FORMS AND CURRENTS ON BERKOVICH SPACES

Antoine CHAMBERT-LOIR

Institut de recherche mathématique de Rennes, Université de Rennes 1 *Joint work with* Antoine DUCROS

Institut de mathématiques de Jussieu, Université Pierre-et-Marie-Curie (Paris 6)

Algebraic cycles and L-functions Regensburg, 28 February, 2012

INTRODUCTION

- **2** SUPERFORMS ON REAL SPACES
- **3** SUPERFORMS ON BERKOVICH SPACES
- **4** CURRENTS ON BERKOVICH SPACES
- **6** METRIZED LINE BUNDLES

INTRODUCTION

- 2 SUPERFORMS ON REAL SPACES
- **3** SUPERFORMS ON BERKOVICH SPACES
- 4 CURRENTS ON BERKOVICH SPACES
- 5 Metrized line bundles

Goal: propose a theory that allows for some calculus with differential forms, currents, etc. on Berkovich spaces **Motivation:** non-archimedean (aspects of) Arakelov geometry Put non-archimedean places on the same footing as archimedean ones To fix ideas, let \mathscr{X} be a projective flat scheme over **Z**, normal, let \overline{L} be a hermitian line bundle on \mathscr{X} .

Faltings used Arakelov geometry to define inductively the height of any subvariety \mathscr{Y} of \mathscr{X} : if *s* is a nonzero section of L^m on \mathscr{Y} , then

$$h_L(\mathscr{Y}) = \frac{1}{m} h_L(\operatorname{div}(s)) + \int_{\mathscr{X}(\mathbf{C})} \log \|s\|^{-1/m} c_1(\overline{L})^d \delta_Y,$$

where div(*s*) is the divisor of *s* (a cycle) and $d = \dim \mathscr{Y}(\mathbf{C})$. Here, $c_1(\overline{L})$ is the curvature form of the hermitian line bundle \overline{L} on $X(\mathbf{C})$, and $c_1(\overline{L})^d \delta_Y$ is the measure on $\mathscr{Y}(\mathbf{C})$ given by its *d*th power.

ARAKELOV GEOMETRY, HEIGHTS, AND BERKOVICH SPACES

Using Berkovich spaces, one can rewrite this formula so that for any subvariety *Y* of *X* = $\mathscr{X}_{\mathbf{Q}}$, and any nonzero section *s* of *L*^{*m*} on *Y*,

$$h_{\overline{L}}(\overline{Y}) = \frac{1}{m} h_{\overline{L}}(\overline{\operatorname{div}(s)}) + \sum_{p < \infty} \int_{X_p^{an}} \log \|s\|^{-1/m} c_1(\overline{L})^d \delta_Y + \int_{Y(\mathbf{C})} \log \|s\|^{-1/m} c_1(\overline{L})^d \delta_Y.$$

The integral at *p* takes care of the vertical components at *p* of the divisor of *s*, viewed as a (meromorphic) regular section on the Zariski closure \overline{Y} of *Y* in \mathcal{X} .

The point is the following: if \mathscr{Y} is normal, any irreducible component of the special fiber $\mathscr{Y}_{\mathbf{F}_p}$ is the reduction of a unique point of the Berkovich space Y_p^{an} .

The measure $c_1(\overline{L})^d \delta_Y$ is a linear combination of Dirac masses at those points.

Let *k* be a complete valued field.

Let *X* be a proper *k*-analytic space, \overline{L} a line bundle on *X* with a continuous metric.

Assume that this metric is **semipositive** in the sense of Zhang — a uniform limit of metrics associated to models $(\mathscr{X}_m, \mathscr{L}_m)$ such that \mathscr{L} is nef on the special fiber.

THEOREME

The discrete measures $c_1(\overline{L_m})^d \delta_Y$ converge to a unique, well-defined measure $c_1(\overline{L})^d \delta_Y$.

Gubler: explicit computation of this measure for abelian varieties.

- equidistribution theorems of points of small height on Berkovich spaces (ACL, Favre/Rivera-Letelier, Baker/Rumely; Thuillier; Gubler, Yuan; Szpiro/Tucker...)
- application to the Bogomolov conjecture (Gubler, Yamaki)
- non-archimedean analogue of the Monge-Ampère problem (Kontsevich/Tschinkel; Yuan/Zhang, Liu, Boucksom/Favre/Jonsson...)
- (pluri)potential theory (Baker/Rumely; Thuillier)

- Despite the notation chosen for the measures $c_1(\overline{L})^d \delta_Y$, there is no definition of an analytic object $c_1(\overline{L})$ on Berkovich spaces.
- For **curves**, this is enough to define a complete analytic Arakelov theory (Thuillier).
- In higher dimensions, the non-Archimedean Arakelov geometry of Bloch/Gillet/Soulé proposes a definition of a first Chern curvature form of \overline{L} , but it is of an algebraic nature, lying in a limit of Chow groups of models of *X*. Moreover, their definition requires resolution of singularities.

I want to explain a definition of differential forms/currents that seems to be suitable for an analytic Arakelov geometry in any dimension:

- the Poincaré-Lelong equation holds;
- the theory recovers the previous measures.

The **tools** we use are:

- A notion of superforms, supercurrents, and a *d*/*d*[#]-calculus on real spaces invented by **Aron Lagerberg** (Math. Zeit, 2011) to adapt ideas from complex pluripotential theory to convex function theory and tropical geometry;
- Analytic tropical geometry, in the spirit of **Walter Gubler**, but in a local setting.

INTRODUCTION

2 SUPERFORMS ON REAL SPACES

3 SUPERFORMS ON BERKOVICH SPACES

OURRENTS ON BERKOVICH SPACES

SUPERFORMS (AFTER LAGERBERG)

Let V be a finite dimensional affine space over **R**.

A (smooth) (p, q)-superform over an open subset U of V is an element of

$$\mathscr{A}^{p,q}(U) = \mathscr{C}^{\infty}(U) \otimes \bigwedge^{p} \vec{V}^{*} \otimes \bigwedge^{q} \vec{V}^{*}$$

After choosing an origin of V and a basis of \vec{V} , it can be written

$$\omega = \sum_{|I|=p,|J|=q} \omega_{IJ}(x) \operatorname{d}' x_I \otimes \operatorname{d}'' x_J,$$

for some smooth functions ω_{IJ} on U.

Bi-graded algebra $\mathscr{A}^{*,*}(U)$:

$$\omega \wedge \omega' = (-1)^{(p+q)(p'+q')} \omega' \wedge \omega.$$

Bi-graded differential calculus: d', d'' Involution J given by J d' $x_i = d'' x_i$. Symmetry condition for forms of type (p, p): J $\omega = (-1)^p \omega$. d'' = J d' J. Logarithm map: $\tau : (\mathbf{C}^*)^n \to \mathbf{R}^n, (z_1, \dots, z_n) \mapsto (\log |z_1|, \dots, \log |z_n|)$ Via

$$d' x_j \rightarrow d\log |z_j|, \quad d'' x_j \rightarrow d\arg(z_j),$$

superforms in $\mathscr{A}^{p,q}(U)$ pull back to smooth differential forms forms on $\tau^{-1}(U)$ which are invariant under the action of the compact group $(\mathbf{S}_1)^n$,

(p, q)-superforms give rise to forms of degree p + q, but not of degree (p, q). Symmetric forms of type (p, p) lift to real forms of degree (p, p). Assume $V = \mathbf{R}^n$. If ω is a (n, n)-superform on an open subset $U \subset V$, one defines

$$\int_U \omega = \int_U \omega^{\sharp}(x_1, \dots, x_n) dx_1 \dots dx_n, \qquad \omega = \omega^{\sharp} d' x_1 \wedge d'' x_1 \dots$$

It **depends** on the choice of a coordinate system. **Volume-vector:** element of

$$\left|\bigwedge^{n} \vec{V}\right| = \operatorname{Or}(\vec{V}) \times^{\{\pm 1\}} \bigwedge^{n} \vec{V}.$$

A volume-vector μ gives rise to a well-defined integral

$$\int_U \langle \omega, \mu \rangle,$$

for $\omega \in \mathcal{A}^{n,n}(U)$.

Let *P* be a piecewise linear (PL) subspace of *V*, of dimension *p*. **Calibration of** *P*: choice, for every *p*-dimensional face *F* of *P*, of a volume vector $\mu_F \in |\bigwedge^p \vec{V}|$. — Up to refinement of a PL decomposition of *P*. Once *P* has been calibrated, one can integrate (*p*, *p*)-superforms on *P*.

Boundary calibration: Let *F* be a (p-1)-dimensional face of *P*, choose an orientation ε_F of \vec{F} .

For each *p*-dimensional face *G* of *P* of which *F* is a boundary, endow \vec{G} with the "outgoing normal" orientation. Then, μ_G is identified with a *p*-vector in $\wedge^p \vec{G}$. Set

$$\partial \mu_F = \sum_{G \supset F} \mu_G$$
 (up to the chosen orientation of *F*).

One can integrate a (p-1, p)-form with respect to this "boundary calibration". Beware: its support can be larger than ∂P .

Let *P* be a calibrated PL subspace of dimension *p*. Let ω be a (p-1, p)-superform.

Stokes formula:

$$\int_{P} \langle \mathbf{d}' \, \boldsymbol{\omega}, \boldsymbol{\mu} \rangle = \int_{P} \langle \boldsymbol{\omega}, \partial \boldsymbol{\mu} \rangle.$$

Green formula: Let α and β be (*a*, *a*) and (*b*, *b*)-symmetric forms on *P*, with a + b = p - 1; then

$$\int_{P} \langle \alpha \wedge d' \, d'' \, \beta - d' \, d'' \, \alpha \wedge \beta, \mu \rangle = \int_{P} \langle \alpha \wedge d'' \, \beta - d'' \, \alpha \wedge \beta, \partial \mu \rangle.$$

INTRODUCTION

2 SUPERFORMS ON REAL SPACES

3 SUPERFORMS ON BERKOVICH SPACES

4 CURRENTS ON BERKOVICH SPACES

- Let *k* be a complete ultrametric field. Let *X* be a *k*-analytic space.
- **Moment:** morphism $f: X \to T \simeq \mathbf{G}_{m}^{n}$ to a split torus.
- **Tropicalization** of a moment: $f_{\text{trop}} : X \to T_{\text{trop}} \simeq \mathbf{R}^n$.

Crucial fact (Berkovich/quantifier elimination in ACVF): if *X* is compact, then $f_{\text{trop}}(X)$ is a PL subspace of \mathbb{R}^n . **Tropical chart**: $(f: X \to T, P)$ where *f* is a moment and *P* is a compact PL-subspace containing $f_{\text{trop}}(X)$. **Presheaf:** For any open $U \subset X$, let $\mathscr{A}_{\text{pre}}^{p,q}(U)$ be the inductive limit of all spaces $\mathscr{A}^{p,q}(P)$ over all tropical charts $(f: U \to T, P)$ of U.

The associated sheaf $\mathscr{A}_X^{p,q}$ is the **sheaf of smooth forms** of type (p,q) on *X*. Sheaf of bi-graded algebras $\mathscr{A}_X^{*,*}$:

$$\omega \wedge \omega' = (-1)^{(p+q)(p'+q')} \omega' \wedge \omega.$$

Bi-graded differential calculus: d', d'' Involution J given by J d' $x_i = d'' x_i$. Symmetry condition for forms of type (p, p): J $\omega = (-1)^p \omega$. d'' = J d' J. $\mathscr{A}_X^0 := \mathscr{A}_X^{0,0}$ is the sheaf of **smooth functions** on *X*. A function *f* is smooth if it can be locally written as a \mathscr{C}^∞ -function in logarithms of absolute values of invertible functions.

STONE-WEIERSTRASS

Assume *X* is good and Hausdorff. Let *U* be an open subset of *X*. Any continuous function on *X* with compact support in *U* can be uniformly approximated by smooth functions with compact support contained in *U*.

PARTITIONS OF UNITY

If X is **good** and **paracompact**, then these sheafs $\mathscr{A}_X^{p,q}$ are fine.

Let *X* be a compact analytic space, let $f: X \to T$ be a moment on *X*. Let $p = \dim X$.

Then $P = f_{trop}(X)$ is a compact PL-subspace of T_{trop} . The following construction **calibrates** *P*; it is valid once chosen a fine enough PL-decomposition of *P*.

Let *F* be any *p*-dimensional face of *P*. Fix an affine morphism of tori *q*: $T \to \mathbf{G}_{\mathrm{m}}^{p}$ such that $q_{\mathrm{trop}} \colon \langle F \rangle \to \mathbf{R}^{p}$ is an isomorphism and $q_{\mathrm{trop}}(\mathring{F}) \cap (q \circ f)_{\mathrm{trop}}(\partial X) = \emptyset$. let $\sigma \colon \mathbf{R}^{p} \to T_{\mathrm{trop}}$ be its unique section with image $\langle F \rangle$.

CANONICAL CALIBRATIONS. SKELETA AND DEGREES

Skeleton of a torus: subspace $S(\mathbf{G}_m^p) \subset \mathbf{G}_m^p$ such that the composition

$$S(\mathbf{G}_{\mathrm{m}}^{p}) \subset \mathbf{G}_{\mathrm{m}}^{p} \xrightarrow{\mathrm{trop}} \mathbf{R}^{p}$$

is a topological homeomorphism.

The point η_r corresponding to the point $r = (r_1, ..., r_p) \in \mathbf{R}^p$ is the following multiplicative seminorm on the algebra $k[T_1^{\pm 1}, ..., T_p^{\pm 1}]$:

$$||f||_r = \sup |f_I| e^{i_1 r_1 + \dots + i_p r_p}, \qquad f = \sum f_I T_1^{i_1} \dots T_p^{i_p}.$$

Let $q_{\text{trop}}(\mathring{F})_{\text{sk}}$ be the inverse image of $q_{\text{trop}}(\mathring{F})$ in S(**G**^{*p*}_m).

PROPOSITION

The map $q \circ f : X \to \mathbf{G}_{\mathbf{m}}^{p}$ is finite and flat above each point of $q_{\text{trop}}(\mathring{F})_{\text{sk}}$, and has a degree $d_{F} > 0$.

X a compact analytic space of dimension *p*, moment: $f: X \to T$, $P = f_{trop}(X)$, compact polytope. *F*, *p*-dimensional face of *P*, $q: T \to \mathbf{G}_{m}^{p}$, affine morphism of tori such that $q_{trop}: \langle F \rangle \simeq \mathbf{R}^{p}$ and $q_{trop}(\mathring{F}) \cap (q \circ f)_{trop}(\partial X) = \emptyset$. $\sigma: \mathbf{R}^{p} \to T_{trop}$, unique section of *q* with image $\langle F \rangle$. $d_{F} > 0$, degree of the map $q \circ f: X \to \mathbf{G}_{m}^{p}$ at each point of $q_{trop}(\mathring{F})_{sk}$.

Volume-vector of the face F:

$$\mu_F = d_F \sigma_* (|\mathbf{e}_1 \wedge \dots \mathbf{e}_p|).$$

It does not depend on the choice of q.

X a compact analytic space of dimension *p*, moment: $f: X \rightarrow T$,

 $P = f_{trop}(X)$, compact polytope.

The canonical calibration μ of *P* allows to define

- the integral of a (p, p)-form $\omega = f^* \alpha$, where α is a (p, p)-superform on P.
- the integral of a (p-1, p)-form $\omega = f^* \alpha$, where α is a

(p-1, p)-superform on P.

The following is an analog of the balance condition (Speyer,...) in tropical geometry.

THEOREME (HARMONY CONDITION)

Let X be compact n-dimensional analytic space. Let $f: X \to T$ be a moment, μ the canonical calibration of $f_{trop}(X)$. Every n-1-dimensional face of $f_{trop}(X)$ which is not contained in $f_{trop}(\partial X)$ does not contribute to the calibration $\partial \mu$.

INTEGRAL OF SUPERFORMS ON ANALYTIC SPACES

Let *X* be a *n*-dimensional analytic space *X* and ω be a (n, n)-form on *X*. **Definition of** $\int_X \omega$. — Locally, $\omega = f^* \alpha$ for some moment $f: X \to T$ and a (p, p)-superform α on a calibrated polytope in T_{trop} ; just integrate α !

The integral $\int_{\partial X} \omega$ of a (n-1, n)-form ω is defined analogously. The harmony condition implies:

PROPOSITION

If the support of a(n-1, n)-form ω does not meet ∂X , then $\int_{\partial X} \omega = 0$.

PROPOSITION (STOKES/GREEN FORMULAS)

For $\omega \in \mathscr{A}^{n,n}(X)$, symmetric $\alpha \in \mathscr{A}^{p,p}(X)$, $\beta \in \mathscr{A}^{q,q}(X)$, with p + q = n - 1:

$$\int_X \mathbf{d}'\,\boldsymbol{\omega} = \int_{\partial X} \boldsymbol{\omega}$$

$$\int_X \alpha \wedge \mathbf{d}' \, \mathbf{d}'' \, \beta - \mathbf{d}' \, \mathbf{d}'' \, \alpha \wedge \beta = \int_{\partial X} \alpha \wedge \mathbf{d}'' \, \beta - \mathbf{d}'' \, \alpha \wedge \beta.$$

INTRODUCTION

- 2 SUPERFORMS ON REAL SPACES
- **3** SUPERFORMS ON BERKOVICH SPACES
- **4** CURRENTS ON BERKOVICH SPACES
- 5 METRIZED LINE BUNDLES

Let *X* be a purely *n*-dimensional *k*-analytic space without boundary. The space $\mathcal{D}^{p,q}(X)$ of (p,q)-currents is defined as the topological dual of $\mathscr{A}_{c}^{n-p,n-q}(X)$ (smooth superforms with compact support).

Say a sequence of (p, q)-differential forms converges to zero is locally they can ultimately be defined using the same moment and a sequence of superforms which converges to 0, as well as all the derivatives of their coefficients.

Differential operators, d', d'', defined by duality.

Examples

- Differential forms
- Integration current on a closed subvariety
- — on a closed analytic domain

Let *f* be a regular meromorphic function on *X*. By linearity, one defines a (1, 1)-current $\delta_{\operatorname{div}(f)}$ — integration current over the cycle $\operatorname{div}(f)$.

PROPOSITION (POINCARÉ-LELONG EQUATION)

 $\mathrm{d}'\mathrm{d}''\log|f|=\delta_{\mathrm{div}(f)}.$

The proof combines:

- the Green formula;
- for a tropicalized affinoid *V* and $f \in \mathcal{O}(V)$ (non zero-divisor), the "constancy", for *t* small enough, of the calibered polytopes of $V \cap \{|f| = t\}$.

INTRODUCTION

- 2 SUPERFORMS ON REAL SPACES
- **3** SUPERFORMS ON BERKOVICH SPACES
- 4 CURRENTS ON BERKOVICH SPACES

Let *L* be a line bundle on *X*.

A (smooth/continuous/...) **metric** on *L* is the data, for any local section *s* of *L* of a nonnegative function ||s||, such that

- for any local function *f* and any local section *s*, ||fs|| = |f| ||s||;
- ||s||(x) = 0 iff s(x) = 0;

• if *s* does not vanish, then log ||*s*|| is smooth/continuous/...

A smoothly metrized line bundle \overline{L} has a **curvature form**, given locally as

 $c_1(\overline{L}) = d' d'' \log \|s\|^{-1}$, for any local non-vanishing section *s*.

If the metric is only continuous, then $c_1(\overline{L})$ is a current. Extension of the **Poincaré–Lelong equation:** for any regular meromorphic section *s* of *L*,

$$d' d'' \log ||s||^{-1} + \delta_{\operatorname{div}(s)} = c_1(\overline{L}).$$

Compatibility with intersection theory: if \overline{L} is smooth and X is proper, then

$$\int_{X} c_1(\overline{L})^n = \deg_L(X).$$

TOTALLY DEGENERATE ABELIAN VARIETIES

Assume *X* is a totally degenerate abelian variety, with Tate uniformisation $\pi: \mathbf{G}_{m}^{n} \to \mathbf{G}_{m}^{n} / M = X$, where $M \simeq \mathbf{Z}^{n}$ is a lattice.

Any line bundle *L* can be described (Bosch–Lütkebohmert) as the quotient of the trivial line bundle on $\mathbf{G}_{\mathrm{m}}^{n}$ by an action of *M* of the form

$$m \cdot (x, a) = (mx, r(m) \langle x, \lambda(m) \rangle a), \quad x \in \mathbf{G}_{\mathrm{m}}^{n}, \quad a \in \mathbf{G}_{\mathrm{a}}, \quad m \in M,$$

where $\lambda: M \to \mathbb{Z}^n$ is a group morphism and $r: M \to \mathbb{G}_m$ is a map such that $\langle m_1, \lambda(m_2) \rangle = r(m_1 m_2) r(m_1)^{-1} r(m_2)^{-1}.$

This allows to describe explicitly the cubical metric on *L*, at least after pull-back to $\mathbf{G}_{\mathrm{m}}^{n}$. It is smooth!

View *M* as a lattice in \mathbf{R}^n via the tropicalization map $\mathbf{G}_m^n \to \mathbf{R}^n$. The map $m \mapsto \log |\langle m, \lambda(m)|^{-1}$ extends to a quadratic form q_L on \mathbf{R}^n . Then,

$$\pi^* c_1(\overline{L}) = \mathbf{d}' \mathbf{d}'' \pi^* q_L.$$

This allows to show that the (n, n)-form $c_1(\overline{L})^n$ is supported by the skeleton of *X*, and is invariant by translation.

Let \mathscr{X} be a formal model of *X*, and \mathscr{L} be a line bundle on \mathscr{X} with generic fiber *L*.

This defines a metric on *L*, but this metric is not smooth.

Assume that \mathscr{X} is proper and the reduction of \mathscr{L} is nef. Then, locally around a point $x \in X$, it can be defined by a maximum of absolute values of invertible functions:

 $\|s\| = \max(|f_1|,\ldots,|f_m|).$

Then $c_1(\overline{L})$ is a closed positive (1,1)-current.

The **product of currents** $c_1(\overline{L})^n$ is defined by approximation, as in complex pluripotential theory (Bedford-Taylor, Demailly). It coincides with the measures evoked at the beginning of the talk.

For simplicity, take $\mathscr{X} = \mathbf{P}_2$ and $\mathscr{L} = \mathscr{O}(1)$. The "Weil metric" is given by

$$\|s_P\|\left([x_0:x_1:x_2]\right) = \frac{|P(x_0,x_1,x_2)|}{\max(|x_0|,|x_1|,|x_2|)},$$

for *P* homogeneous of degree 1.

The space \mathbf{P}_2^{an} has a distinguished point γ , corresponding to the Gauß norm on $k[T_1, T_2]$. It is the unique point of \mathbf{P}_2^{an} whose reduction $\tilde{\gamma}$ is the generic point of $\mathbf{P}_{2,\tilde{k}}$. Moreover,

$$c_1(\overline{\mathcal{O}(1)})^2 = \delta_{\gamma}.$$

The support of $c_1(\mathcal{O}(1))$ is the set of points *x* of \mathbf{P}_2^{an} whose reduction \tilde{x} is not closed.