
CONVERGENCE OF AN EXACT QUANTIZATION SCHEME

ARTUR AVILA

Abstract. It has been shown by Voros [V1] that the spectrum of the one-dimensional homo-
geneous anharmonic oscillator (Schrödinger operator with potential q2M , M > 1) is a fixed
point of an explicit non-linear transformation. We show that this fixed point is globally and
exponentially attractive in spaces of properly normalized sequences.

1. Introduction

Let 0 < θ < π be a constant. For E, E ′ > 0, define

(1.1) θ(E′, E) = tan−1 sin θ

E′E−1 + cos θ
.

Let X = (Xk)∞k=1, Y = (Yj)
∞
j=1 be sequences of positive real numbers and define φ = (φj)

∞
j=1

by

(1.2) φj(X, Y ) =
1

π

∑

k

θ(Xk, Yj).

Let Q = (Qi)
∞
i=1 be a constant vector, and consider the operator T ≡ Tθ,Q given implicitly by

φ(X, T (X)) = Q. Of course T (X) is only defined for certain sequences X . We remark that T is
dilatation equivariant (T (λX) = λT (X) for λ > 0) and positive in the sense that if 0 < Xk ≤ X ′

k

for all k > 0 and if T (X) = Y and T (X ′) = Y ′ are defined then Yk ≤ Y ′
k for all k > 0.

In this paper we will be interested in the description of the dynamics of T acting on certain
spaces of normalized sequences, under appropriate conditions on Q.

1.1. Relation to exact anharmonic quantization. We now describe the physical motivation
of the problem (for futher details and references, see [V1], and for more recent related work,
see [V2]). Let us consider the one-dimensional anharmonic oscillator with even homogeneous
polynomial potential, that is, the Schrödinger operator

(1.3) (Hu)(q) = −
d2u

dq2
+ q2Mu(q), M = 2, 3, . . . ,

acting on L2(R). This operator has a discrete spectrum

(1.4) 0 < E0 < E1 < . . . ,

where lim Ej = ∞.
Let

(1.5) θ =
M − 1

M + 1
π,

(1.6) αθ =
π + θ

π
=

2M

M + 1
.
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It is known that Ek has polynomial growth, more precisely:

Proposition 1.1 (see [V1], §2.1). The spectrum (1.4) of the operator (1.3) satisfies

(1.7) ν = lim
k→∞

k−αθEk,

where αθ is given by (1.6) and ν is positive and finite.

The semiclassical analysis provide much more information then what is contained in the above
proposition, for instance, ν can be explicitely computed

(1.8) ν =

(

2π1/2MΓ

(

3

2
+

1

2M

)

Γ

(

1

2M

)−1
)αθ

,

and higher order terms for the asymptotic development of Ek are also available (though the re-
sulting series does not converge), let us only remark for motivation that

(1.9) Ek = νkαθ + O(kαθ−1).

It is convenient to split the spectrum according to parity

(1.10) P even
i = E2i−2, P odd

i = E2i−1, i ≥ 1.

It has been shown by Voros that P even and P odd are fixed points of of operators Tθ,Qeven and
Tθ,Qodd respectively, where

(1.11) Qeven
k = k −

3

4
+

M − 1

4(M + 1)
, Qodd

k = k −
1

4
−

M − 1

4(M + 1)
.

Proposition 1.2 (see [V1], §3.1). The even and odd parts of the spectrum of the operator (1.3)
satisfy equations

(1.12) Tθ,Qeven(P even) = P even, Tθ,Qodd(P odd) = P odd,

where θ, Qeven and Qodd are as above.

Due to dilatation equivariance of T , the fixed point equation does not determine the spectrum
completely. Numerical evidence was obtained (see [V1], §7.3) that indicated that it does determine
the spectrum once one normalizes appropriately at k → ∞, and that the operator T provides an
exponentially convergent iterative scheme for determination of the spectrum.

Our main theorem will confirm those hopes. We show that there is only one fixed point for T
subject to growth condition 2αθνkαθ +o(kαθ ) (which thus coincides with the spectrum P ), and that
this is a globally attractive fixed point in the space of sequences with such growth. We also analyze
the action of T on sequences whose growth is more accurately described in terms of polynomial
error terms, including the type 2αθνkαθ + O(kαθ−ε), 0 < ε ≤ 1 (this is natural in view of the
asymptotic estimate (1.9)), and we show that the fixed point is indeed exponentially attractive
among such sequences.

Theorem 1.3. Let M > 1, and let T denote the exact quantization operator related to the even
or odd spectrum P of the operator (1.3). If X = (Xk)∞k=1 satisfies Xk = 2αθνeo(1)kαθ then

X(n) ≡ T n(X) converges pointwise to P , and indeed

(1.13) lim
n→∞

sup
k

k−αθ |X
(n)
k − Pk| = 0.

If moreover Xk = Pk + O(kαθ−ε) with 0 < ε < 2 then

(1.14) sup
k

k−αθ+ε|X
(n)
k − Pk| ≤ Cλn,

where C = C(X, ε) > 0 and λ = λ(ε) < 1.
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The operator T actually comes about as a (non-linear) quantization of a semiclassical Bohr-
Sommerfeld linear operator. The main steps of our analysis involves showing that T behaves as a
perturbation of the linear operator. The asymptotic limit k → ∞ is given to certain accuracy by
the semiclassical linear operator, which can be shown to have the required properties. We use two
obvious features of T to show that the quantization does not destroy those properties. The first one
is positivity, and the second one is equivariance by dilatation. Those properties are present both
at the infinitesimal analysis (they are used in perturbative estimates of the operator norm of the
derivative DT ) as in the global analysis (where they are used in a key precompactness argument).

2. Proof of Theorem 1.3

2.1. Setting and notations. We will actually prove a slightly more general result, Theorem 2.1,
about the operators Tθ,Q. This result implies Theorem 1.3 immediately, using Propositions 1.1
and 1.2. The remaining analysis is completely self-contained.

We will need to make no restriction on 0 < θ < π. We will make two assumptions on the
sequence Qk:

(2.1) Qk = k + O(1)

(2.2) Qk >

(

k −
1

2

)

θ

π
.

The first condition comes from the physical problem, and can be relaxed to Qk = eo(1)k without
any changes in our analysis. Notice that for any X ,

(2.3)
k
∑

j=1

φj(X, X) >
θk2

2π
k ≥ 1,

in particular, if
∑k

j=1 Qj ≤ (2π)−1θk2 for some k then there is no fixed point for T , so some

condition (possibly weaker) in the line of our second condition is necessary for our results to hold.
It will be convenient to work in logarithmic coordinates for computations. All variables in capital

letters will denote positive real numbers (or vectors of positive real numbers). The corresponding
non-capital letters will be reserved for their logarithms.

2.2. Some spaces of sequences. Let u(ε) be the space of v = (vi)
∞
i=1 of the form

(2.4) vk = O(k−ε),

with the norm

(2.5) ‖v‖ε = sup kε|vk |.

Let u0(ε) be the subspace of u(ε) consisting of v of the form

(2.6) vk = o(k−ε).

Given some vector x, we define affine spaces

(2.7) u(x, ε) = x + u(ε)

and

(2.8) u0(x, ε) = x + u0(ε).

We will use the special notation

(2.9) u(α, ε) = u((α ln k)∞k=1, ε), α > 0, ε ≥ 0,

(2.10) u0(α, ε) = u0((α ln k)∞k=1, ε), α > 0, ε ≥ 0.
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Notice that if x ∈ u(α, ε) then u(x, ε′) = u(α, ε′) provided ε′ ≤ ε.
The several affine spaces u parametrize by exponentiation spaces U , for instance

(2.11) U(α, ε) = {(Xk)∞k=1, Xk > 0, Xk = kα + O(kα−ε)},

(2.12) U0(α, 0) = {(Xk)∞k=1, Xk > 0, Xk = kα + o(kα)}.

We can now state our main result:

Theorem 2.1. There exists a unique αθ > 0 for which there exists a fixed point X ∈ U(αθ, 0) for
T . Moreover,

(1) The space U0(αθ, 0) is invariant for T ,
(2) There exists a fixed point P ∈ U(αθ, 1),
(3) P is a global attractor in U 0(αθ, 0), that is, for any X ∈ U0(αθ, 0),

(2.13) lim
n→∞

‖T n(x) − p‖0 = 0,

(4) The spaces U(P, ε) are invariant for 0 ≤ ε < αθ + 1,
(5) P is a global exponential attractor in U(P, ε), 0 < ε < 2, that is, for any X ∈ U(P, ε),

(2.14) ‖T n(x) − p‖ε ≤ Cλn,

where C = C(ε, ‖x − p‖ε) > 0 and λ = λ(ε) < 1.

The proof of this result will take the remaining of this section.

2.3. Lipschitz continuity in U(X, 0). Let us write X ≤ X ′ if Xk ≤ X ′
k for all k. Then X ≤ X ′

and Y ≥ Y ′ implies φ(X, Y ) ≥ φ(X ′, Y ′), which implies the positivity of T we stated before:
X ≤ X ′ implies T (X) ≤ T (X ′). In particular, T (X) ≤ X if φ(X, X) ≥ Q and T (X) ≥ X if
φ(X, X) ≤ Q.

This also gives us a way to show that T is defined at some X : if φ(X, Y ) ≤ Q ≤ φ(X, Y ) then
T (X) = Y is defined and Y ≤ Y ≤ Y .

Lemma 2.2. Assume that T (X) = Y is defined. Then T is defined on U(X, 0) and T (U(X, 0)) =
U(Y, 0). Moreover, T : U(X, 0) → U(Y, 0) is 1-Lipschitz.

Proof. If C−1X ≤ X ′ ≤ CX then φ(X ′, C−1Y ) ≤ φ(C−1X, C−1Y ) = Q = φ(CX, CY ) ≤
φ(X ′, CY ). �

2.4. The derivative. Let

(2.15) P (E, E′) =
EE′

E2 + 2 cos θEE′ + E′2
.

Notice that

(2.16)
dφj

dxk
(X, Y ) =

− sin θ

π
P (Xk, Yj),

(2.17)
dφj

dyj
(X, Y ) =

∑

k

sin θ

π
P (Xk, Yj),

and of course

(2.18)
dφj

dyk
(X, Y ) = 0, j 6= k.
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We can now use write a nice formal expression for the derivative of T with respect to logarithmic
coordinates. If T (x) = y is defined, let DT (x) = (DijT (x))i,j≥1 be the infinite matrix

(2.19) DijT (x) =
P (Xj , Yi)

∑

k P (Xk, Yi)
.

This matrix is stochastic and positive, that is all entries are positive numbers and the sum of the
entries in each row is 1. In particular, the operator norm of DT acting on bounded sequences is
equal to 1.

Lemma 2.3. Let L(u(0), u(0)) be the space of bounded linear transformations on u(0) with the
operator norm. If T (X) = Y is defined then DT : u(x, 0) → L(u(0), u(0)) is 4-Lipschitz.

Proof. It follows immediately from the fact that T is 1-Lipschitz in u(x, 0) that if ‖x′ − x′′‖0 ≤ C
then for all i, j > 0,

(2.20) e−4C ≤
DijT (x′)

DijT (x′′)
≤ e4C ,

which easily implies the result. �

Notice that the previous proof implies that

(2.21) ‖T (x + v) − T (x) − DT (x)v‖0 ≤ 4‖v‖2
0,

so DT is the actual derivative of T : u(x, 0) → u(T (x), 0).

2.5. Weak contraction of DT in u0(x, 0).

Lemma 2.4. Let T (X) = Y be defined. If 0 6= v ∈ u0(0) then ‖DT (x)v‖0 < ‖v‖0.

Proof. This is automatic since DT is a stationary positive matrix. �

Corollary 2.5. If T (X) = Y is defined and 0 6= v ∈ u0(0) then ‖T (x + v) − T (x)‖0 < ‖v‖0.

Proof. Integrate the previous estimate. �

Corollary 2.6. There exists at most one fixed point in each U 0(x, 0).

2.6. The drift. Let us define the drift

(2.22) Dα =
1

π

∫ ∞

0

tan−1 sin θ

sα + cos θ
ds.

Lemma 2.7. The operator T is defined in U(α, 0) if and only if α > 1, and in this case the spaces
U(α, 0) are invariant. Moreover, if X ∈ U(α, 0), then letting T n(X) = X(n) we have

(2.23) lim inf
k→∞

xk − α ln k ≤ lim inf
k→∞

x
(n)
k − α ln k + nα ln Dα,

(2.24) lim sup
k→∞

x
(n)
k − α ln k + nα ln Dα ≤ lim sup

k→∞

xk − α ln k.

Proof. Let T (X) = Y , with xk ≤ α ln k + C + o(1). Then a simple computation gives

(2.25) φj(X, Y ) ≥ e−Cα−1+o(1)DαY
1/α
j ,

and since φj(X, Y ) = j +O(1), we have Yj ≤ eC+o(1)D−α
α jα. Analogously, if xk ≥ α ln k+C +o(1)

then

(2.26) φj(X, Y ) ≤ e−Cα−1+o(1)DαY
1/α
j ,

and since φj(X, Y ) = j + O(1), we have Yj ≥ eC+o(1)D−α
α jα. �
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In particular, if X ∈ U(α) then the iterates of X drift (pointwise) towards either 0 or ∞ unless
Dα = 1. Notice that

(2.27)
d

dα
Dα =

−1

π

∫ ∞

0

sin θ ln s

sα + 2 cos θ + s−α
ds =

−1

π

∫ ∞

1

sin θ ln s(1 − s−2)

sα + 2 cos θ + s−α
ds < 0,

(2.28) lim
α→1

Dα = ∞, lim
α→∞

Dα =
θ

π
,

thus there exists a unique αθ > 1 such that Dαθ
= 1. From now on, αθ will denote this precise

value.

Remark 2.1. One can actually compute explicitly

(2.29) Dα =
sin
(

θ
α

)

sin
(

π
α

) ,

so Dαθ
= 1 implies αθ = 1 + θ

π .

Corollary 2.8. The space U0(αθ, 0) is invariant.

2.7. Construction of invariant sets. Let U be one of the spaces defined. We say that K ⊂ U
is uniformly bounded in U if there exists X ≤ X in U such that for all Y ∈ K, X ≤ Y ≤ X.
Notice that the notion of uniformly bounded in U 0(αθ, 0) coincides with precompactness, while
the notion of uniformly bounded in U(αθ, 0) coincides with “bounded diameter”.

Lemma 2.9. In this setting

(1) There exists X ∈ U(αθ, 1) with T (X) ≤ X, and X can be chosen arbitrarily big,
(2) There exists X ∈ U(αθ, 1) with T (X) ≥ X and X can be chosen arbitrarily small.

Proof. (Here, more precisely in the proof of (2), is the only time we will use the condition (2.2) on
Qk.)

(1) Let Qk < k + K. The required X is given by Xk = (k + A)αθ for all A sufficiently big. To
see this, we must estimate, for A sufficiently big

(2.30) φj(X, X) > j + K

for all j.
One can approximate

(2.31) φj(X, X) =
1

π

∫ ∞

A

tan−1 sin θ

sαθ (j + A)−αθ + cos θ
ds + O(1)

where the O(1) term does not depend on A. Of course

(2.32)
1

π

∫ ∞

A

tan−1 sin θ

sαθ (j + A)−αθ + cos θ
ds = (j + A)

1

π

∫ ∞

A
j+A

tan−1 sin θ

sαθ + cos θ
ds.

This last term can be rewritten (using the condition on αθ) as

(2.33) (j + A) − (j + A)
1

π

∫ A
j+A

0

tan−1 sin θ

sαθ + cos θ
ds.

Let us show the inequality (which trivially implies the required bound)

(2.34) j +

(

1 −
θ

π

)

A ≤ (j + A) − (j + A)
1

π

∫ A
j+A

0

tan−1 sin θ

sαθ + cos θ
ds ≤ j + A,
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or equivalently, with B = (j + A)/A,

(2.35) 1 −
θ

π
≤ 1 − B

1

π

∫ B−1

0

tan−1 sin θ

sαθ + cos θ
ds ≤ 1.

The right inequality being trivial, we estimate the left one

(2.36)
θ

π
≥ B

1

π

∫ B−1

0

tan−1 sin θ

sαθ + cos θ
ds,

which is obvious since the integrand is a decreasing function of s which tends to θ when s tends
to 0.

(2) Let Qk > k − K. The required X is given by

Xk = Nk−N2

, k < N2,(2.37)

Xk = (k − N2 + N)αθ , k ≥ N2,(2.38)

for N sufficiently big. We can estimate, as before, for j ≥ N 2

(2.39) φj(X, X) =
1

π

∞
∑

k=1

θ(Xk, Xj) =
1

π

N2−1
∑

k=1

θ(Xk, Xj) +
1

π

∞
∑

k=N2

θ(Xk, Xj) < j − K,

since

(2.40)
1

π

N2−1
∑

k=1

θ(Xk, Xj) ≤ (N2 − 1)
θ

π
,

(2.41)
1

π

∞
∑

k=N2

θ(Xk, Xj) ≤ j − N2 + N + O(1)

(the O(1) independent of N and j). For 1 ≤ j < N 2 we estimate

(2.42) φj(X, X) =
1

π

∞
∑

k=1

θ(Xk, Xj) =
1

π

j
∑

k=1

θ(Xk, Xj) +
1

π

∞
∑

k=j+1

θ(Xk, Xj) < j − K

(implying the result), since

(2.43)
1

π

j
∑

k=1

θ(Xk, Xj) ≤ j
θ

π
−

θ

2π

and

(2.44)
1

π

∞
∑

k=j+1

θ(Xk, Xj) = o(1).

(the o(1) in terms of N and independent of j). �

Corollary 2.10. There exists a fixed point P ∈ U(αθ, 1). For any initial condition Y ∈ U(αθ, 1),
T n(Y ) converges to P in U0(αθ, 0).

Proof. The previous lemma gives us X, X ∈ U(αθ, 1) with X ≤ Y ≤ X and with X ≤ T (X) ≤
T (X) ≤ X . It follows that T n(X) decreases pointwise to some vector X ≤ P ≤ X. This vector
is obviously a fixed point of T . This proves existence of the fixed point. Analogously, T n(X)
increases pointwise to some fixed point, which must be the same by uniqueness. In particular,
T n(Y ) converges to P . �
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Lemma 2.11. Let Y ∈ U0(αθ, 0). Then T n(Y ) → P in the U0(αθ, 0) metric.

Proof. We must show that for any Y , for any ε > 0, there exists n0 such that for n > n0,
‖T n(y) − p‖0 < ε. Using the previous construction, we obtain vectors X, X ∈ U(αθ, 1) with
(1 − ε/3)X ≤ Y ≤ (1 + ε/3)X. Let n0 be such that

(2.45) T n0(X) ≤ (1 + ε/3)P,

(2.46) T n0(X) ≥ (1 − ε/3)P.

It follows that for any n > n0,

(2.47) (1 − ε/3)2P ≤ T n(Y ) ≤ (1 + ε/3)2P

which gives the desired estimate. �

Corollary 2.12. Let K ⊂ U0(αθ, 0) be uniformly bounded. Then ∪∞
n=0T

n(K) is uniformly bounded
as well.

Proof. Let X ≤ Y ≤ X for all Y ∈ K. Then T n(X), T n(X) → P implies that {T n(X), T n(X)}n≥0

is precompact, so uniformly bounded, by say X ′, X
′
. By positivity of T , for any Y ∈ K one has

X ′ ≤ T n(Y ) ≤ X
′
as well. �

2.8. Strong contraction of DT . Let

(2.48) Sε =

∫ ∞

0

s−ε

sαθ + 2 cos θ + s−αθ
ds.

Notice that

(2.49) Sε =

∫ ∞

1

s−ε + sε−2

sαθ + 2 cos θ + s−αθ
ds,

so that if |ε − 1| ≥ αθ then Sε = ∞ and if |ε − 1| < αθ then Sε = S2−ε is a strictly increasing
function of |ε − 1|.

Remark 2.2. It is possible to compute explicitly

(2.50) Sε =
π

αθ sin θ

sin
(

(1 − ε)θαθ
−1
)

sin ((1 − ε)παθ
−1)

, 0 < |ε − 1| < α0,

while S1 = limε→1 Sε = θ
αθ sin θ . In particular, using that αθ = 1 + θ

π (Remark 2.1) we get
S1 = π

αθ sin θ .

Lemma 2.13. Let K be a uniformly bounded set in U 0(αθ, 0). If |ε − 1| ≥ αθ then for every
X ∈ K we have that DT (X) is not a bounded operator in u(ε). If |ε − 1| < αθ then there exists
a norm ‖ · ‖c in u(ε) (equivalent to ‖ · ‖ε) and a constant Cε such that ‖DT (X)v‖c ≤ Cε‖v‖c for
v ∈ u(ε). Moreover, Cε < 1 for |ε − 1| < 2.

Proof. For X ∈ K, X and T (X) = Y satisfy uniformly xk , yk = αθ ln k + o(1). Let vk = k−ε and
let w = DT (X)v. We have

(2.51) wj =

(

∑

k

XkYj

X2
k + 2 cos θXkYj + Y 2

j

vk

)(

∑

k

XkYj

X2
k + 2 cos θXkYj + Y 2

j

)−1

.

which can be estimated as

(2.52) wj =

(

∑

k

eomin{j,k}(1)kαθjαθ

k2αθ + 2 cos θkαθjαθ + j2αθ
k−ε

)(

∑

k

eomin{j,k}(1)kαθjαθ

k2αθ + 2 cos θkαθjαθ + j2αθ

)−1

.
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We easily estimate

(2.53)
∑

k

eomin{j,k}(1) kαθjαθ

k2αθ + 2 cos θkαθ jαθ + j2αθ
= eoj(1)jS0.

We can write now

jεS0wj =
∑

k

eomin{j,k}(1)kαθ−εjαθ−1+ε

k2αθ + 2 cos θkαθjαθ + j2αθ
(2.54)

=
∑

k≤ln j

eok(1)kαθ−εjαθ−1+ε

k2αθ + 2 cos θkαθjαθ + j2αθ
+
∑

k>ln j

eoj(1)kαθ−εjαθ−1+ε

k2αθ + 2 cos θkαθjαθ + j2αθ
.

Moreover,

(2.55)
∑

k≤ln j

eok(1) kαθ−εjαθ−1+ε

k2αθ + 2 cos θkαθ jαθ + j2αθ
= oj(1),

provided ε < αθ + 1 (for ε ≥ αθ + 1 the sum is not even Oj(1)), and

(2.56)
∑

k>ln j

eoj(1)kαθ−εjαθ−1+ε

k2αθ + 2 cos θkαθjαθ + j2αθ
= eoj(1)

∫ ∞

0

tαθ−εjαθ

t2αθ + 2 cos θtαθjαθ + j2αθ
dt = eoj(1)Sε,

provided that |ε − 1| < αθ (if |ε − 1| ≥ αθ the sum is not even Oj(1)). We can now conclude, for
|ε − 1| < αθ,

(2.57) wjj
ε = eoj(1)

Sε

S0

and for |ε − 1| ≥ αθ,

(2.58) lim
j→∞

wjj
ε = ∞.

In particular, DT (X) is a bounded operator in u(ε) if and only if |ε − 1| < αθ, in which case the

bound is uniform on X ∈ K. Moreover, if 0 < ε < 2 then there exists SεS
−1
0 < Ĉε < 1 and N > 0

(independent of X ∈ K) such that for j > N ,

(2.59) wjj
ε < Ĉε.

Let us now fix N as above. Let v′
k = min{N−ε, k−ε}, and w′ = DT (X)v′. By Lemma 2.4, we

have

(2.60) ‖w′‖0 < ‖v′‖0 = N−ε,

where the inequality is uniform on X ∈ K (using for instance Lemma 2.3), so there exists C̃ε < 1
independent of X ∈ K with

(2.61) sup
k≤N

w′
k ≤ C̃εN

−ε.

Let

(2.62) ‖u‖c = sup
k

|uk|

|v′k|
,

which is equivalent to the usual norm on u(ε), since

(2.63) ‖u‖ε ≤ ‖u‖c ≤ N ε‖u‖ε.

Clearly ‖DT (X)u‖c ≤ Cε‖u‖c with Cε = max{Ĉε, C̃ε}. �
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Remark 2.3. Let vk = k−ε and v(n) = DT n(P )v. A lower bound for the spectral radius of DT (P )
in u(ε) is given by

(2.64) lim sup
n→∞

‖DT n(P )v‖1/n ≥ lim
n→∞

lim
k→∞

(kεv
(n)
k )1/n =

Sε

S0
.

This achieves a minimum at ε = 1 and one actually has S1S
−1
0 = αθ − 1 (see Remark 2.2). Notice

that as θ → π (which happens when M → ∞ for the anharmonic oscillator), αθ = 1 + θ
π → 2 so

the contraction factor becomes weak. This should be compared to numerical estimates in [V1],
§7.3.

Corollary 2.14. Let X ∈ U0(αθ, 0). If 0 < ε < αθ + 1 then T (U(X, ε)) = U(T (X), ε).

Proof. Integrate the previous estimate. �

Corollary 2.15. If 0 < ε < 2 then P is a global exponential attractor in U(P, ε).

Proof. Let X ≤ P ≤ X ∈ U(P, ε), and let K = {X ≤ Y ≤ X}. Then ∪∞
n=0T

n(K) is uniformly
bounded in U0(αθ, 0) (Lemma 2.12), and by Lemma 2.13 there exists C < 1 and a norm ‖ · ‖c in
u(ε) such that if X ∈ K then ‖DT n(X)v‖c ≤ Cn‖v‖c. Integrating this inequality we see that if
Y ∈ K then ‖T n(y) − p‖c ≤ Cn‖y − p‖c. �

Theorem 2.1 follows from Corollaries 2.10, 2.14, 2.15 and Lemmas 2.7 and 2.11.

Remark 2.4. Let us remark that while the operator T in U(αθ, 0) has a line of fixed points λP ,
λ > 0 (where P is the fixed point in U 0(αθ, 0)), this line is not a global attractor in the U(αθ, 0)
metric. Indeed it is easy to see that if 1 = n1 < n2 < ... is a sequence that grows sufficiently fast
and

(2.65) vk = −1, n2j−1 ≤ k < n2j , vk = 1, n2j ≤ k < n2j+1,

then letting x = p + v, x(n) = T n(x) we have

(2.66) inf
λ>0

‖x(n) − λp‖0 = ‖x(n) − p‖0 = 1,

for all n ≥ 0, and we do not even have pointwise convergence:

(2.67) lim inf
n→∞

x
(n)
k − pk = −1, lim sup

n→∞

x
(n)
k − pk = 1,

for all k ≥ 1.

Remark 2.5. A construction similar to the previous remark shows that P is far from being ex-
ponentially attractive in the U 0(αθ, 0) metric: for any decreasing sequence a1 > a2 > ... with
limk→∞ ak = 0, there exists X ∈ U0(αθ, 0) such that ‖T n(x) − p‖0 > an.
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