn
a, where

Ga � Spec�F �x�� is the additive group scheme (we may call them addic varieties*).
Notice that a variety can be an equivariant compacti¢cation of a group G in many

non-isomorphic ways, as the following example shows.

Example. The projective plane P2 is an equivariant compacti¢cation of G2
a in

(essentially) two non-isomorphic ways. One of the possible actions is the standard
translation action, ¢xing a line P1 at in¢nity. All 1-parameter subgroups are lines.

*Scherzhafter Vorschlag von Yu. I. Manin, Weihnachten 1998.
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The other action has exactly one ¢xed point and generic 1-parameter subgroups are
conics (cf. [8] for more details, esp. Proposition 3.2).

We quote from [8] the following general geometrical facts about equivariant
compacti¢cations of additive groups.

PROPOSITION 1.2. Let X be a smooth projective equivariant compacti¢cation ofGn
a

and D � XnGn
a the boundary.

(1) The boundary D is a pure codimension 1 subvariety.
(2) The Picard group Pic�X � is freely generated by the irreducible components

D0; :::;Dr of D.
(3) The closed cone of e¡ective divisors Leff �X � � Pic�X �R is given by

Leff �X � �
Mr

k�0
RX 0�Dk�:

(4) There exist integers nk > 1 such that the anticanonical class is given by

�Kÿ1X � �
Xr
k�0

nk�Dk�:

1.3. BLOW-UPS

The basic example of an equivariant compacti¢cation of Gn
a is the projective space

Pn, with Gn
a acting on Pn � Proj�F �x0; . . . ; xn�� by translation:

��t1; . . . ; tn�; �x0 : � � � : xn��7!�x0 : x1 � t1x0 : � � � : xn � tnx0�
which stabilizes the `hyperplane at in¢nity' given by the equation x0 � 0. In this
paper we consider blow-ups of the projective space p:X ! Pn in a subscheme
Z � Pn of pure codimension X 2, which is contained in this hyperplane Z0. We
denote by IZ the ideal sheaf of Z in Pn so that the blow-up is de¢ned by the formula
X � Proj�Lj I jZ�. As Z � Z0 is ¢xed by Gn

a, the universal property of the blow-up
implies that the action of Gn

a on Pn lifts uniquely to an action on X .
The geometry of blow-ups of arbitrary subschemes can be very complicated. We

shall assume that IZ is the product of r ideals IZk(1W kW r), where the Zk are
integral subschemes of the hyperplane at in¢nity in Pn.The universal property of
blow-ups says that X is the universal scheme mapping to Pn on which IZ becomes
invertible. An easy lemma in commutative algebra implies that on X , the IZk

are themselves invertible. (Blowing up a product of ideals is the universal way
to make these ideals invertible; it is the same as successively blowing up the ideal
of Z1, then the inverse image of the ideal of Z2, etc.) In particular, p factors as
X ! Xk ! Pn, Xk being the blow-up of Zk in Pn.
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On X , we now have Cartier divisors Dk (which are the inverse images of the Zk)
and line bundles OX �Dk� equipped with a canonical section sDk 2 G�X ;OX �Dk��.
Moreover, sDk and OX �Dk� are pull backs of similar objects on Xk (which we will
denote by the same letters). Note also that OX �ÿDk� � IZk � OX � OX and that
by de¢nition, sDk is obtained by dualizing the pull back of the canonical inclusion
IZk !OPn .

Let D0 be the strict transform of Z0 in X . We have a canonical isomorphism:

p�OX �Z0� ' OX D0 �
Xr
k�1

Dk

 !
: �1:4�

Denoting by sD0 the canonical section ofOX �D0�, the tensor product
Nr

k�0 sDk equals
the pull back on X of the canonical section of O�Z0�.

The Dk's (0W kW r) form a basis of the Picard group of X . We identify the anti-
canonical sheaf in these coordinates:

PROPOSITION 1.5. If Z is smooth, then X is a smooth variety and its anticanonical
sheaf is given by

Kÿ1X � p���n� 1�Z0� 

Or

k�1
O�ÿ�codim�Zk� ÿ 1�Dk�

�
Or

k�0
O��2� dim�Zk��Dk�:

Proof. See Hartshorne [7], Ex. 8.5, p. 188.

1.6. METRIZATIONS ON BLOW-UPS

Let S be the spectrum of a Dedekind ring (which will be the ring of integers in F , or a
localization of it, or a completion) or the spectrum of a ¢eld which is equipped with a
valuation. Let X be a projective scheme over S. For a locally free sheaf E of ¢nite
rank on X , there are several notions of metrizations corresponding to these various
cases. We recall brie£y the de¢nitions.

. If S � Spec�F �, the spectrum of a ¢eld endowed with a valuation, a metric on E
is a family of norms on the ¢bres Ex for x 2 X � �F �, which vary continuously with
x for the F -topology on X � �F �.

. If �F � C, one may ask that the dependence is C1, and ^ independently ^ that the
metrics are Hermitian in the ¢bers.

. If S � Spec�F �, where F is the fraction ¢eld of a discrete valuation ring R, any
£at and projective model �X ; E� over Spec�R� determines a metric according
to which a section is of norm W 1 at a point iff it is integral.
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. If S � Spec�F �, F being a number ¢eld, an adelic metric on E is a collection of
metrics for all Xv=Fv, v being the different places of F . Moreover, one assumes
that there exists a model over Spec�oF � which gives the same metrics except
at a ¢nite number of places. At these exceptional places the ratios of the
two metrics are assumed to be bounded functions on X .

The usual de¢nitions of metrics on subsheafs, quotients, hom's, etc. are compatible
with these notions.

Let X be a quasi-projective £at scheme over S, I a sheaf of ideals on X and
Z � V �I�. Let p : Y ! X be the blow-up of V �I�,Y � Proj�Ln In�. On Y , the
inverse image of Z becomes a Cartier divisorD and the line bundle O�D� is equipped
with a canonical section sD. We want to endow OY �D� with a metric and to give a
formula for the norm of sD at any point of YnjDj. Note that
O�ÿD� � I � OY � OY and that sD is the pull back of the canonical inclusion
I ! OX .

Choose a locally free sheaf E of ¢nite rank on X with a section sZ 2 G�X ; E� whose
scheme of zeroes is Z (existence follows from the quasi-projectivity of X ). This
induces a surjective homomorphism f : E_ ! I and a closed immersion
Y ,!P�E_� such that O�ÿD� � I � OY � OP�1� and the universal quotient map
p�E_ ! OP�1� on Y is the pull back of f. Hence, to metrize OY �D� it is suf¢cient
to endow E_ with a metric. The quotient metric on OP�1� is de¢ned as follows:
for any local section s of OP�1�, we pose ksk�y� � inf t ktk�y�, where the in¢mum
is on the local sections t of p�E_ mapping to s under the canonical surjection
p�f : p�E_ ! OP�1�.

Restrict this to Y . This gives a norm on OP�1�jY � OY �ÿD�. The dual norm on
OY �D� of the canonical section sD is given by the formula

sDk k � sup
s 6�0

hsD; sij j
sk k � sup

t

hsD; p�f�t�i
�� ��

tk k

the last supremum being over the non-zero local sections t of p�E_. But, away fromD
on the blow-up, t comes from a local section of E_ and hsD; p�f�t�i is exactly the
image of t under the surjection f : E_ ! I . Hence, sDk k is equal to the norm of
f, viewed as a homomorphism E_ ! OX , which by the de¢nition of the dual norm
on E_ is exactly the norm of the original section sZ 2 G�X ; E�.

Note the precise meaning of these calculations:

. they are valid if S is any ¢eld with a valuation;

. if S is a discrete valuation ring, arithmetic intersection on the integral model
gives a result which is compatible with the metrized theory on the generic ¢bre
if the metric on E comes from the model;
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. if S is the ring of integers of a number ¢eld, they show that we have an adelic
metric in the sense of Arakelov geometry provided E is equipped with an adelic
metric.

Hence, we have the following theorem:

THEOREM 1.7. Let X be an algebraic variety over a ¢eld F, I � OX a sheaf of ideals
on X and p : Y ! X the blow-up of Y. Let E be a locally free sheaf of ¢nite rank on X
with a section sZ 2 G�X ; E� such that V �I� � div�sZ� as schemes.

Assume E is given a metric. Then the line sheaf OY �D� corresponding to the excep-
tional divisor D on Y has a canonical metric such that the norm of its canonical section
sD at a point y 2 Y is given by the formula:

sDk k�y� � sZk k�p�y��: �1:8�
In particular, if L1; . . . ;Lr are line bundles on X with sections si such that, as a

scheme, Z �T div�si�, we may take E �LLi, sZ � �si�. Assume the Li to be
metrized and endow E with the associated Hermitian metric (resp. with the `1-metric
at non-Archimedean places). The preceding theorem implies that OY �D� may be
metrized in such a way that

sDk k2�y� �
Xr
i�1

sik k2�p�y��: �1:9�

In particular, if X � Pn, Li � OPn �ni�, si corresponds to a homogeneous poly-
nomial gi of degree ni and, if p�y� � �x0 : � � � : xn�,

sDk k2�y� �
Xr
i�1

gi�x0; . . . ; xn�
�� ��2ÿPn

j�0 xij j2
�ni : �1:10�

As a last example, assume that X � Pn and Z is an integral divisor in Z0. Then, the
homogeneous ideal of Z is of the form �x0; f �x1; . . . ; xn�� for some homogeneous
polynomial f of degree dX 1. If p�y� � �1 : x1 : � � � : xn�, then

sDk k2�y� � 1

1�Pn
j�1 xj
�� ��2 � f �x1; . . . ; xn�

�� ��2ÿ
1�Pn

j�1 xj
�� ��2�d : �1:11�

All these formulas have analogues at non-Archimedean places with the sum of the
squares being replaced by their maximum.

1.12. RËSUMË

Let F be a number ¢eld. For 1W kW r, choose a ¢nite family of homogeneous
polynomials gk;j 2 F �x0; . . . ; xn� of degree dk;j generating a prime ideal IZk corre-
sponding to an integral subscheme Zk � Pn. Let p : X ! Pn be the blow-up of
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the ideal I � IZ1 � � � IZk . On X , the inverse image of Zk is a Cartier divisorDk whose
associated line bundle OX �Dk� can be adelically metrized so that the norm of its
canonical section sDk at a point x 2 X mapping to �x0 : � � � : xn� 2 Pn is given by

sDk

 
v�x� � max

j

gk;j�x0; . . . ; xn�
�� ��

v

max� x0j jv; . . . ; xnj jv�dk;j

at ¢nite places v, and by

sDk

 2
v�x� �

X
j

gk;j�x0; . . . ; xn�
�� ��2

v

� x0j j2v � . . .� xnj j2v�dk;j

if v is an Archimedean place.
We shall henceforth assume that Zk is contained in the hyperplane at in¢nity

x0 � 0. Then one may assume that one of the gk;j � x0 and that the others do
not depend on x0. The universal property of the blow-up implies that
p : X ! Pn is an isomorphism over Gn

a ' fx0 6� 0g and that the action of Gn
a on

Pn lifts to an action on X and to an action on the line bundles OX �Dk�.
The following proposition can be deduced, either through explicit computations

with the formulas de¢ning sDk

 , or by an abstract argument involving schemes
over Spec oF .

PROPOSITION 1.13. Assume that the polynomials gk;j have coef¢cients in oF and
that they generate the homogeneous ideal IZk \ oF �x0; . . . ; xn�.* Then, for each place
v of F , the standard compact subgroup Gn

a�ov� of Gn
a�Fv� acts isometrically on O�Dk�.

LetD0 be the strict transform of the hyperplane at in¢nity under p. The line bundle
OX �D0� is the pull back on X of the OPn �1� and we shall equip it with its standard
metric (given by the formulas above, the family of g0;j being reduced to x0). By means
of Equations (1.4), (1.5), we then can metrize the line bundles OX �D0� and Kÿ1X .

2. Heights, Poisson Formula

2.1. PRODUCT FORMULA AND HEIGHTS

We recall some conventions concerning absolute values in number ¢elds.
Over R, we set �j j1 to be the usual absolute value (such that 2j j1� 2!). If p is a

prime number, the absolute value overQp is normalized by p
�� ��

p� 1=p. These absolute
values extend uniquely to any algebraic extension of R or Qp.

If F is a number ¢eld, we denote by Val�F � the set of places (equivalence classes of
valuations) of F . If v is a place of F , we will set mv � evfv, the product of the
rami¢cation index by the local degree at v and we denote by �j jv the mvth power

*This means that the subscheme V ��gk;j�j� of Pn
oF

is projective and flat over oF .
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of the unique extension of �j j1 or �j jp to Fv (according to v being archimedian or not).
Now, for any x 2 F and any valuation v of Q,Y

wjv
xj jw� NF=Q�x�

�� ��
v:

With these normalizations, we have the product formula: for any x 2 F �,Y
v2Val�F �

xj jv�
Y

v2Val�Q�
NF=Q�x�
�� ��

v� 1:

Let X be a projective variety over F and L a metrized line bundle on X . For any
x 2 X �F �, the (exponential, absolute) height of x with respect to the metrized line
bundle L is de¢ned by

HL�x� �
Y

v2Val�F �
sk kv�x�

where s is any F -rational local section of L, de¢ned and nonzero at x. The product
formula implies that the height doesn't depend on the choice of s.

2.2. HEIGHTS ON BLOW-UPS

We keep the notations of the preceding section. Moreover, we identify Gn
a with its

isomorphic inverse image in X under the blow-up p : X ! Pn.
The metrizations above allow us to de¢ne height functions corresponding to

complexi¢ed divisors D�s� � s0D0 � . . .� srDr. Namely, if v is a place of F and
x � �x1; . . . ; xn� 2 Gn

a�Fv�, its exponential local height is de¢ned by

HD�s�;v�x� �
Yr
k�0

sDk

 ÿsk
v �1 : x1 : � � � : xn�:

The global height of a point x 2 Gn
a�AF � is then the product of all local heights. This

gives a pairing

H : PicG�X �C �Gn
a�AF �ÿ!C�

which is multiplicative as a function on PicG�X � and which is invariant under the
action of the compact subgroup

Q
finite v G

n
a�ov� ofGn

a�AF �. Such a pairing had already
appeared in the context of toric varieties.

The invariance of the heights is a crucial technical ingredient in the proofs of
analytic properties of the height zeta functions for toric varieties and for equivariant
compacti¢cations of Gn

a considered in the present paper.
The `height zeta function' is the series

Z�s0; . . . ; sr� �
X

x2Gn
a�F �

HD�s��x�ÿ1:
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Its convergence in some nonempty open subset of Cr�1 is a consequence of the
following (well known) lemma.

LEMMA 2.3 (compare [1], Prop. 1.4). Let V be a projective variety over a number
¢eld F and �Li�1W iW d a ¢nite number of ample metrized line bundles on V. For
x 2 V �F �, de¢ne H�s; x� � Qd

i�1 HLi �x�si . Then there exists an open nonempty subset
O of Rd such that the series

Z�s� �
X

x2X �F �
H�s; x�ÿ1

converges absolutely and uniformly for all s 2 Cd with Re�s� contained in O.
Moreover, any other metrization on the Li's gives the same domain of convergence.
Proof.The usual proof of Northcott's theorem establishes a polynomial bound for

the number of rational points of bounded exponential height. Hence, the height zeta
function of �Pn;O�1�� converges for s� 0. (There is no need to invoke Schanuel's
theorem [19] which gives the precise asymptotics.)

Therefore, there are real numbers ai such that Z�0; . . . ; si; . . . ; 0� converges for
Re�si�X ai. Now, Z�s� converges for any s � �s1; . . . ; sd� 2 Cd such that for each
i, Re�si�X ai.

2.4. HARMONIC ANALYSIS ON THE ADDITIVE GROUP

We recall basic facts concerning harmonic analysis on the group of adelic points
Gn

a�AF � (cf., for example, [22]). For any prime number p, we can view Qp=Zp as
the p-Sylow subgroup of Q=Z. This allows us to de¢ne a local character cp of
Ga�Qp� by setting

cp: xp 7! exp�2pixp�:

At the in¢nite place of Q we put

c1: x1 7! exp�ÿ2pix1�;

(here x1 is viewed as an element in R=Z). The product of local characters gives a
character c of Ga�AQ� and, by composition with the trace, a character of
Ga�AF �. For any a 2 Gn

a�AF � we obtain a character ca of Gn
a�AF � by

x 7!c � trF=Q�ha; xi�:

The choice of c de¢nes a self-duality ofGn
a�AF � (Pontryagin duality). For v 2 Val�F �,

we denote by mv the standard normalized local Haar measures on Gn
a�Fv� and by

m � Qv mv the self-dual measure on Gn
a�AF �. The precise normalization can be found

in (cf. [22] or [11], p. 280); for F � Q, we have mp�Zp� � 1 and m1��0; 1�� � 1.
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For a functionH onGn
a�AF �we denote by Ĥ its Fourier-transform (with respect to

the Haar measure m)

Ĥ : Gn
a�AF � ! C; c 7!

Z
Gn

a�AF �
H�x�c�x� dm�x�;

whenever the integral converges. We shall also use the notation dx for dm�x�.
We will use the Poisson formula in following form (cf. [11], p. 280).

THEOREM 2.5. Let H be a continuous function on Gn
a�AF � such that both H and Ĥ

are integrable and such that the series
P

a2Gn
a�F �H�x� a� converges absolutely and

uniformly when x belongs to any compact subset in Gn
a�AF �=Gn

a�F �. Then, one hasX
x2Gn

a�F �
H�x� �

X
a2Gn

a�F �
Ĥ�ca�:

For s 2 Cr�1 and c 2 Gn
a�AF �, we shall denote by Ĥ�s;c� the Fourier transform of

the height function H�s; ��ÿ1 on Gn
a�AF � at the character c. It is the product of the

local Fourier transforms of the functions Hv�s; ��ÿ1 for all v 2 Val�F �.

PROPOSITION 2.6. With the above notations, for all characters c which are
nontrivial on the standard compact subgroup of Gn

a�AF �, we have Ĥ�s;c� � 0.
Proof. This follows from the invariance of the height under the action of the stan-

dard compact subgroup, see Prop. 1.13.

Consequently, we have a formal identity for the height zeta function:

Z�s� �
X

a2Gn
a�oF �

Ĥ�s;ca�: �2:7�

The following lemma veri¢es the two hypotheses of the Poisson formula 2.5 con-
cerning H.

LEMMA 2.8. There exists a basis �ej� of Cr�1 such that for any s 2 Cr�1 satisfying
Re�hej; si�X 1 and for any compact subset K of Gn

a�AF �=Gn
a�F �, the seriesX

a2Gn
a�F �

H�s; x� a�ÿ1

converges absolutely and uniformly for x 2 K.
Proof. Choose a basis �ej� of Cr�1 such that any line bundle D�s� for s 2 Zr�1

satisfying hej; siX 1 is ample. This is possible because the vector space in Rr�1

spanned by ample divisors contains an open cone. Hence, Lemma 2.3 implies
the existence of a real a > 0 such that the series converges absolutely when
x � 0, uniformly for all s 2 Cr�1 such that Re�hej; si�X a.
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For any x, the function H�s; x� �� is another height function for D�s�, called
`twisted height' in our paper [4], Section 2.4, esp. Proposition 2.4.3. As the conver-
gence of the height zeta function doesn't depend on metrizations, this implies
the convergence for any x. The uniformity for x 2 K follows from the fact that
the height functions can be mutually uniformly bounded.

Now, for the proof of the meromorphic continuation of the height zeta function it
will be suf¢cient to prove that the Ĥ-series on the right-hand side of equation (2.7),
1o) converges for some Re�s0� > a, Re�s0 ÿ sk� > a big enough, and 2o) continues
meromorphically.

2.9. INTEGRABILITY OF LOCAL HEIGHT FUNCTIONS

The aim of this section is to prove a general result concerning the integrability of
local height functions against a measure with singularities.

PROPOSITION 2.10. Let X be a proper smooth variety of dimension d over a ¢eld Fv

which is a ¢nite extension ofR orQp. Fix a ¢nite number of metrized line bundlesLa on
X together with sections sa. Assume that their divisors div�sa� are smooth and that
their union is a divisor D with normal crossings and let U � X nD. Finally, let
o 2 G�U;Od

X=Fv
� be a meromorphic differential form of top degree. We assume that

there are integers la such that the divisor of o equals
P

a ladiv�sa�. Denote by do
the associated measure on U�Fv�.

Then, the integral
R
U�Fv�

Q
a sak kra�x� do converges if and only if for all a,

ra > la ÿ 1.
Proof.Using a partition of unity on X for the Fv-topology, we may assume that X

is a relatively compact open subset O � Fd
v , with local coordinates x1; . . . ; xd and

that the divisor
P

a div�sa� is given by the equation x1 . . . xa � 0 for some integer
0W aW d. The integral is then

IO �
Z
O

Ya
i�1

xij j�ra�i�ÿla�i��v exp

�X
a

ha�x�
�
dx1 . . . dxd

for some functions ha giving the metrics in our local trivialization and which are
therefore continuous and bounded.

Remark that the integral of xj jsv over the unit ball of Fv converges if and only if
s > ÿ1. The Fubini theorem shows that the integral IO converges if and only if
for each i 2 f1; . . . ; ag, ra�i� ÿ la�i� > ÿ1. As any a appears in some chart, the prop-
osition is proved.

2.11. THE LOCAL FOURIER TRANSFORM IN THE ARCHIMEDEAN CASE

When Fv � R or C, we want to show that the local Fourier transform of the height
function as a function of ca decreases rapidly when the norm of a 2 Fn

v grows
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to in¢nity. The proof proceeds by integration by parts, which requires some
estimates.

LEMMA 2.12. Let X be a smooth projective variety over Fv and Z be a smooth closed
subscheme of X. Let @ be a global section of �O1

X �_ 
 IZ, i.e. a derivation on X
vanishing on Z. Denote by p : Y ! X the blow-up of IZ.

(1) Then the derivation @jpÿ1�XnZ� extends uniquely to a derivation on Y.
(2) Let E be a vector bundle on X equipped with a smooth Hermitian metric and s a

global section of E whose divisor is Z. Then the function @ log sk k extends uniquely
to a smooth function on Y.

Proof. Choose local analytic coordinates on X such that Z is de¢ned by
x1 � � � � � xa � 0. Then, Y may be embedded in Paÿ1 � Ad with coordinates
��t1 : � � � : ta�; �x1; . . . ; xd �� and is given there by the equations tixj � tjxi for
i; j 2 f1; . . . ; ag. We consider the chart ta 6� 0. Then, local coordinates on Y are
t1; t2; . . . ; taÿ1; xa; xa�1; . . . ; xd and p : Y ! X is given by xi � tixa if i < a.

On X , the derivation @ has the form

@ �
Xd
i�1

hi
@

@xi
;

for some functions hi 2 �x1; . . . ; xa�. Now, we have to verify that if i < a, @ti is a
regular function on Y . But

@ti � @�xi=xa� � hi�x� 1xa ÿ ha�x� xix2a
� 1

xa
hi�x� ÿ ha�x�ti� � 2 OY

since

hj�x� 2 �t1xa; . . . ; taÿ1xa; xa� � �xa�:

For the statement concerning norms, we may ¢x the coordinates so that
sk k2�x� �Pa

i�1 xij j2. Then,

@ log ksk2 � 1
jx1j2 � � � � � jxaj2

�Xa
i�1

2xihi�x�
�

� 1
jt1j2 � � � � � jta ÿ 1j2 � 1

�Xa
i�1

2ti
hi�x�
xa

�
is regular on Y .

PROPOSITION 2.13. For any compact subset K � Rr�1 over which the function
Hv�s; ��ÿ1 is integrable, and for any integer dX 1, there exists a constant c�d;K� such
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that for any a 2 Cn and any s 2 Cr�1 with Re�s� 2 K,

Ĥv�s;ca�
��� ���W c�d;K� 1� =�s� 

1� ak k
� �d

:

Proof. The 2 preceding lemmas imply that for any multiindex a 2 Nn, the deriva-
tive @a

@xa �log sDk k��x� is bounded on Gn
a�Fv�. Moreover, sDk k tends to 0 at in¢nity.

We thus may integrate by parts d-times.

3. Projective Space

From now on, we work over the ¢eld of rational numbersQ. It will be clear from the
proofs that the case of general number ¢elds is indeed similar.

This section is included to illustrate our approach in the simplest example: we give
yet another proof of asymptotics for the number of rational points of bounded height
on the standard projective space Pn over the ¢eld of rational numbers with the stan-
dard metrization of the line bundle O�1� given by the model Pn

Z at the ¢nite places
and by the L2-norms at the archimedian places.

To keep this section as self-contained as possible, we reprove the estimates needed
without referring to the general estimates of the preceding section.

We will denote by A the ring of ade© les AQ, by p a prime number. We have the
normalized valuations j � jp with jpjp � pÿ1 and the usual absolute value j � j1. If
a 2 Gn

a�A�, we denote by ca the corresponding character via the identi¢cation of
Gn

a�A� with its Pontryagin dual.
We are interested in the height zeta function

Z�s� �
X

x2Gn
a�Q�

H�x�ÿs �3:1�

where H�x� � H1�x�
Q

p Hp�x� with

Hv�x� :� xk kv�
�1�Pn

j�1 xj
�� ��2

v�1=2 if vj1
max�1;maxj jxjjv� if v is finite.

(

The series (3.1) converges absolutely and uniformly to a holomorphic function for
Re�s� � 0. For all s such that both sides converge, we have the Poisson-formula
identity (cf. 2.5)

Z�s� �
X
ca

Ĥ�s;ca�: �3:2�

This identity is the starting point for a meromorphic continuation of Z�s�. We now
compute (resp. estimate) the local Fourier transforms.
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LEMMA 3.3. Let p be a prime number. For all s with Re�s� > n, Hp�s; �� is integrable
on Qn

p and its Fourier transform at the trivial character c0 is given by

Ĥp�s;c0� �
1ÿ pÿs

1ÿ pÿ�sÿn�
: �3:4�

Proof. We decompose the domain of integration Qn
p into subdomains

U�a� � �x � �x1; :::; xn� ; xk kp� pa
	
;

for aX 1 and

U�0� � �x � �x1; :::; xn� ; xk kp W 1
	

Then

Ĥp�s;c0� �
Z
U�0�

H�x�ÿsdx�
X
aX 1

Z
U�a�

H�x�ÿsdx;

� 1�
X
aX 1

pÿas � vol�U�a��:

One has volU�0� � 1 and for aX 1,

vol�U�a�� � panvol�Zn
p n �pZp�n� � pan�1ÿ pÿn�:

For all s with Re�s� > n, the geometric series converges absolutely and we obtain

Ĥp�s;c0� � 1� 1ÿ 1
pn

� �X
aX 1

pÿa�sÿn�;

� 1� 1ÿ 1
pn

� �
� 1
psÿn
� 1
1ÿ pÿ�sÿn�:

Simplifying, we obtain (3.4).

For all a � �a1; :::; an� 2 Zn let S�a� be the set of all primes which divide all aj.

LEMMA 3.5. For all a 2 Zn n f0g, all s with Re�s� > n and all p 62 S�a� we have

Ĥp�s;ca� � 1ÿ pÿs: �3:6�

Proof. As above, we have

Ĥp�s;ca� � 1�
X
aX 1

pÿas
Z
U�a�

ca�x� dx:
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We ¢rst integrate over the set V �a� of x 2 Qn
p such that xk kW pa.Z

V �a�
ca�x� dx � pan

Z
Zn

p

ca=pa�x� dx:

If aX 1, as p doesn't divide all the aj, this is the integral of a nontrivial character on a
compact group, hence 0. For a � 0, we get 1. Therefore, as V �0� � U�0� and
U�a� � V �a� n V �aÿ 1� for aX 1,Z

U�a�
ca�x� dx � 0 for a X 2,

ÿ1 for a =1.

�
This implies the lemma.

LEMMA 3.7. For all e > 0 there exist constants c and d > 0 such that for all s with
Re�s� > n� e and all a 2 Zn n f0g we have the estimate

Y
p2S�a�

Ĥp�s;ca�
������

������W c � �1� ak k�d: �3:8�

Proof. In the integral, we replace ca by 1, s by Re�s� and use the computation in
(3.3). For Re�s�X n� e, we obtain

Ĥp�s;ca�
��� ���� 1

1ÿ pÿe
:

If a is a positive integer, we have the inequalityX
pja

1
pe
� ln�1� a�: �3:9�

This gives us equation (3.8).

We now turn to the estimations of the local Fourier transform for the place at
in¢nity. For the trivial character we can compute the integral explicitly:

LEMMA 3.10. For all s with Re�s� > n, H1�s; �� is integrable on Rn and its Fourier
transform at the trivial character c0 is given by

Ĥ1�s;c0� � pn=2
G��sÿ n�=2�

G�s=2� :

LEMMA 3.11. For all d > 0 and all compacts K in the domainRe�s� > n there exists a
constant c�d;K� such that for all a 2 Zn and all s 2 K we have

Ĥ1�s;ca�
��� ���W c�d;K��1� =�s��� ���d�1� ak k�ÿd
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Proof. By a unitary change of variables, we may assume that a � � ak k; 0; . . . ; 0�.
Thus,

Ĥ1�s;ca� �
Z
Rn
�1� kxk2�ÿs=2 exp�ÿ2pi kak x1� dx

�
Z
R

Z
Rnÿ1
�1� jx1j2 � kx0k�ÿs=2 exp�ÿ2pi kak x1� dx1 dx0

�
Z
R
�1� jx1j2�ÿ�sÿn�1�=2 exp�ÿ2pi kak x1� dx1�

�
Z
Rnÿ1

dy
�1� kyk2�s=2

For any k > 0, the kth derivative of t 7!�1� t2�ÿs is of the form Pk�t��1� t2�ÿsÿk with
Pk a polynomial of degree k whose coef¢cients are polynomials in s. Thus we can
integrate by parts and get for any k an expressionZ

R
�1� t2�ÿ�sÿn�1�=2 exp�ÿ2pi kak t�dt

� 1
�pi kak�k

Z
R

Pk�t�
�1� t2�kÿsÿn�1

2
dt

which imply the lemma.

Remark. It follows from the arguments above that the Fourier transform has poly-
nomial growth in vertical strips.

THEOREM 3.12. The series

Z�s� �
X
ca

Ĥ�s;ca�

converges absolutely and uniformly to a holomorphic function for s with
Re�s� > n� 1. The function Z�s� admits a meromorphic continuation to the domain
Re�s� > n with exactly one simple pole at s � n� 1. The residue at this pole equals

lim
s!n�1

�sÿ �n� 1��Ĥ�s;c0� � lim
s!n�1

�sÿ �n� 1��
Z
Gn

a�AQ�
H�s; x� dx:

Proof. Choose a real number d > n. From the lemmas above, it follows that there
exists d > 0 such that for any compact K 2 n;�1� �, any a 2 Zn n f0g, and any real
d0 > 0, the product of the local Fourier transforms at the character ca converges
to a holomorphic function of s which satis¢es the inequality

Ĥ�s;ca�
��� ���W c�K��1� =�s��� ���d�d0 �1� ak k�ÿd0 ; Re�s� 2 K:
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Hence, the sum over all nontrivial c converges absolutely and locally uniformly to a
holomorphic function in the domain Re�s� > n.

At the trivial character, we have, if Re�s� > n� 1,

Ĥ�s;c0� �
z�sÿ n�G��sÿ n�=2�

z�s�G�s=2� :

This has a simple pole at s � n and extends meromorphically to the domain
Re�s� > n, with no other pole there.

The identi¢cation of the residue and Peyre's Tamagawa constant in [13] is
straightforward, granted the meromorphic continuation of Ĥ�s;c0�.

4. Blow-ups of P2

4.1. PRELIMINARIES

We continue to work over Q and we keep the notations of previous sections.
Let us consider the projective plane P2 with coordinates �x0 : x1 : x2� and its

Zariski open subset U � P2 given by x0 6� 0. Denote by X the blow-up of P2 in
r distinct points Z1; . . . ;Zr contained in the line at in¢nity Z0 � P2 which is given
by x0 � 0.

For all k 2 f1; . . . ; rg, there is a linear form `k 2 Z�x1; x2� with coprime coef¢cients
such thatZk � V�x0; `k�. For k � 1; . . . ; r, we denote byDk the inverse image ofZk in
X and by D0 the strict transform of the line Z0. The variety X is smooth; the anti-
canonical class is given by

�Kÿ1X � � 3�D0� � 2
Xr
k�1
�Dk�:

In the sequel, we shall identify a point x 2 G2
a with the point with homogeneous

coordinates �1 : x� in P2 or with its pre-image in the blow-up. It follows from
the general theory of height functions on blow-ups given in Section 1 that for
all k 2 f1; . . . ; rg, a local height function for the divisor Dk at such a point x is given
by

Hk;p�x� �
max�1; xk kp�

max�1; `k�x�
�� ��

p�

at a ¢nite place p, and by an analogous formula where max�1; �� is replaced by ������������
1� �2p

at the in¢nite place. For D0, we have

H0;p�x� � max�1; xk kp�
Yr
k�1

Hÿ1k;p�x�
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(with the same convention if v � 1). The global height is given by

Hk�x� � Hk;1�x� �
Y
p

Hk;p�x�

and for s � �s0; . . . ; sr� 2 Cr, we de¢ne

H�s; x� :�
Yr
k�0

Hk�x�sk

the global height corresponding to the complexi¢ed line bundle D�s�.
From 2.5, we see that the height zeta function for X has the following formal

`Fourier expansion':X
x2Q2

H�s; x�ÿ1 �
X
a2Z2

Ĥ�s;ca�

We have the decomposition

Ĥ�s;ca� � Ĥ1�s;ca;1� �
Y
p

Ĥp�s;ca;p�:

As in the case of Pn, we compute the local Fourier transforms for almost all places
and estimate them at the remaining bad places.

Let S be the set of primes of bad reduction of the schematic closure of
S

k Zk in P2
Z.

A prime p belongs to S if there exist two linear forms `k and `j such that p divides
det�`k; `j�.

4.2. DECOMPOSITION OF THE DOMAIN

Fix a prime p 62 S. We may omit p from the notations for norms, etc. De¢ne subsets
of Q2

p as follows:

. U�0� � Z2
p;

. if 1W b < a and k 2 f1; . . . ; rg, Uk�a; b� is the set of x 2 Q2
p such that xk k � pa

and `k�x�
�� �� � paÿb;

. if aX 1 and k 2 f1; . . . ; rg, Uk�a� is the set of x 2 Q2
p such that xk k � pa and

`k�x�
�� ��W 1;

. if aX 1, U�a� is the set of x 2 Q2
p such that xk k � pa and all `j�x�

�� �� � pa.

As p 62 S, these sets furnish a partition of Q2
p. This decomposition is well adjusted

to our local heights since they are constant on each subset:

. on U�0�, all Hk's are 1;

. on Uk�a; b�, Hk � pb, the other Hj with jX 1 are 1 and H0 � paÿb;

. on Uk�a�, Hk � pa, the other Hj are 1;

. on U�a�, H0 � pa and all other are 1.
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In other words,

H�s; x� �

1 if x 2 U�0�;
pas0 if x 2 U�a�; aX 1;

pas0�b�skÿs0� if x 2 Uk�a; b�; 1W b < a;

pask if x 2 Uk�a�:

8>>>><>>>>: �4:3�

Table I on p. 91 summarizes this information.

4.4. SOME INTEGRALS OF CHARACTERS

We identify a 2 Z2 with the linear form it de¢nes on G2
a as well as with the character

ca of G2
a�AQ� it determines.

We will say that a character is generic if a is not proportional to any `k. A nontrivial
character is special if it is proportional to some (necessarily unique) `k.

If a is generic, S�a� is the set of primes in S and all primes such that p divides some
determinant det�`k; a�.

If a is special for `k, S�a� is the set of primes in S and all primes such that p divides
some determinant det�`j; a� for j 6� k.

In particular, if pja, then p 2 S�a�.
We now compute the integral of ca over the subsets de¢ned in the previous

subsection, at least in the cases when p 62 S�a�.
Remark that for any a,

R
U�0� ca�x� dx � 1.

LEMMA 4.5 (Trivial character). Let p be a prime not in S. Then,

volUk�a; b� � p2aÿb
�pÿ 1�2

p2
; �4:5a�

volUk�a� � pa
pÿ 1
p

; �4:5b�

volU�a� � p2a
�pÿ 1��p� 1ÿ r�

p2
: �4:5c�

LEMMA 4.6 (Generic character). Let a be a generic character and p 62 S�a�. Then,Z
Uk�a;b�

ca � 0; �4:6a�Z
Uk�a�

ca �
ÿ1 if a=1,
0 else;

�
�4:6b�Z

U�a�
ca �

ÿ1� r if a=1,
0 else;

�
�4:6c�
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LEMMA 4.7 (Special character). Let a a character which is special for `k. If p 62 S�a�
and j 6� k, one hasZ

Uj�a;b�
ca � 0; �4:7a�Z

Uj�a�
ca �

ÿ1 if a=1,
0 else;

�
�4:7b�

Z
Uk�a;b�

ca �
ÿpa pÿ1

p if b= a-1,
0 else;

(
�4:7c�Z

Uk�a�
ca � pa

pÿ 1
p

; �4:7d�Z
U�a�

ca �
ÿ�p� 1ÿ r� if a=1,
0 else;

�
�4:7e�

Proof. We prove the three lemmas simultaneously. By a unitary change of
variables, we may assume that `k�x� � x1. Then one has

Uk�a; b� � pbÿaZ�p � pÿaZ�p

and

Uk�a� � Zp � pÿaZ�p;

hence their volumes are as in formulas (4.5a) and (4.5b).
If p does not divide det�`k; a�, we may change variables and even assume that

a � �0; 1�. Then,Z
Uk�a;b�

ca�x� dx � p2aÿb
pÿ 1
p

Z
Z�p

exp�2piu=pa� du

and the last integral has already been calculated when we studied the case of Pn (end
of proof of Lemma 3.5): one ¢nds 0 if aX 2 and ÿ1=p if a � 1. But a > bX 1, so
a 6� 1. This proves formulas (4.6a) and (4.7a).

Similarly,Z
Uk�a�

ca�x� dx � pa
Z
Z�p

exp�2piu=pa� du

is ÿ1 for a � 1 and 0 else. Formulas (4.6b) and (4.7b) are therefore proved.
We now treat the case of a character a which is special for `k. A unitary change of

variables allows to assume `k�x� � x1 and a � �1; 0�. Then,Z
Uk�a;b�

ca�x� dx � p2aÿb
pÿ 1
p

Z
Z�p

exp�2pix=paÿb�
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is 0 if aÿ b 6� 1 and is equal to

p2aÿa�1
pÿ 1
p
�ÿ1�
p
� ÿpa pÿ 1

p

if b � aÿ 1, as stated in (4.7c). Equation (4.7d) follows fromZ
Uk�a�

ca�x� dx �
Z
Zp�pÿaZ�p

exp�2pix1� dx � pa
pÿ 1
p

:

To compute the volume of U�a�, it is useful to remark that U�a� is pÿa times the
complementary subset in Z2

p of 1� �pÿ 1�r disjoint balls of radius 1=p. Therefore,

volU�a� � p2a
�
1ÿ 1� �pÿ 1�r

p2

�
� p2a

�pÿ 1��p� 1ÿ r�
p2

;

as in formula (4.5c).
If p a, remark that the integral of ca over p

ÿa�Z2
p n pZ2

p� is ÿ1 for a � 1 and 0 for
aX 2. We now need to subtract the integrals over the disjoint subsets Uk�a; b�
and Uk�a�.

For a generic character, one gets 0 if aX 2 and ÿ1� r if a � 1; this establishes
formula (4.6c). Finally, if a is special for `k, one hasZ

U�1�
ca�x� dx � ÿ1� �rÿ 1� ÿ �pÿ 1� � ÿ�p� 1ÿ r�

and
R
U�a� ca � 0 for aX 2, as claimed in (4.7e).

4.8. THE LOCAL FOURIER TRANSFORM AT c0

We still assume p 62 S and compute the local Fourier transform at the trivial char-
acter c0. By the general result 2.10 on Fourier transforms of height functions,
H�s; ��ÿ1 is integrable on Gn

a�Qp� as soon as Re�s0� > 2 and all Re�sk� > 1. We then
have:

Ĥp�s;c0� �
Z
U�0�

H�s; x�ÿ1 dx�

�
Xr
k�1

X
1W b<a

Z
Uk�a;b�

H�s; x�ÿ1 dx�
X1
a�1

Z
Uk�a�

H�s; x�ÿ1 dx

0@ 1A�
�
X1
a�1

Z
U�a�

H�s; x�ÿ1 dx

and we compute each sum separately. The integral over U�0� is 1. Now, for a ¢xed k,
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the integral over all Uk�a; b� is

X
1W b<a

Z
Uk�a;b�

H�s; x�ÿ1 dx � �pÿ 1�2
p2

X
1W b<a

pÿas0pÿb�skÿs0�p2apÿb

� �pÿ 1�2
p2

X1
b�1

pÿb�skÿs0�1�
X1

a�b�1
pÿa�s0ÿ2�

� �pÿ 1�2
p2

X1
b�1

pÿb�skÿs0�1�pÿb�s0ÿ2�
1

ps0ÿ2 ÿ 1

� �pÿ 1�2
p2

1
ps0ÿ2 ÿ 1

X1
b�1

pÿb�skÿ1�

� �pÿ 1�2
p2

1
ps0ÿ2 ÿ 1

1
pskÿ1 ÿ 1

:

The sum over all Uk�a� (k ¢xed) equals

X1
a�1

Z
Uk�a�

H�s; x�ÿ1 dx � pÿ 1
p

X1
a�1

pÿaskpa � pÿ 1
p

1
pskÿ1 ÿ 1

:

Finally, the sum over all U�a� is
X1
a�1

Z
U�a�

H�s; x�ÿ1 dx � �pÿ 1��p� 1ÿ r�
p2

X1
a�1

pÿas0p2a

� �pÿ 1��p� 1ÿ r�
p2

1
ps0ÿ2 ÿ 1

Putting all this together, we have

Ĥp�s;c0� � 1� pÿ 1
p2

1
ps0ÿ2 ÿ 1

Xr
k�1

1
pskÿ1 ÿ 1

�pÿ 1� � p�ps0ÿ2 ÿ 1�ÿ � �
� �pÿ 1��p� 1ÿ r�

p2
1

ps0ÿ2 ÿ 1

� 1� pÿ 1
p2

ps0ÿ1 ÿ 1
ps0ÿ2 ÿ 1

Xr
k�1

1
pskÿ1 ÿ 1

�

� �pÿ 1��p� 1ÿ r�
p2

1
ps0ÿ2 ÿ 1

� 1� pÿ 1
p2

1
ps0ÿ2 ÿ 1

�p� 1ÿ r� �
Xr
k�1

ps0ÿ1 ÿ 1
pskÿ1 ÿ 1

 !

� 1� p2 ÿ 1
ps0 ÿ p2

� pÿ 1
ps0 ÿ p2

Xr
k�1

ps0ÿ1 ÿ pskÿ1

pskÿ1 ÿ 1
: �4:9�
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We remark that if �s0; s1; . . . ; sr� � �3; 2; . . . ; 2�s, corresponding to the multiple
KÿsX of the anticanonical class, this yields

Ĥp�KÿsX ;c0� � 1� p2 ÿ 1
p3s ÿ p2

� r
�pÿ 1��p3s ÿ p2s�
�p3s ÿ p2��p2s ÿ p� :

In particular, for Kÿ1X , we have

Ĥ�Kÿ1X ;c0� � 1� p2 ÿ 1
p3 ÿ p2

� r
pÿ 1
p3 ÿ p2

p2 ÿ p
pÿ 1

� 1� r� 1
p
� 1
p2
� 1

p2
#X �Fp�;

the expected local density at p.

4.10. THE LOCAL FOURIER TRANSFORM AT A GENERIC CHARACTER

Let a be a generic character and p 62 S�a�. In that case, the summation is easier. The
integrals over Uk�a; b� are 0, as are the integrals over Uk�a� or U�a� if aX 2. There-
fore

Ĥ�s;ca� � 1ÿ
Xr
k�1

pÿsk � �rÿ 1�pÿs0 : �4:11�

For KÿsX , this specializes to

Ĥ�KÿsX ;ca� � 1ÿ rpÿ2s � �rÿ 1�pÿ3s:

4.12. THE LOCAL FOURIER TRANSFORM AT A SPECIAL CHARACTER

If a is special for `k and p 62 S�a�, it behaves as if it were generic for the other `j.
Besides U�0�, U�1� and Uj�1� for j 6� k, remain the integrals over Uk�a; aÿ 1� for
aX 2 and the integrals over U�a� for aX 2.

Ĥ�s;ca� � 1ÿ
X
j 6�k

pÿsj � �rÿ pÿ 1�pÿs0�

�
X1
a�1

pa
pÿ 1
p

pÿask ÿ
X
aX 2

pa
pÿ 1
p

pÿas0ÿ�aÿ1��skÿs0�

� 1ÿ
X
j 6�k

pÿsj � �rÿ pÿ 1�pÿs0�

� pÿ 1
p

1
pskÿ1 ÿ 1

ÿ pÿ 1
p

pskÿs0
pÿsk�1

pskÿ1 ÿ 1

� 1ÿ
X
j 6�k

pÿsj � �rÿ pÿ 1�pÿs0 � �pÿ 1��1ÿ p1ÿs0� 1
psk ÿ p

: �4:13�
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For KÿsX , one has

Ĥ�KÿsX ;ca� � 1ÿ �rÿ 1�pÿ2s � �rÿ pÿ 1�pÿ3s � �pÿ 1� 1ÿ p1ÿ3s

p2s ÿ 1
:

4.14. BAD REDUCTION, GENERAL ESTIMATES

If p 2 S�a�, then the previous analysis doesn't say anything about the behaviour of
Ĥ�s;ca�. However, for any compact contained in the domain of integrability of
the height function, there is a uniform estimate

��Ĥp�s;ca�
��WC, where the constant

C doesn't depend on p 2 S. For p 2 S�a� n S, we replace ca by 1 and insert the esti-
mates for the trivial character. If s0 X 3ÿ e and sk X 2ÿ e for 1W kW r, we have
an estimate bigljHp�s;ca� ÿ 1

��W cpÿe, henceY
p2S�a�

Ĥp�s;ca�
��� ���WC#S

Y
p2S�a�nS

�1� cpÿe�WC0�1� ak k�k

for some constant C0 and some k > 0. Indeed, if p 2 S�a� n S, then p dividesQ
j det�`j; a�, where j goes through all integers in f1; . . . ; rg if a is generic, and avoids

k if a is special for `k. This is a polynomial expression in a and we conclude using
inequality (3.9).

4.15. MEROMORPHIC CONTINUATION

We split the sum over all characters in r� 2 parts: the trivial character is treated
separately; then the generic characters; then the characters which are special for
`k, k varying from 1 to r:X

a
Ĥ�s;ca� � Ĥ�s;c0� �

X
a generic

Ĥ�s;ca� �
Xr
k�1

X
a special for `k

Ĥ�s;ca�:

Let Z0, Zgen and Zk (for 1W kW r) be the functions de¢ned by the corresponding
series. We will ¢x some e > 0 and consider only s in the open set O of Cr�1 de¢ned
by the inequalities Re�s0� > 5

2� e and Re�sk� > 3
2� e for 1W kW r.

If a is a generic character, the formula (4.11) shows that the Euler productY
p62S�a�[f1g

Ĥp�s;ca�

converges absolutely to a holomorphic function in O which is bounded indepen-
dently of a. Granting the estimates at in¢nity 2.13 and for the places of bad reduction
p 2 S�a� given in Section 4.14, the functions Ĥ��;ca� are holomorphic in this domain
and satisfy for any k > 0 a uniform inequality��Ĥ�s;ca�

��WC�k��1� sk k�n�k��1� ak k�ÿk
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for some constants C�k� and n�k�. Choosing k > n ensures that Zgen extends to a
holomorphic function in O which has polynomial growth in vertical strips.

If a is special for `k, p 62 S�a� and s 2 O, we can estimate from formula (4.13)

Ĥp�s;ca� � �1� p1ÿsk��1�O�pÿ1ÿe��:
Using again the estimates for primes p 2 S�a� and p � 1 imply that

z�sk ÿ 1�Ĥ�s;ca� �
Y
p

Ĥp�s;ca��1ÿ p1ÿsk�

extends to a holomorphic function on O, with the following growth property:��z�sk ÿ 1�Ĥ�s;ca�
��WC�k��1� sk k�n�k��1� ak k�ÿk:

If we choose k > 1, we get that there exists a holomorphic function hk onOwhich has
polynomial growth in vertical strips such that Zk�s� � hk�s�z�sk ÿ 1�.

And ¢nally, for the trivial character, we have absolute convergence of the Euler
product for Re�s0� > 3 and Re�sk� > 2 for 1W kW r. In O, it follows from
Equation (4.9) that for any p 62 S,

Ĥp�s;c0� � �1� p2ÿs0�
Yr
k�1
�1� p1ÿsk��1�O�pÿ1ÿe��:

In the same way as before, we deduce the existence of a holomorphic function h0 onO
which has polynomial growth in vertical strips such that

Z0�s� � h0�s�z�s0 ÿ 2�z�s1 ÿ 1� � � � z�sr ÿ 1�:
Moreover, h0 is the product of an absolutely convergent Euler product and of a
factor at in¢nity which doesn't vanish on O \ Rr�1. Hence, h0 doesn't vanish on
O \ Rr�1, and h0�3; 2; . . . ; 2� 6� 0.

Finally, we have proven the existence of holomorphic functions h, h0; . . . ; hr on O,
which have polynomial growth in vertical strips, such that Z has a meromorphic
continuation given by

Z�s� �h0�s�z�s0 ÿ 2�z�s1 ÿ 1� � � � z�sr ÿ 1��

�
Xr
k�1

hk�s�z�sk ÿ 1� � h�s�:

The standard estimates (due to Rademacher, see [17]) for the growth of the
Riemann zeta function in vertical strips now imply that, away from poles, Z�s�
has polynomial growth in vertical strips.

Therefore, we have proven the following theorem:

THEOREM 4.16. The height zeta function Z�s� converges in the domain Re�s0� > 3,
Re�sk� > 2. There exists a holomorphic function g in the domain Re�s0� > 5

2,
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Re�sk� > 3
2 such that

Z�s� � g�s� 1
�s0 ÿ 3��s1 ÿ 2� . . . �sr ÿ 2�

and g�Kÿ1X � 6� 0. Moreover, g has polynomial growth in vertical strips.

COROLLARY 4.17. There exists a polynomial PX of degree r and a real number
d > 0 such that the number of points of G2

a�Q� � X �Q� of anticanonical height
WB satis¢es

N�G2
a;K

ÿ1
X ;B� � BPX �logB� �O�B1ÿd�:

Moreover, if t�KX � denotes the Tamagawa number, the leading coef¢cient of PX is
equal to

1
r!

t�KX �
3 � 2r ;

as predicted by Peyre's re¢nement of Manin's conjecture.

Table I
U�0� Uk�a; b� Uk�a� U�a�

Volume 1 p2aÿb �pÿ1�
2

p2 pa pÿ1
p p2a �pÿ1��p�1ÿr�p2

H0 1 paÿb 1 pa

Hj�j 6� k� 1 1 1 1

Hk 1 pb pa 1

H�s; �� 1 pas0�b�skÿs0� pask pas0

Integrals of a generic character ca

a � 1 1 1 ÿ1� r

aX 2 1 0 0 0

Integrals of a character ca special for `j; j 6� k

a � 1 1 ÿ1 ÿ�p� 1ÿ r�
aX 2 1 0 0 0

Integrals of a character ca special for `k

a � 1 1 pa pÿ1
p �p� 1ÿ r�

aX 2 1 pa pÿ1
p 0

b � aÿ 1 ÿpa pÿ1
p

b < aÿ 1 0
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Remarks. (1) Our theorem implies a similar asymptotic formula for arbitrary line
bundles L, provided their class belongs to the interior of the cone of effective
divisors.

(2) It is curious to note that we now have asymptotics for blow-ups of P2 in any
number of points on a line, and in three points in general position, while the
asymptotics for blow-ups of P2 in 4 points in general position are still unknown.

(3) The (numerical) intersection pairing on X is given by the following formulae
whose proof we omit. If j 6� k 2 f1; . . . ; rg, we have Dj �Dk � 0. For any
j 2 f1; . . . ; rg, D0 �Dj � 1 and D0 �D0 � 1ÿ r. This implies that the degree of
Kÿ1X on D0 is �3D0 � 2D1 � � � � � 2Dr� �D0 � 3�1ÿ r� � 2r � 3ÿ r. Similarly, the
degree of Kÿ1X on Dj is equal to 1. Schanuel's theorem implies that if 1W kW r,
the number of points of anticanonical height WB located on Dk (1W k) grows
as B2, and that for rX 3, the anticanonical height is bounded on D0. Therefore,
the subvarieties D0; . . . ;Dr are really `accumulating' rational points.
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