
Lecture 2

The Chen Stein method

Recall that given A ⊂ N and λ ∈ (0,∞), Stein’s equation 1.1 looks for a
function gA : N→ R so that gA(0) = 0 and

λgA(k + 1)− kgA(k) = χA(k)− E [χA(Zλ)] for all k ∈ N. (2.1)

2.1 Bounds on Stein’s equation

Furthermore, recall the following bound on partial sums in Newton’s binomial
theorem:

Lemma 1.9. Let r, s ∈ N so that 2r ≤ s. Then:

r∑
i=0

(
s

i

)
≤ s− r + 1

s− 2r + 1
·
(
s

r

)
.

We now have the following bound on ||gA||:

Proposition 1.10. Let A ⊂ N. Then

||gA|| ≤ 1.
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Proof. To simplify matters, we define a new function f : N→ R by

f(k) = χA(k)− E [χA(Zλ)]

for all k ∈ N. Note that by definition

E [f(Zλ)] = 0.

Set gA(0) = 0. From (1.1) we obtain that for all k ∈ N:

gA(k + 1) =
1

λ
f(k) +

k

λ
gA(k).

Hence

gA(k + 1) =
1

λ

k∑
j=0

k(k − 1) · · · (k − j + 1)

λj
f(k − j) =

k!

λk+1

k∑
i=0

λi

i!
f(i).

Thus

gA(k + 1) =
1

λ · P [Zλ = k]

k∑
j=0

P [Zλ = j] f(j),

where Zλ : Ω→ N is a Poisson variable with mean λ. Filling in definition of
f we get

χ[0,k](Zλ)f(Zλ) = χA∩[0,k](Zλ)− χ[0,k](Zλ)P [Zλ ∈ A] .

To shorten notation, let us write:

pλ(B) = P [Zλ ∈ B]

for all B ⊂ N and Uk = [0, k] ∩ N. We get

E [χUk
(Zλ)f(Zλ)] = E [χA∩Uk

(Zλ)]− E [χUk
(Zλ)] pλ(A)

= pλ(A ∩ Uk)− pλ(Uk)pλ(A)

= pλ(A ∩ Uk) · pλ(N \ Uk)− pλ(A \ Uk) · pλ(Uk).

So we obtain

gA(k + 1) =
pλ(A ∩ Uk) · pλ(N \ Uk)− pλ(A \ Uk) · pλ(Uk)

λ · pλ(k)
.
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Hence

|gA(k + 1)| ≤ max {pλ(A ∩ Uk) · pλ(N \ Uk), pλ(A \ Uk) · pλ(Uk)}
λ · pλ(k)

≤ pλ(Uk) · pλ(N \ Uk)
λ · pλ(k)

.

Filling in the Poisson probabilities, we obtain:

|gA(k + 1)| ≤ k! · e−λ

λk+1
·

k∑
i=0

λi

i!

∞∑
j=k+1

λj

j!

= k! · e−λ ·
k∑
i=0

λi

i!

∞∑
j=0

λj

(j + k + 1)!

Now we reorder the terms and get:

|gA(k + 1)| ≤ k! · e−λ ·
∞∑
n=0

λn
min{n,k}∑
i=0

1

i!(n+ k + 1− i)!

= k! · e−λ ·
∞∑
n=0

λn

(n+ k + 1)!

min{n,k}∑
i=0

(
n+ k + 1

i

)
.

Note that 2 ·min{n, k} < n + k + 1 for all n, k ∈ N, so Lemma 1.9 applies.
Hence we get:

|gA(k + 1)| ≤ k! · e−λ ·
∞∑
n=0

λn ·
(
n+k+1
min{n,k}

)
(n+ k + 1)!

n+ k + 2−min{n, k}
n+ k + 2− 2 ·min{n, k}

.

A straightforward computation shows that(
n+k+1
n

)
(n+ k + 1)!

=
1

n!(k + 1)!
and

(
n+k+1

k

)
(n+ k + 1)!

=
1

(n+ 1)!k!
.

This implies that

|gA(k + 1)| ≤ e−λ ·

(
k∑

n=0

λn

n!

k + 2

(k + 1)(k − n+ 2)

+
∞∑

n=k+1

λn

n!

n+ 2

(n+ 1)(n− k + 2)

)
≤ e−λ · eλ

= 1.
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2.2 Approximation theorems

We are now ready to put all the above together into concrete approximation
theorems. The type of random variables we will be considering later on are
counting variables. In particular, they will be variables that are obtained as
the sum of (not necessarily mutually independent) Bernoulli variables.

To this end, let I be a set and let Xi : Ω → N be a Bernoulli variable
with

E [Xi] = P [Xi = 1] = pi

for all i ∈ I. We will be interested in approximating the random variable

W =
∑
i∈I

Xi

with a Poisson variable. To this end, set

pij = E [XiXj]

and, given i ∈ I, define

Di = {j ∈ I; j 6= i, Xi and Xj not independent} .

Given this data, we define the following three quantities

B1 =
∑
i∈I

p2i , B2 =
∑
i∈I

∑
j∈Di

pipj and B3 =
∑
i∈I

∑
j∈Di

pij.

The first approximation theorem we state is the following:

Theorem 2.1. Let W be as above such that λ = E [W ] ∈ (0,∞). Further-
more, let Zλ : Ω → N be Poisson distributed random variable with mean λ.
Then

dTV (W,Zλ) ≤ 2 · (B1 +B2 +B3).
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Proof. Recall from Theorem 1.8 that we need to bound E [λgA(W + 1)−WgA(W )]
for sets A ⊂ N. Our first step will be to find a convenient decomposition of
this quantity. First note that

E [λgA(W + 1)−WgA(W )] =
∑
i∈I

E [E [Xi] gA(W + 1)−XigA(W )]

=
∑
i∈I

E [Xi]E [gA(W + 1)]− E [XigA(W )]

Given i ∈ I, define two new random variables Si, Ti : Ω→ N by

Si =
∑

j∈I\(Di∪{i})

Xj and Ti =
∑
j∈Di

Xj

and observe that
W = Si + Ti +Xi

for all i ∈ I. Notice that

E [XigA(W )] = E [XigA(Si + Ti +Xi)] = E [XigA(Si + Ti + 1)] .

Moreover

E [XigA(W )] = E [Xi]E [gA(Si + 1)] + E [(Xi − E [Xi]) · gA(Si + 1)]

+E [Xi(gA(Si + Ti + 1)− gA(Si + 1))] .

Independence of Xi and Si implies that

E [(Xi − E [Xi]) · gA(Si + 1)] = E [Xi − E [Xi]] · E [gA(Si + 1)] = 0.

So we obtain

E [λgA(W + 1)−WgA(W )] =
∑
i∈I

E [Xi]E [gA(W + 1)]− E [Xi]E [gA(Si + 1)]

−E [Xi(gA(Si + Ti + 1)− gA(Si + 1))]

=
∑
i∈I

E [Xi]E [gA(Ti + Si +Xi + 1)− gA(Si + 1)]

−E [Xi(gA(Si + Ti + 1)− gA(Si + 1))] .
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Now we will apply the fact that ||gA|| ≤ 1 (Proposition 1.10). Given any
j, k ∈ N, we have that

|gA(k + j)− g(k)| ≤ 2 · χN>0(j) ≤ 2j.

As such

|E [gA(Ti + Si +Xi + 1)− gA(Si + 1)]| ≤ 2 · E [Ti +Xi]

and
|E [Xi(gA(Si + Ti + 1)− gA(Si + 1))]| ≤ 2 · E [XiTi] .

Plugging this into the inequality above, we obtain

E [λgA(W + 1)−WgA(W )] ≤ 2 ·
∑
i∈I

E [Xi]E [Ti +Xi] + E [XiTi]

= 2 · (B1 +B2 +B3).

Finally, we need a following multivariate version of Theorem 2.1. First we
generalize our set up. Again, we let I be a set and Xi : Ω → N a Bernoulli
variable dor all i ∈ I. Now suppose that d ∈ N and

I = I1 t . . . t Id.

We will now be interested in approximating the random variableW : Ω→ Nd,
coordinate-wise defined by

Wk =
∑
i∈Ik

Xi

with a Poisson variable. Again we set

pi = E [Xi] , pij = E [XiXj]

and, given i ∈ I, define

Di = {j ∈ I; j 6= i, Xi and Xj not independent} .

Note that this set may intersect with multiple of the sets Ik.
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We will also use three similar quantities to those before:

B1,k =
∑
i∈Ik

p2i , B2,k =
∑
i∈Ik

∑
j∈Di

pipj and B3,k =
∑
i∈Ik

∑
j∈Di

pij,

for k = 1, . . . , d.

The approximation theorem now states:

Theorem 2.2. Let W be as above such that λk = E [Wk] ∈ (0,∞) for
k = 1, . . . , d. Furthermore, let Zk : Ω → N be Poisson distributed random
variable with mean λk for k = 1, . . . , d. Then

dTV (W,Z) ≤ 2 ·
d∑

k=1

B1,k +B2,k +B3,k,

where Z : Ω→ Nd is defined by Z = (Z1, . . . , Zd).

Proof. Our strategy will be to apply the proof of Theorem 2.1 recursively.
First note that for A ⊂ Nd

P [W ∈ A]− P [Z ∈ A] = E [χA(W )]− E [χA(Z)]

=
d∑
r=1

E [χA(Z1, . . . , Zr−1,Wr,Wr+1 . . . ,Wd)]

−E [χA(Z1, . . . , Zr−1, Zr,Wr+1, . . . ,Wd)] .

Let us write

tr = E [χA(Z1, . . . , Zr−1,Wr,Wr+1 . . . ,Wd)]

−E [χA(Z1, . . . , Zr−1, Zr,Wr+1, . . . ,Wd)] .

Let gA,r : Nd → R be the function satisfying gA,r(k) = 0 when kr = 0 and

λrgA,r(k + er)− krgA,r(k) = χA(k)− E [χA(k1, . . . , kr−1, Zr, kr+1, . . . , kd)]
(2.2)

for all k ∈ Nd, where er ∈ Nd is defined by

(er)j =

{
1 if j = r
0 otherwise.
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We have

tr = E [λrgA,r(Z1, . . . , Zr−1,Wr + 1,Wr+1, . . . ,Wd)]

−E [WrgA,r(Z1, . . . , Zr−1,Wr,Wr+1, . . . ,Wd)]

Like in the proof of Theorem 2.1, we define random variables Si,r, Ti,r : Ω→ N
by

Si,r =
∑

j∈Ir\(Di∪{i}

Xj and Ti,r =
∑

j∈Di∩Ir

Xj

for all i, r. We again observe that

Wr = Si,r + Ti,r +Xi

for all i, r. As such, with a similar computation to the one in the proof of
Theorem 2.1, we obtain

tr =
∑
i∈Ir

E [Xi]E [gA,r(Z1, . . . , Zr−1, Si,r + Ti,r +Xi + 1, Si,r+1 + Ti,r+1,

. . . , Si,d + Ti,d)− gA,r(Z1, . . . , Zr−1, Si,r + 1, . . . , Si,d)]

−E [Xi(gA,r(Z1, . . . , Zr−1, Si,r + Ti,r + 1, Si,r+1 + Ti,r+1, . . . ,

Si,d + Ti,d)− gA,r(Z1, . . . , Zr−1, Si,r + 1, Si,r+1, . . . , Si,d))] .

Note that for all k1, . . . , kr−1, kr+1, . . . , kd:

χA(k1, . . . , kr−1, Zr, kr+1, . . . , kd) = χA′(Zr),

where A′ ⊂ N is defined by

A′ = {k ∈ N; (k1, . . . , kr−1, k, kr+1, . . . , kd) ∈ A} .

As such (2.2) is an instance of Stein’s equation and Proposition 1.10 applies,
from which we obtain

sup
k∈Nd

{|gA,r(k)|} ≤ 1.

This means that for all k, j ∈ Nd:

|gA,r(k + j)− gA,r(k)| ≤ 2
d∑
s=1

js.
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Hence

|tr| ≤ 2
∑
i∈Ir

E [Xi]E [Xi + Ti,r + . . . Ti,d] + E [Xi(Ti,r + . . .+ Ti,d)] .

Filling this in in our original bound, we obtain

P [W ∈ A]− P [Z ∈ A] ≤ 2 ·
d∑

k=1

B1,k +B2,k +B3,k.

2.3 Exercises

Exercise 2.1.

(a) Let X1, X2 : Ω→ Nr be random variables. Show that

dTV (X1, X2) =
∑
k∈Nr

|P [X1 = k]− P [X2 = k]| .

(b) Let r ∈ N and λ1, λ2 ∈ (0,∞)r and let X1 = (X1,1, . . . , X1,r),X2 =
(X2,1, . . . , X2,r) : Ω→ Nr be random variables so that Xi,j are Poisson
distributed with mean λi,j and pairwise independent. Show that

dTV (X1,X2) = O

(
r∑
i=1

|λ1,i − λ2,i|

)

as
∑r

i=1 |λ1,i − λ2,i| → 0.

Exercise 2.2. Let λ ∈ (0,∞). For all n ∈ N, let {Xi,n}ni=1 be independent
Bernoulli variables so that

E [Xi,n] = λ/n.

Furthermore, define

Wn =
n∑
i=1

Xi,n
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and let Zλ be a Poisson ditributed random variable with mean λ. Show that

Wn
TV→Zλ

as n→∞.

Exercise 2.3. Random geometric graphs: let T2 denote the 2-dimensional
torus. That is

T2 = R2/Z2,

where Z2 y R2 by translations. Figure 2.1 shows a cartoon of T2.

Figure 2.1: A torus.

The Lebesgue measure on R2 is invariant under the Z2 action and hence
descends to a measure on T2. [0, 1]2 ⊂ R2 forms a fundamental domain for
this action. As such the total area of T2 under this measure is 1. In other
words, we obtain a probability space (T2,P). T2 also comes with a distance:
the Euclidean distance function dR2 : R2 × R2 → [0,∞) is also invariant
under the Z2 action and hence descends to a distance

dT2 : T2 × T2 → [0,∞).

Set rn = n−3/4. Given x1, . . . , xn ∈ T2 we define a graph as follows. The
points x1, . . . , xn will be the vertices of our graph. We connect xi and xj by
an edge if and only if dT2(xi, xj) ≤ rn.

(a) Let Xn : (T2)
n → N count the number of triangles (triples of vertices

that are all connected by an edge) in the graph associated to the points
x1, . . . , xn. Show that

E [Xn]→ 1

6

∫
B1(0)

∫
B1(0)

h(y1, y2)dy1dy3
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as n → ∞, where B1(0) ⊂ R2 denotes the unit ball around the origin
in R2 and

h(y1, y2) =

{
1 if dR2(y1, y2) ≤ 1
0 otherwise.

(b) Set

λ =
1

6

∫
B1(0)

∫
B1(0)

h(y1, y2)dy1dy3

and let Zλ : Ω→ N be a Poisson random variable with mean λ. Show
that

Xn
TV→Zλ

as n→∞.
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