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LECTURE 1

A very brief reminder on hyperbolic geometry

In this lecture we introduce the main actors of this mini course: hyperbolic mani-
folds. We will state many facts without proof. For a more complete treatment, we refer
to [BP92, Rat06].

1.1. Hyperbolic manifolds

There are multiple equivalent definitions of what a hyperbolic manifold is. The
shortest of these is perhaps the following:

Definition 1.1.1. A hyperbolic n-manifold is an n-dimensional Riemannian manifold,
whose metric is complete and has constant sectional curvature equal to −1.

The first example of such a manifold is hyperbolic n-space Hn. The Killing–Hopf
theorem states that there is a unique (up to isometry) simply connected hyperbolic
n-manifold, so we may define Hn to be that manifold. A more concrete way of thinking
of Hn is by specifying what is called a model : a concrete simply connected complete
Riemannian manifold with a metric of constant sectional curvature −1. There are
various models that are useful for various purposes. We mention:

• the ball model :

Dn =

{
x ∈ Rn :

n∑
i=1

x2
i < 1

}
, ds2 = 4

dx2
1 + . . .+ dx2

n

(1−
∑n

i=1 x
2
i )

2 ,

• the upper half space model :

Un = {x ∈ Rn : xn > 0 } , ds2 =
dx2

1 + . . .+ dx2
n

x2
n

,

• the hyperboloid model :

Ln =
{
x ∈ Rn+1 : 〈x, x〉n,1 = −1, x0 > 0

}
,

where 〈x, y〉n,1 = −x0y0 + x1y1 + . . . + xnyn, with the metric given by the
restriction of 〈·, ·〉(n,1) to

Tx Ln =
{
y ∈ Rn+1 : 〈x, y〉n,1 = 0

}
.

We leave it to the reader to check that all these metrics indeed have constant
sectional curvature −1.

Note that, using Hn, we can alternatively define hyperbolic n-manifolds as

• complete Riemannian n-manifolds that are locally isometric to Hn,
• or manifolds whose charts map to Hn and such that all chart transitions are

restrictions of isometries of Hn,

5



6 1. A VERY BRIEF REMINDER ON HYPERBOLIC GEOMETRY

• or manifolds of the form Γ\Hn, where Γ is a discrete torsion-free group of
isometries of Hn.

1.2. Isometries

The isometry group Isom(Hn) and orientation preserving isometry group Isom+(Hn)
satisfy

Isom(Hn) ' PO(1, n) :=

{
A ∈ Matn+1(R) :

〈x, y〉n,1 = 〈Ax,Ay〉n,1 ∀x, y ∈ Rn+1

A · Ln = Ln
}
,

where Matn(R) denotes the set of n× n matrices with coefficients in R, and

Isom+(Hn) ' PSO(1, n) := {A ∈ PO(1, n) : det(A) = 1 } .

The fact that the groups PO(1, n) and PSO(1, n) act by isometries on Hn can be seen
directly from the hyperboloid model Ln. The proof of the fact that there are no other
isometries can be found in [Rat06, Chapter 3] or [BP92, Chapter A].

In low dimensions there are two accidental isomorphisms

Isom+(H2) ' PSL(2,R) := {A ∈ Mat2(R) : det(A) = 1 }
/
{±Id2} ,

where Idk denotes the k × k identity matrix, and

Isom+(H3) ' PSL(2,C) := {A ∈ Mat2(C) : det(A) = 1 }
/
{±Id2} .

The action of PSL(2,R) by isometries is that on U2 by linear fractional transforma-
tions – i.e. we see the upper hald plane as a subset of C: U2 = { z ∈ C : Im(z) > 0 }
and [

a b
c d

]
· z =

az + b

cz + d

for all

[
a b
c d

]
∈ PSL(2,R), z ∈ U2.

The action of PSL(2,C) on H3 is harder to describe. First of all, PSL(2,C) acts on

the Riemann sphere Ĉ = C ∪ {∞} by linear fractional transformations – i.e.[
a b
c d

]
· z =

az + b

cz + d

for all

[
a b
c d

]
∈ PSL(2,C), z ∈ Ĉ. It turns out that every such map ϕ can be written

as the composition of two inversions in circles C1, C2 ⊂ Ĉ. If we see Ĉ as the boundary
of U3, then these circles define two hemispheres H1 and H2 in U3. ϕ now acts on U3 by
the composition of the inversions (reflections) in H1 and H2. For the details, we refer
to [Bea95, Section 3.3].
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1.3. Hyperbolic surfaces

Before we ask questions about hyperbolic manifolds, we need some examples of
them. We start with surfaces.

One way to construct hyperbolic surfaces is using pairs of pants. In what follows,
we sketch how this works. For details, see for instance [Bus10, Section 1.7].

For ease of drawing, we will work in the disk model D2. In this model, geodesics are
exactly straight diagonals through the center of D2 and half-circles orthogonal to ∂ D2.
A right-angled hexagon H ⊂ D2 is a compact, simply connected set whose boundary is
geodesic, except at exactly six points, at which the geodesic segments coming from the
right and left meet at right angles. Figure 1 shows an example.

Figure 1. A right angled hexagon in D2

It turns out that, given three numbers a, b, c > 0, there exists a unique (up to
isometry) right angled hexagon with three non-consecutive sides of lengts a, b and c.

Given two such hexagons, with the same side lengths, we can use three isometries to
glue them along three non-consecutive sides of the same lengths, from which we obtain
a hyperbolic pair of pants: a 2-sphere with three boundary components equipped with
a hyperbolic metric. Figure 2 illustrates this gluing procedure.

Figure 2. Gluing two right-angled hexagons into a pair of pants

It turns out that the hyperbolic metric on a pair of pants is determined (up to
isometry) by the lengths of its three boundary components.

Finally, given two copies P1 and P2 of the same hyperbolic pair of pants, we may
glue them together using three isometries between their boundary components. The
result is a genus 2 surface. Figure 3 shows how this gluing works.
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P1 P2

Figure 3. Gluing two pair of pants into a surface of genus 2

Note that we have multiple choices to make in this gluing process. First of all,
we have to choose three boundary lengths for our pairs of pants. On top of that, we
have to choose the three isometries between the pairs of boundary components. These
lengths are naturally parametrized by R3

+. The three isometries can be parametrized
by three copies of the circle. We will however choose to create some multiplicity and
parameterize these by R. So all in all, we get a space

T 2 = R3
+ × R3

of hyperbolic surfaces of genus 2 – called Teichmüller space of surfaces of genus 2. It
turns out that this space contains a copy of every isometry type of hyperbolic surface
of genus 2. In fact, it contains many copies of each isometry type (not just because
of the multiplicity we introduced in the second half of the coordinates). The quotient
in which all isometric pairs of surfaces is identified is called the Moduli space M2 of
hyperbolic surfaces of genus 2.

Of course, a similar construction works for any genus. An Euler characteristic
computation tells us that we need 2g − 2 pairs of pants for a closed surface of genus g.
This gives us a Teichmüller space

T g = R3g−3
+ × R3g−3

and a moduli space Mg. The parameters we used to construct T g are called Fenchel-
Nielsen coordinates, the first 3g−3 are called the length coordinates and the last 3g−3
coordinates are called the twist coordinates.

Remark 1.3.1. The reason we pick the twists in R and not in the circle is that we then
have a homeomorphism

T g → T (S) =

{
(X, f) :

X a Riemann surface
f : S → X a homeomorphisn

}/
∼

where S is a Riemann surface of genus g and (X, f) ∼ (Y, g) if and only if there exists
an holomorphism ϕ : X → Y such that g−1 ◦ ϕ ◦ f : S → S is isotopic to the identity.
The topology on T (S) is induced by quasiconformal maps: (X, f) and (Y, g) are close
if and only if there exists a map h : X → Y such that g−1 ◦ h ◦ f : S → S is “close” to
a conformal map. See for instance [Hub06, IT92] for proper definitions.
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1.4. 3-manifolds

The situation in higher dimensions is wildly different than that of surfaces. One of
the main reasons for this is the following theorem:

Theorem 1.4.1 (Mostow–Prasad rigidity theorem). Let n ≥ 3 and let M and N be
hyperbolic n-manifolds of finite volume. If π1(M) ' π1(N) then M and N are isometric.

For a proof, see for instance [BP92, Rat06]. This theorem in particular implies
that there are no interesting deformation spaces of hyperbolic structures of finite volume
on a fixed smooth manifold of dimension more than two. Together with the fact that
the fundamental group of a hyperbolic manifold is finitely presented, it also implies
there are only countably many hyperbolic manifolds of finite volume (up to isometry).

Like Teichmüller theory, hyperbolic 3-manifolds is a vast subject and there is no
way to do justice to it in a short introduction. So instead of trying to, we will just
(have to) content ourselves with some examples of hyperbolic 3-manifolds.

One good source of hyperbolic 3-manifolds is knot complements. A knot in the
3-sphere S3 is a smooth embedding K : S1 → S3. Figure 4 shows an example: the
figure eight knot.

Figure 4. The figure eight knot.

Riley [Ril75a, Ril75b] discovered that the complement of the figure eight knot in
S3 admits the structure of a hyperbolic 3-manifold of finite volume. In fact, Thurston
later on determined exactly which knot complements (many of them) admit hyperbolic
structures [Thu82].

This, again using work by Thurston, also leads to many examples of closed hyper-
bolic 3-manifolds, via the process of Dehn filling. Very briefly, every knot complement
is homotopic to a 3-manifold M with one boundary component, homeomorphic to a
2-torus. If we now fix a solid torus T and a diffeomorphism f : ∂T → ∂M , we obtain a
closed 3-manifold Mf . Thurston proved that, if M itself admits a hyperbolic structure,
then so does Mf for “most” choices of f [Thu78] (see also [BP92, Chapter E]).

1.5. Higher dimensions

In dimension higher than 3, hyperbolic manifolds are much harder to come by. There
are still countably infinitely many closed (or of finite volume) hyperbolic n-manifolds
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for all n ≥ 4, but they are much less well understood. One big difference with lower
dimensional manifold is Wang’s theorem, which states:

Theorem 1.5.1 ([Wan72]). The number of hyperbolic n-manifolds of volume ≤ v (up
to isometry) is finite.

First of all there are arithmetic hyperbolic manifolds. These are manifolds whose
fundamental group is an arithmetic subgroup of Isom+(Hn). We will not go into the
(lengthy) definition of what an arithmetic group is, but very roughly, they come from
taking the integral points in an algebraic group. Prototypical examples are PSL(2,Z) <
PSL(2,R) and PSL(2,Z[i]) < PSL(2,C) and their finite index subgroups. These two
examples give rise to 2- and 3- orbifolds and manifolds (via their subgroups), but
arithmetic groups exist in all dimensions.

Not every hyperbolic n-manifold is arithmetic. In dimension 4 and above this is
a celebrated theorem due to Gromov – Piatetski-Shapiro [GPS88]. Their proof is
constructive. It goes by taking two arithmetic hyperbolic n-manifolds M1 and M2 that
both contain an embedded copy of a fixed hyperbolic (n− 1)-manifold, cutting the n-
manifolds along these (n− 1)-manifolds and gluing the resulting blocks together along
their boundary. It turns out that if M1 and M2 are not commensurable (i.e. do not
have a common finite degree cover), then the result will be non-arithmetic. Several
similar cut-and-paste constructions are by now known [BT11, Rai13, GL14].



LECTURE 2

Extremal problems

Now that we know everything about hyperbolic manifolds, it’s time to define the
invariants this course will be about: their systole, kissing number, diameter, spectral
gap and Cheeger constant. The main question we will discuss is: what are the extremal
values of these invariants and what do the manifolds that realize these values look like?
Many of these questions make sense, and are indeed interesting, in a broader context
(there is often an obvious generalization to manifolds of non-positive curvature and
analogues to all our questions have also been studied for finite regular graphs), but we
will stick to hyperbolic manifolds.

2.1. The systole

The first of these is the systole of a hyperbolic manifold. Given a rectifiable curve
α on a Riemannian manifold, we will denote its length by `(α).

Definition 2.1.1. Let M be a hyperbolic manifold that is not simply connected. Then
the systole of M is

sys(M) = inf { `(γ) : γ a closed geodesic on M } .
If π1(M) is finitely generated, which is the case for most of the manifolds we will

study in what follows, then the systole is realized by some closed geodesic in M . We
will use the word “systole” for this geodesic as well.

sys(M)

M

Figure 1. The systole of a manifold

We also note the classical fact that (because of the strictly negative curvature of
M), there is a unique closed geodesic in each non-trivial non-peripheral1 free homotopy

1A peripheral non-null homotopic closed curve is a curve whose homotopy class contains no geo-
desic. These are curves that can be homotoped into a cusp of M . If M = Γ\Hn then the conjugacy

11



12 2. EXTREMAL PROBLEMS

class of curves in M and this geodesic minimizes the length in the homotopy class.
As such, we can equivalently define the systole to be the minimal length of a closed,
homotopically non-trivial non-peripheral curve in M .

We have now arrived at our first question. We will denote the volume of a hyperbolic
manifold M by vol(M).

Question 1. Fix n ≥ 2. How does

Sn(v) := max { sys(M) : M a hyperbolic n−manifold of vol(M) ≤ v }
grow as a function of v?

This question is open, even when n = 2. Knowing the function on the nose is to
much to ask for, so what we are really asking for is the asymptotic behavior of Sn as
v →∞. Let us discuss what is known about this. We start with an easy upper bound
in the closed case:

Lemma 2.1.2. Let n ≥ 2. There exists a constant cn > 0 such that for all closed
hyperbolic n-manifolds M :

sys(M) ≤ 2

n− 1
log(vol(M)) + cn.

Proof. Pick any point p ∈ M . Now the open ball B(p, sys(M)/2) is isometric to
an open ball in Hn. Indeed, if not, then there would be two distinct geodesics segments
between p and another point q ∈ B(p, sys(M)/2), both of length less than sys(M)/2
(Figure 2 shows the situation). The loop formed by these two segments has length
stricly less than sys(M) and is not contractible (if it were contractible then it would
lift to a geodesic bigon in Hn, these don’t exist). This is in contradiction with the fact
that the systole is realized by the shortest closed curve on M .

p
q

Figure 2. Two short segments that form a short loop

Now let B(p̃, sys(M)/2) denote an open ball of radius sys(M)/2 in Hn. Our obser-
vation above implies that

vol(B(p̃, sys(M)/2)) ≤ vol(M).

The former can be computed explicitly (see [Rat06, Exercise 3.4.6]) and satisfies

vol(B(p̃, sys(M)/2)) = vol(Sn−1) ·
∫ sys(M)/2

0

sinhn−1(t)dt,

class in Γ corresponding to such a curve consists of parabolic isometries of Hn. M can only contain
such curves if it is non-compact.
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where Sk denotes the k-sphere in Rn with its round metric. This readily implies the
lemma. �

What is somewhat remarkable is that in general, no sharper upper bound than the
Lemma above is known. The only dimension in which something better is known is
dimension two, which is due to Bavard [Bav96]. He proved that the systole of a closed
orientable hyperbolic surface M of genus g satisfies

sys(M) ≤ 2arccosh

(
1

2 sin(π/(12g − 6))

)
.

We have 2

2arccosh

(
1

2 sin(π/(12g − 6))

)
∼ 2 log(g)

as g → ∞. The Gauss–Bonnet theorem implies that the area of a closed orientable
hyperbolic surface of genus g equals 4π(g− 1), so asymptotically, even Bavard’s bound
is still not better than the lemma above.

The only genus for which the closed hyperbolic surface of maximal systole is known
is genus 2. Jenni [Jen84] proved that the Bolza surface has maximal systole among
hyperbplic surfaces of genus 2.

Buser and Sarnak [BS94] proved that there exist sequences of closed orientable
hyperbolic surfaces (Xk)k of genus gk such that gk →∞ as k →∞ and

sys(Xk) ≥
4

3
log(gk) +O(1)

as k →∞. These surfaces are congruence covers of certain closed arithmetic surfaces.
This was later generalized by Katz–Schapps–Vishne [KSV07] to a larger class of arith-
metic surfaces and 3-manifolds and by Murillo [Mur19] who, again using arithmetic
methods, proved the existence of hyperbolic n-manifolds M of arbitrarily large volume
and systole

sys(M) ≥ 8

n(n+ 1)
log(vol(M)) +On(1).

Some non-arithmetic constructions of surfaces with logarithmic systoles are also known
[PW18, Pet18]. In summary, it is known that Sn(v) grows logarithmically as a func-
tion of v, but the rate is not known.

In the case of (not necessarily closed) hyperbolic manifolds of finite volume, less
is known. The proof of Lemma 2.1.2 falls apart because the curve we find might be
homotopic into a cusp. For surfaces with cusps, bounds have been proved by Schmutz
[Sch94] and Fanoni–Parlier [FP15]. Schmutz also proved that principal congruence
covers of PSL(2,Z)\H2 maximize the systole among hyperbolic surfaces of the same
signature. In higher dimensions, no upper bounds seem to be known.

In dimension 2, one can also ask for local maxima for the systole as a function on
Mg. Many local maxima have been found by Schmutz [Sch93], Hamenstädt [Ham01]
and Fortier Bourque–Rafi [FBR20]. One reason that these local maxima is interesting
is that Akrout [Akr03] proved that the systole is a topological Morse function onMg.
So in theory, they could be used to understand the (very complicated) topology ofMg.

2We will write that f(x) ∼ g(x) as x→∞ to indicate that limx→∞ f(x)/g(x) = 1.
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Remark 2.1.3. As a side note, we mention that in dimensions n = 2, 3 we have

inf { sys(M) : M a closed hyperbolic n-manifold with vol(M) ≤ v } = 0

as soon as v is large enough. In dimension 2 explicit surfaces of a fixed genus and arbi-
trarily small systole can easily be constructed using the pants decompositions from Sec-
tion 1.3. In dimension 3, it follows from Thurston’s Dehn Surgery theorem mentioned
in Section 1.4. This theorem implies that, when we take more and more complicated
Dehn fillings of a fixed knot complement, the resulting sequence of closed hyperbolic
manifolds converges to the hyperbolic knot complement. As such, these manifolds are
of bounded volume but their systole tends to zero.

In dimension at least four, the situation is slightly different. Wang’s theorem (The-
orem 1.5.1) implies that the infimum above is taken over a finite set of manifolds and
hence is not zero. It is known, due to work by Agol [Ago06] and Belolipetsky–Thomson
[BT11] that it tends to zero as v →∞.

2.2. The kissing number

The second, related, invariant we will look into is the kissing number of M :

Definition 2.2.1. The kissing number Kiss(M) of M is the number of pairwise non-
homotopic closed geodesics realizing the systole.

The reason for this terminology comes from flat tori. A flat torus is a manifold of
the form Λ\Rn, where Λ < Rn is a lattice (a discrete subgroup isomorphic to Zn). The
systole of Λ\Rn is twice the maximal radius R such that all the open balls of radius R
in Rn around the points in Λ are pairwise disjoint. The kissing number of Λ\Rn is the
number of balls in the resulting packing that is tangent to (read: that kiss) any given
ball (see Figure 3 for an example). On a side note, the growth of the largest possible

Figure 3. The hexagonal lattice: the two-dimensional lattice of maxi-
mal kissing number

kissing number of a packing in Rn as a function of n is known to be exponential, but
the rate is also still an open question.
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For a hyperbolic manifold M = Γ\Hn, Kiss(M) does not necessarily equal the
kissing number of a packing of Hn with centers in Γ ·x0 for some x0 ∈ Hn, but the name
is kept in analogy. The natural extremal problem associated to kissing numbers is:

Question 2. Fix n ≥ 2. How does

Kn(v) := max {Kiss(M) : M a hyperbolic n−manifold of vol(M) ≤ v }
grow as a function of v?

Also this question is wide open in general. The currently best known general upper
bound in the closed case is due to Parlier (in dimension 2) and Fortier Bourque–Petri:

Theorem 2.2.2 ([Par13], [FBP19]). Let n ≥ 2. There exists a constant An > 0 such
that for all closed hyperbolic n-manifolds M ,

Kiss(M) ≤ An vol(M)
exp

(
n−1

2
sys(M)

)
sys(M)

.

The proofs of this theorem, which we will not get into in these lectures, are different.
Parlier’s proof is based on a geometric argument, whereas the proof by Fortier Bourque–
Petri is based on the Selberg trace formula, a formula that makes a link between the
lengths of geodesics on M and the eigenvalues of the Laplace operator on M . Note
that the theorem implies that if we want to find sequences of manifolds whose kissing
numbers grow faster than vol(M)1+α for some α > 0, these manifolds need to have
logarithmic systoles.

A similar bound for surfaces of finite area is due to Fanoni–Parlier [FP15]. The
case of higher dimensional non-compact hyperbolic manifolds of finite volume is still
open.

Using a quantatative versions of the Margulis lemma together with Lemma 2.1.2,
we also obtain a bound that depends on volume alone.

Corollary 2.2.3 ([Par13],[FBP19]). For every n ≥ 2, there exists a constant A′n > 0
such that

Kiss(M) ≤ A′n
vol(M)2

log(1 + vol(M))
for every closed hyperbolic n-manifold M .

Proof. For manifolds with small systole, a stronger inequality of the form

Kiss(M) ≤ A′′n vol(M) sys(M)b
n−2
2
c/bn+1

2
c

follows from estimates on the volume of Margulis tubes around short geodesics due to
Keen [Kee74] in dimension 2 and Buser [Bus80] in higher dimensions.

So we may assume that sys(M) ≥ εn for some εn. The function x 7→ exp
(
n−1

2
· x
)
/x

is increasing for x large enough. So, Lemma 2.1.2 implies the bound. �

As is the case for systoles, congruence covers of arithmetic manifolds seem to provide
good examples of manifolds with high kissing numbers. Schmutz [SS97] used these to
prove the existence of (both closed and non-compact) sequences hyperbolic surfaces
(Xk)k with

Kiss(Xk) ≥ area(Xk)
4/3−ε and area(Xk)

k→∞−→ ∞
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for every ε > 0. Very recently, Dória–Murillo [DM20] proved the existence of a se-
quence (Mk)k of non-compact hyperbolic 3 manifolds of finite volume with

Kiss(Mk) ≥ C · vol(Mk)
31/27

log(1 + vol(Mk))

for some constant C > 0.

2.3. The diameter

The other three invariants we will talk about all relate to the “connectedness” of
hyperbolic manifolds. The first of these is the diameter:

(1) diam(M) = sup { d(x, y) : x, y ∈M } ,
where d : M ×M → [0,∞) denotes the distance function on M . Of course, this is only
an interesting invariant for closed hyperbolic manifolds.

The question we will ask is:

Question 3. Let n ≥ 2. How does

Dn(v) := min { diam(M) : M a closed hyperbolic n-manifold with vol(M) ≥ v }
grow as a function of v ?

It by now won’t surprise the reader that also this question is open in all generality.
Let us first prove an elementary lower bound (similar in spirit to Lemma 2.1.2):

Lemma 2.3.1. Let n ≥ 2. There exists a constant cn > 0 such that

diam(M) ≥ 1

n− 1
log(vol(M))− cn

for all closed hyperbolic n-manifolds M .

Proof. Again denote the R-ball around a point p ∈ M by B(p,R). By definition
of the diameter, we have

B(p, diam(M)) = M

for any p ∈M . Now the volume of B(p, diam(M)) is smaller than the volume of a ball
of the same radius in Hn. So, using the formula of the volume of a ball in Hn again, we
get

vol(M) = vol(B(p, diam(M))) ≤ vol(Sn−1) ·
∫ diam(M)

0

sinhn−1(t)dt,

which implies the lemma. �

The only dimension in which a better lower bound is known is dimension two.
Bavard [Bav96] proved that the diameter of a closed hyperbolic surface M of genus g
satisfies

diam(M) ≥ arccosh

(
1√

3 tan (π/(12g − 6))

)
,

again, as g →∞, arccosh
(

1√
3 tan(π/(12g−6))

)
∼ log(g), which means that asymptotically

it gives the same bound as the lemma above.
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So, just like manifolds with large systole are manifolds with logarithmic systole,
manifolds with small diameter are manifolds with logarithmic diameter.

It turns out that, due to recent work by Budzinski–Curien–Petri, in dimension 2,
the bound from Lemma 2.3.1 can asymptotically be saturated:

Theorem 2.3.2 ([BCP20]). The minimal diameter among hyperbolic surfaces of area
≥ a satisfies:

lim
a→∞

D2(a)

log(a)
= 1.

The proof of this theorem is based on a random construction of hyperbolic surfaces.
We will discuss how this works in the next two lectures.

In higher dimensions, the asymptotic behavior of Dn(v) is less well understood. It
can be derived from spectral properties of certain arithmetic manifolds (see for instance
[Clo03, BC13] for these properties and Section 2.5 for the connection) that for every
n ≥ 2, there exists a constant Cn such that

lim sup
v→∞

Dn(v)

log(v)
≤ Cn,

but a sharp statement like Theorem 2.3.2 is not known.
Finally, we mention the opposite problem: looking for manifolds with large diam-

eter. In dimensions two and three, this is not an intersting problem: there are closed
manifolds of bounded volume and arbitrarily large diameter. In dimension two, these
can easily be constructed using a pants decomposition with pairs of pants with very
short boundary geodesics. In dimension three, this follows from Thurston’s work on
Dehn fillings (see Section 1.4). In higher dimensions, the situation is very different,
Burger–Schroeder [BS87] proved that for every n ≥ 4, there exists a constant An > 0
such that

diam(M) ≤ An · vol(M)

for all closed hyperbolic n-manifolds M .

2.4. The Cheeger constant

Another measure of the connectivity of a manifold is its Cheeger constant. Intu-
itively, this measures how hard it is to cut a large piece off of the manifold:

Definition 2.4.1. Let n ≥ 2 and let M be a hyperbolic n-manifold of finite volume.
The Cheeger constant of M is

h(M) = inf

{
voln−1(∂N)

voln(N)
:
N ⊂M a smooth submanifold
with 0 < voln(N) ≤ voln(M)/2

}
.

Figure 4 shows an example of a manifold with small Cheeger constant.
If one is interested in “highly connected” hyperbolic manifolds, the natural question

is:

Question 4. Fix n ≥ 2. What is

Hn(v) = max {h(M) : M a hyperbolic n-manifold with vol(M) ≥ v } .
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Figure 4. A manifold with small Cheeger constant: the shaded area
can be cut off using a very small cut.

Combining work by Cheeger [Che70] and Cheng [Che75] we obtain that there
exists a constant cn > 0 (see Section 2.5) such that

h(M)2 ≤ (n− 1)2 +
cn

diam(M)2

for all closed hyperbolic n-manifolds M . In particular (using Lemma 2.3.1)

lim sup
v→∞

Hn(v) ≤ n− 1.

On the other hand, it is known that

lim inf
v→∞

Hn(v) > 0,

this can for instance be seen from arithmetic constructions [Clo03]. For example, in
dimension two, the best known lower bound follows by combining work due to Kim–
Sarnak [Kim03], Brooks [Bro99] and Buser [Bus82] and is:

lim inf
a→∞

H2(a) ≥
−32 +

√
6923

2

160
= 0.1677 . . . .

However, whether limv→∞Hn(v) exists and what its value should be, is open, even in
dimension two.

Finally, a manifold that has a large Cheeger constant also has a small diameter
(unless it has very small systole). Brooks proved:

Theorem 2.4.2 ([Bro92]). Let M be a closed hyperbolic n-manifold M . Then

diam(M) ≤ 2

h(M)
log

(
vol(M)

2 vol(B(r/2))

)
+ r,

where B(r/2) denotes any ball of radius r/2 in Hn and r = min{sys(M), 1}.

Proof. Fix x, y ∈M and let V (x, t) denote the volume of a ball of radius t around
x. When t ≤ sys(M)/2, V (x, t) = vol(B(t)), using the same argument we saw in the
proof of Lemma 2.1.2.

Moreover, when t is small enough such that V (x, t) ≤ vol(M)/2,

d

dt
V (x, t) = voln−1(∂V (x, t)) ≥ h(M) · V (x, t)

Set r = min{sys(M)/2, 1/2}. Combining the two observations above, we get

V (x, t) ≥ eh(M)·(t−r)V (x, r).
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This holds up until V (x, t) = vol(M)/2 which hence happens before

t0 =
1

h(M)
log

(
vol(M)

2V (x, r)

)
+ r.

Now the balls of volume vol(M)/2 around x and y intersect, so

diam(M) ≤ 2t0.

�

2.5. The spectral gap

The final (related) invariant we will consider is the spectral gap of a hyperbolic
manifold. To this end, let us denote the Laplacian operator on functions on M by

∆ = −div ◦ grad : C∞(M)→ C∞(M).

We will mostly restrict to closed manifolds in this section (see for instance [Iwa95]
for the non-compact case). We start with the spectral theorem (See for instance [Bus10,
Chapter 7] or [Ber16, Chapter 3] for a proof):

Theorem 2.5.1 (Spectral theorem). Let M be a closed connected hyperbolic n-manifold.
The eigenvalue problem

∆ϕ = λϕ

has a complete orthonormal system of C∞-eigenfunctions ϕ0, ϕ1, . . . in L2(M) with
corresponding eigenvalues λ0, λ1, . . . that satisfy

0 = λ0 < λ1 ≤ λ2 ≤ . . .↗∞.

The first non-zero Laplacian eigenvalue of M , that we will denote by λ1(M) is also
a measure of connectivity. In what follows we will explain why. Cheng [Che75] proved
that there exists a constant

λ1(M) ≤ (n− 1)2

4
+

cn
diam(M)2

.

It is open whether this bound is asymptotically tight:

Question 5. Define

Λn(v) = sup {λ1(M) : M a closed hyperbolic n-manifold with vol(M) ≥ v } .

Does it hold that

lim
v→∞

Λn(v) =
(n− 1)2

4
?

This question of course connects to the Selberg conjecture [Sel65] (and its general-
izations [BLS92]), which states that

λ1(Γ\H2) ≥ 1

4
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for every principal congruence subgroup Γ < PSL(2,Z). These surfaces are not closed,
however using work by Brooks and Brooks–Makover [Bro99, BM01], a proof of the
Selberg conjecture would imply

lim
a→∞

Λ2(a) =
1

4
.

Selberg’s conjecture is still open. Selberg himself proved that λ1(Γ\H2) ≥ 3
16

for prin-
cipal congruence subgroups Γ. This has since been improved by various authors. The
current record is due to Kim–Sarnak [Kim03]

λ1(Γ\H2) ≥ 975

4096
≈ 0.238 . . . ,

which, using the same work by Brooks and Brooks–Makover [Bro99, BM01], that

lim inf
a→∞

Λ2(a) ≥ 975

4096
.

Bergeron–Clozel [BC13] proved that

lim inf
v→∞

Λn(v) ≥ n− 2.

One of the reasons that λ1(M) is a measure of connectivity is:

Theorem 2.5.2 (Cheeger–Buser inequalities, [Che70],[Bus82]). Let M be a closed
hyperbolic n-manifold. Then

h(M)2

4
≤ λ1(M) ≤ 2(n− 1)h(M) + 10h(M)2.

So, if we have a sequence of closed hyperbolic n-manifolds (Mk)k, then λ1(M)
k→∞−→ 0

if and only if h(Mk)
k→∞−→ 0. Moreover, by combining the theorem above with Theorem

2.4.2, we obtain that a uniformly bounded spectral gap also implies a logarithmic
diameter.

In fact, quantatively, a better bound on diam(M) in terms of λ1(M) and vol(M)
can be obtained by a direct argument. This argument is written up in dimension
two by Magee [Mag20] and one obtains that if M is a closed hyperbolic surface with
λ1(M) ≥ (1− δ2)/4 and sys(M) > ε then

diam(M) ≤ 2

1− δ
log(area(M)) +

4

1− δ
log log(area(M)) + Cε.δ,

where Cε.δ > 0 is a constant depending on ε and δ alone.



LECTURE 3

The minimal diameter of a hyperbolic surface

Now that we’ve treated some of the context, it’s time to prove something. The goal
of this lecture is to determine the asymptotic behavior of the minimal diameter among
hyperbolic surfaces of genus g, i.e. to prove the following theorem we mentioned in the
previous lecture:

Theorem 2.3.2. The minimal diameter among hyperbolic surfaces of area ≥ a satisfies:

lim
a→∞

D2(a)

log(a)
= 1.

Note that because of Lemma 2.3.1, we only need to prove that

lim sup
a→∞

D2(a)

log(a)
≤ 1.

3.1. A model for random surfaces

As we mentioned, we will prove this theorem using a random construction. So, let
us introduce this construction first.

First of all, recall from our discussion from Section 1.3, that given a > 0, there
exists a unique (up to isometry) hyperbolic pair of pants Pa all of whose boundary
components have length a. In short, our random surface will be constructed as follows:
we take 2g − 2 copies of Pa and a uniformly random matching between the 6g − 6
boundary components of the pants and then glue the pants together according to the
matching. For the gluing we will set the twist equal to zero, so that the combinatorics
completely determine the gluing.

1 2

3

4 5

6

6g − 8

6g − 7

6g − 6

Figure 1. A random gluing of pairs of pants.

For the proofs later on, we will formalize this as follows. We will label the boundary
components of the first copy of Pa by 1, 2 and 3, those of the second copy of Pa by 4,

21
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5 and 6, et cetera. This means that, given a > 0, for every element

ω ∈ Ωg :=
{

Partitions of {1, . . . , 6g − 6} into pairs
}

we obtain a surface

Sa(ω)

by gluing the copies of Pa together, with twist 0, according to ω. In order to turn Sa
into a random surface, we will use the uniform probability measure Pg on Ωg. That is

Pg[A] =
|A|
|Ωg|

, A ⊆ Ωg.

Now that we have defined out model for random surfaces, we can state what we will
really prove:

Theorem 3.1.1 ([BCP20]). For every ε > 0 there exists a number a > 0 such that

lim
g→∞

Pg[diam(Sa) ≤ (1 + ε) log(g)] = 1.

We will use the rest of this lecture and the beginning of the next one to prove this
theorem. We will start with the necessary hyperbolic geometry and then prove the
theorem.

3.2. Orbit counting

The main geometric input comes from counting problems in the hyperbolic plane.
Given a discrete group Γ < Isom(H2) and x ∈ H2, one can ask for the growth, as a
function of R, of the function

NR(Γ, x) = |Γ · x ∩B(x,R)| ,

where B(x,R) denotes the disk of radius R around x. There exists a vast body of
literature on this problem. We will be interested be interested in the orbit growth of
the group Γa: the group generated by the reflections in the three non-consecutive sides
of length a/2 of Ha – a right-angled hexagon in H2 with three non-consecutive sides of
length a/2 (Figure 2).

Pattersson and McMullen proved that:

Theorem 3.2.1 ([Pat88, McM98]). For every a > 0 there exist constants Ca > 0 and
δa ∈ (0, 1) such that

NR(Γa, x) ∼ Ca · eδaR, as R→∞.

Moreover, δa → 1 as a→∞.
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Ha

Figure 2. The orbit of Ha under Γa.

m

Figure 3. A pants tree

3.3. The pants tree

A crucial role in the proof will be played by a hyperbolic surface of infinite area we
will call the pants tree Ta. This surface is formed by gluing countable many copies of
Pa according to the pattern of a trivalent tree. Figure 3 shows an example.

This surface will be used as a model for the local geometry of our random surfaces
Sa.

We will use the orbit counting results from above as follows. Fix a point m ∈ Pa.
For convenience, we will fix this to be a midpoint of one of the copies of Ha that Pa
is made out of. We will now fix one of the copies of Pa in Ta and denote its midpoint
by m0. Moreover Na(R) will denote the number of midpoints in Ta at distance at most
R from m0.. Essentially because Ta consists of two copies of the tiling in Figure 2, it
follows from Theorem 3.2.1 that

(2) Na(R) ∼ Cae
δaR, as R→∞.
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3.4. A proof sketch

Before we give the actual proof of the theorem above, which we will discuss in the
next lecture, let us first discuss the idea of the proof. First of all observe that there
exists a constant Da, depending on a only, such that

diam(Sa(ω)) ≤ max

{
d(m,m′) :

m and m′ midpoints of
copies of Pa in Sa(ω)

}
+Da

so it will be enough to control the maximal distance between midpoints on Sa. Now, for
argument’s sake, imagine Sa has the geometry of Ta around every midpoint. Now pick
any pair of midpoints m,m′ of Sa. Because the geometry is like that of Ta, the number
of midpoints at distance at most R from m (resp. m′) is (by (2)) Na(R) ∼ Cae

δaR. Now
suppose R is so that

Na(R) > g1/2+ε,

This happens when

R ≈ 1/2 + ε

δa
log

(
g

Ca

)
.

Now, given a pair of boundary components of copies of Pa, the probability that they
are not glued together is roughly 6g−8

6g−7
= 1− 1

6g−7
. Falsely imagining these probabilities

for different pairs are all independent we get that the probability that none of the pants
at distance ≤ R from m are glued to a pair of pants at distance ≤ R from m′ is

≤

((
1− 1

6g − 7

)g1/2+ε
)g1/2+ε

= o(g−2) as g →∞

summing this over the ≈ g2 pairs of midpoints, we see that

Pg
[

There is a path of length ≤ 2R
between every pair of midpoints

]
g→∞−→ 1.

So we get for all ε > 0:

Pg
[
diam(Sa) ≤

1 + 2ε

δa
log

(
g

Ca

)
+Da

]
g→∞−→ 1.

Since δa → 1 as a→∞, this would prove the theorem.



LECTURE 4

More random manifolds

In our final lecture, we will first finish the proof of Theorem 3.1.1 – the asymptotic
behavior of the minimal diameter among closed hyperbolic surfaces of genus g. After
that we will discuss other models of random surfaces and (briefly) higher dimensional
manifolds. We will finish with some open questions. The attentive reader will notice
that the text below is significantly longer than that of the other lectures. This is because
we will give some more details (especially about random triangulations) than we did
during the actual lecture.

4.1. The real proof of Theorem 3.1.1

We now start by presenting the real proof of the following theorem that we discussed
in the previous lecture:

Theorem 3.1.1 ([BCP20]). For every ε > 0 there exists a number a > 0 such that

lim
g→∞

Pg[diam(Sa) ≤ (1 + ε) log(g)] = 1.

The two main lies in the proof sketch above are the independence we assumed in all
the gluing probabilities and the assumption that Sa looks exaclly like Ta everywhere.

4.1.1. A peeling algorithm. In order to produce a proper proof, we will use a
technique known as peeling. The idea is that, without changing the probabilities of
geometric event, we may glue our surface together in a specific order.

This goes as follows: fix i ∈ {1, . . . , 2g − 2}. To this number corresponds a pair
of pants out of which we will build Sa. Denote its midpoints by mi. Our goal is to
understand the geometry of the neighborhood of mi.

Fix some ε > 0. We will now build Sa in 3g − 3 steps (one for each pants curve).

So at each step t ∈ {1, . . . , 3g− 3}, we have a surface S
(t)
a . S

(0)
a is the surface consisting

of 2g − 2 disjoint pairs of pants. At step t, we perform the following operation:

• If the component of S
(t−1)
a containing m1 contains fewer than

⌈
g1/2+ε

⌉
pairs

of pants: glue (with twist 0) the boundary component of S
(t−1)
a that is closest

to mi (in the hyperbolic metric) to a boundary component that has not been

used yet (picked uniformly at random). Call the result S
(t)
a .

• If not: pick to boundary components of S
(t−1)
a uniformly at random and glue

them together with twist 0. Call the result S
(t)
a .

Note that there are issues with the notion of “closest to mi”:

• There might be multiple boundary components at equal (minimal) distance,
in this case we pick one uniformly at random.

25
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• It might happen that S
(t)
a has a connected component without boundary that

contains mi. In this case we will say a disconnection has happened in the
process. In that case we will just pick a component uniformly at random to
glue.

Note that the arbitrary order (or peeling algorithm) we introduced in the construc-
tion of Sa has no influence on the probabilities of any geometric or combinatorial prop-
erties of Sa. It will however help us control certain probabilities.

4.1.2. Tree-like neighborhoods. Our first goal now is to show that up to the
first ≈ g1/2+ε pants around mi, the pants tree Ta really is a good approximation for
the geometry around mi. The corresponding neighborhood of mi is not isometric to a
subset of Ta, but the number of defects is low.

To this end, we will say

Definition 4.1.1. A step t in the peeling proces described above is bad if during this

step, two boundary components of the connected component of S
(t−1)
a containing mi

are glued together.

Note that this does not include a disconnection event.
We now have:

Lemma 4.1.2. Let τ denote the time in the peeling process at which we have used at
least g1/2 log(g) pairs of pants.

(a) For every ε > 0, there exists a K ∈ N, such that

Pg
[

During the first g1/2−ε steps, at
least K steps are bad

]
= o(g−3) as g →∞

(b) Moreover,

Pg
[

During steps g1/2−ε up to τ
at least log(g)3 steps are bad

]
= o(g−3) as g →∞.

Proof. We start with item (a). First note that the boundary of the connected

component of S
(t)
a containing mi has at most 3+t components. As such, the probability

that set t is bad is at most

Pg[Step t is bad] ≤ 2 + t

6g − 7− 2t
≤ cst · 1

g1/2+ε

for t ≤ g1/2−ε. So the probability that K steps are bad among the first g1/2−ε is at most∑
t1<t2<...<tK≤≤g1/2−ε

Pg[Steps t1, . . . , tK are bad] ≤ cst ·
(
g1/2−ε)K ( 1

g1/2+ε

)K
≤ cstK · g−2εK

so our claim holds for K > 3/(2ε).
The proof of item (b) is similar. We get that for g1/2−ε ≤ t ≤ τ ,

Pg[Step t is bad] ≤ cst · log(n)

g1/2
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So

Pg
[

During steps g1/2−ε up to τ
at least log(g)3 steps are bad

]
≤ 1

(log3(g))!
(g1/2 log(g))log3(g)

(
log(n)

g1/2

)log3(g)

= o(g−3)

as g →∞. �

So the neighborhood of a fixed point consisting of the closed ≈ g1/2 pants is indeed
tree-like. It’s not so hard to see (see [BCP20] for a proof) that this implies that
exponential growth of volume stays intact:

Lemma 4.1.3. Fix ε > 0, a ∈ (0,∞) and K ≥ 0. Suppose that during an exploration
as above, there are fewer than K bad steps until time g1/2−ε and less than log3(g) bad
steps until time τ .

Then, if g is large enough, either the surface is disconnected, or the maximal distance
R reached in Sa from the midpoint of the pair of pants where the exploration started
satisfies

R ≤ 1

2

(
1

δa
+ ε

)
log g.

4.1.3. Finishing the proof. Above we’ve seen that with probability 1 − o(g−3)
the neighborhood Ni consisting of the closest g1/2 log(g) pants along a midpoint mi is
tree-like (assuming there is no disconnection).

Now we need that such neighborhoods connect. First, assuming there is no discon-
nection, observe that Ni has ≥ cst·g1/2 log(g) boundary components. So the probability
that, in an exploration of τ steps near mj, we don’t connect to Ni is bounded by

Pg

 In the first τ steps of
the peeling process around mj

we don’t connect to Ni

 ≤ (1− cst
log(g)

g1/2

)g1/2 log(g)

= o(g−3)

as g →∞.
So we get that

Pg
[

There exist midpoints mi and mj that have d(mi,mj) ≥ 2R
and Sa is connected

]
≤
∑
i,j

Pg
[

d(mi,mj) ≥ 2R
and Sa is connected

]
= o(g−1)

where R is as in Lemma 4.1.3.
Finally, we use that

Pg[Sa is disconnected] = o(g−1)

as g → ∞ (this was first proved by Bollobás and Wormald [Bol81], [Wor81]), to
conclude the proof.
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4.2. Other models for random surfaces

There are plenty of other models around for random hyperbolic surfaces. In this
section we will discuss some of them and what is known about them. We will give more
details than were provided in the original lecture.

4.2.1. The Brooks–Makover model. We start with a model for random surfaces
introduced by Brooks–Makover [BM04]. The idea of this model is to take an even
number of ideal hyperbolic triangles, glue these along their sides randomly into an
oriented non-compact hyperbolic surface and conformally compactify the result.

4.2.1.1. Formal topological set up. Formally, the model is based on the configuration
model of random 3-regular graphs on 2N vertices and is very close to the model we
used for the minimal diameter of a hyperbolic sruface. Or probability space will be the
set

ΩN :=
{

Partitions of {1, . . . , 6N} into pairs
}

equipped with the uniform probability measure PN .

This ω ∈ ΩN can be turned into a closed oriented surface S(ω) as follows. Take
2N triangles (2-simplices) ∆1, . . . ,∆2N , and label the sides of the first triangle with the
labels 1, 2 and 3, those of the second 4, 5 and 6 and so forth (see the figure below).

1 2

3

4 5

6

6N − 2 6N − 1

6N

Figure 1. 2N labeled triangles.

Each of these triangles naturally comes with an orientation (induced by the cyclic
order of the labels on the sides). For each pair of labels c = {i, j} ∈ C fix an orientation
reversing simplicial map ϕc between the corresponding sides. We set

S(C) =
2N⊔
i=1

∆i/ ∼

where the equivalence relation is given by the collection of maps {ϕc}c∈C .

Figure 2 gives some examples for N = 1.

1 2

3

4

5

6 1 2

3

4

5

6 1 2

3

4

5

6

Figure 2. The surfaces corresponding to the configurations
{{1, 3}, {2, 4}, {5, 6}}, {{1, 6}, {2, 4}, {3, 5}} and {{1, 5}, {2, 4}, {3, 6}}:
a sphere, a torus and a sphere respectively.
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4.2.1.2. The resulting topology. Before we properly discuss how to turn the surfaces
S(ω) into hyperbolic surfaces, we discuss their topology.

The first question is of course whether S(ω) is connected. It turns out that typically
it is, for exactly the same reason that our random pants decompositions above were
typically connected: the connectivity of random trivalent graphs, due to Bollobás and
Wormald:

Theorem 4.2.1 ([Bol81], [Wor81]). We have

lim
N→∞

PN [S is connected] = 1.

Given that S(ω) is a closed orientable surface, the only remaining topological ques-
tion is what its genus is g(S(ω)). A simple Euler characteristic computation gives that
for ω ∈ ΩN (if S(ω) is connected):

g(S(ω)) =
N + 2− V (ω)

2
,

where V is the number of vertices of the triangulation S comes with. Good estimates
on the asymptotic behavior of V as N → ∞, have been worked out by Gamburd and
Chmutov–Pittel. They proved the following theorem, in which the total variational
distance between two random variables X : Ω→ R and Y : Ω′ → R is defined as

dTV (X, Y ) := sup { |P(X ∈ A)− P(Y ∈ A)| : A ⊆ R measurable } .
Theorem 4.2.2 ([Gam06],[CP16]). Let VN : ΩN → N be the random variable that
counts the number of vertices of the triangulation on S. Moreover, let NN a random
variable that is normally distributed with mean log(N) and standard deviation

√
log(N).

Then
dTV (VN ,NN)→ 0

as N →∞.

For us the most important consequence of this theorem is that the genus of our
random surfaces is roughly N/2 (up to only a logarithmic error). In particular, this
model gives us random surfaces of large genus.

Proof sketch of Theorem 4.2.2. The idea of proof is based on a different de-
scription of our probability space ΩN : we will parametrize random surfaces with pairs
of permutations instead of with configurations.

This goes as follows. First of all the orientation (the cyclic order of the labelled
sides) of the triangles we start with can be captured in a permutation. This permutation
consists of a product of three-cycles, one corresponding to each triangle. Figure 3 shows
the idea:

This leads to a permutation

σ = (1 2 3)(4 5 6) · · · (6N − 2 6N − 1 6N) ∈ S6N .

Likewise, the configuration ω ∈ ΩN itself can also be recorded in a permutation.
We simply write down a two-cycle (ai bi) for each pair {ai, bi} ∈ ω and concatenate all
these (disjoint) two-cycles. This leads to another permutation

τ = (a1 b1)(a2 b2) · · · (a3N b3N) ∈ S6N
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1 2

3

(1 2 3)

4 5

6

(4 5 6)

6N − 2 6N − 1

6N

(6N − 2 6N − 1 6N)

Figure 3. 2N labeled triangles.

The cycle type of τ (the fact that τ has exactly 3N two-cycles and no cycles of any
other length) determines a conjugacy class in the symmetric group S6N . As such, ΩN

can be identified with a conjugacy class, which we shall denote by K
(
23N
)
⊂ S6N .

Let us denote the conjugacy class of σ by K
(
32N
)
⊂ S6N . In our model for random

surfaces, σ is fixed. We could of course also randomly pick it in K
(
32N
)
. This would

just come down to a random relabeling of the triangles and as such wouldn’t change the
probabilities of any graph theoretic or topological property. This leads to a probability
space

Ω′N = K
(
32N
)
×K

(
23N
)

endowed with the uniform probability measure. Let us denote the surface corresponding
to (σ, τ) ∈ Ω′′N by S(σ, τ) and the corresponding triangulation by T (σ, τ).

So far, this description using the symmetric group might sound a little artificial.
The crux however is that the number of vertices of the triangulation T of S (the only
part of the Euler characteristic that does not come directly from the set up) can be
expressed in terms of a permutation. Indeed, we claim that the number of vertices of
T is exactly the number of cycles in a disjoint cycle decomposition of the permutation

στ ∈ S6N .

To see this, note that the permutation στ describes ‘traversing the side between two
triangles and then turning left’. Indeed, if σ is applied to a label l, then the label that
comes out is exactly the label to the left of it on the same triangle. Likewise, if we
apply τ , we obtain the label on the opposite side of the edge l represents. As such, the
cycles in στ correspond one to one to “cycles” of triangles around a fixed vertex (see
Figure 4).

Now what Gamburd, using work on random walks on finite groups due to Diaconis–
Shahshahani [DS81], proved is that, asN →∞ over even numbers, the total variational
distance between the random permutation στ and a permutation π chosen uniformly
at random in the alternating group A6N tends to zero. Since the cycle statistics of such
uniformly random permutations are well understood, the result follows. Chmutov–
Pittel completed this by proving that when N is odd, στ is asymptotically uniform on
the other coset of A6N . �

Another consequence of the equidistribution Gamburd and Chmutov–Pittel prove
is that we can say something about the large vertices of a random triangulated surface.
2N triangles have a total of 6N corners. When we glue these triangles together into a
surface, these corneres are partitioned into sets according to the vertices at which they
meet. The sizes of these sets (how many triangles meet in each vertex) give a partition
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σ

τ

Figure 4. The correspondence between cycles in στ and vertices

of the number 6N . If we normalize this partition (by dividing all the sizes by 6N), we
obtain a random variable

πvert : ΩN → P∞ :=

{
λ ∈ [0, 1]N :

∑
i∈N

λi = 1, λ1 ≥ λ2 ≥ . . .

}
.

It now follows from the equidistribution proved by Gamburd and Chmutov–Pittel that,
as N → ∞, πvert converges in distribution to a Poisson-Dirichlet distributed random
variable

πPD : Ω→ P∞ .
Such a variable can be described by simple stick breaking process. We start with an
interval of length 1, break it in two at a point chosen uniformly at random using the
Lebesgue measure, then break the piece on the left in two at a uniformly random point
and repeat this ad inifinitum. The partition is now given by the lengths of the resulting
pieces of stick, reordered by size so that the image lies in the set P∞.

4.2.1.3. The geometry. Brooks–Makover [BM04] used the topological model de-
scribed above to obtain a model for random closed hyperbolic surfaces of large genus.
As we mentioned above, the idea is as follows:

(1) Glue ideal hyperbolic triangles according to the configuration. The result of
this will be a hyperbolic surface with punctures (coming from the missing
vertices of ideal triangles).

(2) Compactify the surface, from which we obtain (generically) a closed hyperbolic
surface.

Let us elaborate a little bit on how both steps work, starting with step 1. First of
all, we will of course glue the ideal hyperbolic triangles together with isometries so that
the hyperbolic metric on them descends. However, because their sides have infinite
length there is not just one isometry between a pair of sides. Figure 5 illustrates this
issue with two gluings.
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H2

0 1 2 x

Figure 5. Shear.

We need one pair of points that are identified to determine the isometry between
a pair of sides entirely. A natural candidate for this pair of points is constructed as
follows. On both triangles involved in the gluing, take the vertex that is not part of
the side in question and drop the unique perpendicular from the vertex to the side (in
the figure above, these are the dotted lines). This defines two points on the side.

In a general gluing, the distance between the two special points will be called the
shear of the gluing. We will always set the shear to 0 in our gluings. Together with
this information, a configuration ω ∈ ΩN now specifies a hyperbolic surface So(ω) with
punctures.

We will only sketch step 2 (for more details see [Bro99, BM04]), which if the genus
g(S(ω)) of So(ω) is at least 2 produces a closed hyperbolic surface Sc(ω). It relies on the
uniformization theorem. I.e. to every isometry classes of complete hyperbolic metrics
on a finite type surface (of negative Euler characteristic) corresponds a unique complex
structure up to biholomorphism.

The idea is that around every puncture we can find a region that is isometric /
biholomorphic to

Ct =
{
z ∈ H2 : Im(z) > t

}
/(z 7→ z + 1)

for some t > 0. This is not so hard to see from our construction. From this region we
can find a biholomorphic map to the punctured unit disk

{ z ∈ C : 0 < |z| < 1 } .
Adding the point z = 0 in for every region gives us a closed surface with a complex
structure on it. As such, the uniformization theorem gives us a hyperbolic metric when
the genus is at least 2 (which, given Theorem 4.2.2, is typical). We will denote the
hyperbolic surface we obtain by Sc(ω).

The reason that this leads to an interesting model for random closed hyperbolic
surfaces is the following theorem due to Bely̆ı [Bel79]:

Theorem 4.2.3. The inclusion(
∞⋃
N=1

{Sc(ω) : ω ∈ ΩN }
⋂
Mg

)
⊂Mg

is dense for every g ≥ 2.



4.2. OTHER MODELS FOR RANDOM SURFACES 33

Bely̆ı’s theorem is actually a theorem about when an algebraic curve over the com-
plex numbers can be written as a curve over Q. The statement above relies on the
identification of these curves with hyperbolic surfaces (see [JS96] for more informa-
tion). It should also be noted that the analogous statement for the surfaces So(C) is
false: for every pair (g, n) ∈ N2 we only obtain finitely many surfaces of genus g with
n punctures, whereas a similar construction to that in Section 1.3 shows that there are
uncountably many hyperbolic surfaces of genus g and with n punctures.

4.2.1.4. Geometric properties of random surfaces. We now connect back up to our
extremal problems. Brooks and Makover proved the following theorem:

Theorem 4.2.4 ([BM04]). There exist positive constants C1, C2, C3 and C4 such that:

(a) The first eigenvalue λ1(Sc(C)) satisfies

PN [λ1(Sc) ≥ C1]→ 1.

(b) The Cheeger constant h(Sc(C)) satisfies

PN [h(Sc) ≥ C2]→ 1.

(c) The shortest geodesic sys(Sc(C)) satisfies

PN [sys(Sc) ≥ C3]→ 1.

(d) The diameter diam(Sc(C)) satisfies

PN [diam(Sc) ≤ C4 log(g)]→ 1.

Proof sketch. Note that a combination items (b) and (c) together with Theorem
2.4.2 and 2.5.2 imply items (a) and (d). So, let us sketch the proof of these two facts,
starting with item (b).

First of all, we will use the fact the dual graph to the triangulation on S – the graph
whose vertices are the triangles of the triangulation, which share an edge if the triangles
share a side (see Figure 6) – is a random 3-regular graph.

Figure 6. The dual graph to a triangulation
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The corresponding configuration model for random regular graphs is very well stud-
ied. In particular, it is known that the Cheeger constant of these graphs G = (V,E),
defined as

h(G) = min

{
|{edges between U and V \ U}|

|U |
: U ⊂ V, |U | ≤ |V | /2

}
is asymptotically uniformly bounded from below. That is, Bollobás [Bol88] proved
that there exists a constant C > 0 such that

lim
n→∞

P [A random 3-regular graph G on n vertices satisfies h(G) ≥ C] = 1

In fact, Bollobás’s result is effective, he proved that the result holds for C = 0.1844 . . ..
The next step is to turn this into a statement on surfaces. This uses a version of the

Brooks–Burger transfer principle [Bur86, Bro86], (see also [Bre14]). The rough idea
is that if the non-compact surface So has a subsurface Y ⊂ So of large area and with a
short boundary, then the triangles in the triangulation of So that have a large enough
intersection with Y form a set of vertices in the dual G graph that connect to the rest
of the graph with only a small number of edges (the latter comes from Y itself having
a small boundary). This in turn would mean that the dual graph has a small Cheeger
constant. After this, bounds by Brooks [Bro99] can be used to control the change of
the Cheeger constant during the compactification process.

To control the systole of Sc, we observe that the geodesic realizing the systole on Sc
is a closed curve that is not homotopic to a puncture of So. This means its trajectory
in the triangulation contains at least one left hand turn and one right hand turn. A bit
of hyperbolic trigonometry (using the fact that all the shears are 0) implies that length
of the corresponding geodesic on So is at least 2 · arccosh(3/2). Now using the same
comparison results by Brooks [Bro99], this implies item (c). �

4.2.1.5. Are these surfaces extremal? Seeing Theorem 4.2.4, the first question is of
course, do these surfaces solve any of the extremal problems posed above? In fact,
Brooks and Makover introduced their model with this in mind, they were mainly inter-
ested in λ1.

Let us discuss our invariants one by one, starting with the systole. Recall that we
would be hoping for surfaces with logarithmic systole. Unfortunately, it turns out that,
even if the systole of these surfaces does not tend to zero, it also doesn’t tend to infinity.
For instance, we have the following result, in which we will denote the expected value
of a random variable X : Ωn → R with respect to Pn by

EN [X] =
∑
ω∈Ωn

Pn[ω] ·X(ω).

Theorem 4.2.5 ([Pet17]). In the Brooks–Makover model we have:

lim
N→∞

EN [sys(Sc)] = 2.484 . . . .

Of course, this doesn’t mean that these random surfaces can’t be used to attack
the question of maximal systole: we could still hope to prove that the probability
PN [sys(Sc) > C · log(g(Sc))] remains positive for a certain C > 0, thus establishing the
existence of such surfaces. In the case of regular graphs, this has been shown to work
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for some (not (yet) optimal) C > 0 by McKay–Wormald–Wysocka [MWW04]. For
Brooks–Makover random surface this is known to work up to length ≈ log log(g(Sc)),
due to work by Petri–Thäle [PT18], whether this can be pushed further is open.

Proof sketch of Theorem 4.2.5. The proof relies on computing the expected
systole of the non-compact surface So and then using Brooks’s work [Bro99] to control
the expected systole if Sc.

In order to determine the systole of So, we study the random variables

ZL : ΩN → N
that count the number of geodesics of length at most L on So. It turns out that these
random variables converge to Poisson variables (see Theorem 4.2.6 below) with means
that depend on L alone1. In [Pet17] this was done using the method of moments.
Better bounds were later proved in [PT18] using the Chen–Stein method. Ignoring
convergence issues, since

Pn[sys(So) ≥ x] = P[Zx(So) = 0]

we can use the Poisson variables we found to write down an expression for the large n
limit of En[sys(Sc)], which gives the 2.484 . . . from the theorem. �

Let us discuss the Poisson distribution result mentioned in the proof above. The
result states:

Theorem 4.2.6 ([Pet17, PT18]). Fix x > 0 Let Zx : ΩN → N denote the random
variable that counts the number of closed geodesics of length at most x on So.

Then, as N →∞, Zx converges in total variational distance to a Poisson-distributed
random variable with a mean λx, depending on x alone. Moreover, λx is explicitly
computable for every x > 0.

Proof. First of all, counting closed curves needs to be translated to a combinatorial
question. First of all note that every closed curve in the surface So can be homotoped
to a closed cycle in the dual graph to the triangulation of So (see Figure 7)

Figure 7. A closed curve and the cycle in the graph, homotopic to it

If this curve does not encircle a cusp on So, it is freely homotopic to a unique closed
geodesic, minimizing the length in the homotopy class. The length of this geodesic can

1Recall that a random variable X : Ω → N is said to be Poisson-distributed with mean λ > 0 if
and only if

P[X = k] =
λke−λ

k!
.

for all k ∈ N
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easily be computed in terms of the combinatorics of the circuit. Indeed, if we think of
So = Γ\H2, we need to find an element g ∈ Γ corresponding to our curve. This goes as
follows. At every triangle the circuit traverses, it turns either right or left. If we record
these turns we get a finite string of L’s and R’s. We now replace these letters with the
matrices

L =

(
1 1
0 1

)
, R =

(
1 0
1 1

)
.

So for every closed curve γ we obtain a matrix Mγ by multiplying out the matrices L
and R according to the string. The geodesic γ̃ homotopic to γ now has length

`(γ̃) = 2 · arccosh

(
tr(Mγ)

2

)
Note that the word in L and R is only determined up to cyclic permutation: if we
start at a different triangle, we get a cyclic permutation. Moreover, if we traverse the
curve backwards, we get the word read backwards with L and R interchanged, because
L = Rt, this corresponds to taking a transpose. Luckily the trace is invariant under
cyclic permutations and transposes.

It is not hard to see that the number of words w in L and R with trace 2 < tr(w) ≤
2 cosh(x/2) is finite for all x > 0. So, if we want to count all closed geodesics of length
≤ x, we just need to count the number of appearances of the corresponding words as
cycles in the dual graph to the triangulation of So. I.e.

Zx =
∑
w∈Wx

Z[w],

where

• Wx = {w word in {L,R} : 2 < tr(w) ≤ 2 cosh(x/2) } / ∼ and w ∼ w′ if w′

can be obtained from w′ by a cyclic permutation and potentially reading it
backwards and interchanging L and R.
• and Z[w] counts the number of cycles carrying [w].

The next step is proving the convergence to Poisson variables. We will prove that
Z[w] converges to a Poisson variable. This is almost enough to prove the claim about
Zx: sums of independent Poisson variables are Poisson variables. We’ll comment in the
end where the asymptotic independence comes from.

For simplicity of exposition, we will follow the proof from [Pet17], which relies on
the method of moments. Let us first recall what this is. Given a random variable
X : Ω→ N and k ∈ N, we will write

(X)k = X · (X − 1) · · · (X − k + 1)

The method of moments now states that if we have a sequence {Xn}n of random
variables and there exists a λ > 0 such that

(3) lim
n→∞

E[(Xn)k] = λk

for all k ∈ N, then, as n → ∞, Xn converges in distribution to a Poisson distributed
random variable with mean λ (see for instance [Bol01] for a proof).
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So, the rest of our proof consists of proving (3) holds for our random variables
Z[w] : ΩN → N. Let us start with EN [Z[w]]. We write

EN [Z[w]] =
∑

c∈C[w],N

EN [1c]

where

• C[w],N is the set of labeled cycles with labels in {1, . . . , 6N} that carry the word
[w].
• 1c is the {0, 1}-valued random value that is 1 if and only if c appears in the

configuration.

Note that

EN [1c] = PN [c apears in So] =
1

(6N − 1)(6N − 3) . . . (6N − 2m+ 1)

where m is the length of the cycle: the number of gluings of triangles involved in the
cycle.

We will now separate or set C[w],N into finitely many sets CH
[w],N of cycles according

to the isomorphism type H of the dual graph they represent. So we get

(4) EN [Z[w]] =
∑
H

∣∣CH
[w],N

∣∣ 1

(6N − 1)(6N − 3) . . . (6N − 2e(H) + 1)
,

where e(H) denotes the number of edges of H.
Our goal is now to prove that EN [Z[w]] is dominated by the term in which H is a

a cycle that visits every vertex at most once. Let us write H0 for this graph and first
compute this term. We claim that∣∣∣CH0

[w],N

∣∣∣ = 3|w|
|[w]|
2 |w|

2N(2N − 1) · · · (2N − |w|+ 1).

In order to count this, we have to count the number of ways to label H0.

• The factors 2N(2N−1) · · · (2N−|w|+1) come from choosing a labeled triangle
for each triangle in H.
• The factor 3|w| comes from choosing a labelled side for one outgoing edge of H

at each triangle. The label second outgoing edge is determined by w.
• We have to repeat this for every representative of [w], which gives a factor |[w]|
• We overcount in the process described above, because it uses a starting point

and a direction, so we divide by 2 |w|.
The above implies that∣∣∣CH0

[w],N

∣∣∣ 1

(6N − 1)(6N − 3) . . . (6N − 2e(H0) + 1)

N→∞−→ |[w]|
2 |w|

.

For the other graphs in the sum above, we have∣∣CH
[w],N

∣∣ ≤ (2N)v(H),
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where v(H) denotes the number of vertices of H. So, for those terms we have∣∣CH
[w],N

∣∣ 1

(6N − 1)(6N − 3) . . . (6N − 2e(H) + 1)
= O(N v(H)−e(H)) as N →∞

since the Euler characteristic v(H)− e(H) of any connected graph H that is neither a
circuit nor a tree is negative, this shows that the other terms in the sum in (4) tend to
zero and we have

E[Z[w]]
N→∞−→ |[w]|

2 |w|
,

which proves (3) for k = 1.
For the higher order moments, we observe that (Z[w])k counts the number k-tuples

of distinct [w]-carrying cycles. In particular, E[(Z[w])k] can be controlled with sim-
ilar arguments –that we will not work out here – to the above. In order to prove
the independence we mentioned earlier, we also need to control moments of the form
E[(Z[w1])k(Z[w2])k · · · (Z[wm])k], since these random variables again count tuples of cycles,
this can be done with similar methods as well. �

Random construction do not seem like a natural source for surfaces with large
kissing numbers: Kissing numbers are a measure of symmetry and random objects are
not symmetric. So, the next natural question is whether their diameter is extremal.
Brooks–Makover (Theorem 4.2.4) already proved it’s logarithmic, so the question is
whether they (asymptotically) saturate the bound from Lemma 2.3.1. It turns out,
from work of Budzinski–Curien–Petri, they miss this bound by a factor two:

Theorem 4.2.7 ([BCP19]). The diameter of Brooks–Makover random surfaces satis-
fies:

diam(Sc) ∼ 2 · log(g(Sc)) as N →∞
in probability.

Proof sketch. We will not comment on the upper bound, but it uses a different
(technically more involved) version of the peeling arguments in Section 4.1.2 below. The
lower bound is a direct consequence of the fact that the sizes of the vertices asymptot-
ically follow a Poisson–Dirichlet distribution. Indeed, it is not so hard to see from the
stick-breaking description in Section 4.2.1.2 the triangulation will typically contain at
least two vertices of linear size (in N). Again using Brooks’s work [Bro99], it turns out
that in the compactification process, there will be two large (of radius log(N)− O(1))
disjoint embedded disks around these vertices. The distance between the midpoint of
these disks is at least the sum of their radii, hence at least 2 log(N)−O(1). �

4.2.2. Weil–Petersson random surfaces. Another way to define a model for
random surfaces is by picking a random point in the moduli spaceMg of closed oriented
surfaces of genus g.

For this, we need a measure on Mg. We will use the measure coming from the
Weil–Petersson metric. It’s a theorem of Wolpert [Wol82], that on the Teichmüller
space T g, this volume form is

d volWP = d`1 ∧ dτ1 ∧ · · · ∧ d`3g−3 ∧ dτ3g−3,
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where `1, . . . , `3g−3 and τ1, . . . , τ3g−3 denote the length and twist coordinates respectively
with respect to a fixed pants decomposition. Moreover, this volume form descends to
a volume form of finite total volume on Mg. So, we may define a probability measure
on Mg by

PWP
g [A] =

volWP(A)

volWP

for all measurable A ⊂Mg.

In [Mir07], Mirzakhani developed recursive methods to evaluate integrals of func-
tions on Mg. These methods also allow one to study the geometry of a random point
in Mg. Mirzakhani proved:

Theorem 4.2.8 ([Mir13]). We have

(a) There exist constants C, ε0 > 0 such that for all g ≥ 2 and ε < ε0

1

C
· ε2 ≤ PWP

g [sys(X) < ε] ≤ C · ε2.

(b) For every ε > 0,

lim
g→∞

PWP
g

[
h(X) ≥ log(2)

2π + log(2)
− ε
]

= 1.

(c) For every ε > 0,

lim
g→∞

PWP
g

[
h(X) ≥ log2(2)

(4π + log(4))2
− ε
]

= 1.

(d) We have

lim
g→∞

PWP
g [diam(X) ≤ 40 log(X)] = 1.

Note that log(2)
2π+log(2)

= 0.099 . . . and log2(2)
(4π+log(4))2

= 0.0024 . . ..

We also observe that, except for item (a), Weil–Petersson random behave in a similar
way to the Brooks–Makover model.

Moreover, they also satisfy a similar Poisson approximation theorem, due to
Mirzakhani–Petri:

Theorem 4.2.9 ([MP19]). Fix x > 0 and let Nx :Mg → N denote the function that
counts the number of closed geodesics of length ≤ x. Then, as g →∞, Nx converges in
distribution to a Poisson distributed random variable with mean

λx =

∫ x

0

et + e−t − 2

2t
dt.

This was again proved with the method of moments, now in combination with
Mirzakhani’s integration methods for moduli space.
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4.2.3. Random covers. Another model of a random surface can be defined as
follows. Fix any hyperbolic surface X of finite area. Then X has finitely many covers
of degree n for any n ∈ N. So we get a random surface by picking such a cover uniformly
at random.

First of all we note that for this model, it is already quite hard to count the number
of elements in the probability space. This was first done by Müller–Schlage-Puchta
[MP02] in the closd case and later generalized to all Fuchsian groups by Liebeck–
Shalev [LS04]. Very recently, analogues of Theorems 4.2.4, 4.2.6 and 4.2.9 were proved
by Magee–Puder [MP20] and Magee–Naud–Puder [MNP20] for random covers of a
closed hyperbolic surface X. We mention in particular their theorem that if λ1(X) ≥ 3

16
then for every ε > 0,

P
[
A random degree n cover Y → X has λ1(Y ) ≥ 3

16
− ε
]
n→∞−→ 1.

4.3. Random 3-manifolds

We haven’t spoken much about higher dimensional random manifolds yet. One
reason for this is that fewer models are around.

One model that is well studied in dimension three is that of random Heegard split-
tings and the related model of random mapping tori. We will not go into these models
in this lectures, but mention that they behave very differently from the models of ran-
dom surfaces we’ve seen. For instance, we’ve seen random surfaces always turn out
to be highly connected. This is known not to hold for random Heegaard splittings
and mapping tori: For both of these models λ1(M) tends to zero as vol(M) goes up
Baik–Gekhtman–Hamenstädt [BGH20] and independently Lenzhen–Souto determined
bounds on the rate at which this happens for mapping tori and Hamenstädt–Viaggi
[VH19] determined the rate for random Heegaard splittings.

One of the problems in dimension three and above is that the natural analogue
of the model by Brooks–Makover does not work: if you randomly glue n tetrahedra
together along their faces, the probability that the result is a manifold tends to zero
as n → ∞ (see for instance [DT06] for a proof). However, the problem turns out to
be only at the vertices of the complex. So, by truncating the tetrahedra, one obtains
a model for a random 3-manifold with boundary. The resulting compact manifolds
carry hyperbolic metrics of finite volume with totally geodesic boundary, their volume
is linear in the number of tetrahedra and their Cheeger constants do not tend to zero.
This is the subject of upcoming joint work with Jean Raimbault [PR20].

4.4. Questions

Besides the extremal questions we posed in the second lecture, there are also many
interesting open questions about random manifolds. We will finish this text by listing
a few:

Question 6. Find new models for random (hyperbolic) manifolds. In particular, find
models that show similar properties to all the models of random surfaces we’ve seen
above, like high connectivity.
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Question 7. What is the geometry of a random degree n cover of a fixed closed
hyperbolic manifold? Is it highly connected? Does it Benjamini–Schramm converge to
Hn? Currently, even the asymptotic growth rate of the number of degree n covers as
n→∞ are not known in dimension more than two.

Question 8. Does any (or do all) of the models for random surfaces discussed above
satisfy

P[λ1(X) ≥ 1

4
− ε] area(X)→∞−→ 1

for every ε > 0 ?

Question 9. By Wang’s Theorem (Theorem 1.5.1), the number of hyperbolic n-
manifolds of volume ≤ v is finite for all n ≥ 4, v > 0. What is the geometry of
such a manifold picked uniformly at random?
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