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INTRODUCTION

In the past decade there has been much interest in establishing
asymptotics for the number of points of bounded height on algebraic
varieties defined over number field. Manin and Batyrev [1] have for-
mulated conjectures describing such asymptotics in geometrical terms.
These conjectures have been further refined by Peyre in [8].

More precisely, let X be a smooth projective algebraic variety defined
over a number field F and H: X(F ) � R>0 an exponential height function
on the set of rational points of X defined by some metrized ample line
bundle L. One wants to relate the asymptotic behaviour of the counting
function

N(U, L, B)=*[x # U(F ); H(x)�B]
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to geometric invariants of X, such as the cone of effective line bundles and
the (anti-) canonical line bundle of X. Here, U is a sufficiently small Zariski
dense open subset; it is the complement of possible ``accumulating sub-
varieties.'' If X is a Fano variety and L=K &1

X , one expects that

N(U, K &1
X , B)t

3(X)
(r&1)!

B(log B)r&1

where r=rkPic(X) and 3(X) is the product of three numbers, a Tamagawa
number which measures the volume of the closure of rational points in the
adelic points X(F )/X(AF) with respect to the metrization, a rational num-
ber defined in terms of the cone of effective divisors, and the order of the
non-trivial part of the Brauer group of X.

Such a description cannot hold universally (see the example by Batyrev
and Tschinkel [2]), but there are two classes of algebraic varieties where
it does hold, those for which the circle method in analytic number theory
applies and those possessing many symmetries, such as an action (with a
dense orbit) of a linear algebraic group. The circle method is concerned
with complete intersections of small degree and small codimension in pro-
jective space. They have moduli, but only a few projective embeddings; the
Picard group is Z. As a reference, let us mention the papers by Birch [4]
and Schmidt [9]. The other approach leads, via harmonic analysis on the
adelic points of the corresponding group, to a proof of conjectured
asymptotic formulas for toric varieties (see [3]) or for generalized flag
varieties (using Langlands' work on Eisenstein's series, see [6]). These
have Picard groups of higher ranks but no deformations due to the rigidity
of reductive groups.

In this paper we treat certain equivariant compactifications of vector
groups. In a previous paper [5] we had established asymptotic formulas
for blowups of P2 in any number of points on a line. Here we work out the
case of blow ups of a projective space Pn of dimension at least 3 in a
smooth codimension 2 subvariety contained in a hyperplane. It should be
clear to the reader that these varieties admit deformations (they are
parametrized by an open subset of an appropriate Hilbert scheme).

More precisely, let f # Z[x1 , ..., xn] be a homogeneous polynomial of
degree d and X � Pn=Proj(Z[x0 , ..., xn]) the blowup of the ideal
generated by (x0 , f ). Suppose that the hypersurface defined by f in Pn&1

C

is smooth and let U&An be the inverse image in X of An/Pn. Then, XC

is a smooth projective variety, with Picard group Z2 and trivial Brauer
group (recall that the Brauer group is a birational invariant for smooth
projective varieties). Moreover, XC is an equivariant compactification of
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Gn
a . There is a natural metrization on K &1

X (recalled below) which allows
us to define the height function and the height zeta function,

Z(U, K &1
X , s)= :

x # U(Q)

HKX
&1 (x)&s.

The series converges absolutely for Re(s)>>0. Our main theorem is:

Theorem 1. There exists a function h which is holomorphic in the
domain Re(s)>1&1�2n such that

Z(U, K &1
X , s)=

h(s)
(s&1)2 and h(1)=3(X){0.

A standard Tauberian theorem implies that X satisfies Peyre's refinement
of Manin's conjecture:

Corollary 2. We have the asymptotic formula

N(U, K &1
X , B)t3(X) B log(B)

as B tends to infinity.

In fact, we will prove asymptotics for every L on X such that its class
is contained in the interior of the effective cone 4eff (X). Moreover, we will
prove estimates for the growth of Z(s) in vertical strips in the
neighbourhood of Re(s)=1. It is well known that this implies a more
precise asymptotic expansion for the counting function N(U, L, B); see
Theorem 4.4 and its corollary at the end of the paper.

1. GEOMETRY AND HEIGHTS

Let f # Z[x1 , ..., xn] be a homogeneous polynomial of degree d with
co-prime coefficients and ?: X � Pn the blowup of the ideal (x0 , f ) in
Pn=Proj(Z[x0 , ..., xn]). We denote by Zf the hypersurface defined by f in
Pn&1. Throughout the paper we assume that Zf, C is smooth, irreducible,
and doesn't contain any hyperplane. In other words, n�3 and d�2. The
universal property of blowups implies that the scheme X is an equivariant
compactification of the additive group Gn

a=Spec(Z[x1 , ..., xn]).
Denote by D1 the exceptional divisor in X and by D0 the strict transform

of the divisor x0=0 in Pn. Let U&Gn
a be the inverse image of Gn

a under
?. We identify rational points in U with their image in the affine space
Gn

a /Pn.
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If s # C2, denote D(s)=s0[D0]+s1[D1] # Pic(X)� Z C.
The following proposition summarizes the geometric facts needed in the

following.

Proposition 1.1. The classes of the divisors D0 and D1 form a basis of
Pic(X). For s=(s0 , s1) # Z2, the divisor class D(s) is effective iff s0�0 and
s1�0. The variety XQ is smooth; its anticanonical line bundle has class
D(n+1, n).

Proof. See [5, Proposition 1.3 and Proposition 1.6] or [7, Chap. II,
Sect. 8]. K

We now define height functions on X. We denote by Val(Q) the set of
places of Q; it is naturally identified with the set [2, 3, 5, ..., �] consisting
of infinity and of all prime numbers. If p is a prime number and
x # Gn

a(Qp), let &x&p=max(|x1|p , ..., |xn |p) and define the functions HD1 , p

and HD0 , p by

HD1 , p (x)&1=max \ 1
max(1, &x&p)

,
| f (x)|p

max(1, &x&p)d+ (1.2)

HD0 , p (x)&1=
HD1 , p (x)

max(1, &x&p)
. (1.3)

At the archimedian place of Q define the local height functions by replacing
maximums by the square root of the sum of squares. For any place v of Q
and any s=(s0 , s1) # C2 we set

Hv (s; x)=HD0 , v (x)s0 HD1 , v (x)s1. (1.4)

Finally, we define a global height pairing

H: Pic(X)C _Gn
a(AQ ) � C*, H(s; x)= `

v # Val(Q)

Hv (s; xv). (1.5)

Proposition 1.6. If L # Pic(X), the function x [ H(L; x) on Gn
a(Q) is

an exponential height in the sense of Weil.

Proof. See [5, (1.12), (1.13), and (2.2)]. K

The height zeta function is then defined by the series

Z(s)= :
x # Gn

a(Q)

H(s; x)&1. (1.7)

It converges a priori for all s # C2 such that D(Re(s)) is sufficiently ample.
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Let �=>v �v : Ga(AQ ) � C* be the standard additive character of AQ ;
it is trivial on Q. If a # Qn, we define

�a (x)=�((a, x) ).

We use the standard self-dual Haar measure dx on Gn
a(AQ ). For any

a # Qn, define the Fourier transform

H� (s; �a )=|
Gn

a(AQ)
H(s; x)&1 �a (x) dx.

It is the product of the local Fourier transforms H� v (s; �a ).
For s # C2 such that both sides converge absolutely, we have the identity

Z(s)= :
a # Zn

H� (s; �a ). (1.8)

This is a consequence of the usual Poisson formula and the invariance of
the height pairing under the standard compact subgroup of Gn

a(AQ ); see
[5, the end of Section 2].

In the following sections we determine the domain of absolute con-
vergence of the right-hand side and prove that Z(s) admits a meromorphic
continuation beyond this domain.

2. THE LOCAL FOURIER TRANSFORM AT
THE TRIVIAL CHARACTER

We denote by S the minimal set of primes such that Zf /Pn&1
Z is

smooth over Spec Z[S&1]. Let p be a prime number. When no confusion
can arise we shall omit the index p from norms and absolute values.

2.1. Decomposition of the Domain. We define subsets of Qn
p as follows:

�� U(0)=Zn
p ;

�� if 0<;<:, U1 (:, ;) is the set of x # Qn
p such that &x&= p: and

| f (x)|= pd:&;;
�� if :�1, U1 (:) is the set of x # Qn

p such that &x&= p: and
| f (x)|�p(d&1) :;

�� if :�1, U(:) is the set of x # Qn
p such that &x&= p: and

| f (x)|= pd:.
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The local height function is constant on each of these subsets. Namely,

�� if x # U(0), HD0 , p=HD1 , p=1;

�� if x # U1 (:, ;), HD0 , p= p:&; and HD1 , p= p;;

�� on U1 (:), HD0 , p=1 and HD1 , p= p:;

�� finally, if x # U(:), HD0 , p= p: and HD1 , p=1.

2.2. Volumes. Denote

{p ( f )=\1&
1
p+

*Zf (Fp)
pn&2 .

The Weil conjectures proved by Deligne imply that {p ( f )=1+O(1�p). In
a much more elementary way, it follows from Lemma 3.9 below that {p ( f )
is bounded as p varies.

Lemma 2.3. For p � S, we have

vol(U(0))=1 (2.3a)

vol(U1 (:, ;))=
p&1

p
{p ( f ) pn:&; (2.3b)

vol(U1 (:))={p ( f ) p(n&1) : (2.3c)

vol(U(:))=(1& p&n& p&1{p ( f )) pn:. (2.3d)

Proof. For ;�1, let 0(;) be the set of x # Zn
p such that &x&=1 and

| f (x)|�p&;. By definition,

vol(0(;))= p&n;p;&1 ( p&1) *Zf (Z�p;Z).

As Zf is smooth of pure dimension n&2 over Zp , Hensel's lemma implies that

*Zf (Z�p;Z)= p(;&1)(n&2)*Zf (Fp).

Consequently,

vol(0(;))=( p&1) p&;&1 *Zf (Fp)
pn&2 ={p ( f ) p&;.

As U1 (:)= p&:0(:), we have

vol(U1 (:))={p ( f ) p(n&1) :.

Now,

U1 (:, ;)= p&:U1 (0, ;)= p&: (0(;)&0(;+1)),
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therefore

vol(U1 (:, ;))=
p&1

p
{p ( f ) pn:&;.

Finally, U(:)= p&: (Zn
p "( pZn

p _ 0(1))), hence

vol(U(:))=(1& p&n& p&1{p ( f )) pn:. K

Proposition 2.4. Assume that p � S. Then,

H� p (s; �0)=H� P n, p (s0)+{p ( f )
ps0&n& ps1&n

( ps0&n&1)( ps1&n+1&1)
,

where

H� P n, p (s0)=
1& p&s0

1& pn&s0

denotes the Fourier transform (with respect to the trivial character �0) of the
local height function of Pn for the tautological line bundle at s0 .

Proof. By definition,

H� p (s; �0)=|
Qn

p

H(s; x)&1 dx

=|
U(0)

+ :
1�;<:

|
U1(:, ;)

+ :
1�:

|
U1(:)

+ :
1�:

|
U(:)

.

(For brevity, the integrand H(s; x)&1 is omitted in integral signs.) We com-
pute these sums separately. The integral over U(0) is equal to 1. Then

:
1�;<:

|
U1(:, ;)

=
p&1

p
{p ( f ) :

1�;<:

p&:s0p&;(s1&s0)p:n&;

=
p&1

p
{p ( f ) :

�

;=1

p&;(s1&s0+1) :
�

:=;+1

p&:(s0&n)

=
p&1

p
{p ( f ) :

�

;=1

p&;(s1&s0+1)p&;(s0&n) 1
ps0&n&1

=
p&1

p
{p ( f )

1
ps0&n&1

:
�

;=1

p&;(s1&n+1)

=
p&1

p
{p ( f )

1
ps0&n&1

1
ps1&n+1&1

.
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Concerning the integrals over U1 (:), we have

:
1�:

|
U1(:)

={p ( f ) :
�

:=1

p&:s1p(n&1) :={p ( f )
1

ps1&n+1&1
.

Finally,

:
1�:

|
U(:)

=(1& p&n& p&1{p ( f )) :
�

:=1

p&s0:pn:

=(1& p&n& p&1{p ( f ))
1

ps0&n&1
.

Adding all these terms gives

H� p (s; �0)=1+(1& p&1) {p ( f )
1

ps0&n&1
1

ps1&n+1&1

+{p ( f )
1

ps1&n+1&1
+(1& p&n& p&1{p ( f ))

1
ps0&n&1

=1+(1& p&n)
1

ps0&n&1

+{p ( f ) \(1& p&1)
1

ps0&n&1
1

ps1&n+1&1
+

1
ps1&n+1&1

& p&1 1
ps0&n&1+

=H� P n, p (s0)+ p&1{p ( f )
p&1+ ps0&n+1& p& ps1&n+1+1

( ps0&n&1)( ps1&n+1&1)

=H� P n, p (s0)+ p&1{p ( f )
ps0&n+1& ps1&n+1

( ps0&n&1)( ps1&n+1&1)

=H� P n, p (s0)+{p ( f ) pn&1 p&s1& p&s0

(1& pn&s0)(1& pn&1&s1)
.

3. THE LOCAL FOURIER TRANSFORM AT
A NONTRIVIAL CHARACTER

In this subsection we evaluate the local Fourier transform at p for a non-
trivial character �a . Let S(a) be the union of S and of the set of primes p
such that a # pZn. We assume that p � S(a).
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Recall that Zf /Pn&1
Z denotes the subscheme defined by f and define

Zf, a=Zf & Ha , where Ha is the hyperplane of Pn&1 defined by a. Finally,
let Zt

f, a (resp. Znt
f, a) be the locus of points in Zf, a where the intersection

Zf & Ha is transverse (resp., is not transverse). By assumption, Zf and Ha

are smooth over Zp .
Let I(:, ;) be the integral of �a over the set of x # Qn

p such that &x&= p:

and | f (x)|�pd:&;. Then, according to our partition of Qn
p , we have

H� p (s; �a )=1+ :
�

:=1

:
:&1

;=0

p&:s0p&;(s1&s0) |
| f (x)| = pd:&;
&x&= p:

�a

+ :
�

:=1

p&:s1 |
| f (x)| �p:(d&1)
&x&= p:

�a

=1+ :
�

:=1

:
:&1

;=0

p&:s0p&;(s1&s0) (I(:, ;)&I(:, ;+1))

+ :
�

:=1

p&:s1I(:, :)

=1+ :
�

:=1

p&:s0I(:, 0)

&( ps1&s0&1) :
�

:=1

:
:

;=1

p&:s0p&;(s1&s0)I(:, ;).

Lemma 3.1. If t # Qp , the mean value over Zp* of �(t } ) is equal to

1 if t # Zp ;
�Z*p

�(tu) du

�Z*p
du

={&1�( p&1) if vp (t)=&1;

0 if vp (t)�&2.

Proof. Indeed, we have

|
Z*p

�(tu) du=|
Zp

�(tu) du&|
pZp

�(tu) du

=|
Zp

�(tu) du&
1
p |

Zp

�( ptu) du
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The integral of a nontrivial character over a compact group is 0, hence this
integral equals 0 if t � p&1Zp , equals &1�p if t # p&1Zp"Zp , and equals
1&1�p if t # Zp . This proves the lemma. K

Using the change of variables x= p&:yu with &y&=1 and some fixed
u # Zp*, we have

I(:, ;)= pn: |
| f ( y)|�p&;
&y&=1

�( p&:(a, y) u) dy.

We can now integrate over all u # Zp* , use Lemma 3.1, and obtain

I(:, ;)= pn: |
| f (y)|�p&;
&y&=1

�Z*p
�( p&:(a, y) u)

�Z*p
du

dy

1 if (a, y) # p: Zp

= pn: |
| f (y)|�p&;
&y&=1 {&1�( p&1) if (a, y) # p:&1Zp& p:Zp= dy

0 else

= pn: | | f (y)|�p&;

|(a, y) |�p&:
&y&=1

p
p&1

dy&| | f (y)|�p&;

|(a, y) | �p1&:
&y&=1

1
p&1

dy.

This implies the following formula:

I(:, ;)=pn: \ p
p&1

vol(&x&=1; p; | f (x); p: | (a, x) )

&
1

p&1
vol(&x&=1; p; | f (x); p:&1 | (a, x) )+ . (3.2)

Lemma 3.3. If 1�;�:, one has

vol(&x&=1; p; | f (x); p: | (a, x) )= p&:p(2&n) ; \1&
1
p+ *Zf, a (Z�p;Z).

If 0=;<:, then

vol(&x&=1; p: | (a, x) )=(1& p1&n) p&:.
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Proof. Denote by L(:, ;) the set of x # Zn
p such that

&x&=1, p; | f (x), and p: | (a, x) .

To compute the volume of L(:, ;), we shall split it under all residue classes
modulo p;.

Fix ! # Zn
p such that &!&=1, p; | f (!), and p; | (a, !) . We compute the

volume of the intersection of L(:, ;) with the residue class of ! modulo p;.
If x=!+u, the equations for u are written

p; | u and (a, u) =&(a, !) (mod p:).

Hence, the intersection of L(:, ;) with the residue class of ! has volume

p&: ( p&;)n&1.

As there are

( p;& p;&1) *Zf, a (Z�p;Z)

such residue classes modulo p;, the lemma is proved. K

In particular,

I(:, ;)=0 if 1�;<:. (3.4)

Moreover, if :�2,

vol(&x&=1; p: | f (x); p:&1 | (a, x) )

=
1
p

vol(&x&=1; p:&1 | f (x); p:&1 | (a, x) )

=
1
p

p(1&:)(n&1) \1&
1
p+ *Zf, a (Z�p:&1 Z).

Therefore, when :�2, Eq. (3.2) gives

I(:, :)= p:*Zf, a (Z�p: Z)& pn&2p:&1*Zf, a (Z�p:&1Z).

If :=1, one has

vol(&x&=1; p | f (x))=\1&
1
p+ p1&n*Zf (Z�pZ)

and

I(1, 1)= p*Zf, a (Z�pZ)&*Zf (Z�pZ).
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We had computed in [5, Proof of Lemma 3.5] the integral

I(:, 0)=|
&x&= p:

�a ={&1
0

if :=1;
if :�2.

Now we replace all terms I(:, ;) in the equation preceding Lemma 3.1 by
their value and obtain the formula

H� (s; �a )=1& p&s0+( ps1&s0&1) p&s1*Zf (Fp)

&( ps1&s0&1)(1& pn&s1&2) :
�

:=1

p&:(z1&1)*Zf, a (Z�p:Z).

Lemma 3.6. For all :�1,

*Zf, a (Z�p:Z)�p(n&3)(:&1)*Z t
f, a(Z�pZ)+ p (n&2)(:&1)*Znt

f, a(Z�pZ).

Proof. The inequality is trivially true for :=1. We prove it for any :
by induction: to lift a point in Zf, a (Z�p: Z) to a point in Zf, a (Z�p:+1Z),
one needs to solve two equations in u # Fn

p ;

({f (x), u)#p&:f (x), (a, u)#p&:(a, x) (mod p).

A point in Zf, a (Z�p:Z) which reduces to a point in Z t
f, a modulo p has

pn&3 lifts in Zf, a (Z�p:+1Z). On the other hand, a point reducing to a
point in Znt

f, a has pn&2 or 0 lifts according to the two linear equations being
compatible or not. This implies the lemma. K

Propostion 3.7. The subvariety Zf, a has dimension n&3. If not empty,
Znt

f, a is a closed subscheme of Zf, a of dimension 0 and of bounded degree.
There exists a constant C, independent of a and p, such that

*Zt
f, a(Z�pZ)�Cpn&3, *Znt

f, a(Z�pZ)�C.

As a corollary, one gets:

Corollary 3.8. There exists a constant C such that for all : and
p � S(a),

*Zf, a (Z�p:Z)�Cp(n&3) :+Cp(n&2)(:&1).

Proof of Proposition 3.7. The set Zf, a is defined by the two equations
f (x)=(a, x) =0. Fix the coordinates x1 , ..., xn so that a is the first vector.
Up to a constant, one may write

f (x)=xd
1+ g1 (x2 , ..., xn) xd&1

1 + } } } + gd&1x1+ gd (x2 , ..., xn)
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for some homogeneous polynomials gi of degree i. Then, denoting
x=(x1 , x$), Znt

f, a is defined by the equations

x1= gd (x$)=�2 gd (x$)= } } } =�n gd (x$)=0.

On Zf, a , �1 f (0, x$)= gd&1 (x$), and on Znt
f, a /Zf, a , �i f (0, x$)=�i gd (x$).

As Zf is smooth, gd&1 (x$) doesn't vanish on Znt
f, a which must therefore be

either empty or of dimension 0. Its degree cannot exceed d(d&1)n&1. The
bound on the number of Fp -rational points is a consequence of the follow-
ing (certainly well-known) easy lemma. K

Lemma 3.9. Let k=Fq be a finite field and X a closed subscheme of Pn
k

of dimension d. Then

*X(Fq)�Pd (Fq) deg X.

Proof. We use induction on d. For d=0 the result is clear. Then, one
can assume that X is reduced, irreducible, and not contained in any hyper-
plane. For any k-rational hyperplane H/Pn, X & H is a closed subscheme
of H of dimension d&1 and of degree �deg X. By induction,

*(X & H)(Fq)�*Pd&1 (Fq) deg X.

Finally, any point of X(Fq) is contained in exactly *Pn&1 (Fq) rational
hyperplanes in Pn, so that

*X(Fq) *Pn&1 (Fq)�Pd&1 (Fq) *Pn (Fq) deg X.

As n�d, this implies

*X(Fq)�
qn+1&1

qn&1
qd&1
q&1

deg X�Pd (Fq) deg X. K

4. THE HEIGHT ZETA FUNCTION

From now on we fix some =>0 and consider only s in the subset 0 of
C2 defined by the inequalities Re(s0)>n+ 1

2+= and Re(s1)>n& 1
2+=.

Proposition 4.1. There exists a holomorphic function g on 0 which has
polynomial growth in vertical strips such that

H� (s; �0)= g(s)
1

(s0&n&1)(s1&n)
.
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Moreover, g(n+1, n)={(X), the Tamagawa number of X corresponding to
our chosen metrization of K &1

X =(n+1) D0+nD1 .

Proof. Indeed, we see from Proposition 2.4 and the estimate
{p( f )=1+O(1�p) that, for p � S,

H� p (s; �0)(1& pn&s0)(1& pn&1&s1)=1+O( p&3�2),

the O being uniform in p. Consequently, if ` denotes Riemann's zeta func-
tion, one has for Re(s0)>n+1 and Re(s1)>n the formula

H� (s; �0)=`(s0&n) `(s1&n+1) H� � (s; �0)

_ `
p |% �

H� p (s; �0)(1& pn&s0)(1& pn&1&s1).

The infinite product on the right-hand side converges absolutely for s # 0
to a holomorphic bounded function on 0. The existence of a holomorphic
function g as in the proposition is now proved. Its value at (s0 , s1)=
(n+1, n) is equal to

(ress=1 `(s))2 H� � ((n+1, n); �0) `
p |% �

H� p ((n+1, n); �0)(1& p&1)2,

which is exactly the definition of {(X) by Peyre (cf. [8]; note that
Pic(X)=Z2 as a Galois module, hence its Artin L-function is nothing but
`(s)2). The growth of g in vertical strips follows from standard estimates for
the Riemann zeta function. K

Lemma 4.2. There exists a constant C>0 such that for all a # Zn"[0],
all p � S(a), and all (s0 , s1) # 0, one has

|H� p (s; �a )&1|�Cp&3�2.

Proof. Recall the formula (3.5),

H� p (s; �a )&1=& p&s0+( p&s0& p&s1) pn&2 \1&
1
p+

&1

{p ( f )

&( ps1&s0&1)(1& pn&s1&2) :
�

:=1

p&:(s1&1)*Zf, a (Z�p: Z).

We have to estimate all of the terms on the right-hand side. The first one
is p&s0=O( p&2). Then, as {p ( f ) is bounded, the second one is

O( pn&2&Re(s0))+O( pn&2&Re(s1))=O( p&3�2).
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For the last term T3 we use Corollary 3.8 so that, denoting _1=Re(s1);

:
�

:=1

p&:(s1&1)*Zf, a (Z�p: Z)

�C :
�

:=1

p&:(_1&1)p(n&3) :+C :
�

:=1

p&:(_1&1)p(n&2)(:&1)

�C
1

p_1&n+2&1
+Cp2&n 1

p_1&n+1&1
.

Moreover,

|1& pn&s1&2|�2

so that

|T3 |<<
p_1&_0+1

p_1&n+2&1
+2Cp2&n p_1&_0+1

p_1&n+1&1

<<( pn&2&_0+ pn&2&_1)+ p1&n ( pn&1&_0+ pn&1&_1)

<<p&3�2

as n�2. The lemma is proved. K

Proposition 4.3. For each a # Zn"[0], H� (s; �a ) is a holomorphic func-
tion on 0. Moreover, there exist constants C>0 and & (which are inde-
pendent of s and a) such that

|H� (s; �a )|�C(1+&Im(s)&)& (1+&a&)&n&1.

Proof. Write

H� (s; �a )= `
p � S(a)

H� p_ `
p # S(a)

H� p_H� � .

The convergence of the first infinite product to a bounded holomorphic
function follows from the preceding lemma. As in Lemma 3.7 of [5], there
exists a constant }>0 such that

} `
p # S(a)

H� p (s; �a )}<<(1+&a&)}.
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Now we use the rapid decrease of H� � as a function of a

|H� � (s; �a )|<<(1+&Im(s)&)n+}+1 (1+&a&)&n&}&1

established in Proposition 2.13 of [5] to conclude the proof. K

Theorem 4.4. The height zeta function converges in the domain
Re(s0)>n+1, Re(s1)>n. Moreover, there exists a holomorphic function g
in the domain Re(s0)>n+ 1

2, Re(s1)>n& 1
2 such that

Z(s)= g(s)
1

(s0&n&1)(s1&n)
.

The function g has polynomial growth in vertical strips and g(n+1, n)
={(X).

Specializing to s=s(n+1, n) and using a standard Tauberian theorem,
one obtains the following corollary.

Corollary 4.5. There exist a polynomial PX of degree 1 and a real
number :>0 such that the number of points in U(Q)/X(Q) of anticanoni-
cal height �B satisfies

N(U, K &1
X , B)=BP(log B)+O(B1&:).

Moreover, if {(X) denotes the Tamagawa number, then the leading coef-
ficient of PX is equal to

{(X)
(n+1) n

,

as predicted by Peyre's refinement of Manin's conjecture.
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