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Abstract. We prove exponential contraction of renormalization along hybrid

classes of infinitely renormalizable unimodal maps (with arbitrary combina-
torics), in any even degree d. We then conclude that orbits of renormalization

are asymptotic to the full renormalization horseshoe, which we construct. Our

argument for exponential contraction is based on a precompactness property
of the renormalization operator (“beau bounds”), which is leveraged in the ab-

stract analysis of holomorphic iteration. Besides greater generality, it yields a

unified approach to all combinatorics and degrees: there is no need to account
for the varied geometric details of the dynamics, which were the typical source

of contraction in previous restricted proofs.
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1. Introduction

1.1. Renormalization Conjecture and Regular or Stochastic Theorem.
The Renormalization Conjecture formulated in mid 1970’s by Feigenbaum [F] and
independently by Coullet and Tresser [TC] has been a focus of research ever since.
Roughly speaking, it says that a certain “renormalization map” is hyperbolic in an
appropriate infinite-dimensional functional space. It explains remarkable univer-
sality properties on various families of dynamical systems (see [Cv] for a collection
of early papers on the subject). More recently, it has played a central role in the
measure-theoretical analysis of one-dimensional dynamical systems, particularly in

Date: May 26, 2010.

1



2 ARTUR AVILA AND MIKHAIL LYUBICH

the proofs of the Regular or Stochastic Dichotomy in the real quadratic family [L4]
and more general spaces of quasiquadratic unimodal maps [ALM].

Here we will consider the renormalization operator R in the space CRd of real
unicritical polynomial-like maps of an arbitrary even degree d ≥ 2. Hyperbolicity
of R was proven for bounded combinatorics by Sullivan, McMullen and one of the
authors in [S, McM1, L3], and then for all combinatorics in the quadratic case [L4].
Our goal is to generalize the latter result to an arbitrary even degree d.

In this paper we will prove that the renormalization operator R has an invariant
horseshoe A and is exponentially contracting on the corresponding hybrid lami-
nation. In the forthcoming paper we will deal with the transverse unstable di-
rection. Together with the previous analysis of non-renormalizable unimodal maps
[ALS], this will prove the Regular or Stochastic Dichotomy in any unicritical family
pc : x 7→ xd + c (d ≥ 2 even): For almost any real c (for which pc has an invariant
interval), the map pc is either regular (i.e., it has an attracting cycle) or stochastic
(i.e., it has an absolutely continuous invariant measure).

Besides supplying a more general version of the Renormalization Theorem, our
goal is to address the issue of exponential contraction along hybrid leaves in a
novel unified way, which does not involve fine geometric considerations (highly
dependent on the combinatorics and degree). Our approach simplifies the previously
known proofs in the quadratic-like case, even for the renormalization with bounded
combinatorics. Namely, we will derive the desired result from the previously known
beau bounds for real maps [S, LvS, LY], and basic facts of functional analysis and
topology.

1.2. Statement of the result. Let us now formulate our main result more pre-
cisely. To this end we need a few basic definitions that we now outline; a more
detailed background will be supplied in the main body of the paper.

A unicritical polynomial-like map of degree d is a degree d branched covering
f : U → V between two topological disks U b V that has a single critical point.
We normalize f so that f(z) = zd + c+O(zd+1) at the origin.1

The (filled) Julia set K(f) is the set of non-escaping points. It is either connected
or a Cantor set depending on whether 0 ∈ K(f) or not. If f is a polynomial-
like map with connected Julia set then the corresponding polynomial-like germ is
defined as the class of polynomial-like maps f̃ with the same Julia set and such
that f̃ |K(f) = f |K(f).

Let C = Cd stand for the space of normalized polynomial-like germs of degree d
with connected Julia set. It intersects the polynomial family pc : z 7→ zd+ c, c ∈ C,
by the Multibrot setM =Md (defined as the set of c for which the Julia set K(pc)
is connected).

Two polynomial-like germs are called hybrid equivalent if they have representa-
tives f : U → V and f̃ : Ũ → Ṽ that are conjugate by a quasiconformal homeomor-
phism h : V → Ṽ such that ∂̄h = 0 almost everywhere on K(f). The corresponding
equivalence classes are called hybrid classes. According to the Douady-Hubbard
Straightening Theorem [DH], any hybrid class in C intersects the Multibrot set M
by an orbit of the rotation group Z/(d− 1)Z.

1Note that this normalization survives rotations through 2πk/(d− 1), k ∈ Z/(d− 1)Z: conju-
gating a normalized map by such a rotation, we obtain a normalized map with rotated c.
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A unicritical polynomial-like germ f is called renormalizable if there is a disk
Ω 3 0 and a p ≥ 2 such that the map fp|Ω is unicritical polynomial-like with
connected Julia set (subject of a a few extra technical requirements – see §2.10).
Appropriately normalizing this polynomial-like germ, we obtain the renormalization
of f . If p is the smallest period for which f is renormalizable, then the corresponding
renormalization is denoted Rf .

We can now naturally define infinitely renormalizable polynomial-like germs. Let
IR stand for the space of real infinitely renormalizable polynomial-like germs (that
is, the germs preserving the real line), and let I(R) stand for the space of polynomial-
like germs that are hybrid equivalent to the real ones. The renormalization operator
R naturally acts in both spaces preserving the hybrid partition. In what follows,
this partition will serve as the stable lamination:

Main Theorem. There is an R-invariant precompact set A ⊂ IR (the renormal-
ization horseshoe) such that R| A is topologically conjugate to the two-sided shift in
infinitely many symbols, and any germ f ∈ I(R) is attracted to some orbit of A at
a uniformly exponential rate, in a suitable “Carathéodory metric”.

See Theorem 9.2 for a slightly more detailed formulation.

Remark 1.1. Our approach to exponential contraction also applies to certain non-
real renormalization combinatorics (for which the appropriate beau bounds have
been established, see [K], [KL1], [KL2]). See Theorem 5.1.

1.3. Outline of the proof. We start with the argument for exponential contrac-
tion along hybrid classes. To fix ideas, let us consider first the case of a fixed hybrid
leaf Hc (the connected component of the hybrid class of pc) so that every time we
iterate the same renormalization operator R.

Hybrid lamination. In §4 we endow hybrid leaves with a path holomorphic struc-
ture and show that all of them are bi-holomorphically equivalent. The path holo-
morphic structure endows these spaces with Carathéodory pseudo-metrics and we
prove that they are Carathéodory hyperbolic, i.e., these pseudo-metrics are, in fact,
metrics.

The Schwarz Lemma. The renormalization operator, as a map from one hybrid
leaf to another, is holomorphic with respect to their path holomorphic structure.
This puts us in a position to apply the Schwarz Lemma to the analysis of its iterates:
its weak form (see §3) already implies that renormalization is weakly contracting
with respect to the Carathéodory metric.

Beau bounds in Hc mean by definition that there exists a compact set K ⊂ C
such that for every f ∈ Hc, Rnf ∈ K for any n sufficiently large (depending only
on the quality of the analytic extension of f), see §5.

For real maps with stationary combinatorics, beau bounds were proved by Sul-
livan (see [S, MvS]) in early 1990’s, for complex maps with primitive stationary
combinatorics, they have been recently established by Kahn [K]. (Note that this
result covers all real stationary combinatorics except the period doubling.) Expo-
nential contraction can be easily concluded from beau bounds through the entire
complex hybrid leaf Hc:

The Strong Schwarz Lemma shows that holomorphic endomorphisms are strongly
contracting with respect to the Carathéodory metric, provided the image is “small”
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in the range, in the sense that the diameter is less than 1,2 see §3. Beau bounds
imply that for any compact set Q ⊂ Hc there exists N such that Rn(Q) contained
in the (universal) compact set K for n ≥ N . By selecting Q ⊃ K sufficiently large,
we fulfill the smallness condition of K inside Q, and can conclude that RN | Q is
strongly contracting (§5).

We will now give a different argument for stationary real combinatorics that
relies only on the beau bounds for real maps. It makes use of one general idea of
functional analysis:

Almost periodicity. The beau bounds for real maps (and even just for real poly-
nomials) imply that the cyclic semigroup {Rn}∞n=0 is precompact in the topology
of uniform convergence on compact sets of Hc. (Such semigroups are called almost
periodic, see [Lju1, Lju2].) Then the ω-limit set of this semigroup is a group. Its
unit element is a retraction P : Hc → Z = FixP .

Remark 1.2. More directly, the precompactness of {Rn} allows us to find nearby
iterates Rn and Rm with m > 2n. It follows that Rn−m is close to the identity in
ImRn ⊃ ImRn−m. Taking limits we get a map P which is exactly the identity in
ImP , so that P is a retraction.

Let PR : HR
c → ZR be the restriction of P to the real slice.

Topological argument and analytic continuation) (§7). The beau bounds for real
maps imply that the real slice ZR is compact. By the Implicit Function Theo-
rem, ZR is a finite-dimensional manifold. But one can show that the space HR

c is
contractible (see Lemma 2.1 and Theorem 2.2), and hence the retract ZR is con-
tractible as well. But the only contractible compact finite dimensional manifold
(without boundary) is a single point. So, PR collapses the real slice HR

c to a single
point f∗. Since P is holomorphic, it collapses the whole space Hc to f∗ as well.

Since P is constant it follows that Rn → P uniformly on compact subsets of Hc,
and we can conclude exponential contraction through the strong Schwarz Lemma
as before.

This completes the argument for the case of stationary combinatorics.

Unbounded combinatorics. Beau bounds for arbitrary real maps were established
in [LvS, LY]. For complex maps, they have been recently established for a fairly
big class of combinatorics in [KL1, KL2] (see also [L2] for earlier results). Our first
argument that uses the beau bounds for complex maps extends to the unbounded
combinatorics case in a straightforward way, using the leafwise Carathéodory metric
on the hybrid lamination (§5). The second argument based on almost periodicity
requires an extension of this idea from semigroups to cocycles (or grupoids). This
is carried out in §8.1.

Horseshoe. Once contraction is proved, the horseshoe is constructed in the fa-
miliar way (see [L4]) using rigidity of real maps [L2, GS, KSS]. It is automatically
semi-conjugate to the full shift. A further argument based on the analysis of the
analytic continuation of anti-renormalizable maps (which becomes substantially
more involved in the higher degree case, see Appendix A) yields the full topological
conjugacy.

2We gauge the Carathéodory metric so that any space has diameter at most 1. Condition that
the diameter of K in Q is less than 1 means that “K is well inside of Q”.
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1.4. Comparison with earlier approaches. In the case of stationary combina-
torics, two approaches were previously used to construct the fixed point f∗ and to
prove convergence to f∗ in the hybrid class H(f∗). The first one, due to Sullivan,
is based on ideas of Teichmüller theory (see [S, MvS]); the other one, due to Mc-
Mullen, is based on a geometric theory of towers and their quasiconformal rigidity
[McM2].

The Teichmüller approach, albeit beautiful and natural, faces a number of subtle
technical issues. Also, it does not seem to lead to the exponential contraction.3 The
geometric tower approach can be carried all the way to prove exponential contrac-
tion [McM2]. On the other hand, in [L3], exponential contraction was obtained by
combining towers rigidity (as a source of contraction, but without the rate) with
the Schwarz Lemma in Banach spaces.

Both approaches generalize without problem to the bounded combinatorics case.
The tower approach can be carried further to “essentially bounded” combinatorics
[Hi]. The remaining “high” combinatorics case (as well as the oscillating situation)
was handled in [L4] using the geometric property of growth of moduli in the Prin-
cipal Nest of the Yoccoz puzzle [L2]. This is a powerful geometric property which
is valid only in the quadratic case. So, this method is not sufficient in the higher
degree case (at least, it would require further non-trivial geometric analysis).

The approaches developed in this paper use much softer geometric input (only
beau bounds) and treat all the combinatorial cases in a unified way.

Remark 1.3. There are also computer-assisted methods going back to the classical
paper by Lanford [La], as well as approaches that do not rely on holomorphic
dynamics [E, Ma2]. These methods can be important for dealing with the case of
fractionary degree d. The almost periodicity idea can possibly contribute to it, too.

1.5. Basic Notation. D = {z : |z| < 1} is the unit disk,
Dr = {z : |z| < r} is the disk of radius r,
and T = {z : |z| = 1} is the unit circle;
pc : z 7→ zd + c is the unicritical polynomial family.

We assume the reader’s familiarity with the basic theory of quasiconformal (“qc”)
maps. We let Dilh be the dilatation of a qc map.

Acknowledgements: The first author would like to thank the hospitality of
the University of Toronto, the Fields Institute and the Stony Brook University.
This research was partially conducted during the period the first author served as
a Clay Research Fellow. The second author was partially supported by the NSF
and NSERC.

2. Hybrid classes, external maps, and renormalization

Theory of polynomial-like maps was laid down in [DH] and further developed,
particularly in the quadratic-like setting, in [McM1, L3]. In this section we will
refine the basic theory in the case of unicritical polynomial-like maps of arbitrary
degree.

3It has been suggested that this relates to the fact the Teichmüller approach naturally deals

with conformal (rather than affine) equivalence between the polynomial-like germs. However, our
Schwarz Lemma argument seems to work equally well for conformal classes.
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2.1. Holomorphic motions. Given a domain D ⊂ C with a base point λ0 and a
set X0 ⊂ C, a holomorphic motion of X0 over D is a family of injections hλ : X0 →
C, λ ∈ D, such that hλ0

= id and hλ(z) is holomorphic in λ for any z ∈ X0. Let
Xλ = hλ(X0).

We will summarize fundamental properties of holomorphic motions which are
usually referred to as the λ-lemma. It consists of two parts: extension of the
motion and transverse quasiconformality, which will be stated separately.

Extension λ-Lemma [Sl]. A holomorphic motion hλ : X0 → Xλ of a set

X0 ⊂ C over the disk D admits an extension to a holomorphic motion ĥλ : C→ C
of the whole complex plane over D.

Remark 2.1. We will usually keep the same notation, hλ, for the extended motion.

Quasiconformality λ-Lemma [MSS]. Let hλ : U0 → Uλ be a holomorphic
motion of a domain U0 ⊂ C over the disk D, based on 0. Then over any smaller
disk Dr, r < 1, all the maps hλ are K(r)-qc, where K(r) = 1+r

1−r .

2.2. Polynomial-like maps and germs. A polynomial-like map (“p-l map”) of
degree d ≥ 2 is a holomorphic branched covering f : U → V of degree d between
quasidisks U b V . Its filled Julia set is K(f) = ∩n≥0f−n(U), and the Julia set is
J(f) = ∂K(f). In what follows, the letter d will be reserved for the degree of f .

A p-l map is called unicritical if it has a unique critical point (of local degree
d). We will normalize unicritical polynomial-like maps so that 0 ∈ U is the critical
point and f(z) = zd + c + O(zd+1) near 0. In what follows, polynomial-like maps
under consideration will be assumed unicritical. The annulus V r U is called the
fundamental annulus of a p-l map f : U → V (the corresponding open and closed
annuli, V r Ū and V̄ r U will also be called “fundamental”).

Basic examples of p-l maps are provided by appropriate restrictions of unicritical
polynomials pc : z 7→ zd + c, e.g., pc : Dr → pc(Dr) for r > 1 + |c|.

The Basic Dichotomy asserts that the (filled) Julia set of f is either connected
or a Cantor set, and the former happens iff 0 ∈ K(f).

Given a polynomial-like map f with connected Julia set, the corresponding
polynomial-like germ is an equivalence class of polynomial-like maps f̃ such that
K(f) = K(f̃) and f = f̃ in a neighborhood of 0 (hence, by analytic continuation,
also in a neighborhood of K(f)). We will not make notational distinction between
polynomial-like maps and the corresponding germs. Let

mod f = sup mod(V r U),

where the supremum is taken over all p-l representatives U → V of f .
We let C = Cd be the set of all polynomial-like germs with connected Julia set.
A unicritical polynomial pc : z 7→ zd + c defines an element of C if and only if c

belongs to the Multibrot set M = {c ∈ C : sup |pnc (0)| < ∞}. Those are the only
(normalized) germs with infinite modulus.

We will use superscript R for the real slice of a certain space. For instance CR
stands for germs of real polynomial-like maps f : U → U ′ (with connected Julia
set), i.e., such that f preserves the real line and domains U , U ′ are R-symmetric.
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2.3. Topology. For a quasidisk U ⊂ C, let BU stand for the Banach space of
functions holomorphic in U and continuous in Ū . The norm in this space will be
denoted by ‖ · ‖. Let BU (f, ε) stand for the Banach ball in BU centered at f of
radius ε.

We introduce a topology in C as follows. We say that fn → f if there exists a
quasidisk neighborhood W of K(f) such that (some representatives of) the germs
fn are defined on W̄ for sufficiently large n, and fn converges to (an appropriate
restriction of a representative of) f in the Banach space BW . The topology in C is
defined by declaring its closed sets to be the ones which are sequentially closed. It is
easy to see that K(f) depends upper semi-continuously (in the Hausdorff topology)
on f ∈ C, while its boundary J(f) depends lower semi-continuously.

We let C(ε) be the set of all f ∈ C with mod(f) ≥ ε. Then C(ε) is compact, and
any compact subset K of C is contained in some C(ε) (see [McM1]).

2.4. Hybrid classes. Notice that the Multibrot setM has rotational symmetry of
order d−1 coming from the fact that polynomials pc and pεc are affinely equivalent
for ε = e2πi/(d−1). In fact, the moduli space of unicritical polynomials of degree
d (that is, the space of these polynomial moduli affine conjugacy) is the orbifold
C/ < ε > with order d− 1 cone point at the origin.

We say that two polynomial-like germs f, g ∈ C are hybrid equivalent if there
exists a quasiconformal map h : C→ C, such that h ◦ f = g ◦ h in a neighborhood
of K(f) (for any representatives of f and g), and ∂h = 0 on K(f). We call h a
hybrid conjugacy between f and g.

By the Douady-Hubbard Straightening Theorem, every f ∈ C is hybrid conjugate
to some pc with c ∈ M. However, in the higher degree case (d > 2) c may not be
uniquely defined. Indeed, polynomials pc and pεc are affinely equivalent, so they
belong to the same hybrid class. Vice versa, one can show that hybrid equivalent
polynomials pb and pc are affinely equivalent, so b = εkc for some k ∈ Z/(d− 1)Z.
We will see later how to define a single polynomial straightening associated to each
germ (the resolution of the apparent ambiguity involves global considerations).

We let H̃c be the hybrid class containing pc.

2.4.1. Beltrami paths. A path fλ ∈ C, λ ∈ D, is called a Beltrami path if there exists
a holomorphic motion hλ : C → C over D, based on 0, such that hλ near K(f0)
provides a hybrid conjugacy between f0 and fλ.4 In this case, the pair (fλ, hλ)
is called a guided Beltrami path. The guided Beltrami paths with a fixed initial
point f0, are in one-to-one correspondence with holomorphic families of Beltrami
differentials µλ = ∂̄hλ/∂hλ on C such that µ0 ≡ 0, and the differentials µλ vanish
a.e. on K(f0) and are f0-invariant near K(f0). So, in what follows our treatment
of Beltrami paths will freely switch from one point of view to the other.

Obviously any Beltrami path lies entirely in a path connected component of an
hybrid class.

2.4.2. Hybrid leaves. Given maps f0, f ∈ H̃c, let us consider a hybrid conjugacy
h : C → C between them. Let µ be the Beltrami differential of h with L∞-norm
κ = ‖µ‖∞ < 1. The family of Beltrami differentials λµ, |λ| < 1/κ, generates a

guided Beltrami path (fλ, hλ) in H̃c, with f1 affinely conjugate to f . In particular
each map in C can be connected to one of its straightenings by a Beltrami path.

4The continuity of λ 7→ fλ is in fact automatic.
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Let Hc be the path connected component of H̃c containing pc. The Hc will be
called hybrid leaves. By the previous discussion, H̃c is the union of the hybrid leaves
Hεkc, k ∈ Z/(d − 1)Z. We will later see that for c 6= 0, the hybrid leaves Hεkc,
k ∈ Z/(d − 1)Z (which by definition either coincide or are disjoint), are in fact all
distinct.

2.5. Expanding circle maps. A real analytic circle map g : T → T is called
expanding if there exists n ≥ 1 such that |Dfn(z)| > 1 for every z ∈ T.

Let E = Ed be the space of real analytic expanding circle maps g : T → T of
degree d normalized so that g(1) = 1. Such a map admits a holomorphic extension
to a covering U → V of degree d, where U b V are annuli neighborhoods of T.
Such extensions will be called annuli representatives of g and will be denoted by
the same letter. We define

mod(g) = sup mod(V \ (U ∪ D))

where the supremum is taken over all annuli representatives g : U → V .
Lifting a map g ∈ E to the universal covering of T, we obtain a real analytic

function g̃ : R → R such that g̃(x) = d x + φ(x) where φ(x) is a 1-periodic real
analytic function with φ(0) = 0. Let A be the space of all such functions, and
let An be the subspace of the φ that admit a holomorphic extension to the strip
| Im z| < 1/n continuous up to the boundary. As the latter spaces are Banach, A
is realized as an inductive limit of Banach spaces, and we can endow it with the
inductive limit topology. It induces a topology on the space E . In this topology, a
sequence gn ∈ E converges to g ∈ E if there is a neighborhood W of T such that all
the gn admit a holomorphic extension to W , and gn → g uniformly on W .

Let ER stand for the subspace of R-symmetric expanding circle maps g : T→ T
(i.e., commuting with the complex conjugacy z 7→ z̄).

Lemma 2.1. The spaces E and ER are contractible.

Proof. Let us work with the lifts g : R → R of the maps g ∈ E without making
a notational difference between them. Let E1 stand for the set of g ∈ E such that
|Dg| > 1 through R. This is a convex functional space, so it can be contracted to
a point through the affine homotopy.

The space E1 contains the set E∗ of maps g ∈ E preserving the Lebesgue measure,
so E∗ can be contracted through E1.

To deal with the whole E , let us make use of the fact that any g ∈ E has
an absolutely continuous invariant measure dµ = ρ dθ with real analytic density
ρ(θ) > 0. Let us consider a real analytic circle diffeomorphism

h(t) =

∫ t

0

ρ(θ)dθ

such that h∗(dµ) = dθ. Then the map G = h ◦ g ◦ h−1 preserves the Lebesgue
measure, so G ∈ E∗. So, we obtain a projection π : E → E∗, g 7→ G.

But the space F of diffeomorphisms h is identified with the space of densities ρ,
which is also convex, and hence contractible. It follows that E∗ is a deformation
retract for E , and the conclusion follows.

In case of ER, just notice that all the above homotopies can be made equivariant
(with respect to the complex conjugacy). �
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2.6. External map, mating and product structure. Given f ∈ C, let ψ :
C \ D → C \ K(f) be the Riemann mapping. The map g = ψ−1 ◦ f ◦ ψ induces
(by the Schwarz reflection) an expanding circle endomorphism of degree d called
the external map of f . It is unique up to conjugacy by a circle rotation, so it can
be normalized so that g ∈ E . For d = 2, this normalization is unique, but in the
higher degree case, there are generally d− 1 ways of normalizing g. Irrespective of
this issue, it is clear that the quality of the analytic extensions of the germ and of
its external map are related by mod(f) = mod(g).

Remark 2.2. Maps with symmetries have fewer normalizations, e.g., z 7→ zd has the
maximal possible symmetry group Z/(d−1)Z and hence has a unique normalization.
Note that this is the external map of any polynomial pc, c ∈M.

Left inverses to the external map construction are provided by the matings
between polynomials pc, c ∈ M, and expanding maps g ∈ E . It goes as fol-
lows. Choose a quasiconformal homeomorphism h : C r D̄ → C r K(pc) such
h◦g = pc◦h near the circle. Consider the Beltrami differential µ equal to ∂̄h−1/∂h−1

on C r K(pc) and vanishing on K(pc). It is invariant under pc on some Jordan
disk D containing K(f). Let φ : C → C be the solution of the Beltrami equation
∂̄φ/∂φ = µ. Then the map f = φ◦pc◦φ−1 is polynomial-like on some neighborhood
of φ(K(pc)), with filled in Julia set φ(K(pc)), so up to normalization, it defines a
germ in C.

It is possible to show that, except for the normalization, the germ f does not
depend on the various choices made in the construction, and it clearly depends
continuously on g ∈ E and c ∈M. In §2.7 we will carry out formally the details of
the construction, to obtain the following result:

Theorem 2.2. There is a canonical choice of the straightening χ(f) ∈ M and an
external map π(f) ∈ E associated to each germ f ∈ C and depending continuously
on f . It has the following properties:

(1) For each c ∈ M, the hybrid leaf Hc is the fiber χ−1(c), and the external
map π restricts to a homeomorphism Hc → E, whose inverse is denoted by
ic and called the (canonical) mating,

(2) (π, χ) : C → E ×M is a homeomorphism,
(3) (Compatibility between matings and Beltrami paths) For c, c′ ∈M, if fλ is

a Beltrami path in Hc then ic′ ◦ i−1c (fλ) is a Beltrami path in Hc′ .
(4) External map, straightening and mating are equivariant with respect to com-

plex conjugation.

Except for the need to introduce some novelties to handle Z/(d−1)Z-ambiguities,
the argument follows the quadratic case [L3].

One way to understand cancellation of these ambiguities (that show up in both
the external map and the mating constructions) is to introduce markings. Each
germ f ∈ C has d − 1 distinct β-fixed points, which do not disconnect K(f), and
a marking of f is just a choice of a preferred β-fixed point. The external map of
a marked germ inherits a marking as well, that is one of its fixed points is distin-
guished. Reciprocally, mating a marked expanding map with a marked polynomial
leads to a well defined marked polynomial-like germ. Marking also allows us to
resolve the ambiguities inherent to the straightening, since the straightening of a
marked germ is a marked polynomial.
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Both expanding maps and polynomials have “natural markings”, for expanding
maps we choose 1 as the preferred fixed point, and for polynomials we choose
the landing point of the external ray of angle 0. As it turns out, the natural
marking of polynomials can be extended continuously, in a unique way, through
the entire C (this global property is related to the simple topology of E , see Lemma
2.1). Thus, keeping in mind the natural marking, we end up with natural external
map, mating, and straightening constructions. By design, the mating construction
provides an inverse to the external map and straightening constructions, so that
the connectedness locus C inherits a product structure from E ×M.

We will discuss markings in more details later in §2.8 (as they are not formally
needed for the proof of Theorem 2.2).

The reader who is mostly interested in the quadratic case can skip the next two
sections.

2.7. Proof of Theorem 2.2. For c ∈ M, let ξc : C \ D → C \ K(pc) be the
univalent map tangent to the identity at ∞: it satisfies ξc ◦ p0 = pc ◦ ξc on the
complement of K(p0) = D.

Define the canonical mating ic(g) ∈ Hc between any polynomial pc, c ∈ M,
and any expanding map g ∈ E as follows. Choose a continuous path gt, t ∈ [0, 1]
connecting g0 : z 7→ zd to g1 = g, and a continuous family of quasiconformal
maps ht : C \ D → C \ D, with continuously depending Beltrami differentials νt,
satisfying h0 = id and ht ◦ g0 = gt ◦ ht near the circle T.5 Let µt be the extension
of the Beltrami differential of ht ◦ ξ−1c to the whole complex plane, obtained by
letting it be 0 on K(pc). It is invariant under pc in a neighborhood of K(pc). Let
φt : C→ C be the solution of the Beltrami equation ∂̄φt/∂φt = µt. By invariance of
µt, ft = φt ◦pc ◦φ−1t is holomorphic in a neighborhood of K(ft) = φt(K(pc)), and if

φt is appropriately normalized it defines a germ in H̃c. We choose the normalization
so that φt depends continuously on t and φ0 = id.

Let us check that gt is an external map of ft for every t ∈ [0, 1]. Let ψt :
C \ D→ C \K(ft) be the continuous family of univalent maps normalized so that
ψ0 = ξc, and g̃t := ψ−1t ◦ ft ◦ ψt (which extends analytically across the circle by
the Schwarz reflection) fixes 1, hence g̃t is an external map of ft. Then σt :=
ψ−1t ◦ φt ◦ ξc : C \ D → C \ D is a quasiconformal map conjugating g0 to g̃t whose
Beltrami differential coincides with that of ht. Hence λt := σt ◦ h−1t is a rotation
conjugating gt to g̃t. Since 1 is a fixed point of gt, λt(1) is one of the fixed points
of g̃t for any t ∈ [0, 1]. But λ0 = id, so by continuity, λt(1) = 1 (which is one of the
fixed points of g̃t) for all t ∈ [0, 1]. We conclude that λt = id and hence gt = g̃t for
every t.

Next, we will show that the germ f = f1 depends only on c and g, but not on
the various choices we have made, which would allow us to define the mating by
ic(g) = f . Let us first show that once the connecting path gt is chosen, the path
ft does not depend on the choice of the conjugacies ht. Indeed, let h′t be another
choice, with the Beltrami differential ν′t, so that the map ρt := h−1t ◦ h′t commutes

5Such a family ht can be constructed as follows. For large n, gt/n is close to gk/n, for every

k ∈ 0, ..., n−1 and t ∈ [k/n, (k+1)/n]. Considering persistent fundamental annuli for the gk/n, one

can define a conjugacy hk,t, t ∈ [k/n, (k+ 1)/n], between gk/n and gt/n (first on the fundamental

domain, then extended by pulling back) satisfying hk,k/n = id and the continuity requirements.

Then ht can be defined in each interval [k/n, (k + 1)/n] by ht = hk,t ◦ · · · ◦ h0,t.
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with g0 near T. Then the map ζt := ξc ◦ ρt ◦ ξ−1c commutes with pc near K(pc)
(outside it). Let us extend ζt to the entire plane by setting ζt|K(pc) = id.

Lemma 2.3. The map ζt is a quasiconformal homeomorphism.

Proof. This is a version of the pullback argument, see e.g., [MvS], Chapter 6, Section
4. Choose a quasidisk V ⊃ K(pc) such that U = p−1c (V ) b V and ζt ◦ pc = pc ◦ ζt
on U . Consider a continuous family of quasiconformal maps ζ

(0)
t : C → C, such

that ζ
(0)
0 = ζ0 = id, ζ

(0)
t = ζt outside U , and ζt = id near K(pc). We can then

set by induction ζ
(k+1)
t as the unique lift (under pc) of ζ

(k)
t such that ζ

(k+1)
t = id

near K(pc). Clearly ζ
(k)
0 = id, and by continuity in t, we see that ζ

(k)
t = ζt outside

p−kc (U) for every k. Hence ζ
(k)
t → ζt pointwise. Since the dilatations of the ζ

(k)
t

do not depend on k, they form a precompact family of quasiconformal maps. It
follows that the limit map ζt is quasiconformal. �

Remark 2.3. By the Bers Lemma (see [DH], Lemma 2, p. 303), in order to show
that ζt is quasiconformal, it is enough to check its continuity, i.e., that the points
z ∈ C \K(pc) near K(pc) are not moved much by ζt. This can be verified directly
by an a hyperbolic contraction argument (using that ζt commutes with pc): in fact,
the hyperbolic distance (in the complement of K(pc)) between z and ζt(z) remains
bounded as z approaches K(pc), see (see [DH], Lemma 1, p. 302).

We let µ′t = (ξc)∗ν
′
t outside K(pc) and µ′t ≡ 0 on K(pc). Since ν′t = (ρt)∗νt, we

have: µ′t = (ζt)∗µt (outside K(pc) and, obviously, on it). Hence µ′t is the Beltrami
differential for φ′t := φt ◦ ζt. It follows that the map f ′t := φ′t ◦ pc ◦ (φ′t)

−1 is the
mating of pc and gt corresponding to the conjugacy h′t. But since ζt commuted
with pc near K(pc), we conclude that f ′t = ft near K(ft), as was asserted.

Let us now show that the endpoint f = f1 does not depend on the choice of the
path gt connecting g0 and g. Since E is simply connected, given another connecting
path g′t, we can fix an homotopy (fixing endpoints) gst with g0t = gt and g1t = g′t.
The mating construction then provides germs fst ∈ C, and it also allows us to choose
hybrid conjugacies φst between pc and fst depending continuously on s and t. By the
previous discussion, g is an external map representative of fs1 for every s, and in fact
there is a continuous family ψs1 : C \D→ C \K(fs1 ) of univalent maps conjugating
fs1 to g. Define ζs : C → C by ζs = ((ψs1)−1 ◦ φs1)−1 ◦ ((ψ0

1)−1 ◦ φ01) outside K(pc)
and ζs = id on K(pc). Then ζs commutes with pc in an outer neighborhood of
K(pc), and by the same argument as in Lemma 2.3, we see that ζs is a global
quasiconformal homeomorphism. Hence

τs := φs1 ◦ ζs ◦ (φs0)−1 = ψs1 ◦ (ψ0
1)−1

is a hybrid conjugacy between f01 and fs1 which is also conformal outside K(f01 ), so
it is affine. Moreover, note that 1) τs is the identity at s = 0 and 2) the germs fs1
are normalized, so for each s ∈ [0, 1], there is k ∈ Z/(d−1)Z such that τs is tangent
to z 7→ e2πik/(d−1)z at 0. We conclude that τs = id for all s. Hence fs1 = f01 for all
s, and in particular f11 = f01 , so the mating ic(g) = f is indeed well defined.

Lemma 2.4. The mating (g, c) 7→ ic(g) is a homeomorphism E ×M→ C.

Proof. Let us begin with continuity of the mating. It is easy to see that it is
continuous in g, uniformly with respect to c. Also, it satisfies mod(ic(g)) = mod(g).
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So, it is enough to show that for a given g ∈ E , it is continuous with respect to
c. Consider a sequence cn → c ∈ M. Choose a path gt connecting g0 : z → zd to
g1 = g in E . Passing to a subsequence, we may assume that the paths ft,n = icn(gt)
converge uniformly to a path ft.

Then ft is a path in Hc. Indeed, since the mod(ft,n) are bounded away from 0,
the ft,n are K-qc conjugate to f0,n (with some K independent of t). Compactness
of the space of K-qc maps implies that the ft are K-qc conjugate to f0. Let us
show that ft is actually hybrid conjugate to f0 = pc. If this is not the case then
pc must be qc conjugate to a unicritical polynomial (any straightening of ft) which
is not itself hybrid conjugate to pc, i.e., c is not qc rigid. But this implies that
K(pc′) moves holomorphically for c′ in a neighborhood of c, K(pc′) = hc′(K(pc)).
It follows that the characteristic function of K(pcn) converges in measure to that of
K(pc),

6 which readily implies that the limit H of hybrid conjugacies Hn between
pcn and ft,n must be a hybrid conjugacy between pc and ft (since ∂̄Hn → ∂̄H
weakly in L2).

Let ψt,n : C\D→ C\K(ft,n) be as in the above construction of the external map,

i.e., it is the continuous family of conformal maps such that ψ−1t,n ◦ ft,n ◦ ψt,n = gt
and ψ0,n = ξcn . Then t 7→ ψt,n is clearly uniformly continuous in t (with respect
to the topology of uniform convergence on compact subsets). So we can take a
limiting continuous family ψt : C \ D → C \K(ft).

7 Then ψ−1t ◦ ft ◦ ψt = gt, and
ψ0 = ξc, i.e., gt is a path that determines the external map of ft. So ft = ic(gt)
and hence lim icn(g) = lim f1,n = f1 = ic(g). This proves continuity.

Let us now show that the mating is bijective. Notice first that each polynomial
pc has a single preimage (p0, c), since it can only be obtained by mating with its
single external map representative.

Consider a path ft connecting pc and an arbitrary map f in Hc. Then ft =
ic(gt) where gt is the determination of the external map constructed above. Since
i−1c (pc) = {p0}, this path lifting property implies that each ic : E → Hc is a
bijection. In particular, Hc = ic(E) contains a single polynomial, ic(p0) = pc, so all
hybrid leaves are distinct. Since C is the union of hybrid leaves, this implies that
the mating is bijective.

Since the mating is continuous and bijective, it restricts to a homeomorphism
E(ε)×M→ C(ε) for each ε > 0, by compactness, and this implies that the mating
is a homeomorphism E ×M→ C. �

We obtain the canonical external map π and the canonical straightening χ by
setting (π, χ) as the inverse of the mating. All constructions are clearly equivariant
with respect to complex conjugation. One also checks directly that ic′ ◦ i−1c takes
Beltrami paths in Hc to Beltrami paths in Hc′ . �

2.8. Marking. Let us take a polynomial-like map f : U → V with connected Julia
set. Let A = V̄ r U and let Γ = ∂U . Select an arc γ0 ⊂ A connecting a point
a−1 ∈ f(Γ) = ∂V to one of its preimages, a0 ∈ Γ. It can be lifted to an arc
γ1 ⊂ f−1A connecting a point a1 ∈ f−1(Γ) to a0. In turn, this curve can be lifted
to an arc γ−2 ⊂ f−2A connecting some point a2 ∈ f−2(Γ) to a1. Continuing this

6To check it, use the following: since hc as an element of the Sobolev space W 1,2 depends
holomorphically on c, Jac hc = |∂hc|2 − |∂̄hc|2 depends continuously on c weakly in L1.

7Though K(ft,n) need not converge to K(ft), any limit is contained in K(ft) and its boundary

J(ft,n) contains J(ft) = ∂K(ft), which is enough here.



EXPONENTIAL CONTRACTION OF RENORMALIZATION 13

way we obtain a sequence of arcs γn concatenating a curve γ ∈ V̄ rK(f) such that
f(γ ∩ Ū) = γ (we will refer to such a curve as “invariant”). A standard hyperbolic
contraction argument shows that this curve can accumulate only at fixed points,
and hence lands at some “preferred” fixed point of g. Fixed points that arise in
this way are called β-fixed points. A marking of g is a choice of such an invariant
curve up to equivariant homotopy. This notion descends to germs, by identifying
markings of polynomial-like representatives of g which coincide up to truncation.

If c ∈M, we can mark the corresponding germ pc with an invariant external ray
of pc. No two invariant external rays can land at the same point,8 so those markings
are indeed distinct. On the other hand, it is easy to see that any invariant curve
is equivariantly homotopic to some invariant external ray. Since such a ray has
external argument k/(d− 1) with k ∈ Z/(d− 1)Z, this procedure shows that there
are exactly d − 1 different markings, and that markings are in bijection with the
β-fixed points.

Since an hybrid equivalence between polynomial-like maps gives a correspon-
dence between the markings, the bijection between markings and β-fixed points
holds through C as well. The family of β-fixed points depends continuously through
C,9 so each β-fixed point (or equivalently, each choice of marking) of a germ admits
an unique local continuation to every sufficient small connected neighborhood a
germ.

Similarly to polynomial-like maps, a circle map g : U → V of class E can be
marked by choosing an invariant curve γ ⊂ V r D up to equivariant homotopy.
Such a curve lands at a fixed point of g which depends only on the marking. Vice
versa, a fixed point determines the marking, so there are exactly d − 1 distinct
markings of any circle map g ∈ E .

The marking of g ∈ E corresponding to the fixed point 1 is called natural. It
provides us with a continuous global marking of the space E .

Due to the product structure C ≈ E×M, the natural marking of E can be pulled
back to a natural marking of C.

2.9. Control of quasiconformal dilatation. We say that two polynomial-like
germs f, f̃ ∈ C are (C, ε)-close if there exist polynomial-like representatives f : U →
V and f̃ : Ũ → Ṽ with mod(V \ U) > ε, mod(Ṽ \ Ũ) > ε, and a quasiconformal

homeomorphism h : C \ U → C \ Ũ respecting the natural marking of f and f ′10

with Dil(h) < C such that h ◦ f = f̃ ◦ h on ∂U . Notice that (C, ε)-closeness only

depends on the (canonical) external maps π(f) and π(f̃).
Standard arguments (c.f. the proof of Lemma 2.3) yield:

Lemma 2.5. If f and f̃ are (C, ε)-close by means of h and are hybrid equivalent,

then h extends, in a unique way, to a hybrid conjugacy between f and f̃ with
dilatation bounded by C.

8Otherwise the sector bounded by those two rays and which does not contain the critical point

would be invariant by the maximum principle (notice that the image of the sector does not contain

the critical value).
9By means of straightening, we can restrict attention to polynomials, for which it is readily

checked that repelling β-fixed points are persistent, and repelling non-β-fixed points are persistent
as well. Thus a discontinuity might only arise at a parabolic bifurcation, where both candidates

to be a β-fixed point are close.
10This condition makes sense since the marking of f can be given by a curve γ ⊂ V̄ r U

connecting a point z ∈ ∂U to its image fz ∈ ∂V up to homotopy rel the endpoints.
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By compactness one has:

Lemma 2.6. For every ε0 > ε > 0 there exists C > 1 such that if f, f̃ ∈ C(ε0) then

f and f̃ are (C, ε)-close.

For nearby germs, the constant C can be taken close to 1:

Lemma 2.7. Let fn, f̃n ∈ C be converging sequences with the same limit. Then
there exists ε > 0 and Cn ↘ 1 such that fn and f̃n are (Cn, ε)-close for every n
sufficiently large.

Proof. Let f = lim fn = lim f̃n. By definition of convergence, there exists a
polynomial-like representative f : U → V such that fn extends holomorphically
to U for every n sufficiently large, fn|U converges uniformly to f , and fn → f
uniformly on U .

LetW be the quasidisk bounded by the equator (i.e., the simple closed hyperbolic

geodesic) of V \U , and let Ω := f−1(W ), Ωn := f−1n (W ) and Ω̃n = f̃−1n (W ). Then

the Jordan curves ∂Ωn and ∂Ω̃n converge in C∞ topology to the curve ∂Ω. It
follows that for n sufficiently large, the maps fn : Ωn → W and f̃n : Ω̃n → W are
polynomial-like, and the mod(W \Ωn), mod(W \ Ũn) approach 2ε := mod(W \Ω).
Hence there exist C∞ diffeomorphisms hn : C → C, such that hn|C \W = id and

fn ◦hn = f̃n ≡ hn ◦ f̃n on ∂Ωn, approaching the identity in the C∞ topology. Thus
Dilhn → 1. Moreover hn, being close to the identity, preserves the natural marking
and we are done. �

2.10. Renormalization and a priori bounds. A unicritical polynomial-like map
f : U → V (of degree d) is called renormalizable with period p > 1 if there exists a
topological disk W 3 0 with the following properties:

R1. The map g = fp|W is a unicritical polynomial-like map of degree d (onto its
image W ′); it is called the pre-renormalization of f .

R2. The little Julia set K(g) is connected;

R3. K(g) does not touch its images fm(K(g)), m = 1, . . . , p − 1, except perhaps
at one of its β-fixed points.

Note that these images are also Julia sets K(gm) for appropriate degree d
polynomial-like restrictions gm : Wm → W ′m of fp. They are also referred to
as “little Julia sets of f”.

By [McM1, Thm 5.11], the polynomial-like germ of the renormalization is well
defined: it does not depend on the choice of the domain W above.

In fact, there is a standard combinatorial choice of the domain W . Namely, let us
consider the little Julia set K(g1) around the critical value f(0). Among its β-fixed
points, there is a dividing point β1, i.e., the landing point of more than one external
rays (see [Mi, Thms 1.2 and 1.4]). Two of these rays bound a sector containing
f(0), the characteristic sector S1. The renormalization range W ′1 is obtained by
truncating S1 by an equipotential and slightly “thickening” it (see [D] or [Mi, §8]).
The domain W1 3 f(0) is the pullback of W ′1 by fp. The domains W ′ ⊃W 3 0 are
the pullbacks of the W ′1 ⊃W1 under f .

Note that the dividing fixed point β1 is uniquely defined. Indeed, as the char-
acteristic sector S1 has size less than 1/2,11 it does not contain the critical point
0 and hence ∂S1 separates 0 from f(0). Since the little Julia set K(g1) 3 f(0)

11In fact, S1 is the minimal sector into which the rays landing on orbβ1 divide the plane.
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is connected and the rays landing at the β-fixed points of g1 do not cut through
K1(g), there cannot be more than one separating points.

We will mark β1 on the little Julia set K(g1) and the corresponding fixed point
β = fp−1(β1) ∈ f−1(β1) on the little Juliua set K(g). Notice that if f ∈ CR, these
points lie in the real line (by symmetry).

Now, the renormalization of f is obtained by normalizing the pre-renormalization
with minimal possible period,

Rf(z) = λ−1g(λz) : z 7→ c+ zd + h.o.t.

There is no ambiguity in the choice of normalization since the pre-renormalization
g is marked with the β-fixed point. In case f ∈ CR, we have Rf ∈ CR as well, since
β is real.

The renormalization is called primitive if the little Julia sets K(gm) do not touch,
and is called satellite otherwise.

The set of angles of the external rays (defined with help of the canonical straight-
ening of f) landing at the distinguished β-fixed points of g determine the “renor-
malization combinatorics”.12 A classical theorem by Douady and Hubbard [DH]
asserts that the renormalizable unicritical polynomials pc with the same combina-
torics form a “little copy M′ of the Multibrot set” (or “M-copy”), except that
the roots of M′ may or may not be renormalizable. Thus, the renormalization
combinatorics can be labeled by the little copies themselves.

In case of a renormalizable real map, all the above notions can be described
in purely real terms. The real traces of the little Julia sets are intervals that are
permuted under the dynamics. The order of these intervals on the line describes
the renormalization combinatorics. The set of renormalizable maps with a given
combinatorics is a parameter interval M′ ∩ R called the renormalization window.
Note that the boundary points of a renormalization window renormalize to a map
with either parabolic 13 or Ulam-Neumann 14 combinatorics. In particular, the
boundary maps are not twice renormalizable. (In case of doubling renormalization,
the parabolic boundary map is not renormalizable in the complex sense, but can
be viewed as renormalizable on the real line.)

A polynomial-like germ f ∈ C is called renormalizable, if it has a renormaliz-
able representative. The renormalization descends naturally to the level of germs.
Whether a germ is renormalizable or not only, and even its renormalization combi-
natorics, only depends on its hybrid leaf. The renormalization operator acts nicely
at the level of hybrid leaves:15

Lemma 2.8. The renormalization operator maps hybrid leaves into hybrid leaves,
and takes Beltrami paths to Beltrami paths.

Proof. It is enough to prove the last statement. Let (fλ, hλ) be a guided Beltrami
path in a renormalizable hybrid leaf. Let f0 : U0 → V0 be a p-l representative of

12An alternative point of view is the following. The relative positions of the little Julia sets

K(gm) inside the big one, K(f), can be described in terms of a graph called the Hubbard tree.
This graph determines the renormalization combinatorics up to symmetry.

13More precisely, it has a parabolic fixed point with multiplier 1.
14In this case, f2(0) is the β-fixed point (such maps are also called Chebyshev).
15As for hybrid classes, we notice that affinely conjugated renormalizable germs have the same

renormalization.
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f0. We may assume that V0 is small enough so that µλ = ∂hλ/∂hλ is f0-invariant
for every λ ∈ D. Let g0 = fp0 : U ′0 → V ′0 be a pre-renormalization of f0. Then µλ is
g0-invariant for every λ ∈ D. It follows that hλ ◦ g0 ◦ h−1λ is a pre-renormalization
of fλ : hλ(U0)→ hλ(V0). If A0 is the affine map conjugating g0 and Rf0, there is a
unique holomorphic continuation Aλ which normalizes gλ, which is readily seen to
conjugate gλ and Rfλ. Thus (Rfλ, Aλ ◦ hλ ◦A−10 ) is a guided Beltrami path. �

One can now naturally define n times renormalizable maps, including n = ∞.
The combinatorics of an infinitely renormalizable map can be labeled by a se-
quence of little Mandelbrot copiesM′n, n ∈ N (describing the combinatorics of the
consecutive renormalizations). It incorporates the sequence {pn} of the (relative)
renormalization periods. This can be an arbitrary sequence of natural numbers
> 1. We say that f has a bounded combinatorics if the sequence of periods pn is
bounded.

We say that an infinitely renormalizable germ f has a priori bounds if its renor-
malizations Rnf have definite moduli: Rnf ≥ ε > 0.

Let us note, for further use, a simple consequence (Lemma 2.10) of the a priori
bounds. We will need the following topological preparation:

Lemma 2.9. Let f ′ : U ′ → V ′ be a p-l representative of a pre-renormalization (not
necessarily the first) of the p-l map f : U → V , of total period q. If V ′ ⊂ V then
fk(U ′) ⊂ U for 0 ≤ k < q and f ′ = fq|U ′.
Proof. The connected component of f−q(V ′) containing 0 is a simply connected
domain taken by fq onto V ′ as a proper map which coincides with f ′ near K(f ′).
By analytic continuation, such connected component must coincide with U ′ and we
have f ′ = fq|U ′. �

Lemma 2.10. Let f ∈ C be infinitely renormalizable with a priori bounds, and let
fn be the sequence of pre-renormalizations (of total period qn). Then there exist
C > 0, λ < 1 (only depending on the a priori bounds) such that

max
m∈Z/qnZ

diamKm(fn) ≤ Cλn.

Proof. We are going to show that there exists δ > 0, only depending on the a
priori bounds, such that for every m,m′, n, n′ such that n′ > n and Km(fn) ⊃
Km′(fn′), the Carathéodory distance between Km(fn) and Km′(fn′) is at least
δ diam(Km(fn)). This clearly implies that there exists k > 0 such that

diam(Km′(fn′)) < diam(Km(fn))/2

provided n′ ≥ n+ k, and the exponential decay follows.16

Let f : U → V and fn′ : U ′ → V ′ be polynomial-like representatives, with
mod(V \ U) ≥ mod(V ′ \ U ′) = ε. Up to replacing ε by ε/dt and U ′ and V ′ by
f−tn′ (U ′) and f−tn′ (V ′) (with t only depending on ε) we may assume that V ′ ⊂ V .
By Lemma 2.9, f ′ = fqn′ |U ′.

Then fqn′ has a single critical point in Ũ = fm
′
(f ′−1(U ′)), where we represent m′

in the range 1 ≤ m′ ≤ qn′ . For each 1 ≤ l ≤ qn′ , there exists a unique zl ∈ Kl(fn′)

16If diam(Km′ (fn′ )) > diam(Km(fn))/2, then we can choose mj ∈ Z/Zqn+j , 0 ≤ j ≤ k with

m0 = m and mk = m′, such that the Kmj (fn+j) are nested. After suitable translation and

rescaling by diam(Km(fn))−1, one gets k + 1 compact subsets of the closed unit disk which are

pairwise δ/2-separated. Since the set of compact subsets of the closed disk is compact, it is also
totally bounded, so k is bounded in terms of δ.
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such that fqn′−l(zl) = 0. It follows that Ũ contains at most one of the zl. Since

Km(fn) contains at least two distinct zl, we conclude that Km(fn) 6⊂ Ũ . But

mod(Ũ \Km′(fn′)) ≥ ε/d, so Ũ is a δ diam(Km′(fn′))-neighborhood of Km′(fn′),
with δ only depending on ε. �

3. Path holomorphic spaces, the Carathéodory metric and the
Schwarz Lemma

A path holomorphic structure on a space X is a family Hol(X) of maps γ : D→
X, called holomorphic paths, which contains the constants and is invariant under
holomorphic reparametrizations: for every γ ∈ Hol(X) and every holomorphic (in
the usual sense) map φ : D → D, γ ◦ φ ∈ Hol(X). Natural examples of path
holomorphic spaces are complex Banach manifolds, where holomorphic paths are
taken as the paths which are holomorphic in the usual sense.

If X,Y are path holomorphic spaces, a map Φ : X → Y is called path holomor-
phic if for every holomorphic path γ : D→ X, Φ◦γ : D→ Y is a holomorphic path.
Let Hol(X,Y ) be the space of path holomorphic maps from X to Y . Notice that
Hol(D, X) = Hol(X). In case of complex Banach manifolds, this coincides with the
usual notion of being holomorphic, as long as the maps are continuous. Obviously,
composition of path holomorphic maps is path holomorphic.

Given a path holomorphic space X, any subset Y ⊂ X can be naturally con-
sidered as a path holomorphic space: if i : Y → X is the inclusion, then Hol(Y )
consists of all φ : D→ Y with i ◦ φ ∈ Hol(X).

Let h(x, y) be the hyperbolic metric on D (normalized to be twice the Euclidean

metric at 0). Introduce a metric d(x, y) on D by taking d = eh−1
eh+1

(this is a metric

by convexity). This is the unique metric invariant under the group of conformal
automorphisms of D and such that d(0, z) = |z|.

By the usual Schwarz Lemma, any holomorphic map φ : D→ D weakly contracts
d: d(φ(x), φ(y)) ≤ d(x, y).

LetX be a path holomorphic space. Then we can define the following Carathéodory
pseudo-metric:

(3.1) dX(x, y) = sup
φ∈Hol(X,D)

d(φ(x), φ(y)).

(Obviously, in this definition we can consider only φ normalized so that φ(x) = 0.)
By the usual Schwarz Lemma we have

(3.2) dD(x, y) = d(x, y).

If Y ⊂ X, we let diamX Y denote the diameter of Y in the pseudo-metric dX .
We say that Y is small in X if diamX Y < 1.

The Carathéodory pseudo-metric dX is a metric if and only if bounded path
holomorphic functions on X separate points. In this case, X is called Carathéodory
hyperbolic.

The definitions immediately imply:

Schwarz Lemma (weak form). Any path holomorphic map Φ : X → Y is weakly
contracting:

(3.3) dY (Φ(x),Φ(y)) ≤ dX(x, y).
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It follows that any subset of a Carathéodory hyperbolic space is Carathéodory
hyperbolic.

The universal class of Carathéodory hyperbolic spaces are given by Banach balls:

Lemma 3.1. The unit ball B(1) in a complex Banach space B is Carathéodory
hyperbolic and dB1

(x, 0) = ‖x‖. A path holomorphic space X is Carathéodory hy-
perbolic if and only if X holomorphically injects into a Banach ball.

Proof. Normalized linear functionals φ ∈ B∗1 are holomorphic maps B1 → D. By
definition of the Carathéodory metric and the Hahn-Banach Theorem,

dB1
(x, 0) ≥ sup

φ∈B∗(1)
|φ(x)| = ‖x‖.

The opposite inequality is obtained by applying the Schwarz Lemma to the embed-
ding D→ B1, λ 7→ λx/‖x‖ at λ = ‖x‖.

The Schwarz Lemma shows that a space which is not Carathéodory hyperbolic
can not inject into one that is. Vice versa, assume X is Carathéodory hyperbolic.
Let S ⊂ Hol(X,D) be any subset which separates points (e.g., S = Hol(X,D)).
Then X holomorphically injects into the unit ball of `∞(S), the Banach space of
bounded functions S → C, via the map x 7→ (φ(x))φ∈S . �

Small subsets of a hyperbolic space X have “definitively stronger” Carathéodory
metrics:

Lemma 3.2. Let X be a path holomorphic space and let Y ⊂ X. Then for any
x, y ∈ Y ,

(3.4) dX(x, y) ≤ diamX(Y )dY (x, y).

Proof. Let r > diamX Y . Then for any path holomorphic function φ : (X,x) →
(D, 0) we have φ(Y ) ⊂ Dr. Hence the function φ̃ := r−1φ|Y belongs to Hol(Y,D),
and we obtain:

dY (x, y) ≥ sup
φ
|φ̃(y)| = 1

r
dX(x, y).

The conclusion follows. �

Putting this together with the weak Schwarz Lemma, we obtain:

Schwarz Lemma (strong form). Any path holomorphic map Φ : Y → X with
small image is strongly contracting:

dX(Φ(x),Φ(y)) ≤ diamX(Φ(Y )) · dY (x, y).

Proof. Decompose Φ as i ◦ Φ0 where i : Φ(Y )→ X is the inclusion, Φ0 = Φ : Y →
Φ(Y ). Then apply the weak Schwarz Lemma to Φ0 and Lemma 3.2 to i. �

Remark 3.1. One can consider the (stronger) Kobayashi metric on path holomor-
phic spaces as well. Though the Kobayashi hyperbolicity is a more general notion,
the spaces of interest in this paper turn out to be already Carathéodory hyperbolic.
More importantly, the Carathéodory metric is much better adapted to our purposes,
since strong contraction can be derived from a very simple smallness criterion.
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4. Hybrid leaves as Carathéodory hyperbolic spaces

4.1. Path holomorphic structure on hybrid leaves. For any c ∈M, we intro-
duce a path holomorphic structure on the hybrid leaf Hc as follows. A continuous
family (fλ : Uλ → Vλ) ∈ Hc, λ ∈ D, is said to be a holomorphic path if there exists a
holomorphic motion hλ : C→ C based at the origin such that hλ(K(f0)) = K(fλ)),
∂hλ = 0 a.e. on K(f0) (which makes sense since the hλ are qc by the Quasiconfor-
mality λ-Lemma) and hλ ◦ f0 = fλ ◦ hλ on K(f0) (equivariance property).

Clearly every Beltrami path is a holomorphic path. Though the notion of a
Beltrami path is in principle stronger, they coincide at least locally. Indeed, let
fλ be a holomorphic path and let hλ be the corresponding motion of K(fλ). For
each λ0 ∈ D, we can make a choice of a fundamental annulus Vλ \ Uλ which moves
holomorphically with λ in a small disk D around λ0. This holomorphic motion can
be then extended (using the Extension λ-Lemma) to C \Uλ and then (uniquely) to
a holomorphic motion on C \K(fλ) that is equivariant on Uλ rK(f). Matching
it with the original motion of K(fλ) we obtain a holomorphic motion of C over D,
which provides a hybrid conjugacy.

Remark 4.1. Yet another way to look at holomorphic paths is the following: a
continuous family fλ ∈ Hc, λ ∈ D, is a holomorphic path if and only if the map
(λ, z) 7→ fλ(z) extends to a holomorphic map in a neighborhood of

∪λ∈D{λ} ×K(fλ).

However, this point of view will play no role in our analysis of hybrid classes.

Through the local characterization of holomorphic paths as Beltrami paths, we
can translate Theorem 2.2 (item 3) and Lemma 2.8 to path holomorphicity state-
ments:

Lemma 4.1. (1) All hybrid leaves are path holomorphically equivalent: For
every c, c′ ∈M, ic′ ◦ i−1c : Hc → Hc′ is path holomorphic.

(2) The renormalization operator is leafwise path holomorphic: if Hc and Hc′
are such that R(Hc) ⊂ Hc′ then R : Hc → Hc′ is path holomorphic.

4.2. Carathéodory hyperbolicity.

Theorem 4.2. For every c ∈M, Hc is Carathéodory hyperbolic.

Proof. In order to prove Carathéodory hyperbolicity of the hybrid leaves, it is
enough, by Lemma 4.1, to prove it for any one of them. The most convenient one
will be H0, since in this case the Julia set traps a “definite domain of holomorphic-
ity”:

(4.1) D1/4 ⊂ K(f) if f ∈ H0.

Indeed, there exists a univalent map ψf from intK(f) onto D (the Böttcher coor-
dinate), such that ψf (f(z)) = ψf (z)d and Dψf (0) = 1,17 and this implies (4.1) by
the Köebe-1/4 Theorem.

We will now show that H0 holomorphically injects in a Banach ball, which is
equivalent to Carathéodory hyperbolicity by Lemma 3.1. As target space, we take
BDρ (the space of bounded holomorphic functions on Dρ which are continuous up
to the boundary) for an arbitrary 0 < ρ < 1/4.

17One way to obtain the Böttcher coordinate is as the restriction of a hybrid conjugacy between
f and p0. The fact that the derivative at 0 can be taken as 1 is immediate from the normalization.
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Clearly the restriction operator Iρ : H0 → BDρ is injective, by analytic continu-
ation. It is also bounded: the branch of the d-th root of f | intK(f) tangent to the
identity at 0 restricts to a univalent map on D1/4, so that f |Dρ can be bounded in
terms of ρ. Let us show that

(4.2) fλ(z) is holomorphic in (λ, z) ∈ D×D1/4 if fλ is a holomorphic path in H0,

as this clearly implies that Iρ is path holomorphic.
Indeed, if fλ is a holomorphic path in H0 then there exists a holomorphic motion

hλ : C → C centered on 0 such that hλ(K(f0)) = K(fλ), hλ is holomorphic on
intK(f0), and hλ conjugates f0 and fλ in their filled-in Julia sets. By separate
holomorphicity, we see that (λ, z) 7→ (λ, hλ(z)) is holomorphic in D× intK(f0)→⋃
λ∈D{λ} × intK(fλ). This implies (4.2), since we can write fλ(z) = hλ ◦ f0 ◦

h−1λ (z). �

4.3. Carathéodory vs Montel. The following discussion is not actually needed
for our proofs of exponential contraction of renormalization with respect to the
Carathéodory metric, but allows us to reinterpret this result in more familiar terms
(the Montel metrics of [L3]).

A compact subset K ⊂ C is called sliceable if there exist an open quasidisk W and
C > 0 such that

⋃
f∈KK(f) ⊂ W and every f ∈ K has a holomorphic extension

to W bounded by C. Notice that if L b W is a neighborhood of 0, then the
uniform metric on C0(L) induces a distance on K, and different choices of L lead to
Hölder equivalent distances, by Hadamard’s Three Circles Theorem. In particular,
all those distances define the same topology on K, which is easily seen to coincide
with the natural topology of K (as a subset of C).

A metric d defined on a compact subset K ⊂ C will be called Montel if on
each sliceable subset of K, it is Hölder equivalent to the uniform metric on all
sufficiently small compact neighborhoods of 0. Notice that it is enough to check
this last condition on any family of sliceable subsets whose K-interiors cover K.
Thus Montel metrics can be constructed by gluing appropriately metrics on finitely
many sliceable subsets. They are all Hölder equivalent and compatible with the
topology.

Remark 4.2. We need to go through sliceable subsets since two different germs
f, f̃ ∈ C may coincide in a neighborhood of 0 (which cannot happen when f and f̃
are in the same sliceable set).

Example 4.1. Let us sketch a construction of a pair of quadratic-like germs f± ∈ C
that coincide in a neighborhood of 0: indeed f+ and f− are restrictions of the same
analytic map defined in K(f+) ∪K(f−).

Let us start with the map

F : T→ T, z 7→ exp(π(z − z−1)/2), or θ 7→ π sin θ, where z = eiθ ∈ T.

The upper and lower half-circles T± are invariant under F , and the unimodal maps
F |T± admit quadratic-like extensions that are hybrid equivalent to the Chebyshev
map z 7→ z2 − 2.

Let us now consider the analytic real-symmetric immersion φ : T→ C satisfying

1

2π2
φ(z)2 = 1 + F (z), φ(−1) = 2π.
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Its image S is a real-symmetric and 0-symmetric “figure eight” with double point at
0. The map F lifts to an analytic real-symmetric map f : S → S, f ◦φ = φ◦F . The
segments S± := φ(T±) are invarinat under f and the maps f |S± admit quadraic-
like extensions that are hybrid equivalent to the Chebyshev map. So, they define
two different quadrtic-like germs in H−2.

However, they define the same germ at 0 as f(z) = 2π + z2 +O(z3) as z → 0.

Theorem 4.3. For every ε > 0, dHc defines a Montel metric on Hc(ε), for each
c ∈ M. Moreover those metrics are uniformly Hölder equivalent to the restriction
of any fixed Montel metric on C(ε).

We will need two preliminary results:

Lemma 4.4. For every ε > 0, there exists δ > 0 such that dHc(δ) defines a Montel
metric on Hc(ε), for each c ∈ M. Moreover those metrics are uniformly Hölder
equivalent to the restriction of any fixed Montel metric on C(ε).

Proof. By Theorem 4.2 and the Schwarz Lemma, Hc(δ) is Carathéodory hyperbolic,
so that dHc(δ) is a metric.

Given δ > 0, there exists ρ > 0 such that all f ∈ C(δ) extends holomorphically
to a holomorphic function on Dρ bounded by ρ−1. It then follows, by analytic
continuation, that for every c ∈M and z ∈ Dρ the function f 7→ f(z) is holomorphic
on Hc(δ). This shows that 2ρ−1dHc(δ) dominates a Montel metric on each sliceable
subset K ⊂ Hc(δ) (take the Montel metric given by the uniform distance on each
sufficiently small neighborhood L of 0).

Let us now show that if δ > 0 is sufficiently small, then for each f ∈ Hc(ε),
dHc(δ) is Hölder dominated by a Montel metric in an Hc(ε)-neighborhood of f . In
a neighborhood of f there exist open quasidisks V b V ′ such that if f0, f1 ∈ Hc(ε)
are γ close with respect to the Montel metric, then they are Cγθ close over V ′

and there are polynomial-like extensions f0 : U0 → V and f1 : U1 → V with
modulus uniformly bounded from below by some κ > 0. For small γ, this implies
the existence of a quasiconformal homeomorphism h : C→ C which is the identity
outside V and conjugates f0 : ∂U0 → ∂V and f1 : ∂U1 → ∂V . Moreover the
Beltrami differential of h has L∞ norm bounded by C ′γθ

′
. If f0 and f1 are hybrid

equivalent, we conclude (via the pullback argument) that h can be turned into
a hybrid conjugacy preserving the natural marking. This yields a Beltrami path
parametrized by DC′−1γ−θ′ connecting f0 to f1. This Beltrami path, restricted to

DC′−1γ−θ′/2, lies in Hc(κ/3), by the Quasiconformality λ-Lemma. Thus, if δ ≤ κ/3
we get dHc(δ)(f0, f1) ≤ 2C ′γθ

′
, as desired.

The uniformity on c is clear from the argument. �

Lemma 4.5. For every ε > 0, dH0 is a Montel metric on H0(ε).

Proof. By the Schwarz Lemma dH0
is dominated by the Montel metric dH0

(δ) for
δ > 0 sufficiently small. For fixed 0 < ρ < 1/4, the restriction Iρ : H0 → BDρ is
a bounded path holomorphic map for (c.f. the proof of Theorem 4.2), so another
application of the Schwarz Lemma shows that dH0 dominates a multiple of the
uniform metric on Dρ, which is Montel. �

Proof of Theorem 4.3. Since both dH0 and dH0(δ) are Montel over H0(ε), they

are Hölder equivalent. Since ic ◦ i−10 is a biholomorphic map (H0(ε),H0(δ),H0)→
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(Hc(ε),Hc(δ),Hc), dHc and dHc(δ) are also Hölder equivalent (with the same con-
stants). Since the latter is (uniformly) Montel, the former is as well. �

5. From beau bounds to exponential contraction

A priori bounds are called beau (over a family F of infinitely renormalizable
maps under consideration) if there exists ε0 > 0 such that for any δ > 0 there exists
moment nδ such that for any f ∈ F with mod f ≥ δ we have: mod(Rnf) ≥ ε0 for
n ≥ nδ.

The works [K, KL1, KL2] supply a big class of infinitely renormalizable maps
with beau bounds. In this class the little M-copies M′n describing the combi-
natorics should stay away from the “main molecule” of M (which comprises the
main cardioid of M and all hyperbolic components obtained from it via a cas-
cade of bifurcations). For instance, this class contains all infinitely renormalizable
maps of bounded primitive type and all real infinitely renormalizable maps with all
renormalization periods pn 6= 2. Let us emphasize that the approach to the Main
Theorem we will develop in §§6-8 does not rely at all on [K, KL1, KL2] (and it will
cover all real combinatorics, including period doubling, in a unified way).

We will show that beau bounds through complex hybrid classes imply exponential
contraction of the renormalization:

Theorem 5.1. Let F ⊂ C be a family of infinitely renormalizable maps with beau
bounds which is forward invariant under renormalization. If F is a union of entire
hybrid leaves then there exists λ < 1 such that whenever f, f̃ ∈ F are in the same
hybrid leaf, we have

dHcn (Rn(f), Rn(f̃)) ≤ Cλn, n ∈ N,

where cn = χ(Rn(f)) = χ(Rn(f̃)) and C > 0 only depends on mod(f) and mod(f̃).

Remark 5.1. We will actually show that C(f, f̃) is small when f is close to f̃ , and

indeed if mod(f),mod(f̃) ≥ δ we can take

(5.1) C(f, f̃) = C(δ)dHc(δ)(f, f̃).

The proof is based on the Schwarz Lemma and the following easy “smallness”
estimate.

Lemma 5.2. For every ε > 0 there exist δ ∈ (0, ε) and γ < 1 such that for all
c ∈M, we have:

(5.2) diamHc(δ)Hc(ε) < γ.

Proof. There exists r = r(ε) < 1 with the following property (see Lemmas 2.5 and

2.6). For any p-l germs f, f̃ ∈ Hc(ε), there exist p-l representatives f : U → V ,

f̃ : Ũ → Ṽ and a hybrid conjugacy (respecting the natural marking) h : C → C
between f and f̃ such that mod(V \U) > ε

2 and the Beltrami differential µ = ∂̄h/∂h
has L∞-norm bounded by r(ε).

Let us consider a Beltrami path Dρ → Hc,

(5.3) λ 7→ fλ = hλµ ◦ f ◦ h−1λµ , where ρ = ρ(ε) =
1 + r

2r
∈ (1,

1

r
),

where hλµ is a suitably normalized solution of the Beltrami equation ∂̄h/∂h = λµ.
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As ‖λµ‖∞ ≤ (1 + r)/2, we have

Dilhλµ ≤ K = K(ε) =
r + 3

1− r
, λ ∈ Dρ.

Hence the fundamental annulus of fλ has modulus at least δ = δ(ε) := ε/2K, so

fλ ∈ Hc(δ). By the (weak) Schwarz Lemma, dHc(δ)(f, f̃) ≤ dDρ(0, 1) = ρ−1. �

Proof of Theorem 5.1. Let ε0 > 0 be the “beau bound” for F , so that for every
δ > 0 there exists nδ such that mod(Rn(f0)) ≥ ε0 whenever f0 ∈ F , mod(f0) ≥ δ
and n ≥ nδ.

Using Lemma 5.2, choose 0 < δ0 < ε0 and λ < 1 such that

diamHc(δ0)Hc(ε0) < λnδ0

for every c ∈M.
The Schwarz Lemma gives for f, f̃ ∈ Hc(δ)
dHcn (Rn(f), Rn(f̃)) ≤ min{dHc(δ)(f, f̃), dHcn (δ0)(R

n(f), Rn(f̃))},

dHcn (δ0)(R
n(f), Rn(f̃)) ≤ dHc(δ)(f, f̃), n ≥ nδ,

dHcn (δ0)(R
n(f), Rn(f̃)) ≤ dHcn−nδ0 (δ0)(R

n−nδ0 (f), Rn−nδ0 (f̃)), n ≥ nδ0 + nδ,

which combined yields the result with Cf,f̃ as in (5.1). �

6. From beau bounds for real maps to uniform contraction

It is a difficult problem to prove beau bounds for complex maps. However, it
is more tractable for real maps: in that case, the beau bounds were established a
while ago (see [S, MvS] for bounded combinatorics and [LvS, LY] for the general
case).

Theorem 6.1 (Beau bounds for real maps). There exists ε0 > 0 with the following
property. For every δ > 0 there exist ε = ε(δ) > 0 and N = N(δ) such that for any
f ∈ CR(δ), we have

Rn(f) ∈ C(ε), n = 0, 1, . . . and Rn(f) ∈ C(ε0) n = N,N + 1, . . . .

From the point of view of the previous discussion, the main shortcoming of this
result is that it does not provide enough compactness for complex maps, which
is crucial for the Schwarz Lemma application. In this section we will overcome
this problem using some ideas from functional analysis and differential topology
(Theorem 6.1 remaining the only ingredient from “hard analysis”), by proving:

Theorem 6.2 (Beau bounds and macroscopic contraction for complex maps in the
real hybrid classes). There exists ε0 > 0 with the following property. For any γ > 0

and δ > 0 there exists N = N(γ, δ) such that for any two maps f, f̃ ∈ C(δ) in the
same real-symmetric hybrid leaf we have

Rnf,Rnf̃ ∈ C(ε0), and dHcn (Rnf,Rnf̃) < γ, n ≥ N,

with cn = χ(Rnf) = χ(Rnf̃).

The proof of this result will take this and the next two sections.
Through the sequel, let I be the subspace of infinitely renormalizable p-l maps

in C, and let I(δ) = I ∩ C(δ). Let C(R) be the space of polynomial like maps
with connected Julia set which are hybrid equivalent to real p-l maps. We will use
superscript (R) for the slices of various spaces by C(R), e.g., I(R)(δ) := I ∩ C(R)(δ).
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6.1. Cocycle setting. We will now abstract properties of the renormalization op-
erator that will be sufficient for Theorem 6.2.

Let S be a semigroup, and let Q = {(m,n) ∈ N× N : n > m}. An S-cocycle is
a map G : Q→ S, (m,n) 7→ Gm,n, such that Gm,nGl,m = Gl,n.

Letting Fn := Gn,n+1 ∈ S, we obtain

(6.1) Gm,n = Fn−1 ◦ · · · ◦ Fm,

and vice versa, any sequence Fn ∈ S determines a cocycle by means of (6.1).
Let Hol(H0,H0) be the semigroup of continuous path holomorphic maps F :

H0 → H0. Let HolR(H0,H0) be the sub-semigroup of those F such that F (HR
0 ) ⊂

HR
0 .

Theorem 6.3. Let G be a family of cocycles with values in HolR(H0,H0) satisfying:

H1. A priori bounds for complex maps: For every δ > 0, there exists ε = ε(δ) >
0 such that

If f ∈ H0(δ) then Gm,n(f) ∈ H0(ε) for every G ∈ G and (m,n) ∈ Q.

H2. Beau bounds for nearly real maps: There exists ε0 > 0 such that for every
δ > 0, there exists N = N(δ) and η = η(δ) > 0 such that:

If f ∈ HR
0 (δ), f̃ ∈ H0(δ) and dH0

(f, f̃) ≤ η

then Gm,n(f̃) ∈ H0(ε0) for every G ∈ G and (m,n) ∈ Q with n−m ≥ N .

Then we have:

C1. Macroscopic contraction: For every δ > 0 and γ > 0 there exists N =
N(δ, γ) such that if f, f̃ ∈ H0(δ) then

dH0
(Gm,n(f), Gm,n(f̃)) < γ for every G ∈ G and (m,n) ∈ Q with n−m ≥ N .

C2. Beau bounds for complex maps: For every δ > 0 there exists N = N(δ)
such that

Gm,n(H0(δ)) ⊂ H0(ε0) for every G ∈ G and (m,n) ∈ Q with n−m ≥ N .

6.2. Reduction to the cocycle setting. Let Π = i0 ◦ π : C → H0, so that for
each c ∈M, Π restricts to a homeomorphism Hc → H0 which is path holomorphic
and preserves the modulus. For each infinitely renormalizable hybrid leaf Hc, we
can associate a cocycle G = Gc with values in Hol(H0,H0), by the formula

(6.2) Gm,n(Π(f)) = Π(Rn−m(Rm(f))), f ∈ Hc.

Let G be the set of all such cocycles which correspond to real-symmetric hybrid
leaves. Once we show that hypothesis (H1-H2) of Theorem 6.3 are satisfied for
G, the conclusions (C1-C2) translate precisely into beau bounds and macroscopic
contraction in real hybrid classes (Theorem 6.2).

Let us start with (H1):

Lemma 6.4. For every δ > 0 there exists ε = ε(δ) > 0 such that:

If f ∈ I(R)(δ) then Rnf ∈ C(ε), n = 0, 1, . . . .

Proof. Let g = pc : z 7→ zd + c, c ∈ R, be the straightening of f , and let gn denote
its nth pre-renormalizations. Let qn be the corresponding periods, that is, gn is a
p-l restriction of gqn .
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By Lemmas 2.5 and 2.6, there exist p-l representatives g : U ′ → V ′, f : U → V
with mod(V ′ \ U ′),mod(V \ U) > δ/2 and a C-qc map h : (C, U) → (C, U ′) with
C = C(δ) conjugating f to g, h ◦ f = g ◦ h in U . Since mod(V ′ \ U ′) > δ/2,

inf
y∈∂U ′

inf
x∈K(g)

|y − x| ≥ A diamK(g),

for some A = A(δ) > 0.
By the a priori bounds for real maps, there exists η > 0, depending only on the

degree d, such that

mod gn ≥ η, n = 0, 1, . . . .

It follows that each germ gn has a (non-normalized) p-l representative Un → Vn
with mod(Vn \ Un) > η′ and

sup
y∈∂gk(Un)

inf
x∈gk(K(gn))

|y−x| ≤ Adiam gk(K(gn)) ≤ A diamK(g), k = 0, 1, 2, . . . , qn−1

with η′ = η′(A, η) > 0, by compactness of C(η).
We conclude that gk(Un) ⊂ U ′ for 0 ≤ k ≤ qn − 1. Consequently, the p-l map

h−1 ◦ gn ◦ h : h−1(Un)→ h−1(Vn)

is a (non-normalized) representative of the n-th pre-renormalization of f . Since

mod(h−1(Vn) \ h−1(Un)) > η′/C,

we obtain a priori bounds for f with ε = η′/C. �

In order to show that hypothesis (H2) is satisfied, we will use the following.

Lemma 6.5. Let fn, f̃n ∈ I and χ(fn) = χ(f̃n). Assume that the sequences fn
and f̃n converge to the same limit f . If kn →∞ then lim infn→∞mod(Rkn(fn)) =

lim infn→∞mod(Rkn(f̃n)).

Proof. It is enough to show that for every ε > 0,

if lim inf
n→∞

mod(Rkn(fn)) > ε then lim inf
n→∞

mod(Rkn(f̃n) > ε.

Let fn : Un → Vn and f̃n : Ũn → Ṽn be p-l representatives of the germs fn and
f̃n that Carathéodory converge to a p-l map f : U → V . By Lemma 2.7, there exist
Cn → 1 and Cn-qc maps hn : Vn → Ṽn conjugating fn to f̃n (maybe after a slight
adjustment of the domains).

Let f ′n : U ′n → V ′n be p-l representatives of the kn-th pre-renormalizations of
the fn with lim inf mod(V ′n \ U ′n) > ε and filled Julia sets Kn. By Lemma 2.10,
diam(Kn)→ 0, so we may choose V ′n contained in Vn. By Lemma 2.9, f ′n = f

qkn
n |U ′n.

Let Ũ ′n = hn(U ′n) and Ṽ ′n = hn(V ′n). Then the map f̃
qkn
n : Ũ ′n → Ṽ ′n is a

well defined p-l representative of the kn-th pre-renormalization of f̃n. Moreover,
mod(Ṽ ′n r Ũ ′n) > mod(V ′n \ U ′n)/Cn, and the conclusion follows. �

Take ε0 from Theorem 6.1. If (H2) does not hold for ε0/2, we can find a δ > 0

and sequences fn ∈ I ∩ C(δ), f̃n ∈ Hχ(fn)(δ), kn → ∞, with dHχ(fn)
(fn, f̃n) → 0

such that Rkn f̃n /∈ C(ε0/2). Passing to a subsequence, we can assume that the fn
converge, and thus the f̃n must converge to the same limit. By the previous lemma,
it follows that lim inf mod(Rknfn) ≤ ε0/2, contradicting Theorem 6.1.

We have reduced Theorem 6.2 to Theorem 6.3.
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6.3. Retractions and the proof of Theorem 6.3. Recall that a continuous map
P : X → X in a topological space X is called a retraction if P 2 = P . In other
words, there exists a closed subset Y ⊂ X (a “retract”) such that P (X) ⊂ Y and
P |Y = id. Linear retractions in topological vector spaces are called projections. A
retraction is naturally called constant if its image is a single point.

The proof of Theorem 6.3 has two main parts. The first shows, using (H1),
that lack of uniform contraction in the leafwise dynamics allows one to construct a
retraction towards a non-trivial “attractor”:

Theorem 6.6. Let G be a family of cocycles with values in Hol(H0,H0). As-
sume that property (H1) holds but (C1) fails. Then there exist sequences Gk ∈ G,
(mk, nk) ∈ Q with nk −mk →∞, and a non-constant retraction P ∈ Hol(H0,H0)
such that Gmk,nkk (f)→ P (f) for every f ∈ H0.

The second shows, in general, that non-trivial retractions can not be “too com-
pact” in the real direction.

Theorem 6.7. Let P ∈ HolR(H0,H0), and assume the following compactness prop-
erty for nearly real maps:

(P) There exists a compact set K ⊂ H0 such that if fn ∈ H0 is a sequence
converging to f ∈ HR

0 , then P (fn) ∈ K for n large.

Then P is constant.

Those two results put together are then seen to imply Theorem 6.3:
Proof of Theorem 6.3. Let G be a family of cocycles with values in HolR(H0,H0)
such that (H1) and (H2) hold, but (C1) does not. By Theorem 6.6, there exist
a sequence Gk ∈ G and (mk, nk) ∈ Q with nk − mk → ∞, and a non-constant
retraction P ∈ Hol(H0,H0), such that Gmk,nkk (f) → P (f) for every f ∈ H0. It
satisfies the hypothesis of Theorem 6.7: since each Gmk,nkk preserves HR

0 , P also
does, while (H2) immediately gives

(P’) For any f ∈ HR
0 (δ) and f̃ ∈ H0(δ) with dH0

(f̃ , f) < η we have P (f̃) ∈ H0(ε0)

which clearly implies the crucial property (P). By Theorem 6.7, P is constant,

yielding the desired contradiction.

This concludes the proof of (C1). Together with (H2), it implies (C2). �
The essentially independent proofs of Theorems 6.7 (of differential topology na-

ture) and 6.6 (dynamical) will be given in the next two sections.

7. Triviality of retractions

7.1. Plan of the proof of Theorem 6.7. Let us describe the plan of the proof
of Theorem 6.7. Let PR = P |HR

0 . Let ZR = ImPR = FixPR. By Property (P),
ZR ⊂ K, and hence ZR = P (K), which is compact. We will complete the argument
in three consecutive steps:

Step 1. ZR is a finite-dimensional topological manifold (by the Implicit Function
Theorem),

Step 2 ZR is a single point (by a Brower-like topological argument),
Step 3. Z := ImP = FixP is a single point, too (by analytic continuation).

The first and third steps would be immediate to carry out if we were dealing
with Banach spaces. For instance, corresponding to the first step we have:
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Lemma 7.1 ([Ca]). Let B be a complex (respectively, real) Banach space and let P
be a holomorphic (respectively, real analytic) map from an open set of B to B such
that P (0) = 0. Assume that DP (0) is compact and P 2 = P near 0. Then for any
sufficiently small open ball B around 0 in B, P (B) is a complex (respectively, real
analytic) finite-dimensional manifold.

Proof. This is a particular case of [Ca] but we will give the argument for the
convenience of the reader. Let h = id−DP (0) − P . Since P 2 = P , we have
DP (0) = DP (0)2 and hence Dh(0)2 = id, so h is a local diffeomorphism near 0.
Obviously h ◦P = DP (0) ◦ h, so P (B) = h−1(DP (0)(h(B))). Since DP (0) is com-
pact and DP (0) = DP (0)2, it has finite rank so DP (0) · h(B) is an open subset of
a finite dimensional subspace. �

In order to translate this more familiar analysis to our context, we will use
Banach slices (first introduced in [L3]).

7.2. Banach slices. Let f ∈ H0. We call an open quasidisk W f -admissible if
W ⊃ K(f) and f extends holomorphically to W and continuously to the boundary.
Let B∗W ⊂ BW be the Banach space of all holomorphic maps w : W → C such that
w(z) = O(zd+1) near 0 and w extends continuously to the boundary.

The set of f -admissible quasidisks can be partially ordered by inclusion. This
partial order is directed in the sense that any finite set has a lower bound, thus it
makes sense to speak of “sufficiently small” f -admissible W .

Let BW,r be the open ball around 0 in B∗W of radius r. The following lemma is
a straightforward consequence of the definition of the topology in H0.

Lemma 7.2. For every ε > 0, and f ∈ H0(ε), for every sufficiently small f -
admissible W , for every r > 0, there exists a neighborhood V of f in H0(ε) such
that for every f ′ ∈ V, W is f ′-admissible and f ′ − f ∈ BW,r.

It is easy to see that there exists ε0 = ε0(f,W ) and r0 = r0(f,W ) > 0 such
that if w ∈ BW,r0 then f ′ = f +w admits a polynomial-like restriction f ′ : U → V
with K(f ′) ⊂ U ⊂ W and mod(V \ U) > ε0. Since f ′(0) = 0, f ′ defines a germ in
H0(ε0) denoted by jf,W,r0(w). The map jf,W,r0 : BW,r0 → H0 is readily seen to be
continuous and injective.

Theorem 7.3. Let f , W and r0 be as above, and let λ 7→ wλ be a continuous
map D → BW,r0 . Then wλ is holomorphic if and only if fλ = jf,W,r0(wλ) is a
holomorphic path in H0.

For the proof, we will need a preliminary result. As in the proof of Theorem 4.2,
for 0 < R < 1/4 we let IR : H0 → BDR be the restriction operator, which is well
defined by (4.1).

Lemma 7.4. Let 0 < R < 1/4 and let λ 7→ fλ be a continuous map D → H0.
Then fλ is a holomorphic path in H0 if and only if λ 7→ IR(fλ) is a holomorphic
path in BDR .

Proof. The only if part (equivalent to the path holomorphicity of IR) was estab-
lished in the proof of Theorem 4.2.

Assume that IR(fλ) is a holomorphic path in BDR . Since fλ is assumed to
be continuous, in order to show that it is a holomorphic path, it is enough to
construct a holomorphic motion hλ : intK(f0)→ intK(fλ) such that for each λ, hλ
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is holomorphic and conjugates f0 and fλ: by the Extension λ-Lemma Theorem, it
extends to a holomorphic motion C→ C, which, by continuity, conjugates f0|K(f0)
and fλ|K(fλ). For the construction, we will make use of the Böttcher coordinate
(c.f. proof of Theorem 4.2) ψf : intK(f) → D associated to any map f ∈ H0:

the desired holomorphic motion is then given by hλ = ψ−1fλ ◦ ψf0 . It is obviously
injective and holomorphic in z, and conjugates f0 and fλ, for each λ ∈ D, so we
just need to show that ψ−1fλ (z) is a holomorphic function D× D→ C.

Holomorphicity of IR(fλ) implies that fλ(z) is a holomorphic function D×DR →
C. By the Köebe-1/4 Theorem, if z ∈ DR3 then ψfλ(z) ∈ DR2 , so ψfλ(z)d ∈ DR4 ,

and (again by the Köebe-1/4 Theorem), fλ(z) = ψ−1fλ (ψfλ(z)d) ∈ DR3 . It follows

that fnλ (z) ∈ DR3 ⊂ DR for every z ∈ DR3 , n ≥ 1. By holomorphic iteration we
conclude that for every n ≥ 1, fnλ (z) is holomorphic in (λ, z) ∈ D× DR3 .

Let ψfλ,n : intK(fλ) → C be such that ψfλ,n(z)d
n

= fnλ (z) and Dψfλ,n(0) = 1.
It is easy to see that ψfλ,n converges to ψfλ uniformly on compacts of intK(fλ)
(actually one usually constructs the Böttcher coordinate ψfλ directly as the limit of
the ψfλ,n). Over (λ, z) ∈ D×DR3 , the holomorphicity of fnλ (z) implies, successively,
that ψfλ,n(z) and ψfλ(z) are also holomorphic.

By the Köebe-1/4 Theorem, ψ−1fλ (DR4) ⊂ DR3 , and it follows that ψ−1fλ (z) is

a holomorphic function of (λ, z) ∈ D × DR4 . Since for each fixed λ ∈ D, ψ−1fλ
is a univalent function of D, Hartog’s Theorem implies that ψ−1fλ (z) is in fact a

holomorphic function of (λ, z) through D× D. �

Proof of Theorem 7.3. Assume that fλ is a holomorphic path in H0, and let us show
that for every bounded linear functional L : B∗W → C, λ 7→ L(wλ) is holomorphic:
since wλ takes values in a ball, this implies that λ 7→ wλ is holomorphic. By (4.1),
fλ(z), and hence wλ(z) = fλ(z) − f(z), is holomorphic in D × D1/4. By Hartog’s
Theorem, it is then holomorphic in D×W , and since it is continuous in z up to ∂W ,
and bounded on both variables, we see that λ 7→ fλ(z) is a holomorphic function for
every z ∈ W . By Riesz’s Theorem, there exists a complex measure of finite mass
µ, supported on W , such that L(w) =

∫
w(z)dµ(z), so λ 7→ L(wλ) is holomorphic.

Assume now that λ 7→ wλ is holomorphic. Since jf,W,r0 is continuous, λ 7→ fλ
is continuous as well. Fix 0 < R < 1/4. By (4.1), D1/4 ⊂ K(f) ⊂ W , hence the
restriction operator IR,W : B∗W → BDR is holomorphic. Since wλ ∈ B∗W depends
holomorphically on λ, it follows that IR(fλ) = IR(f)+IR,W (wλ) ∈ BR also depends
holomorphically on λ. By Lemma 7.4, fλ is a holomorphic path. �

7.3. Proof of Theorem 6.7. We will carry out the three steps of the plan of proof
described in §7.1. We will use the notation introduced therein.

Let ε > 0 be such that K ⊂ H0(ε). Let f ∈ ZR. Let us consider a neighborhood
U of f in H0(ε/2). If it is small enough then all the maps f ∈ Ū are well defined
on some admissible neighborhood of W ⊃ K(f) (see §7.2), so Ū naturally embeds
into some Banach ball Br := BW,r. Let J : Ū → Br(f), J(g) = g − f |W denote
this embedding. Since H0(ε/2) is compact, J(Ū) is compact as well.

On the other hand, by Property (P) and continuity of P , there is a ρ > 0 such
that P (jf,W,ρ(Bρ)) ⊂ U . Hence Pf := J ◦P ◦jf,W,ρ : Bρ → Br is a compact Banach
holomorphic retraction.

Let us consider its real-symmetric part PR
f : BR

ρ → BR
r . It is a compact real

analytic Banach retraction, so by Lemma 7.1, the set FixPR
f near f is a real analytic
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finite-dimensional submanifold of Bρ. But since ZR is compact, topology induced
on it from the Banach ball coincides with its own topology (induced from the
whole space H0). Hence ZR is a finite-dimensional topological manifold near f .
Since f ∈ ZR is arbitrary, the first step of the proof is completed.

By Lemma 2.1, the space ER is contractible. Since HR
0 is homeomorphic to it,

it is also contractible. Since ZR is a retract of HR
0 , it is contractible as well. (If

ht is a homotopy that contracts HR
0 to a point, then P ◦ ht : ZR → ZR does

the same to ZR.) But the only contractible compact finite-dimensional manifold
(without boundary) is a point (since otherwise the top homology group Hn(M) is
non-trivial.) This concludes the 2nd step.

Thus, Pf (BR
ρ ) = {0}. Since Pf : Bρ → Br is holomorphic (as a Banach map),

Pf (Bρ) = {0}.
Let us show that a small neighborhood V of f in Z belongs to the neighborhood

U ⊂ H0(ε/2) considered above. Otherwise f ∈ cl(Z r U). Since the notion of
closedness in H0 is given in terms of sequences, there would exist a sequence fn ∈
Z r U converging to f . By Property (P), the maps fn = Pfn would eventually
belong to H0(ε/2), and hence to the neighborhood U – contradiction.

Thus, we have V ⊂ U ⊂ Br. Shrinking V if needed, we make J(V) ⊂ Bρ and
hence

J(V) = J(P (V)) ⊂ Pf (Bρ) = {0}.

Since J is injective, V = {f}. Thus, f is an isolated point in Z. But since
Z = P (H0) is connected, we conclude that Z = {f}, which completes the last step
of the proof. �

8. Almost periodicity and retractions

We now turn to the dynamical construction of retractions. The presence of
enough compactness, together with the non-expansion of the Carathéodory metric,
allows us to implement the notion of Almost Periodicity (adapted appropriately to
the cocycle setting).

8.1. Almost periodic cocycles. We will now discuss cocycles with values in
a Hausdorff topological semi-group S. Since we aim to eventually take S =
HolR(H0,H0), we allow for the possibility that S is not metrizable, neither satisfy
the First Countability Axiom, however we will always assume that S is sequential in
the sense that the notions of continuity, closedness and compactness can be defined
in terms of sequences.

A subcocycle is the restriction Gkm,kn of a cocycle G to a subsequence of N. More
formally, it is a pullback of G under a strictly monotone embedding k : N→ N.

The ω-limit set of a cocycle, ω(G), is the set of all existing limGm,n as m→∞
and n−m→∞.

A cocycle is called almost periodic if the family {Gm,n}(m,n)∈Q is precompact in
S. The ω-limit set of an almost periodic cocycle is compact.

We say that a cocycle converges if there is the limit Gm,∞ := limn→∞Gm,n for
every m ∈ N. The cocyclic rule extends to the limits of converging cocycles:

Gm,∞ = Gn,∞Gm,n, (m,n) ∈ Q.



30 ARTUR AVILA AND MIKHAIL LYUBICH

We say that a cocycle double converges if there exists the limitG∞∞ := limm→∞Gm,∞.
The cocyclic rule extends to the limits of double converging cocycles:

Gm,∞ = G∞,∞Gm,∞, G∞,∞ = (G∞,∞)2.

In particular, G∞,∞ is an idempotent.

Lemma 8.1. An almost periodic cocycle has a double converging subcocycle.

Proof. A converging subcocycle is extracted by means of the diagonal process.
Selecting then a converging subsequence of theGm,∞, we obtain a double converging
subcocycle. �

Corollary 8.2. The ω-limit set of an almost periodic cocycle contains an idempo-
tent.

We endow the space of cocycles with the pointwise convergence topology:

Gk → G if Gm,nk → Gm,n for all (m,n) ∈ Q.
The shift T in the space of cocycles is induced by the embedding N → N, n 7→

n+ 1. In other words, (TG)m,n = Gm+1,n+1, (m,n) ∈ Q.
If G is almost periodic then all its translates {TnG}∞n=0 form a precompact family

of cocycles.
Given a function ρ : S → R≥0, we say that a cocycle is uniformly ρ-contracting

if for any γ > 0 there exists an N such that ρ(Gm,n) < γ for any (m,n) ∈ Q with
n−m ≥ N .

A continuous function ρ : S → R≥0 is called Lyapunov

ρ(FlFFr) ≤ ρ(F ) for any F, Fl, Fr ∈ S.
The next assertion will not be directly used but can serve as a model for what
follows:

Proposition 8.3. Let G be an almost periodic cocycle that has a Lyapunov function
ρ. If ρ(e) = 0 for any limit idempotent e ∈ ω(G) then the cocycle is uniformly ρ-
contracting.

We leave it as an exercise.
We will need a more general form of the above proposition. Assume that we

have two continuous functions, ρ′ ≥ ρ ≥ 0 on S, which are not assumed to be
individually Lyapunov, but rather possess a joint Lyapunov property (adapted to
the cocycle):

(8.1) ρ(Gl,n) ≤ ρ(Gl,m) and ρ(Gl,n) ≤ ρ′(Gm,n) for any l < m < n.

We call it a Lyapunov pair for the cocycle.
We will also need a uniform version of the above lemma, over a family of cocycles.

Let G be a family of cocycles Gs labeled by an element s of some set Σ. We say
that G is uniformly almost periodic if the whole family Gm,ns , s ∈ Σ, (m,n) ∈ Q, is
precompact in S. Then ω(G) ⊂ S stands for the set of the limits of all converging
sequences Gmk,nksk

as mk →∞ and nk −mk →∞.
We say that the family is uniformly ρ-contracting if for any γ > 0 there exists

an N such that ρ(Gm,ns ) < γ for any s ∈ Σ, m ∈ N and n ≥ m+N .

Lemma 8.4. Let G be a uniformly almost periodic family of cocycles. Let (ρ, ρ′)
be a Lyapunov pair for all cocycles in G. If ρ′(e) = 0 for any limit idempotent
e ∈ ω(G) then G is uniformly ρ-contracting.
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Proof. Otherwise there exists a γ > 0, a sequence sk ∈ Σ and two non-decreasing
sequences qk ∈ N and nk → ∞ such that ρ(Gqk,qk+nksk

) ≥ γ. Since G is uniformly
almost periodic, the sequence of cocycles T qkGsk admits a converging subsequence.
Let G be a limit cocycle. Then ρ(G0,n) ≥ γ > 0 for any n > 0 (by continuity of
ρ and the first part of (8.1)). By the second part of (8.1), we have ρ′(Gm,n) ≥ γ
for all (m,n) ∈ Q. Hence ρ′(φ) ≥ γ for all φ ∈ ω(G). In particular, ρ′(G) > 0
for any idempotent e ∈ ω(G) from Lemma 8.2. Since ω(G) ⊂ ω(G), we arrive at a
contradiction. �

8.2. Tame spaces. Let X be a (sequential) topological space endowed with a
continuous metric d : X × X → R≥0 that is compatible with the topology on
compact subsets of X (but not necessarily on X). We say that X is tame if the
following properties hold:

(1) There exists a filtration of compact subsets, X1 ⊂ X2 ⊂ · · · ⊂ X such that
∪Xi = X;

(2) Each compact set in X is contained in some Xi;
(3) a set is open in X if and only if its intersection with any compact subset of

X is relatively open.

A family of continuous maps Fs : X → X ′, s ∈ Σ, between tame spaces (with
metrics d and d′ respectively) is called equicompact if for every compact set K ⊂ X
there exists a compact set K ′ ⊂ X ′ such that Fs(K) ⊂ K ′ for all s ∈ Σ.

• An equicompact family {Fs} is called equicontinuous on compact sets if for every
compact set K ⊂ X, for every x ∈ K and ε > 0 there exists δ = δ(K,x, ε) > 018

such that for every s ∈ Σ, we have

if d(x, y) < δ and y ∈ K then d′(Fs(x), Fs(y)) < ε.

•A sequence {Fn} is called uniformly converging on compact sets if {Fn} is equicom-
pact and there exists a continuous map F : X → X ′ such that for every compact
set K ⊂ X, we have

lim
n→∞

sup
x∈K

d′(Fn(x), F (x)) = 0.

Notice that in this case Fn is necessarily equicontinuous on compact sets.

• A family of cocycles Gs, s ∈ Σ, is called uniformly contracting on compact sets if
for any compact subset K ⊂ X and any γ > 0, there exists a compact set K ′ and
an N such that

Gm,ns (K) ⊂ K ′ and diam(Gm,ns (K)) < γ for all s ∈ Σ, m ∈ N and n ≥ m+N .

The space of continuous maps F : X → X ′ between two tame spaces is endowed
with topology of uniform convergence on compact subsets.

Lemma 8.5. A sequence of maps Fn : X → X ′ between tame spaces is precompact
if and only if it is equicontinuous on compact sets.

Proof. In the non-trivial direction, it follows from the Ascoli-Arzela’s Theorem on
each Xi and the diagonal argument. �

Given a tame space X, let S ≡ SX be the topological semigroup of all continuous
weak contractions of X (endowed with topology of uniform convergence on compact
subsets). Idempotents in this semigroup are retractions.

18In fact, by compactness of K, one may take δ = δ(K, ε) here.
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Lemma 8.6. Let X be a tame space, and let G be a uniformly almost periodic family
of cocycles Gm,ns , s ∈ Σ, with values in the semigroup SX . If all limit retractions
P ∈ ω(G) are constants, then G is uniformly contracting on compact sets.

Proof. Since G is uniformly almost periodic, the family of maps Gm,ns is equicom-
pact: for any i ∈ N there exists j = j(i) ≥ i such that Gm,ns (Xi) ⊂ Xj for all s ∈ Σ,
(m,n) ∈ Q.

Let ρi : S → R≥0 be defined as ρi(G) = diamG(Xi). Obviously, these functions
are continuous and form a monotonically increasing sequence. Moreover, for any
i ∈ N, the functions ρ := ρi and ρ′ := ρj(i) form a Lyapunov pair for any cocycle
G ∈ G. Indeed, for any l < m < n we have:

ρ(Gl,n) = diamGl,n(Xi) ≤ diamGl,m(Xi) = ρ(Gl,m)

(where the estimate holds since the semigroup S consists of weakly contracting
maps)

ρ(Gl,n) = diamGl,n(Xi) ≤ diamGm,n(Xj) = ρ′(Gm,n).

(where the estimate holds since Gl,m(Xi) ⊂ Xj).
Since all retractions P ∈ ω(G) are constants, we have ρ′(P ) = 0 for any of them.

By Lemma 8.4, the family G of cocycles is uniformly ρ-contracting, so for any γ > 0,
there exists an N such that diamGm,ns (Xi) < γ as long as n ≥ m+N .

Since i is arbitrary, we are done. �

8.3. Proof of Theorem 6.6. Notice that H0, with the Carathéodory metric, is
tame in the sense of §8.2 (take, e.g., Xi := H0(2−i) as a filtration). By the Schwarz
Lemma, Hol(H0,H0) is a sub-semigroup of SH0 , which turns out to be closed:

Lemma 8.7. If Fn ∈ Hol(H0,H0) converges uniformly on compact sets to a map
F then F ∈ Hol(H0,H0).

Proof. We have to show that if γ : D → H0 is a holomorphic path then F ◦ γ is a
holomorphic path as well. Let 0 < ρ < 1/4, and let Iρ : H0 → BDρ be the restriction
operator (c.f. (4.1)). The sequence of maps {Iρ ◦ Fn ◦ γ}n converges uniformly on
compact sets to Iρ ◦ F ◦ γ. By Lemma 7.4, each Iρ ◦ Fn ◦ γ is holomorphic in the
usual Banach sense, so the limit Iρ ◦ F ◦ γ is holomorphic as well. By Lemma 7.4,
F ◦ γ is path holomorphic. �

Property (H1) implies that the family G is uniformly almost periodic. If (C1)
does not hold then by Lemma 8.6, there exists a sequence Gk ∈ G and (mk, nk) ∈ Q
with nk−mk →∞, such that Gmk,nkk converges uniformly on compact sets to a non-
constant retraction P ∈ SH0

. By Lemma 8.7, P is path holomorphic, concluding
the proof. �

9. Horseshoe

9.1. Beau bounds and rigidity yield the horseshoe.

9.1.1. Complex case. Let F be a family of disjoint little Multibrot sets Mk (en-
coding certain renormalization combinatorics). We say that beau bounds are valid
for F , if they are valid for the family of infinitely renormalizable maps f whose
renormalizations Rnf have combinatorics M̄ = (Mn)∞n=0 with Mn ≡ Mkn ∈ F .
(We will loosely say that “M̄ is in F”.)

We say that F is rigid if for any combinatorics M̄ in F , there exists a unique
polynomial pc : z 7→ zd+c which is infinitely renormalizable with this combinatorics.
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Remark 9.1. It is conjectured that any family F is in fact rigid (which would imply
that the Multibrot set is locally connected at all infinitely renormalizable parameter
values, and hence would prove MLC, for all unicritical families).

In [Ch], it is shown that beau bounds implies rigidity for a large class of combi-
natorics, and in fact for all combinatorics for which beau bounds have been proved
([K], [KL1], [KL2]).

Remark 9.2. In the quadratic case, this rigidity result had been established in [L2].
The work [Ch] makes use of recent advances: a new version of the Pullback argument
developed in [AKLS].

A semi-conjugacy between two dynamical systems F : X → X and G : Y → Y
is a continuous surjection h : X → Y such that h ◦ F = G ◦ h.

Let Σ ≡ ΣF = FZ be the symbolic space with symbols from F , and let σ : Σ→ Σ
be the corresponding two-sided shift. A map h : Σ → C is called combinatorially
faithful if for any combinatorics M̄ = (Mn)∞n=−∞ ∈ Σ, the image f = h(M̄) is
renormalizable with combinatorics M0, and h semi-conjugates σ and R|A.

Theorem 9.1. Assume a family F has beau bounds and is rigid. Then there exists
a precompact R-invariant set A ⊂ C and a combinatorially faithful semi-conjugacy
h : Σ→ A. Moreover, R is exponentially contracting along the leaves of the hybrid
lamination of A, with respect to the Carathéodory metric.19

Proof. Since F has beau bounds, there exists ε > 0 such that

modRnp ≥ ε, n = 0, 1, . . .

for any polynomial p : z 7→ zd + c which is infinitely renormalizable with combina-
torics F .

Let M = (Mn)n∈Z ∈ Σ. For any −n ∈ Z−, there exists a polynomial pcn which
is infinitely renormalizable with combinatorics (M−n,M−n+1, . . . ). Then for any
l ∈ Z, l ≥ −n, the germ fn,l := Rn+lpc−n ∈ C(ε) is infinitely renormalizable with
combinatorics (Ml,Ml+1, . . . ). As this family of germs is precompact, for any l we
can select a subsequence fn(i),l converging to some fl ∈ C(ε) as n(i) → −∞. This

map is infinitely renormalizable with combinatorics (Ml,Ml+1, . . . ).
20 Using the

diagonal procedure (going backwards in l) we ensure that Rfl−1 = fl. Thus, we
obtain a bi-infinite sequence of maps fl ∈ C(ε) such that fl is renormalizable with
combinatorics Ml and Rfl−1 = fl.

Assume there exist two such sequences, (fl)l∈Z and (f̃l)l∈Z. Since F is rigid, the
hybrid class of any fl is uniquely determined by the renormalization combinatorics
(Ml,Ml+1, . . . ), so for any l ∈ Z, the germs fl and f̃l are hybrid equivalent. But
by Theorem 5.1, the renormalization is exponentially contracting with respect to
the Carathéodory metric in the hybrid lamination. Hence there exist C > 0 and
λ ∈ (0, 1) such that

(9.1) dχ(f0)(f0, f̃0) ≤ C(ε)λndχ(fn)(f−n, f̃−n).

Letting n→∞ we see that f0 = f̃0. For the same reason, fl = f̃l for any l ∈ Z.

19It follows from rigidity that the hybrid lamination ofA consists of all infinitely renormalizable

maps whose renormalizations have combinatorics in F .
20This actually needs a little check-up: compare the argument four paragraphs down.
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Thus, we obtain a well defined equivariant map h : M 7→ f , where f ≡ f0 is a
polynomial-like germ for which there exists a bi-infinite sequence fl ∈ C(ε), l ∈ Z,
such that fl is renormalizable with combinatorics Ml. Let A ⊂ C consist of all
such germs, which makes h surjective by definition.

To see that h is continuous, consider a sequence M(k) → M in Σ, and let

f
(k)
l = h(σl(M(k)

)). We need to show that h(M(k)
)→ h(Mk). By passing through

an arbitrary subsequence, we may assume that for each l ∈ Z, f
(k)
l converges

in C(ε) to some fl. By definition of convergence in Σ, for each l ∈ Z and for

each k sufficiently large, f
(k)
l is renormalizable with combinatorics in Ml, i.e.,

χ(f
(k)
l ) ∈Ml.

Let us show that fl is renormalizable with combinatoricsMl. IfMl is a primitive
copy, then it is closed, which readily implies that χ(fl) ∈ Ml. If Ml is a satellite
copy, its closure is obtained by adding the root, so we also need to guarantee

that χ(f
(k)
l ) does not converge to the root. But for k large, χ(f

(k)
l ) belongs to a

subcopy of Ml (consisting of those polynomials in Ml whose renormalization has
combinatorics Ml+1), which is at definite distance from the root of Ml, so we can
again conclude that χ(fl) ∈Ml.

By continuity of any renormalization operator with fixed combinatorics, we also

conclude Rfl = fl+1. By the definition of h, h(M) = f0 = lim f
(k)
0 = limh(M(k)

),
as desired. �

9.1.2. Real horseshoe. Let FR stand for the family of all real renormalization com-
binatorics with minimal periods. Let σ : Σ→ Σ be the corresponding shift. While
neither beau bounds, nor (complex) rigidity have been established for FR,21 the
proven beau bounds and rigidity for real-symmetric germs is enough to construct
the renormalization horseshoe. Moreover, we will show that in this case, the com-
binatorially faithful semi-conjugacy h is actually a homeomorphism:

Theorem 9.2. For the family FR, there is an R-invariant set A ⊂ CR and a
combinatorially faithful homeomorphism h : Σ → A. Moreover, R is exponen-
tially contracting along the leaves of the hybrid lamination of A (endowed with the
Carathéodory metric), which contains all infinitely renormalizable real-symmetric
germs.

Proof. The construction of the horseshoe A, along with the combinatorially faith-
ful semi-conjugacy h, is basically the same as in Theorem 9.1, with the following
adjustments:

(1) The polynomials pcn should be selected to be real, cn ∈ R;
(2) Theorem 6.1 (beau bounds for real maps) provides the needed compactness

for the construction of the maps fl;
(3) Rigidity of F is replaced with rigidity for real polynomials, obtained in [L2],

[GS] (quadratic case) and in [KSS] (arbitrary degree):22 any real renormal-
ization combinatorics determines a single real-symmetric hybrid leaf;

(4) Exponential contraction is obtained by combining Theorems 6.2 and 5.1.

21They have been established, however, for the family of primitive real combinatorics [KL1],
which covers all real combinatorics except period doubling.

22This result also follows from combination of [AKLS] (dealing with at most finitely renormal-
izable maps) and [Ch] (dealing with the infinitely renormalizable situation).
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The injectivity of h follows from the injectivity of the renormalization operator
acting on real p-l maps [MvS, p. 440]. What is left, is to verify continuity of h−1.
Since convergence in Σ means coordinatewise convergence, it is equivalent to the
following statement:

Lemma 9.3. Let (M̄(j))∞j=1 be a sequence of symbolic strings M̄(j) = (M(j)
n )n∈Z

in Σ such that the corresponding germs fj ≡ h(M̄(j)) converge to some f∞ ∈ A.

Then for any n ∈ Z, the combinatoricsM(j)
n of Rnfj eventually coincides with that

of Rn(f∞).

Notice that Lemma 9.3 is clear for n = 0: a real perturbation of a twice renor-
malizable real map is renormalizable (at least once) with the same combinatorics
(since on the boundary of the renormalization windows the maps are not twice
renormalizable, see §2.10). Since the renormalization operator acts continuously on
A, we have for any n ≥ 0 that Rnfj → Rnf∞ as j → ∞. It follows that Lemma
9.3 holds for all n ≥ 0 as well.

In order to prove it inductively for n < 0, it is enough to show that the hypothesis
of Lemma 9.3 imply that R−1fj → R−1f∞. To this end, it is sufficient to prove
that the renormalization combinatorics of the germs R−1fj are bounded. Indeed, in
this case any limit g of these germs is renormalizable and Rg = f∞. By injectivity
of the renormalization operator, g = R−1f∞, and the conclusion follows.

Boundedness of the renormalization combinatorics follows from an analysis of
the domain of analyticity of limits of renormalized germs:

Lemma 9.4. Let f̃j ∈ CR, j ≥ 1, be a sequence of renormalizable germs. If the

renormalization periods of the f̃j are going to infinity, then any limit of renormal-

izations Rf̃j is either a unicritical polynomial or its real trace has a bounded domain
of analyticity.

See Appendix A for a proof (unlike the previous parts of this paper, it relies on
the fine combinatorial and geometric structure of one renormalization).

Let us apply Lemma 9.4 to f̃j = R−1fj . Notice that f∞ = limRf̃j cannot be a
unicritical polynomial since those are never anti-renormalizable. It can neither have
a bounded domain of analyticity, due to McMullen’s result [McM2] implying that
the real trace of f∞ (which is infinitely anti-renormalizable with a priori bounds)
extends analytically to R. So, both options offered by Lemma 9.4 are impossible
in our situation, and hence the renormalization periods of the germs f̃j must be
bounded. This concludes the proof of Lemma 9.3, and thus of Theorem 9.2. �

Appendix A. Analytic continuation of the first renormalization

A.1. Principal nest and scaling factors. Through this section, we consider
a renormalizable unimodal map f : I → I, of period p, with a polynomial-like
extension in CR(ε0) for some fixed ε0 > 0. For simplicity of notation, we will also
assume that f is even. We will also assume that we can write f(x) = ψ(xd) for some
diffeomorphism ψ with non-positive Schwarzian derivative. All arguments below
can be carried out without the extra assumptions with only technical changes, but
in the situation arising in our application (f is infinitely anti-renormalizable with
a priori bounds) they are indeed automatically satisfied.

Below C > 1 stands for a constant which may only depend on ε0.



36 ARTUR AVILA AND MIKHAIL LYUBICH

Recall that a closed interval T ⊂ I which is symmetric (i.e., f(∂T ) is a single
point) is called nice if fk(∂T )∩ intT = ∅, k ≥ 1. If the critical point returns to the
interior of a nice interval T , then we let T ′ be the central component of the first
return map to T . We let λ(T ) = |T ′|/|T | be the scaling factor.

We define the principal nest In, n ≥ 0 as follows. Since f is renormalizable, it
has a unique orientation reversing fixed point p. Its preimage {p,−p} bounds a
nice interval, which we denote I0. Then we define In+1 inductively as I ′n, i.e., In+1

is the central component of the first return map to In.
Let us assume from now on that p > 2. Under this condition, In+1 b int In for

every n ≥ 0. Let λn = |In+1|/|In| be the corresponding scaling factors.
Let gn be the first return map to In. We say that gn is central if gn(0) ∈ In+1.

We define a sequence (jk)k≥0 inductively so that j0 = 0 and jk+1 is the minimum
n > jk such that gn−1 is non-central. Since f is renormalizable, gn is central for all
sufficiently large n, so the sequence (jk) terminates at some N = jκ. We call κ the
height of f .

We have the following basic estimates on the scaling factors (see [Ma1]):

A priori bounds. We have: λjk ≤ 1 − C−1 for every k. Moreover. the maps
gjk : Ijk+1

→ Ijk are compositions of power maps x 7→ xd and diffeomorphisms with
bounded distortion.

Corollary A.1.

λn+1 ≤ Cλ1/dn ,

λjk+1
≤ C

∏jk+1−1
n=jk

λ
1/d
n .

Let vn be the principal return times, i.e. fvn |In+1 = gn. In particular, vN = p
is the renormalization period. We let g = fp. Then g : J → J is the unimodal
pre-renormalization of f , where J = ∩n≥0In.

Lemma A.2. We have Tp ⊂ Imax{0,N−1}.

Proof. If κ = 0 then clearly Tp = I1 ⊂ I0.
Assume that κ ≥ 1 and hence N ≥ 1. The interval Tp is the smallest interval

containing 0 whose boundary is taken by fp to the boundary of I0. Hence it is
enough to show that fp(∂IN−1) ⊂ ∂I0.

It is easy to see that for k ≥ 1 we have

fsvjk−1 (0) ∈ Ijk−s \ Ijk+1−s for 1 ≤ s ≤ jk − jk−1.
We conclude that

vjk ≥ vjk−1−1+(jk−jk−1)vjk−1
=

jk−1∑
n=jk−1−1

vn = vjk−1
+

jk−2∑
n=jk−1−1

vn, for jk ≥ 2,

which implies inductively that

(A.1) vjk ≥
jk−2∑
n=0

vn for jk ≥ 2.

Letting k = κ (so that jκ = N and vN = p) we obtain:

t := p−
N−2∑
n=0

vn ≥ 0.
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Since fvn(∂In+1) ⊂ ∂In, it follows that fp(∂IN−1) ⊂ f t(∂I0) ⊂ ∂I0. �

A.2. Transition maps. The geometric considerations made below are all con-
tained in [L1], though we do not need the finest part of that argument, dealing
with growth of geometry for Fibonacci-like cascades (with or without saddle-node
subcascades), which is not valid in higher degree anyway.

We say that n ≥ 0 is admissible if fn(0) ∈ I0. For admissible n, let Tn be
the closure of the connected component of f−n(int I0) containing 0. In particular

T0 = I0. More generally, letting wn =
∑n−1
k=0 vk, we obtain Twk = Ik. If n is

admissible we let An : Tn → I be the orientation preserving affine homeomorphism,
where I = [−1, 1].

We say that Tn is a pullback of Tm if n > m and fn−m(0) ∈ Tm. In this case,
fn−m restricts to a map (Tn, ∂Tn)→ (Tm, ∂Tm), and we let Gn,m = Am ◦ fn−m ◦
A−1n , which we call a transition map.

We say that Tn is a kid of Tm if Tn is a pullback of Tm but is not a pullback
of any Tk with m < k < n. Notice that in this case, fn−m−1|f(Tn) extends to an
analytic diffeomorphism onto Tm. If Tn is a kid of Tm, the transition map Gn,m is
called short, otherwise it is called long.

A short transition map Gn,m is called δ-good if fn−m−1|f(Tn) extends to an
analytic diffeomorphism onto a δ|Tm|-neighborhood of Tm. The usual Koebe space
argument (see [MvS]) yields:

Lemma A.3. For every δ > 0, any δ-good transition map belongs to a compact set
K = K(δ, ε0) ⊂ Cω(I, I), only depending on ε0 and δ.

Here Cω stands for the space of analytic maps, with the usual inductive limit
topology.

There is a unique canonical decomposition of a long transition map into short
transition maps: letting m = n1 < ... < nl = n be the sequence of moments
such that fn−nj (0) ∈ Tnj , then Tnj+1

is a kid of Tnj for 0 ≤ j ≤ l − 1 and
Gn,m = Gn2,n1 ◦ · · · ◦Gnl,nl−1

.
A central cascade is a sequence Tn1 , ..., Tnl such that Tnj+1 is the first kid of Tnj

and fnj+1−nj (0) ∈ Tnj+1 for 1 ≤ j ≤ l − 1. Notice that in this case nj+1 − nj is
independent of j ∈ [1, l−1]. If n2−n1 < p then we distinguish the saddle-node and
Ulam-Neumann types of central cascades according to whether 0 /∈ fn2−n1(Tn2

) or
0 ∈ fn2−n1(Tn2

).
A long transition map is called saddle-node/Ulam-Neumann if its canonical de-

composition Gn2,n1 ◦ · · · ◦Gnl,nl−1
is such that Tn1 , ..., Tnl is a saddle-node/Ulam-

Neumann cascade.
We say that a long transition map Gnl,n1

is δ-good if all the components Gnj+1,nj

of its canonical decomposition are δ-good. Notice that if Gnl,n1
is central then this

is equivalent to δ-goodness of the top level Gn2,n1
.

Besides δ-goodness, an important role is also played by two parameters associated
to a long transition map of saddle-node type: the scaling factors of the top and
bottom levels, λtop = |Tn2

|/|Tn1
| and λbot = |Tnl |/|Tnl−1

|.

Lemma A.4. For every 0 < λ < λ < 1, δ > 0, any δ-good long transition maps
of saddle-node type with parameters λbot, λtop ∈ [λ, λ] belongs to a compact set

K(λ, λ, δ, ε0) ⊂ Cω(I, I).
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Proof. For such a transition map Gn,m, let us consider a maximal saddle-node
cascade Tn1

, ..., TnL such that m = n1 and n = nl for some l ≤ L.
By Lemma A.3, we only risk losing compactness when l, and hence L, is large,

which is related to the presence of a nearly parabolic fixed point in Tn2
for F =

fn2−n1 (since there is in fact no fixed point, the terminology means that a parabolic
fixed point appears after a small perturbation of F ). In this case we have the basic
geometric estimate, due to Yoccoz:

(A.2)
|Tni |
|Tni+1

|
− 1 ∼ max{i, L− i}−2, 1 ≤ i ≤ L− 1

(the implied constants depending on the bounds λ, λ on scaling factors). See [FM],
Section 4.1, for a discussion of almost parabolic dynamics and the statement of
Yoccoz’s Lemma.

In particular, either l is bounded (and we are fine) or L−l is bounded. Assuming
that l ≥ 4, F 3(Tnl) is contained in a connected component J of Tnl−3

\ TnL−1
.

Since Lemma A.3 provides bounds on F 3|Tnl , we just have to show that F l−4|J
is under control. But the map F l−4 maps J onto a connected component of Tn1 \
TnL−l+3

, and extends analytically to a diffeomorphism onto a connected component

J ′ of T δn1
\ TnL−l+4

, where T δn1
is a δ|Tn1

|-neighborhood of Tn1
. By (A.2), J ′ is a

δ′|F l−4(J)|-neighborhood of F l−4(J) for some δ′ > 0, so F l−4|J is under Koebe
control. �

A.3. Small scaling factors. In [L1], several combinatorial properties are shown
to yield small scaling factors. We will need somewhat simpler estimates, which we
will obtain from the following:

Lemma A.5. For every ε > 0, there exists δ = δ(ε, ε0) > 0 with the following
property. Assume that the postcritical set intersects a connected component D of
the first landing map to Ijk+1

such that D ⊂ Ijk \ Ijk+1 and |D|/|Ijk | < δ. Then
|Ijκ+1|/|Ijk | < ε.

Proof. We may assume that λjk is not small and that κ− k is bounded. Let r > 0
be minimal such that fr(0) ∈ D.

Assume first r < vjk+1
, i.e., orb 0 lands in D before landing in Ijk+1

. Let us
consider the first landing fvjk (0) ∈ Ijk+1−1 r Ijk+1

of orb 0 in Ijk . Let

(A.3) D′ ⊂ Ijk+1−1 r Ijk+1

be the pullback of D under fr−vjk containing fvjk (0). (In other words, D′ is the
component of the domain of the first landing map to Ijk+1

containing fvjk (0).)

The map fr−vjk : D′ → D is a composition of the transit map

f (jk+1−jk−1)vjk : Ijk+1−1 r Ijk+1
→ Ijk r Ijk+1

and (possibly) several first return maps to Ijk r Ijk+1. It has a Koebe extension

D̃′ → L, where L is the connected component of Ijk \ {z0} containing D and

z0 = f (jk+1−jk−1)vjk (0) ∈ Ijk+1. This implies an upper bound on the derivative of
the inverse map D → D′, unless the distance from z0 to D is small compared to
|Ijk |.

In the former case, we readily conclude that

(A.4) |D′| ≤ C |D|.
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On the other hand, we may assume that |Ijk+1−1| � |Ijk | (otherwise the result is
obvious), so |D′| is small compared with |Ijk+1−1|. If it is, in fact, small compared
to the distance δ to ∂Ijk+1−1 then

λjk+1
� (|D′|/δ)1/d

is small as well. Otherwise δ is small compared to |Ijk+1−1| Then the return to
Ijk+1−1 is “very low”, i.e., σ := |fvjk (Ijk+1

)|/|Ijk+1−1| is small. But then λjk+1
�

σ1/d is small again.
In the latter case, z0 must be close to ∂Ijk+1, so by considering the transit map

f (jk+1−jk−2)vjk : Ijk+1−2 \ Ijk+1
→ Ijk \ Ijk+2, we conclude that the distance δ from

fvjk (0) to ∂Ijk+1−1 is small compared to |Ijk |, so we can apply the above analysis
of a very low return to obtain that λjk+1

is small.

Assume now r > vjk+1
, i.e., orb 0 lands in Ijk+1

before landing in D. Let s ∈ (0, r)
be its last landing moment in Ijk+1

before landing in D. Then

fs(0) ∈ Ijk+1
r Ijk+1+1, for otherwise fr−s(0) ∈ fr−s(Ijk+1+1) ⊂ D,

contradicting the minimality of r.
Let ∆ be the pullback of D under fr−s containing fs(0) (which is the component

of the domain of the first return map to Ijk+1
containing fs(0)). The transit map

fr−s : ∆ → D is the composition of the fist return map fvjk and the transit map
from an interval D′ to D, where D′ is defined as (A.3) except that it is centered
at fs+vjk (0) rather than at fvjk (0). By the previous analysis, either the return
to Ijk+1−1 is very low, and we are done since this implies that λjk+1

is small, or

estimate (A.4) holds. Since fvjk is the power map xd, up to bounded distortion, and
the intervals Ijk+1

, Ijk+1+1 are comparable, we conclude that |∆| is small compared
with Ijk+1

. All the more, the component ∆′ of the first landing map to Ijk+2

containing fs(0) is small compared with Ijk+1
. We can now start the procedure

over with k replaced by k + 1 and D replaced by ∆′.
Since κ − k is assumed to be bounded, this process must eventually produce a

small scaling factor. �

One important situation in our analysis corresponds to the critical orbit hitting
deep inside a long central cascade.

More precisely, we say that Tm is k-deep (k ≥ 2) inside a central cascade if there
is a central cascade Tn1

,..., Tnl=m ,Tnl+1
= T ′m,...,TnL such that k ≤ l ≤ L − k.

We say that the critical orbit hits Tm if there is r ≥ 0 such that fr(0) 6∈ T ′m, but
fr+n2−n1(0) ∈ Tm \ T ′m.

Lemma A.6. For every ε > 0 there exists k = k(ε, ε0) > 0 with the following
property. Assume that the critical orbit hits some Tm which is k-deep inside a
central cascade. Then |Ijκ+1|/|Tm| < ε.

Proof. It is no loss of generality to assume that Tn1
= Iji for some i (since between

any interval Tn and its kid T ′n, there must be an interval of the principal nest).
We may assume that λji is not small. Let D′ be the component of the domain

of the first landing map to Iji+1
containing fr+n2−n1(0). Then |D′|/|Iji | is small,

see (A.2). Let s < r + n2 − n1 be maximal with fs(0) ∈ Iji \ Iji+1. Let D be
the component of the domain of the first landing map to Iji+1

containing fs(0).
Pulling back the Koebe space, we get |D|/|Iji | small. The result follows from
Lemma A.5. �
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A simpler situation involves long Ulam-Neumann cascades:

Lemma A.7. For every ε > 0 there exists k = k(ε, ε0) > 0 with the following
property. Let Tn1

, ..., Tnk be a central cascade of Ulam-Neumann type. Then there
exists It ⊂ Tnk such that λt < ε.

Proof. As in Lemma A.6, we may assume that Tn1 = Iji . Due to the long Ulam-
Neumann cascade, λji+1−1 is close to 1, see [L2, Lemma 8.3]. In particular, the
domain D of the first landing map to Iji+1

containing fvji (0) has lots of Koebe
space in Iji . Pulling back by fvji , we conclude that |Iji+1+1|/|Iji+1| is small, which
implies that λji+1 is small. �

We will also need the following easy criterion. Let us say that Tn is δ-safe if the
postcritical set does not intersect a δ|Tn|-neighborhood of ∂Tn. Notice that if Tn is
δ-safe and Tm is a kid of Tn then Gm,n is δ-good.

Lemma A.8. For every ε > 0, there exists δ > 0 such that if 0 ≤ k ≤ κ is such
that Ijk is not δ-safe, then |Ijκ+1|/|Ijk | < ε.

Proof. Consider first the case of “postcritical set inside”, i.e., for some r > 0,
fr(0) ∈ Ijk is near ∂Ijk . Let D be the component of the first landing map to Ijk+1

containing fr(0). Since it has Koebe space inside Ijk (the landing map D → Ijk+1

extends to a diffeomorphism Ijk ⊃ D′ → Ijk), |D|/|Ijk | is small, so the result follows
from Lemma A.5.

Consider now the case of “postcritical set outside”, i.e., for some r > 0, fr(0) /∈
Ijk is near ∂Ijk . We may assume that k > 0 (otherwise applying f once produces
“postcritical set inside” reducing to the previous case). We may assume further
that λjk is not small (otherwise the result is obvious), and that if jk − jk−1 is large
then this is due to a saddle-node cascade (otherwise we can apply Lemma A.7).

Letting r′ = r+ (jk − jk−1− 1)vjk−1
, it follows that fr

′
(0) is just outside ∂Ijk−1+1.

Let D be the connected component of the first landing map to Ijk containing fr
′
(0).

Since it has Koebe space inside Ijk−1
\Ijk−1+1, this implies that |D|/|Ijk−1

| is small,
and the result follows from Lemma A.5. �

A.4. Main precompactness.

Lemma A.9. Let us consider a composition of transition maps Gm2,m1
◦ · · · ◦

Gmr,mr−1 , where each Gmj+1,mj is either short or saddle-node. Assume that Tm1 is
δ-safe, λ(Tm1) < 1− δ and |Tmr |/|Tm1 | > δ. Assume also that whenever Gmj+1,mj

is saddle-node of length at least l then Tmj+1
is not l-deep inside a central cascade.

Then there exists δ′ = δ(ε0, δ, l, r) > 0 and a compact subset K = K(ε0, δ, l, r) ⊂
Cω(I, I) such that for 2 ≤ j ≤ r we have

(1) Tmj is δ′-safe,
(2) λ(Tmj ) < 1− δ′,
(3) Gmj ,mj−1 ∈ K.

Proof. Induction reduces considerations to the case r = 2.
Notice that if we show that Gm2,m1

is in a compact class, it will follow that Tm2

is δ′-safe (any postcritical set near ∂Tm2
would be taken by fm2−m1 to postcritical

set near ∂Tm1
. Moreover, it will also follow that λ(Tm2

) < 1− δ′: the map fm2−m1

takes T ′m2
into a connected component of the first landing map to T ′m1

and any
such component must have Koebe space inside Tm1 since λ(Tm1) < 1− δ.
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Thus we just have to show that Gm2,m1 is in a compact class. Notice that Gm2,m1

is δ-good. If Gm2,m1 is short, the conclusion from Lemma A.3. If Gm2,m1 is saddle-
node, this will follow from Lemma A.4 once we show that λtop and λbot are bounded
away from 0 and 1. Clearly both are at least δ and moreover λtop = λ(Tm1

) < 1−δ.
Let Tn1=m1

,...,Tns=m2
,...,TnL be the maximal central cascade starting at Tn1

.
As in Lemma A.4, see (A.2), we see that if λbot is close to 1 then s and L− s are
large. But by hypothesis min{s, L− s} ≤ l, giving the result. �

The following two similar estimates will be proved simultaneously:

Lemma A.10. For ε > 0 there exists a compact subset K = K(ε, ε0) ⊂ Cω(I, I)
with the following property. Assume that |Ijκ+1|/|Ijk | > ε. Then Gwjk+p,wjk ∈ K.

Lemma A.11. For ε > 0 and b0 ∈ N, there exists a compact subset K = K(ε, ε0, b0) ⊂
Cω(I, I) with the following property. Assume that |Ijκ+1|/|I0| > ε. If 0 ≤ b <
min{p, b0} is such that p− b is admissible then Gp−b,0 ∈ K.

A.4.1. Proof of Lemmas A.10 and A.11. The proofs of both lemmas follow a basi-
cally parallel path. In both cases we need to estimate a map of type Gwjk+p−b,wjk ,
where in the setting of Lemma A.10 we set b = 0, while in the setting of Lemma
A.11 we set k = 0. Write it as a composition of a minimal number of either short
transition maps or long transition maps of Ulam-Neumann or saddle-node type.
Clearly the number of elements of this decomposition is bounded in terms of κ− k,
which in turn is bounded in terms of ε.

Let us now consider a finer decomposition Gm2,m1
◦ · · · ◦ Gmr,mr−1

, where we
split the Ulam-Neumann pieces into short transition maps (so that each Gmj+1,mj

is either short or saddle-node). The Ulam-Neumann cascades have bounded length
(by Lemma A.7), so r is also bounded.

In order to conclude, it is enough to show that the conditions of Lemma A.9 are
satisfied. Since Tm1 = Ijk , λ(Tm1) is indeed bounded away from 1, and it is δ-safe
by Lemma A.8. So we just have to check that for 1 ≤ j ≤ r − 1, if Gmj+1,mj is
saddle-node with big length then Tmj+1

is not too deep inside a central cascade.
The following combinatorial estimate will be key to the analysis.

Lemma A.12. Suppose that Gmj+1,mj is saddle-node, and let Tn1=mj ,...,Tnl=mj+1

be the associated cascade. If l ≥ 4 + b then fmr−mj (0) /∈ Tn4+b
.

Proof. Let jk + 1 ≤ s ≤ jκ be minimal such that Tmj ⊃ Is. It follows that

(A.5) mj −m1 ≤
s−1∑
n=jk

vn.

Since Is ⊂ Tn1
⊂ int Is−1, it follows that Is+1 ⊂ Tn2

⊂ int Is and Tn3
⊂ int Is+1.

Then n3 − n2 ≥ vs ≥ n2 − n1, and since nt+1 − nt = n2 − n1 for 1 ≤ t ≤ l − 1, we
see that n2 − n1 = vs.

Assume first that s = jt for some k < t ≤ κ. Then (A.1) and (A.5) imply
mj −m1 ≤ 2vs, so that mj −m1 + b ≤ (2 + b)vs. Thus,

p = mr−m1+b = (mr−mj)+(mj−m1)+b = (mr−mj)+q, where q ≤ (2+b)vs.

If x := fmr−mj (0) ∈ Tn3+b
then fnvs(x) ∈ fvsTn2

for n ≤ 2 + b. Hence fp(0) =
fq(x) is either in fvs(Tn2

) or it is outside Tn1
. In any case, it can not belong to

the renormalization interval ∩n≥1In – contradiction.
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Assume now that jt+1 = s < jt+1 for some k ≤ t < κ. Arguing as before, we see
that mj−m1 ≤ 3vs, and if fmr−mj (0) ∈ Tn4+b

we arrive at a similar contradiction.
Assume now that jt+2 ≤ s < jt+1 for some k ≤ t < κ. Then the map fn2−n1 has

a unimodal extension to the interval Is−1 ⊃ Tn1 . Hence Tn1 is a kid of the interval
Tn0 ⊂ Is−2 of depth n0 = 2n1 − n2. But then Gmj+1,mj is not a maximal saddle-
node transition map in the decomposition of Gmr,m1

, contradicting the definition
of mj . �

Let Tn1=mj ,...,Tnl=mj+1 ,...,TnL be the maximal continuation of the saddle-node
cascade associated to Gmj+1,mj , and assume that l and L − l are large. By
Lemma A.12, fmr−mj (0) /∈ Tn4+b

, which implies that fmr−mj+1(0) ∈ Tns \ Tns+1

for some l ≤ s ≤ l+2+ b. Indeed, fmr−mj+1(0) ∈ Tmj+1
= Tnl , but fmr−mj+1(0) 6∈

Tnl+3+b
, for otherwise

fmr−mj (0) = fmj+1−mj (fmr−mj+1(0)) ∈ fnl−n1(Tnl+3+b
) ⊂ Tnb+4

.

On the other hand, since Gmj+1,mj is a maximal saddle-node cascade in the
decomposition of Gmr,m1

, we must have fmr−mj+1+n1−n2(0) /∈ Tns+1
. We can

then apply Lemma A.6 to conclude that |Ijκ+1|/|Ijk | is small, contradiction. This
establishes that either l or L− l must be small, as desired. �

A.5. Proof of Lemma 9.4. We may assume that the sequence fn = f̃n converges
to some f∞. Let pn be the period of fn. Let Λn be the affine map such that
Λn ◦ (fn)pn ◦ Λ−1n is normalized.

Assume first that the prerenormalization intervals of fn do not have length
bounded from below: following the terminology of [L2], we will say that the com-
binatorics of the fn is not essentially bounded. Then either inf λN(fn)(fn) = 0 or
supκ(fn) =∞ by [L1].

If inf λN(fn)(fn) = 0 then f∞ is a unicritical polynomial [L1].
Consider now the case inf λN(fn)(fn) > 0 and supκ(fn) = ∞. We may assume

that limκ(fn) = ∞. Passing through a subsequence we may assume that for each
k ≥ 0, Λn(Ijκ(fn)−k(fn)) converges to a closed interval Dk. Clearly each Dk is a

bounded interval (scaling factors minorated) and ∪Dk = R (scaling factors bounded
away from 1). We may also assume that Λn(Twjκ(fn)−k+pn

(fn)) converges to a closed

interval D′k. Then D′k ⊂ D1 by Lemma A.2. By Lemma A.10, for every k ≥ 0,
f∞ has an analytic extension D′k → Dk which is proper. It follows that f∞ has a
maximal analytical extension to ∪k≥0D′k ⊂ D1.

Assume now that fn has essentially bounded, but unbounded, combinatorics.
We may assume that pn →∞. Let 0 = b0n < b1n < ... be the sequence of admissible

moments, i.e., such that f
bin
n (0) ∈ I0(fn). Clearly bin ≤ ib1n (since the critical point

returns to I0 no earlier than any other point x ∈ I0). Moreover, b1n is bounded
(otherwise the combinatorics is close to the Chebyshev one and we would already
have inf |I1(fn)| = 0). Notice that if 0 < bin < pn, fpnn (∂Tpn−bin) is the orientation
reversing fixed point of fn. Hence fpnn has at least 2i−1 critical points in Tpn−bin(fn)
(counted with multiplicity).

We may assume that the intervals Λn(Tpn−bin) converge to intervals Di for each i.
Clearly ∪Di is a bounded interval. By Lemma A.11, f∞ has an analytic extension
to ∪Di, and restricted to each Di it has at least 2i−1 critical points. So f∞ cannot
extend beyond ∪Di. �
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