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REAL SEMI-SIMPLE LIE GROUPS

Let G be a semi-simple Lie group with trivial center, µ a Haar measure
on G.

Let ρ : G → GL(V ) be a finite dimensional faithful representation of G in
a real vector space V . Let ‖·‖ be a norm on End(V ).

For any T > 0, let BT = {g ∈ G ;
∥∥ρ(g)

∥∥≤ T } — compact in G.

THEOREM (MAUCOURANT, 2004)
When T →∞:

1 volume estimate: µ(BT ) ∼ cT d log(T)e for some real number c, some
rational number d and some integer e;

2 convergence of measures: there exists a measure µ∞ on End(V )
such that for any function f ∈C (PEnd(V )),

1

µ(BT )

∫
BT

f (ρ(g))dµ(g) →
∫
PEnd(V )

f (g)dµ∞(g).
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REAL SEMI-SIMPLE LIE GROUPS

THEOREM (MAUCOURANT )

µ(BT ) ∼ cT d log(T)e

µ(BT )−1
∫

BT

f (ρ(g))dµ(g) →
∫
PEnd(V )

f (g)dµ∞(g).

The numbers d and e are explicitly defined in terms of the relative root
system of G and the weights of ρ.

One has 0 ≤ e ≤ rankR(G).

The measure µ∞ is supported by a submanifold of PEnd(V ) which is
bi-invariant under G.

Principle of proof: Ka+K -decomposition and integration formula.
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ADELIC SEMI-SIMPLE ALGEBRAIC GROUPS

Let G be a semi-simple algebraic group overQ.

Let ρ : G → GL(V ) be a faithful representation of G in a finite
dimensionalQ-vector space V (with a unique highest weight).

For any p ∈ {prime numbers}∪ {∞}, let ‖·‖p be a p-adic norm on
End(V )⊗Qp.

Compatibility assumption: there exists a basis (ei) of End(V ) such that
for almost all p: for any u ∈ End(V )⊗Qp with coordinates (ui), one has
‖u‖p = max(|ui|p).

Adeles: A = restricted product
∏′

pQp.

Then, G(A) is a locally compact group — restricted product
∏′

p G(Qp).

For any T > 0, let BT = {g = (gp) ∈ G(A) ;
∏

p

∥∥ρ(gp)
∥∥

p ≤ T } — compact set
in G(A).
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ADELIC SEMI-SIMPLE GROUPS

BT = {g = (gp) ∈ G(A) ;
∏
p

∥∥ρ(gp)
∥∥

p ≤ T }

Fix a Haar measure µ on G(A).

THEOREM (GORODNIK, MAUCOURANT, OH, 2007)
When T →∞:

1 volume estimate: µ(BT ) ∼ cT a log(T)b for some positive real
number c, some rational number a and some non-negative
integer b;

2 convergence of measures: for any function f ∈C (P(End(V )⊗A)),

1

µ(BT )

∫
BT

f (ρ(g))dµ(g) →
∫
P(End(V )⊗A)

f (g)dµ∞(g).
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ADELIC SEMI-SIMPLE ALGEBRAIC GROUPS

THEOREM (GORODNIK, MAUCOURANT, OH)

µ(BT ) ∼ cT a log(T)b

1

µ(BT )

∫
BT

f (ρ(g))dµ(g) →
∫
P(End(V )⊗A)

f (g)dµ∞(g)

Again, a and b can be computed explicitly in terms of the weights of ρ,
the root system of G and the action of Gal(Q/Q) they possess.

The measure µ∞ is supported by Xρ(A), where Xρ is the Zariski closure
of ρ(G) in PEnd(V ) — DE CONCINI–PROCESI’s wonderful
compactification of G.
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MOTIVATION/CONSEQUENCE OF THESE ESTIMATES

These volume estimates, resp. convergence of measures are one step
in understanding the number, resp. the distribution, of

points in Γ∩BT , where Γ is a lattice of the Lie group G — lattice
points in balls;

points in G(Q)∩BT — rational points of “bounded height”.

When T →∞, and for adequate representations ρ, the obtained
estimates are

1 #(Γ∩BT ) ∼ V (T)/µ(G/Γ);

2 #(G(Q)∩BT ) ∼ V (T)/µ(G(A)/G(Q)) — with a deliberately ignored
twist caused by automorphic characters.

Other actors of the play:

1 Duke, Rudnick, Sarnak; Eskin, McMullen;

2 Shalika, Tschinkel, Takloo-Biglash.
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RATIONAL POINTS OF ALGEBRAIC VARIETIES

A basic problem in diophantine geometry consists in deciding whether
diophantine equations have solutions or not, more generally, to tell as
much as possible about the set of solutions.

From a geometrical point of view, describe the set of rational points of
algebraic varieties defined overQ, or the set of integral points of
algebraic varieties over Z.

We are interested in varieties whose rational points are dense for the
Zariski topology. We thus have to sort them according to their
“arithmetic complexity”, that is, their height.
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HEIGHTS

Essential example: a point P ∈Pn(Q), with homogeneous coordinates
[x0 : · · · : xn] coprime integers, has height H(P) = max(|x0| , . . . , |xn|).

Finiteness property (NORTHCOTT): for any B > 0, there are only finitely
many points P ∈Pn(Q) such that H(P) ≤ B.

Question: How many, when B →∞?

Answer (SCHANUEL): ∼ 2n

ζ(n+1) Bn+1.

Analytical tool: the “height zeta function”, i.e., the generating series

ZPn (s) = ∑
P∈Pn(Q)

H(P)−s.

Understand abscissa of convergence, meromorphic continuation,
location of poles,...
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THE CONJECTURE OF BATYREV, MANIN, PEYRE

Question: What happens if one restricts to points lying in a subvariety
X of Pn?

Conjectural answer (MANIN): If X is smooth, anticanonically
embedded, it should be ≈ B(logB)t−1, where t = rankPic(X), provided:

you allow to enlarge the ground field;
you exclude from X some strict algebraic subvarieties.

Refinement (PEYRE): it might even be ∼ cB(logB)t−1, with an
arithmetical description of the constant c.

Many, often non-trivial, examples:

flag varieties (LANGLANDS’s theory of Eisenstein series);
toric varieties; equivariant compactifications of vector spaces;
wonderful compactifications of adjoint semi-simple groups;
Del Pezzo surfaces of degree ≥ 4...

... but a counter-example (total space of the family of diagonal cubic
surfaces in P3).
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PEYRE’S CONSTANT — THE VOLUME PART

In all cases where the conjectures have been established for the
variety X , the constant c in front of the asymptotic expansion can be
expressed as the product of 4 factors:

some (uninteresting) rational numbers;

some rational number related to the position of the anticanonical
class in the effective cone;

the cardinality of a Galois cohomology group;

the volume of (an adequate part of) the adelic space X(A) with
respect to a suitable measure.
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PEYRE’S TAMAGAWA MEASURE

Assume KX =OX (−d) for some integer d.

for each prime p ≤∞, p-adic measure defined by suitable local
gauge forms: since KX ∼OX (−d), one can take a meromorphic
differential form ω with div(ω) =−dH0 ∩X and set

τp = |ω|p
( |x0|p

max(|x0|p , . . . , |xn|p)

)d

find suitable convergence factors λp — Peyre takes
τp = Lp(1,Pic(X))−1 ;

define τ as the absolutely convergent product
L∗(1,Pic(X))

∏
p(λpτp).
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EXAMPLE: PEYRE’S MEASURE FOR Pn

For X =Pn, d = n+1 — Homogeneous coordinates [x0 : · · · : xn]

On the chart x0 = 1 and
∣∣xj

∣∣≤ 1 for all j, one has

τp = |dx1 · · ·dxn|p
max(|x0|p , . . . , |xn|p)d

= |dx1|p · · · |dxn|p .

One has τ∞(Pn(R)) = (n+1)2n.

For p prime, τp is nothing but the canonical measure on
Pn(Qp) =Pn(Zp), hence:

τp(Pn(Qp)) = p−n#Pn(Fp) = 1+p−1 +·· ·+p−n = 1−p−n−1

1−p−1 .

Convergence factors: λp = Lp(s,Pic(Pn)) = (1−p−s)−1; hence
λpτp(Pn(Qp)) = 1−p−n−1, and finally:

τ(X(A)) = L∗(1,Pic(X))
∏

(λpτp(Pn(Qp))) = (n+1)2n/ζ(n+1).

This is essentially SCHANUEL’s constant!
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HEIGHT BALLS AND THEIR VOLUMES

To study more general varieties, in any projective embedding, a
convenient language is that of “adelic metrics” on line bundles:

Measures: If KX is endowed with an adelic metric, one obtains a
measure on X(Qp) by glueing the local gauge forms |ω|p /‖ω‖p where ω
is a local non-vanishing top-diff. form.

Heights: for L = (L, (‖·‖p)), define a height

H(P) = ∏
p≤∞

‖f‖−1
p , P ∈ X(Q), 0 6= f ∈ L(P).

More generally, for f ∈ Γ(X ,L), one can define a height function on the
adelic space of Xf := X \ div(f):

Hf (P) = ∏
p≤∞

∥∥f(Pp)
∥∥−1

p , P = (Pp) ∈ Xf (A).
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GOAL

Generalize the results recalled at the beginning (Xf = semi-simple
group) and understand the volume of height balls, or the
measure-theoretical behaviour of these height balls, when T →∞.

This requires to define convergence factors for the (essentially affine)
variety Xf .

Limit measure: of the type introduced by Peyre.

Also: real/p-adic case — in all the products above, take only the
corresponding factor.

Limit measure is supported on div(f )(Qp).

Tool: analytic properties of the Mellin transforms∫
Xf (Qp)

‖f‖ (P)s dτp(P),
∫

Xf (A)
Hf (P)−s dτ(P).

Basic remark: The first one is a kind of “global” local Igusa zeta
function, and the second one is an adelic version.
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MEASURES: GAUGE FORMS VS. METRICS

F , local field with a fixed Haar measure.

Let X be a smooth projective variety over a local field F , purely of
dimension n,

D divisor on X , U = X \ |D|.
How to define measures on U?

1 a gauge form ω ∈ KX (U) =Ωn
X (U) defines a measure |ω|;

2 given a metric on the line bundle KX , one may take local forms ω
and define τX by glueing the measures |ω|/‖ω‖.

3 metric on KX (D) : take local forms ω and glue the measures
ω/‖ωfD‖ to define τ(X ,D).

If X is an equivariant compactification of a group G, then KX =OX (−D)
with |D| = X \ G,

pick ω ∈ KX (G) a (left-)invariant differential form,

Then, div(ω) =−D and ‖ωfD‖ = cst = 1, hence τ(X ,D) = |ω|
‖ωfD‖ = |ω| is a

Haar measure on G.
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HEIGHT BALLS

L effective divisor with support |D|, metric on L, fL canonical section
of OX (L);

for T > 0, the inequality ‖fL‖ ≤ 1/T defines a compact subset BT in U(F);

fix a metric on KX (D), gets a measure τ(X ,D) on U(F),

volume of BT : V (T) = τ(X ,D)(BT ).

DEFINITION

Mellin transform:

Z(s) =
∫ ∞

0
t−s dV (t) =

∫
U(F)

‖fL‖sτ(X ,D).

Tauberian theory relates analytic properties of Z(s) to the asymptotic
behaviour of V (T).

Then, the detailed asymptotic behaviour of V (T) can be used to study
the convergence of the probability measures V (T)−1τ(X ,D)|BT .
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IGUSA ZETA FUNCTION

Z(s) =
∫ ∞

0
t−s dV (t) =

∫
U(F)

‖fL‖sτ(X ,D).

Simple remark: Z(s) is a kind of Igusa zeta function; it should not be
looked as in integral on U(F) but computed using the projective
compactification X(F).

Geometric assumption: over F , the irreducible components Dα of D
are smooth, and intersect transversally.

To simplify the exposition, I pretend here that the irreducible
components of D over F are geometrically irreducible.

Consider the corresponding stratification (DA) of X , hence DA is a
smooth subvariety of X of codimension #A (or empty).

Decomposition of divisors: D =∑
ραDα, L =∑

λαDα.
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LOCAL COMPUTATION “AT INFINITY”

We may use finitely many local charts on X(F) to study the integral Z(s).

The part “around” a point x ∈ D◦
A(F) can be computed as∫ ∏

α

∥∥fDα

∥∥ (x)λαs−ρα dτX (x) =
∫ ∏

α∈A
|xα|λαs−ραϕ(x;y;s)

∏
d

xαdy.

Then, the analytic properties of Z(s) are completely clear and can be
expressed in terms of the combinatorics of the stratification (DA).

For example, abscissa of convergence =

max
Dα(F) 6=;
λα>0

ρα−1

λα
;

order of pole = numbers of α that achieve equality;

leading coefficient = sum of integrals over all minimal stratas A
consisting of such αs.
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LOCAL MEASURES AND CONVERGENCE FACTORS

Let X be a smooth projective variety overQ,

D effective divisor on X , U = X \ |D|.
Fix an adelic metric on KX (D); this defines measures τ(X ,D),p on U(Qp)
for all p.

To define a measure on U(A) from these τp, one needs convergence
factors λp such that the infinite product∏

p
λpτp(U(Zp))

converges absolutely.

Examples:

X equivariant compactification of a semi-simple algebraic
group G, τp=Haar measure: one may take λp = 1;
same, but G unipotent: λp = 1;
same, but G is a torus, λp = Lp(1,X∗(G

Q
));

if D =;, λp = Lp(1,Pic(X
Q

))−1.
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A CHOICE OF CONVERGENCE FACTORS

Same notations: X ,D,U ,τp.

Geometric assumption: H1(X ,OX ) = H2(X ,OX ) = 0.

Two free Z-modules with a Gal(Q/Q)-action:

Γ(U
Q

,O∗
X )/Q

∗
;

Pic(U
Q

)/torsion.

Virtual Gal(Q/Q)-module: EP(U) = Γ(U
Q

,O∗
X )/Q

∗−Pic(U
Q

)/torsion.

THEOREM

One may take λp = Lp(1,EP(U)) for all p <∞.

DEFINITION

Global measure on U(A):

τ(X ,D) = L∗(1,EP(U))−1
∏

p<∞

(
Lp(1,EP(U))τ(X ,D),p

)
τ(X ,D),∞.
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HEIGHT ON THE ADELIC SPACE U(A)

Let L be an effective divisor supported on |D|
fL the canonical section of OX (L)

Choosing an adelic metric on OX (L), one get a height function on the
adelic space U(A) defined by

HL((xp)) = ∏
p≤∞

∥∥fL(xp)
∥∥−1

p .

PROPOSITION

The function HL defines a continuous exhaustion of U(A).

Height ball: compact subset BT = {x ∈ U(A) ; HL(x) ≤ T }.

Volume and zeta function:

V (T) = τ(X ,D)(BT ), Z(s) =
∫ ∞

0
t−sdV (t) =

∫
U(A)

HL(x)−s dτ(X ,D)(x).
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PRODUCT OF p-ADIC ZETA FUNCTIONS

Modulo absolute convergence, one has

Z(s) = L∗(1,EP(U))−1
∏

p<∞

(
Lp(1,EP(U))Zp(s)

)
Z∞(s),

where for p ≤∞,

Zp(s) =
∫

U(Qp)
‖fL(x)‖s dτ(X ,D),p(x)

is the p-adic Igusa zeta function described previously.

Recall the decomposition D =∑
ραDα, L =∑

λαDα, as well as the
transversality assumption on the Dα. Then, choosing compatibly adelic
metrics on O(Dα), one has:

Zp(s) =
∫

X(Qp)

∏
α

∥∥fDα

∥∥sλα−ρα dτX ,p(x).

The previous computation in charts shows that it converges absolutely
for ℜ(s) > max((ρα−1)/λα).
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DENEF’S FORMULA

For almost all p, one can give a precise formula for Zp(s) in terms of the
reduction mod. p of the whole situation. This done by adapting the
method used by J. DENEF to prove that the degrees of the local zeta
functions are bounded when one makes the prime number p vary.

PROPOSITION

For p large enough, and for any complex number s such that
ℜ(s) > (ρα−1)/λα, one has

Zp(s) =∑
A

p−dimX #D◦
A(Fp)

∏
α∈A

p−1

psλα−ρα+1 −1
.

This follows from the fact that the local computation in charts around
x ∈ D◦

A can be done using étale coordinates ((xα)α∈A,y) such that∥∥fDα

∥∥= |xα|, etc., and from the explicit computation:∫
pZp

|x|s dx =
∞∑

n=1

∫
pnZp\pn+1Zp

p−ns dx =
∞∑

n=1
p−ns−n(

1− 1

p

)= p−1 p−1

ps+1 −1
.
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MEROMORPHIC CONTINUATION OF AN EULER PRODUCT

Let σ= max(ρα/λα), let A(L,D) be the set of α where equality is
achieved

One can deduce from Denef’s formula that for ℜ(s) >σ−ε,

Zp(s) = p−dimX #U(Fp)
∏

α∈A(L,D)
(1+p−sλα−ρα+1)

hence

1
∏

Lp(1,EP(U))Zp(s) converges absolutely for ℜ(s) >σ;
2

∏
Lp(1,EP(U))Zp(s)

∏
α∈A(L,D)(1−p−sλα+ρα−1) converges absolutely

for ℜ(s) >σ−ε.

Consequently, one obtains a meromorphic continuation of the form

Z(s) = L∗(1,EP(U))−1
∏
p

(
Lp(1,EP(U))Zp(s)

)=ϕ(s)
∏

α∈A(L,D)
ζ(λα(s−σ)+1),

with

ϕ(1) = ∏
α∈A(L,D)

ζ∗(1)
∫

X(AF )

∏
α6∈A(L,D)

HDα
(x)ρα−σλα dτX (x).
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CONCLUSION

Let E be the divisor σL−D; it is effective and its support is contained
in |D|.
Let t = #A(L,D).

Some more calculation implies:

lim
s→σ

Z(s)(s−σ)t
∏

α∈A(L,D)
λα =

∫
X(A)

HE(x)−1 dτX (x).

Using tauberian theorems, we deduce:

THEOREM

When T →∞,

1 one has the asymptotic expansion V (T) = τ(X ,D)(BT ) ∼
Bσ(logB)t−1

(
σ(t −1)!

∏
α∈A(L,D)λα

)−1 ∫
X(A) HE(x)−1 dτX (x);

2 the probability measures V (T)−1τ(X ,D)|BT equidistribute to the
measure

1∫
X(A) HE(x)−1 dτX (x)

HE(x)−1 dτX (x).
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TWO MORE COMMENTS

1 The comparison of the geometric estimates we obtained with
those of MAUCOURANT et al. is an exercice for specialists of
wonderful compactifications of algebraic groups.

2 The question, raised by A. MACINTYRE at the beginning of the
conference, of quantifier elimination in adele rings prompted to
me the analogy with results of COMTE/LION/ROLIN concerning the
behaviour of volumes of parametrized subsets of Rm.
Do they have an adelic analogue?
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