THE FULL RENORMALIZATION HORSESHOE FOR UNIMODAL MAPS OF HIGHER DEGREE:

EXPONENTIAL CONTRACTION ALONG HYBRID CLASSES

ARTUR AVILA AND MIKHAIL LYUBICH

Abstract

We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps (with arbitrary combinatorics), in any even degree d. We then conclude that orbits of renormalization are asymptotic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a precompactness property of the renormalization operator ("beau bounds"), which is leveraged in the abstract analysis of holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous restricted proofs.

Contents

1. Introduction 1
2. Hybrid classes, external maps, and renormalization 5
3. Path holomorphic spaces, the Carathéodory metric and the Schwarz Lemma 17
4. Hybrid leaves as Carathéodory hyperbolic spaces 19
5. From beau bounds to exponential contraction 22
6. From beau bounds for real maps to uniform contraction 23
7. Triviality of retractions 26
8. Almost periodicity and retractions 29
9. Horseshoe 32
Appendix A. Analytic continuation of the first renormalization 35
References 43

1. Introduction

1.1. Renormalization Conjecture and Regular or Stochastic Theorem. The Renormalization Conjecture formulated in mid 1970's by Feigenbaum [F] and independently by Coullet and Tresser [TC] has been a focus of research ever since. Roughly speaking, it says that a certain "renormalization map" is hyperbolic in an appropriate infinite-dimensional functional space. It explains remarkable universality properties on various families of dynamical systems (see [Cv] for a collection of early papers on the subject). More recently, it has played a central role in the measure-theoretical analysis of one-dimensional dynamical systems, particularly in

[^0]the proofs of the Regular or Stochastic Dichotomy in the real quadratic family [L4] and more general spaces of quasiquadratic unimodal maps [ALM].

Here we will consider the renormalization operator R in the space $\mathcal{C}_{d}^{\mathbb{R}}$ of real unicritical polynomial-like maps of an arbitrary even degree $d \geq 2$. Hyperbolicity of R was proven for bounded combinatorics by Sullivan, McMullen and one of the authors in [S, McM1, L3], and then for all combinatorics in the quadratic case [L4]. Our goal is to generalize the latter result to an arbitrary even degree d.

In this paper we will prove that the renormalization operator R has an invariant horseshoe \mathcal{A} and is exponentially contracting on the corresponding hybrid lamination. In the forthcoming paper we will deal with the transverse unstable direction. Together with the previous analysis of non-renormalizable unimodal maps [ALS], this will prove the Regular or Stochastic Dichotomy in any unicritical family $p_{c}: x \mapsto x^{d}+c\left(d \geq 2\right.$ even): For almost any real c (for which p_{c} has an invariant interval), the map p_{c} is either regular (i.e., it has an attracting cycle) or stochastic (i.e., it has an absolutely continuous invariant measure).

Besides supplying a more general version of the Renormalization Theorem, our goal is to address the issue of exponential contraction along hybrid leaves in a novel unified way, which does not involve fine geometric considerations (highly dependent on the combinatorics and degree). Our approach simplifies the previously known proofs in the quadratic-like case, even for the renormalization with bounded combinatorics. Namely, we will derive the desired result from the previously known beau bounds for real maps $[\mathrm{S}, \mathrm{LvS}, \mathrm{LY}]$, and basic facts of functional analysis and topology.
1.2. Statement of the result. Let us now formulate our main result more precisely. To this end we need a few basic definitions that we now outline; a more detailed background will be supplied in the main body of the paper.

A unicritical polynomial-like map of degree d is a degree d branched covering $f: U \rightarrow V$ between two topological disks $U \Subset V$ that has a single critical point. We normalize f so that $f(z)=z^{d}+c+O\left(z^{d+1}\right)$ at the origin. ${ }^{1}$

The (filled) Julia set $K(f)$ is the set of non-escaping points. It is either connected or a Cantor set depending on whether $0 \in K(f)$ or not. If f is a polynomiallike map with connected Julia set then the corresponding polynomial-like germ is defined as the class of polynomial-like maps \tilde{f} with the same Julia set and such that $\tilde{f}|K(f)=f| K(f)$.

Let $\mathcal{C}=\mathcal{C}_{d}$ stand for the space of normalized polynomial-like germs of degree d with connected Julia set. It intersects the polynomial family $p_{c}: z \mapsto z^{d}+c, c \in \mathbb{C}$, by the Multibrot set $\mathcal{M}=\mathcal{M}_{d}$ (defined as the set of c for which the Julia set $K\left(p_{c}\right)$ is connected).

Two polynomial-like germs are called hybrid equivalent if they have representatives $f: U \rightarrow V$ and $\tilde{f}: \tilde{U} \rightarrow \tilde{V}$ that are conjugate by a quasiconformal homeomorphism $h: V \rightarrow \tilde{V}$ such that $\bar{\partial} h=0$ almost everywhere on $K(f)$. The corresponding equivalence classes are called hybrid classes. According to the Douady-Hubbard Straightening Theorem $[\mathrm{DH}]$, any hybrid class in \mathcal{C} intersects the Multibrot set \mathcal{M} by an orbit of the rotation group $\mathbb{Z} /(d-1) \mathbb{Z}$.

[^1]A unicritical polynomial-like germ f is called renormalizable if there is a disk $\Omega \ni 0$ and a $p \geq 2$ such that the map $f^{p} \mid \Omega$ is unicritical polynomial-like with connected Julia set (subject of a a few extra technical requirements - see §2.10). Appropriately normalizing this polynomial-like germ, we obtain the renormalization of f. If p is the smallest period for which f is renormalizable, then the corresponding renormalization is denoted $R f$.

We can now naturally define infinitely renormalizable polynomial-like germs. Let $\mathcal{I}^{\mathbb{R}}$ stand for the space of real infinitely renormalizable polynomial-like germs (that is, the germs preserving the real line), and let $\mathcal{I}^{(\mathbb{R})}$ stand for the space of polynomiallike germs that are hybrid equivalent to the real ones. The renormalization operator R naturally acts in both spaces preserving the hybrid partition. In what follows, this partition will serve as the stable lamination:
Main Theorem. There is an R-invariant precompact set $\mathcal{A} \subset \mathcal{I}^{\mathbb{R}}$ (the renormalization horseshoe) such that $R \mid \mathcal{A}$ is topologically conjugate to the two-sided shift in infinitely many symbols, and any germ $f \in \mathcal{I}^{(\mathbb{R})}$ is attracted to some orbit of \mathcal{A} at a uniformly exponential rate, in a suitable "Carathéodory metric".

See Theorem 9.2 for a slightly more detailed formulation.
Remark 1.1. Our approach to exponential contraction also applies to certain nonreal renormalization combinatorics (for which the appropriate beau bounds have been established, see [K], [KL1], [KL2]). See Theorem 5.1.
1.3. Outline of the proof. We start with the argument for exponential contraction along hybrid classes. To fix ideas, let us consider first the case of a fixed hybrid leaf \mathcal{H}_{c} (the connected component of the hybrid class of p_{c}) so that every time we iterate the same renormalization operator R.

Hybrid lamination. In $\S 4$ we endow hybrid leaves with a path holomorphic structure and show that all of them are bi-holomorphically equivalent. The path holomorphic structure endows these spaces with Carathéodory pseudo-metrics and we prove that they are Carathéodory hyperbolic, i.e., these pseudo-metrics are, in fact, metrics.

The Schwarz Lemma. The renormalization operator, as a map from one hybrid leaf to another, is holomorphic with respect to their path holomorphic structure. This puts us in a position to apply the Schwarz Lemma to the analysis of its iterates: its weak form (see §3) already implies that renormalization is weakly contracting with respect to the Carathéodory metric.

Beau bounds in \mathcal{H}_{c} mean by definition that there exists a compact set $\mathcal{K} \subset \mathcal{C}$ such that for every $f \in \mathcal{H}_{c}, R^{n} f \in \mathcal{K}$ for any n sufficiently large (depending only on the quality of the analytic extension of f), see $\S 5$.

For real maps with stationary combinatorics, beau bounds were proved by Sullivan (see [S, MvS]) in early 1990's, for complex maps with primitive stationary combinatorics, they have been recently established by Kahn $[\mathrm{K}]$. (Note that this result covers all real stationary combinatorics except the period doubling.) Exponential contraction can be easily concluded from beau bounds through the entire complex hybrid leaf \mathcal{H}_{c} :

The Strong Schwarz Lemma shows that holomorphic endomorphisms are strongly contracting with respect to the Carathéodory metric, provided the image is "small"
in the range, in the sense that the diameter is less than $1,{ }^{2}$ see $\S 3$. Beau bounds imply that for any compact set $\mathcal{Q} \subset \mathcal{H}_{c}$ there exists N such that $R^{n}(\mathcal{Q})$ contained in the (universal) compact set \mathcal{K} for $n \geq N$. By selecting $\mathcal{Q} \supset \mathcal{K}$ sufficiently large, we fulfill the smallness condition of \mathcal{K} inside \mathcal{Q}, and can conclude that $R^{N} \mid \mathcal{Q}$ is strongly contracting (§5).

We will now give a different argument for stationary real combinatorics that relies only on the beau bounds for real maps. It makes use of one general idea of functional analysis:

Almost periodicity. The beau bounds for real maps (and even just for real polynomials) imply that the cyclic semigroup $\left\{R^{n}\right\}_{n=0}^{\infty}$ is precompact in the topology of uniform convergence on compact sets of \mathcal{H}_{c}. (Such semigroups are called almost periodic, see [Lju1, Lju2].) Then the ω-limit set of this semigroup is a group. Its unit element is a retraction $P: \mathcal{H}_{c} \rightarrow \mathcal{Z}=\operatorname{Fix} P$.
Remark 1.2. More directly, the precompactness of $\left\{R^{n}\right\}$ allows us to find nearby iterates R^{n} and R^{m} with $m>2 n$. It follows that R^{n-m} is close to the identity in $\operatorname{Im} R^{n} \supset \operatorname{Im} R^{n-m}$. Taking limits we get a map P which is exactly the identity in $\operatorname{Im} P$, so that P is a retraction.

Let $P^{\mathbb{R}}: \mathcal{H}_{c}^{\mathbb{R}} \rightarrow \mathcal{Z}^{\mathbb{R}}$ be the restriction of P to the real slice.
Topological argument and analytic continuation) (§7). The beau bounds for real maps imply that the real slice $\mathcal{Z}^{\mathbb{R}}$ is compact. By the Implicit Function Theorem, $\mathcal{Z}^{\mathbb{R}}$ is a finite-dimensional manifold. But one can show that the space $\mathcal{H}_{c}^{\mathbb{R}}$ is contractible (see Lemma 2.1 and Theorem 2.2), and hence the retract $\mathcal{Z}^{\mathbb{R}}$ is contractible as well. But the only contractible compact finite dimensional manifold (without boundary) is a single point. So, $P^{\mathbb{R}}$ collapses the real slice $\mathcal{H}_{c}^{\mathbb{R}}$ to a single point f_{*}. Since P is holomorphic, it collapses the whole space \mathcal{H}_{c} to f_{*} as well.

Since P is constant it follows that $R^{n} \rightarrow P$ uniformly on compact subsets of \mathcal{H}_{c}, and we can conclude exponential contraction through the strong Schwarz Lemma as before.

This completes the argument for the case of stationary combinatorics.
Unbounded combinatorics. Beau bounds for arbitrary real maps were established in $[\mathrm{LvS}, \mathrm{LY}]$. For complex maps, they have been recently established for a fairly big class of combinatorics in [KL1, KL2] (see also [L2] for earlier results). Our first argument that uses the beau bounds for complex maps extends to the unbounded combinatorics case in a straightforward way, using the leafwise Carathéodory metric on the hybrid lamination ($\S 5$). The second argument based on almost periodicity requires an extension of this idea from semigroups to cocycles (or grupoids). This is carried out in §8.1.

Horseshoe. Once contraction is proved, the horseshoe is constructed in the familiar way (see [L4]) using rigidity of real maps [L2, GS, KSS]. It is automatically semi-conjugate to the full shift. A further argument based on the analysis of the analytic continuation of anti-renormalizable maps (which becomes substantially more involved in the higher degree case, see Appendix A) yields the full topological conjugacy.

[^2]1.4. Comparison with earlier approaches. In the case of stationary combinatorics, two approaches were previously used to construct the fixed point f_{*} and to prove convergence to f_{*} in the hybrid class $\mathcal{H}\left(f_{*}\right)$. The first one, due to Sullivan, is based on ideas of Teichmüller theory (see [S, MvS]); the other one, due to McMullen, is based on a geometric theory of towers and their quasiconformal rigidity [McM2].

The Teichmüller approach, albeit beautiful and natural, faces a number of subtle technical issues. Also, it does not seem to lead to the exponential contraction. ${ }^{3}$ The geometric tower approach can be carried all the way to prove exponential contraction [McM2]. On the other hand, in [L3], exponential contraction was obtained by combining towers rigidity (as a source of contraction, but without the rate) with the Schwarz Lemma in Banach spaces.

Both approaches generalize without problem to the bounded combinatorics case. The tower approach can be carried further to "essentially bounded" combinatorics [Hi]. The remaining "high" combinatorics case (as well as the oscillating situation) was handled in [L4] using the geometric property of growth of moduli in the Principal Nest of the Yoccoz puzzle [L2]. This is a powerful geometric property which is valid only in the quadratic case. So, this method is not sufficient in the higher degree case (at least, it would require further non-trivial geometric analysis).

The approaches developed in this paper use much softer geometric input (only beau bounds) and treat all the combinatorial cases in a unified way.

Remark 1.3. There are also computer-assisted methods going back to the classical paper by Lanford [La], as well as approaches that do not rely on holomorphic dynamics [E, Ma2]. These methods can be important for dealing with the case of fractionary degree d. The almost periodicity idea can possibly contribute to it, too.
1.5. Basic Notation. $\mathbb{D}=\{z:|z|<1\}$ is the unit disk,
$\mathbb{D}_{r}=\{z:|z|<r\}$ is the disk of radius r,
and $\mathbb{T}=\{z:|z|=1\}$ is the unit circle;
$p_{c}: z \mapsto z^{d}+c$ is the unicritical polynomial family.
We assume the reader's familiarity with the basic theory of quasiconformal ("qc") maps. We let Dil h be the dilatation of a qc map.

Acknowledgements: The first author would like to thank the hospitality of the University of Toronto, the Fields Institute and the Stony Brook University. This research was partially conducted during the period the first author served as a Clay Research Fellow. The second author was partially supported by the NSF and NSERC.

2. HYbRID CLASSES, EXTERNAL MAPS, AND RENORMALIZATION

Theory of polynomial-like maps was laid down in $[\mathrm{DH}]$ and further developed, particularly in the quadratic-like setting, in [McM1, L3]. In this section we will refine the basic theory in the case of unicritical polynomial-like maps of arbitrary degree.

[^3]2.1. Holomorphic motions. Given a domain $D \subset \mathbb{C}$ with a base point λ_{0} and a set $X_{0} \subset \mathbb{C}$, a holomorphic motion of X_{0} over D is a family of injections $h_{\lambda}: X_{0} \rightarrow$ $\mathbb{C}, \lambda \in D$, such that $h_{\lambda_{0}}=$ id and $h_{\lambda}(z)$ is holomorphic in λ for any $z \in X_{0}$. Let $X_{\lambda}=h_{\lambda}\left(X_{0}\right)$.

We will summarize fundamental properties of holomorphic motions which are usually referred to as the λ-lemma. It consists of two parts: extension of the motion and transverse quasiconformality, which will be stated separately.

Extension λ-Lemma [Sl]. A holomorphic motion $h_{\lambda}: X_{0} \rightarrow X_{\lambda}$ of a set $X_{0} \subset \mathbb{C}$ over the disk \mathbb{D} admits an extension to a holomorphic motion $\hat{h}_{\lambda}: \mathbb{C} \rightarrow \mathbb{C}$ of the whole complex plane over \mathbb{D}.

Remark 2.1. We will usually keep the same notation, h_{λ}, for the extended motion.
Quasiconformality λ-Lemma [MSS]. Let $h_{\lambda}: U_{0} \rightarrow U_{\lambda}$ be a holomorphic motion of a domain $U_{0} \subset \mathbb{C}$ over the disk \mathbb{D}, based on 0 . Then over any smaller disk $\mathbb{D}_{r}, r<1$, all the maps h_{λ} are $K(r)$-qc, where $K(r)=\frac{1+r}{1-r}$.
2.2. Polynomial-like maps and germs. A polynomial-like map ("p-l map") of degree $d \geq 2$ is a holomorphic branched covering $f: U \rightarrow V$ of degree d between quasidisks $U \Subset V$. Its filled Julia set is $K(f)=\cap_{n \geq 0} f^{-n}(U)$, and the Julia set is $J(f)=\partial K(f)$. In what follows, the letter d will be reserved for the degree of f.

A p-l map is called unicritical if it has a unique critical point (of local degree $d)$. We will normalize unicritical polynomial-like maps so that $0 \in U$ is the critical point and $f(z)=z^{d}+c+O\left(z^{d+1}\right)$ near 0 . In what follows, polynomial-like maps under consideration will be assumed unicritical. The annulus $V \backslash U$ is called the fundamental annulus of a p-l map $f: U \rightarrow V$ (the corresponding open and closed annuli, $V \backslash \bar{U}$ and $\bar{V} \backslash U$ will also be called "fundamental").

Basic examples of p-l maps are provided by appropriate restrictions of unicritical polynomials $p_{c}: z \mapsto z^{d}+c$, e.g., $p_{c}: \mathbb{D}_{r} \rightarrow p_{c}\left(\mathbb{D}_{r}\right)$ for $r>1+|c|$.

The Basic Dichotomy asserts that the (filled) Julia set of f is either connected or a Cantor set, and the former happens iff $0 \in K(f)$.

Given a polynomial-like map f with connected Julia set, the corresponding polynomial-like germ is an equivalence class of polynomial-like maps \tilde{f} such that $K(f)=K(\tilde{f})$ and $f=\tilde{f}$ in a neighborhood of 0 (hence, by analytic continuation, also in a neighborhood of $K(f)$). We will not make notational distinction between polynomial-like maps and the corresponding germs. Let

$$
\bmod f=\sup \bmod (V \backslash U)
$$

where the supremum is taken over all p-l representatives $U \rightarrow V$ of f.
We let $\mathcal{C}=\mathcal{C}_{d}$ be the set of all polynomial-like germs with connected Julia set.
A unicritical polynomial $p_{c}: z \mapsto z^{d}+c$ defines an element of \mathcal{C} if and only if c belongs to the Multibrot set $\mathcal{M}=\left\{c \in \mathbb{C}: \sup \left|p_{c}^{n}(0)\right|<\infty\right\}$. Those are the only (normalized) germs with infinite modulus.

We will use superscript \mathbb{R} for the real slice of a certain space. For instance $\mathcal{C}^{\mathbb{R}}$ stands for germs of real polynomial-like maps $f: U \rightarrow U^{\prime}$ (with connected Julia set), i.e., such that f preserves the real line and domains U, U^{\prime} are \mathbb{R}-symmetric.
2.3. Topology. For a quasidisk $U \subset \mathbb{C}$, let \mathcal{B}_{U} stand for the Banach space of functions holomorphic in U and continuous in \bar{U}. The norm in this space will be denoted by $\|\cdot\|$. Let $\mathcal{B}_{U}(f, \epsilon)$ stand for the Banach ball in \mathcal{B}_{U} centered at f of radius ϵ.

We introduce a topology in \mathcal{C} as follows. We say that $f_{n} \rightarrow f$ if there exists a quasidisk neighborhood W of $K(f)$ such that (some representatives of) the germs f_{n} are defined on \bar{W} for sufficiently large n, and f_{n} converges to (an appropriate restriction of a representative of) f in the Banach space \mathcal{B}_{W}. The topology in \mathcal{C} is defined by declaring its closed sets to be the ones which are sequentially closed. It is easy to see that $K(f)$ depends upper semi-continuously (in the Hausdorff topology) on $f \in \mathcal{C}$, while its boundary $J(f)$ depends lower semi-continuously.

We let $\mathcal{C}(\epsilon)$ be the set of all $f \in \mathcal{C}$ with $\bmod (f) \geq \epsilon$. Then $\mathcal{C}(\epsilon)$ is compact, and any compact subset \mathcal{K} of \mathcal{C} is contained in some $\mathcal{C}(\epsilon)$ (see [McM1]).
2.4. Hybrid classes. Notice that the Multibrot set \mathcal{M} has rotational symmetry of order $d-1$ coming from the fact that polynomials p_{c} and $p_{\varepsilon c}$ are affinely equivalent for $\varepsilon=e^{2 \pi i /(d-1)}$. In fact, the moduli space of unicritical polynomials of degree d (that is, the space of these polynomial moduli affine conjugacy) is the orbifold $\mathbb{C} /<\varepsilon>$ with order $d-1$ cone point at the origin.

We say that two polynomial-like germs $f, g \in \mathcal{C}$ are hybrid equivalent if there exists a quasiconformal map $h: \mathbb{C} \rightarrow \mathbb{C}$, such that $h \circ f=g \circ h$ in a neighborhood of $K(f)$ (for any representatives of f and g), and $\bar{\partial} h=0$ on $K(f)$. We call h a hybrid conjugacy between f and g.

By the Douady-Hubbard Straightening Theorem, every $f \in \mathcal{C}$ is hybrid conjugate to some p_{c} with $c \in \mathcal{M}$. However, in the higher degree case $(d>2) c$ may not be uniquely defined. Indeed, polynomials p_{c} and $p_{\varepsilon c}$ are affinely equivalent, so they belong to the same hybrid class. Vice versa, one can show that hybrid equivalent polynomials p_{b} and p_{c} are affinely equivalent, so $b=\varepsilon^{k} c$ for some $k \in \mathbb{Z} /(d-1) \mathbb{Z}$. We will see later how to define a single polynomial straightening associated to each germ (the resolution of the apparent ambiguity involves global considerations).

We let $\tilde{\mathcal{H}}_{c}$ be the hybrid class containing p_{c}.
2.4.1. Beltrami paths. A path $f_{\lambda} \in \mathcal{C}, \lambda \in \mathbb{D}$, is called a Beltrami path if there exists a holomorphic motion $h_{\lambda}: \mathbb{C} \rightarrow \mathbb{C}$ over \mathbb{D}, based on 0 , such that h_{λ} near $K\left(f_{0}\right)$ provides a hybrid conjugacy between f_{0} and $f_{\lambda} .{ }^{4}$ In this case, the pair $\left(f_{\lambda}, h_{\lambda}\right)$ is called a guided Beltrami path. The guided Beltrami paths with a fixed initial point f_{0}, are in one-to-one correspondence with holomorphic families of Beltrami differentials $\mu_{\lambda}=\bar{\partial} h_{\lambda} / \partial h_{\lambda}$ on \mathbb{C} such that $\mu_{0} \equiv 0$, and the differentials μ_{λ} vanish a.e. on $K\left(f_{0}\right)$ and are f_{0}-invariant near $K\left(f_{0}\right)$. So, in what follows our treatment of Beltrami paths will freely switch from one point of view to the other.

Obviously any Beltrami path lies entirely in a path connected component of an hybrid class.
2.4.2. Hybrid leaves. Given maps $f_{0}, f \in \tilde{\mathcal{H}}_{c}$, let us consider a hybrid conjugacy $h: \mathbb{C} \rightarrow \mathbb{C}$ between them. Let μ be the Beltrami differential of h with L^{∞}-norm $\kappa=\|\mu\|_{\infty}<1$. The family of Beltrami differentials $\lambda \mu,|\lambda|<1 / \kappa$, generates a guided Beltrami path $\left(f_{\lambda}, h_{\lambda}\right)$ in $\tilde{\mathcal{H}}_{c}$, with f_{1} affinely conjugate to f. In particular each map in \mathcal{C} can be connected to one of its straightenings by a Beltrami path.

[^4]Let \mathcal{H}_{c} be the path connected component of $\tilde{\mathcal{H}}_{c}$ containing p_{c}. The \mathcal{H}_{c} will be called hybrid leaves. By the previous discussion, $\tilde{\mathcal{H}}_{c}$ is the union of the hybrid leaves $\mathcal{H}_{\varepsilon^{k} c}, k \in \mathbb{Z} /(d-1) \mathbb{Z}$. We will later see that for $c \neq 0$, the hybrid leaves $\mathcal{H}_{\varepsilon^{k} c}$, $k \in \mathbb{Z} /(d-1) \mathbb{Z}$ (which by definition either coincide or are disjoint), are in fact all distinct.
2.5. Expanding circle maps. A real analytic circle map $g: \mathbb{T} \rightarrow \mathbb{T}$ is called expanding if there exists $n \geq 1$ such that $\left|D f^{n}(z)\right|>1$ for every $z \in \mathbb{T}$.

Let $\mathcal{E}=\mathcal{E}_{d}$ be the space of real analytic expanding circle maps $g: \mathbb{T} \rightarrow \mathbb{T}$ of degree d normalized so that $g(1)=1$. Such a map admits a holomorphic extension to a covering $U \rightarrow V$ of degree d, where $U \Subset V$ are annuli neighborhoods of \mathbb{T}. Such extensions will be called annuli representatives of g and will be denoted by the same letter. We define

$$
\bmod (g)=\sup \bmod (V \backslash(U \cup \mathbb{D}))
$$

where the supremum is taken over all annuli representatives $g: U \rightarrow V$.
Lifting a map $g \in \mathcal{E}$ to the universal covering of \mathbb{T}, we obtain a real analytic function $\tilde{g}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\tilde{g}(x)=d x+\phi(x)$ where $\phi(x)$ is a 1-periodic real analytic function with $\phi(0)=0$. Let \mathcal{A} be the space of all such functions, and let \mathcal{A}_{n} be the subspace of the ϕ that admit a holomorphic extension to the strip $|\operatorname{Im} z|<1 / n$ continuous up to the boundary. As the latter spaces are Banach, \mathcal{A} is realized as an inductive limit of Banach spaces, and we can endow it with the inductive limit topology. It induces a topology on the space \mathcal{E}. In this topology, a sequence $g_{n} \in \mathcal{E}$ converges to $g \in \mathcal{E}$ if there is a neighborhood W of \mathbb{T} such that all the g_{n} admit a holomorphic extension to W, and $g_{n} \rightarrow g$ uniformly on W.

Let $\mathcal{E}^{\mathbb{R}}$ stand for the subspace of \mathbb{R}-symmetric expanding circle maps $g: \mathbb{T} \rightarrow \mathbb{T}$ (i.e., commuting with the complex conjugacy $z \mapsto \bar{z}$).

Lemma 2.1. The spaces \mathcal{E} and $\mathcal{E}^{\mathbb{R}}$ are contractible.
Proof. Let us work with the lifts $g: \mathbb{R} \rightarrow \mathbb{R}$ of the maps $g \in \mathcal{E}$ without making a notational difference between them. Let \mathcal{E}_{1} stand for the set of $g \in \mathcal{E}$ such that $|D g|>1$ through \mathbb{R}. This is a convex functional space, so it can be contracted to a point through the affine homotopy.

The space \mathcal{E}_{1} contains the set \mathcal{E}_{*} of maps $g \in \mathcal{E}$ preserving the Lebesgue measure, so \mathcal{E}_{*} can be contracted through \mathcal{E}_{1}.

To deal with the whole \mathcal{E}, let us make use of the fact that any $g \in \mathcal{E}$ has an absolutely continuous invariant measure $d \mu=\rho d \theta$ with real analytic density $\rho(\theta)>0$. Let us consider a real analytic circle diffeomorphism

$$
h(t)=\int_{0}^{t} \rho(\theta) d \theta
$$

such that $h_{*}(d \mu)=d \theta$. Then the map $G=h \circ g \circ h^{-1}$ preserves the Lebesgue measure, so $G \in \mathcal{E}_{*}$. So, we obtain a projection $\pi: \mathcal{E} \rightarrow \mathcal{E}_{*}, g \mapsto G$.

But the space \mathcal{F} of diffeomorphisms h is identified with the space of densities ρ, which is also convex, and hence contractible. It follows that \mathcal{E}_{*} is a deformation retract for \mathcal{E}, and the conclusion follows.

In case of $\mathcal{E}^{\mathbb{R}}$, just notice that all the above homotopies can be made equivariant (with respect to the complex conjugacy).
2.6. External map, mating and product structure. Given $f \in \mathcal{C}$, let ψ : $\mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K(f)$ be the Riemann mapping. The map $g=\psi^{-1} \circ f \circ \psi$ induces (by the Schwarz reflection) an expanding circle endomorphism of degree d called the external map of f. It is unique up to conjugacy by a circle rotation, so it can be normalized so that $g \in \mathcal{E}$. For $d=2$, this normalization is unique, but in the higher degree case, there are generally $d-1$ ways of normalizing g. Irrespective of this issue, it is clear that the quality of the analytic extensions of the germ and of its external map are related by $\bmod (f)=\bmod (g)$.
Remark 2.2. Maps with symmetries have fewer normalizations, e.g., $z \mapsto z^{d}$ has the maximal possible symmetry group $\mathbb{Z} /(d-1) \mathbb{Z}$ and hence has a unique normalization. Note that this is the external map of any polynomial $p_{c}, c \in \mathcal{M}$.

Left inverses to the external map construction are provided by the matings between polynomials $p_{c}, c \in \mathcal{M}$, and expanding maps $g \in \mathcal{E}$. It goes as follows. Choose a quasiconformal homeomorphism $h: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K\left(p_{c}\right)$ such $h \circ g=p_{c} \circ h$ near the circle. Consider the Beltrami differential μ equal to $\bar{\partial} h^{-1} / \partial h^{-1}$ on $\mathbb{C} \backslash K\left(p_{c}\right)$ and vanishing on $K\left(p_{c}\right)$. It is invariant under p_{c} on some Jordan disk D containing $K(f)$. Let $\phi: \mathbb{C} \rightarrow \mathbb{C}$ be the solution of the Beltrami equation $\bar{\partial} \phi / \partial \phi=\mu$. Then the map $f=\phi \circ p_{c} \circ \phi^{-1}$ is polynomial-like on some neighborhood of $\phi\left(K\left(p_{c}\right)\right)$, with filled in Julia set $\phi\left(K\left(p_{c}\right)\right)$, so up to normalization, it defines a germ in \mathcal{C}.

It is possible to show that, except for the normalization, the germ f does not depend on the various choices made in the construction, and it clearly depends continuously on $g \in \mathcal{E}$ and $c \in \mathcal{M}$. In $\S 2.7$ we will carry out formally the details of the construction, to obtain the following result:

Theorem 2.2. There is a canonical choice of the straightening $\chi(f) \in \mathcal{M}$ and an external map $\pi(f) \in \mathcal{E}$ associated to each germ $f \in \mathcal{C}$ and depending continuously on f. It has the following properties:
(1) For each $c \in \mathcal{M}$, the hybrid leaf \mathcal{H}_{c} is the fiber $\chi^{-1}(c)$, and the external map π restricts to a homeomorphism $\mathcal{H}_{c} \rightarrow \mathcal{E}$, whose inverse is denoted by i_{c} and called the (canonical) mating,
(2) $(\pi, \chi): \mathcal{C} \rightarrow \mathcal{E} \times \mathcal{M}$ is a homeomorphism,
(3) (Compatibility between matings and Beltrami paths) For $c, c^{\prime} \in \mathcal{M}$, if f_{λ} is a Beltrami path in \mathcal{H}_{c} then $i_{c^{\prime}} \circ i_{c}^{-1}\left(f_{\lambda}\right)$ is a Beltrami path in $\mathcal{H}_{c^{\prime}}$.
(4) External map, straightening and mating are equivariant with respect to complex conjugation.

Except for the need to introduce some novelties to handle $\mathbb{Z} /(d-1) \mathbb{Z}$-ambiguities, the argument follows the quadratic case [L3].

One way to understand cancellation of these ambiguities (that show up in both the external map and the mating constructions) is to introduce markings. Each germ $f \in \mathcal{C}$ has $d-1$ distinct β-fixed points, which do not disconnect $K(f)$, and a marking of f is just a choice of a preferred β-fixed point. The external map of a marked germ inherits a marking as well, that is one of its fixed points is distinguished. Reciprocally, mating a marked expanding map with a marked polynomial leads to a well defined marked polynomial-like germ. Marking also allows us to resolve the ambiguities inherent to the straightening, since the straightening of a marked germ is a marked polynomial.

Both expanding maps and polynomials have "natural markings", for expanding maps we choose 1 as the preferred fixed point, and for polynomials we choose the landing point of the external ray of angle 0 . As it turns out, the natural marking of polynomials can be extended continuously, in a unique way, through the entire \mathcal{C} (this global property is related to the simple topology of \mathcal{E}, see Lemma 2.1). Thus, keeping in mind the natural marking, we end up with natural external map, mating, and straightening constructions. By design, the mating construction provides an inverse to the external map and straightening constructions, so that the connectedness locus \mathcal{C} inherits a product structure from $\mathcal{E} \times \mathcal{M}$.

We will discuss markings in more details later in $\S 2.8$ (as they are not formally needed for the proof of Theorem 2.2).

The reader who is mostly interested in the quadratic case can skip the next two sections.
2.7. Proof of Theorem 2.2. For $c \in \mathcal{M}$, let $\xi_{c}: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K\left(p_{c}\right)$ be the univalent map tangent to the identity at ∞ : it satisfies $\xi_{c} \circ p_{0}=p_{c} \circ \xi_{c}$ on the complement of $K\left(p_{0}\right)=\overline{\mathbb{D}}$.

Define the canonical mating $i_{c}(g) \in \mathcal{H}_{c}$ between any polynomial $p_{c}, c \in \mathcal{M}$, and any expanding map $g \in \mathcal{E}$ as follows. Choose a continuous path $g_{t}, t \in[0,1]$ connecting $g_{0}: z \mapsto z^{d}$ to $g_{1}=g$, and a continuous family of quasiconformal maps $h_{t}: \mathbb{C} \backslash \mathbb{D} \rightarrow \mathbb{C} \backslash \mathbb{D}$, with continuously depending Beltrami differentials ν_{t}, satisfying $h_{0}=\mathrm{id}$ and $h_{t} \circ g_{0}=g_{t} \circ h_{t}$ near the circle $\mathbb{T} .{ }^{5}$ Let μ_{t} be the extension of the Beltrami differential of $h_{t} \circ \xi_{c}^{-1}$ to the whole complex plane, obtained by letting it be 0 on $K\left(p_{c}\right)$. It is invariant under p_{c} in a neighborhood of $K\left(p_{c}\right)$. Let $\phi_{t}: \mathbb{C} \rightarrow \mathbb{C}$ be the solution of the Beltrami equation $\bar{\partial} \phi_{t} / \partial \phi_{t}=\mu_{t}$. By invariance of $\mu_{t}, f_{t}=\phi_{t} \circ p_{c} \circ \phi_{t}^{-1}$ is holomorphic in a neighborhood of $K\left(f_{t}\right)=\phi_{t}\left(K\left(p_{c}\right)\right)$, and if ϕ_{t} is appropriately normalized it defines a germ in $\tilde{\mathcal{H}}_{c}$. We choose the normalization so that ϕ_{t} depends continuously on t and $\phi_{0}=\mathrm{id}$.

Let us check that g_{t} is an external map of f_{t} for every $t \in[0,1]$. Let ψ_{t} : $\mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K\left(f_{t}\right)$ be the continuous family of univalent maps normalized so that $\psi_{0}=\xi_{c}$, and $\tilde{g}_{t}:=\psi_{t}^{-1} \circ f_{t} \circ \psi_{t}$ (which extends analytically across the circle by the Schwarz reflection) fixes 1 , hence \tilde{g}_{t} is an external map of f_{t}. Then $\sigma_{t}:=$ $\psi_{t}^{-1} \circ \phi_{t} \circ \xi_{c}: \mathbb{C} \backslash \mathbb{D} \rightarrow \mathbb{C} \backslash \mathbb{D}$ is a quasiconformal map conjugating g_{0} to \tilde{g}_{t} whose Beltrami differential coincides with that of h_{t}. Hence $\lambda_{t}:=\sigma_{t} \circ h_{t}^{-1}$ is a rotation conjugating g_{t} to \tilde{g}_{t}. Since 1 is a fixed point of $g_{t}, \lambda_{t}(1)$ is one of the fixed points of \tilde{g}_{t} for any $t \in[0,1]$. But $\lambda_{0}=\mathrm{id}$, so by continuity, $\lambda_{t}(1)=1$ (which is one of the fixed points of \tilde{g}_{t}) for all $t \in[0,1]$. We conclude that $\lambda_{t}=$ id and hence $g_{t}=\tilde{g}_{t}$ for every t.

Next, we will show that the germ $f=f_{1}$ depends only on c and g, but not on the various choices we have made, which would allow us to define the mating by $i_{c}(g)=f$. Let us first show that once the connecting path g_{t} is chosen, the path f_{t} does not depend on the choice of the conjugacies h_{t}. Indeed, let h_{t}^{\prime} be another choice, with the Beltrami differential ν_{t}^{\prime}, so that the map $\rho_{t}:=h_{t}^{-1} \circ h_{t}^{\prime}$ commutes

[^5]with g_{0} near \mathbb{T}. Then the map $\zeta_{t}:=\xi_{c} \circ \rho_{t} \circ \xi_{c}^{-1}$ commutes with p_{c} near $K\left(p_{c}\right)$ (outside it). Let us extend ζ_{t} to the entire plane by setting $\zeta_{t} \mid K\left(p_{c}\right)=\mathrm{id}$.

Lemma 2.3. The map ζ_{t} is a quasiconformal homeomorphism.
Proof. This is a version of the pullback argument, see e.g., [MvS], Chapter 6, Section 4. Choose a quasidisk $V \supset K\left(p_{c}\right)$ such that $U=p_{c}^{-1}(V) \Subset V$ and $\zeta_{t} \circ p_{c}=p_{c} \circ \zeta_{t}$ on U. Consider a continuous family of quasiconformal maps $\zeta_{t}^{(0)}: \mathbb{C} \rightarrow \mathbb{C}$, such that $\zeta_{0}^{(0)}=\zeta_{0}=\mathrm{id}, \zeta_{t}^{(0)}=\zeta_{t}$ outside U, and $\zeta_{t}=$ id near $K\left(p_{c}\right)$. We can then set by induction $\zeta_{t}^{(k+1)}$ as the unique lift (under p_{c}) of $\zeta_{t}^{(k)}$ such that $\zeta_{t}^{(k+1)}=\mathrm{id}$ near $K\left(p_{c}\right)$. Clearly $\zeta_{0}^{(k)}=\mathrm{id}$, and by continuity in t, we see that $\zeta_{t}^{(k)}=\zeta_{t}$ outside $p_{c}^{-k}(U)$ for every k. Hence $\zeta_{t}^{(k)} \rightarrow \zeta_{t}$ pointwise. Since the dilatations of the $\zeta_{t}^{(k)}$ do not depend on k, they form a precompact family of quasiconformal maps. It follows that the limit map ζ_{t} is quasiconformal.

Remark 2.3. By the Bers Lemma (see [DH], Lemma 2, p. 303), in order to show that ζ_{t} is quasiconformal, it is enough to check its continuity, i.e., that the points $z \in \mathbb{C} \backslash K\left(p_{c}\right)$ near $K\left(p_{c}\right)$ are not moved much by ζ_{t}. This can be verified directly by an a hyperbolic contraction argument (using that ζ_{t} commutes with p_{c}): in fact, the hyperbolic distance (in the complement of $K\left(p_{c}\right)$) between z and $\zeta_{t}(z)$ remains bounded as z approaches $K\left(p_{c}\right)$, see (see [DH], Lemma 1, p. 302).

We let $\mu_{t}^{\prime}=\left(\xi_{c}\right)_{*} \nu_{t}^{\prime}$ outside $K\left(p_{c}\right)$ and $\mu_{t}^{\prime} \equiv 0$ on $K\left(p_{c}\right)$. Since $\nu_{t}^{\prime}=\left(\rho_{t}\right)_{*} \nu_{t}$, we have: $\mu_{t}^{\prime}=\left(\zeta_{t}\right)_{*} \mu_{t}$ (outside $K\left(p_{c}\right)$ and, obviously, on it). Hence μ_{t}^{\prime} is the Beltrami differential for $\phi_{t}^{\prime}:=\phi_{t} \circ \zeta_{t}$. It follows that the map $f_{t}^{\prime}:=\phi_{t}^{\prime} \circ p_{c} \circ\left(\phi_{t}^{\prime}\right)^{-1}$ is the mating of p_{c} and g_{t} corresponding to the conjugacy h_{t}^{\prime}. But since ζ_{t} commuted with p_{c} near $K\left(p_{c}\right)$, we conclude that $f_{t}^{\prime}=f_{t}$ near $K\left(f_{t}\right)$, as was asserted.

Let us now show that the endpoint $f=f_{1}$ does not depend on the choice of the path g_{t} connecting g_{0} and g. Since \mathcal{E} is simply connected, given another connecting path g_{t}^{\prime}, we can fix an homotopy (fixing endpoints) g_{t}^{s} with $g_{t}^{0}=g_{t}$ and $g_{t}^{1}=g_{t}^{\prime}$. The mating construction then provides germs $f_{t}^{s} \in \mathcal{C}$, and it also allows us to choose hybrid conjugacies ϕ_{t}^{s} between p_{c} and f_{t}^{s} depending continuously on s and t. By the previous discussion, g is an external map representative of f_{1}^{s} for every s, and in fact there is a continuous family $\psi_{1}^{s}: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K\left(f_{1}^{s}\right)$ of univalent maps conjugating f_{1}^{s} to g. Define $\zeta^{s}: \mathbb{C} \rightarrow \mathbb{C}$ by $\zeta^{s}=\left(\left(\psi_{1}^{s}\right)^{-1} \circ \phi_{1}^{s}\right)^{-1} \circ\left(\left(\psi_{1}^{0}\right)^{-1} \circ \phi_{1}^{0}\right)$ outside $K\left(p_{c}\right)$ and $\zeta^{s}=$ id on $K\left(p_{c}\right)$. Then ζ^{s} commutes with p_{c} in an outer neighborhood of $K\left(p_{c}\right)$, and by the same argument as in Lemma 2.3, we see that ζ^{s} is a global quasiconformal homeomorphism. Hence

$$
\tau^{s}:=\phi_{1}^{s} \circ \zeta^{s} \circ\left(\phi_{0}^{s}\right)^{-1}=\psi_{1}^{s} \circ\left(\psi_{1}^{0}\right)^{-1}
$$

is a hybrid conjugacy between f_{1}^{0} and f_{1}^{s} which is also conformal outside $K\left(f_{1}^{0}\right)$, so it is affine. Moreover, note that 1) τ^{s} is the identity at $s=0$ and 2) the germs f_{1}^{s} are normalized, so for each $s \in[0,1]$, there is $k \in \mathbb{Z} /(d-1) \mathbb{Z}$ such that τ^{s} is tangent to $z \mapsto e^{2 \pi i k /(d-1)} z$ at 0 . We conclude that $\tau^{s}=\operatorname{id}$ for all s. Hence $f_{1}^{s}=f_{1}^{0}$ for all s, and in particular $f_{1}^{1}=f_{1}^{0}$, so the mating $i_{c}(g)=f$ is indeed well defined.

Lemma 2.4. The mating $(g, c) \mapsto i_{c}(g)$ is a homeomorphism $\mathcal{E} \times \mathcal{M} \rightarrow \mathcal{C}$.
Proof. Let us begin with continuity of the mating. It is easy to see that it is continuous in g, uniformly with respect to c. Also, it satisfies $\bmod \left(i_{c}(g)\right)=\bmod (g)$.

So, it is enough to show that for a given $g \in \mathcal{E}$, it is continuous with respect to c. Consider a sequence $c_{n} \rightarrow c \in \mathcal{M}$. Choose a path g_{t} connecting $g_{0}: z \rightarrow z^{d}$ to $g_{1}=g$ in \mathcal{E}. Passing to a subsequence, we may assume that the paths $f_{t, n}=i_{c_{n}}\left(g_{t}\right)$ converge uniformly to a path f_{t}.

Then f_{t} is a path in \mathcal{H}_{c}. Indeed, since the $\bmod \left(f_{t, n}\right)$ are bounded away from 0 , the $f_{t, n}$ are K-qc conjugate to $f_{0, n}$ (with some K independent of t). Compactness of the space of K-qc maps implies that the f_{t} are K-qc conjugate to f_{0}. Let us show that f_{t} is actually hybrid conjugate to $f_{0}=p_{c}$. If this is not the case then p_{c} must be qc conjugate to a unicritical polynomial (any straightening of f_{t}) which is not itself hybrid conjugate to p_{c}, i.e., c is not qc rigid. But this implies that $K\left(p_{c^{\prime}}\right)$ moves holomorphically for c^{\prime} in a neighborhood of $c, K\left(p_{c^{\prime}}\right)=h_{c^{\prime}}\left(K\left(p_{c}\right)\right)$. It follows that the characteristic function of $K\left(p_{c_{n}}\right)$ converges in measure to that of $K\left(p_{c}\right),{ }^{6}$ which readily implies that the limit H of hybrid conjugacies H_{n} between $p_{c_{n}}$ and $f_{t, n}$ must be a hybrid conjugacy between p_{c} and f_{t} (since $\bar{\partial} H_{n} \rightarrow \bar{\partial} H$ weakly in L^{2}).

Let $\psi_{t, n}: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K\left(f_{t, n}\right)$ be as in the above construction of the external map, i.e., it is the continuous family of conformal maps such that $\psi_{t, n}^{-1} \circ f_{t, n} \circ \psi_{t, n}=g_{t}$ and $\psi_{0, n}=\xi_{c_{n}}$. Then $t \mapsto \psi_{t, n}$ is clearly uniformly continuous in t (with respect to the topology of uniform convergence on compact subsets). So we can take a limiting continuous family $\psi_{t}: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K\left(f_{t}\right) .^{7}$ Then $\psi_{t}^{-1} \circ f_{t} \circ \psi_{t}=g_{t}$, and $\psi_{0}=\xi_{c}$, i.e., g_{t} is a path that determines the external map of f_{t}. So $f_{t}=i_{c}\left(g_{t}\right)$ and hence $\lim i_{c_{n}}(g)=\lim f_{1, n}=f_{1}=i_{c}(g)$. This proves continuity.

Let us now show that the mating is bijective. Notice first that each polynomial p_{c} has a single preimage $\left(p_{0}, c\right)$, since it can only be obtained by mating with its single external map representative.

Consider a path f_{t} connecting p_{c} and an arbitrary map f in \mathcal{H}_{c}. Then $f_{t}=$ $i_{c}\left(g_{t}\right)$ where g_{t} is the determination of the external map constructed above. Since $i_{c}^{-1}\left(p_{c}\right)=\left\{p_{0}\right\}$, this path lifting property implies that each $i_{c}: \mathcal{E} \rightarrow \mathcal{H}_{c}$ is a bijection. In particular, $\mathcal{H}_{c}=i_{c}(\mathcal{E})$ contains a single polynomial, $i_{c}\left(p_{0}\right)=p_{c}$, so all hybrid leaves are distinct. Since \mathcal{C} is the union of hybrid leaves, this implies that the mating is bijective.

Since the mating is continuous and bijective, it restricts to a homeomorphism $\mathcal{E}(\epsilon) \times \mathcal{M} \rightarrow \mathcal{C}(\epsilon)$ for each $\epsilon>0$, by compactness, and this implies that the mating is a homeomorphism $\mathcal{E} \times \mathcal{M} \rightarrow \mathcal{C}$.

We obtain the canonical external map π and the canonical straightening χ by setting (π, χ) as the inverse of the mating. All constructions are clearly equivariant with respect to complex conjugation. One also checks directly that $i_{c^{\prime}} \circ i_{c}^{-1}$ takes Beltrami paths in \mathcal{H}_{c} to Beltrami paths in $\mathcal{H}_{c^{\prime}}$.
2.8. Marking. Let us take a polynomial-like map $f: U \rightarrow V$ with connected Julia set. Let $A=\bar{V} \backslash U$ and let $\Gamma=\partial U$. Select an arc $\gamma_{0} \subset A$ connecting a point $a_{-1} \in f(\Gamma)=\partial V$ to one of its preimages, $a_{0} \in \Gamma$. It can be lifted to an arc $\gamma_{1} \subset f^{-1} A$ connecting a point $a_{1} \in f^{-1}(\Gamma)$ to a_{0}. In turn, this curve can be lifted to an arc $\gamma_{-2} \subset f^{-2} A$ connecting some point $a_{2} \in f^{-2}(\Gamma)$ to a_{1}. Continuing this

[^6]way we obtain a sequence of arcs γ_{n} concatenating a curve $\gamma \in \bar{V} \backslash K(f)$ such that $f(\gamma \cap \bar{U})=\gamma$ (we will refer to such a curve as "invariant"). A standard hyperbolic contraction argument shows that this curve can accumulate only at fixed points, and hence lands at some "preferred" fixed point of g. Fixed points that arise in this way are called β-fixed points. A marking of g is a choice of such an invariant curve up to equivariant homotopy. This notion descends to germs, by identifying markings of polynomial-like representatives of g which coincide up to truncation.

If $c \in \mathcal{M}$, we can mark the corresponding germ p_{c} with an invariant external ray of p_{c}. No two invariant external rays can land at the same point, ${ }^{8}$ so those markings are indeed distinct. On the other hand, it is easy to see that any invariant curve is equivariantly homotopic to some invariant external ray. Since such a ray has external argument $k /(d-1)$ with $k \in \mathbb{Z} /(d-1) \mathbb{Z}$, this procedure shows that there are exactly $d-1$ different markings, and that markings are in bijection with the β-fixed points.

Since an hybrid equivalence between polynomial-like maps gives a correspondence between the markings, the bijection between markings and β-fixed points holds through \mathcal{C} as well. The family of β-fixed points depends continuously through $\mathcal{C},{ }^{9}$ so each β-fixed point (or equivalently, each choice of marking) of a germ admits an unique local continuation to every sufficient small connected neighborhood a germ.

Similarly to polynomial-like maps, a circle map $g: U \rightarrow V$ of class \mathcal{E} can be marked by choosing an invariant curve $\gamma \subset V \backslash \mathbb{D}$ up to equivariant homotopy. Such a curve lands at a fixed point of g which depends only on the marking. Vice versa, a fixed point determines the marking, so there are exactly $d-1$ distinct markings of any circle map $g \in \mathcal{E}$.

The marking of $g \in \mathcal{E}$ corresponding to the fixed point 1 is called natural. It provides us with a continuous global marking of the space \mathcal{E}.

Due to the product structure $\mathcal{C} \approx \mathcal{E} \times \mathcal{M}$, the natural marking of \mathcal{E} can be pulled back to a natural marking of \mathcal{C}.
2.9. Control of quasiconformal dilatation. We say that two polynomial-like germs $f, \tilde{f} \in \mathcal{C}$ are (C, ϵ)-close if there exist polynomial-like representatives $f: U \rightarrow$ V and $\tilde{f}: \tilde{U} \rightarrow \tilde{V}$ with $\bmod (V \backslash U)>\epsilon, \bmod (\tilde{V} \backslash \tilde{U})>\epsilon$, and a quasiconformal homeomorphism $h: \mathbb{C} \backslash U \rightarrow \mathbb{C} \backslash \tilde{U}$ respecting the natural marking of f and $f^{\prime 10}$ with $\operatorname{Dil}(h)<C$ such that $h \circ f=\tilde{f} \circ h$ on ∂U. Notice that (C, ϵ)-closeness only depends on the (canonical) external maps $\pi(f)$ and $\pi(\tilde{f})$.

Standard arguments (c.f. the proof of Lemma 2.3) yield:
Lemma 2.5. If f and \tilde{f} are (C, ϵ)-close by means of h and are hybrid equivalent, then h extends, in a unique way, to a hybrid conjugacy between f and \tilde{f} with dilatation bounded by C.

[^7]By compactness one has:
Lemma 2.6. For every $\epsilon_{0}>\epsilon>0$ there exists $C>1$ such that if $f, \tilde{f} \in \mathcal{C}\left(\epsilon_{0}\right)$ then f and \tilde{f} are (C, ϵ)-close.

For nearby germs, the constant C can be taken close to 1 :
Lemma 2.7. Let $f_{n}, \tilde{f}_{n} \in \mathcal{C}$ be converging sequences with the same limit. Then there exists $\epsilon>0$ and $C_{n} \searrow 1$ such that f_{n} and \tilde{f}_{n} are $\left(C_{n}, \epsilon\right)$-close for every n sufficiently large.
Proof. Let $f=\lim f_{n}=\lim \tilde{f}_{n}$. By definition of convergence, there exists a polynomial-like representative $f: U \rightarrow V$ such that f_{n} extends holomorphically to U for every n sufficiently large, $f_{n} \mid U$ converges uniformly to f, and $f_{n} \rightarrow f$ uniformly on U.

Let W be the quasidisk bounded by the equator (i.e., the simple closed hyperbolic geodesic) of $V \backslash \bar{U}$, and let $\Omega:=f^{-1}(W), \Omega_{n}:=f_{n}^{-1}(W)$ and $\tilde{\Omega}_{n}=\tilde{f}_{n}^{-1}(W)$. Then the Jordan curves $\partial \Omega_{n}$ and $\partial \tilde{\Omega}_{n}$ converge in C^{∞} topology to the curve $\partial \Omega$. It follows that for n sufficiently large, the maps $f_{n}: \Omega_{n} \rightarrow W$ and $\tilde{f}_{n}: \tilde{\Omega}_{n} \rightarrow W$ are polynomial-like, and the $\bmod \left(W \backslash \Omega_{n}\right), \bmod \left(W \backslash \tilde{U}_{n}\right)$ approach $2 \epsilon:=\bmod (W \backslash \Omega)$. Hence there exist C^{∞} diffeomorphisms $h_{n}: \mathbb{C} \rightarrow \mathbb{C}$, such that $h_{n} \mid \mathbb{C} \backslash W=\mathrm{id}$ and $f_{n} \circ h_{n}=\tilde{f}_{n} \equiv h_{n} \circ \tilde{f}_{n}$ on $\partial \Omega_{n}$, approaching the identity in the C^{∞} topology. Thus Dil $h_{n} \rightarrow 1$. Moreover h_{n}, being close to the identity, preserves the natural marking and we are done.
2.10. Renormalization and a priori bounds. A unicritical polynomial-like map $f: U \rightarrow V$ (of degree d) is called renormalizable with period $p>1$ if there exists a topological disk $W \ni 0$ with the following properties:
R1. The $\operatorname{map} g=f^{p} \mid W$ is a unicritical polynomial-like map of degree d (onto its image W^{\prime}); it is called the pre-renormalization of f.
R 2 . The little Julia set $K(g)$ is connected;
R3. $K(g)$ does not touch its images $f^{m}(K(g)), m=1, \ldots, p-1$, except perhaps at one of its β-fixed points.

Note that these images are also Julia sets $K\left(g_{m}\right)$ for appropriate degree d polynomial-like restrictions $g_{m}: W_{m} \rightarrow W_{m}^{\prime}$ of f^{p}. They are also referred to as "little Julia sets of f ".

By [McM1, Thm 5.11], the polynomial-like germ of the renormalization is well defined: it does not depend on the choice of the domain W above.

In fact, there is a standard combinatorial choice of the domain W. Namely, let us consider the little Julia set $K\left(g_{1}\right)$ around the critical value $f(0)$. Among its β-fixed points, there is a dividing point β_{1}, i.e., the landing point of more than one external rays (see [Mi, Thms 1.2 and 1.4]). Two of these rays bound a sector containing $f(0)$, the characteristic sector \mathcal{S}_{1}. The renormalization range W_{1}^{\prime} is obtained by truncating \mathcal{S}_{1} by an equipotential and slightly "thickening" it (see [D] or [Mi, $\left.\S 8\right]$). The domain $W_{1} \ni f(0)$ is the pullback of W_{1}^{\prime} by f^{p}. The domains $W^{\prime} \supset W \ni 0$ are the pullbacks of the $W_{1}^{\prime} \supset W_{1}$ under f.

Note that the dividing fixed point β_{1} is uniquely defined. Indeed, as the characteristic sector \mathcal{S}_{1} has size less than $1 / 2,{ }^{11}$ it does not contain the critical point 0 and hence $\partial \mathcal{S}_{1}$ separates 0 from $f(0)$. Since the little Julia set $K\left(g_{1}\right) \ni f(0)$

[^8]is connected and the rays landing at the β-fixed points of g_{1} do not cut through $K_{1}(g)$, there cannot be more than one separating points.

We will mark β_{1} on the little Julia set $K\left(g_{1}\right)$ and the corresponding fixed point $\beta=f^{p-1}\left(\beta_{1}\right) \in f^{-1}\left(\beta_{1}\right)$ on the little Juliua set $K(g)$. Notice that if $f \in \mathcal{C}^{\mathbb{R}}$, these points lie in the real line (by symmetry).

Now, the renormalization of f is obtained by normalizing the pre-renormalization with minimal possible period,

$$
R f(z)=\lambda^{-1} g(\lambda z): z \mapsto c+z^{d}+\text { h.o.t. }
$$

There is no ambiguity in the choice of normalization since the pre-renormalization g is marked with the β-fixed point. In case $f \in \mathcal{C}^{\mathbb{R}}$, we have $R f \in \mathcal{C}^{\mathbb{R}}$ as well, since β is real.

The renormalization is called primitive if the little Julia sets $K\left(g_{m}\right)$ do not touch, and is called satellite otherwise.

The set of angles of the external rays (defined with help of the canonical straightening of f) landing at the distinguished β-fixed points of g determine the "renormalization combinatorics". ${ }^{12}$ A classical theorem by Douady and Hubbard [DH] asserts that the renormalizable unicritical polynomials p_{c} with the same combinatorics form a "little copy \mathcal{M}^{\prime} of the Multibrot set" (or " \mathcal{M}-copy"), except that the roots of \mathcal{M}^{\prime} may or may not be renormalizable. Thus, the renormalization combinatorics can be labeled by the little copies themselves.

In case of a renormalizable real map, all the above notions can be described in purely real terms. The real traces of the little Julia sets are intervals that are permuted under the dynamics. The order of these intervals on the line describes the renormalization combinatorics. The set of renormalizable maps with a given combinatorics is a parameter interval $\mathcal{M}^{\prime} \cap \mathbb{R}$ called the renormalization window. Note that the boundary points of a renormalization window renormalize to a map with either parabolic ${ }^{13}$ or Ulam-Neumann ${ }^{14}$ combinatorics. In particular, the boundary maps are not twice renormalizable. (In case of doubling renormalization, the parabolic boundary map is not renormalizable in the complex sense, but can be viewed as renormalizable on the real line.)

A polynomial-like germ $f \in \mathcal{C}$ is called renormalizable, if it has a renormalizable representative. The renormalization descends naturally to the level of germs. Whether a germ is renormalizable or not only, and even its renormalization combinatorics, only depends on its hybrid leaf. The renormalization operator acts nicely at the level of hybrid leaves: ${ }^{15}$
Lemma 2.8. The renormalization operator maps hybrid leaves into hybrid leaves, and takes Beltrami paths to Beltrami paths.

Proof. It is enough to prove the last statement. Let $\left(f_{\lambda}, h_{\lambda}\right)$ be a guided Beltrami path in a renormalizable hybrid leaf. Let $f_{0}: U_{0} \rightarrow V_{0}$ be a p-l representative of

[^9]f_{0}. We may assume that V_{0} is small enough so that $\mu_{\lambda}=\bar{\partial} h_{\lambda} / \partial h_{\lambda}$ is f_{0}-invariant for every $\lambda \in \mathbb{D}$. Let $g_{0}=f_{0}^{p}: U_{0}^{\prime} \rightarrow V_{0}^{\prime}$ be a pre-renormalization of f_{0}. Then μ_{λ} is g_{0}-invariant for every $\lambda \in \mathbb{D}$. It follows that $h_{\lambda} \circ g_{0} \circ h_{\lambda}^{-1}$ is a pre-renormalization of $f_{\lambda}: h_{\lambda}\left(U_{0}\right) \rightarrow h_{\lambda}\left(V_{0}\right)$. If A_{0} is the affine map conjugating g_{0} and $R f_{0}$, there is a unique holomorphic continuation A_{λ} which normalizes g_{λ}, which is readily seen to conjugate g_{λ} and $R f_{\lambda}$. Thus $\left(R f_{\lambda}, A_{\lambda} \circ h_{\lambda} \circ A_{0}^{-1}\right)$ is a guided Beltrami path.

One can now naturally define n times renormalizable maps, including $n=\infty$. The combinatorics of an infinitely renormalizable map can be labeled by a sequence of little Mandelbrot copies $\mathcal{M}_{n}^{\prime}, n \in \mathbb{N}$ (describing the combinatorics of the consecutive renormalizations). It incorporates the sequence $\left\{p_{n}\right\}$ of the (relative) renormalization periods. This can be an arbitrary sequence of natural numbers >1. We say that f has a bounded combinatorics if the sequence of periods p_{n} is bounded.

We say that an infinitely renormalizable germ f has a priori bounds if its renormalizations $R^{n} f$ have definite moduli: $R^{n} f \geq \epsilon>0$.

Let us note, for further use, a simple consequence (Lemma 2.10) of the a priori bounds. We will need the following topological preparation:
Lemma 2.9. Let $f^{\prime}: U^{\prime} \rightarrow V^{\prime}$ be a p-l representative of a pre-renormalization (not necessarily the first) of the p-l map $f: U \rightarrow V$, of total period q. If $V^{\prime} \subset V$ then $f^{k}\left(U^{\prime}\right) \subset U$ for $0 \leq k<q$ and $f^{\prime}=f^{q} \mid U^{\prime}$.
Proof. The connected component of $f^{-q}\left(V^{\prime}\right)$ containing 0 is a simply connected domain taken by f^{q} onto V^{\prime} as a proper map which coincides with f^{\prime} near $K\left(f^{\prime}\right)$. By analytic continuation, such connected component must coincide with U^{\prime} and we have $f^{\prime}=f^{q} \mid U^{\prime}$.
Lemma 2.10. Let $f \in \mathcal{C}$ be infinitely renormalizable with a priori bounds, and let f_{n} be the sequence of pre-renormalizations (of total period q_{n}). Then there exist $C>0, \lambda<1$ (only depending on the a priori bounds) such that

$$
\max _{m \in \mathbb{Z} / q_{n} \mathbb{Z}} \operatorname{diam} K_{m}\left(f_{n}\right) \leq C \lambda^{n}
$$

Proof. We are going to show that there exists $\delta>0$, only depending on the a priori bounds, such that for every $m, m^{\prime}, n, n^{\prime}$ such that $n^{\prime}>n$ and $K_{m}\left(f_{n}\right) \supset$ $K_{m^{\prime}}\left(f_{n^{\prime}}\right)$, the Carathéodory distance between $K_{m}\left(f_{n}\right)$ and $K_{m^{\prime}}\left(f_{n^{\prime}}\right)$ is at least $\delta \operatorname{diam}\left(K_{m}\left(f_{n}\right)\right)$. This clearly implies that there exists $k>0$ such that

$$
\operatorname{diam}\left(K_{m^{\prime}}\left(f_{n^{\prime}}\right)\right)<\operatorname{diam}\left(K_{m}\left(f_{n}\right)\right) / 2
$$

provided $n^{\prime} \geq n+k$, and the exponential decay follows. ${ }^{16}$
Let $f: U \rightarrow V$ and $f_{n^{\prime}}: U^{\prime} \rightarrow V^{\prime}$ be polynomial-like representatives, with $\bmod (V \backslash U) \geq \bmod \left(V^{\prime} \backslash U^{\prime}\right)=\epsilon$. Up to replacing ϵ by ϵ / d^{t} and U^{\prime} and V^{\prime} by $f_{n^{\prime}}^{-t}\left(U^{\prime}\right)$ and $f_{n^{\prime}}^{-t}\left(V^{\prime}\right)$ (with t only depending on ϵ) we may assume that $V^{\prime} \subset V$. By Lemma 2.9, $f^{\prime}=f^{q_{n^{\prime}}} \mid U^{\prime}$.

Then $f^{q_{n}}$ has a single critical point in $\tilde{U}=f^{m^{\prime}}\left(f^{\prime-1}\left(U^{\prime}\right)\right)$, where we represent m^{\prime} in the range $1 \leq m^{\prime} \leq q_{n^{\prime}}$. For each $1 \leq l \leq q_{n^{\prime}}$, there exists a unique $z_{l} \in K_{l}\left(f_{n^{\prime}}\right)$

[^10]such that $f^{q_{n^{\prime}}-l}\left(z_{l}\right)=0$. It follows that \tilde{U} contains at most one of the z_{l}. Since $K_{m}\left(f_{n}\right)$ contains at least two distinct z_{l}, we conclude that $K_{m}\left(f_{n}\right) \not \subset \tilde{U}$. But $\bmod \left(\tilde{U} \backslash K_{m^{\prime}}\left(f_{n^{\prime}}\right)\right) \geq \epsilon / d$, so \tilde{U} is a $\delta \operatorname{diam}\left(K_{m^{\prime}}\left(f_{n^{\prime}}\right)\right)$-neighborhood of $K_{m^{\prime}}\left(f_{n^{\prime}}\right)$, with δ only depending on ϵ.

3. Path holomorphic spaces, the Carathéodory metric and the Schwarz Lemma

A path holomorphic structure on a space X is a family $\operatorname{Hol}(X)$ of maps $\gamma: \mathbb{D} \rightarrow$ X, called holomorphic paths, which contains the constants and is invariant under holomorphic reparametrizations: for every $\gamma \in \operatorname{Hol}(X)$ and every holomorphic (in the usual sense) map $\phi: \mathbb{D} \rightarrow \mathbb{D}, \gamma \circ \phi \in \operatorname{Hol}(X)$. Natural examples of path holomorphic spaces are complex Banach manifolds, where holomorphic paths are taken as the paths which are holomorphic in the usual sense.

If X, Y are path holomorphic spaces, a map $\Phi: X \rightarrow Y$ is called path holomorphic if for every holomorphic path $\gamma: \mathbb{D} \rightarrow X, \Phi \circ \gamma: \mathbb{D} \rightarrow Y$ is a holomorphic path. Let $\operatorname{Hol}(X, Y)$ be the space of path holomorphic maps from X to Y. Notice that $\operatorname{Hol}(\mathbb{D}, X)=\operatorname{Hol}(X)$. In case of complex Banach manifolds, this coincides with the usual notion of being holomorphic, as long as the maps are continuous. Obviously, composition of path holomorphic maps is path holomorphic.

Given a path holomorphic space X, any subset $Y \subset X$ can be naturally considered as a path holomorphic space: if $i: Y \rightarrow X$ is the inclusion, then $\operatorname{Hol}(Y)$ consists of all $\phi: \mathbb{D} \rightarrow Y$ with $i \circ \phi \in \operatorname{Hol}(X)$.

Let $h(x, y)$ be the hyperbolic metric on \mathbb{D} (normalized to be twice the Euclidean metric at 0). Introduce a metric $d(x, y)$ on \mathbb{D} by taking $d=\frac{e^{h}-1}{e^{h}+1}$ (this is a metric by convexity). This is the unique metric invariant under the group of conformal automorphisms of \mathbb{D} and such that $d(0, z)=|z|$.

By the usual Schwarz Lemma, any holomorphic $\operatorname{map} \phi: \mathbb{D} \rightarrow \mathbb{D}$ weakly contracts $d: d(\phi(x), \phi(y)) \leq d(x, y)$.

Let X be a path holomorphic space. Then we can define the following Carathéodory pseudo-metric:

$$
\begin{equation*}
d_{X}(x, y)=\sup _{\phi \in \operatorname{Hol}(X, \mathbb{D})} d(\phi(x), \phi(y)) . \tag{3.1}
\end{equation*}
$$

(Obviously, in this definition we can consider only ϕ normalized so that $\phi(x)=0$.) By the usual Schwarz Lemma we have

$$
\begin{equation*}
d_{\mathbb{D}}(x, y)=d(x, y) \tag{3.2}
\end{equation*}
$$

If $Y \subset X$, we let $\operatorname{diam}_{X} Y$ denote the diameter of Y in the pseudo-metric d_{X}. We say that Y is small in X if $\operatorname{diam}_{X} Y<1$.

The Carathéodory pseudo-metric d_{X} is a metric if and only if bounded path holomorphic functions on X separate points. In this case, X is called Carathéodory hyperbolic.

The definitions immediately imply:
Schwarz Lemma (weak form). Any path holomorphic map $\Phi: X \rightarrow Y$ is weakly contracting:

$$
\begin{equation*}
d_{Y}(\Phi(x), \Phi(y)) \leq d_{X}(x, y) \tag{3.3}
\end{equation*}
$$

It follows that any subset of a Carathéodory hyperbolic space is Carathéodory hyperbolic.

The universal class of Carathéodory hyperbolic spaces are given by Banach balls:
Lemma 3.1. The unit ball $\mathcal{B}(1)$ in a complex Banach space \mathcal{B} is Carathéodory hyperbolic and $d_{\mathcal{B}_{1}}(x, 0)=\|x\|$. A path holomorphic space X is Carathéodory hyperbolic if and only if X holomorphically injects into a Banach ball.

Proof. Normalized linear functionals $\phi \in \mathcal{B}_{1}^{*}$ are holomorphic maps $\mathcal{B}_{1} \rightarrow \mathbb{D}$. By definition of the Carathéodory metric and the Hahn-Banach Theorem,

$$
d_{\mathcal{B}_{1}}(x, 0) \geq \sup _{\phi \in \mathcal{B}^{*}(1)}|\phi(x)|=\|x\| .
$$

The opposite inequality is obtained by applying the Schwarz Lemma to the embed$\operatorname{ding} \mathbb{D} \rightarrow \mathcal{B}_{1}, \lambda \mapsto \lambda x /\|x\|$ at $\lambda=\|x\|$.

The Schwarz Lemma shows that a space which is not Carathéodory hyperbolic can not inject into one that is. Vice versa, assume X is Carathéodory hyperbolic. Let $S \subset \operatorname{Hol}(X, \mathbb{D})$ be any subset which separates points (e.g., $S=\operatorname{Hol}(X, \mathbb{D})$). Then X holomorphically injects into the unit ball of $\ell^{\infty}(S)$, the Banach space of bounded functions $S \rightarrow \mathbb{C}$, via the map $x \mapsto(\phi(x))_{\phi \in S}$.

Small subsets of a hyperbolic space X have "definitively stronger" Carathéodory metrics:

Lemma 3.2. Let X be a path holomorphic space and let $Y \subset X$. Then for any $x, y \in Y$,

$$
\begin{equation*}
d_{X}(x, y) \leq \operatorname{diam}_{X}(Y) d_{Y}(x, y) \tag{3.4}
\end{equation*}
$$

Proof. Let $r>\operatorname{diam}_{X} Y$. Then for any path holomorphic function $\phi:(X, x) \rightarrow$ $(\mathbb{D}, 0)$ we have $\phi(Y) \subset \mathbb{D}_{r}$. Hence the function $\tilde{\phi}:=r^{-1} \phi \mid Y$ belongs to $\operatorname{Hol}(Y, \mathbb{D})$, and we obtain:

$$
d_{Y}(x, y) \geq \sup _{\phi}|\tilde{\phi}(y)|=\frac{1}{r} d_{X}(x, y) .
$$

The conclusion follows.
Putting this together with the weak Schwarz Lemma, we obtain:
Schwarz Lemma (strong form). Any path holomorphic map $\Phi: Y \rightarrow X$ with small image is strongly contracting:

$$
d_{X}(\Phi(x), \Phi(y)) \leq \operatorname{diam}_{X}(\Phi(Y)) \cdot d_{Y}(x, y)
$$

Proof. Decompose Φ as $i \circ \Phi_{0}$ where $i: \Phi(Y) \rightarrow X$ is the inclusion, $\Phi_{0}=\Phi: Y \rightarrow$ $\Phi(Y)$. Then apply the weak Schwarz Lemma to Φ_{0} and Lemma 3.2 to i.

Remark 3.1. One can consider the (stronger) Kobayashi metric on path holomorphic spaces as well. Though the Kobayashi hyperbolicity is a more general notion, the spaces of interest in this paper turn out to be already Carathéodory hyperbolic. More importantly, the Carathéodory metric is much better adapted to our purposes, since strong contraction can be derived from a very simple smallness criterion.

4. Hybrid leaves as Carathéodory hyperbolic spaces

4.1. Path holomorphic structure on hybrid leaves. For any $c \in \mathcal{M}$, we introduce a path holomorphic structure on the hybrid leaf \mathcal{H}_{c} as follows. A continuous family $\left(f_{\lambda}: U_{\lambda} \rightarrow V_{\lambda}\right) \in \mathcal{H}_{c}, \lambda \in \mathbb{D}$, is said to be a holomorphic path if there exists a holomorphic motion $h_{\lambda}: \mathbb{C} \rightarrow \mathbb{C}$ based at the origin such that $\left.h_{\lambda}\left(K\left(f_{0}\right)\right)=K\left(f_{\lambda}\right)\right)$, $\bar{\partial} h_{\lambda}=0$ a.e. on $K\left(f_{0}\right)$ (which makes sense since the h_{λ} are qc by the Quasiconformality λ-Lemma) and $h_{\lambda} \circ f_{0}=f_{\lambda} \circ h_{\lambda}$ on $K\left(f_{0}\right)$ (equivariance property).

Clearly every Beltrami path is a holomorphic path. Though the notion of a Beltrami path is in principle stronger, they coincide at least locally. Indeed, let f_{λ} be a holomorphic path and let h_{λ} be the corresponding motion of $K\left(f_{\lambda}\right)$. For each $\lambda_{0} \in \mathbb{D}$, we can make a choice of a fundamental annulus $V_{\lambda} \backslash U_{\lambda}$ which moves holomorphically with λ in a small disk D around λ_{0}. This holomorphic motion can be then extended (using the Extension λ-Lemma) to $\mathbb{C} \backslash U_{\lambda}$ and then (uniquely) to a holomorphic motion on $\mathbb{C} \backslash K\left(f_{\lambda}\right)$ that is equivariant on $U_{\lambda} \backslash K(f)$. Matching it with the original motion of $K\left(f_{\lambda}\right)$ we obtain a holomorphic motion of \mathbb{C} over D, which provides a hybrid conjugacy.
Remark 4.1. Yet another way to look at holomorphic paths is the following: a continuous family $f_{\lambda} \in \mathcal{H}_{c}, \lambda \in \mathbb{D}$, is a holomorphic path if and only if the map $(\lambda, z) \mapsto f_{\lambda}(z)$ extends to a holomorphic map in a neighborhood of

$$
\cup_{\lambda \in \mathbb{D}}\{\lambda\} \times K\left(f_{\lambda}\right)
$$

However, this point of view will play no role in our analysis of hybrid classes.
Through the local characterization of holomorphic paths as Beltrami paths, we can translate Theorem 2.2 (item 3) and Lemma 2.8 to path holomorphicity statements:

Lemma 4.1. (1) All hybrid leaves are path holomorphically equivalent: For every $c, c^{\prime} \in \mathcal{M}, i_{c^{\prime}} \circ i_{c}^{-1}: \mathcal{H}_{c} \rightarrow \mathcal{H}_{c^{\prime}}$ is path holomorphic.
(2) The renormalization operator is leafwise path holomorphic: if \mathcal{H}_{c} and $\mathcal{H}_{c^{\prime}}$ are such that $R\left(\mathcal{H}_{c}\right) \subset \mathcal{H}_{c^{\prime}}$ then $R: \mathcal{H}_{c} \rightarrow \mathcal{H}_{c^{\prime}}$ is path holomorphic.

4.2. Carathéodory hyperbolicity.

Theorem 4.2. For every $c \in \mathcal{M}, \mathcal{H}_{c}$ is Carathéodory hyperbolic.
Proof. In order to prove Carathéodory hyperbolicity of the hybrid leaves, it is enough, by Lemma 4.1, to prove it for any one of them. The most convenient one will be \mathcal{H}_{0}, since in this case the Julia set traps a "definite domain of holomorphicity":

$$
\begin{equation*}
\mathbb{D}_{1 / 4} \subset K(f) \text { if } f \in \mathcal{H}_{0} \tag{4.1}
\end{equation*}
$$

Indeed, there exists a univalent map ψ_{f} from int $K(f)$ onto \mathbb{D} (the Böttcher coordinate), such that $\psi_{f}(f(z))=\psi_{f}(z)^{d}$ and $D \psi_{f}(0)=1,{ }^{17}$ and this implies (4.1) by the Köebe- $1 / 4$ Theorem.

We will now show that \mathcal{H}_{0} holomorphically injects in a Banach ball, which is equivalent to Carathéodory hyperbolicity by Lemma 3.1. As target space, we take $\mathcal{B}_{\mathbb{D}_{\rho}}$ (the space of bounded holomorphic functions on \mathbb{D}_{ρ} which are continuous up to the boundary) for an arbitrary $0<\rho<1 / 4$.

[^11]Clearly the restriction operator $I_{\rho}: \mathcal{H}_{0} \rightarrow \mathcal{B}_{\mathbb{D}_{\rho}}$ is injective, by analytic continuation. It is also bounded: the branch of the d-th root of $f \mid$ int $K(f)$ tangent to the identity at 0 restricts to a univalent map on $\mathbb{D}_{1 / 4}$, so that $f \mid \mathbb{D}_{\rho}$ can be bounded in terms of ρ. Let us show that
(4.2) $f_{\lambda}(z)$ is holomorphic in $(\lambda, z) \in \mathbb{D} \times \mathbb{D}_{1 / 4}$ if f_{λ} is a holomorphic path in \mathcal{H}_{0}, as this clearly implies that I_{ρ} is path holomorphic.

Indeed, if f_{λ} is a holomorphic path in \mathcal{H}_{0} then there exists a holomorphic motion $h_{\lambda}: \mathbb{C} \rightarrow \mathbb{C}$ centered on 0 such that $h_{\lambda}\left(K\left(f_{0}\right)\right)=K\left(f_{\lambda}\right), h_{\lambda}$ is holomorphic on int $K\left(f_{0}\right)$, and h_{λ} conjugates f_{0} and f_{λ} in their filled-in Julia sets. By separate holomorphicity, we see that $(\lambda, z) \mapsto\left(\lambda, h_{\lambda}(z)\right)$ is holomorphic in $\mathbb{D} \times \operatorname{int} K\left(f_{0}\right) \rightarrow$ $\bigcup_{\lambda \in \mathbb{D}}\{\lambda\} \times \operatorname{int} K\left(f_{\lambda}\right)$. This implies (4.2), since we can write $f_{\lambda}(z)=h_{\lambda} \circ f_{0} \circ$ $h_{\lambda}^{-1}(z)$.
4.3. Carathéodory vs Montel. The following discussion is not actually needed for our proofs of exponential contraction of renormalization with respect to the Carathéodory metric, but allows us to reinterpret this result in more familiar terms (the Montel metrics of [L3]).

A compact subset $\mathcal{K} \subset \mathcal{C}$ is called sliceable if there exist an open quasidisk W and $C>0$ such that $\overline{\bigcup_{f \in \mathcal{K}} K(f)} \subset W$ and every $f \in \mathcal{K}$ has a holomorphic extension to W bounded by C. Notice that if $L \Subset W$ is a neighborhood of 0 , then the uniform metric on $C^{0}(L)$ induces a distance on \mathcal{K}, and different choices of L lead to Hölder equivalent distances, by Hadamard's Three Circles Theorem. In particular, all those distances define the same topology on \mathcal{K}, which is easily seen to coincide with the natural topology of \mathcal{K} (as a subset of \mathcal{C}).

A metric d defined on a compact subset $\mathcal{K} \subset \mathcal{C}$ will be called Montel if on each sliceable subset of \mathcal{K}, it is Hölder equivalent to the uniform metric on all sufficiently small compact neighborhoods of 0 . Notice that it is enough to check this last condition on any family of sliceable subsets whose \mathcal{K}-interiors cover \mathcal{K}. Thus Montel metrics can be constructed by gluing appropriately metrics on finitely many sliceable subsets. They are all Hölder equivalent and compatible with the topology.

Remark 4.2. We need to go through sliceable subsets since two different germs $f, \tilde{f} \in \mathcal{C}$ may coincide in a neighborhood of 0 (which cannot happen when f and \tilde{f} are in the same sliceable set).

Example 4.1. Let us sketch a construction of a pair of quadratic-like germs $f_{ \pm} \in \mathcal{C}$ that coincide in a neighborhood of 0 : indeed f_{+}and f_{-}are restrictions of the same analytic map defined in $K\left(f_{+}\right) \cup K\left(f_{-}\right)$.

Let us start with the map

$$
F: \mathbb{T} \rightarrow \mathbb{T}, \quad z \mapsto \exp \left(\pi\left(z-z^{-1}\right) / 2\right), \quad \text { or } \quad \theta \mapsto \pi \sin \theta, \quad \text { where } z=e^{i \theta} \in \mathbb{T} .
$$

The upper and lower half-circles $\mathbb{T}_{ \pm}$are invariant under F, and the unimodal maps $F \mid \mathbb{T}_{ \pm}$admit quadratic-like extensions that are hybrid equivalent to the Chebyshev map $z \mapsto z^{2}-2$.

Let us now consider the analytic real-symmetric immersion $\phi: \mathbb{T} \rightarrow \mathbb{C}$ satisfying

$$
\frac{1}{2 \pi^{2}} \phi(z)^{2}=1+F(z), \quad \phi(-1)=2 \pi
$$

Its image S is a real-symmetric and 0 -symmetric "figure eight" with double point at 0 . The map F lifts to an analytic real-symmetric map $f: S \rightarrow S, f \circ \phi=\phi \circ F$. The segments $S_{ \pm}:=\phi\left(\mathbb{T}_{ \pm}\right)$are invarinat under f and the maps $f \mid S_{ \pm}$admit quadraiclike extensions that are hybrid equivalent to the Chebyshev map. So, they define two different quadrtic-like germs in \mathcal{H}_{-2}.

However, they define the same germ at 0 as $f(z)=2 \pi+z^{2}+O\left(z^{3}\right)$ as $z \rightarrow 0$.
Theorem 4.3. For every $\epsilon>0, d_{\mathcal{H}_{c}}$ defines a Montel metric on $\mathcal{H}_{c}(\epsilon)$, for each $c \in \mathcal{M}$. Moreover those metrics are uniformly Hölder equivalent to the restriction of any fixed Montel metric on $\mathcal{C}(\epsilon)$.

We will need two preliminary results:
Lemma 4.4. For every $\epsilon>0$, there exists $\delta>0$ such that $d_{\mathcal{H}_{c}}(\delta)$ defines a Montel metric on $\mathcal{H}_{c}(\epsilon)$, for each $c \in \mathcal{M}$. Moreover those metrics are uniformly Hölder equivalent to the restriction of any fixed Montel metric on $\mathcal{C}(\epsilon)$.

Proof. By Theorem 4.2 and the Schwarz Lemma, $\mathcal{H}_{c}(\delta)$ is Carathéodory hyperbolic, so that $d_{\mathcal{H}_{c}(\delta)}$ is a metric.

Given $\delta>0$, there exists $\rho>0$ such that all $f \in \mathcal{C}(\delta)$ extends holomorphically to a holomorphic function on \mathbb{D}_{ρ} bounded by ρ^{-1}. It then follows, by analytic continuation, that for every $c \in \mathcal{M}$ and $z \in \mathbb{D}_{\rho}$ the function $f \mapsto f(z)$ is holomorphic on $\mathcal{H}_{c}(\delta)$. This shows that $2 \rho^{-1} d_{\mathcal{H}_{c}(\delta)}$ dominates a Montel metric on each sliceable subset $\mathcal{K} \subset \mathcal{H}_{c}(\delta)$ (take the Montel metric given by the uniform distance on each sufficiently small neighborhood L of 0).

Let us now show that if $\delta>0$ is sufficiently small, then for each $f \in \mathcal{H}_{c}(\epsilon)$, $d_{\mathcal{H}_{c}(\delta)}$ is Hölder dominated by a Montel metric in an $\mathcal{H}_{c}(\epsilon)$-neighborhood of f. In a neighborhood of f there exist open quasidisks $V \Subset V^{\prime}$ such that if $f_{0}, f_{1} \in \mathcal{H}_{c}(\epsilon)$ are γ close with respect to the Montel metric, then they are $C \gamma^{\theta}$ close over V^{\prime} and there are polynomial-like extensions $f_{0}: U_{0} \rightarrow V$ and $f_{1}: U_{1} \rightarrow V$ with modulus uniformly bounded from below by some $\kappa>0$. For small γ, this implies the existence of a quasiconformal homeomorphism $h: \mathbb{C} \rightarrow \mathbb{C}$ which is the identity outside V and conjugates $f_{0}: \partial U_{0} \rightarrow \partial V$ and $f_{1}: \partial U_{1} \rightarrow \partial V$. Moreover the Beltrami differential of h has L^{∞} norm bounded by $C^{\prime} \gamma^{\theta^{\prime}}$. If f_{0} and f_{1} are hybrid equivalent, we conclude (via the pullback argument) that h can be turned into a hybrid conjugacy preserving the natural marking. This yields a Beltrami path parametrized by $\mathbb{D}_{C^{\prime-1} \gamma^{-\theta^{\prime}}}$ connecting f_{0} to f_{1}. This Beltrami path, restricted to $\mathbb{D}_{C^{\prime-1} \gamma^{-\theta^{\prime} / 2}}$, lies in $\mathcal{H}_{c}(\kappa / 3)$, by the Quasiconformality λ-Lemma. Thus, if $\delta \leq \kappa / 3$ we get $d_{\mathcal{H}_{c}(\delta)}\left(f_{0}, f_{1}\right) \leq 2 C^{\prime} \gamma^{\theta^{\prime}}$, as desired.

The uniformity on c is clear from the argument.
Lemma 4.5. For every $\epsilon>0, d_{\mathcal{H}_{0}}$ is a Montel metric on $\mathcal{H}_{0}(\epsilon)$.
Proof. By the Schwarz Lemma $d_{\mathcal{H}_{0}}$ is dominated by the Montel metric $d_{\mathcal{H}_{0}}(\delta)$ for $\delta>0$ sufficiently small. For fixed $0<\rho<1 / 4$, the restriction $I_{\rho}: \mathcal{H}_{0} \rightarrow \mathcal{B}_{\mathbb{D}_{\rho}}$ is a bounded path holomorphic map for (c.f. the proof of Theorem 4.2), so another application of the Schwarz Lemma shows that $d_{\mathcal{H}_{0}}$ dominates a multiple of the uniform metric on $\overline{\mathbb{D}_{\rho}}$, which is Montel.

Proof of Theorem 4.3. Since both $d_{\mathcal{H}_{0}}$ and $d_{\mathcal{H}_{0}(\delta)}$ are Montel over $\mathcal{H}_{0}(\epsilon)$, they are Hölder equivalent. Since $i_{c} \circ i_{0}^{-1}$ is a biholomorphic map $\left(\mathcal{H}_{0}(\epsilon), \mathcal{H}_{0}(\delta), \mathcal{H}_{0}\right) \rightarrow$
$\left(\mathcal{H}_{c}(\epsilon), \mathcal{H}_{c}(\delta), \mathcal{H}_{c}\right), d_{\mathcal{H}_{c}}$ and $d_{\mathcal{H}_{c}(\delta)}$ are also Hölder equivalent (with the same constants). Since the latter is (uniformly) Montel, the former is as well.

5. From beau bounds to exponential contraction

A priori bounds are called beau (over a family \mathcal{F} of infinitely renormalizable maps under consideration) if there exists $\epsilon_{0}>0$ such that for any $\delta>0$ there exists moment n_{δ} such that for any $f \in \mathcal{F}$ with $\bmod f \geq \delta$ we have: $\bmod \left(R^{n} f\right) \geq \epsilon_{0}$ for $n \geq n_{\delta}$.

The works [K, KL1, KL2] supply a big class of infinitely renormalizable maps with beau bounds. In this class the little \mathcal{M}-copies \mathcal{M}_{n}^{\prime} describing the combinatorics should stay away from the "main molecule" of \mathcal{M} (which comprises the main cardioid of \mathcal{M} and all hyperbolic components obtained from it via a cascade of bifurcations). For instance, this class contains all infinitely renormalizable maps of bounded primitive type and all real infinitely renormalizable maps with all renormalization periods $p_{n} \neq 2$. Let us emphasize that the approach to the Main Theorem we will develop in $\S \S 6-8$ does not rely at all on [K, KL1, KL2] (and it will cover all real combinatorics, including period doubling, in a unified way).

We will show that beau bounds through complex hybrid classes imply exponential contraction of the renormalization:

Theorem 5.1. Let $\mathcal{F} \subset \mathcal{C}$ be a family of infinitely renormalizable maps with beau bounds which is forward invariant under renormalization. If \mathcal{F} is a union of entire hybrid leaves then there exists $\lambda<1$ such that whenever $f, \tilde{f} \in \mathcal{F}$ are in the same hybrid leaf, we have

$$
d_{\mathcal{H}_{c_{n}}}\left(R^{n}(f), R^{n}(\tilde{f})\right) \leq C \lambda^{n}, \quad n \in \mathbb{N},
$$

where $c_{n}=\chi\left(R^{n}(f)\right)=\chi\left(R^{n}(\tilde{f})\right)$ and $C>0$ only depends on $\bmod (f)$ and $\bmod (\tilde{f})$.
Remark 5.1. We will actually show that $C(f, \tilde{f})$ is small when f is close to \tilde{f}, and indeed if $\bmod (f), \bmod (\tilde{f}) \geq \delta$ we can take

$$
\begin{equation*}
C(f, \tilde{f})=C(\delta) d_{\mathcal{H}_{c}(\delta)}(f, \tilde{f}) \tag{5.1}
\end{equation*}
$$

The proof is based on the Schwarz Lemma and the following easy "smallness" estimate.

Lemma 5.2. For every $\epsilon>0$ there exist $\delta \in(0, \epsilon)$ and $\gamma<1$ such that for all $c \in \mathcal{M}$, we have:

$$
\begin{equation*}
\operatorname{diam}_{\mathcal{H}_{c}(\delta)} \mathcal{H}_{c}(\epsilon)<\gamma \tag{5.2}
\end{equation*}
$$

Proof. There exists $r=r(\epsilon)<1$ with the following property (see Lemmas 2.5 and 2.6). For any p-l germs $f, \tilde{f} \in \mathcal{H}_{c}(\epsilon)$, there exist p-l representatives $f: U \rightarrow V$, $\tilde{f}: \tilde{U} \rightarrow \tilde{V}$ and a hybrid conjugacy (respecting the natural marking) $h: \mathbb{C} \rightarrow \mathbb{C}$ between f and \tilde{f} such that $\bmod (V \backslash U)>\frac{\epsilon}{2}$ and the Beltrami differential $\mu=\bar{\partial} h / \partial h$ has L^{∞}-norm bounded by $r(\epsilon)$.

Let us consider a Beltrami path $\mathbb{D}_{\rho} \rightarrow \mathcal{H}_{c}$,

$$
\begin{equation*}
\lambda \mapsto f_{\lambda}=h_{\lambda \mu} \circ f \circ h_{\lambda \mu}^{-1}, \quad \text { where } \rho=\rho(\epsilon)=\frac{1+r}{2 r} \in\left(1, \frac{1}{r}\right), \tag{5.3}
\end{equation*}
$$

where $h_{\lambda \mu}$ is a suitably normalized solution of the Beltrami equation $\bar{\partial} h / \partial h=\lambda \mu$.

As $\|\lambda \mu\|_{\infty} \leq(1+r) / 2$, we have

$$
\operatorname{Dil} h_{\lambda \mu} \leq K=K(\epsilon)=\frac{r+3}{1-r}, \quad \lambda \in \mathbb{D}_{\rho}
$$

Hence the fundamental annulus of f_{λ} has modulus at least $\delta=\delta(\epsilon):=\epsilon / 2 K$, so $f_{\lambda} \in \mathcal{H}_{c}(\delta)$. By the (weak) Schwarz Lemma, $d_{\mathcal{H}_{c}(\delta)}(f, \tilde{f}) \leq d_{\mathbb{D}_{\rho}}(0,1)=\rho^{-1}$.

Proof of Theorem 5.1. Let $\epsilon_{0}>0$ be the "beau bound" for \mathcal{F}, so that for every $\delta>0$ there exists n_{δ} such that $\bmod \left(R^{n}\left(f_{0}\right)\right) \geq \epsilon_{0}$ whenever $f_{0} \in \mathcal{F}, \bmod \left(f_{0}\right) \geq \delta$ and $n \geq n_{\delta}$.

Using Lemma 5.2, choose $0<\delta_{0}<\epsilon_{0}$ and $\lambda<1$ such that

$$
\operatorname{diam}_{\mathcal{H}_{c}\left(\delta_{0}\right)} \mathcal{H}_{c}\left(\epsilon_{0}\right)<\lambda^{n_{\delta_{0}}}
$$

for every $c \in \mathcal{M}$.
The Schwarz Lemma gives for $f, \tilde{f} \in \mathcal{H}_{c}(\delta)$

$$
\begin{aligned}
& d_{\mathcal{H}_{c_{n}}}\left(R^{n}(f), R^{n}(\tilde{f})\right) \leq \min \left\{d_{\mathcal{H}_{c}(\delta)}(f, \tilde{f}), d_{\mathcal{H}_{c_{n}}\left(\delta_{0}\right)}\left(R^{n}(f), R^{n}(\tilde{f})\right)\right\} \\
& d_{\mathcal{H}_{c_{n}}\left(\delta_{0}\right)}\left(R^{n}(f), R^{n}(\tilde{f})\right) \leq d_{\mathcal{H}_{c}(\delta)}(f, \tilde{f}), \quad n \geq n_{\delta} \\
& d_{\mathcal{H}_{c_{n}}\left(\delta_{0}\right)}\left(R^{n}(f), R^{n}(\tilde{f})\right) \leq d_{\mathcal{H}_{c_{n-n} \delta_{0}}}\left(\delta_{0}\right)\left(R^{n-n_{\delta_{0}}}(f), R^{n-n_{\delta_{0}}}(\tilde{f})\right), \quad n \geq n_{\delta_{0}}+n_{\delta},
\end{aligned}
$$

which combined yields the result with $C_{f, \tilde{f}}$ as in (5.1).

6. From beau bounds for real maps to uniform contraction

It is a difficult problem to prove beau bounds for complex maps. However, it is more tractable for real maps: in that case, the beau bounds were established a while ago (see $[\mathrm{S}, \mathrm{MvS}]$ for bounded combinatorics and $[\mathrm{LvS}, \mathrm{LY}]$ for the general case).

Theorem 6.1 (Beau bounds for real maps). There exists $\epsilon_{0}>0$ with the following property. For every $\delta>0$ there exist $\epsilon=\epsilon(\delta)>0$ and $N=N(\delta)$ such that for any $f \in \mathcal{C}^{\mathbb{R}}(\delta)$, we have

$$
R^{n}(f) \in \mathcal{C}(\epsilon), n=0,1, \ldots \quad \text { and } \quad R^{n}(f) \in \mathcal{C}\left(\epsilon_{0}\right) n=N, N+1, \ldots
$$

From the point of view of the previous discussion, the main shortcoming of this result is that it does not provide enough compactness for complex maps, which is crucial for the Schwarz Lemma application. In this section we will overcome this problem using some ideas from functional analysis and differential topology (Theorem 6.1 remaining the only ingredient from "hard analysis"), by proving:
Theorem 6.2 (Beau bounds and macroscopic contraction for complex maps in the real hybrid classes). There exists $\epsilon_{0}>0$ with the following property. For any $\gamma>0$ and $\delta>0$ there exists $N=N(\gamma, \delta)$ such that for any two maps $f, \tilde{f} \in \mathcal{C}(\delta)$ in the same real-symmetric hybrid leaf we have

$$
R^{n} f, R^{n} \tilde{f} \in \mathcal{C}\left(\epsilon_{0}\right), \quad \text { and } \quad d_{\mathcal{H}_{c_{n}}}\left(R^{n} f, R^{n} \tilde{f}\right)<\gamma, \quad n \geq N
$$

with $c_{n}=\chi\left(R^{n} f\right)=\chi\left(R^{n} \tilde{f}\right)$.
The proof of this result will take this and the next two sections.
Through the sequel, let \mathcal{I} be the subspace of infinitely renormalizable p-l maps in \mathcal{C}, and let $\mathcal{I}(\delta)=\mathcal{I} \cap \mathcal{C}(\delta)$. Let $\mathcal{C}^{(\mathbb{R})}$ be the space of polynomial like maps with connected Julia set which are hybrid equivalent to real p-l maps. We will use superscript (\mathbb{R}) for the slices of various spaces by $\mathcal{C}^{(\mathbb{R})}$, e.g., $\mathcal{I}^{(\mathbb{R})}(\delta):=\mathcal{I} \cap \mathcal{C}^{(\mathbb{R})}(\delta)$.
6.1. Cocycle setting. We will now abstract properties of the renormalization operator that will be sufficient for Theorem 6.2.

Let \mathcal{S} be a semigroup, and let $Q=\{(m, n) \in \mathbb{N} \times \mathbb{N}: n>m\}$. An \mathcal{S}-cocycle is a map $G: Q \rightarrow \mathcal{S},(m, n) \mapsto G^{m, n}$, such that $G^{m, n} G^{l, m}=G^{l, n}$.

Letting $F_{n}:=G^{n, n+1} \in \mathcal{S}$, we obtain

$$
\begin{equation*}
G^{m, n}=F_{n-1} \circ \cdots \circ F_{m}, \tag{6.1}
\end{equation*}
$$

and vice versa, any sequence $F_{n} \in \mathcal{S}$ determines a cocycle by means of (6.1).
Let $\operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$ be the semigroup of continuous path holomorphic maps F : $\mathcal{H}_{0} \rightarrow \mathcal{H}_{0}$. Let $\operatorname{Hol}^{\mathbb{R}}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$ be the sub-semigroup of those F such that $F\left(\mathcal{H}_{0}^{\mathbb{R}}\right) \subset$ $\mathcal{H}_{0}^{\mathbb{R}}$.

Theorem 6.3. Let \mathcal{G} be a family of cocycles with values in $\operatorname{Hol}^{\mathbb{R}}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$ satisfying:
H1. A priori bounds for complex maps: For every $\delta>0$, there exists $\epsilon=\epsilon(\delta)>$ 0 such that

If $f \in \mathcal{H}_{0}(\delta)$ then $G^{m, n}(f) \in \mathcal{H}_{0}(\epsilon)$ for every $G \in \mathcal{G}$ and $(m, n) \in Q$.
H2. Beau bounds for nearly real maps: There exists $\epsilon_{0}>0$ such that for every $\delta>0$, there exists $N=N(\delta)$ and $\eta=\eta(\delta)>0$ such that:

$$
\text { If } f \in \mathcal{H}_{0}^{\mathbb{R}}(\delta), \tilde{f} \in \mathcal{H}_{0}(\delta) \text { and } d_{\mathcal{H}_{0}}(f, \tilde{f}) \leq \eta
$$

then $G^{m, n}(\tilde{f}) \in \mathcal{H}_{0}\left(\epsilon_{0}\right)$ for every $G \in \mathcal{G}$ and $(m, n) \in Q$ with $n-m \geq N$.
Then we have:
C1. Macroscopic contraction: For every $\delta>0$ and $\gamma>0$ there exists $N=$ $N(\delta, \gamma)$ such that if $f, \tilde{f} \in \mathcal{H}_{0}(\delta)$ then
$d_{\mathcal{H}_{0}}\left(G^{m, n}(f), G^{m, n}(\tilde{f})\right)<\gamma$ for every $G \in \mathcal{G}$ and $(m, n) \in Q$ with $n-m \geq N$.
C2. Beau bounds for complex maps: For every $\delta>0$ there exists $N=N(\delta)$ such that
$G^{m, n}\left(\mathcal{H}_{0}(\delta)\right) \subset \mathcal{H}_{0}\left(\epsilon_{0}\right)$ for every $G \in \mathcal{G}$ and $(m, n) \in Q$ with $n-m \geq N$.
6.2. Reduction to the cocycle setting. Let $\Pi=i_{0} \circ \pi: \mathcal{C} \rightarrow \mathcal{H}_{0}$, so that for each $c \in \mathcal{M}, \Pi$ restricts to a homeomorphism $\mathcal{H}_{c} \rightarrow \mathcal{H}_{0}$ which is path holomorphic and preserves the modulus. For each infinitely renormalizable hybrid leaf \mathcal{H}_{c}, we can associate a cocycle $G=G_{c}$ with values in $\operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$, by the formula

$$
\begin{equation*}
G^{m, n}(\Pi(f))=\Pi\left(R^{n-m}\left(R^{m}(f)\right)\right), \quad f \in \mathcal{H}_{c} . \tag{6.2}
\end{equation*}
$$

Let \mathcal{G} be the set of all such cocycles which correspond to real-symmetric hybrid leaves. Once we show that hypothesis (H1-H2) of Theorem 6.3 are satisfied for \mathcal{G}, the conclusions (C1-C2) translate precisely into beau bounds and macroscopic contraction in real hybrid classes (Theorem 6.2).

Let us start with (H1):
Lemma 6.4. For every $\delta>0$ there exists $\epsilon=\epsilon(\delta)>0$ such that:

$$
\text { If } f \in \mathcal{I}^{(\mathbb{R})}(\delta) \text { then } R^{n} f \in \mathcal{C}(\epsilon), n=0,1, \ldots
$$

Proof. Let $g=p_{c}: z \mapsto z^{d}+c, c \in \mathbb{R}$, be the straightening of f, and let g_{n} denote its nth pre-renormalizations. Let q_{n} be the corresponding periods, that is, g_{n} is a p-l restriction of $g^{q_{n}}$.

By Lemmas 2.5 and 2.6, there exist p-l representatives $g: U^{\prime} \rightarrow V^{\prime}, f: U \rightarrow V$ with $\bmod \left(V^{\prime} \backslash U^{\prime}\right), \bmod (V \backslash U)>\delta / 2$ and a C-qc map $h:(\mathbb{C}, U) \rightarrow\left(\mathbb{C}, U^{\prime}\right)$ with $C=C(\delta)$ conjugating f to $g, h \circ f=g \circ h$ in U. Since $\bmod \left(V^{\prime} \backslash U^{\prime}\right)>\delta / 2$,

$$
\inf _{y \in \partial U^{\prime}} \inf _{x \in K(g)}|y-x| \geq A \operatorname{diam} K(g)
$$

for some $A=A(\delta)>0$.
By the a priori bounds for real maps, there exists $\eta>0$, depending only on the degree d, such that

$$
\bmod g_{n} \geq \eta, \quad n=0,1, \ldots
$$

It follows that each germ g_{n} has a (non-normalized) p-l representative $U_{n} \rightarrow V_{n}$ with $\bmod \left(V_{n} \backslash U_{n}\right)>\eta^{\prime}$ and
$\sup _{y \in \partial g^{k}\left(U_{n}\right)} \inf _{x \in g^{k}\left(K\left(g_{n}\right)\right)}|y-x| \leq A \operatorname{diam} g^{k}\left(K\left(g_{n}\right)\right) \leq A \operatorname{diam} K(g), \quad k=0,1,2, \ldots, q_{n}-1$
with $\eta^{\prime}=\eta^{\prime}(A, \eta)>0$, by compactness of $\mathcal{C}(\eta)$.
We conclude that $g^{k}\left(U_{n}\right) \subset U^{\prime}$ for $0 \leq k \leq q_{n}-1$. Consequently, the p-l map

$$
h^{-1} \circ g_{n} \circ h: h^{-1}\left(U_{n}\right) \rightarrow h^{-1}\left(V_{n}\right)
$$

is a (non-normalized) representative of the n-th pre-renormalization of f. Since

$$
\bmod \left(h^{-1}\left(V_{n}\right) \backslash h^{-1}\left(U_{n}\right)\right)>\eta^{\prime} / C
$$

we obtain a priori bounds for f with $\epsilon=\eta^{\prime} / C$.
In order to show that hypothesis (H2) is satisfied, we will use the following.
Lemma 6.5. Let $f_{n}, \tilde{f}_{n} \in \mathcal{I}$ and $\chi\left(f_{n}\right)=\chi\left(\tilde{f}_{n}\right)$. Assume that the sequences f_{n} and \tilde{f}_{n} converge to the same limit f. If $k_{n} \rightarrow \infty$ then $\liminf _{n \rightarrow \infty} \bmod \left(R^{k_{n}}\left(f_{n}\right)\right)=$ $\lim \inf _{n \rightarrow \infty} \bmod \left(R^{k_{n}}\left(\tilde{f}_{n}\right)\right)$.
Proof. It is enough to show that for every $\epsilon>0$,

$$
\text { if } \quad \liminf _{n \rightarrow \infty} \bmod \left(R^{k_{n}}\left(f_{n}\right)\right)>\epsilon \quad \text { then } \quad \liminf _{n \rightarrow \infty} \bmod \left(R^{k_{n}}\left(\tilde{f}_{n}\right)>\epsilon\right.
$$

Let $f_{n}: U_{n} \rightarrow V_{n}$ and $\tilde{f}_{n}: \tilde{U}_{n} \rightarrow \tilde{V}_{n}$ be p-l representatives of the germs f_{n} and \tilde{f}_{n} that Carathéodory converge to a p-l map $f: U \rightarrow V$. By Lemma 2.7, there exist $C_{n} \rightarrow 1$ and C_{n}-qc maps $h_{n}: V_{n} \rightarrow \tilde{V}_{n}$ conjugating f_{n} to \tilde{f}_{n} (maybe after a slight adjustment of the domains).

Let $f_{n}^{\prime}: U_{n}^{\prime} \rightarrow V_{n}^{\prime}$ be p-l representatives of the k_{n}-th pre-renormalizations of the f_{n} with liminf $\bmod \left(V_{n}^{\prime} \backslash U_{n}^{\prime}\right)>\epsilon$ and filled Julia sets K_{n}. By Lemma 2.10, $\operatorname{diam}\left(K_{n}\right) \rightarrow 0$, so we may choose V_{n}^{\prime} contained in V_{n}. By Lemma 2.9, $f_{n}^{\prime}=f_{n}^{q_{k_{n}}} \mid U_{n}^{\prime}$.

Let $\tilde{U}_{n}^{\prime}=h_{n}\left(U_{n}^{\prime}\right)$ and $\tilde{V}_{n}^{\prime}=h_{n}\left(V_{n}^{\prime}\right)$. Then the map $\tilde{f}_{n}^{q_{k_{n}}}: \tilde{U}_{n}^{\prime} \rightarrow \tilde{V}_{n}^{\prime}$ is a well defined p-l representative of the k_{n}-th pre-renormalization of \tilde{f}_{n}. Moreover, $\bmod \left(\tilde{V}_{n}^{\prime} \backslash \tilde{U}_{n}^{\prime}\right)>\bmod \left(V_{n}^{\prime} \backslash U_{n}^{\prime}\right) / C_{n}$, and the conclusion follows.

Take ϵ_{0} from Theorem 6.1. If (H2) does not hold for $\epsilon_{0} / 2$, we can find a $\delta>0$ and sequences $f_{n} \in \mathcal{I} \cap \mathcal{C}(\delta), \tilde{f}_{n} \in \mathcal{H}_{\chi\left(f_{n}\right)}(\delta), k_{n} \rightarrow \infty$, with $d_{\mathcal{H}_{\chi\left(f_{n}\right)}}\left(f_{n}, \tilde{f}_{n}\right) \rightarrow 0$ such that $R^{k_{n}} \tilde{f}_{n} \notin \mathcal{C}\left(\epsilon_{0} / 2\right)$. Passing to a subsequence, we can assume that the f_{n} converge, and thus the \tilde{f}_{n} must converge to the same limit. By the previous lemma, it follows that liminf $\bmod \left(R^{k_{n}} f_{n}\right) \leq \epsilon_{0} / 2$, contradicting Theorem 6.1.

We have reduced Theorem 6.2 to Theorem 6.3.
6.3. Retractions and the proof of Theorem 6.3. Recall that a continuous map $P: X \rightarrow X$ in a topological space X is called a retraction if $P^{2}=P$. In other words, there exists a closed subset $Y \subset X$ (a "retract") such that $P(X) \subset Y$ and $P \mid Y=$ id. Linear retractions in topological vector spaces are called projections. A retraction is naturally called constant if its image is a single point.

The proof of Theorem 6.3 has two main parts. The first shows, using (H1), that lack of uniform contraction in the leafwise dynamics allows one to construct a retraction towards a non-trivial "attractor":

Theorem 6.6. Let \mathcal{G} be a family of cocycles with values in $\operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$. Assume that property (H1) holds but (C1) fails. Then there exist sequences $G_{k} \in \mathcal{G}$, $\left(m_{k}, n_{k}\right) \in Q$ with $n_{k}-m_{k} \rightarrow \infty$, and a non-constant retraction $P \in \operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$ such that $G_{k}^{m_{k}, n_{k}}(f) \rightarrow P(f)$ for every $f \in \mathcal{H}_{0}$.

The second shows, in general, that non-trivial retractions can not be "too compact" in the real direction.
Theorem 6.7. Let $P \in \operatorname{Hol}^{\mathbb{R}}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$, and assume the following compactness property for nearly real maps:
(P) There exists a compact set $\mathcal{K} \subset \mathcal{H}_{0}$ such that if $f_{n} \in \mathcal{H}_{0}$ is a sequence converging to $f \in \mathcal{H}_{0}^{\mathbb{R}}$, then $P\left(f_{n}\right) \in \mathcal{K}$ for n large.

Then P is constant.
Those two results put together are then seen to imply Theorem 6.3:
Proof of Theorem 6.3. Let \mathcal{G} be a family of cocycles with values in $\operatorname{Hol}^{\mathbb{R}}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$ such that (H1) and (H2) hold, but (C1) does not. By Theorem 6.6, there exist a sequence $G_{k} \in \mathcal{G}$ and $\left(m_{k}, n_{k}\right) \in Q$ with $n_{k}-m_{k} \rightarrow \infty$, and a non-constant retraction $P \in \operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$, such that $G_{k}^{m_{k}, n_{k}}(f) \rightarrow P(f)$ for every $f \in \mathcal{H}_{0}$. It satisfies the hypothesis of Theorem 6.7: since each $G_{k}^{m_{k}, n_{k}}$ preserves $\mathcal{H}_{0}^{\mathbb{R}}, P$ also does, while (H2) immediately gives
($\left.\mathrm{P}^{\prime}\right)$ For any $f \in \mathcal{H}_{0}^{\mathbb{R}}(\delta)$ and $\tilde{f} \in \mathcal{H}_{0}(\delta)$ with $d_{\mathcal{H}_{0}}(\tilde{f}, f)<\eta$ we have $P(\tilde{f}) \in \mathcal{H}_{0}\left(\epsilon_{0}\right)$ which clearly implies the crucial property (P). By Theorem $6.7, P$ is constant, yielding the desired contradiction.

This concludes the proof of (C1). Together with (H2), it implies (C2).
The essentially independent proofs of Theorems 6.7 (of differential topology nature) and 6.6 (dynamical) will be given in the next two sections.

7. Triviality of Retractions

7.1. Plan of the proof of Theorem 6.7. Let us describe the plan of the proof of Theorem 6.7. Let $P^{\mathbb{R}}=P \mid \mathcal{H}_{0}^{\mathbb{R}}$. Let $\mathcal{Z}^{\mathbb{R}}=\operatorname{Im} P^{\mathbb{R}}=\operatorname{Fix} P^{\mathbb{R}}$. By Property (P), $\mathcal{Z}^{\mathbb{R}} \subset \mathcal{K}$, and hence $\mathcal{Z}^{\mathbb{R}}=P(\mathcal{K})$, which is compact. We will complete the argument in three consecutive steps:
Step 1. $\mathcal{Z}^{\mathbb{R}}$ is a finite-dimensional topological manifold (by the Implicit Function Theorem),
Step $2 \mathcal{Z}^{\mathbb{R}}$ is a single point (by a Brower-like topological argument),
Step 3. $\mathcal{Z}:=\operatorname{Im} P=\operatorname{Fix} P$ is a single point, too (by analytic continuation).
The first and third steps would be immediate to carry out if we were dealing with Banach spaces. For instance, corresponding to the first step we have:

Lemma 7.1 ([Ca]). Let \mathcal{B} be a complex (respectively, real) Banach space and let P be a holomorphic (respectively, real analytic) map from an open set of \mathcal{B} to \mathcal{B} such that $P(0)=0$. Assume that $D P(0)$ is compact and $P^{2}=P$ near 0 . Then for any sufficiently small open ball B around 0 in $\mathcal{B}, P(B)$ is a complex (respectively, real analytic) finite-dimensional manifold.

Proof. This is a particular case of [Ca] but we will give the argument for the convenience of the reader. Let $h=\mathrm{id}-D P(0)-P$. Since $P^{2}=P$, we have $D P(0)=D P(0)^{2}$ and hence $D h(0)^{2}=\mathrm{id}$, so h is a local diffeomorphism near 0 . Obviously $h \circ P=D P(0) \circ h$, so $P(B)=h^{-1}(D P(0)(h(B)))$. Since $D P(0)$ is compact and $D P(0)=D P(0)^{2}$, it has finite rank so $D P(0) \cdot h(B)$ is an open subset of a finite dimensional subspace.

In order to translate this more familiar analysis to our context, we will use Banach slices (first introduced in [L3]).
7.2. Banach slices. Let $f \in \mathcal{H}_{0}$. We call an open quasidisk $W f$-admissible if $W \supset K(f)$ and f extends holomorphically to W and continuously to the boundary. Let $\mathcal{B}_{W}^{*} \subset \mathcal{B}_{W}$ be the Banach space of all holomorphic maps $w: W \rightarrow \mathbb{C}$ such that $w(z)=O\left(z^{d+1}\right)$ near 0 and w extends continuously to the boundary.

The set of f-admissible quasidisks can be partially ordered by inclusion. This partial order is directed in the sense that any finite set has a lower bound, thus it makes sense to speak of "sufficiently small" f-admissible W.

Let $B_{W, r}$ be the open ball around 0 in \mathcal{B}_{W}^{*} of radius r. The following lemma is a straightforward consequence of the definition of the topology in \mathcal{H}_{0}.

Lemma 7.2. For every $\epsilon>0$, and $f \in \mathcal{H}_{0}(\epsilon)$, for every sufficiently small f admissible W, for every $r>0$, there exists a neighborhood \mathcal{V} of f in $\mathcal{H}_{0}(\epsilon)$ such that for every $f^{\prime} \in \mathcal{V}, W$ is f^{\prime}-admissible and $f^{\prime}-f \in B_{W, r}$.

It is easy to see that there exists $\epsilon_{0}=\epsilon_{0}(f, W)$ and $r_{0}=r_{0}(f, W)>0$ such that if $w \in B_{W, r_{0}}$ then $f^{\prime}=f+w$ admits a polynomial-like restriction $f^{\prime}: U \rightarrow V$ with $K\left(f^{\prime}\right) \subset U \subset W$ and $\bmod (V \backslash U)>\epsilon_{0}$. Since $f^{\prime}(0)=0, f^{\prime}$ defines a germ in $\mathcal{H}_{0}\left(\epsilon_{0}\right)$ denoted by $j_{f, W, r_{0}}(w)$. The map $j_{f, W, r_{0}}: B_{W, r_{0}} \rightarrow \mathcal{H}_{0}$ is readily seen to be continuous and injective.
Theorem 7.3. Let f, W and r_{0} be as above, and let $\lambda \mapsto w_{\lambda}$ be a continuous map $\mathbb{D} \rightarrow B_{W, r_{0}}$. Then w_{λ} is holomorphic if and only if $f_{\lambda}=j_{f, W, r_{0}}\left(w_{\lambda}\right)$ is a holomorphic path in \mathcal{H}_{0}.

For the proof, we will need a preliminary result. As in the proof of Theorem 4.2, for $0<R<1 / 4$ we let $I_{R}: \mathcal{H}_{0} \rightarrow \mathcal{B}_{\mathbb{D}_{R}}$ be the restriction operator, which is well defined by (4.1).

Lemma 7.4. Let $0<R<1 / 4$ and let $\lambda \mapsto f_{\lambda}$ be a continuous map $\mathbb{D} \rightarrow \mathcal{H}_{0}$. Then f_{λ} is a holomorphic path in \mathcal{H}_{0} if and only if $\lambda \mapsto I_{R}\left(f_{\lambda}\right)$ is a holomorphic path in $\mathcal{B}_{\mathbb{D}_{R}}$.
Proof. The only if part (equivalent to the path holomorphicity of I_{R}) was established in the proof of Theorem 4.2.

Assume that $I_{R}\left(f_{\lambda}\right)$ is a holomorphic path in $\mathcal{B}_{\mathbb{D}_{R}}$. Since f_{λ} is assumed to be continuous, in order to show that it is a holomorphic path, it is enough to construct a holomorphic motion $h_{\lambda}: \operatorname{int} K\left(f_{0}\right) \rightarrow \operatorname{int} K\left(f_{\lambda}\right)$ such that for each λ, h_{λ}
is holomorphic and conjugates f_{0} and f_{λ} : by the Extension λ-Lemma Theorem, it extends to a holomorphic motion $\mathbb{C} \rightarrow \mathbb{C}$, which, by continuity, conjugates $f_{0} \mid K\left(f_{0}\right)$ and $f_{\lambda} \mid K\left(f_{\lambda}\right)$. For the construction, we will make use of the Böttcher coordinate (c.f. proof of Theorem 4.2) $\psi_{f}: \operatorname{int} K(f) \rightarrow \mathbb{D}$ associated to any map $f \in \mathcal{H}_{0}$: the desired holomorphic motion is then given by $h_{\lambda}=\psi_{f_{\lambda}}^{-1} \circ \psi_{f_{0}}$. It is obviously injective and holomorphic in z, and conjugates f_{0} and f_{λ}, for each $\lambda \in \mathbb{D}$, so we just need to show that $\psi_{f_{\lambda}}^{-1}(z)$ is a holomorphic function $\mathbb{D} \times \mathbb{D} \rightarrow \mathbb{C}$.

Holomorphicity of $I_{R}\left(f_{\lambda}\right)$ implies that $f_{\lambda}(z)$ is a holomorphic function $\mathbb{D} \times \mathbb{D}_{R} \rightarrow$ \mathbb{C}. By the Köebe-1/4 Theorem, if $z \in \mathbb{D}_{R^{3}}$ then $\psi_{f_{\lambda}}(z) \in \mathbb{D}_{R^{2}}$, so $\psi_{f_{\lambda}}(z)^{d} \in \mathbb{D}_{R^{4}}$, and (again by the Köebe- $1 / 4$ Theorem), $f_{\lambda}(z)=\psi_{f_{\lambda}}^{-1}\left(\psi_{f_{\lambda}}(z)^{d}\right) \in \mathbb{D}_{R^{3}}$. It follows that $f_{\lambda}^{n}(z) \in \mathbb{D}_{R^{3}} \subset \mathbb{D}_{R}$ for every $z \in \mathbb{D}_{R^{3}}, n \geq 1$. By holomorphic iteration we conclude that for every $n \geq 1, f_{\lambda}^{n}(z)$ is holomorphic in $(\lambda, z) \in \mathbb{D} \times \mathbb{D}_{R^{3}}$.

Let $\psi_{f_{\lambda}, n}: \operatorname{int} K\left(f_{\lambda}\right) \rightarrow \mathbb{C}$ be such that $\psi_{f_{\lambda}, n}(z)^{d^{n}}=f_{\lambda}^{n}(z)$ and $D \psi_{f_{\lambda}, n}(0)=1$. It is easy to see that $\psi_{f_{\lambda}, n}$ converges to $\psi_{f_{\lambda}}$ uniformly on compacts of int $K\left(f_{\lambda}\right)$ (actually one usually constructs the Böttcher coordinate $\psi_{f_{\lambda}}$ directly as the limit of the $\left.\psi_{f_{\lambda}, n}\right)$. Over $(\lambda, z) \in \mathbb{D} \times \mathbb{D}_{R^{3}}$, the holomorphicity of $f_{\lambda}^{n}(z)$ implies, successively, that $\psi_{f_{\lambda}, n}(z)$ and $\psi_{f_{\lambda}}(z)$ are also holomorphic.

By the Köebe- $1 / 4$ Theorem, $\psi_{f_{\lambda}}^{-1}\left(\mathbb{D}_{R^{4}}\right) \subset \mathbb{D}_{R^{3}}$, and it follows that $\psi_{f_{\lambda}}^{-1}(z)$ is a holomorphic function of $(\lambda, z) \in \mathbb{D} \times \mathbb{D}_{R^{4}}$. Since for each fixed $\lambda \in \mathbb{D}, \psi_{f_{\lambda}}^{-1}$ is a univalent function of \mathbb{D}, Hartog's Theorem implies that $\psi_{f_{\lambda}}^{-1}(z)$ is in fact a holomorphic function of (λ, z) through $\mathbb{D} \times \mathbb{D}$.

Proof of Theorem 7.3. Assume that f_{λ} is a holomorphic path in \mathcal{H}_{0}, and let us show that for every bounded linear functional $L: \mathcal{B}_{W}^{*} \rightarrow \mathbb{C}, \lambda \mapsto L\left(w_{\lambda}\right)$ is holomorphic: since w_{λ} takes values in a ball, this implies that $\lambda \mapsto w_{\lambda}$ is holomorphic. By (4.1), $f_{\lambda}(z)$, and hence $w_{\lambda}(z)=f_{\lambda}(z)-f(z)$, is holomorphic in $\mathbb{D} \times \mathbb{D}_{1 / 4}$. By Hartog's Theorem, it is then holomorphic in $\mathbb{D} \times W$, and since it is continuous in z up to ∂W, and bounded on both variables, we see that $\lambda \mapsto f_{\lambda}(z)$ is a holomorphic function for every $z \in \bar{W}$. By Riesz's Theorem, there exists a complex measure of finite mass μ, supported on \bar{W}, such that $L(w)=\int w(z) d \mu(z)$, so $\lambda \mapsto L\left(w_{\lambda}\right)$ is holomorphic.

Assume now that $\lambda \mapsto w_{\lambda}$ is holomorphic. Since $j_{f, W, r_{0}}$ is continuous, $\lambda \mapsto f_{\lambda}$ is continuous as well. Fix $0<R<1 / 4$. By (4.1), $\mathbb{D}_{1 / 4} \subset K(f) \subset W$, hence the restriction operator $I_{R, W}: \mathcal{B}_{W}^{*} \rightarrow \mathcal{B}_{\mathbb{D}_{R}}$ is holomorphic. Since $w_{\lambda} \in \mathcal{B}_{W}^{*}$ depends holomorphically on λ, it follows that $I_{R}\left(f_{\lambda}\right)=I_{R}(f)+I_{R, W}\left(w_{\lambda}\right) \in \mathcal{B}_{R}$ also depends holomorphically on λ. By Lemma 7.4, f_{λ} is a holomorphic path.
7.3. Proof of Theorem 6.7. We will carry out the three steps of the plan of proof described in $\S 7.1$. We will use the notation introduced therein.

Let $\epsilon>0$ be such that $\mathcal{K} \subset \mathcal{H}_{0}(\epsilon)$. Let $f \in \mathcal{Z}^{\mathbb{R}}$. Let us consider a neighborhood \mathcal{U} of f in $\mathcal{H}_{0}(\epsilon / 2)$. If it is small enough then all the maps $f \in \overline{\mathcal{U}}$ are well defined on some admissible neighborhood of $W \supset K(f)$ (see $\S 7.2$), so $\overline{\mathcal{U}}$ naturally embeds into some Banach ball $B_{r}:=B_{W, r}$. Let $J: \overline{\mathcal{U}} \rightarrow B_{r}(f), J(g)=g-f \mid W$ denote this embedding. Since $\mathcal{H}_{0}(\epsilon / 2)$ is compact, $J(\overline{\mathcal{U}})$ is compact as well.

On the other hand, by Property (P) and continuity of P, there is a $\rho>0$ such that $P\left(j_{f, W, \rho}\left(B_{\rho}\right)\right) \subset \mathcal{U}$. Hence $P_{f}:=J \circ P \circ j_{f, W, \rho}: B_{\rho} \rightarrow B_{r}$ is a compact Banach holomorphic retraction.

Let us consider its real-symmetric part $P_{f}^{\mathbb{R}}: B_{\rho}^{\mathbb{R}} \rightarrow B_{r}^{\mathbb{R}}$. It is a compact real analytic Banach retraction, so by Lemma 7.1, the set Fix $P_{f}^{\mathbb{R}}$ near f is a real analytic
finite-dimensional submanifold of B_{ρ}. But since $\mathcal{Z}^{\mathbb{R}}$ is compact, topology induced on it from the Banach ball coincides with its own topology (induced from the whole space \mathcal{H}_{0}). Hence $\mathcal{Z}^{\mathbb{R}}$ is a finite-dimensional topological manifold near f. Since $f \in \mathcal{Z}^{\mathbb{R}}$ is arbitrary, the first step of the proof is completed.

By Lemma 2.1, the space $\mathcal{E}^{\mathbb{R}}$ is contractible. Since $\mathcal{H}_{0}^{\mathbb{R}}$ is homeomorphic to it, it is also contractible. Since $\mathcal{Z}^{\mathbb{R}}$ is a retract of $\mathcal{H}_{0}^{\mathbb{R}}$, it is contractible as well. (If h_{t} is a homotopy that contracts $\mathcal{H}_{0}^{\mathbb{R}}$ to a point, then $P \circ h_{t}: \mathcal{Z}^{\mathbb{R}} \rightarrow \mathcal{Z}^{\mathbb{R}}$ does the same to $\mathcal{Z}^{\mathbb{R}}$.) But the only contractible compact finite-dimensional manifold (without boundary) is a point (since otherwise the top homology group $H^{n}(M)$ is non-trivial.) This concludes the 2nd step.

Thus, $P_{f}\left(B_{\rho}^{\mathbb{R}}\right)=\{0\}$. Since $P_{f}: B_{\rho} \rightarrow B_{r}$ is holomorphic (as a Banach map), $P_{f}\left(B_{\rho}\right)=\{0\}$.

Let us show that a small neighborhood \mathcal{V} of f in \mathcal{Z} belongs to the neighborhood $\mathcal{U} \subset \mathcal{H}_{0}(\epsilon / 2)$ considered above. Otherwise $f \in \operatorname{cl}(\mathcal{Z} \backslash \mathcal{U})$. Since the notion of closedness in \mathcal{H}_{0} is given in terms of sequences, there would exist a sequence $f_{n} \in$ $\mathcal{Z} \backslash \mathcal{U}$ converging to f. By Property (P), the maps $f_{n}=P f_{n}$ would eventually belong to $\mathcal{H}_{0}(\epsilon / 2)$, and hence to the neighborhood \mathcal{U} - contradiction.

Thus, we have $\mathcal{V} \subset \mathcal{U} \subset B_{r}$. Shrinking \mathcal{V} if needed, we make $J(\mathcal{V}) \subset B_{\rho}$ and hence

$$
J(\mathcal{V})=J(P(\mathcal{V})) \subset P_{f}\left(B_{\rho}\right)=\{0\}
$$

Since J is injective, $\mathcal{V}=\{f\}$. Thus, f is an isolated point in \mathcal{Z}. But since $\mathcal{Z}=P\left(\mathcal{H}_{0}\right)$ is connected, we conclude that $\mathcal{Z}=\{f\}$, which completes the last step of the proof.

8. Almost periodicity and retractions

We now turn to the dynamical construction of retractions. The presence of enough compactness, together with the non-expansion of the Carathéodory metric, allows us to implement the notion of Almost Periodicity (adapted appropriately to the cocycle setting).
8.1. Almost periodic cocycles. We will now discuss cocycles with values in a Hausdorff topological semi-group \mathcal{S}. Since we aim to eventually take $\mathcal{S}=$ $\operatorname{Hol}^{\mathbb{R}}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$, we allow for the possibility that \mathcal{S} is not metrizable, neither satisfy the First Countability Axiom, however we will always assume that \mathcal{S} is sequential in the sense that the notions of continuity, closedness and compactness can be defined in terms of sequences.

A subcocycle is the restriction $G^{k_{m}, k_{n}}$ of a cocycle G to a subsequence of \mathbb{N}. More formally, it is a pullback of G under a strictly monotone embedding $k: \mathbb{N} \rightarrow \mathbb{N}$.

The ω-limit set of a cocycle, $\omega(G)$, is the set of all existing $\lim G^{m, n}$ as $m \rightarrow \infty$ and $n-m \rightarrow \infty$.

A cocycle is called almost periodic if the family $\left\{G^{m, n}\right\}_{(m, n) \in Q}$ is precompact in \mathcal{S}. The ω-limit set of an almost periodic cocycle is compact.

We say that a cocycle converges if there is the limit $G^{m, \infty}:=\lim _{n \rightarrow \infty} G^{m, n}$ for every $m \in \mathbb{N}$. The cocyclic rule extends to the limits of converging cocycles:

$$
G^{m, \infty}=G^{n, \infty} G^{m, n}, \quad(m, n) \in Q .
$$

We say that a cocycle double converges if there exists the limit $G^{\infty \infty}:=\lim _{m \rightarrow \infty} G^{m, \infty}$. The cocyclic rule extends to the limits of double converging cocycles:

$$
G^{m, \infty}=G^{\infty, \infty} G^{m, \infty}, \quad G^{\infty, \infty}=\left(G^{\infty, \infty}\right)^{2}
$$

In particular, $G^{\infty, \infty}$ is an idempotent.
Lemma 8.1. An almost periodic cocycle has a double converging subcocycle.
Proof. A converging subcocycle is extracted by means of the diagonal process. Selecting then a converging subsequence of the $G^{m, \infty}$, we obtain a double converging subcocycle.

Corollary 8.2. The ω-limit set of an almost periodic cocycle contains an idempotent.

We endow the space of cocycles with the pointwise convergence topology:

$$
G_{k} \rightarrow G \quad \text { if } \quad G_{k}^{m, n} \rightarrow G^{m, n} \quad \text { for all }(m, n) \in Q
$$

The shift T in the space of cocycles is induced by the embedding $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto$ $n+1$. In other words, $(T G)^{m, n}=G^{m+1, n+1},(m, n) \in Q$.

If G is almost periodic then all its translates $\left\{T^{n} G\right\}_{n=0}^{\infty}$ form a precompact family of cocycles.

Given a function $\rho: \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$, we say that a cocycle is uniformly ρ-contracting if for any $\gamma>0$ there exists an N such that $\rho\left(G^{m, n}\right)<\gamma$ for any $(m, n) \in Q$ with $n-m \geq N$.

A continuous function $\rho: \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ is called Lyapunov

$$
\rho\left(F_{l} F F_{r}\right) \leq \rho(F) \quad \text { for any } F, F_{l}, F_{r} \in \mathcal{S} \text {. }
$$

The next assertion will not be directly used but can serve as a model for what follows:
Proposition 8.3. Let G be an almost periodic cocycle that has a Lyapunov function ρ. If $\rho(e)=0$ for any limit idempotent $e \in \omega(G)$ then the cocycle is uniformly ρ contracting.

We leave it as an exercise.
We will need a more general form of the above proposition. Assume that we have two continuous functions, $\rho^{\prime} \geq \rho \geq 0$ on \mathcal{S}, which are not assumed to be individually Lyapunov, but rather possess a joint Lyapunov property (adapted to the cocycle):

$$
\begin{equation*}
\rho\left(G^{l, n}\right) \leq \rho\left(G^{l, m}\right) \quad \text { and } \quad \rho\left(G^{l, n}\right) \leq \rho^{\prime}\left(G^{m, n}\right) \quad \text { for any } l<m<n . \tag{8.1}
\end{equation*}
$$

We call it a Lyapunov pair for the cocycle.
We will also need a uniform version of the above lemma, over a family of cocycles. Let \mathcal{G} be a family of cocycles G_{s} labeled by an element s of some set Σ. We say that \mathcal{G} is uniformly almost periodic if the whole family $G_{s}^{m, n}, s \in \Sigma,(m, n) \in Q$, is precompact in \mathcal{S}. Then $\omega(\mathcal{G}) \subset \mathcal{S}$ stands for the set of the limits of all converging sequences $G_{s_{k}}^{m_{k}, n_{k}}$ as $m_{k} \rightarrow \infty$ and $n_{k}-m_{k} \rightarrow \infty$.

We say that the family is uniformly ρ-contracting if for any $\gamma>0$ there exists an N such that $\rho\left(G_{s}^{m, n}\right)<\gamma$ for any $s \in \Sigma, m \in \mathbb{N}$ and $n \geq m+N$.
Lemma 8.4. Let \mathcal{G} be a uniformly almost periodic family of cocycles. Let (ρ, ρ^{\prime}) be a Lyapunov pair for all cocycles in \mathcal{G}. If $\rho^{\prime}(e)=0$ for any limit idempotent $e \in \omega(\mathcal{G})$ then \mathcal{G} is uniformly ρ-contracting.

Proof. Otherwise there exists a $\gamma>0$, a sequence $s_{k} \in \Sigma$ and two non-decreasing sequences $q_{k} \in \mathbb{N}$ and $n_{k} \rightarrow \infty$ such that $\rho\left(G_{s_{k}}^{q_{k}, q_{k}+n_{k}}\right) \geq \gamma$. Since \mathcal{G} is uniformly almost periodic, the sequence of cocycles $T^{q_{k}} G_{s_{k}}$ admits a converging subsequence. Let G be a limit cocycle. Then $\rho\left(G^{0, n}\right) \geq \gamma>0$ for any $n>0$ (by continuity of ρ and the first part of (8.1)). By the second part of (8.1), we have $\rho^{\prime}\left(G^{m, n}\right) \geq \gamma$ for all $(m, n) \in Q$. Hence $\rho^{\prime}(\phi) \geq \gamma$ for all $\phi \in \omega(G)$. In particular, $\rho^{\prime}(G)>0$ for any idempotent $e \in \omega(G)$ from Lemma 8.2. Since $\omega(G) \subset \omega(\mathcal{G})$, we arrive at a contradiction.
8.2. Tame spaces. Let X be a (sequential) topological space endowed with a continuous metric $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ that is compatible with the topology on compact subsets of X (but not necessarily on X). We say that X is tame if the following properties hold:
(1) There exists a filtration of compact subsets, $X_{1} \subset X_{2} \subset \cdots \subset X$ such that $\cup X_{i}=X$
(2) Each compact set in X is contained in some X_{i};
(3) a set is open in X if and only if its intersection with any compact subset of X is relatively open.
A family of continuous maps $F_{s}: X \rightarrow X^{\prime}, s \in \Sigma$, between tame spaces (with metrics d and d^{\prime} respectively) is called equicompact if for every compact set $K \subset X$ there exists a compact set $K^{\prime} \subset X^{\prime}$ such that $F_{s}(K) \subset K^{\prime}$ for all $s \in \Sigma$.

- An equicompact family $\left\{F_{s}\right\}$ is called equicontinuous on compact sets if for every compact set $K \subset X$, for every $x \in K$ and $\epsilon>0$ there exists $\delta=\delta(K, x, \epsilon)>0^{18}$ such that for every $s \in \Sigma$, we have

$$
\text { if } d(x, y)<\delta \text { and } y \in K \text { then } d^{\prime}\left(F_{s}(x), F_{s}(y)\right)<\epsilon
$$

- A sequence $\left\{F_{n}\right\}$ is called uniformly converging on compact sets if $\left\{F_{n}\right\}$ is equicompact and there exists a continuous map $F: X \rightarrow X^{\prime}$ such that for every compact set $K \subset X$, we have

$$
\lim _{n \rightarrow \infty} \sup _{x \in K} d^{\prime}\left(F_{n}(x), F(x)\right)=0
$$

Notice that in this case F_{n} is necessarily equicontinuous on compact sets.

- A family of cocycles $G_{s}, s \in \Sigma$, is called uniformly contracting on compact sets if for any compact subset $K \subset X$ and any $\gamma>0$, there exists a compact set K^{\prime} and an N such that
$G_{s}^{m, n}(K) \subset K^{\prime} \quad$ and $\quad \operatorname{diam}\left(G_{s}^{m, n}(K)\right)<\gamma$ for all $s \in \Sigma, m \in \mathbb{N}$ and $n \geq m+N$.
The space of continuous maps $F: X \rightarrow X^{\prime}$ between two tame spaces is endowed with topology of uniform convergence on compact subsets.

Lemma 8.5. A sequence of maps $F_{n}: X \rightarrow X^{\prime}$ between tame spaces is precompact if and only if it is equicontinuous on compact sets.
Proof. In the non-trivial direction, it follows from the Ascoli-Arzela's Theorem on each X_{i} and the diagonal argument.

Given a tame space X, let $\mathcal{S} \equiv \mathcal{S}_{X}$ be the topological semigroup of all continuous weak contractions of X (endowed with topology of uniform convergence on compact subsets). Idempotents in this semigroup are retractions.

[^12]Lemma 8.6. Let X be a tame space, and let \mathcal{G} be a uniformly almost periodic family of cocycles $G_{s}^{m, n}, s \in \Sigma$, with values in the semigroup \mathcal{S}_{X}. If all limit retractions $P \in \omega(\mathcal{G})$ are constants, then \mathcal{G} is uniformly contracting on compact sets.

Proof. Since \mathcal{G} is uniformly almost periodic, the family of maps $G_{s}^{m, n}$ is equicompact: for any $i \in \mathbb{N}$ there exists $j=j(i) \geq i$ such that $G_{s}^{m, n}\left(X_{i}\right) \subset X_{j}$ for all $s \in \Sigma$, $(m, n) \in Q$.

Let $\rho_{i}: \mathcal{S} \rightarrow \mathbb{R}_{\geq 0}$ be defined as $\rho_{i}(G)=\operatorname{diam} G\left(X_{i}\right)$. Obviously, these functions are continuous and form a monotonically increasing sequence. Moreover, for any $i \in \mathbb{N}$, the functions $\rho:=\rho_{i}$ and $\rho^{\prime}:=\rho_{j(i)}$ form a Lyapunov pair for any cocycle $G \in \mathcal{G}$. Indeed, for any $l<m<n$ we have:

$$
\rho\left(G^{l, n}\right)=\operatorname{diam} G^{l, n}\left(X_{i}\right) \leq \operatorname{diam} G^{l, m}\left(X_{i}\right)=\rho\left(G^{l, m}\right)
$$

(where the estimate holds since the semigroup \mathcal{S} consists of weakly contracting maps)

$$
\rho\left(G^{l, n}\right)=\operatorname{diam} G^{l, n}\left(X_{i}\right) \leq \operatorname{diam} G^{m, n}\left(X_{j}\right)=\rho^{\prime}\left(G^{m, n}\right)
$$

(where the estimate holds since $G^{l, m}\left(X_{i}\right) \subset X_{j}$).
Since all retractions $P \in \omega(\mathcal{G})$ are constants, we have $\rho^{\prime}(P)=0$ for any of them. By Lemma 8.4, the family \mathcal{G} of cocycles is uniformly ρ-contracting, so for any $\gamma>0$, there exists an N such that $\operatorname{diam} G_{s}^{m, n}\left(X_{i}\right)<\gamma$ as long as $n \geq m+N$.

Since i is arbitrary, we are done.
8.3. Proof of Theorem 6.6. Notice that \mathcal{H}_{0}, with the Carathéodory metric, is tame in the sense of $\S 8.2$ (take, e.g., $X_{i}:=\mathcal{H}_{0}\left(2^{-i}\right)$ as a filtration). By the Schwarz Lemma, $\operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$ is a sub-semigroup of $\mathcal{S}_{\mathcal{H}_{0}}$, which turns out to be closed:

Lemma 8.7. If $F_{n} \in \operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$ converges uniformly on compact sets to a map F then $F \in \operatorname{Hol}\left(\mathcal{H}_{0}, \mathcal{H}_{0}\right)$.
Proof. We have to show that if $\gamma: \mathbb{D} \rightarrow \mathcal{H}_{0}$ is a holomorphic path then $F \circ \gamma$ is a holomorphic path as well. Let $0<\rho<1 / 4$, and let $I_{\rho}: \mathcal{H}_{0} \rightarrow \mathcal{B}_{\mathbb{D}_{\rho}}$ be the restriction operator (c.f. (4.1)). The sequence of maps $\left\{I_{\rho} \circ F_{n} \circ \gamma\right\}_{n}$ converges uniformly on compact sets to $I_{\rho} \circ F \circ \gamma$. By Lemma 7.4, each $I_{\rho} \circ F_{n} \circ \gamma$ is holomorphic in the usual Banach sense, so the limit $I_{\rho} \circ F \circ \gamma$ is holomorphic as well. By Lemma 7.4, $F \circ \gamma$ is path holomorphic.

Property (H1) implies that the family \mathcal{G} is uniformly almost periodic. If (C1) does not hold then by Lemma 8.6, there exists a sequence $G_{k} \in \mathcal{G}$ and $\left(m_{k}, n_{k}\right) \in Q$ with $n_{k}-m_{k} \rightarrow \infty$, such that $G_{k}^{m_{k}, n_{k}}$ converges uniformly on compact sets to a nonconstant retraction $P \in \mathcal{S}_{\mathcal{H}_{0}}$. By Lemma 8.7, P is path holomorphic, concluding the proof.

9. Horseshoe

9.1. Beau bounds and rigidity yield the horseshoe.

9.1.1. Complex case. Let \mathcal{F} be a family of disjoint little Multibrot sets \mathcal{M}_{k} (encoding certain renormalization combinatorics). We say that beau bounds are valid for \mathcal{F}, if they are valid for the family of infinitely renormalizable maps f whose renormalizations $R^{n} f$ have combinatorics $\overline{\mathcal{M}}=\left(\mathcal{M}_{n}\right)_{n=0}^{\infty}$ with $\mathcal{M}_{n} \equiv \mathcal{M}_{k_{n}} \in \mathcal{F}$. (We will loosely say that " $\overline{\mathcal{M}}$ is in \mathcal{F} ".)

We say that \mathcal{F} is rigid if for any combinatorics $\overline{\mathcal{M}}$ in \mathcal{F}, there exists a unique polynomial $p_{c}: z \mapsto z^{d}+c$ which is infinitely renormalizable with this combinatorics.

Remark 9.1. It is conjectured that any family \mathcal{F} is in fact rigid (which would imply that the Multibrot set is locally connected at all infinitely renormalizable parameter values, and hence would prove MLC, for all unicritical families).

In [Ch], it is shown that beau bounds implies rigidity for a large class of combinatorics, and in fact for all combinatorics for which beau bounds have been proved ([K], [KL1], [KL2]).

Remark 9.2. In the quadratic case, this rigidity result had been established in [L2]. The work [Ch] makes use of recent advances: a new version of the Pullback argument developed in [AKLS].

A semi-conjugacy between two dynamical systems $F: X \rightarrow X$ and $G: Y \rightarrow Y$ is a continuous surjection $h: X \rightarrow Y$ such that $h \circ F=G \circ h$.

Let $\Sigma \equiv \Sigma_{\mathcal{F}}=\mathcal{F}^{\mathbb{Z}}$ be the symbolic space with symbols from \mathcal{F}, and let $\sigma: \Sigma \rightarrow \Sigma$ be the corresponding two-sided shift. A map $h: \Sigma \rightarrow \mathcal{C}$ is called combinatorially faithful if for any combinatorics $\overline{\mathcal{M}}=\left(\mathcal{M}_{n}\right)_{n=-\infty}^{\infty} \in \Sigma$, the image $f=h(\overline{\mathcal{M}})$ is renormalizable with combinatorics \mathcal{M}_{0}, and h semi-conjugates σ and $R \mid \mathcal{A}$.

Theorem 9.1. Assume a family \mathcal{F} has beau bounds and is rigid. Then there exists a precompact R-invariant set $\mathcal{A} \subset \mathcal{C}$ and a combinatorially faithful semi-conjugacy $h: \Sigma \rightarrow \mathcal{A}$. Moreover, R is exponentially contracting along the leaves of the hybrid lamination of \mathcal{A}, with respect to the Carathéodory metric. ${ }^{19}$

Proof. Since \mathcal{F} has beau bounds, there exists $\epsilon>0$ such that

$$
\bmod R^{n} p \geq \epsilon, \quad n=0,1, \ldots
$$

for any polynomial $p: z \mapsto z^{d}+c$ which is infinitely renormalizable with combinatorics \mathcal{F}.

Let $\overline{\mathcal{M}}=\left(\mathcal{M}_{n}\right)_{n \in \mathbb{Z}} \in \Sigma$. For any $-n \in \mathbb{Z}_{-}$, there exists a polynomial $p_{c_{n}}$ which is infinitely renormalizable with combinatorics $\left(\mathcal{M}_{-n}, \mathcal{M}_{-n+1}, \ldots\right)$. Then for any $l \in \mathbb{Z}, l \geq-n$, the germ $f_{n, l}:=R^{n+l} p_{c_{-n}} \in \mathcal{C}(\epsilon)$ is infinitely renormalizable with combinatorics $\left(\mathcal{M}_{l}, \mathcal{M}_{l+1}, \ldots\right)$. As this family of germs is precompact, for any l we can select a subsequence $f_{n(i), l}$ converging to some $f_{l} \in \mathcal{C}(\epsilon)$ as $n(i) \rightarrow-\infty$. This map is infinitely renormalizable with combinatorics $\left(\mathcal{M}_{l}, \mathcal{M}_{l+1}, \ldots\right) .{ }^{20}$ Using the diagonal procedure (going backwards in l) we ensure that $R f_{l-1}=f_{l}$. Thus, we obtain a bi-infinite sequence of maps $f_{l} \in \mathcal{C}(\epsilon)$ such that f_{l} is renormalizable with combinatorics \mathcal{M}_{l} and $R f_{l-1}=f_{l}$.

Assume there exist two such sequences, $\left(f_{l}\right)_{l \in \mathbb{Z}}$ and $\left(\tilde{f}_{l}\right)_{l \in \mathbb{Z}}$. Since \mathcal{F} is rigid, the hybrid class of any f_{l} is uniquely determined by the renormalization combinatorics $\left(\mathcal{M}_{l}, \mathcal{M}_{l+1}, \ldots\right)$, so for any $l \in \mathbb{Z}$, the germs f_{l} and \tilde{f}_{l} are hybrid equivalent. But by Theorem 5.1, the renormalization is exponentially contracting with respect to the Carathéodory metric in the hybrid lamination. Hence there exist $C>0$ and $\lambda \in(0,1)$ such that

$$
\begin{equation*}
d_{\chi\left(f_{0}\right)}\left(f_{0}, \tilde{f}_{0}\right) \leq C(\epsilon) \lambda^{n} d_{\chi\left(f_{n}\right)}\left(f_{-n}, \tilde{f}_{-n}\right) \tag{9.1}
\end{equation*}
$$

Letting $n \rightarrow \infty$ we see that $f_{0}=\tilde{f}_{0}$. For the same reason, $f_{l}=\tilde{f}_{l}$ for any $l \in \mathbb{Z}$.

[^13]Thus, we obtain a well defined equivariant map $h: \overline{\mathcal{M}} \mapsto f$, where $f \equiv f_{0}$ is a polynomial-like germ for which there exists a bi-infinite sequence $f_{l} \in \mathcal{C}(\epsilon), l \in \mathbb{Z}$, such that f_{l} is renormalizable with combinatorics \mathcal{M}_{l}. Let $\mathcal{A} \subset \mathcal{C}$ consist of all such germs, which makes h surjective by definition.

To see that h is continuous, consider a sequence $\overline{\mathcal{M}}^{(k)} \rightarrow \overline{\mathcal{M}}$ in Σ, and let $f_{l}^{(k)}=h\left(\sigma^{l}\left(\overline{\mathcal{M}}^{(k)}\right)\right)$. We need to show that $h\left(\overline{\mathcal{M}}^{(k)}\right) \rightarrow h\left(\overline{\mathcal{M}}_{k}\right)$. By passing through an arbitrary subsequence, we may assume that for each $l \in \mathbb{Z}, f_{l}^{(k)}$ converges in $\mathcal{C}(\epsilon)$ to some f_{l}. By definition of convergence in Σ, for each $l \in \mathbb{Z}$ and for each k sufficiently large, $f_{l}^{(k)}$ is renormalizable with combinatorics in \mathcal{M}_{l}, i.e., $\chi\left(f_{l}^{(k)}\right) \in \mathcal{M}_{l}$.

Let us show that f_{l} is renormalizable with combinatorics \mathcal{M}_{l}. If \mathcal{M}_{l} is a primitive copy, then it is closed, which readily implies that $\chi\left(f_{l}\right) \in \mathcal{M}_{l}$. If \mathcal{M}_{l} is a satellite copy, its closure is obtained by adding the root, so we also need to guarantee that $\chi\left(f_{l}^{(k)}\right)$ does not converge to the root. But for k large, $\chi\left(f_{l}^{(k)}\right)$ belongs to a subcopy of \mathcal{M}_{l} (consisting of those polynomials in \mathcal{M}_{l} whose renormalization has combinatorics \mathcal{M}_{l+1}), which is at definite distance from the root of \mathcal{M}_{l}, so we can again conclude that $\chi\left(f_{l}\right) \in \mathcal{M}_{l}$.

By continuity of any renormalization operator with fixed combinatorics, we also conclude $R f_{l}=f_{l+1}$. By the definition of $h, h(\overline{\mathcal{M}})=f_{0}=\lim f_{0}^{(k)}=\lim h\left(\overline{\mathcal{M}}^{(k)}\right)$, as desired.
9.1.2. Real horseshoe. Let $\mathcal{F}^{\mathbb{R}}$ stand for the family of all real renormalization combinatorics with minimal periods. Let $\sigma: \Sigma \rightarrow \Sigma$ be the corresponding shift. While neither beau bounds, nor (complex) rigidity have been established for $\mathcal{F}^{\mathbb{R}},{ }^{21}$ the proven beau bounds and rigidity for real-symmetric germs is enough to construct the renormalization horseshoe. Moreover, we will show that in this case, the combinatorially faithful semi-conjugacy h is actually a homeomorphism:
Theorem 9.2. For the family $\mathcal{F}^{\mathbb{R}}$, there is an \mathbb{R}-invariant set $\mathcal{A} \subset \mathcal{C}^{\mathbb{R}}$ and a combinatorially faithful homeomorphism $h: \Sigma \rightarrow \mathcal{A}$. Moreover, R is exponentially contracting along the leaves of the hybrid lamination of \mathcal{A} (endowed with the Carathéodory metric), which contains all infinitely renormalizable real-symmetric germs.

Proof. The construction of the horseshoe \mathcal{A}, along with the combinatorially faithful semi-conjugacy h, is basically the same as in Theorem 9.1, with the following adjustments:
(1) The polynomials $p_{c_{n}}$ should be selected to be real, $c_{n} \in \mathbb{R}$;
(2) Theorem 6.1 (beau bounds for real maps) provides the needed compactness for the construction of the maps f_{l};
(3) Rigidity of \mathcal{F} is replaced with rigidity for real polynomials, obtained in [L2], [GS] (quadratic case) and in [KSS] (arbitrary degree): ${ }^{22}$ any real renormalization combinatorics determines a single real-symmetric hybrid leaf;
(4) Exponential contraction is obtained by combining Theorems 6.2 and 5.1.

[^14]The injectivity of h follows from the injectivity of the renormalization operator acting on real p-l maps [MvS, p. 440]. What is left, is to verify continuity of h^{-1}. Since convergence in Σ means coordinatewise convergence, it is equivalent to the following statement:

Lemma 9.3. Let $\left(\overline{\mathcal{M}}^{(j)}\right)_{j=1}^{\infty}$ be a sequence of symbolic strings $\overline{\mathcal{M}}^{(j)}=\left(\mathcal{M}_{n}^{(j)}\right)_{n \in \mathbb{Z}}$ in Σ such that the corresponding germs $f_{j} \equiv h\left(\overline{\mathcal{M}}^{(j)}\right)$ converge to some $f_{\infty} \in \mathcal{A}$. Then for any $n \in \mathbb{Z}$, the combinatorics $\mathcal{M}_{n}^{(j)}$ of $R^{n} f_{j}$ eventually coincides with that of $R^{n}\left(f_{\infty}\right)$.

Notice that Lemma 9.3 is clear for $n=0$: a real perturbation of a twice renormalizable real map is renormalizable (at least once) with the same combinatorics (since on the boundary of the renormalization windows the maps are not twice renormalizable, see $\S 2.10$). Since the renormalization operator acts continuously on \mathcal{A}, we have for any $n \geq 0$ that $R^{n} f_{j} \rightarrow R^{n} f_{\infty}$ as $j \rightarrow \infty$. It follows that Lemma 9.3 holds for all $n \geq 0$ as well.

In order to prove it inductively for $n<0$, it is enough to show that the hypothesis of Lemma 9.3 imply that $R^{-1} f_{j} \rightarrow R^{-1} f_{\infty}$. To this end, it is sufficient to prove that the renormalization combinatorics of the germs $R^{-1} f_{j}$ are bounded. Indeed, in this case any limit g of these germs is renormalizable and $R g=f_{\infty}$. By injectivity of the renormalization operator, $g=R^{-1} f_{\infty}$, and the conclusion follows.

Boundedness of the renormalization combinatorics follows from an analysis of the domain of analyticity of limits of renormalized germs:

Lemma 9.4. Let $\tilde{f}_{j} \in \mathcal{C}^{\mathbb{R}}, j \geq 1$, be a sequence of renormalizable germs. If the renormalization periods of the \tilde{f}_{j} are going to infinity, then any limit of renormalizations $R \tilde{f}_{j}$ is either a unicritical polynomial or its real trace has a bounded domain of analyticity.

See Appendix A for a proof (unlike the previous parts of this paper, it relies on the fine combinatorial and geometric structure of one renormalization).

Let us apply Lemma 9.4 to $\tilde{f}_{j}=R^{-1} f_{j}$. Notice that $f_{\infty}=\lim R \tilde{f}_{j}$ cannot be a unicritical polynomial since those are never anti-renormalizable. It can neither have a bounded domain of analyticity, due to McMullen's result [McM2] implying that the real trace of f_{∞} (which is infinitely anti-renormalizable with a priori bounds) extends analytically to \mathbb{R}. So, both options offered by Lemma 9.4 are impossible in our situation, and hence the renormalization periods of the germs \tilde{f}_{j} must be bounded. This concludes the proof of Lemma 9.3, and thus of Theorem 9.2.

Appendix A. Analytic continuation of the first renormalization

A.1. Principal nest and scaling factors. Through this section, we consider a renormalizable unimodal map $f: I \rightarrow I$, of period p, with a polynomial-like extension in $\mathcal{C}^{\mathbb{R}}\left(\epsilon_{0}\right)$ for some fixed $\epsilon_{0}>0$. For simplicity of notation, we will also assume that f is even. We will also assume that we can write $f(x)=\psi\left(x^{d}\right)$ for some diffeomorphism ψ with non-positive Schwarzian derivative. All arguments below can be carried out without the extra assumptions with only technical changes, but in the situation arising in our application (f is infinitely anti-renormalizable with a priori bounds) they are indeed automatically satisfied.

Below $C>1$ stands for a constant which may only depend on ϵ_{0}.

Recall that a closed interval $T \subset I$ which is symmetric (i.e., $f(\partial T)$ is a single point) is called nice if $f^{k}(\partial T) \cap \operatorname{int} T=\emptyset, k \geq 1$. If the critical point returns to the interior of a nice interval T, then we let T^{\prime} be the central component of the first return map to T. We let $\lambda(T)=\left|T^{\prime}\right| /|T|$ be the scaling factor.

We define the principal nest $I_{n}, n \geq 0$ as follows. Since f is renormalizable, it has a unique orientation reversing fixed point p. Its preimage $\{p,-p\}$ bounds a nice interval, which we denote I_{0}. Then we define I_{n+1} inductively as I_{n}^{\prime}, i.e., I_{n+1} is the central component of the first return map to I_{n}.

Let us assume from now on that $p>2$. Under this condition, $I_{n+1} \Subset \operatorname{int} I_{n}$ for every $n \geq 0$. Let $\lambda_{n}=\left|I_{n+1}\right| /\left|I_{n}\right|$ be the corresponding scaling factors.

Let g_{n} be the first return map to I_{n}. We say that g_{n} is central if $g_{n}(0) \in I_{n+1}$. We define a sequence $\left(j_{k}\right)_{k \geq 0}$ inductively so that $j_{0}=0$ and j_{k+1} is the minimum $n>j_{k}$ such that g_{n-1} is non-central. Since f is renormalizable, g_{n} is central for all sufficiently large n, so the sequence $\left(j_{k}\right)$ terminates at some $N=j_{\kappa}$. We call κ the height of f.

We have the following basic estimates on the scaling factors (see [Ma1]):
A priori bounds. We have: $\lambda_{j_{k}} \leq 1-C^{-1}$ for every k. Moreover. the maps $g_{j_{k}}: I_{j_{k+1}} \rightarrow I_{j_{k}}$ are compositions of power maps $x \mapsto x^{d}$ and diffeomorphisms with bounded distortion.

Corollary A.1.

$\lambda_{n+1} \leq C \lambda_{n}^{1 / d}$,
$\lambda_{j_{k+1}} \leq C \prod_{n=j_{k}}^{j_{k+1}-1} \lambda_{n}^{1 / d}$.
Let v_{n} be the principal return times, i.e. $f^{v_{n}} \mid I_{n+1}=g_{n}$. In particular, $v_{N}=p$ is the renormalization period. We let $g=f^{p}$. Then $g: J \rightarrow J$ is the unimodal pre-renormalization of f, where $J=\cap_{n \geq 0} I_{n}$.
Lemma A.2. We have $T_{p} \subset I_{\max \{0, N-1\}}$.
Proof. If $\kappa=0$ then clearly $T_{p}=I_{1} \subset I_{0}$.
Assume that $\kappa \geq 1$ and hence $N \geq 1$. The interval T_{p} is the smallest interval containing 0 whose boundary is taken by f^{p} to the boundary of I_{0}. Hence it is enough to show that $f^{p}\left(\partial I_{N-1}\right) \subset \partial I_{0}$.

It is easy to see that for $k \geq 1$ we have

$$
f^{s v_{j_{k-1}}}(0) \in I_{j_{k}-s} \backslash I_{j_{k}+1-s} \quad \text { for } \quad 1 \leq s \leq j_{k}-j_{k-1} .
$$

We conclude that
$v_{j_{k}} \geq v_{j_{k-1}-1}+\left(j_{k}-j_{k-1}\right) v_{j_{k-1}}=\sum_{n=j_{k-1}-1}^{j_{k}-1} v_{n}=v_{j_{k-1}}+\sum_{n=j_{k-1}-1}^{j_{k}-2} v_{n}, \quad$ for $\quad j_{k} \geq 2$,
which implies inductively that

$$
\begin{equation*}
v_{j_{k}} \geq \sum_{n=0}^{j_{k}-2} v_{n} \quad \text { for } \quad j_{k} \geq 2 \tag{A.1}
\end{equation*}
$$

Letting $k=\kappa$ (so that $j_{\kappa}=N$ and $v_{N}=p$) we obtain:

$$
t:=p-\sum_{n=0}^{N-2} v_{n} \geq 0
$$

Since $f^{v_{n}}\left(\partial I_{n+1}\right) \subset \partial I_{n}$, it follows that $f^{p}\left(\partial I_{N-1}\right) \subset f^{t}\left(\partial I_{0}\right) \subset \partial I_{0}$.
A.2. Transition maps. The geometric considerations made below are all contained in [L1], though we do not need the finest part of that argument, dealing with growth of geometry for Fibonacci-like cascades (with or without saddle-node subcascades), which is not valid in higher degree anyway.

We say that $n \geq 0$ is admissible if $f^{n}(0) \in I_{0}$. For admissible n, let T_{n} be the closure of the connected component of $f^{-n}\left(\right.$ int $\left.I_{0}\right)$ containing 0 . In particular $T_{0}=I_{0}$. More generally, letting $w_{n}=\sum_{k=0}^{n-1} v_{k}$, we obtain $T_{w_{k}}=I_{k}$. If n is admissible we let $A_{n}: T_{n} \rightarrow \mathbb{I}$ be the orientation preserving affine homeomorphism, where $\mathbb{I}=[-1,1]$.

We say that T_{n} is a pullback of T_{m} if $n>m$ and $f^{n-m}(0) \in T_{m}$. In this case, f^{n-m} restricts to a map $\left(T_{n}, \partial T_{n}\right) \rightarrow\left(T_{m}, \partial T_{m}\right)$, and we let $G_{n, m}=A_{m} \circ f^{n-m} \circ$ A_{n}^{-1}, which we call a transition map.

We say that T_{n} is a kid of T_{m} if T_{n} is a pullback of T_{m} but is not a pullback of any T_{k} with $m<k<n$. Notice that in this case, $f^{n-m-1} \mid f\left(T_{n}\right)$ extends to an analytic diffeomorphism onto T_{m}. If T_{n} is a kid of T_{m}, the transition map $G_{n, m}$ is called short, otherwise it is called long.

A short transition map $G_{n, m}$ is called δ-good if $f^{n-m-1} \mid f\left(T_{n}\right)$ extends to an analytic diffeomorphism onto a $\delta\left|T_{m}\right|$-neighborhood of T_{m}. The usual Koebe space argument (see [MvS]) yields:

Lemma A.3. For every $\delta>0$, any δ-good transition map belongs to a compact set $\mathcal{K}=\mathcal{K}\left(\delta, \epsilon_{0}\right) \subset C^{\omega}(\mathbb{I}, \mathbb{I})$, only depending on ϵ_{0} and δ.

Here C^{ω} stands for the space of analytic maps, with the usual inductive limit topology.

There is a unique canonical decomposition of a long transition map into short transition maps: letting $m=n_{1}<\ldots<n_{l}=n$ be the sequence of moments such that $f^{n-n_{j}}(0) \in T_{n_{j}}$, then $T_{n_{j+1}}$ is a kid of $T_{n_{j}}$ for $0 \leq j \leq l-1$ and $G_{n, m}=G_{n_{2}, n_{1}} \circ \cdots \circ G_{n_{l}, n_{l-1}}$.

A central cascade is a sequence $T_{n_{1}}, \ldots, T_{n_{l}}$ such that $T_{n_{j+1}}$ is the first kid of $T_{n_{j}}$ and $f^{n_{j+1}-n_{j}}(0) \in T_{n_{j+1}}$ for $1 \leq j \leq l-1$. Notice that in this case $n_{j+1}-n_{j}$ is independent of $j \in[1, l-1]$. If $n_{2}-n_{1}<p$ then we distinguish the saddle-node and Ulam-Neumann types of central cascades according to whether $0 \notin f^{n_{2}-n_{1}}\left(T_{n_{2}}\right)$ or $0 \in f^{n_{2}-n_{1}}\left(T_{n_{2}}\right)$.

A long transition map is called saddle-node/Ulam-Neumann if its canonical decomposition $G_{n_{2}, n_{1}} \circ \cdots \circ G_{n_{l}, n_{l-1}}$ is such that $T_{n_{1}}, \ldots, T_{n_{l}}$ is a saddle-node/UlamNeumann cascade.

We say that a long transition map $G_{n_{l}, n_{1}}$ is δ-good if all the components $G_{n_{j+1}, n_{j}}$ of its canonical decomposition are δ-good. Notice that if $G_{n_{l}, n_{1}}$ is central then this is equivalent to δ-goodness of the top level $G_{n_{2}, n_{1}}$.

Besides δ-goodness, an important role is also played by two parameters associated to a long transition map of saddle-node type: the scaling factors of the top and bottom levels, $\lambda_{\text {top }}=\left|T_{n_{2}}\right| /\left|T_{n_{1}}\right|$ and $\lambda_{\text {bot }}=\left|T_{n_{l}}\right| /\left|T_{n_{l-1}}\right|$.

Lemma A.4. For every $0<\underline{\lambda}<\bar{\lambda}<1, \delta>0$, any δ-good long transition maps of saddle-node type with parameters $\lambda_{\mathrm{bot}}, \lambda_{\mathrm{top}} \in[\underline{\lambda}, \bar{\lambda}]$ belongs to a compact set $\mathcal{K}\left(\underline{\lambda}, \bar{\lambda}, \delta, \epsilon_{0}\right) \subset C^{\omega}(\mathbb{I}, \mathbb{I})$.

Proof. For such a transition map $G_{n, m}$, let us consider a maximal saddle-node cascade $T_{n_{1}}, \ldots, T_{n_{L}}$ such that $m=n_{1}$ and $n=n_{l}$ for some $l \leq L$.

By Lemma A.3, we only risk losing compactness when l, and hence L, is large, which is related to the presence of a nearly parabolic fixed point in $T_{n_{2}}$ for $F=$ $f^{n_{2}-n_{1}}$ (since there is in fact no fixed point, the terminology means that a parabolic fixed point appears after a small perturbation of F). In this case we have the basic geometric estimate, due to Yoccoz:

$$
\begin{equation*}
\frac{\left|T_{n_{i}}\right|}{\left|T_{n_{i+1}}\right|}-1 \sim \max \{i, L-i\}^{-2}, \quad 1 \leq i \leq L-1 \tag{A.2}
\end{equation*}
$$

(the implied constants depending on the bounds $\underline{\lambda}, \bar{\lambda}$ on scaling factors). See [FM], Section 4.1, for a discussion of almost parabolic dynamics and the statement of Yoccoz's Lemma.

In particular, either l is bounded (and we are fine) or $L-l$ is bounded. Assuming that $l \geq 4, F^{3}\left(T_{n_{l}}\right)$ is contained in a connected component J of $T_{n_{l-3}} \backslash T_{n_{L-1}}$. Since Lemma A. 3 provides bounds on $F^{3} \mid T_{n_{l}}$, we just have to show that $F^{l-4} \mid J$ is under control. But the map F^{l-4} maps J onto a connected component of $T_{n_{1}} \backslash$ $T_{n_{L-l+3}}$, and extends analytically to a diffeomorphism onto a connected component J^{\prime} of $T_{n_{1}}^{\delta} \backslash T_{n_{L-l+4}}$, where $T_{n_{1}}^{\delta}$ is a $\delta\left|T_{n_{1}}\right|$-neighborhood of $T_{n_{1}}$. By (A.2), J^{\prime} is a $\delta^{\prime}\left|F^{l-4}(J)\right|$-neighborhood of $F^{l-4}(J)$ for some $\delta^{\prime}>0$, so $F^{l-4} \mid J$ is under Koebe control.
A.3. Small scaling factors. In [L1], several combinatorial properties are shown to yield small scaling factors. We will need somewhat simpler estimates, which we will obtain from the following:

Lemma A.5. For every $\epsilon>0$, there exists $\delta=\delta\left(\epsilon, \epsilon_{0}\right)>0$ with the following property. Assume that the postcritical set intersects a connected component D of the first landing map to $I_{j_{k+1}}$ such that $D \subset I_{j_{k}} \backslash I_{j_{k}+1}$ and $|D| /\left|I_{j_{k}}\right|<\delta$. Then $\left|I_{j_{\kappa}+1}\right| /\left|I_{j_{k}}\right|<\epsilon$.
Proof. We may assume that $\lambda_{j_{k}}$ is not small and that $\kappa-k$ is bounded. Let $r>0$ be minimal such that $f^{r}(0) \in D$.

Assume first $r<v_{j_{k+1}}$, i.e., orb 0 lands in D before landing in $I_{j_{k+1}}$. Let us consider the first landing $f^{v_{j_{k}}}(0) \in I_{j_{k+1}-1} \backslash I_{j_{k+1}}$ of orb 0 in $I_{j_{k}}$. Let

$$
\begin{equation*}
D^{\prime} \subset I_{j_{k+1}-1} \backslash I_{j_{k+1}} \tag{A.3}
\end{equation*}
$$

be the pullback of D under $f^{r-v_{j_{k}}}$ containing $f^{v_{j_{k}}}(0)$. (In other words, D^{\prime} is the component of the domain of the first landing map to $I_{j_{k+1}}$ containing $f^{v_{j_{k}}}(0)$.)

The map $f^{r-v_{j_{k}}}: D^{\prime} \rightarrow D$ is a composition of the transit map

$$
f^{\left(j_{k+1}-j_{k}-1\right) v_{j_{k}}}: I_{j_{k+1}-1} \backslash I_{j_{k+1}} \rightarrow I_{j_{k}} \backslash I_{j_{k}+1}
$$

and (possibly) several first return maps to $I_{j_{k}} \backslash I_{j_{k}+1}$. It has a Koebe extension $\tilde{D}^{\prime} \rightarrow L$, where L is the connected component of $I_{j_{k}} \backslash\left\{z_{0}\right\}$ containing D and $z_{0}=f^{\left(j_{k+1}-j_{k}-1\right) v_{j_{k}}}(0) \in I_{j_{k}+1}$. This implies an upper bound on the derivative of the inverse map $D \rightarrow D^{\prime}$, unless the distance from z_{0} to D is small compared to $\left|I_{j_{k}}\right|$.

In the former case, we readily conclude that

$$
\begin{equation*}
\left|D^{\prime}\right| \leq C|D| . \tag{A.4}
\end{equation*}
$$

On the other hand, we may assume that $\left|I_{j_{k+1}-1}\right| \asymp\left|I_{j_{k}}\right|$ (otherwise the result is obvious), so $\left|D^{\prime}\right|$ is small compared with $\left|I_{j_{k+1}-1}\right|$. If it is, in fact, small compared to the distance δ to $\partial I_{j_{k+1}-1}$ then

$$
\lambda_{j_{k+1}} \asymp\left(\left|D^{\prime}\right| / \delta\right)^{1 / d}
$$

is small as well. Otherwise δ is small compared to $\left|I_{j_{k+1}-1}\right|$ Then the return to $I_{j_{k+1}-1}$ is "very low", i.e., $\sigma:=\left|f^{v_{j_{k}}}\left(I_{j_{k+1}}\right)\right| /\left|I_{j_{k+1}-1}\right|$ is small. But then $\lambda_{j_{k+1}} \asymp$ $\sigma^{1 / d}$ is small again.

In the latter case, z_{0} must be close to $\partial I_{j_{k}+1}$, so by considering the transit map $f^{\left(j_{k+1}-j_{k}-2\right) v_{j_{k}}}: I_{j_{k+1}-2} \backslash I_{j_{k+1}} \rightarrow I_{j_{k}} \backslash I_{j_{k}+2}$, we conclude that the distance δ from $f^{v_{j_{k}}}(0)$ to $\partial I_{j_{k+1}-1}$ is small compared to $\left|I_{j_{k}}\right|$, so we can apply the above analysis of a very low return to obtain that $\lambda_{j_{k+1}}$ is small.

Assume now $r>v_{j_{k+1}}$, i.e., orb 0 lands in $I_{j_{k+1}}$ before landing in D. Let $s \in(0, r)$ be its last landing moment in $I_{j_{k+1}}$ before landing in D. Then

$$
f^{s}(0) \in I_{j_{k+1}} \backslash I_{j_{k+1}+1}, \quad \text { for otherwise } \quad f^{r-s}(0) \in f^{r-s}\left(I_{j_{k+1}+1}\right) \subset D,
$$

contradicting the minimality of r.
Let Δ be the pullback of D under f^{r-s} containing $f^{s}(0)$ (which is the component of the domain of the first return map to $I_{j_{k+1}}$ containing $\left.f^{s}(0)\right)$. The transit map $f^{r-s}: \Delta \rightarrow D$ is the composition of the fist return map $f^{v_{j_{k}}}$ and the transit map from an interval D^{\prime} to D, where D^{\prime} is defined as (A.3) except that it is centered at $f^{s+v_{j_{k}}}(0)$ rather than at $f^{v_{j_{k}}}(0)$. By the previous analysis, either the return to $I_{j_{k+1}-1}$ is very low, and we are done since this implies that $\lambda_{j_{k+1}}$ is small, or estimate (A.4) holds. Since $f^{v_{j_{k}}}$ is the power map x^{d}, up to bounded distortion, and the intervals $I_{j_{k+1}}, I_{j_{k+1}+1}$ are comparable, we conclude that $|\Delta|$ is small compared with $I_{j_{k+1}}$. All the more, the component Δ^{\prime} of the first landing map to $I_{j_{k+2}}$ containing $f^{s}(0)$ is small compared with $I_{j_{k+1}}$. We can now start the procedure over with k replaced by $k+1$ and D replaced by Δ^{\prime}.

Since $\kappa-k$ is assumed to be bounded, this process must eventually produce a small scaling factor.

One important situation in our analysis corresponds to the critical orbit hitting deep inside a long central cascade.

More precisely, we say that T_{m} is k-deep $(k \geq 2)$ inside a central cascade if there is a central cascade $T_{n_{1}}, \ldots, T_{n_{l}=m}, T_{n_{l+1}}=T_{m}^{\prime}, \ldots, T_{n_{L}}$ such that $k \leq l \leq L-k$. We say that the critical orbit hits T_{m} if there is $r \geq 0$ such that $f^{r}(0) \notin T_{m}^{\prime}$, but $f^{r+n_{2}-n_{1}}(0) \in T_{m} \backslash T_{m}^{\prime}$.

Lemma A.6. For every $\epsilon>0$ there exists $k=k\left(\epsilon, \epsilon_{0}\right)>0$ with the following property. Assume that the critical orbit hits some T_{m} which is k-deep inside a central cascade. Then $\left|I_{j_{\kappa}+1}\right| /\left|T_{m}\right|<\epsilon$.

Proof. It is no loss of generality to assume that $T_{n_{1}}=I_{j_{i}}$ for some i (since between any interval T_{n} and its kid T_{n}^{\prime}, there must be an interval of the principal nest).

We may assume that $\lambda_{j_{i}}$ is not small. Let D^{\prime} be the component of the domain of the first landing map to $I_{j_{i+1}}$ containing $f^{r+n_{2}-n_{1}}(0)$. Then $\left|D^{\prime}\right| /\left|I_{j_{i}}\right|$ is small, see (A.2). Let $s<r+n_{2}-n_{1}$ be maximal with $f^{s}(0) \in I_{j_{i}} \backslash I_{j_{i}+1}$. Let D be the component of the domain of the first landing map to $I_{j_{i+1}}$ containing $f^{s}(0)$. Pulling back the Koebe space, we get $|D| /\left|I_{j_{i}}\right|$ small. The result follows from Lemma A. 5 .

A simpler situation involves long Ulam-Neumann cascades:
Lemma A.7. For every $\epsilon>0$ there exists $k=k\left(\epsilon, \epsilon_{0}\right)>0$ with the following property. Let $T_{n_{1}}, \ldots, T_{n_{k}}$ be a central cascade of Ulam-Neumann type. Then there exists $I_{t} \subset T_{n_{k}}$ such that $\lambda_{t}<\epsilon$.

Proof. As in Lemma A.6, we may assume that $T_{n_{1}}=I_{j_{i}}$. Due to the long UlamNeumann cascade, $\lambda_{j_{i+1}-1}$ is close to 1 , see [L2, Lemma 8.3]. In particular, the domain D of the first landing map to $I_{j_{i+1}}$ containing $f^{v_{j_{i}}}(0)$ has lots of Koebe space in $I_{j_{i}}$. Pulling back by $f^{v_{j_{i}}}$, we conclude that $\left|I_{j_{i+1}+1}\right| /\left|I_{j_{i}+1}\right|$ is small, which implies that $\lambda_{j_{i+1}}$ is small.

We will also need the following easy criterion. Let us say that T_{n} is δ-safe if the postcritical set does not intersect a $\delta\left|T_{n}\right|$-neighborhood of ∂T_{n}. Notice that if T_{n} is δ-safe and T_{m} is a kid of T_{n} then $G_{m, n}$ is δ-good.

Lemma A.8. For every $\epsilon>0$, there exists $\delta>0$ such that if $0 \leq k \leq \kappa$ is such that $I_{j_{k}}$ is not δ-safe, then $\left|I_{j_{k}+1}\right| /\left|I_{j_{k}}\right|<\epsilon$.
Proof. Consider first the case of "postcritical set inside", i.e., for some $r>0$, $f^{r}(0) \in I_{j_{k}}$ is near $\partial I_{j_{k}}$. Let D be the component of the first landing map to $I_{j_{k+1}}$ containing $f^{r}(0)$. Since it has Koebe space inside $I_{j_{k}}$ (the landing map $D \rightarrow I_{j_{k+1}}$ extends to a diffeomorphism $\left.I_{j_{k}} \supset D^{\prime} \rightarrow I_{j_{k}}\right),|D| /\left|I_{j_{k}}\right|$ is small, so the result follows from Lemma A.5.

Consider now the case of "postcritical set outside", i.e., for some $r>0, f^{r}(0) \notin$ $I_{j_{k}}$ is near $\partial I_{j_{k}}$. We may assume that $k>0$ (otherwise applying f once produces "postcritical set inside" reducing to the previous case). We may assume further that $\lambda_{j_{k}}$ is not small (otherwise the result is obvious), and that if $j_{k}-j_{k-1}$ is large then this is due to a saddle-node cascade (otherwise we can apply Lemma A.7). Letting $r^{\prime}=r+\left(j_{k}-j_{k-1}-1\right) v_{j_{k-1}}$, it follows that $f^{r^{\prime}}(0)$ is just outside $\partial I_{j_{k-1}+1}$. Let D be the connected component of the first landing map to $I_{j_{k}}$ containing $f^{r^{\prime}}(0)$. Since it has Koebe space inside $I_{j_{k-1}} \backslash I_{j_{k-1}+1}$, this implies that $|D| /\left|I_{j_{k-1}}\right|$ is small, and the result follows from Lemma A.5.

A.4. Main precompactness.

Lemma A.9. Let us consider a composition of transition maps $G_{m_{2}, m_{1}} \circ \cdots \circ$ $G_{m_{r}, m_{r-1}}$, where each $G_{m_{j+1}, m_{j}}$ is either short or saddle-node. Assume that $T_{m_{1}}$ is δ-safe, $\lambda\left(T_{m_{1}}\right)<1-\delta$ and $\left|T_{m_{r}}\right| /\left|T_{m_{1}}\right|>\delta$. Assume also that whenever $G_{m_{j+1}, m_{j}}$ is saddle-node of length at least l then $T_{m_{j+1}}$ is not l-deep inside a central cascade. Then there exists $\delta^{\prime}=\delta\left(\epsilon_{0}, \delta, l, r\right)>0$ and a compact subset $\mathcal{K}=\mathcal{K}\left(\epsilon_{0}, \delta, l, r\right) \subset$ $C^{\omega}(\mathbb{I}, \mathbb{I})$ such that for $2 \leq j \leq r$ we have
(1) $T_{m_{j}}$ is δ^{\prime}-safe,
(2) $\lambda\left(T_{m_{j}}\right)<1-\delta^{\prime}$,
(3) $G_{m_{j}, m_{j-1}} \in \mathcal{K}$.

Proof. Induction reduces considerations to the case $r=2$.
Notice that if we show that $G_{m_{2}, m_{1}}$ is in a compact class, it will follow that $T_{m_{2}}$ is δ^{\prime}-safe (any postcritical set near $\partial T_{m_{2}}$ would be taken by $f^{m_{2}-m_{1}}$ to postcritical set near $\partial T_{m_{1}}$. Moreover, it will also follow that $\lambda\left(T_{m_{2}}\right)<1-\delta^{\prime}$: the map $f^{m_{2}-m_{1}}$ takes $T_{m_{2}}^{\prime}$ into a connected component of the first landing map to $T_{m_{1}}^{\prime}$ and any such component must have Koebe space inside $T_{m_{1}}$ since $\lambda\left(T_{m_{1}}\right)<1-\delta$.

Thus we just have to show that $G_{m_{2}, m_{1}}$ is in a compact class. Notice that $G_{m_{2}, m_{1}}$ is δ-good. If $G_{m_{2}, m_{1}}$ is short, the conclusion from Lemma A.3. If $G_{m_{2}, m_{1}}$ is saddlenode, this will follow from Lemma A. 4 once we show that $\lambda_{\text {top }}$ and $\lambda_{\text {bot }}$ are bounded away from 0 and 1 . Clearly both are at least δ and moreover $\lambda_{\text {top }}=\lambda\left(T_{m_{1}}\right)<1-\delta$.

Let $T_{n_{1}=m_{1}}, \ldots, T_{n_{s}=m_{2}}, \ldots, T_{n_{L}}$ be the maximal central cascade starting at $T_{n_{1}}$. As in Lemma A.4, see (A.2), we see that if $\lambda_{\text {bot }}$ is close to 1 then s and $L-s$ are large. But by hypothesis $\min \{s, L-s\} \leq l$, giving the result.

The following two similar estimates will be proved simultaneously:
Lemma A.10. For $\epsilon>0$ there exists a compact subset $\mathcal{K}=\mathcal{K}\left(\epsilon, \epsilon_{0}\right) \subset C^{\omega}(\mathbb{I}, \mathbb{I})$ with the following property. Assume that $\left|I_{j_{k}+1}\right| /\left|I_{j_{k}}\right|>\epsilon$. Then $G_{w_{j_{k}}+p, w_{j_{k}}} \in \mathcal{K}$.
Lemma A.11. For $\epsilon>0$ and $b_{0} \in \mathbb{N}$, there exists a compact subset $\mathcal{K}=\mathcal{K}\left(\epsilon, \epsilon_{0}, b_{0}\right) \subset$ $C^{\omega}(\mathbb{I}, \mathbb{I})$ with the following property. Assume that $\left|I_{j_{\kappa}+1}\right| /\left|I_{0}\right|>\epsilon$. If $0 \leq b<$ $\min \left\{p, b_{0}\right\}$ is such that $p-b$ is admissible then $G_{p-b, 0} \in \mathcal{K}$.
A.4.1. Proof of Lemmas $A .10$ and $A .11$. The proofs of both lemmas follow a basically parallel path. In both cases we need to estimate a map of type $G_{w_{j_{k}}+p-b, w_{j_{k}}}$, where in the setting of Lemma A. 10 we set $b=0$, while in the setting of Lemma A. 11 we set $k=0$. Write it as a composition of a minimal number of either short transition maps or long transition maps of Ulam-Neumann or saddle-node type. Clearly the number of elements of this decomposition is bounded in terms of $\kappa-k$, which in turn is bounded in terms of ϵ.

Let us now consider a finer decomposition $G_{m_{2}, m_{1}} \circ \cdots \circ G_{m_{r}, m_{r-1}}$, where we split the Ulam-Neumann pieces into short transition maps (so that each $G_{m_{j+1}, m_{j}}$ is either short or saddle-node). The Ulam-Neumann cascades have bounded length (by Lemma A.7), so r is also bounded.

In order to conclude, it is enough to show that the conditions of Lemma A. 9 are satisfied. Since $T_{m_{1}}=I_{j_{k}}, \lambda\left(T_{m_{1}}\right)$ is indeed bounded away from 1, and it is δ-safe by Lemma A.8. So we just have to check that for $1 \leq j \leq r-1$, if $G_{m_{j+1}, m_{j}}$ is saddle-node with big length then $T_{m_{j+1}}$ is not too deep inside a central cascade.

The following combinatorial estimate will be key to the analysis.
Lemma A.12. Suppose that $G_{m_{j+1}, m_{j}}$ is saddle-node, and let $T_{n_{1}=m_{j}}, \ldots, T_{n_{l}=m_{j+1}}$ be the associated cascade. If $l \geq 4+b$ then $f^{m_{r}-m_{j}}(0) \notin T_{n_{4+b}}$.
Proof. Let $j_{k}+1 \leq s \leq j_{\kappa}$ be minimal such that $T_{m_{j}} \supset I_{s}$. It follows that

$$
\begin{equation*}
m_{j}-m_{1} \leq \sum_{n=j_{k}}^{s-1} v_{n} \tag{A.5}
\end{equation*}
$$

Since $I_{s} \subset T_{n_{1}} \subset \operatorname{int} I_{s-1}$, it follows that $I_{s+1} \subset T_{n_{2}} \subset \operatorname{int} I_{s}$ and $T_{n_{3}} \subset \operatorname{int} I_{s+1}$. Then $n_{3}-n_{2} \geq v_{s} \geq n_{2}-n_{1}$, and since $n_{t+1}-n_{t}=n_{2}-n_{1}$ for $1 \leq t \leq l-1$, we see that $n_{2}-n_{1}=v_{s}$.

Assume first that $s=j_{t}$ for some $k<t \leq \kappa$. Then (A.1) and (A.5) imply $m_{j}-m_{1} \leq 2 v_{s}$, so that $m_{j}-m_{1}+b \leq(2+b) v_{s}$. Thus,
$p=m_{r}-m_{1}+b=\left(m_{r}-m_{j}\right)+\left(m_{j}-m_{1}\right)+b=\left(m_{r}-m_{j}\right)+q, \quad$ where $q \leq(2+b) v_{s}$. If $x:=f^{m_{r}-m_{j}}(0) \in T_{n_{3+b}}$ then $f^{n v_{s}}(x) \in f^{v_{s}} T_{n_{2}}$ for $n \leq 2+b$. Hence $f^{p}(0)=$ $f^{q}(x)$ is either in $f^{v_{s}}\left(T_{n_{2}}\right)$ or it is outside $T_{n_{1}}$. In any case, it can not belong to the renormalization interval $\cap_{n \geq 1} I_{n}$ - contradiction.

Assume now that $j_{t}+1=s<j_{t+1}$ for some $k \leq t<\kappa$. Arguing as before, we see that $m_{j}-m_{1} \leq 3 v_{s}$, and if $f^{m_{r}-m_{j}}(0) \in T_{n_{4+b}}$ we arrive at a similar contradiction.

Assume now that $j_{t}+2 \leq s<j_{t+1}$ for some $k \leq t<\kappa$. Then the map $f^{n_{2}-n_{1}}$ has a unimodal extension to the interval $I_{s-1} \supset T_{n_{1}}$. Hence $T_{n_{1}}$ is a kid of the interval $T_{n_{0}} \subset I_{s-2}$ of depth $n_{0}=2 n_{1}-n_{2}$. But then $G_{m_{j+1}, m_{j}}$ is not a maximal saddlenode transition map in the decomposition of $G_{m_{r}, m_{1}}$, contradicting the definition of m_{j}.

Let $T_{n_{1}=m_{j}}, \ldots, T_{n_{l}=m_{j+1}}, \ldots, T_{n_{L}}$ be the maximal continuation of the saddle-node cascade associated to $G_{m_{j+1}, m_{j}}$, and assume that l and $L-l$ are large. By Lemma A.12, $f^{m_{r}-m_{j}}(0) \notin T_{n_{4+b}}$, which implies that $f^{m_{r}-m_{j+1}}(0) \in T_{n_{s}} \backslash T_{n_{s+1}}$ for some $l \leq s \leq l+2+b$. Indeed, $f^{m_{r}-m_{j+1}}(0) \in T_{m_{j+1}}=T_{n_{l}}$, but $f^{m_{r}-m_{j+1}}(0) \notin$ $T_{n_{l+3+b}}$, for otherwise

$$
f^{m_{r}-m_{j}}(0)=f^{m_{j+1}-m_{j}}\left(f^{m_{r}-m_{j+1}}(0)\right) \in f^{n_{l}-n_{1}}\left(T_{n_{l+3+b}}\right) \subset T_{n_{b+4}} .
$$

On the other hand, since $G_{m_{j+1}, m_{j}}$ is a maximal saddle-node cascade in the decomposition of $G_{m_{r}, m_{1}}$, we must have $f^{m_{r}-m_{j+1}+n_{1}-n_{2}}(0) \notin T_{n_{s+1}}$. We can then apply Lemma A. 6 to conclude that $\left|I_{j_{\kappa}+1}\right| /\left|I_{j_{k}}\right|$ is small, contradiction. This establishes that either l or $L-l$ must be small, as desired.
A.5. Proof of Lemma 9.4. We may assume that the sequence $f_{n}=\tilde{f}_{n}$ converges to some f_{∞}. Let p_{n} be the period of f_{n}. Let Λ_{n} be the affine map such that $\Lambda_{n} \circ\left(f_{n}\right)^{p_{n}} \circ \Lambda_{n}^{-1}$ is normalized.

Assume first that the prerenormalization intervals of f_{n} do not have length bounded from below: following the terminology of [L2], we will say that the combinatorics of the f_{n} is not essentially bounded. Then either $\inf \lambda_{N\left(f_{n}\right)}\left(f_{n}\right)=0$ or $\sup \kappa\left(f_{n}\right)=\infty$ by [L1].

If $\inf \lambda_{N\left(f_{n}\right)}\left(f_{n}\right)=0$ then f_{∞} is a unicritical polynomial [L1].
Consider now the case $\inf \lambda_{N\left(f_{n}\right)}\left(f_{n}\right)>0$ and $\sup \kappa\left(f_{n}\right)=\infty$. We may assume that $\lim \kappa\left(f_{n}\right)=\infty$. Passing through a subsequence we may assume that for each $k \geq 0, \Lambda_{n}\left(I_{j_{k\left(f_{n}\right)-k}}\left(f_{n}\right)\right)$ converges to a closed interval D_{k}. Clearly each D_{k} is a bounded interval (scaling factors minorated) and $\cup D_{k}=\mathbb{R}$ (scaling factors bounded away from 1). We may also assume that $\Lambda_{n}\left(T_{w_{j_{k\left(f_{n}\right)-k}}+p_{n}}\left(f_{n}\right)\right)$ converges to a closed interval D_{k}^{\prime}. Then $D_{k}^{\prime} \subset D_{1}$ by Lemma A.2. By Lemma A.10, for every $k \geq 0$, f_{∞} has an analytic extension $D_{k}^{\prime} \rightarrow D_{k}$ which is proper. It follows that f_{∞} has a maximal analytical extension to $\cup_{k \geq 0} D_{k}^{\prime} \subset D_{1}$.

Assume now that f_{n} has essentially bounded, but unbounded, combinatorics. We may assume that $p_{n} \rightarrow \infty$. Let $0=b_{n}^{0}<b_{n}^{1}<\ldots$ be the sequence of admissible moments, i.e., such that $f_{n}^{b_{n}^{i}}(0) \in I_{0}\left(f_{n}\right)$. Clearly $b_{n}^{i} \leq i b_{n}^{1}$ (since the critical point returns to I_{0} no earlier than any other point $x \in I_{0}$). Moreover, b_{n}^{1} is bounded (otherwise the combinatorics is close to the Chebyshev one and we would already have $\left.\inf \left|I_{1}\left(f_{n}\right)\right|=0\right)$. Notice that if $0<b_{n}^{i}<p_{n}, f_{n}^{p_{n}}\left(\partial T_{p_{n}-b_{n}^{i}}\right)$ is the orientation reversing fixed point of f_{n}. Hence $f_{n}^{p_{n}}$ has at least $2 i-1$ critical points in $T_{p_{n}-b_{n}^{i}}\left(f_{n}\right)$ (counted with multiplicity).

We may assume that the intervals $\Lambda_{n}\left(T_{p_{n}-b_{n}^{i}}\right)$ converge to intervals D_{i} for each i. Clearly $\cup D_{i}$ is a bounded interval. By Lemma A.11, f_{∞} has an analytic extension to $\cup D_{i}$, and restricted to each D_{i} it has at least $2 i-1$ critical points. So f_{∞} cannot extend beyond $\cup D_{i}$.

References

[AKLS] A. Avila, J. Kahn, M. Lyubich and W. Shen. Combinatorial rigidity for unicritical polynomials. Annals Math. 170 (2009), 783-797.
[ALM] A. Avila, M. Lyubich and W. de Melo. Regular or stochastic dynamics in real analytic families of unimodal maps. Invent. Math. 154 (2003), 451-550.
[ALS] A. Avila, M. Lyubich and W. Shen. Parapuzzle of the Multibrot set and typical dynamics of unimodal maps. Preprint IMS at Stony Brook, \# 3, 2008. To appear in J. Europ. Math. Soc.
[Ca] H. Cartan. Sur les rétractions d'une variété. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 715.
[Ch] D. Cheraghi. Combinatorial Rigidity for Some Infinitely Renormalizable Unicritical Polynomials. Preprint IMS at Stony Brook, \# 6, 2007.
[Cv] P. Cvitanović. Universality in chaos. Adam Hilger, Bristol, 1984.
[D] A. Douady. Chirurgie sur les applications holomorphes. Proceedings of ICM-86, 724-738, AMS, Providence, 1987.
[DH] A. Douady \& J.H. Hubbard. On the dynamics of polynomial-like maps. Ann. Sc. Éc. Norm. Sup., 18 (1985), 287-343.
[E] H. Epstein. Fixed points of composition operators II. Nonlinearity, v. 2 (1989), 305-310.
[F] M.J. Feigenbaum. Quantitative universality for a class of non-linear transformations. J. Stat. Phys., v. 19 (1978), 25-52.
[FM] E. de Faria, W. de Melo. Rigidity of critical circle mappings I. Journal of the European Mathematical Society 1 (1999), 339-392.
[FMP] E. de Faria, W. de Melo and A. Pinto. Global hyperbolicity of renormalization for C^{r} unimodal mappings. Annals Math., 164 (2006), 731-824.
[GS] J. Graczyk and G. Swiatek. Generic hyperbolicity in the logistic family. Ann. of Math. (2) 146 (1997), no. 1, 1-52.
[Hi] B. Hinkle. Parabolic limits of renormalization. Erg. Th. \& Dynam. Syst., v. 20 (2000), 173-229.
[K] J. Kahn. A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics. Preprint IMS at Stony Brook, \# 5, 2006.
[KL1] J. Kahn and M. Lyubich. A priori bounds for some infinitely renormalizable quadratics: II. Decorations. Ann. Sci. Ac. Norm Sup., 41 (2008), 57-84.
[KL2] A priori bounds for some infinitely renormalizable quadratics, III. Molecules. In: "Complex Dynamics: Families and Friends". Proceeding of the conference dedicated to Hubbard's 60th birthday (ed.: D. Schleicher). Peters, A K, Limited, 2009.
[KSS] Kozlovski, Oleg; Shen, Weixiao; van Strien, Sebastian Rigidity for real polynomials. Annals Math., 165 (2007), 749-841.
[La] O.E. Lanford III. A computer assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc., v. 6 (1982), 427-434.
[LvS] G. Levin and S. van Strien. Local connectivity of Julia sets of real polynomials, Annals of Math., 147 (1998), 471-541.
[L1] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic maps. Annals of Math. 140 (1993), 347-404/
[L2] M. Lyubich. Dynamics of quadratic polynomials. I, II. Acta Math., 178 (1997), 185-297.
[L3] M. Lyubich. Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture. Annals Math. (2) 149 (1999), 319-420.
[L4] M. Lyubich. Almost every real quadratic map is either regular or stochastic. Annals Math. (2) 156 (2002), 1-78.
[LY] M. Lyubich and M. Yampolsky. Dynamics of quadratic polynomials: Complex bounds for real maps. Ann. Inst. Fourier., 47 (1997), 1219-1255.
[Lju1] Y.I. Ljubich. Introduction to the theory of Banach representations of groups. Birkäuser, Basel, 1988.
[Lju2] Y.I. Ljubich. Dissipative actions and almost periodic representations of abelian semigroups. Ukrainian Math. J. v. 40 (1988), 58-62.
[Ma1] M. Martens. Distortion results and invariant Cantor sets for unimodal maps. Erg. Th. and Dyn. Syst., v. 14 (1994), 331-349.
[Ma2] M. Martens. The periodic points of renormalization. Annals Math., v. 147 (1998), 543584.
[McM1] C. McMullen. Complex dynamics and renormalization. Annals of Math. Studies, v. 135, Princeton University Press, 1994.
[McM2] C. McMullen. Renormalization and 3-manifolds which fiber over the circle. Annals of Math. Studies, v. 135, Princeton University Press, 1996.
[MvS] W. de Melo and S. van Strien. One-dimensional dynamics. Springer, 1993.
[Mi] J. Milnor. Periodic orbits, external rays, and the Mandelbrot set: expository lectures. In: "Géometrie complexe et systémes dynamiques", volume in honor of Douady's 60th birthday, Astérisque, v. 261 (2000), 277-333.
[MSS] R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps, Ann. Scient. Éc. Norm. Sup., v. 16 (1983), 193-217.
[Sl] Slodkowski, Z. Holomorphic motions and polynomial hulls. Proc. Amer. Math. Soc. 111 (1991), no. 2, 347-355.
[S] D. Sullivan. Bounds, quadratic differentials, and renormalization conjectures. AMS Centennial Publications. v. 2: Mathematics into Twenty-first Century (1992).
[TC] C. Tresser \& P. Coullet. Itération d'endomorphismes et groupe de renormalisation. C.R. Acad. Sc. Paris 287A (1978), 577-580.

CNRS UMR 7586, Institut de Mathématiques de Jussieu, 175 Rue du Chevaleret, 75013-Paris, France \& IMPA, Estrada Dona Castorina, 110, 22460-320, Rio de Janeiro, RJ, Brazil.

E-mail address: artur@math.sunysb.edu
URL: www.impa.br/~avila
Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3651 \& Department of Mathematics, University of Toronto, Room 6290, 40 St. George Street, Toronto, ON M5S 2E4, Canada.

E-mail address: mlyubich@math.sunysb.edu

[^0]: Date: May 26, 2010.

[^1]: ${ }^{1}$ Note that this normalization survives rotations through $2 \pi k /(d-1), k \in \mathbb{Z} /(d-1) \mathbb{Z}$: conjugating a normalized map by such a rotation, we obtain a normalized map with rotated c.

[^2]: ${ }^{2}$ We gauge the Carathéodory metric so that any space has diameter at most 1 . Condition that the diameter of \mathcal{K} in \mathcal{Q} is less than 1 means that " \mathcal{K} is well inside of \mathcal{Q} ".

[^3]: ${ }^{3}$ It has been suggested that this relates to the fact the Teichmüller approach naturally deals with conformal (rather than affine) equivalence between the polynomial-like germs. However, our Schwarz Lemma argument seems to work equally well for conformal classes.

[^4]: ${ }^{4}$ The continuity of $\lambda \mapsto f_{\lambda}$ is in fact automatic.

[^5]: ${ }^{5}$ Such a family h_{t} can be constructed as follows. For large $n, g_{t / n}$ is close to $g_{k / n}$, for every $k \in 0, \ldots, n-1$ and $t \in[k / n,(k+1) / n]$. Considering persistent fundamental annuli for the $g_{k / n}$, one can define a conjugacy $h_{k, t}, t \in[k / n,(k+1) / n]$, between $g_{k / n}$ and $g_{t / n}$ (first on the fundamental domain, then extended by pulling back) satisfying $h_{k, k / n}=\mathrm{id}$ and the continuity requirements. Then h_{t} can be defined in each interval $[k / n,(k+1) / n]$ by $h_{t}=h_{k, t} \circ \cdots \circ h_{0, t}$.

[^6]: ${ }^{6}$ To check it, use the following: since h_{c} as an element of the Sobolev space $W^{1,2}$ depends holomorphically on c, Jac $h_{c}=\left|\partial h_{c}\right|^{2}-\left|\bar{\partial} h_{c}\right|^{2}$ depends continuously on c weakly in L^{1}.
 ${ }^{7}$ Though $K\left(f_{t, n}\right)$ need not converge to $K\left(f_{t}\right)$, any limit is contained in $K\left(f_{t}\right)$ and its boundary $J\left(f_{t, n}\right)$ contains $J\left(f_{t}\right)=\partial K\left(f_{t}\right)$, which is enough here.

[^7]: ${ }^{8}$ Otherwise the sector bounded by those two rays and which does not contain the critical point would be invariant by the maximum principle (notice that the image of the sector does not contain the critical value).
 ${ }^{9}$ By means of straightening, we can restrict attention to polynomials, for which it is readily checked that repelling β-fixed points are persistent, and repelling non- β-fixed points are persistent as well. Thus a discontinuity might only arise at a parabolic bifurcation, where both candidates to be a β-fixed point are close.
 ${ }^{10}$ This condition makes sense since the marking of f can be given by a curve $\gamma \subset \bar{V} \backslash U$ connecting a point $z \in \partial U$ to its image $f z \in \partial V$ up to homotopy rel the endpoints.

[^8]: ${ }^{11}$ In fact, \mathcal{S}_{1} is the minimal sector into which the rays landing on orb β_{1} divide the plane.

[^9]: ${ }^{12} \mathrm{An}$ alternative point of view is the following. The relative positions of the little Julia sets $K\left(g_{m}\right)$ inside the big one, $K(f)$, can be described in terms of a graph called the Hubbard tree. This graph determines the renormalization combinatorics up to symmetry.
 ${ }^{13}$ More precisely, it has a parabolic fixed point with multiplier 1.
 ${ }^{14}$ In this case, $f^{2}(0)$ is the β-fixed point (such maps are also called Chebyshev).
 ${ }^{15}$ As for hybrid classes, we notice that affinely conjugated renormalizable germs have the same renormalization.

[^10]: ${ }^{16}$ If $\operatorname{diam}\left(K_{m^{\prime}}\left(f_{n^{\prime}}\right)\right)>\operatorname{diam}\left(K_{m}\left(f_{n}\right)\right) / 2$, then we can choose $m_{j} \in \mathbb{Z} / \mathbb{Z}_{q_{n+j}}, 0 \leq j \leq k$ with $m_{0}=m$ and $m_{k}=m^{\prime}$, such that the $K_{m_{j}}\left(f_{n+j}\right)$ are nested. After suitable translation and rescaling by $\operatorname{diam}\left(K_{m}\left(f_{n}\right)\right)^{-1}$, one gets $k+1$ compact subsets of the closed unit disk which are pairwise $\delta / 2$-separated. Since the set of compact subsets of the closed disk is compact, it is also totally bounded, so k is bounded in terms of δ.

[^11]: ${ }^{17}$ One way to obtain the Böttcher coordinate is as the restriction of a hybrid conjugacy between f and p_{0}. The fact that the derivative at 0 can be taken as 1 is immediate from the normalization.

[^12]: ${ }^{18}$ In fact, by compactness of K, one may take $\delta=\delta(K, \epsilon)$ here.

[^13]: ${ }^{19}$ It follows from rigidity that the hybrid lamination of \mathcal{A} consists of all infinitely renormalizable maps whose renormalizations have combinatorics in \mathcal{F}.
 ${ }^{20}$ This actually needs a little check-up: compare the argument four paragraphs down.

[^14]: ${ }^{21}$ They have been established, however, for the family of primitive real combinatorics [KL1], which covers all real combinatorics except period doubling.
 ${ }^{22}$ This result also follows from combination of [AKLS] (dealing with at most finitely renormalizable maps) and [Ch] (dealing with the infinitely renormalizable situation).

