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Introduction

In this paper we search for a universal property of the (bounded positive)
derived category of an exact category. We thereby hope to obtain a better
understanding of the category of S-functors [10] starting from the derived
category. Such S-functors play an essential role in the study of hearts of t-
structures [2] [1], in J. Rickard’s "Morita theory for derived categories® [13]
and in D. Happel’s description of the derived category of a finite-dimensional
algebra [7].

We briefly outline the contents of the paper. Let A be an exact category
and DA the bounded positive derived category (cf. section 1). We start with
what we consider the most natural approach, namely the question whether
the canonical O-functor A — DA is universal among the J-functors from
A to suspended categories S. This, however, is not the case. We analyse
the situation in section 1. Our conclusion is that the concepts of suspended
category and S-functor alone do not provide rich enough a framework for an
adequate treatment of the question. As a supplement, we propose "towers‘ of



suspended (resp. exact) categories: A tower 7 consists of a sequence
T, T, ..., Tp,... , nEN

of categories of the respective type and of a multitude of compatible functors
joining them. A tower A" with base A} = A is associated with the exact cat-
egory A. The derived categories D(A’)) form a tower of suspended categories
DA" and the tower of J-functors A" — D.A" is universal (Theorem 2.6). Pass-
ing from the tower DA" to its base DAY = DA we obtain new information on
the problem of extending a O-functor A — S to an S-functor DA — S. For
example, if A and T are derived equivalent rings [13], then the S-equivalence
HyPr — Hp Py constructed in [loc. cit.] is unique among the S-functors which
map ' to the tilting complex T and occur as the base of a tower of S-functors.
These "basic’ S-functors apparently form a very large class. For example, all
left derived functors are basic and all left S-adjoint functors of basic S-functors
are basic (2.8). In fact, we do not know any example of a non-basic S-functor.
Neither do we know an example of a suspended category which does not occur
as the base of a tower of suspended categories.

The essential ingredient of the proof of the universal property of DA" is the
description of the derived category as a localisation of a category of presheaves.
We refer to section 3 for details.

The description of DA by presheaves also leads to a characterization of
the 'construction D', i.e. the 'hyperfunctor' ( = 2-functor) which assigns DB
to B for each exact category B (section 4). In fact, D is universal among the

constructions D’ which map J : ZB — MDB to an S-equivalence and
0-BLIBL B0

to an exact sequence of suspended categories, for each B. Here M B is the cat-
egory of morphisms of B, J is the inclusion of the subcategory ZB of inflations
of B, I maps B to 0 — B and P mapsi: A— B to A.

1. Extending O-functors

By an additive, exact [8] [12] or suspended category we shall always mean
a svelte (=equivalent to a small) category of the respective type. We shall also
assume that idempotents split in the exact categories we consider. Following
[4] we use the words ’inflation‘, 'deflation‘ and ’conflation‘ instead of 'admis-

sible monomorphism’, ’admissible epimorphism‘ and ’admissible short exact



sequence’ [12], respectively. If B is an exact category with enough injectives,
we denote by B the residue class category of B modulo the ideal of morphisms
factoring through an injective. The exact structure on B yields a structure of
suspended category on B [10].

Let A be an exact category and Dy.A the bounded derived category of A :
It is the localisation [15] of the homotopy category HyA of bounded chain

complexes
o Ky S Ky, 5 Ky —...,dd=0, K,=0 ¥n>>0and Vn << 0,

at the subcategory of acyclic complexes, i.e. complexes A admitting conflations

D1 2 Ay 2 7,

such that d, = j,_1gn, Vn (we always suppress the zeroes at the ends of a
conflation). The positive derived category DA is the full subcategory of Dy.A
consisting of the positive complexes K, i.e. K, =0,V n < 0. Note that our use
of the notation DA does not agree with the usual conventions. We shall see
in 5.1 that DA identifies with a localisation of the positive homotopy category
Hg] A, the full subcategory of H.A consisting of the positive complexes. Clearly
DA is a suspended category in the sense of [10]. We shall work with DA rather
than with Dy A since this is technically simpler and at the same time leads to
slightly more general results. In fact, it is usually easy to pass from DA to DA
using the fact that the latter category identifies with the smallest triangulated
category containing DA as a suspended subcategory (cf. [10, 2.1]).

By sending A € A to the complex K with Ky = A and K,, = 0 for all
n # 0, we obtain an additive functor can from A to D.A. Moreover, for each

conflation

e: AL BLC
of A, there is a unique [2, 1.1.10] connecting morphism 0 : C' — SA such
that the sequence
ALBL 0B 54

is a triangle of DA (we omit can from the notation whenever the context
makes it clear that we are speaking of complexes rather than of objects of
A). Thus, (can,0) is a 0-functor in the sense of the following definition: If
S is a suspended category, a 0-functor from A to S consists of an additive



functor D : A — S and a natural transformation § which assigns a morphism
0e : DC — SDA to each conflation ¢ in such a way that

DAZ2E DB2Y Do % sDA

is a triangle of S. A morphism of O0-functors (D,0) — (D',¢') is given by a
morphism of functors p : D — D’ such that the square

DC %5 SDA

nC | 1 SpA

pc % sp'A
commutes for each conflation €. It is clear how to compose two such morphisms.
We see that the O-functors from A to S form a category A (A, S). Each S-
functor (F, ¢) : DA — S yields a 0-functor (F'can,d) whose second component
assigns e = (@pcan A)(F0e) to the conflation €. Also, if v is a morphism of
S-functors from DA to S, canv is a morphism of the associated O-functors.

Clearly these assignments define a functor
can™ : Susp (DA,S) — A (A,S),

where the left hand side is the category of S-functors from DA to S. It is
reasonable to ask the

Question: Is can™* an equivalence 7

An affirmative answer would entitle us to call DA the solution of a universal
problem. The answer, however, is no. The following simple example shows
that even if each conflation of A splits, there are d-functors A — S which do
not ’extend‘ to S-functors DA — S.

Example. Let B be an exact category,
AL BSC

a non-split conflation of B and 0 : C' — S A the connecting morphism in DB.
Let A be the full additive subcategory of DB consisting of the objects [1;,c; X,
where [ is finite and each X; belongs to {A, B,C,SA}. We equip A with the
split conflations. Suppose there is an S-functor F' from DA = Hg] A to DB
whose restriction to A is isomorphic to the inclusion A C DB. Then it is not
hard to see that

F(...-0-ALB%C)=0.



Since the morphism 0 : C' — S A of A factors through
50— ASBLC
in DA, this implies F'0 = 0, a contradiction.

For a general suspended category &, we know nothing about the image
of can*. The problem only becomes tractable when we make more specific
assumptions about §: If § is the stable category of an exact category with

enough injectives then a O-functor D is isomorphic to Fcan for some F :
DA — S if it satisfies

Condition 1: For each n > 0 and all A, B € A we have S (S"DA,DB) = 0.

This is an easy consequence of [10, 3.2]. We shall also reprove it in this paper.
The condition is not necessary. For example, if A has enough injectives, one can
define (cf. [14] or example 2.6) an S-functor F' : DA — A which extends the
canonical projection A — A. However, the latter does not satisfy condition 1
unless S : A — A is zero, i.e. the injective dimension of A is 1.

Now let us consider two S-functors I, F' : DA — § and a morphism pu
from D = Fcan to D' = F'can. Even if S is the stable category of an exact
category with enough injectives and D and D’ satisfy condition 1, we do not
know how to extend p to a morphism of S-functors v : F' — F’. We illustrate

the state of our ignorance by posing the

Problem: If B is an additive category and F : Hg] B — Hg} B is an S-functor
whose restriction to B is isomorphic to can : B — Hg] B, is it true that F' is
isomorphic to the identity of Hg] B?

We remark that it would be enough to produce any v : F' — 1 such that
canv is an isomorphism since such a v would automatically be invertible, as
an easy induction argument shows. We should also mention the following
positive result: If D = D’ and D satisfies the above condition, then there is
an isomorphism 'K = F'K for each K € DA. It is not hard to prove this for
general S by induction on the maximal n with K, # 0. While this is certainly
useful in the applications, it does not solve the problem we are considering
since there seems to be no way to ensure the functoriality of the isomorphisms
FK > F'K.

Let us return to the problem of extending p: D — D' tov : F — F’'. Sup-

pose that § is the stable category of an exact category with enough injectives,



that D and D’ satisfy condition 1 and that F' and F’ were obtained from D
and D’ by the method of [10, 3.2]. Then one can prove that v exists if D and
D’ satisty

Condition 2: For eachn > 0 and all A, B € A we have S(S"DA, D'B) = 0.

Let us summarize our findings in vague terms: Extending a O-functor is
possible if S is of a special type and condition 1 is satisfied; extending a
morphism between the restrictions of two S-functors is possible if S is of a
special type, the S-functors are of a special type and their restrictions satisfy
conditions 1 and 2.

Thus suspended categories and S-functors ’of a special type‘ behave bet-
ter than general suspended categories and S-functors. For example, the above
problem becomes trivial if F' is assumed to be ’of a special type‘. In the follow-
ing section, we shall introduce the class of basic S-functors (resp. suspended
categories), which contains all those of ’special type’. The class of basic S-
functors is closed under left adjoints and contains all left derived functors.
The good properties of S-functors ’of a special type‘ are shared by all basic
S-functors. They derive from the good properties of towers of S-functors.

2. Towers

2.1 For each n € N let P, be the partially ordered set
{0< 1} ={z=(21,...,2,) : x; € {0,1}}

and let Py = {*}. Let P be the category whose objects are the P,,, n € N and
whose morphisms are all possible compositions of the maps

pZ;:PnHPn+17 (xh‘"axn)H (xla"‘7xj—1a€7xj7"'7xn)a

¢ Ppy1 — Pu, (1, s @) = (X1, X1, Ty e, Tpt1)

where n € N and 1 < 5 < n + 1. More explicitly, an order preserving map
a : Py, — P, is a morphism of P iff for all 1 <i < 7 < n we have

ma=m,and mja=m, = u<v,

where 7; x = x; for © € P,,. The category P is the 'cubical category* implicit in

the definition of cubical homology (see e.g. [3]). As for the simplicial category



one proves that any relation between its generators is a consequence of

: . Flg <k
ploy=pyttpl j<k Pk ]1)6 1 ‘7._,{;
qjqk:qkqurl P>k q p. = 4 J=

- Pt > k.
We define an order relation on the morphisms from P; to P,,, by b < ¢ &
b(x) < c¢(x), VYax. Note that b < ¢ implies ab < ac and be < ce for all

morphisms a : P,, — P, and e : P, — P,.

Remarks. a) The ’juxtaposition functor
|_|3,P><7D—>,P, (,Pnylpm)H n+m

makes P into a strictly monoidal category with neutral object Py (cf. [11]).
If (C,U,e) is another strictly monoidal category and if F': {Py,P1} — C is a
functor defined on the full subcategory {Py, P11} and sending Py to e, there is
a unique extension G : P — C of F' which commutes with L.

b) Taking the inequalities b < ¢ as 2-morphisms b — ¢ we can view P as a
2-category [5, V.1]. Its 2-morphisms are generated by the

Pipd =1, 1= plg
subject to the relations
¢ =1, ¢ph=1, ¢V =1, ¥ pj =1

The functor U is indeed a 2-functor and P is a strictly monoidal 2-category.
The analogue of a) holds with respect to the full 2-subcategory whose non-

identical 1-morphisms are

Po
ol ¢'1 Lpl
P

For example, if Add is the category of additive categories, there is a unique 2-
functor from P to Fun (Add, Add) (cf. A.1) which carries U to the composition
of 2-functors and sends P, to the identity, P; to M (cf. example 2.2 a), p},
q', pi to Py, Q}, P! and ¢!, ¢! to the adjunction morphisms.

2.2 A tower T of additive categories is given by the following data

e a sequence of additive categories 7,,, n € N,



e an additive functor 7a : 7, — 7,, for each morphism a : P,, — P,

e a morphism of functors 7 (¢,b) : Tc¢ — Tb for each pair of morphisms
b < c from P; to P,,.

These data are subject to the following conditions
e 71=1and 7b7a = Tab,
e 7(b,b)=1and T(c,b)7T(d,c) =T (d,b),
e 7T(c,b)Ta="1T(ac,ab) and TeT (¢,b) = T (ce, be),

whenever a is a morphism P,, — P,, b < ¢ < d are morphisms P, — P, and
e is a morphism P, — P;,. Note that the first condition implies that 7 gives
rise to a functor from P to the category of additive categories and that the
second condition implies that 7 gives rise to a functor from P (P, P, )% to
the category of additive functors from 7, to 7;. Here (as always) we regard
an ordered set S as a category with objects s € S and a morphism s — ¢
for each pair s < ¢t. This definition can be summed up by saying that 7 is a
2-functor from P” to Add (cf. remark 2.1 b) and A.1), where P°F denotes
the 2-category P with reversed 1- and 2-morphisms.

In a completely analogous fashion, one defines towers of exact categories
and towers of suspended categories.

For any tower 7, we denote Tp! by P/ and T¢’ by Q).

Examples. a) Let B be an additive category and B)\ the category of con-
travariant functors from P, to B. Thus B/, consists of the m-dimensional
commutative hypercubes in B. If X € B} and b: P; — P,, is a morphism, we
define (B"bX)(x) = Xb(x). If ¢ is another morphism P, — P, and b < ¢ then

B"(c,b) : B"c — B"b
is furnished by the morphisms
Xc(z) — Xb(z), x € Py

Clearly B” is a tower of additive categories. Note that By is isomorphic to B
and that B is isomorphic to

M'B=MM... MB



where MB is the category of morphisms of B. More precisely, we have an
isomorphism
MY By, — MB), X — (PIX — FX)

for each 1 < j < n+ 1. For later reference, we record the functors

n

ijl : Bw/; - P7/1\+1 and le : 7)9 - 7DA+1 )
which we define by their compositions with M7:
MQ X=(0—X), MQX=(X-—D0).
Observe that we have a chain of adjoint functors
QL AP 4y P 1.

b) Let A be an exact category. We convert A" into a tower of exact
categories by endowing A/ with the pairs whose evaluation at each x € P, is
a conflation of A. Now we inductively define exact subcategories Z"A of A”":
7°A = A) = A and I"A consists of the X € A/ such that the morphism

PIX — PIX

is an inflation of Z"7* A, n > 0. Using the snake lemma it is easy to verify
that this is equivalent to requiring that

PiX — PIX

be an inflation for each j. It is easy to see that A"aX lies in Z™A if X lies in
7" A and a : P,, — P, is a morphism. Thus the Z"A yield an exact ’subtower
Z*A of AM.

c) If A is an exact category, then clearly the DA/ form a tower D.A" of sus-
pended categories. If moreover A has enough injectives, then Z". 4 has enough
injectives (namely the objects with injective components) and the Z™A form
a tower Z* A of suspended categories: This is due to the fact that the passage
from exact to stable categories is compatible with composition of functors and
with morphisms of functors.

2.3 Now let S and 7 be towers of additive categories. A tower of additive
functors F : 8§ — T consists of



e a sequence of additive functors F), : S, — 7,, n € N,

e an isomorphism Fa: 7aF, = F,,Sa for each a: P,, — P, .

Sa
S, S,

Fl Fu lFm

%%Tm

|

We require that the F'a be compatible with compositions in the sense that
Fab = (FbSa)(TbFa) and that they be compatible with the morphisms S(c, b)
and 7 (¢, b) in the sense that F; S(c,b)- Fc = Fb7T (¢,b)- F,,. Note that F' does
not give rise to a morphism between the functors P, — S,, and P,, — 7,
from P to the category of additive categories unless Fla = 1 for all morphisms
a. We may view F as a l-morphism of Fun (P9 Add). Tt is clear how to
define towers of exact functors and towers of S-functors.

We compose two towers of functors F': § — 7 and G : R — S by setting
(FG), = F,G, and FGa = (F,,Ga)(FaG,).

Examples. a) Each additive functor F' : B — C yields a tower of additive
functors F from B" to C": F!' is the induced functor on the category of
n-dimensional hypercubes and F”a is the identity for each morphism a.

b) For each = € P, let a, : Py — P, be the morphism with a,(x) = x. If
T is a tower of additive categories, we define ® : 7 — 7" by

D, Ty — (1), X = (2= (Ta,)X)

and by ®a = 1 for each morphism a.

c) Let S be a tower of suspended categories and let S| be the tower of
additive categories obtained from S by forgetting the suspended structure.
The suspension functors S, : S, — S, yield a tower of additive functors
S : 8| — S| where (Sa)™! is the commutation isomorphism (Sa)S,, — S,(Sa)
for each morphism a of P.

2.4 Let £ be a tower of exact categories and 7 a tower of suspended
categories. A tower of O-functors D : £ — T consists of

e a sequence of J-functors D, : &, — 7,,, n € N



e an isomorphism of d-functors Fa : TaD,, — D,,a foreach a : P,, — P,.

Asin 2.3 we require Dab = (Db€a)(TbDa) and Db-T (¢,b)D,,, = D, E(c,b)-De.
The composition of a tower of d-functors D : £ — 7T with a tower of S-functors
F : T — T is defined in analogy with 2.3.

Examples. In the situation of 2.2, Example b), we have an obvious tower of
O-functors D : A — DA" with Da = 1 for each morphism a. If A has enough
injectives we also have a d-functor D : 7¥* A — I* A and again Da = 1 for each
morphism a. In this case, there is also a less obvious tower D : A" — T*A

. Dyg is the canonical O-functor A — A, the underlying additive functor of
Dy : MA — I'A sends

fZX1—>X0tO l{] 2X1—>X0@],

where ¢ : X; — [ is an inflation into an injective. The connecting morphism of
D7 is obtained by applying this construction to the category £A of conflations
of A: It provides us with an additive functor

EMA =S MEA—-TEA,

which we compose with the canonical functor from Z'€A = EI'A to the

category of triangles of Z'A. The construction of the higher D, is similar.

One can give a more rigorous treatment of this tower using 7.1 and A.2.

2.5 If F' and G are towers of functors from S to 7, a morphism p: F — G
is given by a sequence u, : F, — G, of morphisms of functors such that
(umTa)Fa = Ga(Tap,) for each morphism a : P,, — P,. Thus p is a 2-
morphism of Fun (PP, Add). 1t is clear how to compose such morphisms.
The towers of additive functors from S to 7 and their morphisms are easily
seen to form a category Homaqq(S,T). Morphisms of towers of S-functors
and of J-functors are defined similarly. If S and 7 are towers of suspended
categories, we denote the corresponding category of towers of S-functors by
Homg(S,T). If € is a tower of exact categories, we denote the category of
towers of 0-functors by Homg(E,T).

Examples. a) If y: FF — G is a morphism of additive functors from B to C,
there is an obvious morphism p” : F* — G of towers.
b) We continue 2.3, Example b). Let A be an additive category and F' :

S — A" atower of additive functors. There is an isomorphism pF : F — F}'®,



which is obtained as follows: For each X € S, and each x € P, we have
(F,X)(z) = (Apa,)(F,X) by definition; we set

(pF)nX(7) = (Faz)X : ( (/)\ax)(FnX> = FySa, X.

It is straightforward to verify that ¢ is a well-defined morphism. Moreover if
p: F— F’is a morphism of towers, we have (u"®)(pF) = (pF’)u. This
shows that G — G"® is a quasiinverse for the functor

Homadd(87~'4/\) — Add (So,A) R F— FO ,

where Add (Sp,.A) is the category of additive functors S — A. Observe
that by the construction of ¢, this functor induces an isomorphism of the full
subcategory of the F' with Fa = 1, Va onto Add (Sp, A).

2.6 Let 7 be an epivalent tower of suspended categories, i.e. for each n
and for each 1 < 7 < n + 1 the functor

M Ty — MT,, X — (P/X — P}X)

is an epivalence (i.e. M7 is full and essentially surjective and a morphism f
is invertible iff M7 f is). If the 7,, are triangulated categories, this means that
T.+1 is a recollement of two copies of 7, (Pg =i’ and P{ = j* in the notations

of [2, 1.4.3]) as we shall see in 6.1. Now let A be an exact category.

Theorem. The canonical functor Homg(DA",T) — Homy(A,T) is an

equivalence.
We shall prove this in section 9.

Examples. With the notations of 2.2, Example c¢), DA" and Z*A are epivalent
towers, as we shall see in 6.1. The towers A" — DA" and A" — Z*A of 2.4
yield the identical tower DA — DA" and a tower DA" — Z* A, respectively.
The base DA — A of the latter extends the canonical projection A — A.

2.7 A suspended category is basic if it occurs as the base of an epivalent
tower of suspended categories; an S-functor between two basic suspended cat-
egories is basic if it occurs as the base of a tower of S-functors; a morphism
between two basic S-functors ... . Finally, if A is an exact category and 7 a

tower of suspended categories, a 0-functor from A to 7 is basic if it occurs as



the base of a tower of O-functors from A" to 7 and similarly for morphisms.
We point out that ’basic’ always refers to a fized choice of the respective towers.

Theorem 2.6 is to be conceived of as a means for studying basic S-functors,
O-functors ... . Thus it is crucial to know how large the classes of these basic
entities are. Empirically, we have found that they are quite large (see 2.8).
Indeed we do not know of an example of a non-basic entity. On the other
hand, we are not able to prove that, for example, each suspended category is
basic, or that a tower over a given base is 'unique’ if it exists.

The following theorem shows that certain d-functors are necessarily basic
and that all morphisms between certain pairs of d-functors are basic. We use
the above notations.

Theorem.

a) If D : A — 1y is a O-functor with Ty(S"DA,DB) = 0 for all n > 0,
A, B € A, there is a tower of O-functors DT : A" — T with Df = D.

The tower D% is unique up to unique isomorphism.

b) If D, D" are towers of O-functors A — T with To(S"DoA, DyB) = 0 for
alln >0, A, B € A, the map

Hom (D, D) — Hom (Dy, Dy) , 1 — o
18 bijective.

Combined with 2.6 this immediately yields the



Corollary.

a) If D : A — 1y is a O-functor with To(S"DA,DB) = 0 for all n > 0,
A, B € A, there is a basic S-functor F : DA — 1y extending D. It is
unique up to a unique basic isomorphism.

b) If F and F' are two basic S-functors DA — Ty with To(S"FA, F'A) =0
foralln >0, A, B € A and u is a morphism between the restrictions of F
and F'" to A, there is a unique basic morphism of S-functors v : F' — F’
extending L.

2.8 The following theorem and its corollary account for the all-pervasive-

ness of basic S-functors. Suppose that S and 7 are basic suspended categories.
Theorem. If L : T — S is left S-adjoint to a basic S-functor, it is basic.

Note that the dual statement holds for basic co-suspended categories and
that both hold for basic triangulated categories (we entrust the reader with
the definition of these concepts). In view of the desription of the morphisms
of P, the theorem follows from A.2 and 6.5.

Now assume A is an exact category with enough projectives. The localisa-
tion functor H, A — D, A is of course basic and has the projective resolution
functor (dual to [9, 4.1]) as a left adjoint. By the theorem, projective resolution
is a basic S-functor. Hence we have the

Corollary. If F' : A — B is an additive functor, the left derived functor
LF : D, A— DyB is a basic S-functor.

3. Presheaves and the derived category

Let A be an exact category and N; the set of natural numbers n > 1. We
endow N; with the topology of the cofinite sets. A rough presheaf F on Ny
with values in AP consists of objects F(U) € A for each open subset U of
N; and of morphisms pyy : F(U) — F(V) of A% for each inclusion U C V of
open sets of N;. We require that

e pyy = 1 for each open U C Ny,

o puyw = pvwpuy whenever U C 'V C W are open in N; and



e there is an open M € N; such that F(U) vanishes if U does not contain
M.

In particular we have F()) = 0. We endow the category R.A of rough presheaves
with the exact structure consisting of the pairs

FSFSF
such that
F o) s Fu) Y 71U

is a conflation of A for each open U C N;. By definition the class ¥ consists
of those morphisms s : 7 — F” which fit into a conflation

FS5FSF
where F' admits a 7 € Ny such that the restriction
F(U)— FUNUy)

is invertible for all open U, where U; = N; — j.
The open sets Uj, j € Ny clearly form an open covering ¢ of N;. If F is a
rough presheaf, the associated Cech-complex

CF=CU,F)
has the components C°F = F(N;) and

11<...<ip

and the differential given by the matrix of the

(=)Fp: F(U,N...U,  NU;

k—1

ﬂ...ﬂUipH) —>]—“(Ui1ﬂ...ﬂUip+1).

k+1

Observe that there are only finitely many non-zero terms in the definition of
CPF and that CF is a positive differential complex over A.

Theorem. The functor C' induces an equivalence (RA)[X7] — DA.

This is an ’abstract* localisation [5, I, 1.1]. We shall give the proof in 5.4.



4. The universal property of the construction D

In this section, we view the assignment A +— DA as a 2-functor (cf. A.1)
from the 2-category of exact categories £x to the 2-category of suspended
categories Susp. This simply means that D is defined on exact categories,
exact functors and morphisms of exact functors and is compatible with the
various composition functors. The canonical d-functors A — DA, A € Ex
combine into a 2-0-functor can in the sense of the following definition: If
F : Ex — Susp is a 2-functor, a 2-0-functor D to F consists of

e a O-functor DA : A — FA for each exact category A

e an isomorphism of 0-functors DF' : (FF)(DA) — (DB)F for each exact
functor F': A — B.

These data are required to be compatible with compositions of exact functors
and with morphisms of exact functors in the already familiar fashion:

D(GF) = (DG)F - (FG)(DF) and (DB)u- DF = DG - FuDA
whenever we have exact functors
ALBS

or a morphism p : F — G of exact functors from A to B. A morphism
a: D — D' of 2-0-functors assigns a morphism of d-functors aAd : DA — D' A
to each exact A. The a.A are required to satisfy

D'F-FFaA=aBF -DF

for each exact functor F' : A — B. The 2-0-functors to a given F form a
category Homg(F). Similarly, the 1-morphisms D — F of Fun (Ex,Susp)
form a category Homg (D, F). The canonical 2-0-functor induces a functor

can™ : Homg(D,F) — Homgy(F).

We shall give a sufficient condition for can* to be an equivalence. For each
A € Ex let MA be the category of morphisms of A, JA : ZA — MA the
inclusion of the subcategory of MA consisting of the inflations of A and

OHA%IAP—J%A—)O



the exact sequence of exact categories with (QA)B = (0 — B) and (PA)(A —
B) = A. We shall see that DJA is an equivalence (10.1) and that In DQA =
KerDPA (Example 6.1 c).

Theorem. The functor can* is an equivalence if FJA is an equivalence and

Im FQA = Ker FPA for each exact A.
We shall prove this in section 10.
5. Proof of Theorem 3

5.1 Proposition.

a) DA is isomorphic to the localisation of Hg] A (1.1) at the class of mor-

phisms § which fit into a triangle
X3Y »A-SX
of Hg] A with acyclic A.

b) DA is ismorphic to the localisation of C&A (the category of bounded
positive complexes) at the class of morphisms d which fit into a sequence

AL x4 x!

of Cg] A such that (i,,d,) is a conflation of A for alln € N and A is of
the form

—0—=A; 5 A, —-0— ...
for some j > 1.
Proof. a) As in the classical case [15, I, §2, no. 1] one sees that the class of

morphisms 5 admits a calculus of left fractions [5, I, 2.3]. Now suppose X is a

positive complex and X’ appears in a triangle
B—X-LX —SB

of Hy A with an acyclic B. Realising X’ as a mapping cone we see that ¢ factors

as 75, where § is as in the assertion and 7 : XL, — X’ induces an isomorphism

HyA (K, XLo) = HA (K, X')



for each positive complex K. Using left fractions to compute the morphism
groups Dy A (K, X) we infer

DA(K,X) = DyA (K, X).

b) Let us first assume that each conflation of A splits. We have to show
that Hg] A identifies with the localisation of CS} A at the class © of morphisms
d. Obviously the functor (Cf A)[©~"] — Hf A is full and bijective on objects.
Since the d € © admit right inverses in Cg] A, the localisation functor Cg] A —
(Cg] A)[©7 is full as well and it only remains to be shown that two morphisms
of complexes f,g : X — Y have the same image in (Cg] A)[O7Y if they are
homotopic. Let f — g = kiyx, where ix : X — I X has the components

1 0 1
ldnl P Xy — X, @ Xy = (IX), and d'™* = lo 0] :

Since [1x 0] : X ® IX — X is in O, the morphisms [1y 4|’ and [1x 0] :
X — X @ IX have the same image in (Cg] A)[©71]. Hence the same is true of
f=1gk[lx d]" and g = [g k][1x O".

If A is a general exact category, we conclude from the above special case
that (Cg] A)[©71] identifies with the localisation of Hg] A at the image of ©.
We have to show that the saturation of the image contains each morphism s

as in a). Since the mapping cone over s is acyclic, there is a commutative

diagram
dy, d d
Xn+1 +1' X, ~Ap—1 X $ Xo
, / l a, 4
’ Zn—i—l Zn Zn—l o Zl ZO
/j” / l gl %
YTL . Yn 'Ynf Y Y
+1 " 0 1 ) 0

o AN /] _
where s, = j; nt1s JnGnr1 = 0 and

Zn J_n> n—1®D Yn 2} anl 5 ]n = [_];L ]Z]t y n = [Q;L QZ] 5



is a conflation Vn > 0. We see that s = t°- ¢! -2 ..., where

0, 10,15, .. = (G, 1y, 1y, .. )
(t(l)vt%at;) = (qllvjilvlyzv“')
(tgﬂf?ll?tg?) = (1X071X17"'71Xn727Q;17j111/71Yn+17"'>

We may therefore assume that there is an n > 1 such that s; = 1x, for ¢ > n
and ¢ < n— 1 and that the sequence ([d,, — s,]%, [sn—1 dn]) is a conflation. The

sequence of complexes

.0 - X, — X — 0..
l Unp l l Up—1 l
X — Xa@Y, " X, 0Y, — X,
l (%% l l Up—1 l
.. Yn+1 — Yn — Yn—l — Yn_g e

where u, = [1 — s,]", v, = [sp 1], Un_1 = [dry — Su]', Vo1 = [Sn_1 dy], shows
that such an 5 becomes invertible in (Cg .A)[©7"].

5.2 Lemma. The composition
RAS ChHA— DA
makes the s € X invertible.

Proof. The image of the conflation

F S5 FSF
of section 3 fits into a triangle of DA. It is therefore enough to show that CF’

is acyclic. Indeed, C'F’ is split acyclic, as it is not hard to verify.

5.3 Let K € Cg] A. Using the notations of section 3 we define a rough
presheaf RK on Njy:

e (RK)(U) =0unless U = Uy N...NU, for some n € N in which case
(RK)(U) = Ko,

e ppyy =0 unless U = U, N...NU,, V=UNU,4 for some n € N in

which case pyy = dyy1.



Lemma. The composition
ChAS RA— (RA)ST]
induces a functor DA — (RA)[X71].

Proof. If
AL x4 X
is a sequence as in 5.1 b), the pair (Ri, Rd) is a conflation of R.A and
(RA)(U) — (RA)(UNU;)
is clearly invertible for each open U C N;. Hence Rd € ¥..

5.4 We prove theorem 3. According to 5.2 and 5.3, C' and R induce functors

—

RANET) DA,

which we also denote by C' and R. It is clear that C'R is isomorphic to the
identity. We shall produce an isomorphism between RC and the identity of
(RA)[X7Y. More precisely, we shall first construct an isomorphism

1% q

in (RA)[X7!], where G is a functor RA — R.A such that G's becomes invertible
in (RA)[X7!] for all s € 3 and that (GF)(U) # 0 only if U is of the form

Uirn...NnU, for some n € N. It is then clear that we have an isomorphism
RCG = G of functors RA — R.A, hence an isomorphism

RC Y prog a1

of functors (RA)[X7!] — (RA)[X7!]. We first have to introduce some nota-
tion: If M C Ny is a finite subset and V' C Ny its complement then, since
N; = M1V, arough presheaf F on Nj is given by the presheaf W +— Fy, on
the discrete space M whose value at W C M is the rough presheaf

U—FyU)=FWUU),UCV
on V. Thus if M = {m,n}, we may describe F by the commutative square

Fimmy — Fim)
bl le
Fimy < Fy,



where a,...,d are the restriction morphisms. We now define a presheaf G =
F, ,F by the square

g{m,n} - g{m} -,/t{m,n} — f{m}
l l — b —a]" | Le —1f

and a presheaf H = F,, ,,F by the square

Himny — Himy Fimny — 0
| l = b —d] | l
Hpy — Hy Finy @ Fymy ld Fo

We have a morphism « : F} . F — F whose components are the obvious pro-
jections and a morphism 8 : F) | F — F,,,F whose components are obvious
except for

[1¢]:Fy @ Fimy — Fo

in the lower right corner. Clearly a and 3 are deflations,
Kera(U) — Kera(U NU,,)

is invertible VU and
Ker (U) — Ker 5(UNU,)

is invertible VU. Hence «, 3 lie in ¥. This implies that F;, ,,s is invertible in
RA[L™Y] for all s € 3 and that we have an isomorphism

11— Fn,m
of functors RA[X ™ — RA[X Y. Observe that if F has width
w=min{p: C!F=0Vq > p}

then F,,,,F has width w and that F,, ,,F = F in RA if n > w. Moreover if
(FnmF)(U) # 0, then U N {n,m} # {m} and we have F(U) # 0 or F(U U
{m} — {n}) # 0. Using this it is not hard to verify that pu(F, ,F) > u(F) if
(n,m) < u(F) and that u(F, »F) > (n,m) if (n,m) = u(F), where u(F) < oo
is minimal (with respect to the lexicographic ordering) among the pairs (k,[),
k > [ such that there is an open U C N; with U N {k,l} =1 and F(U) # 0.
Now we define functors G,, : RA — RA, n € Ny by

G1:17 G2:F2,17 cee Gn:Fn,n—an,n—2~~-Fn,1Gn—1-



It is clear that u(G,F) > (n,n — 1) and that G,F = G F in RA if n is
greater than the width of 7. The functor G defined by

GF=1lmG,F, n>w
has the required properties.

6. Epivalence and Recollement

6.1 Let Sy and 81 be suspended categories and @)y : So — S a fully faithful
S-functor admitting a left S-adjoint Fy and a right S-adjoint P;. The functor

M281—>MSO,XD—>(MX2P1X—>POX)

from S; to the category of morphisms of Sy is defined by requiring that QoM X
equal the composition of the adjunction morphisms

QP X — X — QP X.
We consider the conditions
(E) The functor M is an epivalence (I, 5.2).
(R) There are chains of S-adjoint functors
Pi4Q 14 Fand Qy - P, 1Q,
@1 and @, are fully faithful and Ker P, = Im Q) _;.

If the suspension functors of Sy and &) are equivalences, condition (R) is
equivalent to the recollement setup of [2, 1.4.3] with Py = i' and P, = j*, as it
is not hard to verify.

Examples. a) If 7 is an epivalent tower the S-functor Q}, : 7,, — T, satisfies

b) If A is an exact category with enough injectives, then ZA, the full
subcategory of MA consisting of the inflations of A, is exact with enough
injectives (I, 5.1). The functor

Qo:A—TA, Ars (A5 A)
has the left adjoint

Py:ITA— A, (Al—i>A0)'—>A0



and the right adjoint

The functor M is simply given by
TA— MA, (A5 Ag) = (A1 = Ay).

Condition (E) holds (compare [9, 5.2]). We infer that the tower 7 = Z*A is
epivalent.
c) Let A be an exact category. The functor

A— MA, A (A5 A)
has two successive left adjoints given by
(A1 5 Ag) = Ay, A (0— A)
and two successive right adjoints given by
(A1 L Ag) — A, A (A—0).
These functors induce a chain of S-adjoint functors
Q1 AP A4Qo P4

between DA and DMA, Q, being induced by A — (A = A). It is clear that
15 PQ_1, 15 PiQy and P = 1, which means that Q_;, Qy and Q; are
fully faithful. Moreover for each complex K, there is a triangle

Q. PK —-K—-QPK— SQ_1RK,

which shows that Ker P, = Im ()_; since the suspension functor of DMA is
fully faithful. In order to construct the missing left adjoint P_;, we use that
DMA & DIA (10.1). Py is ’induced* by

Cok : TA — A, (A1 5 Ap) — Coki.

We have thus shown that @y : DA — DMA satisfies (R). By the following
lemma @)y also satisfies (E). We infer that 7 = DA" is epivalent.



Lemma.

a) Suppose (E) holds. Then (R) holds and the functors Q_1, Q1 and Qq
induce S-equivalences from Sy to the full subcategories of Sy consisting
of the X with P, X =0, By X = 0 and with invertible M X, respectively.
Moreover for each X € 8y there is an exact sequence

So (SPLX,BY) — 8 (X,Y) 2 MSy (MX,MY) — 0,
which is functorial in'Y € Sj.

b) Suppose (R) holds. For each X € S; there is a unique morphism (X
such that the S-sequence

QP X — X = QP X 5 SQuP X
18 a triangle. There is a triangle
X" PX - P X - SPX

functorial in X € S1. There is a canonical isomorphism n: P_1Qy = S.

If the suspension functor of Sy is fully faithful, then (E) holds.

Proof. a) Construction of Q_1: Let Y € Sy. We choose X € S; such that

there is an isomorphism
0 - Y

! L fo
PlX - P()X

Since M is an epivalence, f; yields a surjection
S1 (X, U) = S (Y, U) , g — (Fog) fo-
Suppose that g is mapped to 0. We form a triangle
XLublvosx

in §7. Since Pyg = 0, Pyh admits a retraction. Since Py X = 0, P;h is invertible.
Hence Mh admits a retraction. Since M is an epivalence, this implies that h

admits a retraction, so ¢ = 0. Using 6.7 we complete ()_; to a left S-adjoint.
By the construction, we have P/QQ_; = 0 and 1 = FyQ_;. If AU = 0, then



the construction shows that the image of U — ()_1 PyU under M is invertible.
Since M detects isomorphisms, U = Q_1F5U, so Ker P, = ImQ_;. The
construction of (Q1 is similar. It shows that ()7 is an equivalence of Sy onto the
full subcategory of S; consisting of the X with Py X = 0. — Since ) is fully
faithful, M QX is invertible for all Y € &§,. Conversely, if M X is invertible,
then the image of Qo P, X — X under M is invertible.

Construction of P_1: Let X € &;. We form a triangle

Q()PlX—>X—>U—>SQOP1X

over the adjunction morphism. The associated long exact Hom-sequence shows
that Hom (X, Q1Y) & Hom (U,Q_1Y) for each Y € & since P,QQ_; = 0.
Applying P; to the triangle we see that P,U = 0 hence U € Im (@) _;. Since
@ is fully faithful, we can conclude that P_; exists as an additive functor.
Using 6.7 we turn it into a left S-adjoint. Now let X € &1, a = —Q_1 M X and
let b: Q_1P,.X — QoP, X be the morphism such that Fyb is the composition

PQ_ 1P X & PX = PQoP X.

We form a triangle

O PX "L 0 \PX®QPXSU— SO PX.

Let
e: Q1R X ® QX — X

have the adjunction morphisms as components. Then e[a b]' = 0, so e = fc
for some f. Since the images of the triangle under F, and P, are split exact
sequences, M f is invertible. So f is invertible and we have a triangle

QaPX — Q1 X ®QPX - X —5Q X,

Applying S; (7,Y) to this triangle we get the sequence of the assertion.
b) As in [2, 1.4.3] one sees that the 'morphism of degree 1‘ is unique if it
exists. To derive the first triangle, we form a triangle

Q()PlX—>X—>U—>SQOP1X

over the adjunction morphism. Applying P, to the triangle we see that P,U = 0
hence U € Im ()_;. Since the triangle also shows that

Hom (X,Q_1Y) & Hom (U,Q_1Y), VY € &



this implies that U is canonically isomorphic to ¢)_1P_1X. We obtain the
second triangle by applying Py to the first. If we apply the second triangle to
X = Q1Y we get an isomorphism P_1Q1Y — SPQY since P,Q1Y = 0 by
adjunction. The required isomorphism is the composition

P_1Q1Y — SPlQly — SY.

Now suppose the suspension functor of &; is fully faithful. Let X € ;.
We form a triangle
X —-QPX —-U—-S8SX

in S;. Applying P; we see that P,U = 0, hence U € Im ()_;. Moreover
Hom (Q_1Y,U) = Hom (Q_,Y,SX), VY € S,.
So U is canonically isomorphic to Q_; FpSX and we have a triangle
Q_1PhX - X - Q1PX — SQ_1FPX.

Now it is obvious that a morphism f : X — X' is invertible iff Py f and P, f are
invertible, i.e. M detects isomorphisms. In fact, this was all we needed besides

condition (R) to derive the exact sequence of a). Hence M is an epivalence.
6.2 Suppose Qg : S — 7 satisfies condition (E) and X,Y € ;.
Lemma.

a) The map
81 (X,Y) - MS() (MX, MY)

is bigective if So (SP1X, P)Y) = 0. We have
S (S*X,Y)=0,VEk>0

Zf S() (SkplX, P1Y) = SO (Skp()X, P()Y) = S[) (SkplX, P()Y) =0 fO?" each
k> 0.

b) If
xLvy sz
are morphisms of 81 such that gf = 0, that there are triangles

XM py™pz spx, XM pPYy™pz - SPX



in S and that So (SPX, PiZ) = Sy (SR X, PyZ) = 0, then there is a
triangle
xLy 4z sx

m 81.

Proof. a) is an immediate consequence of 6.1 a). b) Let
xLyhutsx

be a triangle in &;. Its 'images’ under P, and P, are isomorphic to the given
triangles. Hence there are isomorphisms ¢; : PU — P, Z and 1y : Bo)U — PyZ
with iy Pth = Pyg and iy Pyh = Pyg, respectively. Since Sy (SPX, PZ) =0=
So (SR X, PoZ), ip and 7; are uniquely determined by these equalities. Now
gf =0,s0 g=jh for some j: U — Z. We have Fyj =1y and P;j = 7;. Since
M is an epivalence, j is invertible. Hence (f, g, kj~!) is a triangle.

6.3 We prepare for the proof of the redundancy of the connecting mor-

phisms (section 7). Let
Iy

SO — S(/)
Qo | 1 Qo
S B

be a diagram of suspended categories and S-functors and let

p FiQo = Qoky

be an isomorphism of S-functors. We assume that both functors @y satisfy
condition (R) of 6.1, that the morphisms

PoFy — FoPy, PiFy « Fo Py

1

associated (A.4) with p and p~! are invertible and that the morphisms

FiQ-1 «— Q1 Fy, FiQ — Q1)

associated with the inverses of the above morphisms are also invertible. We
now infer from the first triangle of 6.1 b) that the associated morphism

P_1F1 — FOP—I

is also invertible.



Remark. If the functors @ satisfy condition (E) and the morphisms
PFy — Foby, PLFy — FoPy
are invertible, the morphisms

Qo — Q1 Fy, FiQ1 — Q1F)
are automatically invertible (apply M to these morphisms and use 6.1 a).

Let ¢ : SFy — FyS be the commutation isomorphism. A straightforward
verification shows that the diagram
S o SFy
Fon ] LnFy  (¥)
RP,Q1 = P F1Q1 = P.OhF

is commutative. This means that ¢, is uniquely determined by the n and by
the underlying additive functors of the S-functors at hand. We make this more
precise. Suppose that we are given additive functors

F0280—>86 and Fl 281 —>Si
and an isomorphism of functors

p: Qoly = F1Qo.
We assume that
a) the associated morphisms PyFy — Fo Py, PiFy — FyP; are invertible,

b) the morphisms F1Q_1 — Q_1Fy, F1Q1 — Q1 Fp associated to the inverses

of the morphisms of a) are invertible and
c¢) the associated morphism P_;F} — FyP_; is invertible.

Observe that b) follows from a) if the functors @)y satisfy condition (E) (apply
M to the morphisms of b). Moreover, assuming a) and b), a sufficient condition
for ¢) is that for each triangle

X3y 57258 8X



of 87 there is some triangle

XMy ™Rz spx

of §]. This follows from the unicity of the first triangle of 6.1 b).

Under the hypotheses a), b) and c¢), (Fo, o) is an S-functor if @q is defined
by diagram (x) and Qo satisfies condition (E). The proof is a straightforward
verification based on 6.1 b). We shall also need to know that (Fp, ¢o) 'functo-
rially depends‘ on the triple consisting of Fy, F}, and u. That is to say that if

we are given another triple
GOISO—N%, G1151—>51, v: QoG = G1Qo
satisfying the analogues of a), b) and ¢), and if
ag : Fy — Gog and oy : F1 — G

are morphisms of functors such that the diagram

Qo -5 F1Qo
Qoo | 1 a1Qo
QoGo — G1Qo

commutes, then ag gives rise to a morphism of S-functors (Fo, vo) — (Go,70)-
Again we omit the straightforward proof. Finally we have to consider compo-

sitions of functors. Suppose that we are given additive functors
Fy 1 Go on I 1 G 1"
and commutation isomorphisms

p: Qoo — Fi1Qo, v : QoGo — G1Qo

yielding invertible associated morphisms. Then the triple consisting of G Fy,
G1Fy and (Gyp)(vFy) yields an S-functor (GoFp,0). It is not hard to verify
that this S-functor is the composition of the S-functors (Go, o) and (Fy, @o)
constructed from Fy, Fy, p and Gy, G1, v, respectively.

6.4 Let A be an exact category. We have the functors

Qi A-MA, A= (0= A), Pp:MA— A, (A — Ay) — A,
Qu: A= MA, A (ASA), PLMA— A, (A — Ay) — Ay
Q1:A—> MA, A— (A—D0).



Moreover if X = (A - B) is an inflation, we have a well defined P_; X = Cok i
in A. Now let Qg : Sp — S; be an S-functor satisfying condition (R), Dy : A —
So and Dy : MA — S; O-functors and A : Qo Dy = D1y an isomorphism of

O-functors. As in 6.3, we require that the associated morphisms
PoDy — DoPyy PLDy — DoPry D11 — Q-1Do, D1Q1 — Q1 Dy

are invertible. If Qg : Sy — S; even satisfies condition (E), then we only have
to require this for the first pair of morphisms. It follows for the second pair
by 6.1 a). If
e:ALBLC
is a conflation of A, we have a conflation
1

Al — Al — 0
et [ ‘ li !

Al BN AO —  Coki

in MA. Its 'codification® is
Qo X - X - Q1P 1 X,

where X = (A SN B). The image of the morphism QyP X — X under
D, identifies with QqP; D1 X — D1 X by assumption. So the 'image’ of the
conflation is isomorphic to the first triangle of 6.1 b) applied to D;X. We

obtain an isomorphism
QP 1D X = DiQ 1P X,

hence an isomorphism P_1 DX — DyP_1 X, which is easily seen to be associ-
ated with the above D1Q)_1 < (Q_1Dy. Thus, as for S-functors, the associated

morphism

P_1D1 — DOP_1

is invertible whenever it is defined. Moreover we have commutative diagrams

QPADIX 5 SQuPDIX

! T
et

DIQ 1P X 25 SDIQyPX

and
PDiQ_ P X M5 PSDIQuPX = SPDiQoPX
l | (%)

DyC Soe, SDyA



which show how to compute dpe from D X. Now suppose that Dy : A — S
and D; : MA — S; are additive functors and A : D1Qg — QoD is an
isomorphism of functors. We assume that

a) the associated morphisms PyD; — DyFPy, PLDy — Dy P, are invertible,
b) the morphisms D1Q_1 — Q_1Dy, D1Q1y — Q1Dy are invertible and

¢) for each inflation X = (A -5 B) the morphism P_1D;X — DoP_1 X is

invertible.

Observe that b) follows from a) if the functor Q) satisfies condition (E). More-

over, assuming a) and b), a sufficient condition for ¢) is that for each conflation
xLy%yz

of MA there is some triangle

DX Dy 2 Dz - SD X

Under the hypotheses a), b) and c), one can verify that the diagrams (x)
define a ’connecting morphism‘ dy such that (Dy, dy) is a O-functor. Moreover
this construction transforms 'morphisms of triples Dy, D, A’ to morphisms
of O-functors and is compatible with 'composition with exact functors from
the right’ and with 'composition with S-functors from the left‘. All of these
statements are easy to make precise (compare 6.3) and to prove. We omit the
details.

6.5 We prepare for the proof of the theorem on left adjoints (2.8). We use
the notations and hypotheses of the beginning of 6.3. In addition, we assume
that both functors Qg satisfy condition (E).

Lemma. If Fy: Sy — S| admits a left S-adjoint Gy, then Fy admits a left
S-adjoint Gy. The morphisms

Gi1Qo — QvGo , GoFPy — PoGy, GoPr — PGy
associated with
Qoo — Qo , BFy — FyPy, P Fy «— Fo Py

are invertible.



Proof. Let X € S]. The functor S} (X, F; ?) is represented by S*QyGY for
X = S*Q,Y and by S*Q_1GyY for X = S*Q_,Y. Since for any X € S} we
have a triangle (cf. proof of 6.1 a)

Q1PX — Q1B X QX - X — 5SQ 1PX,

we conclude from 6.7 that the functor is representable for arbitrary X and that
Fi has a left S-adjoint. Using that F; 'commutes’ with the right adjoints of
Qo, Py and P; it is easy to see that the associated morphisms are invertible.

6.6 We prove the results about S-adjoints that we have been using in this
section. Let & and 7 be suspended categories. We study right S-adjoints.
Let (L,\) : & — 7 be an S-functor, R a right adjoint of the underlying
additive functor of L and & : LR — 17, ¥ : 1¢ — RL compatible adjunction

morphisms.

Lemma. If the composition p = (RS®)(RAR)(VSR) is invertible and p =
p~t, then (R, p) is a right S-adjoint to (L, \).

We omit the proof since it is quite similar to that of lemma 6.7

6.7 We study left S-adjoints. Let S, 7 be suspended categories and (R, p) :
S — T an S-functor. We say that the left adjoint L is defined in X € T if
the functor 7 (X, R?) is representable, i.e. if there is an object LX € S and a
morphism VX : X — RLX which induces a bijection

(UX)*R(LX,?): S(LX,?) = T(X,R?), f— (Rf)(TX).

If L is defined in X and in SX, we have a canonical morphism A\X : LSX —
SLX defined by
(RA\)(USX) = (p'L)(STX).

Let D be the full subcategory of 7 consisting of the objects X satisfying
e [ is defined in S"X, Vn € N and
e \S"X is invertible, Vn.

By definition we have SD C D. The following lemma shows that D is a
suspended subcategory of 7 and that (L,\) : D — § is an S-functor. If



RS C D, then (R, p) and (L, \) yield a pair of S-adjoint functors between S
and D.

Lemma. (cf. [10, 1.5]) If X and Y lie in D and
X3y 35725 8X

s a triangle of T, then Z lies in D and

LX &y By OXNE g

s a triangle of S.

Proof. ist step: L is defined in S"Z, ¥ n € N. We form a triangle
LX By Y 7% sLx

in S. By SP3 [10, 1.1] there is a morphism of triangles

X & Y 7 v, SX
UX | Uy | fl | SUX
RLX ™ Rpry B pz PRED gprx

It yields a morphism of exact sequences
T(X,R?) « T(Y,R?) «— T(Z,R?) « T(SX,R?) « T(SY,R?)
Ty T T o T ay T as
S(LX,?) « S(LY,?) « S(Z',7) < S(SLX,?) < S(SLY,?),
where a; and ay are given by W*R(L, 7), ay and as by
(SU)" (5 L) R(SL, ?)
and as by f*R(Z’, 7). By assumption, the evaluations of ¥*R(L, 7) and
(SU)*(p'L)*R(SL, ?) = (US)*(RN\)*R(SL, ?) = (¥S)*R(LS, ?)\*

at X resp. Y are invertible. By the 5-lemma, aj is invertible, so L is defined
in X. Since (Sv, Sw, —Su) is a triangle as well, we can use the same argument
to conclude that L is defined in SX ... .

2nd step: (Lu, Lv, (AX)(Lw)) is a triangle. In the above notations, there
is an isomorphism ¢ : LZ — Z’ such that (Rg)(¥Z) = f. We claim that

Lx oy B opy OXEW gry

| | Ilg / |
LX Wy % 7z SLX



is a morphism of S-sequences, which implies that the first row is a triangle of
7. Indeed, g(Lv) = o' follows from

(Rg)(RLv)(VY) = (Rg)(¥Z)v = fv = (Rv')(¥Y)
and w'g = (AX)(Lw) from
(Rw')(Rg)(¥Z) = (Rw')f = (pLX) (S¥X)w
— (RAX)(USX)w = (RAX)(RLw)(¥Z).

3rd step: Z lies in D. Since A\Z occurs in the morphism of triangles

LSX M Ly B opgz ~WEES grgx

| AX LAY BY4 L SAX
SLx & sy % ogrz TWECR ggrx

AZ is invertible. The same argument shows that AS™Z is invertible for each
n € N. The assertion now follows from the 1st step.

7. Redundancy of the connecting morphisms

7.1 Let A be an exact category and S, 7 epivalent towers of suspended
categories. We denote the underlying towers of additive categories of A", S
and 7 by A"|, S| and 7|, respectively.

Lemma.
a) The forgetful functor
Homg (8,7) — Homgaq (S|, 7))

15 an 1somorphism onto the full subcategory consisting of the towers F

such that for each triangle
X35Y L7275 8X
of S,, there is some triangle
Fou F,v w’
X 5 FY 5 F,Z — SF,X

of T,.



b) The forgetful functor
Homg (A", S) — Homgqq (A, S])

s an isomorphism onto the full subcategory consisting of the towers D

such that for each conflation
AL BSC
of AN there is some triangle
DA D,B"”' D,C — SD, A
of Sy.
Proof. In order to produce an inverse of the forgetful functor, we consider

the functor © : P — P which associates P, .1 to P, and maps a morphism
a: P, — P, to

Oa: Pmi1 — Por1, (@1, Zme1) — (21, a(z2, . oo Tipg1))-
We have a natural transformation ¢ : © — 1p whose value at P, is
1.
q(] . Pn—H — 73n y (:L‘h oo 7$n+1) = (I27 .. axn+1)-

Now O is really a 2-functor and © is a morphism of 2-functors. So we obtain

a morphism of towers

Sp:5— SO
whose components are the
Q(l] : Sn — Sn+1.

Of course we have S|©=80|. Let ' : S| — 7| be a tower as in the assertion.

We have a diagram

N
Sp | 1Ty
se| & 7o

of towers of additive categories and an isomorphism

Fo: (Ty)F — F(OSp).



We apply 6.3 to complete each F), to an S-functor F,, and to combine the F,
into a tower of S-functors £. The proof of b) is completely analogous. We
omit the details.

7.2 We use the notations and hypotheses of Theorem 4. We denote the
compositions of D and F with the forgetful 2-functor U : Susp — Add by D|
and F|.

Lemma.
a) The forgetful functor
Homg (D, F) — Homgaa (DI, F)
18 an isomorphism.
b) The forgetful functor
Homg (F) — Homgaq (U, F))

18 an isomorphism.

Proof. a) We produce an inverse of the forgetful functor. For each exact A

we consider the functor

Q:A— MA.

If F:D| — F| is given, we have a diagram

pPA B FA
DQ | L FQ
DMA ™A FmA

and an isomorphism
FQ: (FMA)(DQ) = (FQ)(FA).

By example 6.1 c), DQ satisfies condition (E) and similarly we see that FQ
satisfies condition (R). It is clear that conditions 6.3 a) and b) are satisfied
since the functors Fy, P, @)1 and ()_; are all induced by exact functors between
A and MA (compare 6.4). Since by assumption F and D carry the inclusion
ZA — MA to an equivalence, the functor P_; is 'induced‘ by the cokernel
functor ZA — A (cf. 6.4) and therefore condition 6.3 c) is also satisfied.



So we can complete F.A to an S-functor F.A and combine the FA into a 1-
morphism £ : D — F. The proof of b) is completely analogous. We omit the
details.

8. Proof of Theorem 2.7

8.1 We prove b). It is not hard to see (use [2, 1.1.9]) that under the
hypotheses of b), morphisms of d-functors from Dy to Dj bijectively correspond
to morphisms between the underlying additive functors. Therefore, according
to 7.1 b), we only have to show that the functor

Homadd (A/\|aT|) - Add(A|7%|) ) D| = D|0 ’

where the | denotes underlying additive categories resp. functors, induces a
bijection
Hom (D], D'|) — Hom (D|q, D'|o).

From now on we omit the | . We factor the above functor as
Homgaq (A", T) — Homgqq (A", 1)) — Hom (A, Tp) ,

where the first functor is induced by ® : 7 — 7" (Example 2.3 b). The second
functor is an equivalence by Example 2.3 b). So it remains to be shown that
® induces a bijection

Hom (D, D') — Hom (®D, ®D).

By A.5 it is enough to check this locally, i.e. we have to show that &, : 7,, —
(7)) induces a bijection

Hom (D, Ta, D, Ta) — Hom (®,D,Ta, ®,D.,Ta)

for each morphism a : P,, — P,. This certainly holds if for all X, Y € A", the
map

Hom (D, X, D.Y) — Hom (¢,D,X,®,D,Y)
is bijective. This follows from lemma 6.2 a) by induction.

8.2 We prove a). The functor D yields D" : A" — 7", Let V,, C (73}),
be the image of D/, and U,, C 7,, the preimage of V,, under ®,, : 7, — (7).
Obviously we have a diagram of towers of additive categories

AN =V U —-T.



We shall show that &/ — V is an equivalence and that the quasiinverse provides
the required D upon composition with A* —V and & — 7. By remark A.2
we only have to show that U,, — V), is an equivalence for each n. This is clear
for n = 0. Suppose it has been shown up to n — 1. Moreover suppose that
we have shown that Hom (S*X,Y) =0, Vk > 0, VX,Y € U,_;. We have a

diagram
MAQ—l — MVn_l & Mun_l — M,]—Y:L—l
~1 T~ T T M
AN D6y V, — U, — T,

which commutes up to isomorphism. By lemma 6.2 a), M induces an equiv-
alence U, — MU, _, and Hom (S*X,Y) = 0, Vk > 0, VX,Y € U,. This
implies the assertion. The tower of additive functors D' thus constructed ob-
viously satisfies Df = D. Tt follows by induction from lemma 6.2 b) that the
image of a conflation under D can be embedded into a triangle. Hence D
yields a tower of J-functors by 7.1 b).

9. Proof of Theorem 2.6

9.1 We establish the connection between towers and presheaves. Let A
be an exact category. We have a full embedding from A, to R.A which with
X € AJ associates the rough presheaf F such that

o F(U)=0if U does not contain Uy N...NU,,

e F(U) = X(21,...,xy) if U contains Uy N...NU,, and z; = 1 iff U is
contained in Uj;.

We define R,, A C RA to be the image of A”,. It identifies with the category
of presheaves on the discrete set {1,...,m}. By ’transport of structure’ we
combine the R,,A into a tower R..A. Note that the functor

Q™ RpA — Ropir A

of example 2.2 a) coincides with the canonical embedding. Thus R.A is the
limit of the direct system

QL Q!
RoA— RiA— ... > RpyA — Ry A— ...



Now let n € N. Applying the above to R,.A instead of A we find that the
direct limit of

RoRwA— RiIR,WA— ... - Ry RyA— Ry RpA— ..

is RR,.A. We shall identify R,,R,A with R,,.,.4A in the canonical fashion: A
presheaf F on

{1,...om+n} > {1,... m}{1L,...,n}

is given by the presheaf W +— Fy on {1,...,m} whose value at W is the
presheaf
U FywU)=FWuUU).

In the following paragraph we shall suppress A in the symbols RA, R, A,
R.A, RyRyA and RR,A.

9.2 We want to prove theorem 2.6 by constructing a quasiinverse of
Homg (DR, T) — Homy (R, T).

Let D be a tower of 0-functors R, — 7. We first describe the components F},

of the image F' of D under the quasiinverse. By example 6.1 a), the functors
QT,Hl_l : Z@ — In41
admit left adjoints P"{!. For n < [ we put
Lpy=P* . PP T — T,

We obtain a diagram

n+1
o

Dn \L l Ln,nJranJrl l Ln,n+mDn+m

which commutes up to isomorphism by 6.4. By A.4 and 9.1, we obtain a
functor E,, : RR,, — 7, which ’extends’ the L, ,1mDptm. Clearly the image
of a conflation under F,, embeds into a triangle. So in order to show that the
s € ¥ are made invertible by FE,, , it is enough to show that E,,F’ vanishes if F’
is a presheaf as in section 3. This is equivalent to showing that LmlDlQé =0



for each | > n and each 1 < j < [. But we have DnQ6 = Q{)Dn since D is a
tower, P* Q} = Q) P*, for k > j (apply 6.3 to the square Q}QE = QEQ}) and
Pleé = 0. We conclude that E,, induces an F}, : DR,, — 7,. It is clear by the
construction that the image of a triangle of DR,, under F,, can be embedded
into a triangle of 7,,. So once we have shown that the F,, combine into a tower
F of additive functors it will follow from 7.1 a) that this tower gives rise to a

unique tower of S-functors.

9.2 We keep the notations and hypotheses of the preceding paragraph. In
order to construct F' as a tower and to make it clear that F' depends on D in
a functorial way, we have to add one layer of abstraction.

Let © : P — P be the functor which carries P, to P,y1 and maps a
morphism a : P,, — P, to

Oa: Pps1 = Pag1, (@1, Timg1) — (a(xy, .00, Tm), Tigr)-

We have a natural transformation 7 : 1p — © taking the values

TPp = pg i Py — Puit, (21, o, 1) = (21, .., T, 0).

Of course, O is really a 2-functor and 7 a morphism of 2-functors. For each m

we obtain a tower of exact functors
R.7O™ : R,O™ — R, O™

By example 2.2 a) and A.2, this tower admits a left adjoint, which we denote
by R.c©™, by abuse of notation. Its components are the

n+m-+1 .
Q™M ! Rotm — Raotmtr -

We form the direct system Ry :

Ryo R«oO™
R. — RO — ... 5> RO™ — ... |

which we view as an object of Fun (N, Fun (P, Ex)), where POT denotes
the 2-category P with reversed 1- and 2-morphisms. By 9.1 and A .4 its direct
limit is isomorphic to RR., the tower with components (RR.), = RR,. Using

the notations of A.4 we have two 'universal arrows*

Rn — ARR, — ADR,



in Fun (N, Fun (PP, £x)). We denote their composition by Can. Let us
return to 7. By remark 6.3 and A.2, the tower

TrO™ . 7O « TO™H

admits a left adjoint, which we denote by 7c©™. We consider o : AT — Ty
given by
T — T — ... T—..
| l l

7 I°% 709 . 17O TS .

Here the vertical arrows are defined so as to make the squares commutative.
By A.2 and 6.3, ot admits a left adjoint p* : Ty — AT

7 0 7079 . TOm T
| L pf (s
T X T . T .

Of course, the n-th component of p is simply
(p:%)n = Lpnim : Tngm — Tn.

We compose pt : Ty — AT with Dy : Ry — 7y. By A.4 the composition
Dyp™ gives rise to a tower of additive functors F' : DR, — 7 which makes

the square
Ry <8 ADR,
Dy | | AF
T 2 AT

commutative up to isomorphism. By construction, F' depends on D in a functo-
rial manner and F'can = D canonically. There only remains to be constructed
a functorial isomorphism F' = G for the case where D = Gcan for some tower
of S-functors G : DR, — 7. It is enough to produce an isomorphism between
(AF)Can and (AG) Can, i.e. between ptDy and (AG)Can. We illustrate
the situation by the diagram

CG’I’LN

Ry % (DR N T
I I pt I pt
Ry 9% ADR, 29 AT.

It is clear from A.3 that Dy = Gycany if D = Gean. Hence ptDy =

pTGneany. We also have 77GNy = (AG)7T, canonically, where 77 denotes



the obvious 1-morphisms 7y — A7 and (DR.)x — ADR,. By ’twofold asso-
ciation‘ (A.3 and 6.3), we obtain an isomorphism p*Gx = (AG)p™, which by
A.3 is functorial in G. So it only remains to be shown that p*cany = Can.
We fix a choice of p* : The

p:rn : DR.O™ — DR,

are determined by the
(p;:w)n : DRimtn — DR,

which are to be induced by the canonical isomorphisms
RRmin — RR,
provided by the partitions

{1,...om+n} [Ny = {1,...,n}[[N; .

It is then clear that pTcany = Can but we still have to show that (p;),, is

really left adjoint to the composition
QT{“" ..Q" DR, = DRyin -

It is obviously enough to consider the case m = 1. After replacing A by R,.A
we may also assume that n = 0. The assertion then means that

Z:RR1 — RA
induces a left adjoint of the functor
Q' :DA—DRA>DMA.

Now Z induces the mapping cone functor so that the assertion follows from

10.1 b).
10. Proof of Theorem 4
10.1 Lemma.
a) The inclusion J : ZA — MA induces an S-equivalence DIA = DMA.

b) The mapping cone functor C : DMA — DA is left adjoint to the em-
bedding DA — DMA induced by A — (0 — A).



Proof. a) Let Z.,A and M_,A be the categories ZA and M.A endowed with
the componentwise split conflations. For each (f : A1 — Ag) € Ms.A we have

a conflation
0 e Al e Al

| L Vi i=[10]
Ay =gy A1 @ A Ll Ao
in M.sA. We see that each object of M s.A (hence of Z.,A) admits a projective
resolution of lenghth one by objects contained in U, the full subcategory of Z.,.A
consisting of the split conflations. Therefore

DI A & HyUd = DM A.

It follows from 5.1 a) that DZ.A (resp. DM.A) identifies with the localisation
of DI.sA (resp. DM, A) at the class of morphisms s which fit into a triangle

X3Y > A—-8X

with an ZA-acyclic (resp. MA-acyclic) A. The assertion follows because the
preimages in Hg} U of the respective classes coincide.

b) It is enough to show the assertion for the restriction C|DZ.A. Now
Q : DA — DIA obviously has the functor Cok : DIA — DA as a left
adjoint. Since the mapping cone over the canonical morphism C' X — Cok X,
X € DI A is acyclic, C and Cok are isomorphic as functors DZA — DA.

10.2 We construct a quasiinverse of
can® : Homg (D, F) — Homgy (F).
We first remark that the functor
Qo: FA—FMA

induced by A — (A — 0) satisfies condition (R) of 6.1. To see this, we can
use the same argument as in example 6.1 ¢). Now let D € Homy (F) and
let U : Ex — Add be the forgetful 2-functor. We consider F as a 2-functor
Exr — Add and D as a morphism of 2-functors 4 — F. We define the 1-
morphism Dy : Uny — Fn to be

u 4 ymHMe o ymn ML
D] } | DM"

F 2% rm MY e TR



where () is the 1-morphism whose value at A is the exact embedding
A—- MA, A— (00— A)

and the squares are commutative up to canonical isomorphism. From 6.1 it is
clear that the 1-morphism o* : AF — Fy given by

F -5 F Y . F I

1 } !
F % m MY o TR

(the vertical arrows are defined so as to make the squares commutative) admits
a left adjoint p* : Fy — AF. The composition p* Dy 'factors‘ through the
"universal arrow‘ (A.5)

UN—>AR,

where R assigns the additive category of rough presheaves RA to A € Ex and
the functors

M'A—RA
are defined in analogy with 9.1. So we have E : R — F such that

Uy — AR 25 AF
is isomorphic to p™ Dy. As in 9.2, one sees that
EFA:RA—FA
makes all the s € X invertible. This clearly implies that F 'factors® through
R —D

giving rise to ' : D — F. From 7.2 we see that F' corresponds to a 1-morphism
of Fun(Ex,Susp). Now one can imitate the end of the proof in 9.3. We omit
the details.

Appendix : 2-Functor-Categories

A.1 Let C and D be 2-categories [5, V. 1]. We set out to define a sub-2-
category of the 2-functor-category of [6, I, 2.4] from C to D.

An object of the 2-category Fun (C,D) is a 2-functor X : C — D, i.e. a
map X : Cy — Dy together with functors

X(x,y)Homc (I’,y) —>H0mD (XJZ,Xy), fHXf7



which are compatible with units and compositions. A I-morphism F : X — Y
assigns a 1-morphism Fz : X — Xy to each object x € C and a an invertible
2-morphism F'f: Y fFxr — FyXf to each 1-morphism f:x — y

such that Fl, = 1p,, Vo € Cy, Ffg = (FfXg)(YfFg) for each pair of
composable 1-morphisms f, g of C and (FyXpu)(Ff) = (Fg)(YuFz) for each
2-morphism p : f — g of C. The composition of two 1-morphisms F,G is
defined by FGx = FzGz for each © € Cy and FGf = (FyGf)(FfGzx) for
each 1-morphism f:z — y. A 2-morphism © : F' — G assigns a 2-morphism
Oz : Fx — Gz to each object x of C such that the equation Gf(Y fOzx) =
(OyX f)F f holds for each 1-morphism f : x — y. The two compositions of
2-morphisms are (O®)x = OxPx and (O x )z = Ox * Pz

Example. Let C be the 2-category with a single object x having only identical
2-morphisms and such that Home (x,z) is a free monoid on s :  — x. Then
Fun (C,Cat) is isomorphic to the 2-category whose objects are the pairs (X, S)
of categories X with an endofunctor S : X — X, whose morphisms are the ’S-
functors® and whose 2-morphisms are the 'morphisms of S-functors‘ (compare

10, 1.4)).

A.2 We keep the assumptions and notations of 6.1. An adjoint pair in a
2-category consists of 1-morphisms [ : © — y, r : y — x and 2-morphisms
o :lr—1,,1:1, — rlsuch that (r¢)(yr) =1, and (l)({)) =1;. If ¢ and
1 are invertible, [ and r are quasiinverse equivalences.

Now let R : X — Y be a l-morphism of Fun (C,D) and suppose that for
each x € Cy we are given an adjoint pair Rz, Lz, ®x, Uz such that

Mf = (PyXfLx)(LyRfLx)(LyY f¥x): LyY f — X fLx
is invertible for each 1-morphism f:x — y of C.

Proposition. (compare [10, 1.6]) The assignments

g Lz, f— Lf = (Mf)™!



define a 1-morphism L of Fun (C, D), the assignments
r— Qr, x— Yz

define 2-morphisms ®, W and R, L, ®, ¥ is an adjoint pair in Fun (C, D).
Remark. In particular, R has a quasiinverse iff each Rx has a quasiinverse.

Proof. Substituting into the definitions we obtain statements which immedi-
ately follow from A.3. We omit the details.

A3 Letl, r, o, Yandl', 7', ¢, 1 be adjoint pairs in a 2-category C which

appear in a diagram
/

x x
LiTr UL
y v
We call two 2-morphisms « : fr — r’g and 8 : I'f — gl associated if the

f
—

following equivalent conditions hold (compare [10, 1.6]) :

i) = (Fge) (AW fr) i) (MB)(W'F) = (al) (f0)
it}) 5 = (g (Lal)(I'f0) V) (99)(Br) = (¢'g) ().

We can interpret this as follows: i) and iii) define inverse bijections between
the 1-morphisms from [ to I’ and from r to r’, where we consider [, I’ as 2-
functors from {0 < 1} (having only identical 2-morphisms) to C and r, 1’ as
2-functors from {0 < 1} to C°F, the 2-category C "with reversed 2-morphisms*.
In fact, these bijections are part of an isomorphism of categories

o)

Hom (1,1'y = Hom (r,r").

We make this more precise: Let f; : © — 2/ and ¢; : y — 3’ be another pair
of morphisms and p : f — f1, v : ¢ — ¢1 2-morphisms. If o : fr — 1'g,

G:Uf—gland oy : fir — 1'g1, 61 : U'fi — g1l are associated pairs, then

(r'v)a = ai(pr) <= W)B = Bi(l'n),

i.e. p,v define a 2-morphism (f,g,a) — (f1,91,a1) iff they define a 2-

morphism (f? g, 6) - <f17 g1, ﬁl)
In 9.2 and A.2 we also need that the isomorphisms

Hom (1,1') = Hom (r, ')



are compatible with compositions, i.e. if a diagram

f / h "
X e X e T
N NS T A N
y Ly Ly

'L @", 4" is another adjoint pair, and if a : fr — g,

is given, where 1", 1’
B :Uf — gl and v : h' — 1", § : I"h — il' are associated pairs, then

(vg)(ha) = (hf)r — r"(ig) and (iB8)(6f) : I"(hf) — (ig)l are associated.

A.4 We consider the partially ordered set N as a 2-category having only
identical 2-morphisms. Let £ be another 2-category and let A : £ — Fun (N, E)
be the obvious 'diagonal‘ 2-functor. The limit of a 2-functor X : N — £ con-
sists of an object lim X € £ and a l-morphism f: X — Ali_n}X inducing an

equivalence of categories
Homg (linX, y) — Homzpun (ne) (X, Ay), g— f-Ag
for each object y of £.

Example. a) Let A be an exact category. In & = Add we consider the sequence
of embeddings (9.1)

QL Q!
Ro—Ri1—... 2Ry — Rps1— ... .

For an exact category B, a 1-morphism to AB is given by a family of functors
G, :R,— B
and of isomorphisms
T Gy = Gn—HQitl'

Using a well-known technique we now exhibit a category £.A and a 1-morphism
to ALA which even induces an isomorphism

Hom (LA, B) = Hom(Ry — Ry — ... , AB).

The objects of LA are the pairs (X, n) of natural numbers n and of objects
X € R,. The morphisms from (X, n) to (Y, m) bijectively correspond to the
elements of RA(X,Y) (we identify X, Y with their images in RA). The
functor can, : R, — LA associates the pair (X,n) with X € R,. The

isomorphism can, = can,1Q™ " is produced by the identities of R.A.



Obviously LA is equivalent to R.A. Hence RA is also a limit of the sequence
of the R,,. We conclude by theorem 3 that for each additive category 7 the

canonical functor
Hom (DA, 7)) - Hom (Ry — R1 — ..., ATy)

is an equivalence onto the full subcategory of the ’compatible families* (G, Vy)
such that GG,, makes the s € ¥ lying in R,, invertible.

Now we consider the case where & = Fun (C, D) for two 2-categories C, D.
A 2-functor X : N — Fun (C, D) yields a 2-functor X, : N — D defined by

n— Xe(n) = (Xn)(c)

for each ¢ € C. Let us suppose that for each ¢ there is a strict limit, i.e. a

limit lim X, furnishing isomorphisms

Hom (lim X, y) = Hom (X,,Ay), Vy € D.

In this case, the assignment ¢ — lim X, can be completed to a 2-functor
L : C — D in a natural way, and the 1-morphisms X, — Alim X, can be
completed to a l-morphism X — AL. A tedious exercise shows that this

I-morphism induces an isomorphism
Hom}'un (¢, D) (E, Y) - Hom]:un (N,Fun (C,D)) (X7 AY)

for each Y € Fun (C, D).

Example. b) We consider the 2-functor R, : P°? — Add and the sequence

m
R, 2% RO ... 5RO 28"

of 9.2. By definition, its evaluation at P, is the sequence

Q! Qrym*t
Rn—>Rn+1—>...—>Rn+m — Rn+m+1—>....
As in example a), we see that this sequence has a strict limit £,,. The L,
combine into a 2-functor £ : P°F — Add. The canonical morphisms R,O™ —
RR, induce a 1-morphism £ — RR,. Since its components are equivalences,

it is an equivalence itself by A.2. Hence RR, is a limit of the seqence of the



R.O™. In particular, it follows that, for each tower of additive categories 7,
the functor

Hom (DR.,T) — Hom(R, — R.© — ..., AT)

is an equivalence onto the full subcategory of the 'compatible families* G,, :
R.O©™ — T such that (G,)n : Rpym — 7 makes all the s € ¥ (with respect
to RR,) lying in R, invertible.

A.5 Let C, D be 2-categories, X, Y, Z € Fun(C,D), F,G: X — Y and
H .Y — Z 2-functors. Suppose that, for each 1-morphism f: 2z — y of C, Hy
induces a bijection

Homp (Xz,Yy)(FyX f,GyX f) = Homp (Xz, Zy)(HFyX f, HGyX f).

Lemma. H induces a bijection of the classes of 2-morphisms
Hom;un (c,D) (X, Y)(F, G) = Homﬂm (c,p) (X, Z) (HF, HG)

We omit the straightforward proof.
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