
Lecture 1

Probability theory

In this chapter, we recall some basic probability theory that is needed later
on. The overview below will be very incomplete, as we will only cover the
parts of the theory that we need. For a comprehensive reference, we refer to
[Ven13], most of the material covered below can be found in Chapters XV
and XVIII if [Ven13].

1.1 Definitions

We start with the definition of a probabilty space. In this definition P(A)
denotes the power set of a set A: the set of all subsets of A.

Definition 1.1. A probability space is a triple (Ω,Σ,P), where

• Ω is a set,

• Σ ⊂ P(Ω) is a σ-algebra and

• P : Σ → [0, 1] is a probability measure. That is, a measure such that
P [Ω] = 1.

An important example to us will be the following:
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Example 1.2. Let Ω be a finite set. We can turn Ω into a probability space
by setting Σ = P(Ω) and

P [A] =
|A|
|Ω|

for all A ⊆ Ω,

where |A| denotes the cardinality of A. This probability measure is called
the uniform probability measure on Ω.

From hereon, we will fix the following convention regarding σ-algebras:
If Ω is a finite set, then we set Σ = P(Ω) and if Ω is a topological space then
we set Σ = B(Ω), the Borel algebra of Ω. This convention will allow us not
to mention σ-algebras anymore in what follows.

Definition 1.3. Given a probability space (Ω,Σ,P) and a measure space E,
an E-valued random variable is a measurable function X : Ω → E. The
expected value E [X] of an R-valued random variable X is defined by

E [X] =

∫
Ω

X(ω)dP(ω).

The variance of X is given by

Var [X] = E
[
X2
]
− E [X]2 .

Two random variables X, Y : Ω→ R are called independent if

P [X ≤ x and Y ≤ y] = P [X ≤ x] · P [Y ≤ y]

for all x, y ∈ R.

Finally, let k ∈ N, the quantity

E
[
Xk
]

is called the kth moment of X.

Almost all random variables we will consider are real-valued. We remark
that in general, the moments of a random variable are not necessarily finite.
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Example 1.4. Let A ⊂ Ω be measurable. The function χA : Ω→ R defined
by

χA(ω) =

{
1 if ω ∈ A
0 otherwise.

is a random variable that satisfies

E [χA] = P [A] .

Random variables of this form are called Bernoulli random variables.

Often it turns out to be easier to compute expected values than proba-
bilities. In these cases, the following inequality relating the two is useful.

Lemma 1.5. Markov’s inequality: Let X : Ω → R be a random variable
such that E [X] <∞ and

X(ω) ≥ 0 for all ω ∈ Ω

Then for all x ∈ (0,∞) we have

P [X ≥ x] ≤ E [X] /x.

Proof. We have:

x · P [X ≥ x] = x · E
[
χ{ω∈Ω; X(ω)≥x}

]
= E

[
x · χ{ω∈Ω; X(ω)≥x}

]
≤ E [X] ,

where the last inequality follows from the fact that

x · χ{ω∈Ω; X(ω)≥x}(ω) ≤ X(ω)

for all ω ∈ Ω.

1.2 The Chen-Stein method

In what follows we will give a self contained account of the Chen-Stein
method. Some of the ingredients will however seem to come out of thin
air. There is a good motivation for these ingredients, which we will skip in
the interest of time.

The goal of this section will be to bound the distance between a random
variable X and a Poisson distributed variable. Let us first recall the definition
of a Poisson variable.
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Definition 1.6. Let λ ∈ (0,∞). A random variable X : Ω → N is said to
be Poisson distributed with mean λ if

P [X = k] =
λke−λ

k!

for all k ∈ N.

We also need a notion of distance between random variables:

Definition 1.7. Let E be a measure space with σ-algebra E . Furthermore,
let X, Y : Ω → E be random variables. The total variational distance be-
tween X and Y is defined as

dTV (X, Y ) = sup {|P [X ∈ A]− P [Y ∈ A]| ; A ∈ E} .

If (Xn)n∈N is a sequence of E-valued random variables so that dTV (Xn, X)→
0 as n→∞ then we say that the sequence (Xn)n∈N converges to X in total
variational distance and write

Xn
TV→X as n→∞.

1.2.1 Stein’s equation

It turns out that X : Ω→ N is Poisson distributed if and only if

E [λg(X + 1)−Xg(X)] = 0

for all bounded functions g : N→ R (See Exercise 1.4 for the easier direction).
The basic idea of the Chen-Stein method is that if E [λg(X + 1)−Xg(X)]
is close to 0 for all bounded functions g, then X must be close to Poisson
distributed.

Given A ⊂ N, Stein’s equation is the equation

λg(k + 1)− kg(k) = χA(k)− E [χA(Zλ)] for all k ∈ N (1.1)

where χA : N→ {0, 1} is defined by

χA(n) =

{
1 if n ∈ A
0 otherwise.
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We claim that this equation has a unique bounded solution that has value
0 at 0, which we shall denote by gA : N → R. Note that gA also depends
on λ. In order to keep the notation light we shall however suppress λ. The
fact that a unique solution gA exists is clear from the recursive nature of the
equation, the proof that it is bounded we shall postpone to Proposition 1.10.

Our earlier remark about using E [λg(X + 1)−Xg(X)] as a measure of
the distance to a Poisson variable is made precise by the following theorem.

Theorem 1.8. Suppose X : Ω → N is a random variable and Zλ : Ω → N
is a Poisson distributed random variable with mean λ > 0. Then

dTV (X,Zλ) = sup {|E [λgA(X + 1)−XgA(X)]| ; A ⊂ N} .

Proof. Given A ⊂ N, (1.1) implies that

E [λgA(X + 1)−XgA(X)] = E [χA(X)]−E [χA(Zλ)] = P [X ∈ A]−P [Zλ ∈ A] .

As such, filling in the definition of total variational distance leads to the
theorem.

1.2.2 Bounds on Stein’s equation

Theorem 1.8 gives us a way to bound the distance between any random
variable X and a Poisson variable. Our next and final goal will be to express
this bound in terms of more immediate information on X. That is, we will
bound |E [λgA(X)−XgA(X)]| in terms of moment(-like expression)s of X.

We start with a bound on solutions of (1.1). Given A ⊂ N, let us write

||gA|| = sup
k∈N
{|gA(k)|}.

Before we can prove a bound on ||gA||, we need the following lemma:

Lemma 1.9. Let r, s ∈ N so that 2r ≤ s. Then:

r∑
i=0

(
s

i

)
≤ s− r + 1

s− 2r + 1
·
(
s

r

)
.
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Proof. Indeed, we have(
s

r

)−1 r∑
i=0

(
s

i

)
=

r∑
i=0

(s− r)!r!
(s− i)!i!

=
r∑
i=0

(s− r)!r!
(s− r + i)!(r − i)!

=
r∑
i=0

r(r − 1) · · · (r − i+ 1)

(s− r + i) · · · (s− r + 1)

≤
r∑
i=0

(
r

s− r + 1

)i
.

This is a geometric series, so we obtain that(
s

r

)−1 r∑
i=0

(
s

i

)
≤

1−
(

r
s−r+1

)r+1

1− r
s−r+1

≤ s− r + 1

s− 2r + 1

for all r, s, where we have used the fact that r ≤ s/2 for the last step.

We now have the following bound on ||gA||:

Proposition 1.10. Let A ⊂ N. Then

||gA|| ≤ 1.

Proof. To simplify matters, we define a new function f : N→ R by

f(k) = χA(k)− E [χA(Zλ)]

for all k ∈ N. Note that by definition

E [f(Zλ)] = 0.

Set gA(0) = 0. From (1.1) we obtain that for all k ∈ N:

gA(k + 1) =
1

λ
f(k) +

k

λ
g(k).
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Hence

gA(k + 1) =
1

λ

k∑
j=0

k(k − 1) · · · (k − j + 1)

λj
f(k − j) =

k!

λk+1

k∑
i=0

λi

i!
f(i).

Thus

gA(k + 1) =
1

λ · P [Zλ = k]

k∑
j=0

P [Zλ = j] f(j),

where Zλ : Ω→ N is a Poisson variable with mean λ. Filling in definition of
f we get

χ[0,k](Zλ)f(Zλ) = χA∩[0,k](Zλ)− χ[0,k](Zλ)P [Zλ ∈ A] .

To shorten notation, let us write:

pλ(B) = P [Zλ ∈ B]

for all B ⊂ N and Uk = [0, k] ∩ N. We get

E [χUk
(Zλ)f(Zλ)] = E [χA∩Uk

(Zλ)]− E [χUk
(Zλ)] pλ(A)

= pλ(A ∩ Uk)− pλ(Uk)pλ(A)

= pλ(A ∩ Uk) · pλ(N \ Uk)− pλ(A \ Uk) · pλ(Uk).

So we obtain

gA(k + 1) =
pλ(A ∩ Uk) · pλ(N \ Uk)− pλ(A \ Uk) · pλ(Uk)

λ · pλ(k)
.

Hence

|gA(k + 1)| ≤ max {pλ(A ∩ Uk) · pλ(N \ Uk), pλ(A \ Uk) · pλ(Uk)}
λ · pλ(k)

≤ pλ(Uk) · pλ(N \ Uk)
λ · pλ(k)

.

Filling in the Poisson probabilities, we obtain:

|gA(k + 1)| ≤ k! · e−λ

λk+1
·

k∑
i=0

λi

i!

∞∑
j=k+1

λj

j!

= k! · e−λ ·
k∑
i=0

λi

i!

∞∑
j=0

λj

(j + k + 1)!
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Now we reorder the terms and get:

|gA(k + 1)| ≤ k! · e−λ ·
∞∑
n=0

λn
min{n,k}∑
i=0

1

i!(n+ k + 1− i)!

= k! · e−λ ·
∞∑
n=0

λn

(n+ k + 1)!

min{n,k}∑
i=0

(
n+ k + 1

i

)
.

Note that 2 ·min{n, k} < n + k + 1 for all n, k ∈ N, so Lemma 1.9 applies.
Hence we get:

|gA(k + 1)| ≤ k! · e−λ ·
∞∑
n=0

λn ·
(
n+k+1

min{n,k}

)
(n+ k + 1)!

n+ k + 2−min{n, k}
n+ k + 2− 2 ·min{n, k}

.

A straightforward computation shows that(
n+k+1
n

)
(n+ k + 1)!

=
1

n!(k + 1)!
and

(
n+k+1

k

)
(n+ k + 1)!

=
1

(n+ 1)!k!
.

This implies that

|gA(k + 1)| ≤ e−λ ·

(
k∑

n=0

λn

n!

k + 2

(k + 1)(k − n+ 2)

+
∞∑

n=k+1

λn

n!

n+ 2

(n+ 1)(n− k + 2)

)
≤ e−λ · eλ

= 1.

1.3 Exercises

Exercise 1.1. Let X : Ω→ R be a random variable so that

E [X] <∞ and E
[
X2
]
<∞.
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Chebyshev’s inequality states that

P [|X − E [X]| ≥ x] ≤ Var [X]

x2
,

for all x > 0. Prove Chebyshev’s inequality.

Exercise 1.2. Let X : Ω→ R be a random variable so that

E [X] <∞ and E
[
X2
]
<∞

and
X(ω) ≥ 0 for all ω ∈ Ω

Prove that

P [X > 0] ≥ E [X]2

E [X2]
.

This inequality is called the second moment method.

Exercise 1.3.

(a) Show that two Bernoulli variables χA, χB : Ω → R corresponding to
measurable sets A,B ⊆ Ω are independent if and only if

P [A ∩B] = P [A] · P [B] .

(b) Give an example of a probability space Ω and three random variables
X, Y, Z : Ω→ R so that all pairs of random variables among {X, Y, Z}
are independent, but there exists x, y, z ∈ R so that

P [X ≤ x and Y ≤ y and Z ≤ z] 6= P [X ≤ x] · P [Y ≤ y] · P [Z ≤ z] .

Exercise 1.4. Show that if a random variable Z : Ω → N is Poisson
distributed with mean λ ∈ (0,∞) then:

E [λg(Z + 1)− Zg(Z)] = 0

for all bounded functions g : N→ R.
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