Some applications of potential theory to number theoretical problems on analytic curves

Antoine Chambert-Loir

Institut de recherche mathématique de Rennes, Université de Rennes 1 and

Institute for Advanced Study, Princeton

Athens/Atlanta Number Theory Seminar April 13rd, 2010

Contents

- Potential theory
 - From physics...
 - ... to Number theory
 - ... and Arakelov geometry
- 2 Applications
 - Fekete–Szegő
 - Algebraic dynamics
 - Equidistribution
 - Zeroes of polynomials
 - Rationality of formal functions

Potential theory. p. 2

What is Potential Theory? — Classical Physics

- Newton's gravitation field is the gradient of a function (Lagrange), which Green and Gauß called a potential;
- also holds for electrostatics;
- the equilibrium state is the solution of a Laplace equation (with boundary conditions);
- the potential can be deduced by integrating the fundamental solution of the Laplacian (kernel):
 - Newtonian potential, $1/\|x y\|^{n-2}$ in dimension $n \ge 3$,
 - logarithmic potential, $-\log ||x y||$ in dimension n = 2;
- Robin's problem: compute the mass distribution giving rise to the equilibrium potential.

Logarithmic potential theory and Complex function theory

We assume that the dimension n = 2. Identifying \mathbf{R}^2 with \mathbf{C} , it appears that **two-dimensional potential theory** is very closely connected to **one-dimensional complex analysis**.

For example, the real part of a holomorphic function is harmonic, and conversely on a simply connected open set.

Applications (see, e.g., Ransford's book):

- uniform approximation (theorems of Bernstein–Walsh, Mergelyan...);
- Schwarz's lemma and its generalizations;
- complex dynamics...

Generalizations to Riemann surfaces.

Logarithmic potential theory

M =compact connected Riemann surface; $o \in M$, $K \subset M$ **non-polar** compact subset such that $o \notin K$.

Green function: there exists a unique function $g_K : M \setminus \{o\} \to \mathbf{R}$ with the properties:

- g_K is harmonic on $M \setminus (\{o\} \cup K)$;
- $g_K(p) + \log |z(p) z(o)|$ extends continuously at o (where z is a local parameter around o on M);
- $g_K(p) \to 0$ when $p \to \partial K$ (up to a polar subset of ∂K).

Equilibrium measure: Laplacian of g_K (in the sense of distributions) — probability measure μ_K supported by ∂K .

Robin constant (relative to the local parameter *z*):

$$-\log \operatorname{cap}_{z}(K) = \lim_{p \to o} g_{K}(p) + \log |z(p) - z(o)|.$$

Capacitary norm on T_oM : defined by $\left\|\frac{\partial}{\partial z}\right\| = \text{cap}_z(K)$.

Logarithmic potential theory and Classical number theory

In the 1920s, surprising connections with number theory were shown:

Define the Fekete–Szegő set of a subset $A \subset \mathbf{C}$ as the set FS(A) of **algebraic integers** all of whose conjugates belong to A.

Theorem (Fekete-Szegő)

Let K be a compact subset of \mathbf{C} , invariant under complex conjugation.

- If $cap_{z^{-1}}(K) < 1$, FS(K) is finite;
- If $cap_{z^{-1}}(K) \ge 1$, then for any open neighborhood U of K, FS(U) is infinite.

Logarithmic potential theory and more recent number theory

If a is an algebraic number, let $\mu(a)$ be the Galois invariant probability measure on \mathbf{C} supported by the conjugates of a: if the minimal polynomial of a is $c \prod_{i=1}^{d} (X - a_i)$, then

$$\delta(a) = \frac{1}{d} \sum_{j=1}^{d} \delta_{a_j}$$
 $(\delta_z = \text{Dirac mass at } z).$

Theorem (Serre, cf. Bilu, Rumely)

Let K be a compact subset of \mathbb{C} , invariant under complex conjugation such that $cap_{z^{-1}}(K) = 1$.

The equilibrium measure μ_K of K is the unique probability measure on K which is a limit of measures of the form $\delta(a)$, for algebraic integers a.

Height of an algebraic number

Let a be an algebraic number, with minimal polynomial $P = c \prod_{i=1}^{d} (X - a_i)$.

height(a) =
$$\frac{1}{d} \int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi}$$
 Mahler measure
= $\frac{1}{d} \log c + \frac{1}{d} \sum_{j=1}^d \log^+(|a_j|)$ (Jensen's formula)
= $\frac{1}{d} \log c + \int_{\mathbf{C}} \log^+(|z|) d\delta_a(z)$

and using all absolute values of ${\bf Q}$,

$$=\sum_{p\leqslant\infty}\frac{1}{d}\sum_{j=1}^d\log^+(\left|a_j\right|_p).$$

Observe that for $K = \{|z| \le 1\}$, $g_K = \log^+$ and $\mu_K = d\theta/2\pi$.

Generalizations

working on algebraic varieties

- usual Diophantine geometry setup
- Arakelov geometry defines the height of subvarieties (Faltings, Bost-Gillet-Soulé)
- putting all places on equal foot: non-archimedean potential theory
 - Rumely's theory (end of 1980s);
 - using Berkovich's spaces (Baker/Rumely, Favre/Rivera-Letelier, Thuillier)

beyond potential theory

- Néron functions in Diophantine geometry;
- Green currents from Arakelov geometry;
- function theory, Laplace operators, measures,... on Berkovich spaces.

Metrics vs. Néron functions

X projective variety over \mathbf{Q} , D effective Cartier divisor on X L the line bundle $\mathcal{O}_X(D)$, s_D the canonical section of L

Néron function for D: function λ_D on $X(\mathbf{C}_p) \setminus |D|$ such that

$$\lambda_{D,p}(x) + \log|f|_p(x)$$

extends continuously for any local equation f of D.

Green function for D: function on $X(\mathbf{C}) \setminus |D|$ such that $dd^c q_D + \delta_D = \omega_D$, a smooth (1, 1)-form on $X(\mathbf{C})$.

Continuous/smooth Metric for L: consistent way of defining the norm of local non-vanishing sections of L as continuous/smooth positive functions.

Equivalent concepts: use the formulae

$$\lambda_{D,p}(x) = -\log \|s_D\|_p(x), \qquad g_D(x) = -\log \|s_D\|_{\infty}(x).$$

 ω_D is the **Chern form** of the metrized line bundle \overline{L} .

Metrized line bundles and local heights — archimedean picture

X projective complex variety purely of dimension m $\widehat{D}_j = (D_j, g_{D_j})$, $0 \le j \le m$, divisors and Green functions, intersecting properly.

Multiplying m of the Chern forms ω_{D_j} furnishes a differential form of type (m, m) on $X(\mathbf{C})$, hence a signed measure.

Inductive definition of the local height pairing:

$$(\widehat{D}_0 \cdots \widehat{D}_m | X)_{\infty} = (\widehat{D}_0 \cdots \widehat{D}_{m-1} | D_m)_{\infty} + \int_{X(\mathbf{C})} g_{D_m} \omega_{D_0} \dots \omega_{D_{m-1}}$$

Remarks:

- the integral converges;
- multilinear;
- independent on the order of the \widehat{D}_i .

Metrized line bundles and local heights — non-archimedean picture

X projective variety purely of dimension m over a p-adic field

 $\widehat{D}_j = (D_j, g_{D_j}), \ 0 \le j \le m$, divisors and "smooth" Néron functions, intersecting properly.

Local height pairing defined using **arithmetic intersection theory** on \mathbf{Z}_p -schemes.

There are no Chern forms anymore, but one may **define** measures on the Berkovich space X_p so that the inductive formula holds:

$$(\widehat{D}_0 \cdots \widehat{D}_m | X)_p = (\widehat{D}_0 \cdots \widehat{D}_{m-1} | D_m) + \int_{X_n} g_{D_m} \omega_{D_0} \cdots \omega_{D_{m-1}}$$

Metrized line bundle and heights — admissible metrics

Both in the archimedean and non-archimedean cases, it is necessary to enlarge the settings of smooth metrized line bundles.

One good notion is that of an **admissible metrized line bundle** (Zhang, 1995).

Semipositive metrics: uniform limits of smooth metrics with positive first Chern forms, resp. given by a numerically effective model.

Admissible metric: quotient of two semipositive metrics.

For those metrics, one may define **local heights** and **measures** (ACL, 2006) by approximation.

The inductive formula still holds ("Mahler formula", ACL & Thuillier, 2009).

Metrized line bundle and heights — global picture

X projective variety over \mathbf{Q} , purely of dimension m $\widehat{D}_j = (D_j, (g_{D_j,p})_p)$, $0 \le j \le m$, divisors and associated Green functions at all places, intersecting properly. "Adelic condition": for almost all p, the $g_{D_j,p}$ are defined using a fixed \mathbf{Z} -scheme.

Global height pairing (in)finite sum over all primes:

$$(\widehat{D}_0 \dots \widehat{D}_m | X) = \sum_{p \leq \infty} (\widehat{D}_0 \dots \widehat{D}_m | X)_p.$$

Properties:

- multilinear;
- independent on the order of the \widehat{D}_j ;
- vanishes for $\widehat{D}_0 = \widehat{\text{div}}(f) = (\text{div}(f), (\log |f|_p^{-1}))$: metrized line bundles define global heights.

Example: algebraic curves and potential theory

X algebraic curve over C.

 $o \in X$, z a local parameter at o.

K compact subset of X such that $o \notin K$.

 $\widehat{o} = (o, g_K).$

Robin constants are local heights:

$$((\widehat{o} - \widehat{\operatorname{div}}(z)) \cdot \widehat{o}|X)_{\infty} = (\widehat{o} - \widehat{\operatorname{div}}(z)|o)_{\infty} + \int_{X_{\infty}} g_{K} \mu_{K}$$

$$= \lim_{q \to o} (\widehat{o} - \widehat{\operatorname{div}}(z)|q)_{\infty}$$

$$= \lim_{q \to o} g_{K}(q) + \log|z(q)|$$

$$= -\log \operatorname{cap}_{z}(K).$$

Similar computation at all places: the self-intersection $(\widehat{o} \cdot \widehat{o})$ is the opposite of Rumely's adelic logarithmic capacity.

Contents

- Potential theory
 - From physics...
 - ... to Number theory
 - ... and Arakelov geometry
- 2 Applications
 - Fekete–Szegő
 - Algebraic dynamics
 - Equidistribution
 - Zeroes of polynomials
 - Rationality of formal functions

Applications. p. 16

Bounding heights from below

 \underline{X} projective variety over **Q**, purely of dimension m.

 \overline{L} line bundle on X plus metrics at all places.

Successive minima: $e_0 \ge \cdots \ge e_m$, with

$$e_j(\overline{L}) = \sup_{S, \operatorname{codim}(S) > j} \inf_{x \notin S} (\widehat{c}_1(\overline{L})|x).$$

Theorem (Zhang)

If L is ample and \overline{L} is semipositive, then

$$e_0(\overline{L}) \geqslant \frac{(\widehat{c}_1(\overline{L})^{m+1}|X)}{(m+1)(c_1(L)^m|X)} \geqslant \frac{1}{m+1} \left(e_0(\overline{L}) + \dots + e_m(\overline{L}) \right).$$

The first inequality is a direct application of the analogue of Hilbert-Samuel theorem in Arakelov geometry. The second inequality corresponds to the analogue of the Nakai-Moishezon criterion for ampleness.

Application to the theorem of Fekete-Szegő

The first minimum $e_0(\overline{L})$ is the threshold at which Zariski dense sets of points of small heights exist: the set of points $x \in X(\overline{\mathbf{Q}})$ such that $(\widehat{c}_1(\overline{L})|x) < \alpha$ is:

- not Zariski-dense if $\alpha < e_0(\overline{L})$;
- Zariski-dense if $\alpha > e_0(\overline{L})$.

Hence, the inequality $e_0(\overline{L}) \ge \dots$ is a "negative Fekete–Szegő": if $(\widehat{c}_1(\overline{L})^{m+1}|X) > 0$, then only finitely many points have small height.

When moreover $e_m(\overline{L}) \ge 0$, the second inequality implies a "positive Fekete–Szegő": if $(\widehat{c}_1(\overline{L})^{m+1}|X) \le 0$, then $e_0(\overline{L}) \le 0$, so both vanish — there exist points of arbitrary small positive height.

Algebraic dynamics

Let F be a number field and $\varphi \in F(T)$ be a rational function of degree $d \ge 2$.

Dynamical height: defined by a metrized line bundle \overline{L}_{φ} characterized by $\varphi^*\overline{L}_{\varphi}\simeq\overline{L}_{\varphi}^d$. (This metric is defined through a limit process, in the spirit of Tate's construction of the Néron–Tate height, and requires the formalism of admissible metrics.)

Functional equation:

$$(\widehat{c}_1(\overline{L}_\varphi)|\varphi(x)) = d(\widehat{c}_1(\overline{L}_\varphi)|x); \qquad (\widehat{c}_1(\overline{L}_\varphi)^2|\mathbf{P}_F^1) = 0.$$

In that case, $e_0(\overline{L}_{\varphi}) = e_1(\overline{L}_{\varphi}) = 0$.

Vanishing: $(\widehat{c}_1(\overline{L}_{\varphi})|x) = 0 \Leftrightarrow x$ preperiodic

Algebraic dynamics (followed)

Petsche/Szpiro/Tucker's **dynamical pairing:**

$$\langle \varphi, \psi \rangle = (\widehat{c}_1(\overline{L}_{\varphi})\widehat{c}_1(\overline{L}_{\psi})|\mathbf{P}_F^1).$$

Controls the essential minimum of $(\widehat{c}_1(\overline{L}_{\varphi})|x) + (\widehat{c}_1(\overline{L}_{\psi})|x)$. Is positive unless strong coincidences:

$$\begin{aligned} (\widehat{c}_{1}(\overline{L}_{\varphi})\widehat{c}_{1}(\overline{L}_{\psi})|\mathbf{P}_{F}^{1}) &= -\frac{1}{2}\left((\widehat{c}_{1}(\overline{L}_{\varphi}) - \widehat{c}_{1}(\overline{L}_{\psi}))^{2}|\mathbf{P}_{F}^{1}\right) \\ &= -\frac{1}{2}\sum_{V}\int_{\mathbf{P}_{F_{V}}^{1}}u_{V}\,\mathrm{dd}^{c}\,u_{V} \\ &= \frac{1}{2}\sum_{V}\|u_{V}\|_{\mathrm{Dir}}^{2}, \end{aligned}$$

where $u_v = \log(\|s\|_{\varphi,v}/\|s\|_{\psi,v})$ is the difference of the metrics of \overline{L}_{φ} and \overline{L}_{ψ} at place v, and $\|\cdot\|_{\text{Dir}}$ is the **Dirichlet semi-norm**.

Algebraic dynamics (followed)

Dynamical pairing: $\langle \varphi, \psi \rangle = \frac{1}{2} \sum_{\nu} \|u_{\nu}\|_{\text{Dir}}^{2}$.

Nonnegative; vanishes if and (almost) only if $u_v \equiv 0$ for all v.

This condition implies, **e.g.**, that all Julia sets coincide, that φ and ψ have the same preperiodic points, etc. (PhD Thesis of **Arman Mimar**, 1997)

Positivity is one aspect of the Hodge index theorem in Arakelov geometry, the other being the positivity of Néron–Tate height.

Other approach by Petsche/Szpiro/Tucker Generalizations to any field by Baker/DeMarco, and in any dimension by Yuan/Zhang (2009).

Equidistribution

Theorem (Szpiro/Ullmo/Zhang,..., Yuan)

Assume that $(\widehat{c}_1(\overline{L})^{m+1}|X) = 0$ and that there exists a sequence (x_n) of points of $X(\overline{\mathbf{Q}})$ such that $(\widehat{c}_1(\overline{L})|x_n) \to 0$. Then for any place p, the measures $\delta(x_n)$ converge to the measure $c_1(\overline{L})^m$ on X_p .

These measures are products of Chern forms if $p = \infty$, live on Berkovich spaces otherwise.

The proof relies on a variational argument: apply Zhang's inequality to small perturbations of \overline{L} , at least if \overline{L} is ample. For the general case, one needs to apply an estimate of arithmetic volumes due to Yuan (arithmetic analogue of a holomorphic Morse inequality proved by Demailly and Siu).

Theorem of Jentzsch-Szegő

Let $f = \sum_{j=0}^{\infty} a_j z^j \in \mathbb{C}[[z]]$ be a power series in one variable. Radius of convergence $R \in (0, \infty)$.

Truncations $f_n = \sum_{j=0}^n a_j z^j$.

Theorem (Jentzsch)

Any point of the circle C_R : $\{|z| = R\}$ is a limit point of zeroes of truncations f_n .

Probability measure $v_n = \frac{1}{n} f_n^* \delta_0$ given by the zeroes of f_n .

Theorem (Szegő)

In a subsequence such that $|a_n|^{1/n} \to 1/R$, ν_n converges to the invariant probability measure on the circle C_R .

A general theorem

Let M be an analytic curve, $o \in M$, local parameter z at o. Let $K \subset M$ be a compact subset such that $o \notin K$. Let (f_n) be a sequence of regular functions on $M \setminus o$, $k_n = -\operatorname{ord}_o(f_n)$, order of the pole. Leading coefficient: $\operatorname{lc}_z(f_n) = \lim_{p \to o} |f_n|(p)|z(p) - z(o)|^{k_n}$. Measures: $\nu_n = \frac{1}{k_n} f_n^* \delta_0$.

Theorem

Make the three assumptions:

- $\limsup_{n \to \infty} \frac{1}{k_n} \log ||f_n||_K \leq 0$;
- $\liminf_n \frac{1}{k_n} \log \operatorname{lc}_z(f_n) \log \operatorname{cap}_z(K) \ge 0$;
- for any compact subset $E \subset \mathring{K}$, $\nu_n(E) \to 0$.

Then, $\nu_n \rightarrow \mu_K$.

Statement and proof inspired by Andrieveskii/Blatt's treatment of the Jentzsch–Szegő theorem.

Irreducibility of truncations

Let F be a p-adic field $f = \sum_j a_j z^j \in F[[z]]$ a power series with radius of convergence $R \in (0, \infty)$; f_n the truncation of f in degree n

Classical examples (Schur,...) over **Q** where all f_n are irreducible, for example $f = e^z$.

Corollary

Let d be a positive integer. In a sequence such that $|a_n|^{1/n} \to 1/R$, the number of irreducible factors of f_n whose degree is $\leq d$ is o(n).

Irreducibility of truncations — Sketch of proof

Theorem

Let d be a positive integer. In a sequence such that $|a_n|^{1/n} \to 1/R$, the number of irreducible factors of f_n with degree $\leq d$ is o(n).

Sketch of proof:

- The general Jentzsch–Szegő applies and shows that the measures ν_n of zeroes of f_n converge to the equilibrium measure of the disk D_R .
- That measure is the Dirac measure at the Berkovich point of the affine line corresponding to the Gauß norm of the disk D_R.
- Let F_d be the **finite** extension of F generated by numbers of degree $\leq d$.
- If irreducible factors of f_n with degree $\leq d$ weren't negligible, the measures ν_n would give some mass on the compact subset $\mathbf{P}^1(F_d)$ of \mathbf{P}^1 .

Borel, Dwork, Pólya, Bertrandias

Let F be a number field. For any place v of F, let K_v be a bounded subset of \mathbf{C}_v . Let $f \in F[[z^{-1}]]$.

Theorem

Assume that

- there exists a finite set S of places such that the coefficients of f belong to of,S;
- for any place v, f defines a meromorphic function on C_v \ K_v;

If, moreover, $-\sum_{v} \log \operatorname{cap}(K_{v}) > 0$, then f is the expansion of a rational function.

History: Borel, 1896 ; Pólya, 1925 ; Dwork, 1955 ; Bertrandias, 1960s ; Cantor, Rumely; Harbater, 1980s.

Formal functions on an algebraic curve

Let M be an algebraic curve over a number field F, $o \in M(F)$, z a local parameter at o. For any place v of F, let K_v be a compact/affinoid subspace of $M(\mathbf{C}_v)$ such that $o \notin K_v$, let $U_v = M(\mathbf{C}_v) \setminus K_v$. Let $f \in \widehat{\mathcal{O}}_{M,o}$ be a formal function on M at o.

Theorem (with J.-B. Bost)

Assume that

- there exists a finite set S of places such that $f \in \mathfrak{o}_{F,S}[[z]];$
- for any place v, f defines a meromorphic function on Ω_v .

If, moreover, $\widehat{\deg} T_o M = -\sum_v \log \operatorname{cap}_z(K_v) > 0$, then f is the expansion of a rational function on M.

Formal functions on an algebraic curve

Proof in two steps:

- Algebraicity of f: techniques from Diophantine approximation.
- Rationality of f: application of the Hodge index theorem in Arakelov geometry.

The theorem of Borel–Dwork–Pólya–Bertrandias then appears as an analogue of the following theorem in algebraic geometry:

Theorem (Hartshorne; Hironaka/Matsumura)

Let X be a smooth projective connected complex surface. Let D be a divisor on X.

Let f be a (formal) meromorphic function on a neighborhood of D.

If the self-intersection $(D, D) = \deg \mathcal{N}_D X > 0$, then f extends uniquely to a rational function on X.