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1 Introduction

In this thesis, we will mainly discuss two types of related questions. The first of these
concerns extremal problems in hyperbolic geometry. An example of such a question is:
what is the closed hyperbolic surface of given genus of minimal diameter? On the one
hand, these questions are often the simplest questions that we can ask about the geometric
invariants of interest, but on the other hand there are only very few cases in which we are
able to answer them.

The second type of questions is probabilistic in nature and often concerns growth and
asymptotics in hyperbolic geometry. For example, we will study the geometry of random
hyperbolic manifolds. An example of such a question is: how many short closed geodesics
does a random hyperbolic surface of large area have? Besides making the notion of a
“typical” manifold rigorous, random manifolds can also be useful for extremal problems:
sometimes it’s easier to prove that a random manifold has extremal properties with high
probability than providing an explicit construction. This idea is called the probabilistic
method and we will see several examples of it.

We have tried to write this text as one coherent story. We will draw connections to
work that has been done by others, in hyperbolic geometry, but also in Euclidean geometry
and graph theory. Of course, the space is too limited to give proper overviews of all related
work, so a selection has been made. We also mention open questions and conjectures
throughout the text. Some of these are questions that naturally came up during some of
the work we will discuss, others are well known conjectures in the field. In the last chapter,
we discuss directions for future research.

Before all this, we will use the rest of this introduction to recall, very briefly, some
definitions from hyperbolic geometry.

9



10 CHAPTER 1. INTRODUCTION

1.1 Hyperbolic manifolds

To ensure that the readers and the author are thinking of the same thing, we start with a
definition:

Definition 1.1. A hyperbolic manifold is a complete Riemannian manifold with constant
sectional curvature equal to ´1.

We can replace the condition on the curvature by the condition that the manifold is
locally isometric to the hyperbolic space Hd of the right dimension d. Every such manifold
is isometric to a quotient ΓzHd, where Γ ă IsompHdq is a discrete, torsion-free subgroup of
the isometry group IsompHdq of Hd. This isometry group can be identified with Opd, 1q˝

and the subgroup of isometries that preserve the orientation Isom`
pHdq » SOpd, 1q˝. In

dimension 2 and 3, we have two accidental isomorphisms:

Isom`
pH2

q » PSLp2,Rq and Isom`
pH3

q » PSLp2,Cq.

In this thesis we will mainly consider orientable hyperbolic manifolds of finite volume.
Most of the time, our hyperbolic manifolds will be 2- or 3-dimensional, but hyperbolic
manifolds exist in all dimensions d ě 2. In dimension 2, we can even deform a hyperbolic
metric on a given surface and we will write Mg,n for the moduli space of hyperbolic
surfaces of genus g and with n cusps and Mg “ Mg,0. The Mostow–Prasad rigidity
theorem [Mos68, Pra73] implies that in dimension greater than two there are no non-
trivial deformations. In dimension 3, we still know many constructions of hyperbolic
manifolds of finite volume. We can even say, without causing too much controversy, that a
“typical” closed 3-dimensional manifold admits a hyperbolic metric. In dimensions above 3,
hyperbolic manifolds of finite volume are much rarer. One way to construct them is using
arithmetic subgroups of Isom`

pHdq. The question whether there are also non-arithmetic
manifolds was open for a long time and was resolved by Gromov–Piatetski-Shapiro [GPS88].
However, we still know very few constructions of such manifolds.

For more details on hyperbolic geometry, we refer the reader for instance to: [Bus10,
BP92, MR03, Mar22].



2 Flat tori and graphs

In this chapter, we discuss the problems that we will study in this thesis, but in two
different contexts, namely flat tori and regular graphs. We do this because there are many
analogies with hyperbolic geometry and a lot of ideas that we will use. In the section on
graphs (Section 2.2) we will also briefly discuss our work with Maxime Fortier Bourque on
kissing numbers of regular graphs [FBP22].

2.1 Packings, coverings and flat tori

Several problems that this thesis will discuss are hyperbolic analogues of very classical
(and in general very open) problems in Euclidean geometry. For some motivation and
also because we will be using ideas from this area in hyperbolic geometry later on, we
will discuss Euclidean packings and coverings in this section. The selection we make is
surely very biased and moreover the space is too small to give a serious overview of the
theory. We refer to the specialized literature for more details. The book [CS93] is a classic
reference, even if there has been a lot of progress since its appearance, the survey articles
[PZ04, Oes19] provide overviews of more recent progress.

For us, a packing in Rn is a collection A “ tBpai, rquiPI of disjoint open balls Bpai, rq Ă

Rn with center ai and fixed radius r ą 0. A covering of Rn is a collection C “ tBcpci, rquiPI

of closed balls Bf pci, rq Ă Rn with center ci and radius r ą 0 such that

ď

iPI
Bcpci, rq “ Rn.

All the questions we will be asking are invariant under homothety, so as soon as the radius
of all the balls is the same, we are free to choose it as we like. The most interesting case
for us is the case where the centers form a lattice in Rn.

11



12 CHAPTER 2. FLAT TORI AND GRAPHS

2.1.1 Three invariants

We are going to define three invariants: the density and the kissing number of a packing
and the thickness1 of a covering. We will start with the density: the density of a packing
A “ tBpai, rquiPI is the proportion of the volume that is taken up by the balls in A.
Formally:

δpAq :“ lim sup
RÑ8

vol

˜

ˆ

Ť

iPI
Bpai, rq

˙

X Bp0, Rq

¸

volpBp0, Rqq
.

The kissing number is the maximal number of balls that is tangent to a given one in A:

KisspAq :“ max
iPI

|tj P I ztiu; Bcpai, rq X Bcpaj, rq ‰ Hu| .

The thickness of a covering CtBcpci, rquiPI is the average (with respect to x P Rn) of the
number of balls containing x:

θpCq :“ lim inf
RÑ8

ř

iPI: Bcpci,rqĂBp0,Rq

volpBcpci, rqq

volpBp0, Rqq
.

There is a vast body of literature on these three invariants. The central questions are:

Question 1

Given n P N, what are:

sup
A

δpAq, max
A

KisspAq and inf
C
θpCq

where A varies among packings in Rn and C varies among coverings of Rn ?

2.1.2 Lattices and flat tori

We have already alluded to the fact that there are a packing and a covering associated to
each lattice Λ ă Rn. For the packing, we use the injectivity radius:

rpΛq “ max ts ą 0; Bpv, sq X Bpw, sq “ H for all v ‰ w P Λu

1This is sometimes also called the density of a covering.
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and for a covering we use the covering radius of Λ:

RpΛq :“ min

#

s ą 0;
ď

vPΛ

Bf pv, sq “ Rn

+

.

Given a lattice Λ ă Rn, the quotient Rn{Λ with the metric induced by the Euclidean
metric of Rn is a flat torus. Moreover, the Killing–Hopf theorem implies that every flat
torus is of this form.

In the case of lattices, the three invariants defined above can also be understood in
terms of the geometry of the associated flat torus. Indeed, we have

δpΛq “
ωn

2n
syspRn{Λqn

volpRn{Λq

where ωn “ πn{2

Γpn{2`1q
is the volume of a ball of radius 1 in Rn and syspRn{Λq is the systole

of Rn{Λ: the minimum length of a closed geodesic in Rn{Λ. Equivalently, syspRn{Λq is the
minimal Euclidean norm of a non-zero vector in Λ. The (scale invariant) quantity syspRn{Λqn

volpRn{Λq

is called the systolic ratio of Rn{Λ.

We also observe that KisspΛq is the number of non-zero vectors in Λ of minimal norm,
or equivalently: the number of free homotopy classes of oriented geodesics that realize
systole of Rn{Λ.

The systole and kissing number also admit a spectral interpretation. To this end, we
define the Laplacian ∆ : C8pRnq Ñ C8pRnq by

´

∆f
¯

pxq :“ ´

´

div ˝ gradf
¯

pxq “ ´

´

n
ÿ

i“1

B2

Bx2
i

f
¯

pxq, f P C8
pRn

q, x P Rn.

The Laplacian commutes with Euclidean isometries of Rn and thus descends to a differential
operator ∆ : C8pRn{Λq Ñ C8pRn{Λq. The eigenfunctions (L2-normalized with respect to
the Lebesgue measure) for this operator are the functions φw : Rn{Λ Ñ R defined by

φwpxq “
1

a

volpRn{Λq
e2πi¨xx,wy, x P Λ, w P Λ‹,

where x¨, ¨y : Rn ˆ Rn Ñ R is the standard inner product and Λ‹ is the dual lattice of Λ,
defined by

Λ‹ :“ tw P Rn; xw, vy P Z, @v P Λu .
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The eigenfunctions pφwqwPΛ‹ form an orthonormal basis of L2pRn{Λq and the eigenvalue
associated to w P Λ‹ is

4π ||w||
2 .

So, the smallest non-zero eigenvalue of the Laplacian on Rn{Λ is 4π syspRn{Λ‹q2 and
KisspΛ‹q is its multiplicity: the dimension of the associated eigenspace.

Finally, the thickness of Λ can be written as

θpΛq “ ωn
RpΛqn

volpRn{Λq

Moreover, the covering radius RpΛq coincides with the diameter

diampRn
{Λq :“ max tdpx, yq; x, y P Rn

{Λu ,

where dpx, yq denotes the distance between x and y. Indeed, Rn{Λ is a homogeneous space,
so its diameter is realized at every point. That is:

diampRn
{Λq “ max tdpr0s, yq; y P Rn

{Λu “ RpΛq.

The conclusion of all of this is that, if we restrict to lattices, Question 1 is equivalent
to:

Question 2

Let n P N, what are:

max
Λ

syspRn
{Λq, max

Λ
KisspΛq and min

Λ
diampRn

{Λq,

where Λ varies among lattices of covolume 1 in Rn?

The moduli space of lattices of covolume 1 in Rn can be identified with SLpn,Zqz SLpn,Rq.
Moreover, the fact that we can replace the supremum and the infimum of Question 1 with
a maximum and a minimum is a consequence of Mahler’s compactness theorem [Mah46].
Using the fact that duality induces an involution on SLpn,Zqz SLpn,Rq, the maximum
systole and the maximum kissing number can be replaced by the maximum of the first
eigenvalue and the maximum multiplicity respectively.
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2.1.3 A bit of history

As mentioned before, the three questions discussed above have a long history, even if there
are still very few dimensions in which their answers are known.

Among all packings, the maximal density is known in dimension 1–3, in dimension 8
and in dimension 24. In dimension 1, the question is trivial and from the classical results
of Thue [Thu10] and Fejes Tóth [Fej43] we know that the densest packing in dimension
2 is the hexagonal lattice. The results in dimensions 3, 8 and 24 are consequences of the
spectacular progress of the last 30 years. In 1998 Hales–Ferguson [Hal05] demonstrated
that the densest 3-dimensional packing is the face-centered cubic lattice, as claimed by
Kepler in 1610. Viazovska [Via17] proved that the densest 8-dimensional packing is the
E8 lattice and in dimension 24 it is the Leech lattice, as proved by Cohn–Kumar–Miller–
Radchenko–Viazovska [CKM`17]. The last two results use the linear programming method
of Cohn–Elkies [CE03], which we will briefly describe in the next section. The idea behind
this bound has its analogue in hyperbolic geometry, which we will use in Chapter 3. Among
lattices, the maximum density is known in dimension 1–8 [CS93, Table 1.1, p.12] and in
dimension 24 [CK09]. The best bound when the dimension n Ñ 8 is that of Kabatjanskĭı–
Levenštĕın [KL78] and can be reproduced in using linear programming [CZ14].

Another point of view on density is that of systolic geometry (see [Kat07] for an intro-
duction). There, we try to maximize the systolic ratio among all the Riemannian metrics
on our torus. Apart from the trivial case of dimension 1, the answer to this question is
only known in dimension 2, due to Loewner who never published his result: the hexago-
nal torus maximizes the systolic ratio among all Riemannian tori two -dimensional. The
hexagonal torus also maximizes the first non-zero eigenvalue of the Laplacian among all
Riemannian metrics of the same area [Nad96]. The spectral version of the problem has
no meaning in higher dimensions: on any closed smooth manifold of dimension at least 3

there exist Riemannian metrics whose volume is 1, but whose first eigenvalue is arbitrarily
large [CD94].

The kissing number has been studied a lot as well (see for example [CS93, PZ04]).
The global maximizers are known in dimension 1–4, 8 and 24. The problem is trivial in
dimension 1 and an exercise in dimension 2. The 3-dimensional version was the subject of
a famous discussion between Isaac Newton and David Gregory: Newton thought it was 12,
the kissing number of the face-centered cubic lattice, and Gregory thought there was space
for a thirteenth ball. One reason that this is not a simple question is that the configuration
of the face-centered cubic lattice is not rigid: we can move the balls while keeping the kissing
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number equal to 12. In the end, Newton was right and this was proved by Schütte–van der
Waerden [SvdW53] after many attempts by many mathematicians. The maximal kissing
numbers in dimension 8 and 24 are those of the E8 lattice and the Leech lattice respectively,
as proved by Odlyzko–Sloane and independently Levenštĕın [OS79, Lev79]. Their proof is
based on the linear programming method of Delsarte-Goethals-Seidel [DGS77]. Much more
recently, the maximal kissing number in dimension 4 was determined by Musin [Mus08].

Finally, the maximal thickness of a covering of Rn is only known in dimensions 1 and 2

and is realized by the hexagonal lattice in dimension 2 [Ker39]. Among lattices, the best
coverings are known in dimensions 1–5 [Bam54, DR63, RB75, RB78] The best asymptotic
bound known, as n Ñ 8, is due to Rogers [Rog59] and states that there exists a constant
c ą 0 such that

min tθpΛq; Λ ă Rn a lattice of covolume 1u ď n ¨ logpn ` 1q
c

for all n ě 1.

2.1.4 Linear programming

The results by Cohn–Kumar, Viazovska and Cohn–Kumar–Miller–Radchenko–Viazovska
on the densest packings in dimensions 8 and 24 all start with a bound proved by Cohn–
Elkies [CE03] and Gorbachev [Gor00] that we will briefly discuss now, mainly because we
will treat a hyperbolic version of it in the next chapter.

We will state the Cohn–Elkies–Gorbachev theorem for lattices, because that is the case
that corresponds best to hyperbolic manifolds. However, we emphasize that the bound can
be adapted to general general sphere packings and the proof of that version is only slightly
longer. In the theorem, pf : Rn Ñ R will denote the Fourier transform of f : Rn Ñ R, given
by

pfpξq “

ż

Rn

fpxq expp´ixx, ξyqdx, ξ P Rn

where x¨, ¨y : RnˆRn Ñ R denotes the standard inner product and integration is performed
with respect to the Lebesgue measure. We will call f : Rn Ñ R admissible if there exist
constants C, δ ą 0 such that

|fpxq| ď
C

p1 ` ||x||qn`δ
and

ˇ

ˇ

ˇ

pfpξq

ˇ

ˇ

ˇ
ď

C

p1 ` ||ξ||qn`δ
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for all x, ξ P Rn. Cohn–Elkies and Gorbachev proved:

Theorem 2.1 (Cohn–Elkies–Gorbachev). Suppose there exists a non-zero admissible func-
tion f : Rn Ñ R such that

(a) fpxq ď 0 when ||x|| ě R,

(b) pfpξq ě 0 for all ξ P Rn and

(c) fp0q ă pfp0q.

Then syspRn{Λq ď R for all lattices λ ă Rn of covolume 1.

Proof. Suppose Λ ă Rn is a lattice of covolume 1 and whose shortest non-zero lattice
vector has norm more than R. Then by the Poisson summation formula and properties (a)
and (b) of f :

fp0q ě
ÿ

vPΛ

fpvq “
ÿ

wPΛ‹

pfpwq ě pfp0q.

This contradicts property (c) of f .

The first time one sees this proof, it seems amazing that anything can come out of this
bound: in the displayed string of inequalities, we throw away infinitely many terms in two
steps. Nonetheless Cohn and Elkies, by making a computer search for good test functions,
already observed that their bound came very close to the systole of the E8 lattice and the
Leech lattice in dimensions 8 and 24 respectively. This started the search for two “magical
functions” that saturate the bounds in these dimensions, which were found by Viazovska
and Cohn–Kumar–Miller–Radchenko–Viazovska. We refer to [Via17, CKM`17, Oes19] for
more on this.

2.2 Regular graphs

The second parallel we would like to draw is with graph theory. Indeed, just like for flat
tori, almost all the invariants that we are going to study for hyperbolic manifolds have
their analogues in graph theory. Moreover, even if in graph theory the state of the art
is more advanced, most of the analogous questions are also open and form the basis of a
very active area of research. Like in the last section, we do not at all claim to provide
an overview of the state of the art in graph theory, but will make a selection based on
analogies with hyperbolic geometry.
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The graphs that we will discuss are all regular: for k P N, a k-regular graph is a
graph whose vertices all have degree k. Because 0-, 1- and 2-regular graphs are somewhat
special, we will assume that k ě 3 in what follows.

One reason for the analogy between regular graphs and hyperbolic surfaces is that the
pp` 1q-regular tree can be identified with the coset space PGLp2,Qpq{PGLp2,Zpq (see for
example [Ser77, Chapter 2]). Given a torsion-free lattice Γ ă PGLp2,Qpq, the quotient
ΓzPGLp2,Qpq{PGLp2,Zpq is a finite pp ` 1q-regular graph. So, like hyperbolic surfaces,
we can describe graphs using 2 ˆ 2 matrices. This is not just a superficial connection, we
will see that certain techniques (especially those related to arithmetic lattices) carry over
from one side to the other.

2.2.1 The girth

Just like for flat tori and manifolds, we can speak about the systole of a graph. In graph
theory this is usually called the girth of the graph: the minimal length of a cycle in the
graph. If G is a graph, we write µpGq for its girth. The simple question we are going to
ask ourselves is: given k, n P N, what is the maximum possible girth of a k-regular graph
on n vertices?

We start with an elementary upper bound:

Lemma 2.2 (Moore bound). Let G be a k-regular graph of girth µ, then the number of
vertices of G is at least

1 ` k

pµ´3q{2
ÿ

j“0

pk ´ 1q
j or 2

pµ´2q{2
ÿ

j“0

pk ´ 1q
j

depending on whether µ is odd or even respectively.

This bound implies that the girth of a k-regular graph on n vertices is bounded by
2 logk´1pnq ` Op1q as n Ñ 8. The proof is based on the volume growth of balls in the
k-regular tree. Moreover, it is the same as that of the analogous bound in hyperbolic
geometry (Lemma 3.1 below).

A graph that saturates the Moore bound is called a Moore graph. It turns out
there are very few of them. For instance, Moore graphs of odd girth have almost been
classified. There are two infinite families of Moore graphs of odd girth (cycles and complete
graphs) and two sporadic examples (the Petersson graph and the Hoffman–Singleton graph)
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[BI73, Dam73] (see also [EJ08]). The classification is not complete because it is not known
whether there exists a Moore graph of degree 57 and girth 5 or not. By definition, if this
graph exists, it would have 3250 vertices. More generally, we know that the girth of a
Moore graph of degree at least 3 cannot exceed 12.

The natural question that remains, and that also corresponds best to the questions that
we are going to ask in hyperbolic geometry, is what happens when we fix the degree k and
we make the number of vertices tend towards infinity. Even the question of whether the
limit

lim
nÑ8

max tµpGq; G a k-regular graph on n verticesu
logk´1pnq

exists and if so, what its value is, is open. The first constructions of regular graphs whose
girth grows logarithmically as a function of the number of vertices is due to Erdős–Sachs
[ES63]. They provided an algorithm that produces infinite sequences pGnqn of k-regular
graphs on 2n vertices with girth µpGnq ě p1`op1qq ¨ logp2nq, as n Ñ 8. Improving on this
construction is a well known and difficult problem that has plenty of history [Mar82, Imr84,
Wei84b, LPS88, Mar88, Mor94, Big98, MWW04, Dah14, LS21]. The best upper bound
on the asymptotic girth ratio above is still the bound given by the Moore bound. The
best lower bound comes from the Ramanujan graphs of Margulis [Mar88] and Lubotzky–
Phillips–Sarnak [LPS88] and their generalizations by Morgenstern [Mor94] and states that
when the degree equals k “ pm ` 1 with p an odd prime, then there exists a sequence of
k-regular graphs pGnj

qj on nj vertices such that nj Ñ 8 and

lim
jÑ8

µpGnj
q

logk´1pnjq
“

4

3
.

The upper bound in the above is due to Biggs-Boshier [BB90]. The graphs involved are in
fact Cayley graphs of PGLp2,Z{qZq of degree pm ` 1.

2.2.2 The kissing number

In analogy with flat tori, we can also define a kissing number of a finite graph: the number
of distinct oriented cycles in the graph that realize its girth. Together with Maxime Fortier
Bourque [FBP22], we proved that Moore graphs can be characterized by their kissing
number:
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Theorem 2.3. If G is a connected graph of maximal degree k and girth g on n vertices,
then their kissing number satisfies

KisspGq ď
nkpk ´ 1qtg{2u

g

with equality if and only if G is a Moore graph.

Our proof is elementary and is heavily inspired by Parlier’s proof of a similar inequal-
ity in hyperbolic geometry [Par13]. For regular graphs, our bound improves on earlier
inequalities due to Teo–Koh [TK92], Azarija–Klavžar [AK15].

Using the Moore bound, we can remove the dependence on girth from this theorem and
obtain for instance that, a k-regular graph on n vertices has kissing number KisspGq !

n2{ logpnq. Like the Moore bound, it is unclear whether this is sharp. It is easy, for instance
using cyclic covers, to construct sequences of regular graphs of any degree k ě 3 whose
kissing number grows linearly as a function of their number of vertices.

Together with Maxime Fortier Bourque [FBP22], we showed that the Ramanujan graphs
of Lubotzky–Phillips–Sarnak can be used to obtain examples of super-linear growth:

Theorem 2.4. For every prime number p ” 1 mod 4 there is a subsequence pXp,qkqk of
the pp ` 1q-regular graphs Xp,q of Lubotzky–Phillips–Sarnak such that

lim
kÑ8

logpKisspXp,qkqq

logpnkq
“

4

3

where nk is the number of vertices of Xp,qk .

Like Lubotzky–Phillips–Sarnak, we use bounds on the number of integral solutions to
certain quadratic equations to analyze their geodesics, but in a different regime.

2.2.3 The spectral gap

For graphs, unlike for tori but just like for hyperbolic manifolds, the spectral questions
are distinct from the geometric questions. The question on the spectral gap that we will
discuss here can be thought of as a question on connectivity. Indeed, the main reason
Lubotzky–Phillips–Sarnak [LPS88] and Margulis [Mar88] introduced their graphs, was to
provide examples of explicit optimal expander graphs. An expander sequence is a sequence
of graphs that are both sparse (their degree is bounded) and highly connected. For an
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overview of the subject, we refer to [HLW06]. Here we will just briefly discuss some of
what is known about Ramanujan graphs.

There are multiple ways to measure the connectivity of a graph G. In this section
we will use the spectral gap of its adjacency matrix AG (or equivalently, of its graph
Laplacian). If G is a connected k-regular graph on n vertices then its adjacency matrix
has real eigenvalues:

λ1pGq “ k ą λ2pGq ě λ3pGq ě . . . ě λnpGq ě ´k

and G is bipartite if and only if λnpGq “ ´k. Recall that G “ pV,Eq is bipartite if we
can write V “ V1 \ V2 and there are no edges interior to V1, nor to V2.

We set
λpGq “ max t|λipGq| ; λipGq ‰ ˘ku .

This number can be seen as a measure of connectivity of G for instance because it shows
up in the mixing rate of a random walk on G and also because it relates to the Cheeger
constant of G (that we will briefly discuss in Section 6.3). The general rule is that the
smaller λpGq is, the more connected G is.

So, the natural extremal question is how small λpGq can be. The Alon-Boppana bound
[Alo86] states that for a k-regular graph G,

λpGq ě 2
?
k ´ 1 ´ εpGq

where the error term εpGq Ñ 0 as the number of vertices of G tends to infinity. The
significance of the number 2

?
k ´ 1 is that the spectrum of the adjacency matrix of the

infinite k-regular tree is contained in r´2
?
k ´ 1, 2

?
k ´ 1s. A sequence pGnqn of k-regular

graphs on n vertices is called an expander sequence if λpGnq is uniformly bounded from
above. A k-regular graph G is called Ramanujan if λpGq ď 2

?
k ´ 1.

The construction of Margulis and Lubotzky–Phillips–Sarnak yields Ramanujan graphs
of degree pm`1 for any odd prime p. They can be made bipartite, in which case they’re Cay-
ley graphs of PGLp2,Z{qZq, or not, in which case they’re Cayley graphs of PSLp2,Z{qZq.

Besides having very large girth and an asymptotically optimal spectral gap, they also
have very small but not optimal diameter [LPS88, Sar19].

More recently, using a completely different argument, Marcus–Spielman–Srivastava
[MSS15] proved that there exist infinite sequences of bipartite Ramanujan graphs of every
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fixed degree. The non-bipartite case is currently still open.

2.2.4 Random graphs

The final subject we discuss before we get to hyperbolic geometry is that of random regular
graphs. Also here, we will just highlight some aspects that have analogues in hyperbolic
geometry and refer to the specialized literature (for example [Bol01, JŁR00, Wor99]) for a
more complete overview.

The configuration model. An important model for a random k-regular graph is the
configuration model: we take n (an even number if k is odd) vertices with k half-
edges emanating from each of them and uniformly randomly pair up the half-edges. Every
pairing is allowed, so in particular, there is a chance the result is disconnected. However,
this probability is of the order Opn´1q as n Ñ 8 [Bol81, Wor81a]. We will denote the
resulting random regular graph by Gn,k.

One result of which we will see many analogues in hyperbolic geometry is a classical
result by Bollobás [Bol80] and Wormald [Wor81b], who proved that the number of short
cycles in Gn,k converges to a Poisson distributed random variable as n Ñ 8. For sharper
versions of this result, see [MWW04, Joh15].

The graphs Gn,k are also highly connected. The first example of this is their diameter.
Before making this precise, we note that the Moore bound (Lemma 2.2) in the case of odd
girth is equivalent to:

Lemma 2.5 (Moore bound for the diameter). Let G be a k-regular graph of diameter d,
then G has at most

1 ` k
d´1
ÿ

j“0

pk ´ 1q
j

vertices.

In particular, if pGnqn is a sequence of k-regular graphs on n vertices and k ě 3, then

diampGnq ě p1 ` op1qq ¨ logk´1pnq, as n Ñ 8.

We will provide a proof of a hyperbolic version of this bound, that uses the exact same
idea, in Section 6.2. Bollobás–Fernandez-de-la-Vega [BFdlV82] proved that random regular
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graphs saturate this bound. That is,

diampGn,kq

logk´1pnq
ÝÑ 1

in probability as n Ñ 8.

Finally, Gn,k is also nearly Ramanujan, this was a conjecture by Alon [Alo86] and was
proved by Friedman [Fri08]. Concretely, for all ε ą 0,

P
´

λpGn,kq ď 2
?
k ´ 1 ` ε

¯

ÝÑ 1,

as n Ñ 8. A shorter proof and generalizations of this theorem to random finite degree
covers of graphs were found in [Bor20, BC19, BC23].

Random Cayley graphs. Another model of random regular graphs that has been studied
is that of random Cayley graphs. That is, we take a sequence of finite groups pQnqn and
let Sn Ă Qn be a random subset. This yields a random graph

Gn “ CaypQn, Sn Y S´1
n q,

the Cayley graph for Qn with edges determined by Sn Y S´1
n , where S´1

n “ ts´1; s P Su.
Gn is connected if and only if Sn is a generating set for Qn, which is typically the case for
the sequences of groups that are considered.

Random Cayley graphs were first studied for sequences of random generating sets whose
size grows with the size of the group [AR93, Pak99, LR04, LS04b]. We will consider the
case in which Sn Ă Qn is a uniformly random subset of size k. The case that is best
understood is when the sequence of groups is pGpFqqqq, where G is a simple group of fixed
Lie type and fixed rank over Fq.

In [GHS`09], Gamburd–Hoory–Shahshahani–Shalev–Virág proved that, with high prob-
ability as q Ñ 8, the girth of a random 2k-regular Cayley graph Gq of GpFqq satifies

µ
´

Gq

¯

ě

ˆ

1

dimpGq
` op1q

˙

¨ log2k´1p|GpFqq|q.

Combined with work by Bourgain–Gamburd [BG08], this also implies these graphs are
expanders in the case of SLp2,Z{pZq. This was generalized to all finite simple groups of
Lie type by Breuillard–Green–Guralnick–Tao [BGGT15].
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For bounds in the case of random Cayley graphs of symmetric groups and finite simple
groups of Lie type of growing rank over a fixed finite field, we refer to [Ebe17, LS19, EJ22].



3 Extremal problems I

The goal of this chapter is to present a first selection of results on extremal problems in
hyperbolic geometry. A big role in this chapter will be played by our joint project with
Maxime Fortier Bourque [BP22, BP23b, BP23c]. In this project we use the Selberg trace
formula to prove bounds on spectral and geometric invariants of hyperbolic manifolds, in a
way that is analogous to that of Cohn–Elkies–Gorbachev [Gor00, CE03] (see Section 2.1.4).
With this method we were able to prove bounds on various invariants with a uniform proof
strategy, whereas the best bounds before used very varied methods.

This chapter will also discuss constructions of hyperbolic surfaces of large systole, based
on joint work with Alexander Walker [PW18] and on [Pet18].

3.1 The systole

Perhaps the simplest geometric invariant of a hyperbolic manifold M is its systole syspMq:
the minimal length of a closed geodesic on M . Equivalently, this is the minimum length
of a closed essential curve1. Figure 3.1 shows an example.

Figure 3.1: A curve that realizes the systole.

It is not difficult to see that there are hyperbolic surfaces of finite (and bounded) area
1Essential means that the curve is not homotopic to a point and that there does not exist a family of

curves, freely homotopic to the given curve, which leave any compact subset of M .

25
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and arbitrarily small systole. In dimension 3, Dehn surgery techniques – in particular
Thurston’s convergence theorem (see for example [BP92, Chapter E] or [Mar22, Chapter
15]) – imply the analogous result. In higher dimension, the fact that there exists only a
finite number of isometry classes of hyperbolic manifolds of volume ď v and dimension
d for all v ą 0 and d ě 4 [Wan72] implies that the volume of a sequence of manifolds
whose systole tends towards 0, necessarily tends towards infinity. However, the existence
of hyperbolic manifolds of finite volume and arbitrarily small systole is known for any
dimension from the work of Agol and Belolipetsky–Thomson [Ago06, BT11].

The simple question that remains is:

Question 3

Given d ě 2 and v ą 0, what is

max

#

syspMq;
M a hyperbolic d-manifold

of volume ď v

+

?

And which hyperbolic manifold realizes it?

The fact that this quantity is indeed a maximum and not just a supremum is not trivial.
In dimension 2 it is a theorem of Mumford [Mum71], in dimension 3 it is a consequence of
the work of Jørgensen–Thurston [Thu02, Theorem 5.12.1] and in dimension at least four
Wang’s theorem mentioned above implies it. In dimension 2, the function sys : Mg Ñ

p0,8q is a topological Morse function [Akr03], so in theory it could be used to understand
the topology of Mg. However, this currently seems out of reach, even counting the number
of local maxima is a very hard problem [FBR22].

Like for all the geometric invariants that we will consider, there is a classical upper
bound on systole and the real question is whether this bound is close to being optimal.
This classical bound is the analogue of the Moore bound (see Section 2.2.1) and states:

Lemma 3.1. For every d ě 2 there exists a constant cd ą 0 such that

syspMq ď
2

d ´ 1
log

´

volpMq

¯

` cd,

for every closed hyperbolic d-manifold M .

Proof. Take any point p P M . The open ball Bpp, syspMq{2q of radius syspMq{2 and center
p is isometric to an open ball in Hn of the same radius.
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Indeed, if not, there would be two distinct geodesic segments between p and another
point q P Bpp, syspMq{2q, both shorter than syspMq{2. The loop that these segments form
is strictly less than syspMq and can’t be contractible (if it were contractible, we could lift
it to a geodesic bigon in Hd and such bigons don’t exists). This contradicts the fact that
the systole is realized by the shortest closed loop in M .

Now take an open ball Bppp, syspMq{2q of radius syspMq{2 around pp P Hd. The obser-
vation above implies that

volpSd´1
q ¨

ż syspMq{2

0

sinhd´1
ptqdt “ volpBppp, syspMq{2qq ď volpMq.

This implies the lemma.

If we look closely at the proof above, we observe that in reality, the lemma above is
a bound maximal injectivity radius. The fact that such a bound implies a bound on the
systole is due to the fact that on a negatively curved manifold, the systole is twice the
minimal injectivity radius.

3.1.1 The maximal systole

For closed hyperbolic manifolds of dimension more than two, Lemma 3.1 is the best known
upper bound. In dimension 2, better bounds are known. In [Bav96], Bavard proved that
the maximum injectivity radius injradpMq of a closed hyperbolic surface M of genus g

satisfies:

injradpMq ď arccosh

ˆ

1

2 sinpπ{p12g ´ 6qq

˙

gÑ8
“ 2 logpgq ` 2.680353 . . . ` op1q.

Moreover, as a bound on the radius of maximal injectivity radius, this bound is sharp:
there exist hyperbolic surfaces of all genera g ě 2 for which the inequality is an equality.
On the other hand, Bavard already noted in his paper that the bound that we derive on
the systole cannot be sharp, because of the fact that there exists only a finite number of
points in a closed hyperbolic surface at which the injectivity radius is maximal. However,
Bavard’s bound is better than that of Lemma 3.1, even if it is still based on the maximal
injectivity radius.

Recently, with Maxime Fortier Bourque [BP23c], we found the first bound that is better
than the bound coming from the maximal injectivity radius. We proved:
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Theorem 3.2. There exists a genus g0 ě 2 such that

syspXq ă 2 logpgq ` 2.409.

for every oriented closed hyperbolic surface X of genus g ě g0.

Our proof uses a hyperbolic version of the Cohn–Elkies–Gorbachev method from Section
2.1.4. The proof of the Cohn–Elkies–Gorbachev bound is based on the Poisson summa-
tion formula. The analogue of this formula in hyperbolic geometry is the Selberg trace
formula:

The Selberg trace formula

Let X be a closed, oriented and connected hyperbolic surface of genus g. Let 0 “

λ0pXq ă λ1pXq ď . . . denote the eigenvalues of the Laplacian on X and CpXq the
set of closed oriented geodesics on X. Then

8
ÿ

j“0

pf
´b

λjpXq ´ 1
4

¯

“ 2pg ´ 1q

ż 8

0

pfpxqx tanhpπxq dx `
1

?
2π

ÿ

γPCpXq

Λpγqfpℓpγqq

2 sinhpℓpγq{2q

for every even function f : R Ñ C for which there exists an ε ą 0 such that

• the Fourier transform pfpξq “ 1?
π

ş8

´8
fpxqe´ix¨ξdx is holomorphic on the strip

␣

z P C; |Impzq| ă 1
2

` ε
(

and

•
ˇ

ˇ

ˇ

pfpξq

ˇ

ˇ

ˇ
“ O pp1 ` |ξ|q´2´εq uniformly on

␣

z P C; |Impzq| ă 1
2

` ε
(

.

In this formula, ℓpγq denotes the length of γ P CpXq and Λpγq the primitive length
of γ: the length of the unique primitive geodesic γ0 for which there exists a k ě 1

with γk
0 “ γ.

A function f : R Ñ C that satisfies the conditions above is called admissible. We
also observe that, if f is admissible, pf is even and the expression on the right in the trace
formula is therefore well defined: we can choose the square root we want. Selberg proved
this formula in [Sel56]. Expositions can be found in [Bus10, Iwa02, Ber11].

Theorem 3.2 is based on the following bound (a hyperbolic analogue of Theorem 2.1):
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Theorem 3.3. Let g ě 2. Let f be a non-constant admissible function for which there
exists a constant R ą 0 such that:

• fpxq ď 0 if x ě R;

• pfpξq ě 0 for all ξ P R Y i
“

´1
2
, 1
2

‰

;

• pfpi{2q ě 2pg ´ 1q
ş8

0
pfpxqx tanhpπxq dx.

Then syspXq ď R for every X P Mg.

Proof. Suppose there exists a hyperbolic surface X P Mg such that syspXq ą R. Then
syspY q ą R for every Y P Mg sufficiently close to X. This in particular implies that
fpℓpγqq ď 0 for every γ P CpY q. Moreover, pf

´b

λjpY q ´ 1
4

¯

q ě 0 for every j ě 0. So the
trace formula gives us that

pfpi{2q ď

8
ÿ

j“0

pf
´b

λjpY q ´ 1
4

¯

“ 2pg ´ 1q

ż 8

0

pfpxqx tanhpπxq dx `
1

?
2π

ÿ

γPCpY q

Λpγqfpℓpγqq

2 sinhpℓpγq{2q

ď 2pg ´ 1q

ż 8

0

pfpxqx tanhpπxq dx

ď pfpi{2q

for every Y sufficiently close to X. Then,

pf
´b

λjpY q ´ 1
4

¯

“ 0 pour tout j ě 1.

Seeing how pf is holomorphic on a strip (and not constantly equal to zero), the roots of
pf are isolated. This, combined with the fact that the eigenvalues depend continuously on
the metric (see for example [BU83]), implies that all λjpY q are constant on an open neigh-
borhood of X P Mg. This is a contradiction because there are no continuous isospectral
deformations of a hyperbolic surface [Gel63].

Another way of formulating Theorem 3.3 is to say that if we define, for R ą 0,

gminpRq :“ min

#

g ě 2;
there exists X P Mg such that

syspXq ą R

+
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and

GpRq :“ sup

$

’

&

’

%

1 `
fpi{2q

2
ş8

0
pfpxqx tanhpπxqdx

;

f admissible, non-constant,
fpxq ď 0 if x ě R and

pfpξq ě 0 for all ξ P R Y i
“

´1
2
, 1
2

‰

,

/

.

/

-

,

then
gminpRq ě GpRq

for every R ą 0.

To prove the Theorem 3.2, we found a series of explicit functions that give rise to
very good bounds. We don’t have a proof that the functions we found are (near) optimal
(asymptotically, as g Ñ 8). Nonetheless, for example based on the numerical results pre-
sented below, we think that they are not far from optimal for Theorem 3.3. We observe
that the multiplicative constant in front of the logarithm is equal to 2 in all three limits
above (Lemma 3.1, Bavard’s bound and Theorem 3.2). The best known examples are of
systole „ 4

3
logpgenusq (see Section 3.1.2 below), so it is not even clear that the multiplica-

tive constant is optimal. On the other hand, we think that our method cannot improve
this multiplicative constant:

Question 4

Let Rpgq the optimal bound we can prove on the systole of a closed hyperbolic surface
of genus g with Theorem 3.3. that is, Rpgq :“ inf tR ą 0; GpRq ą gu. Is it true that

Rpgq “ 2 logpgq ` Op1q as g Ñ 8 ?

Moreover, what are the optimal functions?

Theorem 3.3 also lends itself to numerical optimization. With Maxime Fortier Bourque,
we had our computers search, with SageMath, for optimal functions for Theorem 3.3. A
posteriori, we used the functions found to prove rigorous numerical bounds on systole in
genus 2–20. The result is displayed in Figure 3.2. For the exact numbers we found, we
refer to [BP23c]. Our method improves the bound in all genera, except in genus 2, where
the maximizer is known: the Bolza surface [Jen81].
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Figure 3.2: The bound on systole in genus 2–20.

3.1.2 Arithmetic surfaces with large systoles

Up until now, we have only considered upper bounds on the maximal possible systole.
To find lower bounds, we need examples of manifolds of large systole. In dimension 2,
the best known examples are those found by Brooks [Bro88] and Buser–Sarnak [BS94].
Their proof uses an arithmetic construction and was generalized by Katz–Schaps–Vishne
[KSV07] in dimensions 2 and 3 and by Murillo [Mur19] in higher dimensions. Brooks and
Buser–Sarnak prove the existence of sequences pXkqk of closed hyperbolic surfaces of genus
gk, such that gk Ñ 8 and

syspXkq ě
4

3
logpgkq ` Op1q as k Ñ 8.

To illustrate the idea, we will give the proof by Brooks and Buser–Sarnak in the non-
compact case. The proof is the same as in the compact case, except that the compact case
uses congruence coverings of a closed hyperbolic surface coming from a quaternion algebra
instead of SLp2,ZqzH2. The graph-theoretic analogue of this proof is also behind the fact
that the girth of the Ramanujan graphs of Lubotzky–Phillips–Sarnak (see Section 2.2.3)
is logarithmic.
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Let

ΓpNq “

#«

a b

c d

ff

P PSLp2,Zq;
a ” d ” 1 mod N,

b ” c ” 0 mod N

+

denote the principal congruence subgroup of level N of PSLp2,Zq.

Lemma 3.4 (Brooks, Buser–Sarnak). The systole of XpNq “ ΓpNqzH2 satisfies

syspXpNqq ě 2 arccosh

ˆ

N2 ´ 2

2

˙

.

Proof. Let

«

a b

c d

ff

P ΓpNq be a hyperbolic element. Then there exist x0, x1, x2, x3 P N

such that
a “ 1 ` x0N, b “ x2N, c “ x3N and d “ 1 ` x1N.

Moreover, using the determinant, we get

0 “ ad ´ bc ´ 1 “ px0 ` x1qN ` px0x1 ´ x2x3qN2.

So, N divides x0 ` x1. Given that the element isn’t parabolic, it’s not possible that
x0 ` x1 “ 0, hence

ˇ

ˇ

ˇ

ˇ

ˇ

tr

˜˜

a b

c d

¸¸
ˇ

ˇ

ˇ

ˇ

ˇ

ě N2
´ 2.

which implies the lemma.

To compare the systole with the area of XpNq, we note that

areapXpNqq “
π

6
N3

ź

p|N prime

1 ´
1

p2
for N ě 3

This quantity depends on the number of divisors of N , but the quantity

areapXpNqq
L

N3

is uniformly bounded from both sides. In particular,

2 arccosh

ˆ

N2 ´ 2

2

˙

“
4

3
logpareapXpNqqq ` Op1q as N Ñ 8.

One way to obtain closed surfaces of large systole from this construction is to compactify
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them using the method of Brooks [Bro99]. This gives the same multiplicative constant (4
3
)

in front of the logarithm. It is known that the multiplicative constant 4
3

is optimal for
principal congruence coverings of arithmetic surfaces [Mak13]. Moreover, it is still the
state of the art, that is to say, at the time of writing, we know no more than:

lim sup
gÑ8

max tsyspXq; X P Mgu

logpgq
P

„

4

3
, 2

ȷ

.

Schmutz-Schaller has conjectured that 4
3

is the actual value of this limit supremum [SS98].

3.1.3 A combinatorial construction

In addition to arithmetic constructions, we currently know two other constructions of
closed hyperbolic surfaces of logarithmic systole. The aim of this section and the next is
to present these two constructions.

Both constructions are very strongly inspired by ideas from graph theory. The first is
the result of joint work with Alexander Walker [PW18] and is a hyperbolic version of the
construction of Erdős–Sachs [ES63] mentioned in Section 2.2.1. The construction is based
on gluing together ideal hyperbolic triangles along their sides. This is similar to the model
of random surfaces of Brooks–Makover [BM04], except that we glue carefully instead of
randomly.

Since the side lengths of ideal triangles are infinite, there is an infinite number of
isometries that can be used for the gluing. We will use shear 0 gluings. One way to
measure this shear is to draw the two orthogonal projections onto the side we glue of the
two vertices which are not incident to that side. The signed hyperbolic distance (using
the orientation of the surface) between these two points is the shear. So, in our gluings we
require the two orthogonal projections to coincide.

The goal is now to find a gluing such that there are no short geodesics on the resulting
surface. With Alexander Walker, we found sequences of gluings pSNqN of 2N triangles,
such that their systoles are at least

logpNq ´ log logpNq ´ Op1q “ logpareapSNqq ´ log logpareapSNqq ´ Op1q (3.1.1)

as N Ñ 8. Our construction also comes with some flexibility. We can for instance create
such a sequence in which the systole has multiplicity K for any fixed K ě 1.
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Before we describe the construction, we begin with some observations about the geome-
try and topology of a triangulated surface. Since it is a surface with cusps, its fundamental
group is free. In fact, it’s isomorphic to the fundamental group of the dual graph – the
graph we obtain if we add a vertex to each triangle and we draw edges between the vertices
for each side the corresponding triangles share. The orientation of the surface also induces
an orientation of the dual graph: a cyclic order on the set of edges incident to each vertex.
Given an essential closed curve2 γ in the surface, the length of the unique geodesic in the
free homotopy class of γ – which we denote ℓpγq – can be calculated using the orientation
of the graph. Indeed, we trace the reduced circuit homotopic to γ and each time we cross
a vertex we write down an L or R, depending on whether the circuit turns left or right
with respect to the orientation. This gives us a word w in L and R. If we now replace the
letters L and R by the matrices

L “

˜

1 1

0 1

¸

and R “

˜

1 0

1 1

¸

,

then w becomes a matrix and

ℓpγq “ 2 arccosh

ˆ

tr pwpγqq

2

˙

There is some ambiguity in the definition of wpγq: if we start at a different vertex or read
in the opposite direction, then wpγq changes. However, its trace does not and hence the
expression on the right above is well-defined.

To construct our surfaces with large systoles, we need to find a triangulated surfaces
whose dual graph has no circuits that carry words of small trace. If we want to obtain
surfaces which satisfy the bound of the equation (3.1.1), we need to construct surfaces
which do not carry closed curves of trace ă k and which contain « k2 logpkq triangles.

To do this, we start with a gluing of « k2 logpkq triangles such that each triangle is
incident to exactly two other triangles, as in Figure 3.3. We choose this initial gluing in
such a way that the surface does not carry curves of trace ă k. One way to ensure this
is to start with a single cycle of 2N « k2 logpkq triangles that carries a word of the form
pLRqN .

Now, we need to find a gluing of the boundary of this surface that does not create
any circuits of trace ă k. It is in this part of the proof that the ideas of Erdős et Sachs

2Not homotopic to a point nor to a cusp.
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Figure 3.3: A cycle of triangles.

intervene. The idea is to perform an iterative construction. During every step, we perform
one of the following two operations:

- If there is still a pair of sides that can be glued together without creating short
circuits, we do so (if there are several, we make an arbitrary choice),

- if not, but the surface still has boundary, there must be two sides of two triangles
(say c1 and c2) on the boundary that are too “close” to glue together. On the other
hand, the fact that our surface contains enough triangles (« k2 logpkq) guarantees
that there exists a pair of triangles sufficiently “far” from c1 and c2, whose sides c3

and c4 (which were on the boundary of the initial surface) were glued together earlier
in the process. We open up this gluing and we glue c3 to c1 and c2 to c4.

Since the number of glued sides increases in each step, there is no boundary left at the
end and we obtain an surface SN without boundary whose systole satisfies the equation
(3.1.1). The approximation that makes the second operation above work is [PW18]:

Proposition 3.5. The positive semigroup generated by L and R is

xL,Ry` “

#˜

a b

c d

¸

P SLp2,Zq; a, b, c, d ě 0

+

“: SLp2,Nq.

Moreover,
tA P SLp2,Nq; 3 ď tr pAq ď ku “ O

`

k2 logpkq
˘

as k Ñ 8.
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For more details, we refer to [PW18]. Like in the previous section, the results of
Brooks [Bro99] can be used to compactify the surfaces we obtain, which gives rise to
sequences of closed surfaces pXkq whose genus tends to infinity and whose systole is at
least p1 ` op1qq ¨ logpgenuspXkqq.

3.1.4 Long systolic pants decompositions

The second construction produces a hyperbolic surface of logarithmic systole such that
the geodesics that realize the systole form a pants decomposition of the surface. Here, a
pants decomposition is a collection of simple closed curves such that the complement of
these curves is a collection of pairs of pants: three-holed spheres. A hyperbolic metric
with a totally geodesic boundary on a pair of pants is determined entirely by the boundary
lengths. So one way to specify a hyperbolic metric on a closed surface, is to first choose a
pants decomposition and then specify two parameters per curve in the decomposition: a
length and a twist which describes the gluing of the two pants along the curve (see Figure
3.4 for an example).

A surface such that the geodesics that realize systole form a pants decomposition is
not difficult to obtain: we take our favorite pants decomposition and pinch the curves to
a sufficiently small length. The collar lemma [Kee74] (see also [Bus10, Chapter 4]) implies
that the curves in the pants decomposition are the shortest in the surface. What is more
difficult is to do this without creating surfaces with very small systoles. The first such
construction is due to Buser [Bus78]. He finds a sequence of surfaces pXgqg of genus g

whose systole is «
a

logpgq. In [Pet18], this result was improved as follows:

Theorem 3.6. There exists a sequence of closed orientable hyperbolic surfaces pXgqgě2

such that Xg has genus g and

syspXgq ě
4

7
logpgq ` Op1q as g Ñ 8.

The idea of the proof is to consider the following set:

Sa “

$

’

&

’

%

Closed hyperbolic surfaces of systole a, that admit a pants decomposition
- such that all the lengths in the decomposition are a

- and all the twists are a{4

,

/

.

/

-

.

Afterwards, the proof has two steps. The first step is to show that Sa is not empty.
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Figure 3.4: A gluing of two hyperbolic pairs of pants of twist a{4. Here the twist is the
hyperbolic distance between the two points on the curve where the orthogonal geodesics
connecting the curve along which we glue with the other boundary components intersect
the curve.

The idea is that twisting by a{4 forces curves that are not in the pants decomposition
to be long. In particular, the only way to have a short curve in a surface with a pants
decomposition as in the definition of Sa is to have a short cycle in the graph dual to the
pants decomposition. So if we have a surface with a pants decomposition all of whose
lengths are a and all of whose twists are a{4 and whose dual graph is of a sufficiently large
girth, then this surface is in Sa.

The second step is to define

gminpaq “ min tgenuspXq; X P Sau .

Given that Sa isn’t empty, gminpaq is finite. The goal now is to find an upper bound on
gminpaq. To do so we use the diameter of the surface Xminpaq realizing gminpaq. If this
diameter is very large compared to a, then Xminpaq contains two pairs of pants P1 and P2

that are very far away from each other. Because of this, we can remove P1 and P2 and glue
the resulting boundary components together without creating any curves of length below
a. So we obtain a surface whose systole is still a, but whose genus is below that of Xminpaq,
thus contradicting minimality.

In conclusion, we obtain a bound on the diameter of Xminpaq in terms of its systole.
The diameter of a hyperbolic surface is at least logarithmic as a function of its genus (see
Section 6.2 for a detailed discussion), so we obtain a lower bound on the systole in terms
of the genus, which is the bound in the theorem above (see [Pet18] for more details).
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3.2 The kissing number

There are variants of the method behind our bounds on the systole with Maxime Fortier
Bourque (see Section 3.1.1) that can be used to prove bounds on other geometric and
spectral invariants of hyperbolic manifolds as well. The idea is always the same: we use
the Selberg trace formula with a function that satisfies certain linear conditions to find a
bound on the quantity that interests us. Afterwards we optimize the bound on the set of
functions which satisfy the conditions.

The second invariant for which we found a new bound is the kissing number of a
hyperbolic surface: the number of oriented geodesics that realize the systole of the surface.
This terminology was invented by Schmutz-Schaller [Sch96a, Sch96b, SS97] in analogy with
the number of contacts of a Euclidean lattice. The basic question is:

Question 5

Given d ě 2 and v ą 0, what is

max

#

KisspMq;
M a hyperbolic d-manifold

of volume ď v

+

?

And which hyperbolic manifold realizes it?

The bound that we find is [BP23c]:

Theorem 3.7. There exists a g0 ě 2 such that

KisspXq ă
4.873 ¨ g2

logpgq ` 1.2045
.

for every closed oriented hyperbolic surface X of genus g ě g0.

This improves a bound of Parlier [Par13], which is also of the form g2{ logpgq, but with
a multiplicative constant of 200. Our method is completely different: Parlier’s proof is a
geometric argument and does not use the Selberg trace formula.

The best known examples are again given by principal congruence coverings of arith-
metic surfaces: Schmutz-Schaller [SS97] proved that there exist sequences of congruence
coverings pXkqk of genus gk of an arithmetic surface compact such that gk Ñ 8 and for all
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Figure 3.5: The bound on the kissing number in genus 2–20.

ε ą 0, the kissing number satisfies

KisspXkq " g
4{3´ε
k as k Ñ 8.

Schmutz–Schaller [SS97, SS98] conjectured that the exponent 4
3

is optimal. In higher
dimension, constructions of hyperbolic manifolds whose kissing number grows faster than
linearly as a function of their volume were found by Dória–Murillo and Dória–Freire–
Murillo [DM21, DFM23]. With Maxime Fortier Bourque, we have also proved an analogous
bound to Theorem 3.7 for higher dimensional closed hyperbolic manifolds [BP22].

Like for the systole, our method can also be used to prove bounds for surfaces of small
area. The result can be found in Figure 3.5. The bound that we obtain is the best known
bound, except in the case of genus 2, where the maximum possible kissing number is known:
it is 24 [Sch94] and it is achieved by the Bolza surface [Jen81].
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3.3 The first eigenvalue

The other three invariants for which we found bounds with Maxime Fortier Bourque are
spectral invariants. We consider the Laplacian

∆X :“ ´div ˝ grad : C8
pXq Ñ C8

pXq

acting on functions on a closed orientable hyperbolic surface X. The eigenvalues of this
operator (the same eigenvalues that appear in the Selberg trace formula above) form a
discrete spectrum in r0,8q.

These eigenvalues contain a lot of geometric information about the underlying surface.
For example, a classical theorem due to Huber [Hub59, Hub60, Hub61] states that the
spectra of the Laplacians of two closed hyperbolic surfaces are the same if and only their
length spectra – the multisets containing the lengths of all closed geodesics – are. moreover,
the first eigenvalue λ1pXq can be seen as a measure of connectivity of the surface, for
instance because of the Cheeger–Buser inequality [Che70, Bus82], that we will discuss in
detail in Section 6.3, and also because λ1pXq influences the mixing rate of the geodesic
flow of the surface: the larger it is, the faster the flow mixes (see for instance [Mat13] for
an effective version).

It has been known for a long time, due to results by Huber and Cheng [Hub74, Che75b]
that, if the genus of a hyperbolic surface X is large, then λ1pXq can’t be much larger than
1
4
. The significance of 1

4
here is that it’s the spectral gap of the hyperbolic plane. This is

the hyperbolic analogue of the Alon–Boppana bound mentioned in Section 2.2.3. The best
upper bound that was known before our work with Maxime Fortier Bourque combines the
result of Cheng with work of Gage [Gag80] and Bavard [Bav96] and states:

λ1pXq ď
1

4
`

ˆ

2π

logpg ´ 1q

˙2

.

With Maxime Fortier Bourque, we proved:

Theorem 3.8. There exists g0 ě 2 such that

λ1pXq ă
1

4
`

ˆ

π

logpgq ` 0.7436

˙2

.

for every hyperbolic surface X of genus g ě g0.
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Figure 3.6: The bound on the first eigenvalue in genus 2–20.

Our method improves the error term by a factor of 4. This method is different from that
of Cheng and moreover, thanks to the existence of hyperbolic surfaces of small diameter
(see Section 6.2), it is not possible to obtain our bound with Cheng’s method.

The bounds that we obtain in small genus can be found in Figure 3.6. There has been a
lot of recent progress the maximum of the first eigenvalue. The best known upper bounds
in genus 2 and 3 are due to work by Bonifacio [Bon22] and Kravchuk–Mazac–Pal [KMP21]
and were found using a method called conformal bootstrap. These bounds are very close to
the first eigenvalues of the Bolza surface and the Klein quartic respectively, so it’s natural
to conjecture that these two surfaces maximize the first eigenvalue in their moduli spaces.
Somewhat curiously, the conformal bootstrap yields a decidedly sharper bound than ours
in genus 2 and 3, yet our bound is sharper in higher genus. In neither case, this seems to
be due to not running the numerical optimizer long enough. Finally, in genus 4 and 6, a
classical bound by Yang–Yau [YY80] is still the best known bound.

The question of whether there exist sequences of closed surfaces whose genus tends to
infinity and whose first eigenvalue tends to 1

4
has been open for a long time. Recently,

there has been a spectacular breakthrough due to Hide–Magee [HM23b, Hid23]: such a
sequence exists. Hide–Magee construct the sequence as compactifications of random covers
of a sphere with three cusps. Their proof makes essential use of the work of Bordenave–
Collins [BC19, BC23] on the asymptotic freedom of random permutations and the related
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question of spectral gaps in random coverings of graphs. However, the following question
remains open:

Question 6

Does there exist a hyperbolic surface X P Mg such that

λ1pXq ě
1

4
or even λ1pXq ą

1

4

for every g ě 2? Such surfaces are sometimes called Ramanujan (or strict Ramanu-
jan) surfaces, in analogy with Ramanujan graphs.

Selberg’s conjecture [Sel56] and its generalizations [BLS92] assert that congruence lat-
tices give examples of Ramanujan surfaces (and higher-dimensional Ramanujan manifolds).
The best known bounds towards these conjectures are due to Kim–Sarnak [Kim03] in di-
mension 2 and to Bergeron–Clozel [BC13] for higher dimensional hyperbolic manifolds.

3.4 The multiplicity of the first eigenvalue

Another invariant that we can access with our methods is the multiplicity m1pXq of the
first eigenvalue: the dimension of the eigenspace associated to λ1pXq.

The study of this invariant has a long history as well. For the case of surfaces, Colin-
de-Verdière (see [CdV86, p.269] and [CdV87, p.601]) has conjectured that, if Σ is a closed
surface,

max tm1pΣ, gq; g a Riemannian metric on Σu “ chrpΣq ´ 1,

where chrpΣq is the chromatic number of Σ: the maximal possible number of vertices of a
complete graph that embeds in Σ. A theorem by Ringel–Youngs [RY68] states that (if Σ
is not the Klein bottle):

chrpΣq “

Z

1

2

´

7 `
a

49 ´ 24χpΣq

¯

^

,

where χpΣq denotes the Euler characteristic of Σ. Colin-de-Verdière also proved that in
higher dimension, the situation is very different: on any closed manifold of dimension at
least 3 and for any N ě 1, one can find a Riemannian metric such that the multiplicity of
its first eigenvalue is N [CdV87].
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Going back to the case of surfaces, Colin-de-Verdière’s conjecture has been proven for
the sphere by Cheng [Che76], for the torus and the projective plane by Besson [Bes80]
and for the Klein bottle by Colin-de-Verdière and Nadirashvili [CdV87, Nad87]. Colbois–
Colin-de-Verdière [CCdV88] have found examples of sequences of closed hyperbolic surfaces
whose first eigenvalue multiplicity grows like the square root of their genus, but at a slower
rate than predicted by Colin-de-Verdière’s conjecture. The best known upper bound on the
multiplicity of the first eigenvalue among all Riemannian metrics is due to Sévennec [Sév02],
who uses a topological argument based on Courant’s nodal domain theorem [Cou23] and
topological methods “à la Borsuk–Ulam” to prove that the supremum above can be bounded
by 5 ´ χpΣq, which comes down to 2g ` 3 for a closed orientable surface of genus g.

With our methods we obtain a slight improvement of Sévennec’s result in the case of
hyperbolic surfaces:

Theorem 3.9. There exists a g0 ě 2 such that

m1pXq ď 2g ´ 1.

for every closed hyperbolic surface X of genus g ě g0.

In fact, our method works less well for multiplicity than for the other invariants. The
problem is that with the Selberg trace formula, we are only able to prove bounds on
the number of eigenvalues in certain intervals. On the other hand, it is known that in
any moduli space Mg and for any ε ą 0, we can find hyperbolic surfaces with as many
eigenvalues in the interval p1

4
, 1
4

` εq as we want [Bus10, p.219]. In other words, our bound
on the multiplicity necessarily depends on λ1pXq and it explodes when λ1pXq Ñ 1

4
. Instead

of the trace formula, we use a bound by Otal [Ota08] for surfaces X such λ1pXq ď 1
4
, which

states that in this case, m1pXq ď 2g ´ 3. Afterwards, we use the topological methods of
Otal and Sévennec to prove that there exists an explicit ag ą 0 such that, m1pXq ď 2g´1,
if λ1pXq P p1

4
, 1
4

` ags. For the remaining interval (between 1
4

` ag and the upper bound in
Theorem 3.8), we use the trace formula. On this small interval, the bound we find is in
fact sublinear as a function of g.

A general sublinear bound, under the condition that the systole of the surface is not
too small, has recently been found by Letrouit–Machado [LM23]. Their proof is strongly
inspired by that of the analogous result for regular graphs [JTY`21].

The bounds that we found in genus 2–20 can be found in Figure 3.7. Our bound is
sharp in genus 3. In [BP23b] we proved:
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Figure 3.7: The bound on the multiplicity of the first eigenvalue in genus 2–20.

Theorem 3.10. We have:

max tm1pXq; X P M3u “ 8

and this is realized by the Klein quartic.

The quickest way to define the Klein quartic is to say that it’s the unique closed
orientable hyperbolic surface of genus 3 whose group of orientation preserving isometries
has order 168 (which is maximal in genus 3, by the Hurwitz bound). For more information
on the Klein quartic, we refer the reader to [Lev99], a whole book dedicated to this surface.

To prove the fact that the first eigenvalue multiplicity of the Klein quartic is 8, we
use the fact that the Klein quartic has so many symmetries. This is a combination of our
methods based on the trace formula and the approach that Jenni [Jen81] and Cook [Coo18]
used to prove that the multiplicity of the first eigenvalue multiplicity of the Bolza surface
and the Klein quartic are 3 and at least 6 respectively.

Concretely, the group of isometries of the Klein quartic is PGLp2,Z{7Zq (and the sub-
group of orientation preserving isometries is PSLp2,Z{7Zq) and the action of this group
commutes with the Laplacian. This implies that the eigenspaces of the Laplacian decom-
pose into representations of PGLp2,Z{7Zq. This group has two irreducible representations
of dimension 1, three of dimension 6, two of dimension 7 and two of dimension 8. The
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goal is therefore on the one hand to rule out representations of dimensions lower than 8

and on the other hand to prove that the multiplicity is at most 8. We first prove, using
the spectrum of the quotient of the Klein quartic by PGLp2,Z{7Zq, that representations of
dimension 1 do not appear in the first eigenspace. Then we prove, with the trace formula,
that in a certain interval which contains the first eigenvalue of the Klein quartic, there are
more than 7 eigenvalues and less than 12. The only positive integer combination of 6, 7
and 8 between 7 and 12 being 8, the multiplicity of the first eigenvalue of the Klein quartic
has to be 8.

What is striking is that our method works for genus 3, but not for genus 2. The problem
is that the upper bound we prove (6) is larger than the largest known multiplicity (3, for
the Bolza surface). Nor do we know whether the Klein quartic is the unique surface of
genus 3 of multiplicity 8.

Question 7

• Is it true that
max tm1pXq; X P M2u “ 3?

And if so, is the Bolza surface the unique closed orientable surface of genus 2

and first eigenvalue multiplicity 3?

• Is the Klein quartic the unique closed orientable surface of genus 3 and first
eigenvalue multiplicity 8?

In upcoming work with Maxime Fortier Bourque, Émile Gruda-Médiavilla and Mathieu
Pineauilt, we will prove that Colin-de-Verdière’s conjecture is false: there are two coun-
terexamples, one of genus 10 and one of genus 17. The graph in Figure 3.7 will soon get
an update as well.
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3.5 The number of small eigenvalues

The last invariant that we studied with Maxime Fortier Bourque is the number of small
eigenvalues:

NsmallpXq “ max

"

k; λkpXq ď
1

4

*

` 1,

where we’ve added 1 because we’re calling the trivial eigenvalue λ0pXq. This invariant is
of interest for example because small eigenvalues give rise to exponential error terms in the
asymptotic count of the number of short geodesics on X (see for example [Bus10, Section
9.6]).

Buser [Bus77] and Otal–Rosas [OR09] proved that:

max tNsmallpXq; X P Mgu “ 2g ´ 2 pour tout g ě 2.

The lower bound proved by Buser uses explicit examples of hyperbolic surfaces. The
systoles of these examples are very small, so it is a natural question to ask whether this
is necessary. The first result which implies that this is indeed the case is due to Huber
[Hub76] and says that

NsmallpXq ă min

"

3π2pg ´ 1q

8 plogpcoshpsyspXq{4qqq3
,

g ´ 1

2 logpcoshpsyspXq{4qq

*

.

Huber’s method is similar to ours, except that he chooses another type of special functions:
Huber uses Legendre functions and we use functions constructed with Bessel functions.
With our functions, we obtain a small improvement on Huber’s result:

Theorem 3.11. If X is a closed oriented hyperbolic surface of genus g ě 2, then

NsmallpXq ă min

ˆ

24π2pg ´ 1q

syspXq3
,
16pg ´ 1q

syspXq2

˙

.

For the proof that our bound is really strictly smaller than (but still asymptotic to)
Huber’s bound, we refer to [BP23c, Section 10.2].

Like for the other invariants, in small genus, numerical optimization gives sharper
results than the test functions we constructed by hand (see Figure 3.8). For example, we
prove that NsmallpXq ă 2g ´ 2 as soon as

syspXq ě 2.317.
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Figure 3.8: The bound on Nsmall{pg ´ 1q when the systole is small.

This improves on Huber’s earlier mentioned results that imply that NsmallpXq ă 2g ´ 2

when syspXq ą 4 arccoshpe1{4q “ 2.9476 . . . (and Jammes’s 3.46 that was found using
different methods [Jam21]).
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4 Counting

A large part of this thesis will be taken up by random manifolds. Before we get to these, the
very first question – at least for discrete models of random manifolds – is that of counting:
in order to calculate probabilities with respect to the uniform measure on a finite set, one
needs to know the number of elements in the set (or at least have a good approximation).
Often, this question is already very hard.

A classical example is counting triangulations of manifolds. In the 1960s, Tutte [Tut63]
developed a way to enumerate triangulations of 2-dimensional disks and since then, there
has been an immense amount of work on counting triangulations of surfaces (we will discuss
a very small portion of it in the next chapter). Even if a lot is known, many very basic
questions remain open. In dimension 3 and above, we know much less, even the asymptotic
number of triangulations of the sphere is out of reach of current methods: the best known
bounds are very far apart (see for instance [BZ11, DJ95, AB20, CP21]).

In this chapter we will discuss our work on subgroup growth with Hyungryul Baik and
Jean Raimbault [BPR20, BPR19] and with Stefan Friedl, JungHwan Park, Jean Raimbault
and Arunima Ray [FPP`21] and our paper with Patricia Cahn and Federica Fanoni on
counting mapping class group orbits of curves on surfaces [CFP18],

4.1 Subgroup growth

In this section, we will discuss subgroup growth: the study of the number of finite index
subgroups of a given group. Concretely, given a finitely generated group Γ, we define

snpΓq “ |tH ă Γ; rΓ : Hs “ nu| .

For a finitely generated group, this quantity is always finite. The basic question now is
how snpΓq depends on n and which algebraic and geometric properties of Γ one can deduce

49
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from the information contained in this sequence. Before we’ll get to our joint work with
Hyungryul Baik and Jean Raimbault on the subgroup growth of Artin and Coxeter groups,
we will start with some context. We will only give a quick introduction to the subject of
subgroup growth and we make a selection which is very biased by applications to random
manifolds. For a more complete introduction we refer to the book by Lubotzky–Segal
[LS03].

Subgroup growth is relevant for the study of random manifolds, because a random finite
index subgroup of the fundamental group π1pMq of a manifold M gives rise to a random
finite degree cover of M . This model has recently been very successful in dimension 2

[MP23, MNP22, HM23b, Nau22] (see Section 5.1.2) and we’ll also treat a 3-dimensional
example in Section 5.2.2.

4.1.1 Invariant random subgroups

One way to look at these random finite index subgroups is through the lens of invariant
random subgroups. For a finitely generated group Γ, SubpΓq will denote the Chabauty
space of subgroups of Γ (see for instance [Gel18] for an introduction).

We will be interested in random index n subgroups of such a group Γ. Given n P N,
we will write

SnpΓq “ tH ă Γ; rΓ : Hs “ nu Ă SubpΓq,

so that snpΓq “ |SnpΓq|. Studying a random index n subgroup of Γ comes down to
understanding the measure µn on SubpΓq, defined by

µn “
1

snpΓq

ÿ

HPSnpΓq

δH

where δH denotes the Dirac mass on H P SubpΓq.

µn is an example of what is called an invariant random subgroup (IRS) of Γ – i.e.
a Borel probability measure on SubpΓq that is invariant under conjugation by Γ. We will
write IRSpΓq for the space of IRS’s of Γ endowed with the weak-* topology. This space has
been first studied under this name in [AGV14] and [Bow14] and under a different name in
[Ver12].
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4.1.2 Estimating the subgroup growth of a group

Most estimates snpΓq start with the following lemma. In this lemma, Sn denotes the
symmetric group on n letters.

Lemma 4.1. Let Γ be a group. Then

snpΓq “
tnpΓq

pn ´ 1q!
,

where
tnpΓq “ |tφ P HompΓ,Snq; φpΓq acts transitively on t1, . . . , nuu|

Proof. If H ă Γ is such that rΓ : Hs “ n, then Γ acts transitively on the set of cosets

Γ{H “ tH, g2H, . . . , gnHu

The induced permutation action on the indices of the gi is an action on a set of n elements.
In doing this, we have made an arbitrary identification of the last n ´ 1 cosets. So, in
reality, H gives rise to pn ´ 1q! distinct actions.

In the other direction, given a transitive action of Γ on t1, . . . , nu, the stabilizer
StabΓpt1uq ă Γ is a subgroup of index n. Moreover, if we conjugate the action by an
element of Sn´1 acting on t2, . . . , nu this doesn’t affect the stabilizer.

For an infinite group Γ, it is rare that one can calculate an explicit formula for snpΓq ,
and even if this is possible, the formula is often so complicated that it is difficult to extract
information from it. So typically, we rather look for the asymptotic behavior of snpΓq as
n Ñ 8. The first example of a class of infinite finitely generated groups for which such
an asymptotic expression has been calculated is the class of free groups. First, we observe
that the question is trivial for Z: snpZq “ 1 for all n P N. For non-abelian free groups,
a result by Dixon [Dix69] implies that, if r ě 2 the probability that a homomorphism
φ P HompFr,Snq is transitive tends towards 1 when n Ñ 8. Here Fr denotes the free
group of rank r. Combined with Lemma 4.1, this implies that

snpFrq „ n ¨ pn!qr´1 as n Ñ 8

for all r ě 2. This result was generalized to lattices in PSLp2,Rq by Müller–Schlage-Puchta
[MP02, MSP07] and Liebeck–Shalev [LS04a]. Like in the case of free groups, the factorial
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growth of snpΓq is linked to the area of the associated hyperbolic surface, i.e.

lim
nÑ8

logpsnpΓqq

n logpnq
“

areapΓzH2q

2π
“ ´χpΓq,

where χpΓq denotes the Euler characteristic of Γ. These results form the starting point
for earlier mentioned results on the geometry and spectra of random covers of hyperbolic
surfaces.

For lattices in IsompHdq for d ě 3, a case that is of obvious interest to us, much less
is known. There is no such lattice for which we know an asymptotic equivalent for the
sequence psnpΓqqn. The fact that the lattices in IsompHdq are large – they have finite
index subgroups which surject onto F2 –, which was proven by Agol [Ago13], using work
by Kahn–Markovic [KM12], Wise [Wis21], Bergeron–Wise [BW12] and many others, does
imply that regularized counting function

sďnpΓq “

n
ÿ

k“1

skpΓq

grows factorially fast as a function of n. On the other hand, Agol’s theorem is not effective,
so we currently have no good estimates on limnÑ8

logpsnpΓqq

n logpnq
in general. There is one example

of a lattice in IsompH3q for which we can determine this factorial growth rate. We will
discuss this in Section 4.1.4.

Also the following question is open:

Question 8

Let d ě 3 and let Γ ă IsompHdq be a lattice. Can one deduce the volume volpΓzHdq

from the sequence psnpΓqqn ?

If the answer to this question is “yes”, then the relation is more complicated than in
dimension 2: using the fact that there exist closed hyperbolic manifolds of dimension 3 of
arbitrarily large volume but whose fundamental group can be generated with 5 elements
(i.e. there is an epimorphism of F5 onto these fundamental groups), we can prove that there
exist hyperbolic manifolds of arbitrarily large volume whose factorial subgroup growth rate
is bounded by 4. Indeed, if we have an epimorphism Λ Ñ Γ, then snpΓq ď snpΛq for all n.
To find examples of hyperbolic manifolds with the desired property, we can for example
take a sequence of cyclic coverings of a hyperbolic manifold which fibers on the circle.

A second observation is that the sequence psnpΓqqn is a profinite invariant of Γ. In other
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words, if two groups Γ and Λ have the same profinite completion (see for example [RZ10]),
then snpΓq “ snpΛq for all n P N. In particular, if the answer is “yes”, this also gives a
positive answer to the open question of whether the volume of a hyperbolic manifold is
a profinite invariant. This question has for instance been raised in [BF20, Question 3.18]
and [Liu23] and also connects to more general questions on profinite rigidity of 3-manifold
groups, see [Rei15, Rei18] for an introduction and [BMRS20] for examples of profinitely
rigid Kleinian groups.

Finally, we note that the situation for lattices in Lie groups of higher rank, in which
case arithmetic methods can be used, is wildly different from that in rank one (see for
instance [Lub95, LN04, GLP04]).

4.1.3 Right-angled Artin groups

Together with Hyungryul Baik and Jean Raimbault [BPR20, BPR19], we’ve studied the
subgroup growth of right-angled Artin and Coxeter groups. We’ll start with the former.
Given a finite graph G “ pV,Eq, the associated right-angled Artin group is

ΓApGq “ xv P V | rv, ws for all tv, wu P Ey.

These groups interpolate between free groups and free abelian groups. Indeed, if G is a
complete graph, then ΓApGq is a free abelian group and if G has no edges, then ΓApGq is
a free group. They show up in hyperbolic geometry for instance because Agol proved that
every cocompact lattice in PSLp2,Cq virtually embeds in one of them [Ago13].

For us, they’re a good testing ground because they are large groups, but are given by
relatively manageable relations. Moreover, they are also a first step towards right-angled
Coxeter groups, that appear as lattices in the isometry groups of some hyperbolic spaces.

What we could access with Hyungryul Baik and Jean Raimbault is the factorial sub-
group growth rate of these groups:

Theorem 4.2. let G “ pV,Eq be a finite graph, then

lim
nÑ8

logpsnpΓApGqqq

n logpnq
“ αpGq ´ 1,

where αpGq denotes the independence number of G: the maximal size of a subset W Ă V

such that there are no edges between any of the pairs of vertices in W .
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The independence number αpGq also has a geometric interpretation. Indeed, ΓApGq

is the fundamental group of a cube complex called the Salvetti complex. The number
αpGq counts the maximal number of disjoint hyperplanes in this complex (see for instance
[Vog15, Example 5.2]).

The proofs of the upper and lower bounds in the theorem above are distinct. In fact, the
lower bound follows from the results on free groups mentioned above. Indeed, if G “ pV,Eq

is a finite graph and W Ă V and independent set – a set of vertices that have no edges
between them – then we obtain a surjection

ΓApGq ÝÑ F|W |,

by mapping the generators of ΓApGq corresponding to the elements of W to distinct gen-
erators of the free group F|W |. This implies that snpΓApGqq ě snpF|W |q for all n P N and
thus proves the lower bound.

The bulk of the proof of the theorem goes into showing that, at the factorial level,
this simple lower bound is sharp. Morally, this comes from the fact that typically the
centralizers of elements in a symmetric group are very small compared to the size of the
symmetric group itself. Our proof uses an induction on the number of vertices of G and
yields a bound of the form

snpΓApGqq ď Cn log logpnq
pn!qαpGq´1 for all n P N,

with a constant C ą 0 that depends on the graph G. For details, we refer to [BPR20].
Here, we will include the proof in a special case, which is much quicker, leads to a sharper
upper bound, and uses a very nice classical theorem from graph theory, due to Kőnig. It
is however not very representative of the general case.

Proof of Theorem 4.2 in the case of bipartite graphs. We assume that G “ pV,Eq is bipar-
tite. That is, we assume that we can write V “ V1 \ V2 and there are no edges interior to
V1 or V2.

We will need two more notions from graph theory. First of all, a matching of G is a
set M Ă E of edges such that no pair of edges in M shares an endpoint. A matching is
called maximal if it has the maximal number of edges among all matchings in the graph.
We will write µpGq for the number of edges in such a maximal matching.

Secondly, a vertex cover of G is a set of vertices W Ă V such that W contains at least
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one of the endpoints of every edge in E. A vertex cover is called minimal if it contains
the minimum number of vertices among all vertex covers of the graph. We will write νpGq

for the number of vertices in a minimal vertex cover of G.

Kőnig’s theorem states that, if G is bipartite:

µpGq “ νpGq.

Moreover, observe that for any graph G,

νpGq ` αpGq “ |V | ,

because every vertex cover is complementary to an independent set and vice versa. So,
Kőnig’s theorem implies that, when G is bipartite, we can find a matching M Ă E that
contains

|V | ´ αpGq

edges. Such a matching M is incident to 2p|V | ´ αpGqq vertices and hence there are
2αpGq ´ |V | vertices not incident to M . This means that there is a surjection

pZ2
q

˚p|V |´αpGqq
˚ F2αpGq´|V | ÝÑ ΓApGq,

where “˚” denotes the free product. Writing hnpΓq “ |HompΓ,Snq| for any group Γ, the
surjection above implies that

hnpΓApGqq ď hn

`

pZ2
q

˚p|V |´αpGqq
˚ F2αpGq´|V |

˘

“ ppnq
|V |´αpGq

¨ pn!qαpGq,

where ppnq denotes the number of partitions of the natural number n. Together with
Lemma 4.1, this implies the theorem in the case of bipartite graphs.

4.1.4 Right-angled Coxeter groups

The case of right-angled Coxeter groups is already a lot more subtle than that of right-
angled Artin groups. First, we remind the reader that the only thing that changes is that
we now assume the generators to be involutions. That is, given a finite graph G “ pV,Eq,
the associated right-angled Coxeter group is

ΓCpGq “ xv P V | v2 for all v P V and rv, ws for all tv, wu P Ey.
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An example from hyperbolic geometry of such a group is the group generated by the
reflections in the faces of a regular ideal right-angled octahedron1 in H3. The graph defining
this group is the 1-skeleton of the cube. In general, it is known that right-angled Coxeter
groups can appear as lattices in IsompHdq only if d ď 14, examples of such lattices are
known in dimensions 2–8 [PV05].

Just like in the case of right-angled Artin groups, right-angled Coxeter groups admit
surjections on groups that are easier to understand. We could take independent sets of
vertices of G again and obtain surjections on free products of multiple copies of Z{2Z. It
however turns out we can do better. To this end, we remind the reader that a clique in
G “ pV,Eq is a complete subgraph of G. Given a clique C in G, we define its weight as

wpCq “ 1 ´ 2|C|,

where |C| denotes the number of vertices in C. A system C of independent cliques in G

is a collection of disjoint cliques in G such that G contains no edges between any pair of
these cliques. The total weight of such a system is

wpCq “
ÿ

CPC
wpCq.

We now define the following graph invariant

γpGq “ max twpCq; C a system of independent cliques in Gu .

This invariant plays the same role as the independence number did for right-angled Artin
groups. Indeed, given a system C of independent cliques in G, we obtain a surjection

ΓCpGq ÝÑ ˚
CPC

pZ{2Zq
|C|.

It follows from work by Müller [Mül97, Mül96] that

lim inf
nÑ8

log psnpΓCpGqqq

n logpnq
ě γpGq ´ 1.

The crux here is that the exponents of the copies of Z{2Z in the free product above have
an influence on the factorial growth rate. This is why cliques, instead of just isolated
vertices, show up. From a combinatorial point of view, this also makes the problem a lot

1It turns out that this list of adjectives is long enough to determine a unique polytope up to isometry.
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less tractable. Nonetheless, with Hyungryul Baik and Jean Raimbault, we conjecture that,
at the factorial level, the lower bound we obtain is still sharp:

Conjecture

Let G “ pV,Eq be a finite non-complete graph, then

lim
nÑ8

log psnpΓCpGqqq

n logpnq
“ γpGq ´ 1.

The reason we exclude complete graphs is that the corresponding groups are finite.

One of our reasons for conjecturing the above is that we proved it holds for a large class
of groups:

Theorem 4.3. Let G “ pV,Eq be a finite graph for which there exists a (possibly empty)
set of vertices tv1, . . . , vku Ă V such that

• The 1-neighborhood of vi is a tree for all i “ 1, . . . , k,

• these 1-neighborhoods are disjoint

• and the graph
G ´ tv1, . . . , vku

is a tree.

Then the conjecture above holds for ΓCpGq.

We don’t have a heuristic reason for the conditions above, they are the conditions that
come out of our proof. We can actually push the methods slightly further and obtain a
larger class of graphs. This class is defined properly in [BPR20]. Since we’re not expecting
that class to be optimal either, we’ve chosen to slightly weaken the theorem here for ease of
exposition. Furthermore, there are again classes of graphs, trees for instance, for which the
proof simplifies considerably. We include one example here, the only lattice in IsompH3q

for which we know the factorial subgroup growth rate

Proposition 4.4. Let G be the 1-skeleton of the cube, so that ΓO :“ ΓCpGq is the reflection
group of the regular right-angled octahedron in H3. Then the conjecture above is true for
ΓO, that is

lim
nÑ8

logpsnpΓOqq

n logpnq
“ γpGq ´ 1 “ 1.
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Proof. Given our observations before, we only need to prove the upper bound. Writing S

for the 1-skeleton of the square, we have a surjection

ΓCpSq ˚ ΓCpSq ÝÑ ΓCpGq.

Indeed, we can decompose the vertex set V of G into two sets of 4 vertices, each corre-
sponding to a face of the cube. Since the right-angled Coxeter group corresponding to
a disjoint union of two graphs is the free product of the two corresponding right-angled
Coxeter groups, the group corresponding to the union of the two squares on these two sets
4 of vertices is ΓCpSq ˚ ΓCpSq. The map ΓCpSq ˚ ΓCpSq ÝÑ ΓCpGq induced by sending the
generators corresponding to the vertices to themselves is a well-defined surjection.

Now, ΓCpSq “ D8 ˆ D8, where D8 » Z{2Z ˚ Z{2Z is the infinite dihedral group. In
particular, ΓCpSq is virtually abelian. As such, it satisfies hnpΓCpSqq ď Cnn! for some
C ą 0 (see for instance [LS03, Chapter 1]. This, combined with Lemma 4.1, implies that

snpΓOq ď
hnpΓOq

pn ´ 1q!
ď

hnpΓCpSq ˚ ΓCpSqq

pn ´ 1q!
“

hnpΓCpSqq ¨ hnpΓCpSqq

pn ´ 1q!
ď n ¨ C2n

¨ n!,

which proves our claim.

For more details on Theorem 4.3 and its proof, which in part relies on the results on
Fuchsian groups we mentioned in the previous section, we refer to [BPR20].

Finally, there is one very specific class of right-angled Coxeter groups for which we
obtain much better asymptotic results [BPR19]. These are virtually cyclic right-angled
Coxeter groups and their free products. It turns out that every virtually cyclic right-
angled Coxeter group is of the form

Γr :“ pZ{2Z ˚ Z{2Zq ˆ pZ{2Zq
r

for some r ě 0.

The main advantage of these groups is that we can write down explicit generating
functions for the sequences that interest us. Like in some of the proofs above, we start
with the sequence

hnpΓrq “ |HompΓr,Snq| , n P N,

which is in fact equivalent information to the sequence snpΓrq (see [LS03, Corollary 1.1.4]).
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Let us write

Grpxq “

8
ÿ

n“0

hnpΓrq

n!
xn.

for the exponential generating function of the sequence phnpΓrqqn. We have:

Theorem 4.5. Let r P N. Then

Grpxq “

r
ź

j“0

ˆ

´

1 ´ x2j`1
¯´s

2j
{2

exp

ˆ

´2j s2j `
2j s2j

1 ´ x2j

˙˙

where

s2j “ s2jppZ{2Zq
r
q “

śj´1
l“0 p2r ´ 2lq

śj´1
l“0 p2j ´ 2lq

.

The fact that this function is so explicit allows us to apply methods from analytic
combinatorics (see [FS09] for a standard reference) in order to prove asymptotic results
for its coefficients. The particular methods we use are due to Hayman [Hay56]. Similar
methods have a long history in counting homomorphisms of finite groups into symmetric
groups (see for instance [CHM51, MW56, MW57, Vol86, Wil86, Mül97]).

Examples of results we obtain are:

Theorem 4.6. (a) Let r P N. Then

snpΓrq “ n

¨

˚

˚

˝

1 `
ÿ

0ăjďr
s.t. 2j |n

2j s2j

˛

‹

‹

‚

`
ÿ

0ďjďr
s.t. 2j`1|n

2j s2j ,

for all n P N.

(b) Let m P Ně2, r1, . . . , rm P N and

Γ “ ˚m
l“1Γrl .

Then there exist explicit constants AΓ, BΓ ą 0 and CΓ P Q such that

snpΓq „ AΓ n1`CΓ exppBΓ

?
nq n!m´1.

as n Ñ 8.

The constants in the theorem above are explicit, but their definitions (especially that
of AΓ) are lengthy. So for these, we refer to [BPR19]. We do note that they behave well
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with respect to free products, that is:

AΓ “

m
ź

l“1

Arl , BΓ “

m
ÿ

l“1

Brl and CΓ “

m
ÿ

l“1

Crl ,

where Ar “ AΓr , Br “ BΓr and Cr “ CΓr . As to their values, we will content ourselves
with a table with some values:

Exact values Numerical values

r Ar Br Cr Ar Br

0 1?
8 π

¨ exp
`

´1
2

˘

2 ´1
2

0.1210 . . . 2

1 1
4?
2048 π2

¨ exp
`

´7
4

˘

2
?
2 ´1

4
0.01457 . . . 2.8284 . . .

2 1
320

?
π

¨ exp
`

´63
8

˘

2
?
5 1

2
6.7020 ¨ 10´7 4.4721 . . .

3 1
68719476736

?
π
exp

`

´671
16

˘

8 13
4

5.0248 ¨ 10´30 8

Table 4.1: The first four values of Ar, Br and Cr.

4.2 Covers by distinct manifolds

Another natural question related to finite index subgroup is how many non-isomorphic
subgroups of the same index a given group has. For instance, if Γ is a free group or the
fundamental group of a closed orientable surface and Λ ă Γ is a finite index subgroup,
then the index alone is enough to determine isomorphism type of Λ. Indeed, it’s again a
free group or the fundamental group of a closed surface respectively. Moreover, which free
group or surface group it is can be determined through an euler characteristic computation.
In other words, even if free groups and fundamental groups of closed surfaces (of genus at
least 2) have many finite index subgroups, they don’t have many pairwise non-isomorphic
subgroups of the same index.

Unlike the case of free groups and surface groups, in general, we are not able to prove
counting results. Instead, we will just ask whether groups have the property that all
their subgroups of the same index are isomorphic. Even if surfaces and graphs play a
very prominent role in this text, this particular property should be the exception rather
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than the rule. As such, together with Stefan Friedl, JungHwan Park, Jean Raimbault and
Arunima Ray [FPP`21], we dubbed groups that have this property exceptional:

Definition 4.7. Let Γ be a group. If for all d ě 1, for all pairs of subgroups of Λ1,Λ2 ă Γ,
both of index d, Λ1 and Λ2 are isomorphic as groups, we call Γ exceptional.

Our main motivation came from compact 3-manifolds, in which case the fundamental
group often determines the manifold up to homeomorphism. Indeed, if M and N are closed,
orientable, aspherical 3-manifolds and π1pMq » π1pNq, then M and N are homeomorphic.
This follows by combining Perelman’s geometrization theorem [Per02, Per03a, Per03b],
Mostow’s rigidity theorem [Mos68], and work of Waldhausen [Wal68] and Scott [Sco83]
(see for instance [AFW15, Theorem 2.1.2])

So, it also makes sense to speak of exceptional manifolds:

Definition 4.8. Let M be manifold. If for all d ě 1, for all pairs of covers of N1 Ñ M

and N2 Ñ M , both of degree d, N1 and N2 are homeomorphic as manifolds, we call M
exceptional.

We proved:

Theorem 4.9. Let M be a compact 3-manifold with empty or toroidal boundary. Then M

is exceptional if and only if it is homeomorphic to one of the following manifolds:

1. k ¨

´

S1 ˆ S2
¯

for k ě 1,

2. S1
rˆS2,

3. S1 ˆ D2,

4. T2 ˆ I,

5. T3,

6. all spherical manifolds except those with fundamental group P48ˆZ{pZ with gcdpp, 3q “

1 and p odd, or Q8n ˆ Z{q with gcdpq, nq “ 1, q odd, and n ě 2.

In the theorem above, Sn denotes the n-sphere, Dn denotes the n-dimensional disk,
Tn denotes the n-torus, I denotes the unit interval r0, 1s and k ¨ M denotes the k-fold
connected sum of the manifold M . The finite groups listed in item (6) are defined in
[FPP`21, Section 6].
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Our proof uses a divide and conquer strategy, we use Kneser’s prime decomposition
theorem and Perelman’s geometrization theorem to divide our manifold into various geo-
metric classes that we then treat separately. For the full proof, we refer to the paper, here
we’ll give a proof for the hyperbolic case:

Proof that closed hyperbolic 3-manifolds are not exceptional. Let M be a closed hyperbolic
manifold. By Agol’s theorem [Ago13], M admits a cover of finite degree N Ñ M such that
the first Betti number b1pNq ą 0.

This means that π1pNq admits a surjection φ : π1pNq Ñ Z and in particular N admits a
sequence of cyclic covers Y p1q

n Ñ N of degree n. The systoles of this sequence of hyperbolic
manifolds are uniformly bounded. Indeed, the subgroup K “ kerpφq necessarily contains
hyperbolic elements. Their translation length is an upper bound for the systole of Y p1q

n for
all n.

On the other hand, N is residually finite by Malcev’s theorem [Mal40]. This means
that N admits a sequence of finite degree covers Y p2q

nk Ñ N whose systoles tend to infinity.
Since we have a cyclic cover of any degree, we can find a pair of covers

Y p1q
n , Y p2q

n Ñ N Ñ M

whose systoles are different but whose degrees are the same. By Mostow rigidity [Mos68],
Y

p1q
n and Y

p2q
n cannot be homeomorphic as manifolds.

The use of Agol’s theorem in the proof above makes it considerably shorter, but it’s
in fact not necessary. In our paper we present a proof that avoids it. It still uses systoles
but instead of Agol’s theorem, we use the fact that we can embed a lattice in PSLp2,Cq

in GLdpFq for some number field F (see [MR03, Theorem 3.1.2]). This allows us to apply
Nori–Weisfeiler’s strong approximation theorem [Wei84a] to find non-isomorphic subgroups
of the same finite index. The advantage of that proof is that it generalizes to all semi-
simple Lie groups that are not locally isomorphic to PGLp2,Rq. Agol’s largeness theorem
[Ago13] combined with arguments similar to those in [BGLM02, BGLS10] also allow us to
prove that, in the case of hyperbolic 3-manifolds, the number of non-isomorphic subgroups
of bounded index still grows factorially fast as a function of the index.
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4.3 Counting curves

The final counting problem that we will briefly discuss is that of counting closed curves of
surfaces. There are essentially two (related) types of questions: geometric and topological
questions. In this section we will consider the latter. We will discuss some aspects of the
former in Section 5.1.

Here, we will ask for the number of closed curves on a closed surface Σ, considered up
to homeomorphism and isotopy, with a bounded number of self intersections. One way to
describe this is to consider the mapping class group

MCGpΣq “ Homeo`
pΣq{Homeo`

0 pΣq,

where Homeo`
pΣq denotes the group of orientation preserving homeomorphisms Σ Ñ Σ

and Homeo`
0 pΣq the normal subgroup consisting of those homeomorphisms that are isotopic

to the identity. In this definition, we can replace homeomorphisms by diffeomorphisms and
isotopy with homotopy without affecting the resulting mapping class group.

This group acts on the set of free homotopy classes of closed curves. This allows us to
define

NkpΣq :“

ˇ

ˇ

ˇ

ˇ

ˇ

#

free homotopy classes of closed curves
on Σ with k self-intersections

+

M

MCGpΣq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Here, the number of self-intersections of a free homotopy class of closed curves is the
minimum of the self-intersection number of among all curves in the class. One reason
to care about NkpΣq is that it shows up in the count of the number of closed geodesics
on a hyperbolic surface with a fixed number of self intersections and of bounded length
[Mir08, Mir16, ES16, EPS20, ES22, DGZZ21, DGZZ22, Liu22, VM22].

There are two immediate questions to ask: how does NkpΣq depend on k, and how does
it depend on Σ? We’ll start with the former. Aougab–Souto [AS18], improving upon work
by Sapir [Sap16], proved that, if Σg is a closed orientable surface of genus g ě 2, for all
δ ą 0,

exp
´

pπ
a

2g ´ 2 ´ δq ¨
?
k
¯

ď NkpΣgq ď exp
´

p4
?
2
a

2g ´ 2 ` δq ¨
?
k
¯

,

for all k " 0. Aougab–Souto conjecture that their lower bound is sharp:
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Conjecture (Aougab–Souto)

Let Σg be a closed orientable surface of genus g ě 2, then:

lim
kÑ8

logpNkpΣqq
?
k

“ π
a

2g ´ 2.

With Patricia Cahn and Federica Fanoni [CFP18], we considered the opposite regime.
That is, we fix k ě 0 and ask what happens if we vary the surface. We proved:

Theorem 4.10. We have

NkpΣgq „ Ck ¨ gk`1 as g Ñ 8.

where Ck ą 0 is a constant that depends on k only.

Our proof makes heavy use of results of Hass and Scott [HS94, HS99] on properties of
curves that are not in minimal position. The constant Ck is a weighted sum over a finite
set of ribbon graphs that depends on k. In particular, it can be made explicit for small
values of k. For instance, it’s well known that C0 “ 1

2
.



5 Random manifolds

Over the past 20 years, enormous progress has been made on random hyperbolic manifolds.
Today there are many different models of random hyperbolic surfaces [BM04, GPY11,
Mir13, MP23, BCP21b] and random hyperbolic 3-manifolds [DT06, PR22].

The purpose of this chapter is to discuss these models, their geometric and topological
properties, and how the contributions of my co-authors and me fit into this story. We will
discuss:

• universal properties of random surfaces obtained by gluing polygons together, which
is joint work with Thomas Budzinski and Nicolas Curien [BCP19],

• the distribution of the number of short closed geodesics in random surfaces, based
on joint work with Christoph Thäle [PT18] and Maryam Mirzakhani [MP19],

• homological torsion of random Heegaard splittings, based on our project with Hyun-
gryul Baik, David Bauer, Ilya Gekhtman, Ursula Hamenstädt, Sebastian Hensel,
Thorben Kastenholz and Daniel Valenzuela [BBG`18],

• random covers of torus knot complements, that we worked on with Elizabeth Baker
[BP23a],

• and random 3-manifolds with boundary, that we studied with Jean Raimbault [PR22].

5.1 Random surfaces

Random surfaces have been around for a long time both in mathematics and in theoretical
physics. A model that has attracted a lot of attention is that of random triangulations (or
more general cell decompositions, often called maps) of a fixed surface Σ of finite type.
Often this surface is the 2-sphere, in which case the cell decompositions are called planar

65
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maps. In this model, we pick randomly pick a triangulation Σ with a bounded number
of triangles in the set of homeomorphism classes of all such triangulations and ask what
the result looks like as the number of triangles tends to infinity. By now, there are many
techniques available (see for instance [LGM12, Mie14, Cur23] and references therein) and
we have quite a detailed description of the local [AS03] and global [LG13, Mie13, BM22]
geometry of these triangulations. Recently these methods have also found applications in
hyperbolic geometry [Bud22, BZ23].

5.1.1 Random Bely̆ı surfaces

The first model of random hyperbolic surfaces, called random Bely̆ı surfaces, was developed
by Brooks–Makover [BM04]. Their goal, inspired by random regular graphs, was to study
random closed hyperbolic surfaces of large genus (so the opposite regime to the one of
random planar maps), and find applications of the probabilistic method, in particular for
the spectral gap.

A random Bely̆ı surface is obtained by randomly partitioning the sides of n (an even
number) ideal triangles into pairs and then gluing them into an oriented surface according
to the side pairing (this is analogous to the configuration model in graph theory, see
Section 2.2.4), using gluings of shear 0 (see Section 3.1.3). The resulting surface SO

n is
then conformally compactified, thus obtaining a closed random surface SC

n , equipped with
a conformal structure.

If the genus is at least 2 (which turns out to be generic), this conformal class contains
a unique hyperbolic metric by the uniformization theorem. One reason that this is an
interesting model of random surfaces is that the non-compact surfaces SO

n are covers of
PSLp2,ZqzH2, which implies that the compact surfaces SC

n are branched covers of the
sphere, branched at at most three points. Such surfaces are called Bely̆ı surfaces because
Bely̆ı proved they are exactly the surfaces that can be defined over Q [Bel79] (see [JS96]
for a nice survey). This in particular implies that the set of surfaces we sample from, form
a dense set in Mg for all g ě 0.

Topology. The first question is what the topology of these surfaces is like. First of all,
we didn’t specify that the gluing needs to be into a connected surface. However, it’s true
that

P
´

SO
n and SC

n are connected
¯

Ñ 1 as n Ñ 8
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which follows directly from the analogous result on random regular graphs due to Bollobás
and Wormald [Bol81, Wor81a]. Knowing this, the only remaining question is their genus
(or equivalently, the number of cusps of SO

n ). Very precise results on this are known due
to Gamburd (when 4 divides n) [Gam06] and Chmutov–Pittel [CP16]. They for instance
prove the following central limit theorem for genus of these surfaces:

genuspSC
n q ´ 1 ´ n

4
´ logpnq

a

logpnq

distribution
ÝÑ N p0, 1q as n Ñ 8,

where N p0, 1q denotes the standard normal distribution.

They prove this using the fact that a random surface can be modeled using a uniformly
random pair of permutations pσn, τnq P Kp3nq ˆ Kp23n{2q. Here Kp3nq Ă S3n denotes
the conjugacy class of fixed point free permutations of order 3 and Kp23n{2q Ă S3n the
conjugacy class of fixed point free involutions. The notation “3n” and “2n{2” is exponential
notation for the partitions that describe the cycle types of the permutations in these
conjugacy classes. The permutation σn encodes the oriented labeling of the sides of the
ideal triangles and the permutation τn describes the side pairing. Their product σn ¨ τn

describes the cusps of SO
n , in the sense that each cusp naturally corresponds to a cycle in

the disjoint cycle decomposition of σn ¨ τn and moreover the length of that cycle gives us
the “size” of the cusp: the number of corners of ideal triangles incident to it.

Using ideas from random walks on finite groups, in particular the Diaconis–Shahshahani
lemma [DS81], Gamburd and Chmutov–Pittel proved that, denoting the distribution of
σn ¨ τn P S3n by Pσn¨τn , we have that,

dTVpPσ4k¨τ4k ,U
even
4k q Ñ 0 as k Ñ 8

and
dTVpPσ4k`2¨τ4k`2

,Uodd
4k`2q Ñ 0 as k Ñ 8,

where dTV denotes total variational distance, Ueven
4k the uniform measure on the set of even

permutations (the alternating group) and Uodd
4k`2 the uniform measure on the set of odd

permutations. This for instance implies the central limit theorem above and also that,
when properly normalized, the partition describing the cycle type of σn ¨ τn converges to
a Poisson–Dirichlet distributed random variable as n Ñ 8 (see for instance [ABT00]).
Chmutov–Pittel also generalized these results to random gluings of polygons with varying
perimeters.
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In [BCP19], with Thomas Budzinski and Nicolas Curien, we proved a weaker version
(that we dubbed Poisson–Dirichlet universality) of these results for a slightly larger class of
polygon gluings. One of the main points of this is that we did this using different methods,
that do in particular not rely on the representation theory of the symmetric group.

Instead, we used dynamical exploration techniques that are well known in the world
of planar maps and are often called peeling techniques (see [Cur23] for an introduc-
tion) and that play an important role at multiple points in this text. The idea is very
simple. Formally, our probability space is a finite set of pairings of sides of triangles. In
particular, an element in the probability space does not make any reference to the order in
which the triangles are glued together. However, we can choose to add an order without
influencing the probability of any geometric or topological event. Such an order is called
a peeling algorithm and is often thought of as the order in which the triangulation is
being “discovered”.

To show how the method works, we’ll present a simple example. This example essen-
tially already appears (without this language) in Brooks and Makover’s paper [BM04]:

A peeling algorithm

Input:

• An even number n P N

• A surface Sp0q which is a disconnected union of n oriented triangles, with their
sides labeled 1, 2, . . . , 3n

Iteration:
At step t “ 1, . . . , 3n{2, create the random surface Sptq as follows

1. Let e
ptq
1 and e

ptq
2 denote two uniformly random edges on BSpt´1q

2. Glue e
ptq
1 and e

ptq
2 together in such a way that the orientations on both sides

match. Call the resulting surface Sptq.

This procedure generates a random sequence of surfaces Sp0q, . . . , Sp3n{2q. The order
we have introduced is of no influence on the resulting surface. That is, as a random
triangulated surface, the law of Sp3n{2q is the same as that of SO

n . Adding this order,
however gives us access to the number of vertices in the triangulation. For instance, if we
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write Vn for the number of vertices of Sp3n{2q, then we have

EpVnq “

3n{2
ÿ

t“1

EpV ptq
n q,

where V
ptq
n denotes the number of vertices that in are in the interior of Sptq but not in the

interior of Spt´1q. The value of V ptq
n is either 0, 1 or 2. The latter only happens if eptq

1 and
e

ptq
2 together form a boundary component of Spt´1q, which is rare. Creating one vertex in

the interior can happen in two ways, either e
ptq
1 and e

ptq
2 are incident to a common vertex

(see Figure 5.1), or both e
ptq
1 and e

ptq
2 form a full boundary component of Spt´1q. Of these

two, the former is generic. As such, we obtain

EpVnq “ oplogpnqq `

3n{2
ÿ

t“1

P

˜

e
ptq
1 and e

ptq
2 are on a boundary component containing

at least 3 edges and are incident to a common vertex

¸

,

as n Ñ 8 Also the event that e
ptq
1 and e

ptq
2 are on a boundary component containing at

least 3 edges is generic. Using this and the fact that after step t ´ 1, there are 3n ´ 2t ` 2

edges left on the boundary, we obtain

EpVnq “ oplogpnqq `

3n{2
ÿ

t“1

2

3n ´ 2t ` 1
“ logpnq ` oplogpnqq

as n Ñ 8, thus recovering the first order term in the central limit theorem above. For
finer estimates for more general gluings and proofs of the claims of genericity above, we
refer to [BCP19].

In that paper, we also observed that other geometric properties of the graph struc-
ture of a random polygon decomposition seem to be universal. To formalize this, let
Pn “ tp1, . . . , pku be a multiset of perimeters of polygons such that

ř

i pi “ n. More-
over let GPn denote the random graph obtained from a random gluing of polygons of the
perimeters prescribed by Pn, using the configuration model. The structure of this graph is
not entirely random: there is a parity constraint similar to the constraint showing up in the
results of Gamburd and Chmutov–Pittel discussed above. Indeed, an Euler characteristic
computation shows that the parity of the number of vertices of GPn is the same as the
parity of n ` k. The question is whether this is essentially the only constraint:
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e
ptq
1

e
ptq
2

Figure 5.1: Closing off a vertex of Sptq

Question 9

Let Gn be the random graph structure of a uniform random labeled map on n
edges, and denote Godd

n (respectively Geven
n ) be the random graph Gn conditioned

respectively on having an odd (respectively even) number of vertices.
Suppose moreover that pPnqn is a sequence of multisets of perimeters such that
ř

pPPn
p “ n and

lim
nÑ8

|tpi P Pn; pi “ 1u|
?
n

“ 0 and lim
nÑ8

|tpi P Pn; pi “ 2u|

n
“ 0

Then is it true that
dTVpGPn ,Gϵn

n q Ñ 0 as n Ñ 8 ?

Here ϵn P teven, oddu denotes the parity of |Pn| ` n.

The conditions on the number of monogons and bigons in this question are necessary
to make the earlier mentioned peeling based proofs work. They for instance play a role in
the proofs of the genericity claims before.

Geometry. We also know a lot about the geometry of random Bely̆ı surfaces. Brooks and
Makover already proved that there exist constants c1, c2, c3, c4 ą 0 such that, with high
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probability as n Ñ 8 1,

syspSC
n q ě c1, λ1pS

C
n q ě c2, hpSC

n q ě c3 and diampSC
n q ď c4 logpgenuspSC

n qq.

Here, hpSC
n q denotes the Cheeger constant of SC

n , defined as

hpSC
n q “ inf

#

ℓpBY q

areapY q
;

Y Ă SC
n a submanifold with smooth

boundary and areapY q ď areapSC
n q

+

,

which measures how hard it is to cut SC
n in two. We will discuss this quantity and its

interest at length in Section 6.3. diampSC
n q denotes the diameter of SC

n . By now, sharper
bounds are known on this diameter [BCP21a], which we will briefly discuss in Section 6.2.
All these bounds suggest that random Bely̆ı surfaces are good expanders. Whether they’re
near Ramanujan surfaces is currently still open, but it seems quite likely they are, given
that the combinatorics and geometry of the model are very close to that of the random
covers of Hide–Magee [HM23b]:

Conjecture

For every ε ą 0,

lim
nÑ8

P
ˆ

λ1pS
C
n q ą

1

4
´ ε

˙

“ 1.

The method of proof of the bounds by Brooks and Makover is to first understand the
geometry of the non-compact surfaces SO

n , using a combination of results on random graphs
and hyperbolic geometry and then prove that the given bounds persist (up to manageable
errors) in the compactification. This last step is based on the same earlier work due to
Brooks [Bro99] that we have mentioned before. This works for the systole, the spectral gap
and the Cheeger constant. However, the diameter of SO

n is infinite. Instead, the logarithmic
upper bound on the diameter of SC

n follows from the bounds on the other three invariants,
again using earlier work by Brooks [Bro92].

Together with Christoph Thäle [PT18], we studied the length spectrum of random
Bely̆ı surfaces. Let LpSC

n q denote the primitive length spectrum of SC
n : the multiset of

lengths of primitive closed geodesics on SC
n . This is a random countable subset of p0,8q.

In order to state our theorem, recall from Section 3.1.3 that the lengths of curves on SO
n

1The phrase “with high probability as n Ñ 8” means that the probability of the described event tends
to 1 as n Ñ 8
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are determined by words in two matrices L and R. To this end, we set

W “ twords in L and Ru{ „

where two words w and w1 are equivalent if (as strings in L and R) if w1 can be obtained
from w through a combination of the following two operations

• cyclic permutation of the letters,

• reading the word backwards and interchanging L and R.

This equivalence captures the ambiguity in the definition of the word associated to a closed
curve mentioned in Section 3.1.3. Given rws P W , we will write

ℓprwsq “ 2arccosh

ˆ

tr pwq

2

˙

.

We proved the following:

Theorem 5.1. As n Ñ 8, LpSC
n q converges locally in total variational distance2 to a

Poisson point process LBM of intensity λBM given by

λBM
pAq “

ÿ

rwsPW
ℓpwqPA

|rws|

2 |w|
, A Ă p0,8q.

Because they play an important role in this text, we remind the reader of the definition
of a Poisson point process.

Definition 5.2. Let X be a manifold and µ a locally finite Radon measure on X. A
Poisson point process on X of intensity µ is a random countable subset S Ă X such that:

(a) For any compact measurable A Ă X, the random variable

NA “ |S XA| „ PoissonpµpAqq.

(b) If A1, . . . , Ak Ă X are disjoint compact subsets, then the random variables
NA1 , . . . , NAk

are an independent family.
2See [Kal17, Section 4.4] for a definition.
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With Christoph Thäle, we obtain explicit bounds on the total variational distance
of the random variables that count the numbers of geodesics of bounded length to the
counting variables corresponding to LBM. This in particular allows us to say something
about geodesics whose length grows (slowly) with n. Our theorem strengthens work from
the author’s PhD thesis [Pet17b, Pet17a] in which the method of moments was used to
prove local convergence in distribution. In our work with Christoph Thäle, we use the
Chen–Stein method for Poisson approximation instead [Che75a, AGG89, BHJ92].

Our result with Christoph Thäle also implies that the systole of random Bely̆ı surfaces
is not large (for instance, its expectation is uniformly bounded [Pet17b]). In upcoming
work with Mingkun Liu [LP23], we will prove that the construction can be modified, using
ideas from graph theory due to Linial–Simkin [LS21], in order to produce random surfaces
with logarithmic systoles.

5.1.2 Random covers of finite degree

Another combinatorial model is that of random covers of a fixed surface. That is, one fixes a
hyperbolic surface X1 with a finitely generated fundamental group Γ and takes a uniformly
random index n subgroup of Γ, which gives rise to a random cover of degree n of X1. Due
to results by Dixon [Dix69] for free groups and Müller–Schlage-Puchta [MP02, MSP07] and
Liebeck–Shalev [LS04a] for surface groups, this model is essentially the same as picking a
uniformly random homomorphism

φn P HompΓ,Snq

and taking the cover corresponding to the stabilizer Hn “ Stabφnpt1uq.

If the base surface is a non-compact surface of finite area, and hence Γ is a finitely
generated free group, this model is somewhat similar to the model of random Bely̆ı surfaces
discussed above. Counts of the number of short closed geodesics can be derived from results
due to Nica [Nic94] and imply in particular that as an IRS (see Section 4.1.1), Hn converges
to the trivial group and the corresponding cover Benjamini–Schramm converges to H2. As
we mentioned in Section 3.3, Hide–Magee [HM23b] proved that these surfaces are near
Ramanujan with high probability as n Ñ 8. A version of the latter result in the case of
Schottky groups in PSLp2,Rq is due to Magee–Naud [MN20, MN21].

If the base surface is closed, the fact that its fundamental group is not free makes
counting the number of homomorphisms significantly more complicated. Nonetheless, good



74 CHAPTER 5. RANDOM MANIFOLDS

asymptotic results for this number are known due to the works by Müller–Schlage-Puchta
and Liebeck–Shalev mentioned above.

Also the question of counting the number of short closed geodesics that lift to the
cover becomes more complicated, but recently techniques for estimating this were devel-
oped by Magee–Naud–Puder [MP23, MNP22], which in particular give rise to a Poisson
approximation theorem for the length spectrum of these random covers [PZ22] and again
imply convergence of the corresponding IRS and Benjamini–Schramm convergence to the
hyperbolic plane.

Like in the Brooks–Makover model (and the Weil–Petersson model that we will discuss
below), the results above imply that these random constructions do not give rise to surfaces
with large systoles. In the earlier mentioned upcoming work with Mingkun Liu [LP23] we
will prove that certain random regular covers, much like the random Cayley graphs of
Section 2.2.4, do yield to surfaces with logarithmic systoles.

Magee–Naud–Puder also prove that for any ε ą 0, with high probability as the degree of
the cover tends to infinity, these covers have no new Laplacian eigenvalues3 in the interval
“

0, 3
16

´ ε
‰

. They conjecture that this should hold up to 1
4
:

Conjecture (Magee–Naud–Puder)

Let X be a closed orientable hyperbolic surface and let Xn Ñ X denote a random
cover of degree n of X, as defined above. Moreover, given a closed hyperbolic surface
Y , let σpY q denote the spectrum of its Laplacian. Then for any ε ą 0

lim
nÑ8

P
ˆ

σpXnq X

„

0,
1

4
´ ε

ȷ

“ σpXq X

„

0,
1

4
´ ε

ȷ˙

“ 1.

Finally, Naud determined the asymptotic behavior of the variance of smoothened count-
ing functions of eigenvalues of the twisted Laplace operators [Nau22] and the determinant
of these surfaces [Nau23].

5.1.3 The Weil–Petersson measure

The final model of random hyperbolic surface we will discuss in this chapter (we’ll introduce
another one in Section 6.2) is the model coming from the Weil–Petersson measure on the

3New Laplacian eigenvalues on a finite degree cover are eigenvalues that do not correspond to eigenvalues
obtained by lifting an eigenfunction from the base.
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moduli space Mg of closed hyperbolic surfaces of genus g. This is the measure coming
from the Weil–Petersson volume form, which in turn comes from a Kähler 2-form called
the Weil–Petersson form. Random surfaces sampled using this measure were first studied
by Mirzakhani [Mir13] and Guth–Parlier–Young [GPY11]: Mirzakhani proved that these
random surfaces have similar expansion properties to random Bely̆ı surfaces. Guth, Parlier
and Young used these surfaces to attack an extremal problem on pants decompositions (see
Section 6.1 below for a description of these results).

Together with Maryam Mirzakhani [MP19], we proved a similar Poisson approximation
result to Theorem 5.1 for surfaces distributed according to this measure. In the theorem
below, Xg will denote a random hyperbolic surface in Mg, distributed according to the
Weil–Petersson probabiltiy measure. LpXgq will again denote its primitive length spectrum,
a random subset of p0,8q. We proved:

Theorem 5.3. As g Ñ 8, LpXgq converges locally in distribution4 to a Poisson point
process LWP of intensity λWP given by

λWP
pAq “

ż

A

coshptq ´ 1

t
dt.

Our proof is based on the method of moments, combined with Mirzakhani’s integration
techniques for Weil–Petersson volumes [Mir07a, Mir07b]. Curiously, these same statistics
have been observed for certain models of unicellular maps by Janson–Louf [JL22, JL23].

In this section, we will describe some of the ingredients of the proof of the theorem
above, starting with an explanation of the Weil–Petersson volume form itself. In the end
of this section we’ll survey some of the other known results on random surfaces distributed
according to the Weil–Petersson measure.

Tecihmüller and moduli spaces. In this text, we won’t describe this Kähler structure.
Instead, we’ll start with Wolpert’s results on the associated symplectic form. This will be
enough for us, because in the end we’re only interested in the volume form. To describe
Wolpert’s work, we need to first describe Fenchel–Nielsen coordinates. These are global
coordinates on the Teichmüller space of the closed oriented surface Σg of genus g ě 2:

T g “

#

pX, fq;
X an oriented hyperbolic surface and

f : Σg Ñ X an orientation preserving diffeomorphism

+

M

„,

4See [Kal17, Section 4.1] for a definition.
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where pX1, f1q „ pX2, f2q if and only if there exists an isometry m : X1 Ñ X2 such that
the map

f´1
2 ˝ m ˝ f1 : Σg Ñ Σg

is homotopic to the identity. The mapping class group MCGpΣgq (see Section 4.3 for its
defintion) acts on T g by

rφs ¨ rX, f s “ rX, f ˝ φ´1
s, rX, f s P T g, φ P MCGpΣgq

this action is properly discontinuous, but not free, and the quotient is the moduli space
Mg.

Given a pants decomposition tα1, . . . α3g´3u of Σg, we can define Fenchel–Nielssen co-
ordinates:

´

ℓα1 , τα1 , . . . , ℓα3g´3 , τα3g´3

¯

: T g ÝÑ pRą0 ˆ Rq
3g´3.

The functions ℓα measure lengths of curves: ℓαprX, f sq is the length of the unique geodesic
on X in the free homotopy class of fpαq. The coordinates ταi

measure the twists along the
pants curves (similar to Section 3.1.4). It turns out that the induced map is a homeomor-
phism and that moreover the coordinate changes (when changing pants decomposition) are
analytic.

Wolpert proved that these coordinates are in fact Darboux coordinates for the sym-
plectic form associated to the Weil–Petersson Kähler form [Wol82]. That is, if we write
ωWP for the Weil–Petersson symplectic form, then

ωWP “

3g´3
ÿ

i“1

dℓαi
^ dταi

.

In particular, the associated volume form is just the usual Lebesgue volume form on
pRą0 ˆ Rq

3g´3. Moreover, it descends to a volume form of finite total volume on Mg.
This allows us to define a probability measure, simply by normalizing it:

PpAq “
volWPpAq

volWPpMgq
, @A Ă Mg measurable,

where

volWPpAq “

ż

A

ω
^p3g´3q

WP

p3g ´ 3q!
, @A Ă Mg measurable.
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Computing Weil–Petersson volumes. Of course, theoretically, Weil–Petersson vol-
umes can be computed by integrating over a suitable fundamental domain for the MCGpΣgq-
action on T g. Unfortunately, the topology of Mg is very complicated, so no easy to describe
sequences of such fundamental domains are known. There are estimates of Weil–Petersson
volumes based on approximate fundamental domains [Pen92, Gru01, ST01], but they are
generally not sharp enough to answer the type of questions we are interested in. A notable
exception is the paper by Guth–Parlier–Young [GPY11], in which these bounds suffice.

In her thesis [Mir07a, Mir07b], Mirzakhani developed an alternative approach to the
calculation of Weil–Petersson volumes. In order to describe this, we need to slightly enlarge
our set of moduli spaces. First fix an orientable surface Σg,n of genus g and with n boundary
components. Given L1, . . . Ln ě 0, we now define the Teichmüller space T g,npL1, . . . , Lnq

as

T g,npL1, . . . , Lnq “

$

’

&

’

%

pX, fq;

X an oriented hyperbolic surface with totally
geodeisc boundary and f : Σg,n Ñ X an
orientation preserving diffeomorphism

,

/

.

/

-

M

„,

By convention, when we say “totally geodesic boundary component of length 0” we mean
“cusp”. The notion of equivalence is the same as before, except that we now also require
the maps f´1

2 ˝ m ˝ f1 : Σg,n Ñ Σg,n to preserve the boundary components of Σg,n setwise.
Likewise, the mapping class group MCGpΣg,nq is the group of isotopy classes of diffeomor-
phisms Σg,n Ñ Σg,n that preserve the boundary components setwise. The corresponding
moduli space is

Mg,npL1, . . . , Lnq “ T g,n {MCGpΣg,nq.

By work of Goldman [Gol84] and Wolpert [Wol82], this moduli space carries also carries a
symplectic form that admits the same expression in terms of Fenchel–Nielsen coordinates.
In particular, we can speak of its Weil–Petersson volume.

In order to find functions we can integrate, Mirzakhani’s idea is to introduce a class of
functions Mg Ñ R that she calls geometric functions. These are constructed as follows:

Definition 5.4. Let Γ “ pγ1, . . . , γkq be a sequence of pairwise disjoint essential free
homotopy classes of closed curves on Σg,n. Moreover, let F : Rk

ě0 Ñ R. Then the geometric
function F Γ : Mg,npL1, . . . , Lnq Ñ R is defined by

F Γ
pXq “

ÿ

pα1,...,αkqPMCGpΣg,nq¨pγ1,...,γkq

F pℓα1pXq, . . . , ℓαk
pXqq



78 CHAPTER 5. RANDOM MANIFOLDS

For example, if γ is a simple non-separating closed curve on Σg and F “ χr0,Ls is the
characteristic function of the interval r0, Ls, then the geometric function F γ : Mg Ñ N is
given by

F γ
pXq “

ˇ

ˇ

ˇ

ˇ

ˇ

#

simple non-separating closed geodesics
of length at most L on X

+
ˇ

ˇ

ˇ

ˇ

ˇ

.

To state Mirzakhani’s integration formula, we will, given a sequence of pairwise disjoint
essential free homotopy classes of closed curves Γ “ pγ1, . . . , γkq on Σg,n, L P Rn

ě0 and
x P Rk

ě0, use the notation Vg,npΓ, L, xq for the Weil–Petersson volume of the moduli space
of hyperbolic metrics on the surface with boundary Σg,n ´ pγ1 Y ¨ ¨ ¨ Y γkq, whose boundary
lengths are L1, . . . , Ln, x1, x1, x2, x2, . . . , xk, xk.

In [Mir07a], Mirzakhani proved the following formula:

Theorem 5.5 (Mirzakhani integration formula). Let Γ “ pγ1, . . . , γkq be a sequence of
pairwise disjoint essential free homotopy classes of closed curves on Σg,n and F : Rk

ě0 Ñ R.
Then

ż

Mg,npLq

F Γ
pXq d volWPpXq “ CΓ ¨

ż

Rk
ě0

F px1, . . . xkq ¨ Vg,npΓ, L, xq ¨ x1 ¨ ¨ ¨ xk dx1 ¨ ¨ ¨ dxk,

where CΓ ą 0 is a computable constant that depends on Γ only.

The constant CΓ in the theorem above is computable, but it’s also very easy to get it
wrong. For a formula for it, we refer to [Wri20, Theorem 4.1]. Here, we just note that if
Γ “ pγ1, . . . , γkq is such that Σg ´ pγ1 Y ¨ ¨ ¨ Y γkq is connected (this determines a unique
MCGpΣgq-orbit), then CΓ “ 2´k.

Mirzakhani used this formula, combined with the beautiful idea that the McShane–
Mirzakhani identity turns constant functions into geometric functions, to derive a recur-
rence for Weil–Petersson volumes of moduli spaces of surfaces with boundary. These re-
currences are however quite complicated, so it is a lot work to extract good asymptotic
bounds on Weil–Petersson volumes of moduli spaces of surfaces of large genus (that are
crucial for applications to random surfaces) from it. Nonetheless, Mirzakhani and Zograf
[MZ15] proved that, for any n,K ě 0 fixed

volWPpMg,nq “ cWP ¨
p2g ´ 3 ` nq!p4π2q2g´3`n

?
g

˜

1 `

K
ÿ

k“1

an,k
gk

` O

ˆ

1

gK`1

˙

¸

as g Ñ 8,

where cWP ą 0 is a universal constant and the constants an,k are effectively computable.
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Based on numerical data, Zograf [Zog20] conjectured:

Conjecture (Zograf)

The multiplicative constant in the asymptotic expansion for Weil–Petersson volumes
satisfies:

cWP “
1

?
π
.

The current best known asymptotic expansions on the ratios

volWPpMg,npL1, . . . , Lnqq{ volWPpMg,nq

are due to Anantharaman–Monk [AM22] and improve on estimates by Mirzakhani [MP19].

The length spectrum. The proof of the Poisson approximation theorem for the length
spectrum (Theorem 5.3) uses the method of moments. First of all, we will write Nra,bs :

Mg Ñ N for the random variable that counts the number of closed geodesics whose length
lies in ra, bs. The goal is then to estimate the factorial moments

E

˜

k
ź

i“1

´

Nrai,bispXgqq

¯

mi

¸

“
1

volWPpMgq

ż

Mg

k
ź

i“1

´

Nrai,bispXq

¯

mi

d volWPpXq,

where
´

Nra,bspXq

¯

m
:“ Nra,bspXq ¨

´

Nra,bspXq ´ 1
¯

¨ ¨ ¨

´

Nra,bspXq ´ m ` 1
¯

.

In particular, we need to show that, for any collection of disjoint intervals ra1, b1s, . . . , rak, bks

and any m1, . . . ,mk P N,

E

˜

k
ź

i“1

´

Nrai,bispXgqq

¯

mi

¸

ÝÑ

k
ź

i“1

λmi

rai,bis
,

as g Ñ 8.

To do so, we first observe that the random variable
śk

i“1pNrai,bisqmi
: Mg Ñ N counts

ordered tuples of geodesics: the number of tuples of m1 ` . . .`mk geodesics such that the
lengths of m1 of these geodesics lie in ra1, b1s, the lengths of m2 of these geodesics lie in
ra2, b2s, et cetera.

Next, we split this counting function into two counting functions. The first of these
counts only tuples of simple geodesics that pairwise don’t intersect each other and moreover
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leave the surface connected once removed. The second function counts the remaining
tuples.

The first function is a geometric function, so we can develop its expectation using
Theorem 5.5. The resulting expression can then be estimated using the earlier mentioned
asymptotic results on (ratios of) Weil–Petersson volumes. The resulting limit is exactly
the expression above.

The second part of the proof is to show that the expectation of the function that counts
tuples that do intersect or separate is negligible when g Ñ 8. To do that, we first argue
that short tuples with intersections give rise to small subsurfaces with a short boundary.
Indeed, if we take a regular neighborhood of such a tuple, then we obtain a subsurface with
boundary, the length of which is comparable to the length of the curve. It then remains to
prove that it’s rare that a surface has such small subsurfaces with a short boundary. This
again uses the asymptotic results mentioned above.

Other results on the geometry and spectrum of Xg. During the last couple of years
there has been an explosion of work on random surfaces of large genus distributed according
to the Weil–Petersson measure.

The geometry of closed geodesics on these surfaces has been further investigated in
[NWX23, WX22a, HSWX23, MT22]. For example, in [WX22a], Wu and Xue showed that
the phenomenon that “most short geodesics are simple” that we alluded to in the previous
section actually persists for geodesics on Xg of length up to op

?
gq. This confirmed a

conjecture by Lipnowski–Wright [LW23]. They also showed that geodesics whose length is
significantly more than ?

g tend not to be simple. More recently, in [DS23], Dozier–Sapir
showed that for this last bit, a uniform spectral gap and injectivity alone are enough and
randomness is not necessary.

Wu–Xue [WX22b] and Lipnowski–Wright [LW23] independently showed that for any
ε ą 0, as g Ñ 8, λ1pXgq ą 3

16
´ ε. Hide [Hid22] showed explicit lower bounds for

random surfaces with op
?
gq cusps. More recently, Anantharaman–Monk [AM23] proved

that in fact λ1pXgq ą 2
9

´ ε with high probability as g Ñ 8. Moreover, they have
announced that in future work, they will be able to push this up to 1

4
´ ε. Further spectral

statistics were determined in [Mon22, Nau23, Rud23, RW23] and delocalization results on
the eigenfunctions of the Laplacian on Xg were proved in [LMS17, Tho21, GLMST21].

Finally, we note that the geometry and spectrum of random surfaces of bounded genus
with many cusps is wildly different. We refer to [SW23, HT22, Bud22, BZ23] for more
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information.

5.2 Random 3-manifolds

The first two models of random surfaces discussed above – random Bely̆ı surfaces and
random finite degree covers – have natural analogues in dimension 3. Because of Mostow
rigidity, the model based on the Weil–Petersson measure does not.

However, both models we get are currently intractable. The analogue to random Bely̆ı
surfaces would be 3-manifolds obtained by randomly gluing a finite number of tetrahedra
together along their faces. The problem is that the probability that the resulting complex
is a manifold tends to zero as the number of tetrahedra grows [DT06, Proposition 2.8].
One could of course condition on the complex being a manifold. In any event, it’s hard
to avoid having to count the number of triangulated manifolds and the best bounds we
have on these numbers are not precise enough for our purposes (see for instance [CP21]).
The analogue of the random cover model: taking a random finite degree cover of a fixed
hyperbolic 3-manifold of finite volume has the same issue, namely that we currently don’t
have good bounds on the subgroup growth of the fundamental groups of these manifolds
(see Section 4.1).

In this section, we will discuss three alternative models. First we will describe Dunfield
and Thurston’s model of random Heegaard splittings. We will in particular describe our
results on homological torsion with Hyungryul Baik, David Bauer, Ilya Gekhtman, Ursula
Hamenstädt, Sebastian Hensel, Thorben Kastenholz and Daniel Valenzuela [BBG`18].
After this, we will describe a class of non-hyperbolic 3-manifolds for which we do have
sufficiently sharp bounds on subgroup growth to carry out the study of random finite
degree covers, namely torus knot complements. This is joint work with Elizabeth Baker
[BP23a]. The third and final model we’ll discuss is one that we studied with Jean Raimbault
[PR22] and gives rise to random hyperbolic manifolds with boundary.

5.2.1 Random Heegaard splittings

Defintions. Dunfield and Thurston’s solution to the problem above was to consider ran-
dom Heegaard splittings. These are defined as follows. A (3-dimensional) handle body
is a 3-manifold with boundary obtained by gluing a finite number of 1-handles (copies
of r0, 1s ˆ D, where D denotes the 1-dimensional disk) to a 3-ball B (along t0u ˆ D and
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φ : BH1 ÝÑ BH2

Figure 5.2: A Heegaard splitting

t1u ˆ D). Alternatively, these can be thought of as the closed regular neighborhood of a
finite graph in R3. Given a handle body H, its boundary BH is a closed surface, the genus
of H is the genus of BH.

If H1 and H2 are handle bodies and φ : BH1 Ñ BH2 is an orientation reversing diffeo-
morphism, then

Mφ “ pH1 \ H2q { px P BH1 „ φpxq P BH2q

is a closed orientable 3-manifold (see Figure 5.2 for a schematic picture). The decomposi-
tion of Mφ is what is called a Heegaard splitting. The genus of the Heegaard splitting
is the genus of the handle bodies involved.

Moise proved that every closed 3-manifold can be triangulated [Moi52]. It follows from
this that every closed 3-manifold admits a Heegaard splitting. In fact, it admits infinitely
many non-isomorphic Heegaard splittings. The minimal genus among these splitting is
called the Heegaard genus of the manifold.

An important observation for us is that if φ1 : BH1 Ñ BH2 and φ2 : BH1 Ñ BH2 are
isotopic, then Mφ1 and Mφ2 are diffeomorphic. In other words, Mφ is determined by the
image of φ in the mapping class group5 MCGpBHq. The mapping class group MCGpΣgq

is a finitely generated group, so we obtain a notion of random manifolds by performing
a random walk on it. That is, we fix some probability measure µ on MCGpΣgq of finite
support6 and let φn denote the random mapping class distributed according to the n-
fold convolution µ˚n. We will assume that the support of µ generates a non-elementary

5Technically we’ve identified two sets of mapping classes here: φ was supposed to be orientation re-
versing rather than orientation preserving and go between two distinct (but diffeomorphic) surfaces.

6This condition is stricter than typically necessary, usually a finite first moment type condition suffices.
However not to get into unnecessary technical difficulties, we’ll stick to finite support.
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subgroup of MCGpΣgq. The associated random Heegaard splitting is the manifold
Mφn .

On a side note, we mention there is a second way to construct a manifold out of φn,
namely we can consider the associated mapping torus. This model has also been studied
and it turns out that geometrically the resulting manifolds are very similar to random
Heegaard splittings (see for instance [Via21]).

Geometry and topology. Dunfield and Thurston introduced random Heegaard splittings
in [DT06] to study the virtual Haken conjecture (which at that point had not yet been
proved). They ended up proving a negative result: among abelian covers of a random
Heegaard splitting Mφn of genus 2, Haken covers are rare. They also conjectured that Mφn

should be hyperbolic with high probability as n Ñ 8, which was later proved by Maher
[Mah10]. By Mostow rigidity, the resulting metric is determined by the topology (so φn)
alone, which allows one to ask what its geometry is like.

Viaggi proved that the volume of Mφn satisfies a law of large numbers: it grows linearly
in n, at a rate determined uniquely by the measure µ driving the random walk. Feller–
Sisto–Viaggi [FSV22] proved bounds on their injectivity radius and diameter and found
a new proof of the fact that they’re hyperbolic that avoids the use of the Perelman’s
hyperbolization theorem. Finally, Hamenstädt–Viaggi [HV22] proved that the first non-
zero eigenvalue of their Laplacian decays quadratically in their volume (see [BGH20] for
the case of random mapping tori). In particular, random Heegaard splittings have very
different spectral properties from random graphs and random surfaces.

The drawback of both random Heegaard splittings and random mapping tori is that in
the end, we’re not sampling from all manifolds after all. We once and for all fix the genus
of the handle body and the randomness only comes from the mapping class. In particular,
we fix an a priori upper bound on the Heegaard genus of the manifolds we consider. This in
turn also implies a global upper bound on the injectivity radius of our manifolds [Whi02],
i.e. even at uniformly bounded scales, the geometry of Mφn is different from H3 at every
point. This for instance means that, unlike random regular graphs and all the models of
random surfaces we have discussed above, the manifolds Mφn do not Benjamini–Schramm
converge to H3 (see [ABB`17] for definitions).

Homological torsion. Nonetheless, random Heegaard splittings can be used for different
purposes. They for instance form a good testing ground for conjectures that are still out
of reach for all manifolds.
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Together with Hyungryul Baik, David Bauer, Ilya Gekhtman, Ursula Hamenstädt,
Sebastian Hensel, Thorben Kastenholz and Daniel Valenzuela [BBG`18], we studied the
growth of torsion in homology in towers of covers of random 3-manifolds. Before we state
our results, we start with some context.

Given a closed 3-manifold M , let H1pM ;Zqtors denote the torsion subgroup of the
integral first homology group H1pM ;Zq. Lück conjectured the following7 (see for instance
[Lüc13, Conjecture 1.12(2)] and also [BV13, Conjecture 1.3] for a restricted version):

Conjecture (Lück)

If M “ ΓzH3 is a closed hyperbolic 3-manifold and pΓi Ÿ Γq
8

i“1 is a sequence of finite
index normal subgroups such that

8
č

i“1

Γi “ teu,

then
lim
iÑ8

log p|H1pΓizH3;Zqtors|q

rΓ : Γis
“

volpMq

6π
.

The reason that the constant 1
6π

shows up in this conjecture relates to ℓ2-torsion of
hyperbolic manifolds. The idea is that the normalized homological torsion of the covers
should approximate the ℓ2-torsion of the manifold, in a similar way to how normalized
Betti numbers bkpΓizH3;Zq { rΓ : Γis approximate the ℓ2-Betti numbers of M , by Lück’s
approximation theorem [Lüc94]. It’s also known that [Kam18], if true, the conjecture above
implies the conjecture we briefly discussed in Section 4.1: the volume of a hyperbolic 3-
manifold is a profinite invariant.

Lê [Lê18] proved that the limit in the conjecture is always bounded from above by
volpMq{6π. On the other hand, currently not a single example of a hyperbolic 3-manifold
and a sequence of normal subgroups with trivial intersection that exhibits exponential
torsion growth (let alone at the predicted rate) is known. The best evidence available is
a result by Sun [Sun15] proving that, given a closed hyperbolic manifold M , we can make
any finite abelian group appear as a summand in H1pxM ;Zq for some regular cover xM Ñ M

of finite degree.

On the other hand, if we relax the conditions, much more is known. First of all,

7Lück’s conjecture is stated in a much more general setting, but we will stick to hyperbolic 3-manifolds
here.
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Liu [Liu19] proved that every closed hyperbolic 3-manifold M “ ΓzH3 admits a nested
sequence of subgroups pΓi ă Γq

8

i“1 with trivial intersection such that the torsion in their
first homology grows exponentially. However, these subgroups are not normal and the
corresponding covers do not Benjamini–Schramm converge to H3. In particular, there is
no reason to expect that the exponential growth rate equals the one in the conjecture.

The first examples of exponential torsion growth in general were given by sequences of
cyclic (or more generally, abelian) covers. So, this comes down to letting go of the condition
that the intersection of the subgroups is trivial. In this case, the exponential growth rate
of the torsion in the homology of the covers is determined by the Mahler measure of
the Alexander polynomial, namely the torsion in the sequence grows exponentially if and
only if the multiplicative Mahler measure of the Alexander polynomial is different from 1

[Ril90, GAnS91, SW02b, SW02a, Rai12, Le14]. Note that in order for a manifold to have
an infinite sequence of abelian covers, its first Betti number needs to be positive.

Our paper [BBG`18] studies exponential torsion growth for random Heegaard split-
tings. We study two problems: the growth of torsion in homology as a function of the step
length of the random walk and the existence of a sequence of cyclic covers with exponential
torsion growth. We prove:

Theorem 5.6. (a) Suppose the support of the measure µ generates MCGpΣgq, then there
exists a constant αµ ą 0 such that

log p|H1pMφn ;Zqtors|q

n
ÝÑ αµ

in probability as n Ñ 8.

(b) Suppose the support of the measure µ generates IpΣgq then Mφn admits a sequence
of cyclic covers with exponential torsion growth with high probability as n Ñ 8.

In item (b) above, the group IpΣgq is the Torelli subgroup of MCGpΣgq, defined by

IpΣgq – tφ P MCGpΣgq; φ˚ “ Id : H1pΣg;Zq Ñ H1pΣg;Zqu ,

the subgroup of mapping classes that act trivially on homology. Randomly walking on
this group instead of the full mapping class group ensures that the first Betti number of
Mφn is positive, in fact, a Mayer–Vietoris argument shows that it’s at least g. On the
other hand, if we randomly walk on the full mapping class group, the probability that the
first Betti number is positive is exponentially small [Kow08, Proposition 7.19]. Item (a)
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answers a question by Kowalski, who had already proved that homological torsion grows
super polynomially fast [Kow08, Section 7.7].

The main idea behind our proofs is to translate these questions into questions about
random walks on linear groups. For item (a), we first observe that, by a Mayer–Vietoris
argument

H1pMφ;Zq “ H1pΣg;Zq { xL, φ˚Ly, (5.2.1)

where φ˚ : H1pΣg;Zq Ñ H1pΣg;Zq is the map φ induces on homology and L is a Lagrangian
in H1pΣg;Zq given by

L “ ker
´

i˚ : H1pΣg;Zq Ñ H1pH;Zq

¯

,

where i : Σg Ñ H is identification of Σg with the boundary BH of our handle body H.

The action homology gives rise to a linear representation to a symplectic group

MCGpΣgq ÝÑ Spp2g,Zq.

So our random walk descends to a random walk ppφnq˚qn on Spp2g,Zq. Looking at (5.2.1),
asking for a positive first Betti number is asking that the vector spaces pφnq˚pLbRq and Lb

R intersect non-trivially, which turns out to be non-generic. The torsion in H1pMφn ;Zq can
be computed as the determinant of a block in the matrix pφnq˚, which grows exponentially.
Both of these are results from random walks on linear groups [GM89, BQ14, BQ16].

To prove item (b), in which case the symplectic representation doesn’t “see” anything,
we use work of Looijenga [Loo97]. Looijenga shows that a linear representations of the
mapping class group on the homology of abelian covers do not annihilate the Torelli group.
To control torsion growth, we use the earlier mentioned results that relate this to the
Mahler measure of the Alexander polynomial.

5.2.2 Random covers of torus knot complements

We have already mentioned before that very little is known about the subgroup growth of
lattices in PSLp2,Cq. However, there are (non-hyperbolic) 3-manifolds for which something
can be said, namely Seifert fibered manifolds. The subgroup growth of orientable circle
bundles over surfaces was determined by Liskovets and Mednykh [LM00] and the subgroup
growth of Euclidean manifolds can be derived from general results on the subgroup growth
of virtually abelian groups [dSMS99, Sul16].



5.2. RANDOM 3-MANIFOLDS 87

Together with Elizabeth Baker [BP23a], We studied groups of the form

Γp1,...,pm “ xx1, . . . xm| xp1
1 “ xp2

2 “ ¨ ¨ ¨ “ xpm
m y.

When gcdpp, qq “ 1 and p, q ě 2 then Γp,q is the fundamental group of a pp, qq-torus knot
complement. More generally, Γp1,...,pm is a central extension of the form

1 ÝÑ Z ÝÑ Γp1,...,pm

Φp1,...,pm
ÝÑ Cp1 ˚ ¨ ¨ ¨ ˚ Cpm ÝÑ 1, (5.2.2)

where Cp denotes the finite cyclic group of order p and Φp1,...,pm is the map that sends the
generator xj to a generator of Cpj .

We will consider the case in which

´m ` 1 `

m
ÿ

i“1

1

pi
ă 0.

This includes all torus knot groups. In this setting Γp1,...,pm appears as a non-uniform
lattice in PSLp2,Rq ˆ R (see for instance [Eck04, Proposition 7.2]). Φp1,...,pmpΓp1,...,pmq is
then the projection onto PSLp2,Rq of Γp1,...,pm and is a Fuchsian group that acts on the
hyperbolic plane H2. The displayed expression above is the orbifold Euler characteristic of
Φp1,...,pmpΓp1,...,pmqzH2.

Subgroup growth. Recall that snpΓp1,...,pmq denotes the number of subgroups of index n

in Γp1,...,pm . Because Γp1,...,pm is a central extension of a free product of finite groups by Z,
a standard argument, combined with results due to Müller [Mül96], Volynets [Vol86] and
Wilf [Wil86] on the subgroup growth on free products of finite groups proves the following:

Theorem 5.7. Let p1, . . . , pm P Ną1 such that
řm

j“1
1
pj

ă m ´ 1. Then it holds that

snpΓp1,...,pmq „ Ap1,...,pm ¨ n´1{2
¨ exp

¨

˚

˚

˝

m
ÿ

i“1

ÿ

0ăjăpi
s.t. j|pi

nj{pi

j

˛

‹

‹

‚

¨

´n

e

¯n¨

´

m´1´
řm

i“1
1
pi

¯

as n Ñ 8, where

Ap1....pm “
?
2π exp

˜

´
ÿ

i: pi even

1

2pi

¸

m
ź

i“1

p
´1{2
i .
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Random subgroups and covers. The asymptotic equivalent in Theorem 5.7 allows us
to study a uniformly random subgroup

Hn ă Γp1,...,pm .

This is an example of an Invariant Random Subgroup (IRS) – i.e. a conjugation invariant
Borel measure on the Chabauty space of subgroups of Γp1,...,pm (see Section 4.1.1).

In order to make topological statements, we will also fix a classifying space Xp1,...,pm

for Γp1,...,pm . For instance, if p, q ě 2 and gcdpp, qq “ 1 we can take the corresponding
torus knot complement. More generally, since Γp1,...,pm appears as a torsion-free lattice in
PSLp2,Rq ˆ R, we may take the manifold ΓzpH2 ˆ Rq. Hn gives rise to a random degree
n cover of Xp1,...,pm .

First of all, we determined the limit of the random subgroup Hn:

Theorem 5.8. As n Ñ 8, Hn converges to

Lp1,...,pm :“ kerpΦp1,...,pmq » Z.

as an IRS.

For a pp, qq torus knot, Lp,q is the subgroup generated by the longitude. Using results
by Elek [Ele10, Lemma 6.1] and Lück [Lüc94], this implies the following corollary on the
growth of the Betti numbers of these random subgroups:

Corollary 5.9. We have that

lim
nÑ8

bkpHn;Rq

n
“

$

&

%

m ´ 1 ´
m
ř

i“1

1
pi

if k “ 1, 2

0 otherwise.

in probability.

Finally, we studied the problem of curve counting. To this end, given a conjugacy class
K Ă Γp1,...,pm , we will write

ZKpHnq “ |tγHn P Γp1,...,pm{Hn; g ¨ γHn “ γHnu| ,

where g P K is any element. In topological terms, K corresponds to a free homotopy class
of loops in Xp1,...,pm and ZKpHnq is the number of closed lifts of that loop to the cover of
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Xp1,...,pm corresponding to Hn. We obtained the following Poisson approximation for these
random variables:

Theorem 5.10. Let p1, . . . , pm P Ną1 be such that
řm

j“1
1
pj

ă m ´ 1. If for all g P Ki, for
all i “ 1, . . . , r, the image Φp1,...,pmpgq is either trivial or of infinite order, then, as n Ñ 8,
the random variables ZKi

pHnq, i “ 1, . . . , r are asymptotically independent. Moreover,

• if Ki Ă Lp1,...,pm then
lim
nÑ8

P
´

ZKi
pHnq “ n

¯

“ 1

• and if Ki Ć Lp1,...,pm is the conjugacy class of the kth power of a primitive element g0
then ZKi

pHnq converges in distribution to a random variable Z8
Ki

.

– If Φp1,...,pmpg0q is not a product of two elements of order two,

Z8
Ki

„
ÿ

d|k

d ¨ X1{d,

where X1{d „ Poissonp1{dq and X1, . . . , X1{k are independent.

– If Φp1,...,pmpg0q is a product of two elements of order two,

Z8
Ki

„
ÿ

d|k

2d ¨ Xd,1
1{2d `

ÿ

d|k, d even

d ¨ Xd,2
1{2 ` d ¨ Xd,3

1{2 `
ÿ

d|k, d odd

d ¨ Xd,4
1

where Xd,1
1{2d „ Poissonp1{2dq, Xd,2

1{2, X
d,3
1{2 „ Poissonp1{2q, Xd,4

1 „ Poissonp1q and
all these variables are independent.

The fact that products of two involutions play a special role in this theorem was first
observed by Doron Puder and Tomer Zimhoni, who noticed an error in a previous version
of our paper. They also generalized some of the Poisson approximations we proved on the
way to the one stated above [PZ22].

For the conjugacy classes that were left out of the previous statement –those that
project to finite order elements in the free product of cyclic groups– we proved:

Theorem 5.11. Let p1, . . . , pm P Ną1 be such that
řm

j“1
1
pj

ă m ´ 1. If the images of the
elements of Ki under Φp1,...,pm have order ki P N for i “ 1, . . . , r, then the vector of random
variables

˜

ZK1pHnq ´ n1{k1 ´ ε1 ¨ n1{2k1

a

pj1{k1 ¨ n1{2k1
, . . . ,

ZKrpHnq ´ n1{kr ´ εr ¨ n1{2kr

a

pjr{kr ¨ n1{2kr

¸
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converges in distribution to a N p0, 1qbr-distributed random variable as n Ñ 8. Here
pji P N is such that Φp1,...,pmpKiq is the conjugacy class of xli

ji
, for i “ 1, . . . , r. Finally εi

equals 1 if pji{ki is even and 0 otherwise.

The idea behind the proofs of our results on random subgroups is to first prove the
analogous results for random index n subgroups of Cp1 ˚ ¨ ¨ ¨ ˚ Cpm and then use the fact
that most index n subgroups of Γp1,...,pm come from index n subgroups of Cp1 ˚ ¨ ¨ ¨ ˚Cpm to
upgrade these into results about Γp1,...,pm .

First, we consider the problem of counting the number of fixed points of an element
g P Cp1 ˚ ¨ ¨ ¨ ˚ Cpm under a random homomorphism Cp1 ˚ ¨ ¨ ¨ ˚ Cpm Ñ Sn. There are two
cases to consider:

• Müller–Schlage-Puchta [MSP04, MSP10] proved the central limit theorem we need
for finite order elements.

• If g is of infinite order, its number of fixed points can be approximated by a sum of
multiples of Poisson-distributed random variables. Like in Section 5.1.3, we prove
this by estimating the factorial moments of the random variables that count the fixed
points of g.

To turn these results into statements about Γp1,...,pm instead of Cp1 ˚¨ ¨ ¨˚Cpm , we use the fact
that asymptotically most actions factor through the projection Φp1,...,pm (this is essentially
Theorem 5.7). To promote them to statements on subgroups, we use Lemma 4.1.

Finally, the fact that a conjugacy class K Ă Γp1,...,pm typically has very few lifts to Hn

if it does not lie in Lp1,...,pm and typically has n lifts if it does (this is essentially the content
of Theorems 5.10 and 5.11), implies that Hn converges to Lp1,...,pm (Theorem 5.8).

5.2.3 Random 3-manifolds with boundary

The final model of random 3-manifolds we will discuss is a modification of the model of
random gluings of tetrahedra. We noted above that the probability that a gluing of n

tetrahedra along their faces is a manifold tends to 0 as n Ñ 8. However, the only points
in the resulting complex that do not have neighborhoods that are homeomophic to an open
set in R3 are the vertices in the complex.

As such, one obtains a random manifold with boundary by truncating the tetrahedra
at their vertices and gluing the resulting polytopes (see Figure 5.3) at random along their
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hexagonal faces.

Figure 5.3: A truncated tetrahedron. Mn is built by randomly gluing n copies of this
polyhedron together along their hexagonal faces.

It can be derived from Moise’s theorem [Moi52] that all compact 3-manifolds with
boundary admit a decomposition into a finite number of copies of this polytope. The
question of studying this model has been evoked before (see for instance [DHM15, Question
6.2]) but we aren’t aware of any prior work on it.

Together with Jean Raimbault [PR22], we investigated the geometry and topology of
these random manifolds. Formally, we let Mn denote a random gluing of n truncated
tetrahedra along their hexagonal faces, obtained by using the configuration model to pair
the faces (conditioned on not having loops and multiple edges in the dual graph) and then
by gluing each pair of matched faces with one of the three possible orientation reversing
simplicial gluings.

Results. The topological properties of the random manifolds we obtain are as follows:

Theorem 5.12 (Topology). (a) We have

lim
nÑ8

P
´

Mn is connected and has a single boundary component
¯

“ 1

(b) The genus gpBMnq of the boundary of Mn satisfies

lim
nÑ`8

P
´

n ´ θpnq ď gpBMnq ď n ` 1
¯

“ 1,

for any function θ : N Ñ R that grows super-logarithmically8.

8By this we mean that limnÑ8
θpnq

logpnq
“ `8.
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(c) Let DMn denotes the double of Mn along its boundary and gpDMnq its Heegaard
genus. Then

lim
nÑ`8

P
´

n ´ θpnq ď gpDMnq ď n ` θpnq

¯

“ 1,

for any function θ : N Ñ R that grows super-logarithmically.

(d) There exists C such that the Betti numbers b1pMnq and b1pMn, BMnq satisfy

lim
nÑ`8

P
´

b1pMn, BMnq ď θpnq

¯

“ 1, lim
nÑ`8

P
´

|b1pMnq ´ n| ď θpnq

¯

“ 1

for any function θ : N Ñ R that grows super-logarithmically.

Our main reason for studying this model is that we hoped that it would give rise to
hyperbolic manifolds, which turns out to be the case. Note that it follows from Mostow
rigidity that if Mn carries a hyperbolic metric with totally geodesic boundary, then this
metric is unique up to isometry. As such, one can also ask for the geometric properties of
this metric. We prove:

Theorem 5.13 (Geometry). We have

lim
nÑ`8

P
´

Mn carries a hyperbolic metric with totally geodesic boundary
¯

“ 1.

This metric has the following properties:

(a) The hyperbolic volume volpMnq of Mn satisfies:

volpMnq „ n ¨ vO as n Ñ 8

in probability. Here vO denotes the volume of the regular right-angled ideal hyperbolic
octahedron.

(b) There exists a constant cλ ą 0 so that the first discrete Laplacian eigenvalue λ1pMnq

of Mn satisfies
lim

nÑ`8
P
´

λ1pMnq ą cλ

¯

“ 1.

(c) There exists a constant cd ą 0 such that the diameter diampMnq of Mn satisfies:

lim
nÑ`8

P
´

diampMnq ă cd logpvolpMnqq

¯

“ 1
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(d) There exists a constant cs ą 0 such that the systole syspMnq of Mn satisfies:

lim
nÑ`8

P
´

syspMnq ą cs

¯

“ 1

(e) For every ε ą 0,

lim
nÑ`8

P
ˆ

1 ´ ε

4n
ă syspDMnq ă

1

n1´ε

˙

“ 1.

The same holds for the minimal length among arcs in Mn that are homotopically
non-trivial relative to BMn.

Finally, it turns out that the Benjamini–Schramm limit of Mn can be identified with
a tree of regular right-angled ideal octahedra (the same polytope we discussed in Section
4.1.4) pointed at a uniform random point (this makes sense since this manifold has a
cofinite group of isometries).

Methods. In big lines, our proofs consist of two steps. The goal of the first of these is
to understand the combinatorics of the cell decomposition of Mn. Most of this part of the
proof is spent on the combinatorics of the interior edges. There are two basic questions:
how many interior edges are there, and how many truncated tetrahedra are incident to
them. To this end, we let EpMnq denote the number of interior edges and EkpMnq the
number of interior edges that have k tetrahedra incident to them. In the latter variable,
tetrahedra are counted with multiplicity. That is, if an edge appears multiple times in the
boundary of a given tetrahedron, this tetrahedron adds to its “length” each time. As such,
we have

6n
ÿ

k“1

k ¨ EkpMnq “ 6n.

To understand these numbers, we use peeling techniques similar to those in Section 5.1.1.
We for instance prove that, uniformly for all k “ op

?
nq,

E
´

EpMnq

¯

“
1

2
logpnq ` Op1q and E

´

EkpMnq

¯

“
1

2k
p1 ` op1qq as n Ñ 8.

These and the other similar bounds we find are sufficient to prove Theorem 5.12.

The bounds we obtain are less sharp than the analogous bounds for random Bely̆ı
surfaces (see Section 5.1.1). For instance the following question is open:
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Figure 5.4: Three polytopes: a tetrahedron, a truncated tetrahedron and an octahedron

Question 10

Does the random normalized partition

1E6npMnq

ˆ

6n ´ 1

6n

˙E6n´1pMnq

¨ ¨ ¨

ˆ

1

6n

˙E1pMnq

converge to a Poisson–Dirichlet distributed random variable as n Ñ 8 ?

The hyperbolization of Mn is based on the observation that if we contract the interior
edges of the cell decomposition, and remove the resulting points, we obtain a non-compact
manifold Xn that is decomposed into octahedra (see Figure 5.4).

The other way around, Mn can be obtained from Xn by a Dehn filling (with cylin-
ders). The reason that this is useful is that Xn admits a complete hyperbolic metric of
finite volume with totally geodesic boundary. Indeed, we can equip the octahedra in the
decomposition with the metric of a regular right-angled ideal octahedron and perform the
gluings with isometries.

There is a lot of work, starting with Thurston’s Dehn filling theorem (see for instance
[BP92, Chapter E] or [Mar22, Chapter 15]), on the question of when a Dehn filling of
a hyperbolic manifold admits a hyperbolic metric and how close this metric is to the
original metric. We use Andreev’s theorem [RHD07] and recent work by Futer–Purcell–
Schleimer [FPS22] on Dehn fillings. This, combined with our combinatorial bounds, implies
the manifolds Mn are hyperbolizable and moreover allows us to estimate their geometric
properties.

Further questions and results. More recently, the author’s graduate student Anna
Roig Sanchis [RS23] proved a similar Poisson approximation theorem to Theorems 5.1 and
5.3 for the primitive length spectrum LpMnq of the random 3-manifolds Mn:

Theorem 5.14 (Roig Sanchis). As n Ñ 8, LpMnq converges locally in distribution to a
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Poisson point process L3D of computable intensity λ3D.

There are still plenty of elementary geometric and topological questions that remain
unanswered by the results above. For example:

Question 11

(a) Is H1pMn;Zqtors trivial with high probability as n Ñ 8? Or a weaker variant:
does

log p|H1pMn;Zqtors|q

n
ÝÑ 0

in probability?

(b) Is b1pMn; BMnq “ 0 with high probability as n Ñ 8 ?

(c) Do the spectral gaps of Mn and DMn converge in probability as n Ñ 8? And
if so what are these limits?
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6 Extremal problems II

This penultimate chapter will be dedicated to application of the probabilistic method –
i.e. using probability theory to attack extremal problems – in hyperbolic geometry.

This is especially effective in the study of connectivity properties of hyperbolic man-
ifolds. For example, during the last three years, a lot of progress has been made on
questions on the connectivity of closed hyperbolic surfaces of large area. The three most
common ways to measure how connected a hyperbolic surface is, are through its diameter,
its Cheeger constant and its spectral gap. Some of what we have learned in the last three
years is:

• With Thomas Budzinski and Nicolas Curien, we used a random construction to prove
that the minimal possible diameter of a hyperbolic surface of genus g is asymptotic
to logpgq [BCP21b]. Due to the volume entropy of the hyperbolic plane, this is the
smallest one can hope for.

• As we mentioned in Section 3.3, using compactifications of random covers of the
thrice punctured sphere, Hide and Magee [HM23b] showed that the maximal possible
spectral gap of a closed hyperbolic surface of genus g tends to that of the hyperbolic
plane (which is 1

4
) as g Ñ 8, thus resolving a longstanding conjecture (see for instance

[BBD88]).

• Contrary to the previous two, it turns out that the maximal possible Cheeger constant
of a hyperbolic surface of large area is strictly smaller than that of the hyperbolic
plane. With Thomas Budzinski and Nicolas Curien [BCP22], we recently proved
that the Cheeger constant of a hyperbolic surface of large area can’t be much larger
than 2

π
« 0.63 . . . (the Cheeger constant of the hyperbolic plane is 1), confirming a

conjecture by Lipnowski–Wright [Wri20].

The goal of this chapter is to describe our joint work with Thomas Budzinski and

97
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Nicolas Curien on diameters and Cheeger constants.

6.1 The Bers constant and related problems

But before that, we describe what to the author’s best knowledge is the first application
of probabilistic methods to extremal problems in hyperbolic geometry: the paper on pants
decompositions by Guth–Parlier–Young [GPY11].

Here the Bers length of a hyperbolic surface is the minimum over all pants decompo-
sitions of that surface of the maximal length among the curves in the pants decomposition.
The Bers constant Bg in genus g is the maximum over Mg of the Bers length and plays
an important role in hyperbolic geometry of surfaces and 3-manifolds. The value of the
Bers constant is known only in genus 2 [Gen11]. Buser [Bus10, Chapter 5] provided exam-
ples of surfaces whose Bers length is "

?
g and the current best known upper bound on

Bg is due to Parlier [Par23] and is:

Bg ď 4πpg ´ 1q.

Earlier linear bounds were proved in [Bus10, Chapter 5] and [Par14]. Buser conjectured
his construction is essentially optimal:

Conjecture (Buser)

The Bers constant satisfies

Bg “ Op
?
gq as g Ñ 8.

Guth, Parlier and Young studied the related problem of total pants length. From
the earlier mentioned bounds on the Bers constant, it follows that every hyperbolic surface
admits a pants decomposition of total length ď 12πpg ´ 1q2. It’s however not at all clear
that this is sharp. Using the probabilistic method, they proved a lower bound. Concretely,
they proved that for any ε ą 0,

P

˜

X P Mg admits a pants decomposition
of total length ď g7{6´ε

¸

ÝÑ 0 as g Ñ 8,

where the probability is taken with respect to the Weil–Petersson measure (see Section
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5.1.3). It in particular follows that

lim inf
gÑ8

log

˜

sup
XPMg

!

MTPLpXq

)

¸

logpgq
P

„

7

6
, 2

ȷ

,

where

MTPLpXq :“ min

#

ÿ

i

ℓαi
pXq; pαiqi a pants decomposition of X

+

denotes the minimal total pants length of X. The bounds above currently still are the best
bounds on the maximal minimal total pants length. Moreover, no explicit constructions of
sequences of surfaces whose minimal total pants length grows faster than linearly in their
genus is known at the moment.

6.2 The diameter

Together with Thomas Budzinski and Nicolas Curien, we studied at hyperbolic surfaces of
small diameter. Let us first prove an elementary lower bound (similar to Lemma 3.1) that
works in any dimension:

Lemma 6.1. Let d ě 2. There exists a constant cd ą 0 such that

diampMq ě
1

d ´ 1
logpvolpMqq ´ cd

for all closed hyperbolic d-manifolds M .

Proof. Again denote the R-ball around a point p P M by Bpp,Rq. By definition of the
diameter, we have

Bpp, diampMqq “ M

for any p P M . Now the volume of Bpp, diampMqq is smaller than the volume of a ball of
the same radius in Hn. So, using the formula of the volume of a ball in Hd again, we get

volpMq “ volpBpp, diampMqqq ď volpSn´1
q ¨

ż diampMq

0

sinhn´1
ptqdt,

which implies the lemma.
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The only dimension in which a better lower bound is known is dimension 2. Bavard
[Bav96] proved that the diameter of a closed hyperbolic surface M of genus g satisfies

diampMq ě arccosh

ˆ

1
?
3 tan pπ{p12g ´ 6qq

˙

.

This improves on the lemma above by an additive constant.

Given the bounds above, we say that manifolds with small diameter are manifolds with
logarithmic diameter. All the models of random manifolds from the previous chapter,
except random Heegaard splittings, yield manifolds with small diameter. However, except
in the case of random Bely̆ı surfaces, as we will discuss below, it’s not clear how close their
diameters come to the known lower bounds.

In [BCP21b] we proved that, in dimension 2, the bound from Lemma 6.1 is asymptot-
ically sharp:

Theorem 6.2. The minimal diameter among closed hyperbolic surfaces of genus g satisfies

lim
gÑ8

min tdiampXq; X P Mgu

logpgq
“ 1.

6.2.1 A model for random surfaces

The proof of this theorem is based on a model of random surfaces that we haven’t mentioned
yet. First of all, we will write Pa for the hyperbolic pair of pants all of whose boundary
components have length a ą 0. The random surface Sg,a will be the the surface obtained
by randomly gluing 2g ´ 2 copies of Pa together along their boundary components with
gluings of twist 0, again using the configuration model (Figure 6.1 shows an example).

Figure 6.1: A random gluing of pairs of pants.
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What we really prove with Thomas Budzinski and Nicolas Curien is that for every ε ą 0

there exists a boundary length a ą 0 such that

lim
gÑ8

P
´

diampSg,aq ď p1 ` εq logpgq

¯

“ 1. (6.2.1)

6.2.2 Ingredients of the proof

There are two basic inputs, a geometric one and a probabilistic one.

Geometric input. The main geometric input comes from counting problems in the hy-
perbolic plane. Given a discrete group Γ ă IsompH2q and x P H2, one can ask for the
growth, as a function of R, of the function

NRpΓ, xq “ |Γ ¨ x X Bpx,Rq| ,

where Bpx,Rq denotes the disk of radius R around x. There exists a lot of literature on this
problem (see for instance [GN12, Section 1.3] for an overview). We will be interested be
interested in the orbit growth of the group Γa: the group generated by the reflections in the
three non-consecutive sides of length a{2 of Ha – a right-angled hexagon in H2 with three
non-consecutive sides of length a{2 (Figure 6.2). Combining results by Patterson [Pat88]

Ha

Figure 6.2: The orbit of Ha under Γa.

and McMullen [McM98], we obtain that for every a ą 0 there exist constants Ca ą 0 and
δa P p0, 1q such that

NRpΓa, xq „ Ca ¨ eδaR, as R Ñ 8.
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Moreover, δa Ñ 1 as a Ñ 8.

The pants tree. We will apply these counting results to a hyperbolic surface of infinite
area we will call the pants tree Ta. This surface is formed by gluing countable many copies
of Pa according to the pattern of a trivalent tree. Figure 6.3 shows an example. We use

m

Figure 6.3: A pants tree

the orbit counting results from above as follows. Fix a point m P Pa. For convenience, we
fix this to be a midpoint of one of the copies of Ha that Pa is made out of. We will now fix
one of the copies of Pa in Ta and denote its midpoint by m0. Moreover NapRq will denote
the number of midpoints in Ta at distance at most R from m0.. Essentially because Ta

consists of two copies of the tiling in Figure 6.2, it follows from the orbit counting results
above that

NapRq „ Cae
δaR, as R Ñ 8. (6.2.2)

Probabilistic input. First of all observe that there exists a constant Da, depending on
a only, such that

diampSg,aq ď max

#

dpm,m1
q;

m and m1 midpoints of
copies of Pa in Sg,a

+

` Da

so it will be sufficient to control the maximal distance between midpoints on Sg,a. For
argument’s sake, we will imagine Sg,a has the geometry of the pants tree Ta around every
midpoint – this is not quite true, but using peeling techniques we prove that it’s close
enough to true for the rest of the proof to work. This part of the argument is similar to the
proof by Bollobás–Fernandez-de-la-Vega [BFdlV82] of the fact that for a random k-regular
Gn on n vertices diampGnq{ logk´1pnq Ñ 1 in probability.
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Let us sketch the rest of the argument. Pick any pair of midpoints m,m1 of Sg,a.
Because the geometry is like that of Ta, the number of midpoints at distance at most R

from m (resp. m1) is (by (6.2.2)) NapRq „ Cae
δaR. Furthermore let R ą 0 be such that

NapRq ą g1{2`ε,

This happens when

R «
1{2 ` ε

δa
log

ˆ

g

Ca

˙

.

Now, given a pair of boundary components of copies of Pa, the probability that they
are not glued together is roughly 6g´8

6g´7
“ 1 ´ 1

6g´7
. Falsely imagining these probabilities

for different pairs are all independent we get that the probability that none of the pants
at distance ď R from m are glued to a pair of pants at distance ď R from m1 is

ď

˜

ˆ

1 ´
1

6g ´ 7

˙g1{2`ε
¸g1{2`ε

“ opg´2
q as g Ñ 8

summing this over the « g2 pairs of midpoints, we see that

Pg

˜

There is a path of length ď 2R

between every pair of midpoints

¸

gÑ8
ÝÑ 1.

So we get for all ε ą 0:

Pg

ˆ

diampSg,aq ď
1 ` 2ε

δa
log

ˆ

g

Ca

˙

` Da

˙

gÑ8
ÝÑ 1.

Since δa Ñ 1 as a Ñ 8, which proves (6.2.1) and hence Theorem 6.2.

6.2.3 Further remarks and questions

The random surfaces Sg,a are somewhat of a funny model for random surfaces. They for
instance all come with an order two symmetry, so they aren’t very suitable for studying
the geometry of a “typical” hyperbolic surface of large genus.

In a companion paper together with Thomas Budzinski and Nicolas Curien [BCP21a],
we proved that random Bely̆ı surfaces miss the optimal diameter by a factor 2. The fact
that their diameters are at least 2 logpgenusq follows from the fact that they have multiple
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large embedded disks, which in turn follows from Gamburd and Chmutov-Pittel’s Poisson–
Dirichlet approximation theorems (see Section 5.1.1). To prove that the diameter is at most
p2` op1qq logpgenusq, we use peeling techniques again. We furthermore conjectured that if
one conditions on surfaces whose triangulation has only one vertex, the diameter should
be asymptotic to logpgenusq.

It would be interesting two know the behavior of the diameter for the other models of
random manifolds we described in Sections 5.1 and 5.2.3:

Question 12

(a) Let Xg and Yn denote a Weil–Petersson random surface of genus g and a
random cover of degree n of a closed hyperbolic surface Y1 respectively. Do

diampXgq

logpgq
and

diampYnq

logpnq

converge in probability (as g and n tend to infinity respectively) and if so, what
are these limits?

(b) Let DMn denote the double of a random 3-manifold with boundary built out
of n truncated tetrahedra. Does

diampMnq

logpvolpDMnqq

converge in probability as n Ñ 8 ?

We also note that a uniform lower bound on the spectral gap (like those of Magee–
Naud–Puder [MNP22] and Anantharaman–Monk [AM23]) and the systole imply a loga-
rithmic upper bound on the diameter [Mag20]. However, this is not enough to get the
optimal multiplicative constant, even if the surfaces are Ramanujan. In particular, the
fact that random Bely̆ı surfaces have diameter „ 2 logpgenusq does not imply they are not
Ramanujan.

6.3 The Cheeger constant

The last connectivity problem we will discuss in this chapter is that of the Cheeger
constant, that we already briefly discussed in Section 5.1.1. Given a Riemannian d-
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manifold M , its Cheeger constant is

hpMq “ inf

#

vold´1pBAq

voldpAq
;

A Ă M compact with smooth
boundary and voldpAq ď voldpMq{2

+

.

It measures how hard it is to cut off a piece of the manifold. It’s called the Cheeger
constant, because Cheeger [Che70] proved that

λ1pMq ě
hpMq2

4

for any complete Riemannian manifold M . In fact, Cheeger stated this inequality only
for compact manifolds. His proof however works for manifolds of infinite volume as well.
In that case constant functions are not in L2pMq and λ1pMq should be interpreted as the
infimum of the spectrum of the Laplacian

λ1pMq “ inf

#

ş

M
||∇f ||

2 d volM

||f ||
2
2

; f P C8
pMq X L2

pMq

+

.

Buser [Bus82] proved a converse to Cheeger’s inequality, assuming bounds on the Ricci
curvature. Moreover, Brooks proved that if a sequence of closed hyperbolic manifolds has
uniformly bounded Cheeger constant and systole, their diameter is automatically logarith-
mic as a function of their volume [Bro92]. However, just like for the spectral gap, the
resulting bound does not yield the optimal multiplicative constant.

The Cheeger constant of Hd equals

hpHd
q “ d ´ 1.

It is not attained by a smooth submanifold but can be approximated by balls of growing
radius. In particular, Cheeger’s inequality is sharp for Hd: λ1pHdq “ hpHdq2{4.

The natural extremal question that arises is what the maximal possible Cheeger con-
stant of a closed hyperbolic manifold of large volume is. It already follows from Theorem
3.8 and similar bounds in higher dimension [Che75b] combined with Cheeger’s inequality
that, if the volume is large, the Cheeger constant cannot be significantly larger than that
of the hyperbolic space of the same dimension. There is also a more direct proof of this:
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Lemma 6.3. For any d ě 2, there exists a constant cd ą 0 such that

hpMq ď d ´ 1 `
cd

logpvolpMqq

for any closed hyperbolic d-manifold M .

Proof. It follows from the Kazhdan–Margulis theorem [KM68] that there exists a constant
rd ą 0 such that every closed hyperbolic d-manifold contains an embedded ball of radius
rd (see [Mar89, Yam82, Fan15] for effective versions).

Suppose x P M is the center of such a ball Brdpxq. On the other hand, for any t ą 0

such that volpBtpxqq ď volpMq{2 (t À 1
d´1

logpvolpMqq suffices),

d

dt
volpBtpxqq ě hpMq ¨ volpBtpxqq.

Combining these two, we obtain

volpBrdpxqq ¨ exp
´

hpMq ¨ pt ´ rdq

¯

ď volpBtpxqq

ď volpBtprxqq “ volpSd´1
q ¨

ż t

0

sinhd´1
psqds,

where rx P Hd is any point. This implies the lemma.

6.3.1 Results

Again, the question is how sharp this bound is. As opposed to the case of the spectral gap
and the diameter, the natural conjecture is that this is not sharp. This is the case for the
analogous problem for regular graphs [Bol88, BZ02, Alo97] and has been conjectured for
surfaces for instance by Lipnowski–Wright [Wri20]. Together with Thomas Budzinski and
Nicolas Curien [BCP22], we proved this conjecture for surfaces:

Theorem 6.4. We have

lim sup
gÑ8

sup thpXq; X P Mgu ď
2

π
« 0.63 . . . .

The main point of this result is that there is a gap between the Cheeger constant of
H2 and that of a closed orientable hyperbolic surface of large genus. There is no reason
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to expect that the value we get is optimal. It is however optimal for our method of proof.
The theorem also implies that Cheeger’s inequality cannot be used to prove that hyperbolic
surfaces of large genus are Ramanujan.

Similar gap results were already known for principal congruence covers of PSLp2,ZqzH2,
random covers of the Bolza surface and random Bely̆ı surfaces [BZ02, SW21, SW22].

6.3.2 Method of proof

Our proof is inspired by Bollobás’s proof in the case of regular graphs, so we will briefly
discuss this first. If G “ pV,Eq is a graph, then its Cheeger constant1 is

hpGq “ inf

"

|EpA, V ´ Aq|

|A|
; A Ă V finite and |A| ď |V | {2

*

,

where EpA, V ´Aq denotes the set of edges connecting A to V ´E. There is an analogous
theory for the Cheeger constant in graph theory, we refer to [HLW06] for an introduction.

We will denote the infinite k-regular tree by Tk. Its Cheeger constant equals hpTkq “

k´2. There is an analogous elementary bound to Lemma 6.3 that states that the Cheeger
constant of a finite k-regular graph on a large number of vertices cannot be significantly
larger than k ´ 2.

Bollobás’s [Bol88] idea is that we can do a lot better with a elementary probabilistic
argument, that we will paraphrase next. Indeed, let G “ pV,Eq be a finite k-regular
graph. We will write n “ |V |. Now randomly color each vertex black or white, each with
probability 1

2
independently from each other. Let B and W denote the sets of black and

white vertices respectively. We observe that |B| and |W | are binomial variables and apply
Chebyshev’s inequality to them to obtain:

P
´ ˇ

ˇ

ˇ
|B| ´

n

2

ˇ

ˇ

ˇ
ě n

1
2

`δ
¯

“ P
´ ˇ

ˇ

ˇ
|W | ´

n

2

ˇ

ˇ

ˇ
ě n

1
2

`δ
¯

ď
1

4
n´2δ.

Moreover, since an edge is part of EpB,W q if and only if it runs between vertices of different
colors, E

´

|EpB,W q|

¯

“ k ¨ n{4. So, by Markov’s inequality

P
´

|EpB,W q| ě p1 ` δq ¨
k ¨ n

4

¯

ď
1

1 ` δ
.

1There are multiple options for the isoperimetric constant of a graph. For more information, we refer
to [HLW06]
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As a result

P
ˆ

|EpB,W q|

mint|B| , |W |u
ď

k

2
¨

n

n ´ 2 n
1
2

`δ

˙

ě 1 ´
1

4
n´2δ

´
1

1 ` δ
,

thus yielding an upper bound of k
2

` op1q (as |V | Ñ 8) on the Cheeger constant, which
for large degree is better by a factor of almost 2. Alon [Alo97] later sharpened this and
obtained an improvement of the trivial bound in all degrees.

Looking at this proof with hyperbolic surfaces in mind, what we need to be able to do
is randomly selecting half the hyperbolic surface X. With Thomas Budzinski and Nicolas
Curien, we do this by using a Poisson–Voronoi tessellation. This is a random cell
decomposition of the surface that is obtained as follows. First of all, we consider a Poisson
point process S (see Definition 5.2) whose intensity is of the form λ ¨ µarea, where µarea

denotes the hyperbolic area measure on X and λ ą 0. The associated cell decomposition
of X is the Voronoi decomposition corresponding to S. The 2-dimensional cells of this
decomposition are given by

Cpsq “ tx P X; dpx, sq ď dpx, s1
q for all s1

P S ztsuu , s P S

The 1-skeleton of the decomposition consists of points on X that are equidistant to multiple
elements of S.

So, to randomly split our closed hyperbolic surface X into two sets, we equip it a
Poisson–Voronoi tessellation and color each top dimensional cell black or white, both with
probability 1

2
, independently of all other cells. We call the resulting random subsets Bλ

and Wλ respectively. We then prove a concentration result for mintareapBλq, areapWλqu

that is similar to the one for graphs we proved above. Most of the work goes into proving
that

lim sup
λÑ0

sup
gÑ8

sup
XPMg

1

areapXq
E
´

ℓpBBλq

¯

ď
1

π
.

In fact, using results by Isokawa [Iso00] together with the existence of sequences of surfaces
whose genus and systole tend to infinity, one can show that the above is an equality (which
is why one can’t do better than 2

π
with our proof). Once we have these two bounds, the

proof proceeds in the same way as in the graph case.

Finally, there is a particular cell decomposition of the hyperbolic plane that naturally
arises from our proof. Indeed, in our proof we let the parameter λ tend to 0, which comes
down to decreasing the number of points per unit of area. The quantity 1

π
that shows
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up can be thought of as 1
2

times the ratio between the boundary length and the area of
a typical cell of a limiting tessellation that we dubbed the pointless Poisson–Voronoi
tessellation of H2. In this tessellation, the points defining the centers of the cells of this
tessellation have converged out of the boundary. The cells themselves however remain
visible from any base point in H2. The properties of this tessellation have recently been
further studied for hyperbolic spaces in [DCE`23] and for symmetric spaces of higher rank
in [FMW23, Mel23].

6.3.3 Further remarks and questions

Poisson–Voronoi tessellations are a classical object in stochastic geometry, see for instance
[Iso00, BS01, HM22, HM23a, OT23, HOOT23] for versions in hyperbolic geometry and
[CCE21] in a more general Riemannian geometric setting.

Given what’s known for hyperbolic surfaces and graphs, it’s natural to conjecture:

Conjecture

For every d ě 3, there exists a number εd ą 0 such that

hpMq ă d ´ 1 ´ εd

for all closed hyperbolic d-manifolds of sufficiently large volume.

In fact, there is no reason that random decompositions based on Poisson–Voronoi tes-
sellations don’t work in higher dimension. What’s less clear is whether the bound they
yield gets better in higher dimension. For instance, is it asymptotic to d{2 as d Ñ 8 ?

The distribution of Cheeger constants of random surfaces is also an interesting question:

Question 13

Is there some h ą 0 such that hpXq ÝÑ h in probability as areapXq Ñ 8, for any
of the models of random surfaces in Section 5.1 ?

If such a number exists, it would be a natural candidate for the maximal possible
Cheeger constant of a hyperbolic surface of large genus.
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7 Future directions

In the chapters above, we have tried to convince the reader that simple extremal questions
connect to many different aspects of hyperbolic geometry. Moreover, in hyperbolic geom-
etry, just like in Euclidean geometry and graph theory, many of the simplest questions –
of which we have listed some throughout the text – are still open. In this last chapter, we
discuss some future directions of research, based on some of the questions above and other
questions like them.

Systoles. In Section 3.1, we discussed the maximal possible systole of a hyperbolic man-
ifold of bounded volume. By now, we have plenty of constructions of sequences of closed
hyperbolic surfaces whose systoles grow logarithmically as a function of their genus – which
is the fastest possible rate. There are arithmetic constructions and more combinatorial con-
structions, both of which we discussed above. Moreover, in upcoming work with Mingkun
Liu [LP23], we will present two random constructions, both inspired by ideas from graph
theory [LS21, GHS`09].

In higher dimensions, currently only arithmetic examples are known. It would be
interesting to have other constructions. An example of a question is wherer a variant of
the construction from Section 3.1.3 can be made to work for 3-manifolds built out of regular
right-angled octahedra.

A related, but probably much harder, question is what the systole, and more generally
the length spectrum of a random finite degree subgroup of the corresponding reflection
group behaves like. This would require deriving much sharper bounds on the subgroup
growth of that reflection group than those we found with Hyungryul Baik and Jean Raim-
bault (see Section 4.1.4). Already proving that a random finite degree cover Benjamini–
Schramm converges to H3 would be very interesting. If these random orbifolds behave like
their 2-dimensional counterparts, then one would expect that their systoles do not tend to
infinity. In order to obtain manifolds of large systoles, it would also be interesting study

111



112 CHAPTER 7. FUTURE DIRECTIONS

random normal subgroups.

Linear programming. A more manageable project is to generalize our linear program-
ming bounds with Maxime Fortier Bourque, that we discussed in Chapter 3, to (potentially
non-compact) hyperbolic orbifolds of finite volume. The only thing that needs to be done
is deal with the extra terms that show up in the trace formula. It would for instance be
interesting to see how the bound one obtains compares with the growth in the sequences
of non-compact manifolds with super-linear kissing number found by Dória–Murillo and
Dória–Freire–Murillo [DM21, DFM23] and the bound by Fanoni–Parlier [FP15] in dimen-
sion 2.

A much more ambitious (and speculative) question on our linear programming bounds
is whether, like in Euclidean geometry, there exist magical functions in some special cases.
The bounds we have presented in this text don’t make this seem very hopeful: our bounds
for hyperbolic surfaces are much further away from the best examples than the Cohn–
Elkies bounds on sphere packings were. However, based on recent numerics by Émile
Gruda-Médiavilla and Mathieu Pineauilt, it seems like in genus 10 and 17, the bounds
might be closer.

Expansion. Above, we have discussed three measures of connectivity of hyperbolic man-
ifolds: their diameter, their Cheeger constant and their spectral gap. We have recently
learned a lot about these invariants in dimension 2. Indeed, there exist sequences of closed
hyperbolic surfaces whose diameter [BCP21b] and spectral gap [HM23b] saturate the clas-
sical bounds on these quantities. Moreover, the Cheeger constant behaves differently: a
closed hyperbolic surface of large genus has a smaller Cheeger constant than the hyperbolic
plane [BCP22] (see Chapter 6).

It would be nice to know what the actual maximum of the Cheeger constant is in large
genus. Moreover, we have already mentioned in Section 6.3 that the Cheeger constants of
random hyperbolic surfaces of large genus are not yet fully understood. Also for graphs,
the analogous questions are still open.

In higher dimensions we know much less. It doesn’t seem unlikely that our method
with Thomas Budzinski and Nicolas Curien will allow us to prove a similar gap result
on the Cheeger constant to the 2-dimensional case. The fact that higher dimensional
hyperbolic manifolds are less flexible than surfaces (i.e. they satisfy the Mostow–Prasad
rigidity theorem) and that as a result it is much harder to come up with good models
of random manifolds, also makes the questions on the diameter and spectral gap harder
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to approach. One model that does show expansion properties is the model of random 3-
manifolds with boundary and their (closed) doubles that we studied with Jean Raimbault
[PR22]. It would be very interesting get better estimates on their diameter and spectral
gap. In fact, there are reasons to believe that their diameter misses the optimal rate by a
factor 4 and that their spectral gap is related to that of the Apollonian group (for which
very good numerical approximations exist).
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[GM89] I. Ya. Gol’dshĕıd and G. A. Margulis. Lyapunov exponents of a product of
random matrices. Uspekhi Mat. Nauk, 44(5(269)):13–60, 1989.

[GN12] Alexander Gorodnik and Amos Nevo. Counting lattice points. J. Reine
Angew. Math., 663:127–176, 2012.

[Gol84] William M. Goldman. The symplectic nature of fundamental groups of sur-
faces. Adv. in Math., 54(2):200–225, 1984.

[Gor00] D. V. Gorbachev. An extremal problem for entire functions of exponential
spherical type, which is connected with the Levenshtĕın bound for the density
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