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What is Potential Theory? — Classical Physics

Newton’s gravitation field is the gradient of a function
(Lagrange), which Green and Gauß called a potential;
also holds for electrostatics;
the equilibrium state is the solution of a Laplace
equation (with boundary conditions);
the potential can be deduced by integrating the
fundamental solution of the Laplacian (kernel):

Newtonian potential, 1/ ‖x− y‖n−2 in dimension
n ¾ 3,
logarithmic potential, − log ‖x− y‖ in dimension
n = 2;

Robin’s problem: compute the mass distribution
giving rise to the equilibrium potential.
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Logarithmic potential theory
and Complex function theory

We assume that the dimension n = 2.
Identifying R2 with C, it appears that two-dimensional
potential theory is very closely connected to
one-dimensional complex analysis.
For example, the real part of a holomorphic function is
harmonic, and conversely on a simply connected open set.

Applications (see, e.g., Ransford’s book):
uniform approximation (theorems of Bernstein–Walsh,
Mergelyan...);
Schwarz’s lemma and its generalizations;
complex dynamics...

Generalizations to Riemann surfaces.
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Logarithmic potential theory

M = compact connected Riemann surface; o ∈M,
K ⊂M non-polar compact subset such that o 6∈ K.

Green function: there exists a unique function
gK : M \ {o}→ R with the properties:

gK is harmonic on M \ ({o} ∪ K);
gK(p) + log |z(p)− z(o)| extends continuously at o
(where z is a local parameter around o on M);
gK(p)→ 0 when p→ ∂K (up to a polar subset of ∂K).

Equilibrium measure: Laplacian of gK (in the sense of
distributions) — probability measure μK supported by ∂K.

Robin constant (relative to the local parameter z):

− logcapz(K) = lim
p→o

gK(p) + log |z(p)− z(o)| .

Capacitary norm on ToM: defined by






∂
∂z





 = capz(K).
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Logarithmic potential theory
and Classical number theory

In the 1920s, surprising connections with number theory
were shown:
Define the Fekete–Szegő set of a subset A ⊂ C as the set
FS(A) of algebraic integers all of whose conjugates
belong to A.

Theorem (Fekete–Szegő)
Let K be a compact subset of C, invariant under complex
conjugation.

If capz−1(K) < 1, FS(K) is finite;
If capz−1(K) ¾ 1, then for any open neighborhood U
of K, FS(U) is infinite.
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Logarithmic potential theory
and more recent number theory

If a is an algebraic number, let μ(a) be the Galois invariant
probability measure on C supported by the conjugates
of a: if the minimal polynomial of a is c

∏d
j=1(X− aj), then

δ(a) =
1

d

d
∑

j=1

δaj (δz = Dirac mass at z).

Theorem (Serre, cf. Bilu, Rumely)
Let K be a compact subset of C, invariant under complex
conjugation such that capz−1(K) = 1.
The equilibrium measure μK of K is the unique probability
measure on K which is a limit of measures of the
form δ(a), for algebraic integers a.
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Height of an algebraic number

Let a be an algebraic number, with minimal polynomial
P = c

∏d
j=1(X− aj).

height(a) =
1

d

∫ 2π

0
log

�

�P(eiθ)
�

�

dθ

2π
Mahler measure

=
1

d
logc+

1

d

d
∑

j=1

log+(
�

�aj
�

�) (Jensen’s formula)

=
1

d
logc+

∫

C
log+(|z|)dδa(z)

and using all absolute values of Q,

=
∑

p¶∞

1

d

d
∑

j=1

log+(
�

�aj
�

�

p).

Observe that for K = {|z| ¶ 1}, gK = log+ and μK = dθ/2π.
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Generalizations

working on algebraic varieties
usual Diophantine geometry setup
Arakelov geometry defines the height of
subvarieties (Faltings, Bost-Gillet-Soulé)

putting all places on equal foot: non-archimedean
potential theory

Rumely’s theory (end of 1980s);
using Berkovich’s spaces (Baker/Rumely,
Favre/Rivera-Letelier, Thuillier)

beyond potential theory
Néron functions in Diophantine geometry;
Green currents from Arakelov geometry;
function theory, Laplace operators, measures,... on
Berkovich spaces.
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Metrics vs. Néron functions

X projective variety over Q, D effective Cartier divisor on X
L the line bundle OX(D), sD the canonical section of L

Néron function for D: function λD on X(Cp) \ |D| such that

λD,p(x) + log |f |p (x)
extends continuously for any local equation f of D.

Green function for D: function on X(C) \ |D| such that

ddc gD + δD = ωD, a smooth (1,1)-form on X(C).

Continuous/smooth Metric for L: consistent way of
defining the norm of local non-vanishing sections of L as
continuous/smooth positive functions.

Equivalent concepts: use the formulae

λD,p(x) = − log ‖sD‖p (x), gD(x) = − log ‖sD‖∞ (x).

ωD is the Chern form of the metrized line bundle L.
Potential theory. ... and Arakelov geometry p. 10



Metrized line bundles and local heights —
archimedean picture

X projective complex variety purely of dimension m
bDj = (Dj, gDj), 0 ¶ j ¶m, divisors and Green functions,
intersecting properly.

Multiplying m of the Chern forms ωDj furnishes a
differential form of type (m,m) on X(C), hence a signed
measure.

Inductive definition of the local height pairing:

(bD0 · · · bDm|X)∞ = (bD0 · · · bDm−1|Dm)∞ +
∫

X(C)
gDmωD0 . . . ωDm−1

Remarks:
the integral converges;
multilinear;
independent on the order of the bDj.
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Metrized line bundles and local heights —
non-archimedean picture

X projective variety purely of dimension m over a p-adic
field
bDj = (Dj, gDj), 0 ¶ j ¶m, divisors and “smooth” Néron
functions, intersecting properly.

Local height pairing defined using arithmetic
intersection theory on Zp-schemes.

There are no Chern forms anymore, but one may define
measures on the Berkovich space Xp so that the inductive
formula holds:

(bD0 · · · bDm|X)p = (bD0 · · · bDm−1|Dm) +
∫

Xp

gDmωD0 . . . ωDm−1
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Metrized line bundle and heights —
admissible metrics

Both in the archimedean and non-archimedean cases, it is
necessary to enlarge the settings of smooth metrized line
bundles.
One good notion is that of an admissible metrized line
bundle (Zhang, 1995).
Semipositive metrics: uniform limits of smooth metrics
with positive first Chern forms, resp. given by a
numerically effective model.
Admissible metric: quotient of two semipositive metrics.

For those metrics, one may define local heights and
measures (ACL, 2006) by approximation.
The inductive formula still holds (“Mahler formula”, ACL &
Thuillier, 2009).
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Metrized line bundle and heights —
global picture

X projective variety over Q, purely of dimension m
bDj = (Dj, (gDj,p)p), 0 ¶ j ¶m, divisors and associated Green
functions at all places, intersecting properly.
“Adelic condition”: for almost all p, the gDj,p are defined
using a fixed Z-scheme.

Global height pairing (in)finite sum over all primes:

(bD0 . . . bDm|X) =
∑

p¶∞
(bD0 . . . bDm|X)p.

Properties:
multilinear;
independent on the order of the bDj;

vanishes for bD0 =ddiv(f ) = (div(f ), (log |f |−1
p )): metrized

line bundles define global heights.
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Example: algebraic curves and potential theory

X algebraic curve over C.
o ∈ X, z a local parameter at o.
K compact subset of X such that o 6∈ K.
bo = (o,gK).
Robin constants are local heights:

((bo−ddiv(z)) · bo|X)∞ = (bo−ddiv(z)|o)∞ +
∫

X∞

gKμK

= lim
q→o
(bo−ddiv(z)|q)∞

= lim
q→o

gK(q) + log |z(q)|

= − logcapz(K).

Similar computation at all places: the self-intersection
(bo · bo) is the opposite of Rumely’s adelic logarithmic
capacity.

Potential theory. ... and Arakelov geometry p. 15



Contents

1 Potential theory
From physics...
... to Number theory
... and Arakelov geometry

2 Applications
Fekete–Szegő
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Bounding heights from below

X projective variety over Q, purely of dimension m.
L line bundle on X plus metrics at all places.
Successive minima: e0 ¾ · · · ¾ em, with

ej(L) = sup
S,codim(S)>j

inf
x 6∈S
(bc1(L)|x).

Theorem (Zhang)

If L is ample and L is semipositive, then

e0(L) ¾
(bc1(L)m+1|X)

(m+ 1)(c1(L)m|X)
¾

1

m+ 1

�

e0(L) + · · ·+ em(L)
�

.

The first inequality is a direct application of the analogue
of Hilbert-Samuel theorem in Arakelov geometry.
The second inequality corresponds to the analogue of the
Nakai-Moishezon criterion for ampleness.
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Application to the theorem of Fekete–Szegő

The first minimum e0(L) is the threshold at which Zariski
dense sets of points of small heights exist: the set of
points x ∈ X(Q) such that (bc1(L)|x) < α is:

not Zariski-dense if α < e0(L);
Zariski-dense if α > e0(L).

Hence, the inequality e0(L) ¾ . . . is a “negative
Fekete–Szegő”: if (bc1(L)m+1|X) > 0, then only finitely many
points have small height.

When moreover em(L) ¾ 0, the second inequality implies a
“positive Fekete–Szegő”: if (bc1(L)m+1|X) ¶ 0, then
e0(L) ¶ 0, so both vanish — there exist points of arbitrary
small positive height.
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Algebraic dynamics

Let F be a number field and φ ∈ F(T) be a rational function
of degree d ¾ 2.

Dynamical height: defined by a metrized line bundle Lφ
characterized by φ∗Lφ ' L

d

φ.
(This metric is defined through a limit process, in the spirit
of Tate’s construction of the Néron–Tate height, and
requires the formalism of admissible metrics.)

Functional equation:

(bc1(Lφ)|φ(x)) = d(bc1(Lφ)|x); (bc1(Lφ)2|P1
F) = 0.

In that case, e0(Lφ) = e1(Lφ) = 0.

Vanishing: (bc1(Lφ)|x) = 0⇔ x preperiodic
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Algebraic dynamics (followed)

Petsche/Szpiro/Tucker’s dynamical pairing:

〈φ,ψ〉 = (bc1(Lφ)bc1(Lψ)|P1
F).

Controls the essential minimum of (bc1(Lφ)|x) + (bc1(Lψ)|x).
Is positive unless strong coincidences:

(bc1(Lφ)bc1(Lψ)|P1
F) = −

1

2

�

(bc1(Lφ)− bc1(Lψ))2|P1
F

�

= −
1

2

∑

v

∫

P1
Fv

uv ddc uv

=
1

2

∑

v
‖uv‖2Dir ,

where uv = log(‖s‖φ,v / ‖s‖ψ,v) is the difference of the
metrics of Lφ and Lψ at place v, and ‖·‖Dir is the Dirichlet
semi-norm.
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Algebraic dynamics (followed)

Dynamical pairing: 〈φ,ψ〉 = 1
2

∑

v ‖uv‖2Dir.

Nonnegative; vanishes if and (almost) only if uv ≡ 0 for
all v.

This condition implies, e.g., that all Julia sets coincide, that
φ and ψ have the same preperiodic points, etc. (PhD
Thesis of Arman Mimar, 1997)

Positivity is one aspect of the Hodge index theorem in
Arakelov geometry, the other being the positivity of
Néron–Tate height.

Other approach by Petsche/Szpiro/Tucker
Generalizations to any field by Baker/DeMarco, and in any
dimension by Yuan/Zhang (2009).
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Equidistribution

Theorem (Szpiro/Ullmo/Zhang,..., Yuan)

Assume that (bc1(L)m+1|X) = 0 and that there exists a
sequence (xn) of points of X(Q) such that (bc1(L)|xn)→ 0.
Then for any place p, the measures δ(xn) converge to the
measure c1(L)m on Xp.

These measures are products of Chern forms if p =∞, live
on Berkovich spaces otherwise.

The proof relies on a variational argument: apply Zhang’s
inequality to small perturbations of L, at least if L is ample.
For the general case, one needs to apply an estimate of
arithmetic volumes due to Yuan (arithmetic analogue of a
holomorphic Morse inequality proved by Demailly and Siu).
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Theorem of Jentzsch–Szegő

Let f =
∑∞

j=0 ajzj ∈ C[[z]] be a power series in one variable.
Radius of convergence R ∈ (0,∞).
Truncations fn =

∑n
j=0 ajzj.

Theorem (Jentzsch)
Any point of the circle CR : {|z| = R} is a limit point of
zeroes of truncations fn.

Probability measure νn =
1
n f∗n δ0 given by the zeroes of fn.

Theorem (Szegő)

In a subsequence such that |an|1/n→ 1/R, νn converges to
the invariant probability measure on the circle CR.
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A general theorem

Let M be an analytic curve, o ∈M, local parameter z at o.
Let K ⊂M be a compact subset such that o 6∈ K.
Let (fn) be a sequence of regular functions on M \ o,
kn = −ordo(fn), order of the pole.
Leading coefficient: lcz(fn) = lim

p→o
|fn| (p) |z(p)− z(o)|kn.

Measures: νn =
1
kn

f∗n δ0.

Theorem
Make the three assumptions:

limsupn
1
kn

log ‖fn‖K ¶ 0;

lim infn
1
kn

log lcz(fn)− logcapz(K) ¾ 0;

for any compact subset E ⊂ K̊, νn(E)→ 0.
Then, νn→ μK.

Statement and proof inspired by Andrieveskii/Blatt’s
treatment of the Jentzsch–Szegő theorem.
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Irreducibility of truncations

Let F be a p-adic field
f =

∑

j ajzj ∈ F[[z]] a power series with radius of
convergence R ∈ (0,∞);
fn the truncation of f in degree n

Classical examples (Schur,...) over Q where all fn are
irreducible, for example f = ez.

Corollary
Let d be a positive integer. In a sequence such that
|an|1/n→ 1/R, the number of irreducible factors of fn whose
degree is ¶ d is o(n).
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Irreducibility of truncations — Sketch of proof

Theorem
Let d be a positive integer. In a sequence such that
|an|1/n→ 1/R, the number of irreducible factors of fn with
degree ¶ d is o(n).

Sketch of proof:
The general Jentzsch–Szegő applies and shows that
the measures νn of zeroes of fn converge to the
equilibrium measure of the disk DR.
That measure is the Dirac measure at the Berkovich
point of the affine line corresponding to the Gauß norm
of the disk DR.
Let Fd be the finite extension of F generated by
numbers of degree ¶ d.
If irreducible factors of fn with degree ¶ d weren’t
negligible, the measures νn would give some mass on
the compact subset P1(Fd) of P1.
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Borel, Dwork, Pólya, Bertrandias

Let F be a number field.
For any place v of F, let Kv be a bounded subset of Cv.
Let f ∈ F[[z−1]].

Theorem
Assume that

there exists a finite set S of places such that the
coefficients of f belong to oF,S;
for any place v, f defines a meromorphic function
on Cv \ Kv;

If, moreover, −
∑

v logcap(Kv) > 0, then f is the expansion
of a rational function.

History: Borel, 1896 ; Pólya, 1925 ; Dwork, 1955 ;
Bertrandias, 1960s ; Cantor, Rumely; Harbater, 1980s.
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Formal functions on an algebraic curve

Let M be an algebraic curve over a number field F,
o ∈M(F), z a local parameter at o.
For any place v of F, let Kv be a compact/affinoid subspace
of M(Cv) such that o 6∈ Kv, let Uv =M(Cv) \ Kv.
Let f ∈ bOM,o be a formal function on M at o.

Theorem (with J.-B. Bost)
Assume that

there exists a finite set S of places such that
f ∈ oF,S[[z]];
for any place v, f defines a meromorphic function
on Ωv.

If, moreover, ÕdegToM = −
∑

v logcapz(Kv) > 0, then f is the
expansion of a rational function on M.
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Formal functions on an algebraic curve

Proof in two steps:
1 Algebraicity of f : techniques from Diophantine

approximation.
2 Rationality of f : application of the Hodge index

theorem in Arakelov geometry.
The theorem of Borel–Dwork–Pólya–Bertrandias then
appears as an analogue of the following theorem in
algebraic geometry:

Theorem (Hartshorne; Hironaka/Matsumura)
Let X be a smooth projective connected complex surface.
Let D be a divisor on X.
Let f be a (formal) meromorphic function on a
neighborhood of D.
If the self-intersection (D,D) = degNDX > 0, then f extends
uniquely to a rational function on X.
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