Lecture 2

The Chen Stein method

Recall that given A C N and A € (0,00), Stein’s equation 1.1 looks for a
function g4 : N — R so that g4(0) = 0 and

Aga(k +1) —kga(k) = xa(k) — E [xa(Z))] for all k € N. (2.1)

2.1 Bounds on Stein’s equation

Furthermore, recall the following bound on partial sums in Newton’s binomial
theorem:

Lemma 1.9. Let r,s € N so that 2r < s. Then:
Z(S> < s—r+1 (3)
— \i s=2r+1 \r
We now have the following bound on ||ga||:

Proposition 1.10. Let A C N. Then

[lgall < 1.



Proof. To simplify matters, we define a new function f : N — R by
f(k) = xa(k) = E [xa(Z))]
for all £ € N. Note that by definition
E[f(Z))] = 0.

Set ga(0) = 0. From (1.1) we obtain that for all k£ € N:

galk+ 1) = 11R) + S 0a(h)
Hence
PCTSTEE S SLUERRHLEFE WP oL 1
Thus B -
galk+1) =5 P[;:k]im%—y]f@),

where 7, : 2 — N is a Poisson variable with mean A. Filling in definition of
f we get

X[o,k](ZA)f(ZA) = XAm[o,k](Z,\) - X[o,k](Z,\)IP Zy e A].
To shorten notation, let us write:
pa(B) =P [Z, € B]
for all B C N and Uy = [0, k] N N. We get

E [xv,(Zx)f(Z))] = Elxanu,(Zx)] = E [xv,(Z2x)] pa(A)
PA(ANUk) — pa(Ur)pa(A)
= pA(ANUg) - paA(N\ Ux) — pa(A\ Uk) - pa(Ug).

So we obtain

PA(ANUL) - pa(N\ Ug) — pa(A\ Uy) - pa(Ug)

gA(k + 1) =



Hence
max {pr(ANUg) - AN\ Uk), pa(A\ Ug) - pA(Uk) }

galk+1)] < o

Pa(Ur) - pA(N\ Uy)
A pa(k)
Filling in the Poisson probabilities, we obtain:
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Now we reorder the terms and get:

min{n,k} 1

gatk+1)] < K- ZA” Z i+ k+1—q)

min{n,k}
A" n+k+1
= kl.e. — :
S ()
Note that 2 - min{n,k} < n+ k+ 1 for all n,k € N, so Lemma 1.9 applies.
Hence we get:

o0 )\"~(n+k+ ) n+ k42— min{n, k}
1 < =2 min{n,k} ) )
|ga(k +1)| ke Z m+k+ 1! n+k+2—2- -min{n, k}

A straightforward computatlon shovvs that

(n—l—s—H) B 1 (n-l—]/:—i—l) B 1

= d - .
m+k+ D! kD! M ke (nt D
This implies that
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2.2 Approximation theorems

We are now ready to put all the above together into concrete approximation
theorems. The type of random variables we will be considering later on are
counting variables. In particular, they will be variables that are obtained as
the sum of (not necessarily mutually independent) Bernoulli variables.

To this end, let Z be a set and let X; : 2 — N be a Bernoulli variable
with
EXi]=P[Xi=1]=p

for all i € Z. We will be interested in approximating the random variable
W=> X
i€T
with a Poisson variable. To this end, set
pij = B [X; X}]
and, given ¢ € Z, define
D, ={j€I; j+#1i, X;and X, not independent} .

Given this data, we define the following three quantities

BlZZPf» BQZZZpipj and B3zzzpzj-

1€ i€ jeD; 1€Z j€D;

The first approximation theorem we state is the following:

Theorem 2.1. Let W be as above such that A = E [W] € (0,00). Further-
more, let Z, : 0 — N be Poisson distributed random variable with mean .
Then

dry (W, Zy) <2-(B1 + By + Bs).



Proof. Recall from Theorem 1.8 that we need to bound E [Aga(W + 1) — Wga(W)]
for sets A C N. Our first step will be to find a convenient decomposition of
this quantity. First note that

EMga(W +1) =Waa(W)] = Y EE[X]ga(W +1) = Xiga(W)]

= Y E[X|E[ga(W + 1)] — E [Xiga(W)]

Given ¢ € Z, define two new random variables S;,T; : €2 — N by

Si= > X;and T,=) X

JET\(DiUi)) jeD;

and observe that

for all 7 € 7. Notice that
E [Xiga(W)] = E [Xiga(Si + T; + X;)] = E [Xiga(Si + T; + 1)] .
Moreover

E[Xiga(W)] = E[X]E [ga(Si+ D] +E[(X; — E[Xi]) - ga(Si + 1)]
+E [Xi(ga(Si +T; + 1) — ga(S; + 1))]..

Independence of X; and S; implies that
E[(X; —E[Xi])-ga(Si+ 1] =E[X; —E[X;]] - E [ga(S; +1)] = 0.
So we obtain
EMga(W +1) =Waa(W)] =) EX]E[ga(W +1)] = E[X]E[ga(S; + 1)
~E[Xi(ga(Si + T + 1) — ga(Si + 1))]
= E [Xi]E [ga(T; + Si + Xi + 1) — ga(S; + 1)]

—E[Xi(ga(Si +T; +1) — ga(Si +1))].



Now we will apply the fact that ||ga|| < 1 (Proposition 1.10). Given any
j,k € N, we have that

lga(k+7) —g(k)] <2 xn.0(d) < 25
As such
IE [ga(T; + S; + Xi + 1) — ga(S; +1)]| < 2-E [T, + X;]

and
|E [Xi(ga(Si + T; + 1) — ga(Si +1))]| < 2-E[XiT}].

Plugging this into the inequality above, we obtain

EDga(W +1) = Waa(W)] < 23 E[X]E[T; + X] +E [XT]
= 2-(1;11+BQ+B3).

O

Finally, we need a following multivariate version of Theorem 2.1. First we
generalize our set up. Again, we let Z be a set and X; : Q — N a Bernoulli
variable dor all ¢ € Z. Now suppose that d € N and

IT=7,U...U1Z,.

We will now be interested in approximating the random variable W : Q — N¢,

coordinate-wise defined by

€Ty

with a Poisson variable. Again we set
pi =E[Xi], pi; =E[X;Xj]
and, given ¢ € Z, define
D, ={j€I; j#1i, X;and X, not independent} .

Note that this set may intersect with multiple of the sets Z.



We will also use three similar quantities to those before:

By = ZP?, By = Z Z pip; and Bsy = Z Z Pij

1€L 1€Ly jEDi 1€Ly, jeDi
fork=1,...,d.
The approximation theorem now states:

Theorem 2.2. Let W be as above such that A\, = E[Wy] € (0,00) for
k=1,...,d. Furthermore, let Z, : Q0 — N be Poisson distributed random
variable with mean N\, for k =1,...,d. Then

d
dpy (W, 2) < 2- Z Biy + By + Bsy,
=1

where Z = Q — N¢ is defined by Z = (Zy, ..., Zy).

Proof. Our strategy will be to apply the proof of Theorem 2.1 recursively.
First note that for A C N4

PV e A|-B[ZeA] = E[s(W)] ~E[xa(2)
d
= ZE [XA(Zla ) Zr—l; WTy Wr—l—l ) Wd)]
- —E [XA(Zh ey Zr—l, ZT7 Wr+17 ey Wd)] .
Let us write

t?" = ]E[XA(Zla"’)ZT—17WT7WT+1"')Wd)]
—E [XA(Zh ey ZTfl, Zm WrJrl, ey Wd)] .

Let ga, : N© — R be the function satisfying ga,(k) = 0 when k. = 0 and
)\rgA,r<k + 67") - krgA,r(k) == XA(k> —E [XA(kla ceey krfla Zru kr+17 R kd)]
for all k € N, where e, € N? is defined by

1 itj=r
(er)j o { 0 otherwise.
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We have

tr = ]E’[)\TgA,T(Zla"'7ZT—17WT+17WT+17"'7Wd)]
—E [WrgA,r(Zly---;Zr—laW’ruWr—l—la--‘7Wd)]

Like in the proof of Theorem 2.1, we define random variables S; ., T; » : 2 —+ N

by
Sip= Y. Xjand T, = Y X,

]EIT\(D'LU{’L} jEDimIT

for all 7,r. We again observe that
W’r - Si,r + ﬂ,r + Xz

for all 4,r. As such, with a similar computation to the one in the proof of
Theorem 2.1, we obtain

tr = Z E [X’L] E [gA,r(Zla L) Zr—1> Si,r + E,T + Xz + 17 Si,r—H + E,r—i—la
€L,
cey S@d + ﬂ,d) — gA’T(Zl, “eey Zr—h Sm« + 1, <y Si,d)]
—E [Xi(.gA,r(Zla SR ZT*l) S’i,r + E,r + 17 Si,rJrl + E,r+1: ER
Sia+Tia) = 9ar(Z1, ..., Zo1, S5 + 1, 850415+, Sia))] -

Note that for all ki, ... k1, kg1, ... kg
Xa(ki, ook, Ze ks oo ka) = xar(Z,),
where A’ C N is defined by
A'={keN; (ki,....kr—1,k, kry1,... kq) € A}.

As such (2.2) is an instance of Stein’s equation and Proposition 1.10 applies,
from which we obtain

sup {Jga, (K)]} < 1.
keNd

This means that for all k, j € N%:
d
|gA,T(k +]) - gA,r<k)| <2 Z]s
s=1
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Hence

|t SQZE[Xi]E[Xi+E,T+...E,d]"‘E[Xi(Tz’,r+...+ﬂ,d)]-

i€,
Filling this in in our original bound, we obtain

d
PWeA -P[Z€A<2-> Biy+ By + By
k=1

2.3 Exercises

Exercise 2.1.

(a) Let X7, X5 :Q — N" be random variables. Show that

dry (X1, X) = ) [P[X; = k] —P[X, = k]|

keNT

(b) Let »r € N and Ah/\g c (0, OO)T and let X1 = (Xl,la"'7X1,’r‘)aX2 =
(Xo1,...,X2,) : © = N be random variables so that X, ; are Poisson
distributed with mean A; ; and pairwise independent. Show that

dry (X1, X) = (ZM“ —A21>

as 22:1 |)\1,i — )\27¢| — 0.

Exercise 2.2. Let A\ € (0,00). For all n € N, let {X;,}, be independent
Bernoulli variables so that

E [X;,] = A/n.

Furthermore, define

Wn = il Xi,n



and let Z, be a Poisson ditributed random variable with mean \. Show that
W, X 7,
as n — o0o.

Exercise 2.3. Random geometric graphs: let T? denote the 2-dimensional

torus. That is
T? = R? / ZQ,

where Z? ~ R? by translations. Figure 2.1 shows a cartoon of T?2.

Figure 2.1: A torus.

The Lebesgue measure on R? is invariant under the Z? action and hence
descends to a measure on T?. [0,1]*> C R? forms a fundamental domain for
this action. As such the total area of T? under this measure is 1. In other
words, we obtain a probability space (T?,P). T? also comes with a distance:
the Euclidean distance function dg: : R? x R? — [0,00) is also invariant
under the Z? action and hence descends to a distance

dp : T? x T? — [0, 00).
Set r, = n=%/*. Given z1,...,z, € T? we define a graph as follows. The
points 1, ..., x, will be the vertices of our graph. We connect z; and z; by
an edge if and only if dp2(x;, ;) < 7.

(a) Let X, : (T?)" — N count the number of triangles (triples of vertices
that are all connected by an edge) in the graph associated to the points
x1,...,T,. Show that

1
E[X,] — 6/ / h(y, y2)dyi dys
B1(0) J B1(0)
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as n — oo, where B;(0) C R? denotes the unit ball around the origin
in R? and

1 if dR2<y17y2) S 1

0 otherwise.

h(y1,y2) = {

Set

1
A= 6/ / h(yuyz)dyldys
B1(0) J B1(0)

and let Zy : 2 — N be a Poisson random variable with mean A. Show
that
X, =7,

as n — o0.
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