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Introduction

In this paper we search for a universal property of the (bounded positive)

derived category of an exact category. We thereby hope to obtain a better

understanding of the category of S-functors [10] starting from the derived

category. Such S-functors play an essential rôle in the study of hearts of t-

structures [2] [1], in J. Rickard’s ’Morita theory for derived categories‘ [13]

and in D. Happel’s description of the derived category of a finite-dimensional

algebra [7].

We briefly outline the contents of the paper. Let A be an exact category

and DA the bounded positive derived category (cf. section 1). We start with

what we consider the most natural approach, namely the question whether

the canonical ∂-functor A → DA is universal among the ∂-functors from

A to suspended categories S. This, however, is not the case. We analyse

the situation in section 1. Our conclusion is that the concepts of suspended

category and S-functor alone do not provide rich enough a framework for an

adequate treatment of the question. As a supplement, we propose ’towers‘ of



suspended (resp. exact) categories: A tower T consists of a sequence

T0, T1, . . . , Tn, . . . , n ∈ N

of categories of the respective type and of a multitude of compatible functors

joining them. A tower A∧ with base A∧0 = A is associated with the exact cat-

egory A. The derived categories D(A∧n) form a tower of suspended categories

DA∧ and the tower of ∂-functors A∧ → DA∧ is universal (Theorem 2.6). Pass-

ing from the tower DA∧ to its base DA∧0 = DA we obtain new information on

the problem of extending a ∂-functor A → S to an S-functor DA → S. For

example, if Λ and Γ are derived equivalent rings [13], then the S-equivalence

HbPΓ → HbPΛ constructed in [loc. cit.] is unique among the S-functors which

map Γ to the tilting complex T and occur as the base of a tower of S-functors.

These ’basic‘ S-functors apparently form a very large class. For example, all

left derived functors are basic and all left S-adjoint functors of basic S-functors

are basic (2.8). In fact, we do not know any example of a non-basic S-functor.

Neither do we know an example of a suspended category which does not occur

as the base of a tower of suspended categories.

The essential ingredient of the proof of the universal property of DA∧ is the

description of the derived category as a localisation of a category of presheaves.

We refer to section 3 for details.

The description of DA by presheaves also leads to a characterization of

the ’construction D’, i.e. the ’hyperfunctor‘ ( = 2-functor) which assigns DB
to B for each exact category B (section 4). In fact, D is universal among the

constructions D′ which map J : IB →MB to an S-equivalence and

0→ B I→ IB P→ B → 0

to an exact sequence of suspended categories, for each B. HereMB is the cat-

egory of morphisms of B, J is the inclusion of the subcategory IB of inflations

of B, I maps B to 0→ B and P maps i : A→ B to A.

1. Extending ∂-functors

By an additive, exact [8] [12] or suspended category we shall always mean

a svelte (=equivalent to a small) category of the respective type. We shall also

assume that idempotents split in the exact categories we consider. Following

[4] we use the words ’inflation‘, ’deflation‘ and ’conflation‘ instead of ’admis-

sible monomorphism‘, ’admissible epimorphism‘ and ’admissible short exact



sequence‘ [12], respectively. If B is an exact category with enough injectives,

we denote by B the residue class category of B modulo the ideal of morphisms

factoring through an injective. The exact structure on B yields a structure of

suspended category on B [10].

Let A be an exact category and DbA the bounded derived category of A :

It is the localisation [15] of the homotopy category HbA of bounded chain

complexes

. . .→ Kn+1
d→ Kn

d→ Kn−1 → . . . , dd = 0 , Kn = 0 ∀n >> 0 and ∀n << 0 ,

at the subcategory of acyclic complexes, i.e. complexes A admitting conflations

Zn+1
jn−→ An

qn−→ Zn−1

such that dn = jn−1qn, ∀n (we always suppress the zeroes at the ends of a

conflation). The positive derived category DA is the full subcategory of DbA
consisting of the positive complexes K, i.e. Kn = 0, ∀n < 0. Note that our use

of the notation DA does not agree with the usual conventions. We shall see

in 5.1 that DA identifies with a localisation of the positive homotopy category

Hb
0]A, the full subcategory ofHA consisting of the positive complexes. Clearly

DA is a suspended category in the sense of [10]. We shall work with DA rather

than with DbA since this is technically simpler and at the same time leads to

slightly more general results. In fact, it is usually easy to pass from DA to DbA
using the fact that the latter category identifies with the smallest triangulated

category containing DA as a suspended subcategory (cf. [10, 2.1]).

By sending A ∈ A to the complex K with K0 = A and Kn = 0 for all

n 6= 0, we obtain an additive functor can from A to DA. Moreover, for each

conflation

ε : A
i→ B

d→ C

of A, there is a unique [2, 1.1.10] connecting morphism ∂ε : C → SA such

that the sequence

A
i→ B

d→ C
∂ε→ SA

is a triangle of DA (we omit can from the notation whenever the context

makes it clear that we are speaking of complexes rather than of objects of

A). Thus, (can , ∂) is a ∂-functor in the sense of the following definition: If

S is a suspended category, a ∂-functor from A to S consists of an additive



functor D : A → S and a natural transformation δ which assigns a morphism

δε : DC → SDA to each conflation ε in such a way that

DA
Di→ DB

Dd→ DC
δε→ SDA

is a triangle of S. A morphism of ∂-functors (D, δ) → (D′, δ′) is given by a

morphism of functors µ : D → D′ such that the square

DC
δε→ SDA

µC ↓ ↓ SµA
D′C

δ′ε→ SD′A

commutes for each conflation ε. It is clear how to compose two such morphisms.

We see that the ∂-functors from A to S form a category ∆ (A,S). Each S-

functor (F, ϕ) : DA → S yields a ∂-functor (F can , δ) whose second component

assigns δε = (ϕcanA)(F∂ε) to the conflation ε. Also, if ν is a morphism of

S-functors from DA to S, can ν is a morphism of the associated ∂-functors.

Clearly these assignments define a functor

can ∗ : Susp (DA,S)→ ∆ (A,S),

where the left hand side is the category of S-functors from DA to S. It is

reasonable to ask the

Question: Is can ∗ an equivalence ?

An affirmative answer would entitle us to call DA the solution of a universal

problem. The answer, however, is no. The following simple example shows

that even if each conflation of A splits, there are ∂-functors A → S which do

not ’extend‘ to S-functors DA → S.

Example. Let B be an exact category,

A
i→ B

d→ C

a non-split conflation of B and ∂ : C → SA the connecting morphism in DB.

Let A be the full additive subcategory of DB consisting of the objects
∐

i∈I Xi ,

where I is finite and each Xi belongs to {A,B,C, SA} . We equip A with the

split conflations. Suppose there is an S-functor F from DA = Hb
0]A to DB

whose restriction to A is isomorphic to the inclusion A ⊂ DB. Then it is not

hard to see that

F ( . . .→ 0→ A
i→ B

d→ C) = 0.



Since the morphism ∂ : C → SA of A factors through

. . .→ 0→ A
i→ B

d→ C

in DA, this implies F∂ = 0, a contradiction.

For a general suspended category S, we know nothing about the image

of can ∗. The problem only becomes tractable when we make more specific

assumptions about S: If S is the stable category of an exact category with

enough injectives then a ∂-functor D is isomorphic to F can for some F :

DA → S if it satisfies

Condition 1: For each n > 0 and all A,B ∈ A we have S (SnDA,DB) = 0.

This is an easy consequence of [10, 3.2]. We shall also reprove it in this paper.

The condition is not necessary. For example, ifA has enough injectives, one can

define (cf. [14] or example 2.6) an S-functor F : DA → A which extends the

canonical projection A → A. However, the latter does not satisfy condition 1

unless S : A → A is zero, i.e. the injective dimension of A is 1.

Now let us consider two S-functors F, F ′ : DA → S and a morphism µ

from D = F can to D′ = F ′can . Even if S is the stable category of an exact

category with enough injectives and D and D′ satisfy condition 1, we do not

know how to extend µ to a morphism of S-functors ν : F → F ′. We illustrate

the state of our ignorance by posing the

Problem: If B is an additive category and F : Hb
0] B → Hb

0] B is an S-functor

whose restriction to B is isomorphic to can : B → Hb
0] B, is it true that F is

isomorphic to the identity of Hb
0] B ?

We remark that it would be enough to produce any ν : F →1 such that

can ν is an isomorphism since such a ν would automatically be invertible, as

an easy induction argument shows. We should also mention the following

positive result: If D ∼= D′ and D satisfies the above condition, then there is

an isomorphism FK ∼→ F ′K for each K ∈ DA. It is not hard to prove this for

general S by induction on the maximal n with Kn 6= 0. While this is certainly

useful in the applications, it does not solve the problem we are considering

since there seems to be no way to ensure the functoriality of the isomorphisms

FK ∼→ F ′K.

Let us return to the problem of extending µ : D → D′ to ν : F → F ′. Sup-

pose that S is the stable category of an exact category with enough injectives,



that D and D′ satisfy condition 1 and that F and F ′ were obtained from D

and D′ by the method of [10, 3.2]. Then one can prove that ν exists if D and

D′ satisfy

Condition 2: For each n > 0 and all A,B ∈ A we have S(SnDA,D′B) = 0.

Let us summarize our findings in vague terms: Extending a ∂-functor is

possible if S is of a special type and condition 1 is satisfied; extending a

morphism between the restrictions of two S-functors is possible if S is of a

special type, the S-functors are of a special type and their restrictions satisfy

conditions 1 and 2.

Thus suspended categories and S-functors ’of a special type‘ behave bet-

ter than general suspended categories and S-functors. For example, the above

problem becomes trivial if F is assumed to be ’of a special type‘. In the follow-

ing section, we shall introduce the class of basic S-functors (resp. suspended

categories), which contains all those of ’special type‘. The class of basic S-

functors is closed under left adjoints and contains all left derived functors.

The good properties of S-functors ’of a special type‘ are shared by all basic

S-functors. They derive from the good properties of towers of S-functors.

2. Towers

2.1 For each n ∈ N let Pn be the partially ordered set

{0 < 1}n = {x = (x1, . . . , xn) : xi ∈ {0, 1}}

and let P0 = {∗}. Let P be the category whose objects are the Pn, n ∈ N and

whose morphisms are all possible compositions of the maps

pj
ε : Pn → Pn+1 , (x1, . . . , xn) 7→ (x1, . . . , xj−1, ε, xj, . . . , xn) ,

qj : Pn+1 → Pn , (x1, . . . , xn+1) 7→ (x1, . . . , xj−1, xj+1, . . . , xn+1) ,

where n ∈ N and 1 ≤ j ≤ n + 1. More explicitly, an order preserving map

a : Pm → Pn is a morphism of P iff for all 1 ≤ i < j ≤ n we have

πi a = πu and πj a = πv =⇒ u < v ,

where πi x = xi for x ∈ Pn. The category P is the ’cubical category‘ implicit in

the definition of cubical homology (see e.g. [3]). As for the simplicial category



one proves that any relation between its generators is a consequence of

pj
ε p

k
η = pk+1

η pj
ε j ≤ k

qj qk = qk qj+1 j ≥ k
qj pk

ε =


pk−1

ε qj j < k
1 j = k
pk

ε q
j+1 j > k.

We define an order relation on the morphisms from Pl to Pm by b ≤ c ⇔
b(x) ≤ c(x) , ∀x. Note that b ≤ c implies ab ≤ ac and be ≤ ce for all

morphisms a : Pm → Pn and e : Pk → Pl.

Remarks. a) The ’juxtaposition functor‘

t : P × P → P , (Pn,Pm) 7→ Pn+m

makes P into a strictly monoidal category with neutral object P0 (cf. [11]).

If (C,t, e) is another strictly monoidal category and if F : {P0,P1} → C is a

functor defined on the full subcategory {P0,P1} and sending P0 to e, there is

a unique extension G : P → C of F which commutes with t.

b) Taking the inequalities b ≤ c as 2-morphisms b→ c we can view P as a

2-category [5, V.1]. Its 2-morphisms are generated by the

ϕj : pj
0 q

j → 1 , ψj : 1→ pj
1 q

j

subject to the relations

qj ϕj = 1 , ϕj pj
0 = 1 , qjψj = 1 , ψj pj

1 = 1.

The functor t is indeed a 2-functor and P is a strictly monoidal 2-category.

The analogue of a) holds with respect to the full 2-subcategory whose non-

identical 1-morphisms are

P0

p1
0 ↓ q1 ↑ ↓ p1

1

P1

.

For example, if Add is the category of additive categories, there is a unique 2-

functor from P to Fun (Add,Add) (cf. A.1) which carries t to the composition

of 2-functors and sends P0 to the identity, P1 to M (cf. example 2.2 a), p1
0,

q1, p1
1 to P 1

0 , Q1
0, P

1
1 and ϕ1, ψ1 to the adjunction morphisms.

2.2 A tower T of additive categories is given by the following data

• a sequence of additive categories Tn, n ∈ N,



• an additive functor T a : Tn → Tm for each morphism a : Pm → Pn,

• a morphism of functors T (c, b) : T c → T b for each pair of morphisms

b ≤ c from Pl to Pm.

These data are subject to the following conditions

• T 1 = 1 and T bT a = T ab,

• T (b, b) = 1 and T (c, b) T (d, c) = T (d, b),

• T (c, b)T a = T (ac, ab) and T eT (c, b) = T (ce, be),

whenever a is a morphism Pm → Pn, b ≤ c ≤ d are morphisms Pl → Pm and

e is a morphism Pk → Pl. Note that the first condition implies that T gives

rise to a functor from Pop to the category of additive categories and that the

second condition implies that T gives rise to a functor from P (Pl,Pm)op to

the category of additive functors from Tm to Tl. Here (as always) we regard

an ordered set S as a category with objects s ∈ S and a morphism s → t

for each pair s ≤ t. This definition can be summed up by saying that T is a

2-functor from POP to Add (cf. remark 2.1 b) and A.1), where POP denotes

the 2-category P with reversed 1- and 2-morphisms.

In a completely analogous fashion, one defines towers of exact categories

and towers of suspended categories.

For any tower T , we denote T pj
ε by P j

ε and T qj by Qj
0.

Examples. a) Let B be an additive category and B∧m the category of con-

travariant functors from Pm to B. Thus B∧m consists of the m-dimensional

commutative hypercubes in B. If X ∈ B∧m and b : Pl → Pm is a morphism, we

define (B∧bX)(x) = Xb(x). If c is another morphism Pl → Pm and b ≤ c then

B∧(c, b) : B∧c→ B∧b

is furnished by the morphisms

Xc(x)→ Xb(x) , x ∈ Pl.

Clearly B∧ is a tower of additive categories. Note that B∧
0 is isomorphic to B

and that B∧n is isomorphic to

MnB =MM . . .MB



where MB is the category of morphisms of B. More precisely, we have an

isomorphism

M j : B∧n+1 →MB∧n , X 7→ (P j
1X → P j

0X)

for each 1 ≤ j ≤ n+ 1. For later reference, we record the functors

Qj
−1 : B∧n → P∧n+1 and Qj

1 : P∧n → P∧n+1 ,

which we define by their compositions with M j:

M jQj
−1X = (0→ X) , M jQj

1X = (X → 0).

Observe that we have a chain of adjoint functors

Qj
−1 a P

j
0 a Q

j
0 a P

j
1 a Q

j
1.

b) Let A be an exact category. We convert A∧ into a tower of exact

categories by endowing A∧n with the pairs whose evaluation at each x ∈ Pn is

a conflation of A. Now we inductively define exact subcategories InA of A∧:
I0A = A∧0 = A and InA consists of the X ∈ A∧n such that the morphism

P 1
1X → P 1

0X

is an inflation of In−1A, n > 0. Using the snake lemma it is easy to verify

that this is equivalent to requiring that

P j
1X → P j

0X

be an inflation for each j. It is easy to see that A∧aX lies in ImA if X lies in

InA and a : Pm → Pn is a morphism. Thus the InA yield an exact ’subtower‘

I∗A of A∧.
c) If A is an exact category, then clearly the DA∧n form a tower DA∧ of sus-

pended categories. If moreover A has enough injectives, then InA has enough

injectives (namely the objects with injective components) and the InA form

a tower I∗A of suspended categories: This is due to the fact that the passage

from exact to stable categories is compatible with composition of functors and

with morphisms of functors.

2.3 Now let S and T be towers of additive categories. A tower of additive

functors F : S → T consists of



• a sequence of additive functors Fn : Sn → Tn, n ∈ N,

• an isomorphism Fa : T aFn
∼→ FmSa for each a : Pm → Pn .

Tn

Sn

Tm

Sm

Fn Fm

Sa

T a

Fa
? ?

-

-

�-

We require that the Fa be compatible with compositions in the sense that

Fab = (FbSa)(T bFa) and that they be compatible with the morphisms S(c, b)

and T (c, b) in the sense that Fl S(c, b) ·Fc = Fb T (c, b) ·Fm. Note that F does

not give rise to a morphism between the functors Pm 7→ Sm and Pm 7→ Tm

from P to the category of additive categories unless Fa = 1 for all morphisms

a. We may view F as a 1-morphism of Fun (POP ,Add). It is clear how to

define towers of exact functors and towers of S-functors.

We compose two towers of functors F : S → T and G : R → S by setting

(FG)n = FnGn and FGa = (FmGa)(FaGn).

Examples. a) Each additive functor F : B → C yields a tower of additive

functors F∧ from B∧ to C∧: F∧
n is the induced functor on the category of

n-dimensional hypercubes and F∧a is the identity for each morphism a.

b) For each x ∈ Pn let ax : P0 → Pn be the morphism with ax(∗) = x. If

T is a tower of additive categories, we define Φ : T → T ∧0 by

Φn : Tn → (T ∧0 )n , X 7→ (x 7→ (T ax)X)

and by Φa = 1 for each morphism a.

c) Let S be a tower of suspended categories and let S| be the tower of

additive categories obtained from S by forgetting the suspended structure.

The suspension functors Sn : Sn → Sn yield a tower of additive functors

S : S| → S| where (Sa)−1 is the commutation isomorphism (Sa)Sn → Sn(Sa)
for each morphism a of P .

2.4 Let E be a tower of exact categories and T a tower of suspended

categories. A tower of ∂-functors D : E → T consists of

• a sequence of ∂-functors Dn : En → Tn, n ∈ N



• an isomorphism of ∂-functors Fa : T aDn → DmEa for each a : Pm → Pn.

As in 2.3 we requireDab = (DbEa)(T bDa) andDb·T (c, b)Dm = DnE(c, b)·Dc.
The composition of a tower of ∂-functors D : E → T with a tower of S-functors

F : T → T is defined in analogy with 2.3.

Examples. In the situation of 2.2, Example b), we have an obvious tower of

∂-functors D : A∧ → DA∧ with Da = 1 for each morphism a. If A has enough

injectives we also have a ∂-functor D : I∗A → I∗A and again Da = 1 for each

morphism a. In this case, there is also a less obvious tower D : A∧ → I∗A
: D0 is the canonical ∂-functor A → A, the underlying additive functor of

D1 :MA→ I1A sends

f : X1 → X0 to

[
f
i

]
: X1 → X0 ⊕ I,

where i : X1 → I is an inflation into an injective. The connecting morphism of

D1 is obtained by applying this construction to the category EA of conflations

of A: It provides us with an additive functor

EMA ∼→MEA → I1EA ,

which we compose with the canonical functor from I1EA ∼→ EI1A to the

category of triangles of I1A. The construction of the higher Dn is similar.

One can give a more rigorous treatment of this tower using 7.1 and A.2.

2.5 If F and G are towers of functors from S to T , a morphism µ : F → G

is given by a sequence µn : Fn → Gn of morphisms of functors such that

(µmT a)Fa = Ga (T aµn) for each morphism a : Pm → Pn. Thus µ is a 2-

morphism of Fun (POP ,Add). It is clear how to compose such morphisms.

The towers of additive functors from S to T and their morphisms are easily

seen to form a category Homadd(S, T ). Morphisms of towers of S-functors

and of ∂-functors are defined similarly. If S and T are towers of suspended

categories, we denote the corresponding category of towers of S-functors by

HomS(S, T ). If E is a tower of exact categories, we denote the category of

towers of ∂-functors by Hom∂(E , T ).

Examples. a) If µ : F → G is a morphism of additive functors from B to C,
there is an obvious morphism µ∧ : F∧ → G∧ of towers.

b) We continue 2.3, Example b). Let A be an additive category and F :

S → A∧ a tower of additive functors. There is an isomorphism ϕF : F → F∧
0 Φ,



which is obtained as follows: For each X ∈ Sn and each x ∈ Pn we have

(FnX)(x) = (A∧0 ax)(FnX) by definition; we set

(ϕF )nX(x) = (Fax)X : (A∧0 ax)(FnX) ∼→ F0SaxX.

It is straightforward to verify that ϕ is a well-defined morphism. Moreover if

µ : F → F ′ is a morphism of towers, we have (µ∧Φ)(ϕF ) = (ϕF ′)µ. This

shows that G 7→ G∧Φ is a quasiinverse for the functor

Homadd(S,A∧)→ Add (S0,A) , F 7→ F0 ,

where Add (S0,A) is the category of additive functors S0 → A. Observe

that by the construction of ϕ, this functor induces an isomorphism of the full

subcategory of the F with Fa = 1, ∀ a onto Add (S0,A).

2.6 Let T be an epivalent tower of suspended categories, i.e. for each n

and for each 1 ≤ j ≤ n+ 1 the functor

M j : Tn+1 →MTn , X 7→ (P j
1X → P j

0X)

is an epivalence (i.e. M j is full and essentially surjective and a morphism f

is invertible iff M jf is). If the Tn are triangulated categories, this means that

Tn+1 is a recollement of two copies of Tn (P j
0 = i! and P j

1 = j∗ in the notations

of [2, 1.4.3]) as we shall see in 6.1. Now let A be an exact category.

Theorem. The canonical functor HomS(DA∧, T ) → Hom∂(A∧, T ) is an

equivalence.

We shall prove this in section 9.

Examples. With the notations of 2.2, Example c), DA∧ and I∗A are epivalent

towers, as we shall see in 6.1. The towers A∧ → DA∧ and A∧ → I∗A of 2.4

yield the identical tower DA∧ → DA∧ and a tower DA∧ → I∗A, respectively.

The base DA → A of the latter extends the canonical projection A → A.

2.7 A suspended category is basic if it occurs as the base of an epivalent

tower of suspended categories; an S-functor between two basic suspended cat-

egories is basic if it occurs as the base of a tower of S-functors; a morphism

between two basic S-functors ... . Finally, if A is an exact category and T a

tower of suspended categories, a ∂-functor from A to T0 is basic if it occurs as



the base of a tower of ∂-functors from A∧ to T and similarly for morphisms.

We point out that ’basic‘ always refers to a fixed choice of the respective towers.

Theorem 2.6 is to be conceived of as a means for studying basic S-functors,

∂-functors ... . Thus it is crucial to know how large the classes of these basic

entities are. Empirically, we have found that they are quite large (see 2.8).

Indeed we do not know of an example of a non-basic entity. On the other

hand, we are not able to prove that, for example, each suspended category is

basic, or that a tower over a given base is ’unique‘ if it exists.

The following theorem shows that certain ∂-functors are necessarily basic

and that all morphisms between certain pairs of ∂-functors are basic. We use

the above notations.

Theorem.

a) If D : A → T0 is a ∂-functor with T0(SnDA,DB) = 0 for all n > 0,

A,B ∈ A, there is a tower of ∂-functors D+ : A∧ → T with D+
0

∼→ D.

The tower D+ is unique up to unique isomorphism.

b) If D,D′ are towers of ∂-functors A∧ → T with T0(SnD0A,D
′
0B) = 0 for

all n > 0, A,B ∈ A, the map

Hom (D,D′)→ Hom (D0, D
′
0) , µ 7→ µ0

is bijective.

Combined with 2.6 this immediately yields the



Corollary.

a) If D : A → T0 is a ∂-functor with T0(SnDA,DB) = 0 for all n > 0,

A,B ∈ A, there is a basic S-functor F : DA → T0 extending D. It is

unique up to a unique basic isomorphism.

b) If F and F ′ are two basic S-functors DA → T0 with T0(SnFA, F ′A) = 0

for all n > 0, A,B ∈ A and µ is a morphism between the restrictions of F

and F ′ to A, there is a unique basic morphism of S-functors ν : F → F ′

extending µ.

2.8 The following theorem and its corollary account for the all-pervasive-

ness of basic S-functors. Suppose that S and T are basic suspended categories.

Theorem. If L : T → S is left S-adjoint to a basic S-functor, it is basic.

Note that the dual statement holds for basic co-suspended categories and

that both hold for basic triangulated categories (we entrust the reader with

the definition of these concepts). In view of the desription of the morphisms

of P , the theorem follows from A.2 and 6.5.

Now assume A is an exact category with enough projectives. The localisa-

tion functor H+A → D+A is of course basic and has the projective resolution

functor (dual to [9, 4.1]) as a left adjoint. By the theorem, projective resolution

is a basic S-functor. Hence we have the

Corollary. If F : A → B is an additive functor, the left derived functor

LF : D+A → D+B is a basic S-functor.

3. Presheaves and the derived category

Let A be an exact category and N1 the set of natural numbers n ≥ 1. We

endow N1 with the topology of the cofinite sets. A rough presheaf F on N1

with values in Aop consists of objects F(U) ∈ Aop for each open subset U of

N1 and of morphisms ρUV : F(U)→ F(V ) of Aop for each inclusion U ⊂ V of

open sets of N1. We require that

• ρUU = 1 for each open U ⊂ N1,

• ρUW = ρV WρUV whenever U ⊂ V ⊂ W are open in N1 and



• there is an open M ∈ N1 such that F(U) vanishes if U does not contain

M .

In particular we have F(∅) = 0. We endow the categoryRA of rough presheaves

with the exact structure consisting of the pairs

F ′ i→ F d→ F ′′

such that

F ′(U)
iU→ F(U)

dU→ F ′′(U)

is a conflation of Aop for each open U ⊂ N1. By definition the class Σ consists

of those morphisms s : F → F ′′ which fit into a conflation

F ′ i→ F s→ F ′′ ,

where F ′ admits a j ∈ N1 such that the restriction

F ′(U)→ F ′(U ∩ Uj)

is invertible for all open U , where Uj = N1 − j.
The open sets Uj, j ∈ N1 clearly form an open covering U of N1. If F is a

rough presheaf, the associated Čech-complex

CF = C(U ,F)

has the components C0F = F(N1) and

CpF =
∏

i1<...<ip

F(Ui1 ∩ . . . ∩ Uip) , p > 0

and the differential given by the matrix of the

(−1)kρ : F(Ui1 ∩ . . . Uik−1
∩ Uik+1

∩ . . . ∩ Uip+1)→ F(Ui1 ∩ . . . ∩ Uip+1).

Observe that there are only finitely many non-zero terms in the definition of

CpF and that CF is a positive differential complex over A.

Theorem. The functor C induces an equivalence (RA)[Σ−1]→ DA.

This is an ’abstract‘ localisation [5, I, 1.1]. We shall give the proof in 5.4.



4. The universal property of the construction D

In this section, we view the assignment A 7→ DA as a 2-functor (cf. A.1)

from the 2-category of exact categories Ex to the 2-category of suspended

categories Susp. This simply means that D is defined on exact categories,

exact functors and morphisms of exact functors and is compatible with the

various composition functors. The canonical ∂-functors A → DA, A ∈ Ex
combine into a 2-∂-functor can in the sense of the following definition: If

F : Ex→ Susp is a 2-functor, a 2-∂-functor D to F consists of

• a ∂-functor DA : A → FA for each exact category A

• an isomorphism of ∂-functors DF : (FF )(DA)→ (DB)F for each exact

functor F : A → B.

These data are required to be compatible with compositions of exact functors

and with morphisms of exact functors in the already familiar fashion:

D(GF ) = (DG)F · (FG)(DF ) and (DB)µ ·DF = DG · FµDA

whenever we have exact functors

A F→ B G→ C

or a morphism µ : F → G of exact functors from A to B. A morphism

α : D → D′ of 2-∂-functors assigns a morphism of ∂-functors αA : DA → D′A
to each exact A. The αA are required to satisfy

D′F · FFαA = αBF ·DF

for each exact functor F : A → B. The 2-∂-functors to a given F form a

category Hom∂(F). Similarly, the 1-morphisms D → F of Fun (Ex,Susp)
form a category HomS (D,F). The canonical 2-∂-functor induces a functor

can ∗ : HomS(D,F)→ Hom∂(F).

We shall give a sufficient condition for can∗ to be an equivalence. For each

A ∈ Ex let MA be the category of morphisms of A, JA : IA → MA the

inclusion of the subcategory ofMA consisting of the inflations of A and

0→ A QA−→ IA PA−→ A → 0



the exact sequence of exact categories with (QA)B = (0→ B) and (PA)(A→
B) = A. We shall see that DJA is an equivalence (10.1) and that ImDQA =

KerDPA (Example 6.1 c).

Theorem. The functor can ∗ is an equivalence if FJA is an equivalence and

ImFQA = KerFPA for each exact A.

We shall prove this in section 10.

5. Proof of Theorem 3

5.1 Proposition.

a) DA is isomorphic to the localisation of Hb
0]A (1.1) at the class of mor-

phisms s which fit into a triangle

X
s→ Y → A→ SX

of Hb
0]A with acyclic A.

b) DA is ismorphic to the localisation of Cb
0]A (the category of bounded

positive complexes) at the class of morphisms d which fit into a sequence

A
i→ X

d→ X ′

of Cb
0]A such that (in, dn) is a conflation of A for all n ∈ N and A is of

the form

. . .→ 0→ Aj
∼→ Aj−1 → 0→ . . .

for some j ≥ 1.

Proof. a) As in the classical case [15, I, §2, no. 1] one sees that the class of

morphisms s admits a calculus of left fractions [5, I, 2.3]. Now suppose X is a

positive complex and X ′ appears in a triangle

B → X
t→ X ′ → SB

ofHbA with an acyclic B. Realising X ′ as a mapping cone we see that t factors

as rs, where s is as in the assertion and r : X ′
≥0 → X ′ induces an isomorphism

HbA (K,X ′
≥0)

∼→ HbA (K,X ′)



for each positive complex K. Using left fractions to compute the morphism

groups DbA (K,X) we infer

DA (K,X) ∼→ DbA (K,X).

b) Let us first assume that each conflation of A splits. We have to show

that Hb
0]A identifies with the localisation of Cb

0]A at the class Θ of morphisms

d. Obviously the functor (Cb
0]A)[Θ−1]→ Hb

0]A is full and bijective on objects.

Since the d ∈ Θ admit right inverses in Cb
0]A, the localisation functor Cb

0]A →
(Cb

0]A)[Θ−1] is full as well and it only remains to be shown that two morphisms

of complexes f, g : X → Y have the same image in (Cb
0]A)[Θ−1] if they are

homotopic. Let f − g = kiX , where iX : X → IX has the components[
1
dn

]
: Xn → Xn ⊕Xn+1 = (IX)n and dIX =

[
0 1
0 0

]
.

Since [1X 0] : X ⊕ IX → X is in Θ, the morphisms [1X i]t and [1X 0]t :

X → X ⊕ IX have the same image in (Cb
0]A)[Θ−1]. Hence the same is true of

f = [g k][1X i]t and g = [g k][1X 0]t.

If A is a general exact category, we conclude from the above special case

that (Cb
0]A)[Θ−1] identifies with the localisation of Hb

0]A at the image of Θ.

We have to show that the saturation of the image contains each morphism s

as in a). Since the mapping cone over s is acyclic, there is a commutative

diagram

. . .

Xn+1

Zn+1

Yn+1

Xn

Zn

Yn

Xn−1

Zn−1

Yn−1

. . .

X1

Z1

Y1

X0

Z0

Y0

-

-

-

-

-

-

? ? ?

? ? ?

? ?

? ?

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

dn+1 dn d1

j′n q′n j′1 q′1

j′′n q′′n j′′1 q′′1

dn+1 dn d1

where sn = j′′n q
′
n+1, j

′
n q

′′
n+1 = 0 and

Zn
jn→ Xn−1 ⊕ Yn

qn→ Zn−1 , jn = [−j′n j′′n]t , qn = [q′n q
′′
n] ,



is a conflation ∀n > 0. We see that s = t0 · t1 · t2 . . . , where

(t00, t
0
1, t

0
2, . . .) = (j′′0 , 1Y1 , 1Y2 , . . .)

(t10, t
1
1, t

1
2, . . .) = (q′1, j

′′
1 , 1Y2 , . . .)

...

(tn0 , t
n
1 , t

n
2 , . . .) = (1X0 , 1X1 , . . . , 1Xn−2 , q

′
n, j

′′
n, 1Yn+1 , . . .)

...

We may therefore assume that there is an n ≥ 1 such that si = 1Xi
for i > n

and i < n− 1 and that the sequence ([dn − sn]t, [sn−1 dn]) is a conflation. The

sequence of complexes

. . . 0 → Xn
1−→ Xn → 0 . . .

↓ un ↓ ↓ un−1 ↓
. . . Xn+1 → Xn ⊕ Yn

dn⊕1−→ Xn−1 ⊕ Yn → Xn−2 . . .
↓ vn ↓ ↓ vn−1 ↓

. . . Yn+1 → Yn −→ Yn−1 → Yn−2 . . .

where un = [1 − sn]t, vn = [sn 1], un−1 = [dn − sn]t, vn−1 = [sn−1 dn], shows

that such an s becomes invertible in (Cb
0]A)[Θ−1].

5.2 Lemma. The composition

RA C→ Cb
0]A → DA

makes the s ∈ Σ invertible.

Proof. The image of the conflation

F ′ i→ F s→ F ′′

of section 3 fits into a triangle of DA. It is therefore enough to show that CF ′

is acyclic. Indeed, CF ′ is split acyclic, as it is not hard to verify.

5.3 Let K ∈ Cb
0]A. Using the notations of section 3 we define a rough

presheaf RK on N1:

• (RK)(U) = 0 unless U = U1 ∩ . . . ∩ Un for some n ∈ N in which case

(RK)(U) = Kn,

• ρUV = 0 unless U = U1 ∩ . . . ∩ Un, V = U ∩ Un+1 for some n ∈ N in

which case ρUV = dn+1.



Lemma. The composition

Cb
0]A

R→ RA→ (RA)[Σ−1]

induces a functor DA → (RA)[Σ−1].

Proof. If

A
i→ X

d→ X ′

is a sequence as in 5.1 b), the pair (Ri,Rd) is a conflation of RA and

(RA)(U)→ (RA)(U ∩ Uj)

is clearly invertible for each open U ⊂ N1. Hence Rd ∈ Σ.

5.4 We prove theorem 3. According to 5.2 and 5.3, C and R induce functors

(RA)[Σ−1]
→
← DA ,

which we also denote by C and R. It is clear that CR is isomorphic to the

identity. We shall produce an isomorphism between RC and the identity of

(RA)[Σ−1]. More precisely, we shall first construct an isomorphism

1
Ψ→ G

in (RA)[Σ−1], whereG is a functorRA → RA such thatGs becomes invertible

in (RA)[Σ−1] for all s ∈ Σ and that (GF)(U) 6= 0 only if U is of the form

U1 ∩ . . . ∩ Un for some n ∈ N. It is then clear that we have an isomorphism

RCG ∼→ G of functors RA → RA, hence an isomorphism

RC
RCΨ−→ RCG ∼→ G

Ψ← 1

of functors (RA)[Σ−1] → (RA)[Σ−1]. We first have to introduce some nota-

tion: If M ⊂ N1 is a finite subset and V ⊂ N1 its complement then, since

N1 = M
∐
V , a rough presheaf F on N1 is given by the presheaf W 7→ FW on

the discrete space M whose value at W ⊂M is the rough presheaf

U 7→ FW (U) = F(W ∪ U) , U ⊂ V

on V . Thus if M = {m,n}, we may describe F by the commutative square

F{m,n}
a→ F{m}

b ↓ ↓ c
F{n}

d→ F∅ ,



where a, . . . , d are the restriction morphisms. We now define a presheaf G =

F ′
n,mF by the square

G{m,n} → G{m}
↓ ↓

G{n} → G∅
:=

F{m,n}
a−→ F{m}

[b − a]t ↓ ↓ [c − 1]t

F{n} ⊕F{m}
d⊕1−→ F∅ ⊕F{m}

and a presheaf H = Fn,mF by the square

H{m,n} → H{m}
↓ ↓

H{n} → H∅
:=

F{m,n} −→ 0
[b − a]t ↓ ↓

F{n} ⊕F{m}
[d c]−→ F∅

.

We have a morphism α : F ′
n,mF → F whose components are the obvious pro-

jections and a morphism β : F ′
n,mF → Fn,mF whose components are obvious

except for

[1 c] : F∅ ⊕F{m} → F∅

in the lower right corner. Clearly α and β are deflations,

Kerα(U)→ Kerα(U ∩ Um)

is invertible ∀U and

Kerβ(U)→ Kerβ(U ∩ Un)

is invertible ∀U . Hence α, β lie in Σ. This implies that Fn,ms is invertible in

RA[Σ−1] for all s ∈ Σ and that we have an isomorphism

1→ Fn,m

of functors RA[Σ−1]→ RA[Σ−1]. Observe that if F has width

w = min {p : CqF = 0 ∀ q > p}

then Fn,mF has width w and that Fn,mF ∼→ F in RA if n > w. Moreover if

(Fn,mF)(U) 6= 0, then U ∩ {n,m} 6= {m} and we have F(U) 6= 0 or F(U ∪
{m} − {n}) 6= 0. Using this it is not hard to verify that µ(Fn,mF) ≥ µ(F) if

(n,m) ≤ µ(F) and that µ(Fn,mF) > (n,m) if (n,m) = µ(F), where µ(F) ≤ ∞
is minimal (with respect to the lexicographic ordering) among the pairs (k, l),

k > l such that there is an open U ⊂ N1 with U ∩ {k, l} = l and F(U) 6= 0.

Now we define functors Gn : RA → RA , n ∈ N1 by

G1 = 1 , G2 = F2,1 , . . . , Gn = Fn,n−1 Fn,n−2 . . . Fn,1Gn−1.



It is clear that µ(GnF) ≥ (n, n − 1) and that GnF ∼→ Gn+1F in RA if n is

greater than the width of F . The functor G defined by

GF = lim
−→

GnF , n > w

has the required properties.

6. Epivalence and Recollement

6.1 Let S0 and S1 be suspended categories and Q0 : S0 → S1 a fully faithful

S-functor admitting a left S-adjoint P0 and a right S-adjoint P1. The functor

M : S1 →MS0 , X 7→ (MX : P1X → P0X)

from S1 to the category of morphisms of S0 is defined by requiring that Q0MX

equal the composition of the adjunction morphisms

Q0P1X → X → Q0P0X.

We consider the conditions

(E) The functor M is an epivalence (I, 5.2).

(R) There are chains of S-adjoint functors

P−1 a Q−1 a P0 and Q0 a P1 a Q1 ,

Q−1 and Q1 are fully faithful and KerP1 = ImQ−1.

If the suspension functors of S0 and S1 are equivalences, condition (R) is

equivalent to the recollement setup of [2, 1.4.3] with P0 = i! and P1 = j∗, as it

is not hard to verify.

Examples. a) If T is an epivalent tower the S-functor Qj
0 : Tn → Tn+1 satisfies

(E).

b) If A is an exact category with enough injectives, then IA, the full

subcategory of MA consisting of the inflations of A, is exact with enough

injectives (I, 5.1). The functor

Q0 : A → IA , A 7→ (A
1→ A)

has the left adjoint

P0 : IA → A , (A1
i→ A0) 7→ A0



and the right adjoint

P1 : IA → A , (A1
i→ A0) 7→ A1.

The functor M is simply given by

IA →MA , (A1
i→ A0) 7→ (A1

i−→ A0).

Condition (E) holds (compare [9, 5.2]). We infer that the tower T = I∗A is

epivalent.

c) Let A be an exact category. The functor

A →MA , A 7→ (A
1→ A)

has two successive left adjoints given by

(A1
f→ A0) 7→ A0 , A 7→ (0→ A)

and two successive right adjoints given by

(A1
f→ A0) 7→ A1 , A 7→ (A→ 0).

These functors induce a chain of S-adjoint functors

Q−1 a P0 a Q0 a P1 a Q1

between DA and DMA, Q0 being induced by A 7→ (A
1→ A). It is clear that

1 ∼→ P0Q−1, 1 ∼→ P1Q0 and P1Q1
∼→ 1, which means that Q−1, Q0 and Q1 are

fully faithful. Moreover for each complex K, there is a triangle

Q−1P0K → K → Q1P1K → SQ−1P0K ,

which shows that KerP1 = ImQ−1 since the suspension functor of DMA is

fully faithful. In order to construct the missing left adjoint P−1, we use that

DMA ∼← DIA (10.1). P−1 is ’induced‘ by

Cok : IA → A , (A1
i→ A0) 7→ Cok i.

We have thus shown that Q0 : DA → DMA satisfies (R). By the following

lemma Q0 also satisfies (E). We infer that T = DA∧ is epivalent.



Lemma.

a) Suppose (E) holds. Then (R) holds and the functors Q−1, Q1 and Q0

induce S-equivalences from S0 to the full subcategories of S1 consisting

of the X with P1X = 0, P0X = 0 and with invertible MX, respectively.

Moreover for each X ∈ S1 there is an exact sequence

S0 (SP1X,P0Y )→ S1 (X, Y )
M→MS0 (MX,MY )→ 0 ,

which is functorial in Y ∈ S1.

b) Suppose (R) holds. For each X ∈ S1 there is a unique morphism ζX

such that the S-sequence

Q0P1X → X → Q−1P−1X
ζX→ SQ0P1X

is a triangle. There is a triangle

P1X
MX→ P0X → P−1X → SP1X

functorial in X ∈ S1. There is a canonical isomorphism η : P−1Q1
∼→ S.

If the suspension functor of S1 is fully faithful, then (E) holds.

Proof. a) Construction of Q−1: Let Y ∈ S0. We choose X ∈ S1 such that

there is an isomorphism
0 → Y
↓ ↓ f0

P1X → P0X.

Since M is an epivalence, f0 yields a surjection

S1 (X,U)→ S0 (Y, P0U) , g 7→ (P0g)f0.

Suppose that g is mapped to 0. We form a triangle

X
g→ U

h→ V → SX

in S1. Since P0g = 0, P0h admits a retraction. Since P0X = 0, P1h is invertible.

Hence Mh admits a retraction. Since M is an epivalence, this implies that h

admits a retraction, so g = 0. Using 6.7 we complete Q−1 to a left S-adjoint.

By the construction, we have P1Q−1 = 0 and 1 ∼→ P0Q−1. If P1U = 0, then



the construction shows that the image of U → Q−1P0U under M is invertible.

Since M detects isomorphisms, U ∼→ Q−1P0U , so KerP1 = ImQ−1. The

construction of Q1 is similar. It shows that Q1 is an equivalence of S0 onto the

full subcategory of S1 consisting of the X with P0X = 0. – Since Q0 is fully

faithful, MQ0X is invertible for all Y ∈ S0. Conversely, if MX is invertible,

then the image of Q0P1X → X under M is invertible.

Construction of P−1: Let X ∈ S1. We form a triangle

Q0P1X → X → U → SQ0P1X

over the adjunction morphism. The associated long exact Hom-sequence shows

that Hom (X,Q−1Y ) ∼← Hom(U,Q−1Y ) for each Y ∈ S0 since P1Q−1 = 0.

Applying P1 to the triangle we see that P1U = 0 hence U ∈ ImQ−1. Since

Q−1 is fully faithful, we can conclude that P−1 exists as an additive functor.

Using 6.7 we turn it into a left S-adjoint. Now let X ∈ S1, a = −Q−1MX and

let b : Q−1P1X → Q0P1X be the morphism such that P0b is the composition

P0Q−1P1X
∼← P1X

∼→ P0Q0P1X.

We form a triangle

Q−1P1X
[a b]t−→ Q−1P0X ⊕Q0P1X

c→ U → SQ−1P1X.

Let

e : Q−1P0X ⊕Q0P1X → X

have the adjunction morphisms as components. Then e[a b]t = 0, so e = fc

for some f . Since the images of the triangle under P0 and P1 are split exact

sequences, Mf is invertible. So f is invertible and we have a triangle

Q−1P1X → Q−1P0X ⊕Q0P1X → X → SQ−1P1X.

Applying S1 (?, Y ) to this triangle we get the sequence of the assertion.

b) As in [2, 1.4.3] one sees that the ’morphism of degree 1‘ is unique if it

exists. To derive the first triangle, we form a triangle

Q0P1X → X → U → SQ0P1X

over the adjunction morphism. Applying P1 to the triangle we see that P1U = 0

hence U ∈ ImQ−1. Since the triangle also shows that

Hom (X,Q−1Y ) ∼← Hom(U,Q−1Y ) , ∀Y ∈ S0



this implies that U is canonically isomorphic to Q−1P−1X. We obtain the

second triangle by applying P0 to the first. If we apply the second triangle to

X = Q1Y we get an isomorphism P−1Q1Y → SP1Q1Y since P0Q1Y = 0 by

adjunction. The required isomorphism is the composition

P−1Q1Y → SP1Q1Y → SY.

Now suppose the suspension functor of S1 is fully faithful. Let X ∈ S1.

We form a triangle

X → Q1P1X → U → SX

in S1. Applying P1 we see that P1U = 0, hence U ∈ ImQ−1. Moreover

Hom (Q−1Y, U) ∼→ Hom(Q−1Y, SX) , ∀Y ∈ S0.

So U is canonically isomorphic to Q−1P0SX and we have a triangle

Q−1P0X → X → Q1P1X → SQ−1P0X.

Now it is obvious that a morphism f : X → X ′ is invertible iff P0f and P1f are

invertible, i.e. M detects isomorphisms. In fact, this was all we needed besides

condition (R) to derive the exact sequence of a). Hence M is an epivalence.

6.2 Suppose Q0 : S → T satisfies condition (E) and X, Y ∈ S1.

Lemma.

a) The map

S1 (X, Y )→MS0 (MX,MY )

is bijective if S0 (SP1X,P0Y ) = 0. We have

S1 (SkX, Y ) = 0 , ∀ k > 0

if S0 (SkP1X,P1Y ) = S0 (SkP0X,P0Y ) = S0 (SkP1X,P0Y ) = 0 for each

k > 0.

b) If

X
f→ Y

g→ Z

are morphisms of S1 such that gf = 0, that there are triangles

P1X
P1f→ P1Y

P1g→ P1Z → SP1X , P0X
P0f→ P0Y

P0g→ P0Z → SP0X



in S0 and that S0 (SP1X,P1Z) = S0 (SP0X,P0Z) = 0, then there is a

triangle

X
f→ Y

g→ Z → SX

in S1.

Proof. a) is an immediate consequence of 6.1 a). b) Let

X
f→ Y

h→ U
k→ SX

be a triangle in S1. Its ’images‘ under P1 and P0 are isomorphic to the given

triangles. Hence there are isomorphisms i1 : P1U → P1Z and i0 : P0U → P0Z

with i1 P1h = P1g and i0 P0h = P0g, respectively. Since S0 (SP1X,P1Z) = 0 =

S0 (SP0X,P0Z), i0 and i1 are uniquely determined by these equalities. Now

gf = 0, so g = jh for some j : U → Z. We have P0j = i0 and P1j = i1. Since

M is an epivalence, j is invertible. Hence (f, g, kj−1) is a triangle.

6.3 We prepare for the proof of the redundancy of the connecting mor-

phisms (section 7). Let

S0
F0→ S ′0

Q0 ↓ ↓ Q0

S1
F1→ S ′1

be a diagram of suspended categories and S-functors and let

µ : F1Q0
∼→ Q0F0

be an isomorphism of S-functors. We assume that both functors Q0 satisfy

condition (R) of 6.1, that the morphisms

P0F1 → F0P0 , P1F1 ← F0P1

associated (A.4) with µ and µ−1 are invertible and that the morphisms

F1Q−1 ← Q−1F0 , F1Q1 → Q1F0

associated with the inverses of the above morphisms are also invertible. We

now infer from the first triangle of 6.1 b) that the associated morphism

P−1F1 → F0P−1

is also invertible.



Remark. If the functors Q0 satisfy condition (E) and the morphisms

P0F1 → F0P0 , P1F1 ← F0P1

are invertible, the morphisms

F1Q−1 ← Q−1F0 , F1Q1 → Q1F0

are automatically invertible (apply M to these morphisms and use 6.1 a).

Let ϕ0 : SF0 → F0S be the commutation isomorphism. A straightforward

verification shows that the diagram

F0S
ϕ0−→ SF0

F0η ↓ ↓ ηF0

F0P−1Q1
∼→ P−1F1Q1

∼→ P−1Q1F0

(∗)

is commutative. This means that ϕ0 is uniquely determined by the η and by

the underlying additive functors of the S-functors at hand. We make this more

precise. Suppose that we are given additive functors

F0 : S0 → S ′0 and F1 : S1 → S ′1

and an isomorphism of functors

µ : Q0F0
∼→ F1Q0.

We assume that

a) the associated morphisms P0F1 → F0P0, P1F0 → F0P1 are invertible,

b) the morphisms F1Q−1 → Q−1F0, F1Q1 → Q1F0 associated to the inverses

of the morphisms of a) are invertible and

c) the associated morphism P−1F1 → F0P−1 is invertible.

Observe that b) follows from a) if the functors Q0 satisfy condition (E) (apply

M to the morphisms of b). Moreover, assuming a) and b), a sufficient condition

for c) is that for each triangle

X
u→ Y

v→ Z
w→ SX



of S1 there is some triangle

F1X
F1u→ F1Y

F1v→ F1Z
w′
→ SF1X

of S ′1. This follows from the unicity of the first triangle of 6.1 b).

Under the hypotheses a), b) and c), (F0, ϕ0) is an S-functor if ϕ0 is defined

by diagram (∗) and Q0 satisfies condition (E). The proof is a straightforward

verification based on 6.1 b). We shall also need to know that (F0, ϕ0) ’functo-

rially depends‘ on the triple consisting of F0, F1, and µ. That is to say that if

we are given another triple

G0 : S0 → S ′0 , G1 : S1 → S ′1 , ν : Q0G0
∼→ G1Q0

satisfying the analogues of a), b) and c), and if

α0 : F0 → G0 and α1 : F1 → G1

are morphisms of functors such that the diagram

Q0F0
µ−→ F1Q0

Q0α0 ↓ ↓ α1Q0

Q0G0
ν−→ G1Q0

commutes, then α0 gives rise to a morphism of S-functors (F0, ϕ0)→ (G0, γ0).

Again we omit the straightforward proof. Finally we have to consider compo-

sitions of functors. Suppose that we are given additive functors

S0
F0→ S ′0

G0→ S ′′0 , S1
F1→ S ′1

G1→ S ′′1

and commutation isomorphisms

µ : Q0F0 → F1Q0 , ν : Q0G0 → G1Q0

yielding invertible associated morphisms. Then the triple consisting of G0F0,

G1F1 and (G1µ)(νF0) yields an S-functor (G0F0, θ). It is not hard to verify

that this S-functor is the composition of the S-functors (G0, γ0) and (F0, ϕ0)

constructed from F0, F1, µ and G0, G1, ν, respectively.

6.4 Let A be an exact category. We have the functors

Q−1 : A →MA , A 7→ (0→ A) , P0 :MA→ A , (A1 → A0) 7→ A0 ,

Q0 : A →MA , A 7→ (A
1→ A) , P1 :MA→ A , (A1 → A0) 7→ A1 ,

Q1 : A →MA , A 7→ (A→ 0).



Moreover if X = (A
i→ B) is an inflation, we have a well defined P−1X = Cok i

inA. Now let Q0 : S0 → S1 be an S-functor satisfying condition (R),D0 : A →
S0 and D1 :MA → S1 ∂-functors and λ : Q0D0

∼→ D1Q0 an isomorphism of

∂-functors. As in 6.3, we require that the associated morphisms

P0D1 → D0P1 , P1D1 ← D0P1 , D1Q−1 ← Q−1D0 , D1Q1 → Q1D0

are invertible. If Q0 : S0 → S1 even satisfies condition (E), then we only have

to require this for the first pair of morphisms. It follows for the second pair

by 6.1 a). If

ε : A
i→ B

d→ C

is a conflation of A, we have a conflation

ε+ :
A1

1→ A1 → 0
‖ ↓ i ↓
A1

i→ A0 → Cok i

inMA. Its ’codification‘ is

Q0P1X → X → Q−1P−1X ,

where X = (A
i→ B). The image of the morphism Q0P1X → X under

D1 identifies with Q0P1D1X → D1X by assumption. So the ’image‘ of the

conflation is isomorphic to the first triangle of 6.1 b) applied to D1X. We

obtain an isomorphism

Q−1P−1D1X
∼→ D1Q−1P−1X ,

hence an isomorphism P−1D1X → D0P−1X, which is easily seen to be associ-

ated with the above D1Q−1
∼← Q−1D0. Thus, as for S-functors, the associated

morphism

P−1D1 → D0P−1

is invertible whenever it is defined. Moreover we have commutative diagrams

Q−1P−1D1X
ζD1X−→ SQ0P1D1X

↓ ↑
D1Q−1P−1X

δ1ε+

−→ SD1Q0P1X

and

P0D1Q−1P−1X
P0δ1ε+

−→ P0SD1Q0P1X
∼→ SP0D1Q0P1X

↓ ↓
D0C

δ0ε−→ SD0A

(∗)



which show how to compute δ0ε from D1X. Now suppose that D0 : A → S0

and D1 : MA → S1 are additive functors and λ : D1Q0 → Q0D0 is an

isomorphism of functors. We assume that

a) the associated morphisms P0D1 → D0P0, P1D1 → D0P1 are invertible,

b) the morphisms D1Q−1 → Q−1D0, D1Q1 → Q1D0 are invertible and

c) for each inflation X = (A
i→ B) the morphism P−1D1X → D0P−1X is

invertible.

Observe that b) follows from a) if the functor Q0 satisfies condition (E). More-

over, assuming a) and b), a sufficient condition for c) is that for each conflation

X
j→ Y

q→ Z

ofMA there is some triangle

D1X
D1j→ D1Y

D1q→ D1Z → SD1X.

Under the hypotheses a), b) and c), one can verify that the diagrams (∗)
define a ’connecting morphism‘ δ0 such that (D0, δ0) is a ∂-functor. Moreover

this construction transforms ’morphisms of triples D0, D1, λ’ to morphisms

of ∂-functors and is compatible with ’composition with exact functors from

the right’ and with ’composition with S-functors from the left‘. All of these

statements are easy to make precise (compare 6.3) and to prove. We omit the

details.

6.5 We prepare for the proof of the theorem on left adjoints (2.8). We use

the notations and hypotheses of the beginning of 6.3. In addition, we assume

that both functors Q0 satisfy condition (E).

Lemma. If F0 : S0 → S ′0 admits a left S-adjoint G0, then F1 admits a left

S-adjoint G1. The morphisms

G1Q0 → Q0G0 , G0P0 → P0G1 , G0P1 → P1G1

associated with

Q0F0 → F1Q0 , P0F1 → F0P0 , P1F1 ← F0P1

are invertible.



Proof. Let X ∈ S ′1. The functor S ′1 (X,F1 ?) is represented by SkQ0G0Y for

X = SkQ0Y and by SkQ−1G0Y for X = SkQ−1Y . Since for any X ∈ S ′1 we

have a triangle (cf. proof of 6.1 a)

Q−1P1X → Q−1P0X ⊕Q0P1X → X → SQ−1P1X ,

we conclude from 6.7 that the functor is representable for arbitrary X and that

F1 has a left S-adjoint. Using that F1 ’commutes‘ with the right adjoints of

Q0, P0 and P1 it is easy to see that the associated morphisms are invertible.

6.6 We prove the results about S-adjoints that we have been using in this

section. Let S and T be suspended categories. We study right S-adjoints.

Let (L, λ) : S → T be an S-functor, R a right adjoint of the underlying

additive functor of L and Φ : LR → 1T , Ψ : 1S → RL compatible adjunction

morphisms.

Lemma. If the composition ρ = (RSΦ)(RλR)(ΨSR) is invertible and ρ =

ρ−1, then (R, ρ) is a right S-adjoint to (L, λ).

We omit the proof since it is quite similar to that of lemma 6.7

6.7 We study left S-adjoints. Let S, T be suspended categories and (R, ρ) :

S → T an S-functor. We say that the left adjoint L is defined in X ∈ T if

the functor T (X,R ?) is representable, i.e. if there is an object LX ∈ S and a

morphism ΨX : X → RLX which induces a bijection

(ΨX)∗R(LX, ?) : S(LX, ?) ∼→ T (X,R ?) , f 7→ (Rf)(ΨX).

If L is defined in X and in SX, we have a canonical morphism λX : LSX →
SLX defined by

(Rλ)(ΨSX) = (ρ−1L)(SΨX).

Let D be the full subcategory of T consisting of the objects X satisfying

• L is defined in SnX, ∀n ∈ N and

• λSnX is invertible, ∀n.

By definition we have SD ⊂ D. The following lemma shows that D is a

suspended subcategory of T and that (L, λ) : D → S is an S-functor. If



RS ⊂ D, then (R, ρ) and (L, λ) yield a pair of S-adjoint functors between S
and D.

Lemma. (cf. [10, 1.5]) If X and Y lie in D and

X
u→ Y

v→ Z
w→ SX

is a triangle of T , then Z lies in D and

LX
Lu→ LY

Lv→ LZ
(λX)(Lw)−→ SLX

is a triangle of S.

Proof. 1st step: L is defined in SnZ, ∀n ∈ N. We form a triangle

LX
Lu→ LY

v′→ Z ′
w′
→ SLX

in S. By SP3 [10, 1.1] there is a morphism of triangles

X
u→ Y

v→ Z
w−→ SX

ΨX ↓ ΨY ↓ f ↓ ↓ SΨX

RLX
RLu→ RLY

Rv′→ RZ ′
(ρL)(Rw′)−→ SRLX.

It yields a morphism of exact sequences

T (X,R ?) ← T (Y,R ?) ← T (Z,R ?) ← T (SX,R ?) ← T (SY,R ?)
↑ α1 ↑ α2 ↑ α3 ↑ α4 ↑ α5

S(LX, ?) ← S(LY, ?) ← S(Z ′, ?) ← S(SLX, ?) ← S(SLY, ?),

where α1 and α2 are given by Ψ∗R(L, ?), α4 and α5 by

(SΨ)∗(ρ−1L)∗R(SL, ?)

and α3 by f ∗R(Z ′, ?). By assumption, the evaluations of Ψ∗R(L, ?) and

(SΨ)∗(ρ−1L)∗R(SL, ?) = (ΨS)∗(Rλ)∗R(SL, ?) = (ΨS)∗R(LS, ?)λ∗

at X resp. Y are invertible. By the 5-lemma, α3 is invertible, so L is defined

in X. Since (Sv, Sw,−Su) is a triangle as well, we can use the same argument

to conclude that L is defined in SX . . . .

2nd step: (Lu, Lv, (λX)(Lw)) is a triangle. In the above notations, there

is an isomorphism g : LZ → Z ′ such that (Rg)(ΨZ) = f . We claim that

LX
Lu→ LY

Lv→ LZ
(λX)(Lw)−→ SLX

‖ ‖ ↓ g ‖
LX

Lu→ LY
v′→ Z ′

w′
−→ SLX



is a morphism of S-sequences, which implies that the first row is a triangle of

T . Indeed, g(Lv) = v′ follows from

(Rg)(RLv)(ΨY ) = (Rg)(ΨZ)v = fv = (Rv′)(ΨY )

and w′g = (λX)(Lw) from

(Rw′)(Rg)(ΨZ) = (Rw′)f = (ρLX)−1(SΨX)w

= (RλX)(ΨSX)w = (RλX)(RLw)(ΨZ).

3rd step: Z lies in D. Since λZ occurs in the morphism of triangles

LSX
LSu→ LSY

LSv→ LSZ
−(λSX)(LSw)−→ SLSX

↓ λX ↓ λY ↓ λZ ↓ SλX
SLX

SLu→ SLY
SLv→ SLZ

−(SλX)(SLw)−→ SSLX

,

λZ is invertible. The same argument shows that λSnZ is invertible for each

n ∈ N. The assertion now follows from the 1st step.

7. Redundancy of the connecting morphisms

7.1 Let A be an exact category and S, T epivalent towers of suspended

categories. We denote the underlying towers of additive categories of A∧, S
and T by A∧|, S| and T |, respectively.

Lemma.

a) The forgetful functor

HomS (S, T )→ Homadd (S|, T |)

is an isomorphism onto the full subcategory consisting of the towers F

such that for each triangle

X
u→ Y

v→ Z
w→ SX

of Sn there is some triangle

FnX
Fnu→ FnY

Fnv→ FnZ
w′
→ SFnX

of Tn.



b) The forgetful functor

Hom∂ (A∧,S)→ Homadd (A∧|,S|)

is an isomorphism onto the full subcategory consisting of the towers D

such that for each conflation

A
i→ B

d→ C

of A∧n there is some triangle

DnA
Dni→ DnB

Dnd→ DnC → SDnA

of Sn.

Proof. In order to produce an inverse of the forgetful functor, we consider

the functor Θ : P → P which associates Pn+1 to Pn and maps a morphism

a : Pm → Pn to

Θa : Pm+1 → Pn+1 , (x1, . . . , xm+1) 7→ (x1, a(x2, . . . , xm+1)).

We have a natural transformation ϕ : Θ→ 1P whose value at Pn is

q1
0 : Pn+1 → Pn , (x1, . . . , xn+1) 7→ (x2, . . . , xn+1).

Now Θ is really a 2-functor and Θ is a morphism of 2-functors. So we obtain

a morphism of towers

Sϕ : S → SΘ

whose components are the

Q1
0 : Sn → Sn+1.

Of course we have S|Θ=SΘ|. Let F : S| → T | be a tower as in the assertion.

We have a diagram

S| F→ T |
Sϕ ↓ ↓ T ϕ
SΘ| FΘ→ T Θ|

of towers of additive categories and an isomorphism

Fϕ : (T ϕ)F → F (ΘSϕ).



We apply 6.3 to complete each Fn to an S-functor F̃n and to combine the F̃n

into a tower of S-functors F̃ . The proof of b) is completely analogous. We

omit the details.

7.2 We use the notations and hypotheses of Theorem 4. We denote the

compositions of D and F with the forgetful 2-functor U : Susp→ Add by D|
and F|.

Lemma.

a) The forgetful functor

HomS (D,F)→ Homadd (D|,F|)

is an isomorphism.

b) The forgetful functor

Hom∂ (F)→ Homadd (U ,F|)

is an isomorphism.

Proof. a) We produce an inverse of the forgetful functor. For each exact A
we consider the functor

Q : A →MA.

If F : D| → F| is given, we have a diagram

DA FA→ FA
DQ ↓ ↓ FQ
DMA FMA→ FMA

and an isomorphism

FQ : (FMA)(DQ) ∼→ (FQ)(FA).

By example 6.1 c), DQ satisfies condition (E) and similarly we see that FQ
satisfies condition (R). It is clear that conditions 6.3 a) and b) are satisfied

since the functors P0, P1, Q1 and Q−1 are all induced by exact functors between

A andMA (compare 6.4). Since by assumption F and D carry the inclusion

IA → MA to an equivalence, the functor P−1 is ’induced‘ by the cokernel

functor IA → A (cf. 6.4) and therefore condition 6.3 c) is also satisfied.



So we can complete FA to an S-functor F̃A and combine the F̃A into a 1-

morphism F̃ : D → F . The proof of b) is completely analogous. We omit the

details.

8. Proof of Theorem 2.7

8.1 We prove b). It is not hard to see (use [2, 1.1.9]) that under the

hypotheses of b), morphisms of ∂-functors fromD0 toD′
0 bijectively correspond

to morphisms between the underlying additive functors. Therefore, according

to 7.1 b), we only have to show that the functor

Homadd (A∧|, T |)→ Add (A|, T0|) , D| 7→ D|0 ,

where the | denotes underlying additive categories resp. functors, induces a

bijection

Hom (D|, D′|)→ Hom(D|0, D′|0).

From now on we omit the | . We factor the above functor as

Homadd (A∧, T )→ Homadd (A∧, T ∧0 )→ Hom (A, T0) ,

where the first functor is induced by Φ : T → T ∧0 (Example 2.3 b). The second

functor is an equivalence by Example 2.3 b). So it remains to be shown that

Φ induces a bijection

Hom (D,D′)→ Hom (ΦD,ΦD′).

By A.5 it is enough to check this locally, i.e. we have to show that Φn : Tn →
(T ∧0 )n induces a bijection

Hom (DnT a,D′
nT a)→ Hom (ΦnDnT a,ΦnD

′
nT a)

for each morphism a : Pm → Pn. This certainly holds if for all X, Y ∈ A∧n , the

map

Hom (DnX,D
′
nY )→ Hom(ΦnDnX,ΦnD

′
nY )

is bijective. This follows from lemma 6.2 a) by induction.

8.2 We prove a). The functor D yields D∧ : A∧ → T ∧0 . Let Vn ⊂ (T ∧0 )n

be the image of D∧
n and Un ⊂ Tn the preimage of Vn under Φn : Tn → (T ∧0 )n.

Obviously we have a diagram of towers of additive categories

A∧ → V ← U → T .



We shall show that U → V is an equivalence and that the quasiinverse provides

the required D+ upon composition with A∧ → V and U → T . By remark A.2

we only have to show that Un → Vn is an equivalence for each n. This is clear

for n = 0. Suppose it has been shown up to n − 1. Moreover suppose that

we have shown that Hom (SkX, Y ) = 0, ∀ k > 0, ∀X, Y ∈ Un−1. We have a

diagram

MA∧n−1 −→ MVn−1
∼← MUn−1 → MTn−1

∼↑ ↑∼ ↑ ↑M1

A∧n
(D∧

0 )n−→ Vn ← Un → Tn

which commutes up to isomorphism. By lemma 6.2 a), M1 induces an equiv-

alence Un → MUn−1 and Hom (SkX, Y ) = 0, ∀ k > 0, ∀X, Y ∈ Un. This

implies the assertion. The tower of additive functors D+ thus constructed ob-

viously satisfies D+
0

∼→ D. It follows by induction from lemma 6.2 b) that the

image of a conflation under D+
n can be embedded into a triangle. Hence D+

yields a tower of ∂-functors by 7.1 b).

9. Proof of Theorem 2.6

9.1 We establish the connection between towers and presheaves. Let A
be an exact category. We have a full embedding from A∧m to RA which with

X ∈ A∧m associates the rough presheaf F such that

• F(U) = 0 if U does not contain U1 ∩ . . . ∩ Um,

• F(U) = X(x1, . . . , xm) if U contains U1 ∩ . . . ∩ Um and xi = 1 iff U is

contained in Ui.

We define RmA ⊂ RA to be the image of A∧m. It identifies with the category

of presheaves on the discrete set {1, . . . ,m}. By ’transport of structure‘ we

combine the RmA into a tower R∗A. Note that the functor

Qm+1
−1 : RmA → Rm+1A

of example 2.2 a) coincides with the canonical embedding. Thus RA is the

limit of the direct system

R0A
Q1
−1−→ R1A → . . .→ RmA

Qn+1
−1−→ Rm+1A → . . . .



Now let n ∈ N. Applying the above to RnA instead of A we find that the

direct limit of

R0RnA → R1RnA → . . .→ RmRnA → Rm+1RnA → . . .

is RRnA. We shall identify RmRnA with Rm+nA in the canonical fashion: A

presheaf F on

{1, . . . ,m+ n} ∼→ {1, . . . ,m}
∐
{1, . . . , n}

is given by the presheaf W 7→ FW on {1, . . . ,m} whose value at W is the

presheaf

U 7→ FW (U) = F (W ∪ U).

In the following paragraph we shall suppress A in the symbols RA, RmA,

R∗A, RmRnA and RRnA.

9.2 We want to prove theorem 2.6 by constructing a quasiinverse of

HomS (DR∗, T )→ Hom∂ (R∗, T ).

Let D be a tower of ∂-functors R∗ → T . We first describe the components Fn

of the image F of D under the quasiinverse. By example 6.1 a), the functors

Qn+1
−1 : Tn → Tn+1

admit left adjoints P n+1
−1 . For n < l we put

Ln,l = P n+1
−1 . . . P l−1

−1 P
l
−1 : Tl → Tn.

We obtain a diagram

R0Rn

Qn+1
−1−→ R1Rn → . . . RmRn −→ . . .

Dn ↓ ↓ Ln,n+1Dn+1 ↓ Ln,n+mDn+m

Tn
1−→ Tn −→ . . . Tn −→ . . . ,

which commutes up to isomorphism by 6.4. By A.4 and 9.1, we obtain a

functor En : RRn → Tn which ’extends‘ the Ln,n+mDn+m. Clearly the image

of a conflation under En embeds into a triangle. So in order to show that the

s ∈ Σ are made invertible by En , it is enough to show that EnF ′ vanishes if F ′

is a presheaf as in section 3. This is equivalent to showing that Ln,lDlQ
j
0 = 0



for each l > n and each 1 ≤ j ≤ l. But we have DnQ
j
0

∼→ Qj
0Dn since D is a

tower, P k
−1Q

j
0

∼→ Qj
0P

k
−1 for k > j (apply 6.3 to the square Qj

0Q
k
0

∼→ Qk
0Q

j
0) and

P j
−1Q

j
0 = 0. We conclude that En induces an Fn : DRn → Tn. It is clear by the

construction that the image of a triangle of DRn under Fn can be embedded

into a triangle of Tn. So once we have shown that the Fn combine into a tower

F of additive functors it will follow from 7.1 a) that this tower gives rise to a

unique tower of S-functors.

9.2 We keep the notations and hypotheses of the preceding paragraph. In

order to construct F as a tower and to make it clear that F depends on D in

a functorial way, we have to add one layer of abstraction.

Let Θ : P → P be the functor which carries Pn to Pn+1 and maps a

morphism a : Pm → Pn to

Θa : Pm+1 → Pn+1 , (x1, . . . , xm+1) 7→ (a(x1, . . . , xm), xm+1).

We have a natural transformation τ : 1P → Θ taking the values

τPn = pn+1
0 : Pn → Pn+1, (x1, . . . , xn) 7→ (x1, . . . , xn, 0).

Of course, Θ is really a 2-functor and τ a morphism of 2-functors. For each m

we obtain a tower of exact functors

R∗τΘm : R∗Θm ← R∗Θm+1.

By example 2.2 a) and A.2, this tower admits a left adjoint, which we denote

by R∗σΘm, by abuse of notation. Its components are the

Qn+m+1
−1 : Rn+m → Rn+m+1 .

We form the direct system RN :

R∗
R∗σ−→ R∗Θ→ . . .→ R∗Θm R∗σΘm

−→ . . . ,

which we view as an object of Fun (N,Fun (POP , Ex)), where POP denotes

the 2-category P with reversed 1- and 2-morphisms. By 9.1 and A.4 its direct

limit is isomorphic toRR∗, the tower with components (RR∗)n = RRn. Using

the notations of A.4 we have two ’universal arrows‘

RN → ∆RR∗ → ∆DR∗



in Fun (N,Fun (POP , Ex)). We denote their composition by Can. Let us

return to T . By remark 6.3 and A.2, the tower

T τΘm : T Θm ← T Θm+1

admits a left adjoint, which we denote by T σΘm. We consider σ+ : ∆T → TN

given by

T 1−→ T −→ . . . T −→ . . .
‖ ↓ ↓
T T σ−→ T Θ

T σΘ−→ . . . T Θm T σΘm

−→ . . . .

Here the vertical arrows are defined so as to make the squares commutative.

By A.2 and 6.3, σ+ admits a left adjoint ρ+ : TN → ∆T

T T σ−→ T Θ
T σΘ−→ . . . T Θm T σΘm

−→ . . .
‖ ↓ ρ+

1 ↓ ρ+
m

T 1−→ T −→ . . . T −→ . . . .

Of course, the n-th component of ρ+
m is simply

(ρ+
m)n = Ln,n+m : Tn+m → Tn.

We compose ρ+ : TN → ∆T with DN : RN → TN. By A.4 the composition

DNρ
+ gives rise to a tower of additive functors F : DR∗ → T which makes

the square

RN
Can−→ ∆DR∗

DN ↓ ↓ ∆F

TN
ρ+

−→ ∆T
commutative up to isomorphism. By construction, F depends onD in a functo-

rial manner and F can ∼→ D canonically. There only remains to be constructed

a functorial isomorphism F ∼→ G for the case where D = Gcan for some tower

of S-functors G : DR∗ → T . It is enough to produce an isomorphism between

(∆F )Can and (∆G)Can, i.e. between ρ+DN and (∆G)Can. We illustrate

the situation by the diagram

RN

canN−→ (DR∗)N

GN−→ TN

‖ ↓ ρ+ ↓ ρ+

RN
Can−→ ∆DR∗

∆G−→ ∆T .

It is clear from A.3 that DN = GNcan N if D = Gcan . Hence ρ+DN =

ρ+GNcan N. We also have τ+GN
∼→ (∆G)τ+, canonically, where τ+ denotes



the obvious 1-morphisms TN → ∆T and (DR∗)N → ∆DR∗. By ’twofold asso-

ciation‘ (A.3 and 6.3), we obtain an isomorphism ρ+GN
∼→ (∆G)ρ+, which by

A.3 is functorial in G. So it only remains to be shown that ρ+can N
∼→ Can.

We fix a choice of ρ+ : The

ρ+
m : DR∗Θm → DR∗

are determined by the

(ρ+
m)n : DRm+n → DRn

which are to be induced by the canonical isomorphisms

RRm+n → RRn

provided by the partitions

{1, . . . ,m+ n}
∐

N1
∼→ {1, . . . , n}

∐
N1 .

It is then clear that ρ+canN = Can but we still have to show that (ρ+
m)n is

really left adjoint to the composition

Qm+n
−1 . . . Qn

−1 : DRn → DRm+n .

It is obviously enough to consider the case m = 1. After replacing A by RnA
we may also assume that n = 0. The assertion then means that

Z : RR1 → RA

induces a left adjoint of the functor

Q1
−1 : DA → DR1A ∼→ DMA .

Now Z induces the mapping cone functor so that the assertion follows from

10.1 b).

10. Proof of Theorem 4

10.1 Lemma.

a) The inclusion J : IA →MA induces an S-equivalence DIA ∼→ DMA.

b) The mapping cone functor C : DMA → DA is left adjoint to the em-

bedding DA → DMA induced by A 7→ (0→ A).



Proof. a) Let IcsA and McsA be the categories IA and MA endowed with

the componentwise split conflations. For each (f : A1 → A0) ∈McsA we have

a conflation
0 −→ A1 −→ A1

↓ ↓ i ↓ f
A1

[1 −f ]t−→ A1 ⊕ A0
[f 1]−→ A0

, i = [1 0]t

inMcsA. We see that each object ofMcsA (hence of IcsA) admits a projective

resolution of lenghth one by objects contained in U , the full subcategory of IcsA
consisting of the split conflations. Therefore

DIcsA ∼← Hb
0] U

∼→ DMcsA.

It follows from 5.1 a) that DIA (resp. DMA) identifies with the localisation

of DIcsA (resp. DMcsA) at the class of morphisms s which fit into a triangle

X
s→ Y → A→ SX

with an IA-acyclic (resp. MA-acyclic) A. The assertion follows because the

preimages in Hb
0] U of the respective classes coincide.

b) It is enough to show the assertion for the restriction C|DIA. Now

Q : DA → DIA obviously has the functor Cok : DIA → DA as a left

adjoint. Since the mapping cone over the canonical morphism CX → CokX,

X ∈ DIA is acyclic, C and Cok are isomorphic as functors DIA → DA.

10.2 We construct a quasiinverse of

can∗ : HomS (D,F)→ Hom∂ (F).

We first remark that the functor

Q0 : FA → FMA

induced by A 7→ (A → 0) satisfies condition (R) of 6.1. To see this, we can

use the same argument as in example 6.1 c). Now let D ∈ Hom∂ (F) and

let U : Ex → Add be the forgetful 2-functor. We consider F as a 2-functor

Ex → Add and D as a morphism of 2-functors U → F . We define the 1-

morphism DN : UN → FN to be

U UQ−→ UM UMQ−→ . . . UMn UMnQ−→ . . .
D ↓ ↓ ↓ DMn

F FQ−→ FM FMQ−→ . . . FMn FMnQ−→ . . . ,



where Q is the 1-morphism whose value at A is the exact embedding

A →MA , A 7→ (0→ A)

and the squares are commutative up to canonical isomorphism. From 6.1 it is

clear that the 1-morphism σ+ : ∆F → FN given by

F 1−→ F 1−→ . . . F F−→ . . .
↓ ↓ ↓
F FQ−→ FM FMQ−→ . . . FMn FMnQ−→ . . .

(the vertical arrows are defined so as to make the squares commutative) admits

a left adjoint ρ+ : FN → ∆F . The composition ρ+DN ’factors‘ through the

’universal arrow‘ (A.5)

UN → ∆R ,

where R assigns the additive category of rough presheaves RA to A ∈ Ex and

the functors

MnA → RA

are defined in analogy with 9.1. So we have E : R→ F such that

UN → ∆R ∆E−→ ∆F

is isomorphic to ρ+DN. As in 9.2, one sees that

EA : RA → FA

makes all the s ∈ Σ invertible. This clearly implies that E ’factors‘ through

R→ D

giving rise to F : D → F . From 7.2 we see that F corresponds to a 1-morphism

of Fun(Ex,Susp). Now one can imitate the end of the proof in 9.3. We omit

the details.

Appendix : 2-Functor-Categories

A.1 Let C and D be 2-categories [5, V. 1]. We set out to define a sub-2-

category of the 2-functor-category of [6, I, 2.4] from C to D.

An object of the 2-category Fun (C,D) is a 2-functor X : C → D, i.e. a

map X : C0 → D0 together with functors

X(x, y) : HomC (x, y)→ HomD (Xx,Xy) , f 7→ Xf ,



which are compatible with units and compositions. A 1-morphism F : X → Y

assigns a 1-morphism Fx : Xx→ Xy to each object x ∈ C and a an invertible

2-morphism Ff : Y fFx→ FyXf to each 1-morphism f : x→ y

Y x

Xx

Y y

Xy

Fx Fy

Xf

Y f

Ff
? ?

-

-

�-

such that F1x = 1Fx, ∀x ∈ C0, Ffg = (FfXg)(Y fFg) for each pair of

composable 1-morphisms f, g of C and (FyXµ)(Ff) = (Fg)(Y µFx) for each

2-morphism µ : f → g of C. The composition of two 1-morphisms F,G is

defined by FGx = FxGx for each x ∈ C0 and FGf = (FyGf)(FfGx) for

each 1-morphism f : x→ y. A 2-morphism Θ : F → G assigns a 2-morphism

Θx : Fx → Gx to each object x of C such that the equation Gf(Y fΘx) =

(ΘyXf)Ff holds for each 1-morphism f : x → y. The two compositions of

2-morphisms are (ΘΦ)x = ΘxΦx and (Θ ∗ Φ)x = Θx ∗ Φx.

Example. Let C be the 2-category with a single object x having only identical

2-morphisms and such that HomC (x, x) is a free monoid on s : x → x. Then

Fun (C, Cat) is isomorphic to the 2-category whose objects are the pairs (X , S)

of categories X with an endofunctor S : X → X , whose morphisms are the ’S-

functors‘ and whose 2-morphisms are the ’morphisms of S-functors‘ (compare

[10, 1.4]).

A.2 We keep the assumptions and notations of 6.1. An adjoint pair in a

2-category consists of 1-morphisms l : x → y, r : y → x and 2-morphisms

ϕ : lr → 1y , ψ : 1x → rl such that (rϕ)(ψr) = 1r and (ϕl)(lψ) = 1l . If ϕ and

ψ are invertible, l and r are quasiinverse equivalences.

Now let R : X → Y be a 1-morphism of Fun (C,D) and suppose that for

each x ∈ C0 we are given an adjoint pair Rx, Lx, Φx, Ψx such that

Mf = (ΦyXfLx)(LyRfLx)(LyY fΨx) : LyY f → XfLx

is invertible for each 1-morphism f : x→ y of C.

Proposition. (compare [10, 1.6]) The assignments

x 7→ Lx , f 7→ Lf = (Mf)−1



define a 1-morphism L of Fun (C,D), the assignments

x 7→ Φx , x 7→ Ψx

define 2-morphisms Φ, Ψ and R, L, Φ, Ψ is an adjoint pair in Fun (C,D).

Remark. In particular, R has a quasiinverse iff each Rx has a quasiinverse.

Proof. Substituting into the definitions we obtain statements which immedi-

ately follow from A.3. We omit the details.

A.3 Let l, r, ϕ, ψ and l′, r′, ϕ′, ψ′ be adjoint pairs in a 2-category C which

appear in a diagram

x
f−→ x′

l ↓↑ r l′ ↓↑ r′
y

g−→ y′.

We call two 2-morphisms α : fr → r′g and β : l′f → gl associated if the

following equivalent conditions hold (compare [10, 1.6]) :

i) α = (r′gϕ)(r′βr)(ψ′fr) ii) (r′β)(ψ′f) = (αl)(fψ)
iii) β = (ϕ′gl)(l′αl)(l′fψ) iv) (gϕ)(βr) = (ϕ′g)(l′α).

We can interpret this as follows: i) and iii) define inverse bijections between

the 1-morphisms from l to l′ and from r to r′, where we consider l, l′ as 2-

functors from {0 < 1} (having only identical 2-morphisms) to C and r, r′ as

2-functors from {0 < 1} to CoP , the 2-category C ’with reversed 2-morphisms‘.

In fact, these bijections are part of an isomorphism of categories

Hom (l, l′)
∼=→ Hom (r, r′)op.

We make this more precise: Let f1 : x → x′ and g1 : y → y′ be another pair

of morphisms and µ : f → f1, ν : g → g1 2-morphisms. If α : fr → r′g,

β : l′f → gl and α1 : f1r → r′g1, β1 : l′f1 → g1l are associated pairs, then

(r′ν)α = α1(µr)⇐⇒ (νl)β = β1(l
′µ) ,

i.e. µ, ν define a 2-morphism (f, g, α) → (f1, g1, α1) iff they define a 2-

morphism (f, g, β)→ (f1, g1, β1).

In 9.2 and A.2 we also need that the isomorphisms

Hom (l, l′)
∼=→ Hom (r, r′)op



are compatible with compositions, i.e. if a diagram

x
f−→ x′

h−→ x′′

l ↓↑ r l′ ↓↑ r′ l′′ ↓↑ r′′

y
g−→ y′

i−→ y′′

is given, where l′′, r′′, ϕ′′, ψ′′ is another adjoint pair, and if α : fr → r′g,

β : l′f → gl and γ : hr′ → r′′i, δ : l′′h → il′ are associated pairs, then

(γg)(hα) : (hf)r → r′′(ig) and (iβ)(δf) : l′′(hf)→ (ig)l are associated.

A.4 We consider the partially ordered set N as a 2-category having only

identical 2-morphisms. Let E be another 2-category and let ∆ : E → Fun (N, E)
be the obvious ’diagonal‘ 2-functor. The limit of a 2-functor X : N→ E con-

sists of an object lim
−→

X ∈ E and a 1-morphism f : X → ∆lim
−→

X inducing an

equivalence of categories

HomE (lim
−→

X, y)→ HomFun (N,E)(X,∆y) , g 7→ f ·∆g

for each object y of E .

Example. a) LetA be an exact category. In E = Add we consider the sequence

of embeddings (9.1)

R0

Q1
−1−→ R1 → . . .→ Rn

Qn+1
−1−→ Rn+1 → . . . .

For an exact category B, a 1-morphism to ∆B is given by a family of functors

Gn : Rn → B

and of isomorphisms

γn : Gn
∼→ Gn+1Q

n+1
−1 .

Using a well-known technique we now exhibit a category LA and a 1-morphism

to ∆LA which even induces an isomorphism

Hom (LA,B)
∼=→ Hom(R0 → R1 → . . . , ∆B).

The objects of LA are the pairs (X,n) of natural numbers n and of objects

X ∈ Rn. The morphisms from (X,n) to (Y,m) bijectively correspond to the

elements of RA (X, Y ) (we identify X, Y with their images in RA). The

functor cann : Rn → LA associates the pair (X,n) with X ∈ Rn. The

isomorphism cann
∼→ cann+1Q

n+1
−1 is produced by the identities of RA.



Obviously LA is equivalent toRA. HenceRA is also a limit of the sequence

of the Rn. We conclude by theorem 3 that for each additive category T0 the

canonical functor

Hom (DA, T0)→ Hom (R0 → R1 → . . . , ∆T0)

is an equivalence onto the full subcategory of the ’compatible families‘ (Gn, γn)

such that Gn makes the s ∈ Σ lying in Rn invertible.

Now we consider the case where E = Fun (C,D) for two 2-categories C, D.

A 2-functor X : N→ Fun (C,D) yields a 2-functor Xc : N→ D defined by

n 7→ Xc(n) = (Xn)(c)

for each c ∈ C. Let us suppose that for each c there is a strict limit , i.e. a

limit lim
−→

Xc furnishing isomorphisms

Hom (lim
−→

Xc, y)
∼=→ Hom (Xc,∆y) , ∀ y ∈ D.

In this case, the assignment c 7→ lim
−→

Xc can be completed to a 2-functor

L : C → D in a natural way, and the 1-morphisms Xc → ∆lim
−→

Xc can be

completed to a 1-morphism X → ∆L. A tedious exercise shows that this

1-morphism induces an isomorphism

HomFun (C,D)(L, Y )→ HomFun (N,Fun (C,D))(X,∆Y )

for each Y ∈ Fun (C,D).

Example. b) We consider the 2-functor R∗ : POP → Add and the sequence

R∗
R∗σ−→ R∗Θ→ . . .→ R∗Θm R∗σΘm

−→ . . . .

of 9.2. By definition, its evaluation at Pn is the sequence

Rn

Qn+1
−1−→ Rn+1 → . . .→ Rn+m

Qn+m+1
−1−→ Rn+m+1 → . . . .

As in example a), we see that this sequence has a strict limit Ln. The Ln

combine into a 2-functor L : POP → Add. The canonical morphisms R∗Θm →
RR∗ induce a 1-morphism L → RR∗. Since its components are equivalences,

it is an equivalence itself by A.2. Hence RR∗ is a limit of the seqence of the



R∗Θm. In particular, it follows that, for each tower of additive categories T ,

the functor

Hom (DR∗, T )→ Hom(R∗ → R∗Θ→ . . . , ∆T )

is an equivalence onto the full subcategory of the ’compatible families‘ Gm :

R∗Θm → T such that (Gm)n : Rn+m → T makes all the s ∈ Σ (with respect

to RRn) lying in Rn+m invertible.

A.5 Let C, D be 2-categories, X, Y , Z ∈ Fun (C,D), F,G : X → Y and

H : Y → Z 2-functors. Suppose that, for each 1-morphism f : x→ y of C, Hy
induces a bijection

HomD (Xx, Y y)(FyXf,GyXf) ∼→ HomD (Xx,Zy)(HFyXf,HGyXf).

Lemma. H induces a bijection of the classes of 2-morphisms

HomFun (C,D)(X, Y )(F,G) ∼→ HomFun (C,D)(X,Z)(HF,HG).

We omit the straightforward proof.
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