
Lecture 3

Random graphs I

The material in this section is mainly based on [Bol85], [Wor99].

3.1 Basic definitions

3.1.1 Graphs

Let us first fix our definition of what a graph is. There are multiple definitions
available to capture the intuitive idea that a graph is a set of vertices and
a set of edges between these vertices. We will want to allow multiple edges
between pairs of vertices and loops, so we choose the following definition, in
which we write |X| for the cardinality of a set X.

Definition 3.1. A graph is a triple G = (V,E, I) where V is a set, called
the set of vertices of G, E is a set, called the set of edges of G and

I ⊂ E × V

is called the incidence relation of G and satisfies the condition that for all
e ∈ E we have

|{v ∈ V ; (e, v) ∈ I}| ∈ {1, 2}.

An edge that is incident to a single vertex is called a loop. A graph
without loops in which every pair of vertices has at most one edge incident
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to it is called simple. If v, w ∈ V and there exists and e ∈ E so that both
(e, v) ∈ I and (e, w) ∈ I we say that v and w are adjacent or that v and w
share an edge.

The degree or valence of a vertex v ∈ V is given by

deg(v) = |{e ∈ E; (e, v) ∈ I}|+
∣∣∣∣{e ∈ E;

(e, v) ∈ I and
(e, w) /∈ I, ∀w ∈ V with w 6= v

}∣∣∣∣ .
An isomorphism of between graphs G1 = (V1, E1, I1) and G2 = (V2, E2, I1)
is a pair of bijective maps fV : V1 → V2, fE : E1 → E2 such that

(e, v) ∈ I1 ⇔ (fE(e), fV (e)) ∈ I2.

An automorphism of a graph G = (V,E, I) is an isomorphism between G
and itself. The group formed by all automorphisms of G will be denotes
Aut(G).

A walk between vertices v, w ∈ V is sequence of vertices (v1, v2, . . . , vr)
with v1 = v, vr = w and so that for all i = 1, . . . r− 1 the vertices vi and vi+1

are adjacent. A cycle in G is a walk between v and itself for some vertex
v ∈ V .

G is called connected is there exists a walk between every pair of vertices
v, w ∈ V .

Some remarks:

- The condition on |{v ∈ V ; (e, v) ∈ I}| guarantees that every edge con-
nects to either one or two vertices.

- In the definition above, a loop at a vertex (an edge that connects to
only that vertex) adds 2 to the degree of this vertex.

- Given a graph G, we will often write V (G) and E(G) for the sets of its
vertices and edges respectively.

The above serves as a formal definition of what a graph is. It is however
not always the easiest way to describe graphs. Often we will just think in
terms of pictures. Let us give an example of a graph.
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Figure 3.1: A graph.

The graph G = (V,E, I) above is given by V = {v1, v2, v3, v4}, E =
{e1, e2, e3, e4, e5, e6} and

I = {(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v2), (e3, v3), (e4, v3), (e4, v4),

(e5, v4) (e6, v4), (e6, v2)}

3.1.2 Random graphs

There are multiple models of random graphs around. The most widely stud-
ied model is probably that of the Erdős-Rényi random graph: fix p ∈ (0, 1),
take n vertices and add each of the possible edges between these vertices to
the graph with probability p and leave it out with probability 1− p. We will
however be interested in regular graphs:

Definition 3.2. Let k ∈ N. A graph G = (V,E, I) is called k-regular if

deg(v) = k

for all v ∈ V .

Our goal now is to pick a graph at random among all k-regular graphs on
a given set of vertices. Of course, the set of k-regular graphs on n vertices
up to isomorphism is a finite set for all k, n ∈ N. So, we could just pick one
at random from this finite set. This model however turns out to be hard to
control in general. Instead we will study the configuration model for random
regular graphs.
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First let us fix once and for all disjoint sets W1(n), . . . ,Wn(n) with

|Wi(n)| = k

for i = 1, . . . , n, for every n, k ∈ N≥1 so that n · k is even. Furthermore, we
will write

W (n) =
n⊔
i=1

Wi(n).

We can now define configurations:

Definition 3.3. Let n, k ∈ N so that n · k is even. Then, a k-regular
configuration on n vertices is a set of pairs

C = {{ai, bi} ⊂ W (n)}n·k/2i=1

so that
n·k/2⋃
i=1

{ai, bi} = W (n).

We will write Gn,k for the (finite) set of k-regular configurations on n vertices.

Note that the last condition guarantees that every element of W (n) ap-
pears exactly once in a pair of the configuration C.

Definition 3.4. Let n, k ∈ N so that n · k is even. Furthermore, let C =
{{ai, bi} ⊂ W (n)}n·k/2i=1 be a k-regular configuration on n vertices.

The graph G(C) = (V,E, I) associated with C is given by

V = {v1, . . . , vn}, E = {e1, . . . , en·k/2}

and
(ei, vj) ∈ I ⇔ {ai, bi} ∩Wj(n) 6= ∅.

In other words, our finite sets Wi(n) represent the vertices of G(C) and
we connect two of them if and only if two of their elements appear as a pair
in the configuration. As such, we will often think of the elements in C as
labels on half-edges of G(C). Figure 3.2 gives an example:
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Figure 3.2: The graph G(C) corresponding to the configuration C =
{{1, 4}, {2, 5}, {3, 6}}.

The number of configurations is easy to count. For n ∈ N even we write

n!! = (n− 1)(n− 3) · · · 3 · 1.

We have:

Lemma 3.5. Let n, k ∈ N so that n · k is even. Then:

|Gn,k| = (n · k)!!.

Proof. See Exercise 3.2.

We can now define the configuration model for random regular graphs.
Recall that, given a set X, P(X) denotes the power set of X.

Definition 3.6. The configuration model. Let n, k ∈ N so that n · k is even.
We define a probability measure

Pn,k : P(Gn,k)→ [0, 1]

by

Pn,k =
|A|
|Gn,k|

, for all A ⊂ Gn,k.

Because configurations give rise to regular graphs, the definition above
allows us to speak of random regular graphs. That is, if we say “the prob-
ability that a k-regular graph on n vertices has property P”, we will mean
the probability with respect to the probability measure Pn,k.

Note however that while it is clear that every graph can be obtained
from some configuration (we just label the vertices and edges), some graphs
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might be given a higher probability by Pn,k than others. Later on, we will
see that while Pn,k indeed prefers certain graphs, the differences between the
probabilities assigned are small enough so that Pn,k can still be used to make
statements about graphs picked uniformly at random among isomorphism
classes.

3.2 Counting regular graphs

Our main application of the configuration model is counting regular graphs.
That is, we will first control the cycle counts and the number of automor-
phisms of a random regular graph and then use this to give asymptotic esti-
mates on the number of regular graphs of a fixed degree on a large number
of vertices.

3.2.1 Cycles

Let r ∈ N. A cycle of length r (or r-cycle) in a graph G is sequence of vertices
(v1, v2, . . . , vr) so that for all i = 1, . . . r − 1 the vertices vi and vi+1 share
an edge and so do the vertices vr and v1. Cycles that are obtained from one
another by cyclic permutation or ‘reading backwards’ will be considered the
same. A cycle in which all the vertices are distinct is called a circuit.

Our first goal is to understand the number of cycles of a given length in a
random regular graph. To this end, define random variables Xn,k,r : Gn,k → N
defined by

Xn,k,r(C) = |{r-cycles in G(C)}|

We will use the Chen-Stein method to prove a Poisson limit theorem (due to
Bollobás [Bol80]) for these random variables.

Let us also define Poisson distributed random variables Xk,r : Ω → N
with means

λk,r =
(k − 1)r

2r

Finally, for a finite set R ⊂ N, we define vectors of random variables

Xn,k,R = (Xn,k,r)r∈R and Xk,R = (Xk,r)r∈R
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Theorem 3.7. Fix k ∈ N≥3. For any finite set R ⊂ N there exists a
constant CR > 0 so that

dTV (Xn,k,R,Xk,R) ≤ CR/n

for all n ∈ N.

Proof. We will apply the Chen-Stein method to prove this. Let us first
analyse the possible labelings of an r-cycle in the graph corresponding to
a configuration. Given an r-cycle in such a graph, we can traverse it and
record the 2r labels that appear in it in order. If we also group every pair
consecutive labels corresponding to the same edge, we obtain a list of the
form

((a1, b1), . . . , (ar, br)) ∈
(
W (n)2

)r
.

Note however that this does not define a map from cycles to lists of labels:
to obtain the list, we need to know where to start traversing the cycle and
in which direction to traverse it.

Let us write An,r for the set of all such lists of labels that could possibly
appear as an r-cycle in a configuration. In other words, An,r is the set of lists
((a1, b1), . . . , (ar, br)) ∈ (W (n)2)

r
so that:

- The labels form a cycle: bi and ai+1 lie in the same set Wj(n) for all
1 ≤ i ≤ r − 1, as do br and a1

- The pairs of labels that appear as edges are consitent: if (ai, bi) appears
in a pair, then neither ai nor bi appears in a pair with another label (a
pair is however allowed to appear multiple times).

Given α ∈ An,r, we write

Xα : Gn,k → {0, 1},

where Xα(C) counts the number of appearances of α in C, which is either 0
or 1. So Xα is a Bernoulli variable for all α ∈ An,r and all r ∈ W .

However,
∑

α∈An,r Xα is not equal toXn,k,r. Indeed we over count by going
througth all the α ∈ An,r: in An,r each cycle artificially has a starting point
and direction of travel. This implies that every labeled r-cycle is counted 2r
times in An,r.
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In the end we will want to deal with the set of labeled cycles and not
the set of labeled directed cycles with a starting point, we could try to find
a convenient description of the set An,r/ ∼, where ∼ is some equivalence
relation that takes care of the symmetry. Another course of action, the one
we will actually pursue, is to simply divide all the quantities we need to
compute by 2r.

The rest of the proof of the theorem now progresses in a similar fashion
to the proof of Theorem 2.2. For notational simplicity, we shall deal with
the univariate case here. The passage to the multivariate case is analogous
to the proofs of the approximation theorems.

Let us first compute the means. Like we said, we have:

E [Xn,k,r] =
1

2r

∑
α∈An,r

E [Xα] =
1

2r

∑
α∈An,r

P [C contains the pairs in α] .

We note that the probability P [C contains the pairs in α] only depends on
the number of distinct pairs in α. Indeed, if this number of pairs is e, then

P [C contains the pairs in α] =
1

(n · k − 1)(n · k − 3) · · · (n · k −−2 · e+ 1)
.

As such, it makes sense to divide E [Xn,k,r] into terms: each term correspond-
ing to an isomorphism type of cycles. We can then write

E [Xn,k,r] =
1

2r

∑
C

an,k(C) · pn,k(C),

where the sum runs over isomorphism types C, an,k(C) is the number of lists
in An,r that gives a cycle of the isomorphism type C and

pn,k(C) = P [C contains the pairs in αC]

for any αC ∈ An,r that gives rise to a cycle of the isomorphism type C.

It will turn out that E [Xn,k,r] is dominated by the term corresponding
to circuits, so let us first compute that term. If α ∈ An,r corresponds to a
circuit, then it contains exactly r distinct pairs, as such

pn,k(r-circuit) =
1

(n · k − 1)(n · k − 3) · · · (n · k − 2 · r + 1)
.
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Furthermore, to count the number of lists in An,r giving rise to r-circuits, we
note that all we need to choose is which distinct r vertices we use and which
of the labels of these vertices to connect to each other. This gives a total of

an,k(r-circuit) = n · (n− 1) · · · (n− r + 1) · (k(k − 1))r

options.

For the other terms, we note that by the same reasoning as above

an,k(C) · pn,k(C) ≤
k2rnv

(n− 2 · r + 1)e
,

where v is the number of vertices in C and e the number of edges. If C is not
a circuit, it has more edges than vertices, which implies that

0 ≤ E [Xn,k,r]−
1

2r

n · (n− 1) · · · (n− r + 1) · (k(k − 1))r

(n · k − 1)(n · k − 3) · · · (n · k − 2 · r + 1)
≤ C

n
,

where C > 0 is a constant that depends on r and k (it for instance contains
the number of isomorphism classes C we need to sum over) but not on n. We
have

λk,r

(
n · k − r · k
n · k − 1

)r
≤ 1

2r

n · (n− 1) · · · (n− r + 1) · (k(k − 1))r

(n · k − 1)(n · k − 3) · · · (n · k − 2 · r + 1)
≤ λk,r

Because (
n · k − r · k
n · k − 1

)r
= 1 +O

(
n−1
)

as n→∞, we obtain that

|E [Xn,k,r]− λk,r| = O
(
n−1
)

as n→∞.

In order to derive a bound on the total variational distance between X =
Xn,k,r and a Poisson variable with mean λ′ = E [X], we will use Theorem
1.8, in a way that will be very similar to the proofs of Theorems 2.1 and 2.2.
We need to estimate

|E [λ′ · gA(X + 1)−X · gA(X)]| .
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First suppose that X =
∑

α∈AXα is a sum of Bernoulli variables. We can
then write

E [λ′ · gA(X + 1)−X · gA(X)] =
∑
α

pαE [gA(X + 1)]− E [XαgA(X)]

=
∑
α

pα (E [gA(X + 1)]

−E

[
gA

(
1 +

∑
β 6=α

Xβ

)
| Xα = 1

])
,

where pα = E [Xα].

Now suppose that for every α ∈ A we can define a partition

A = {α} t Aα,1 t Aα,2

and random variables X ′α,β : Gn,k → {0, 1} for all β ∈ A \ {α} so that

1. X ′α,β has the same distrbution as Xβ when conditioned on Xα = 1.
That is

P[X ′α,β = 1] = P[Xβ = 1| Xα = 1].

2. Xα,β(C) ≥ Xβ(C) for all C ∈ Gn,k and all β ∈ Aα,1.

If this were the case, then

E [λ′ · gA(X + 1)−X · gA(X)] ≤
∑
α

pα (E [gA(X + 1)]

−E

[
gA

(
1 +

∑
β 6=α

X ′α,β

)])

=
∑
α

pα · E

[
gA(X + 1)− gA

(
1 +

∑
β 6=α

X ′α,β

)]
,
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Using the fact that ||gA|| ≤ 1 (Proposition 1.10), we get

|E [λ′ · gA(X + 1)−X · gA(X)]| ≤ 2 ·
∑
α

pα · E

[∣∣∣∣∣X −∑
β 6=α

X ′α,β

∣∣∣∣∣
]

= 2 ·
∑
α

pα · E

[∣∣∣∣∣Xα −
∑
β 6=α

(X ′α,β −Xβ)

∣∣∣∣∣
]

≤ 2 ·
∑
α

pα · E [Xα] + pα · E

 ∑
β∈Aα,1

(X ′α,β −Xβ)


+
∑
α

pα · E

 ∑
β∈Aα,2

(X ′α,β +Xβ)


where we used property (2) to obtain the last inequality. Now note that

pα · E
[
X ′α,β

]
= E [XαXβ] .

Set pαβ = E [XαXβ]. We obtain:

dTV (Xn,k,r, Zλ′) ≤ 2 ·
∑
α

(p2α +
∑

β∈Aα,1

pαβ − pαpβ +

∑
β∈Aα,2

pαβ + pαpβ). (3.1)

Note that none of the quantities depend on the variables X ′α,β, it is only
important that they exist. Furthermore, the only difference with Theorem
2.1 are the terms pαβ−pαpβ. These terms measure the dependence of Xα and
Xβ. As such, we will want to choose Aα,1 so that Xβ is ‘close to independent’
of Xα for all β ∈ Aα,1. The proof of the multivariate version of the statement
above is very similar to the proof of Theorem 2.2 and we will skip it for now.

Set A = An,r. Our first task is now to find partitions A = Aα,1tAα,2t{α}
and variables X ′α,β.

We start with the variables. Given C ∈ Gn,k and α ∈ An,r, we obtain a
new configuration C ′α ∈ Gn,k as follows:

1. All pairs of labels in C that contain no labels from α become pairs of
labels in C ′α.
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2. If (i, j) appears in α but {i, j} /∈ C, then that means that there are
two pairs {i, x}, {j, y} ∈ C with x 6= j and y 6= i. We replace these
pairs in C by the pairs {i, j} and {x, y}. We do this until all the pairs
in α appear in the configuration obtained.

Now set X ′α,β(C) = Xβ(C ′α). The partition we choose is given by:

Aα,1 = {β ∈ An,r; β shares no vertices with α} .

We claim that these random variables satisfy the desired properties. Property
(1) follows from the fact that, given α, the map C → C ′α is constant to 1.
This follows from symmetry: the actual labels involved play no role. As such

P[X ′α,β(C) = 1] = P[Xβ(C ′α) = 1]

=
1

|Gn,k|
∑

C′∈Gn,k:Xα(C)=1

|{C ∈ Gn,k; C ′α = C ′}| ·Xβ(C ′)

Because the map C → C ′α is constant to 1, we obtain

|Gn,k| = |{C ′ ∈ Gn,k; Xα(C) = 1}| · |{C ∈ Gn,k; C ′α = C ′}| ,

for any C ′ ∈ {C ′ ∈ Gn,k; Xα(C) = 1}. Hence

P[X ′α,β(C) = 1] =
1

|{C ′ ∈ Gn,k; Xα(C) = 1}|
∑

C′∈Gn,k:Xα(C)=1

Xβ(C ′)

= P[Xβ = 1| Xα = 1].

Property (2) follows directly from the definition of Aα,1. Indeed if β ∈ Aα,1
and Xβ(C) = 1 then Xβ(C ′α) = 1, just because β has no labels in common
with α, so C ′α still contains the pairs in β.

To bound the sums in (3.1) we use similar observations as in the com-
putation of E [Xn,k,r]. If α forms a cycle of e edges and v ≤ e vertices,
then

pα = O
(
n−e
)

However, the number of terms with the same isomorphism type as α isO (nv).
So the first sum is O (nv−2e) = O (n−1) (using that the number of isomor-
phism classes we are considering is finite and depends on R only). Similar
arguments work for the sums corresponding to Aα,2.
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If α and β are vertex-disjoint, the probabilities pαβ and pαpβ are readily
computed. It follows that

pαβ − pαpβ ≤
C

n
· pαpβ.

This means that the sums corresponding to the sets Aα,1 contribute at most
C · λ′2/n.

All in all, we obtain that

dTV (Xn,k,r, Zλ′) ≤ C/n.

Using the triangle inequality, we see that

dTV (Xn,k,r, Xk,r) ≤ dTV (Xn,k,r, Zλ′) + dTV (Zλ′ , Xk,r) .

The above controls the first term, Exercise 3.3 controls the second.

As an immediate consequence we obtain:

Corollary 3.8. Fix k ∈ N≥3. For any finite set R ⊂ N we have

Xn,k,R
TV−→ Xk,R

as n→∞.

3.3 Exercises

Exercise 3.1. Let G = (V,E, I) be a graph. Show that∑
v∈V

deg(v) = 2 |E| .

Exercise 3.2. Prove Lemma 3.5.

Exercise 3.3.

(a) Let X1, X2 : Ω→ Nr be random variables. Show that

dTV (X1, X2) =
1

2

∑
k∈Nr
|P [X1 = k]− P [X2 = k]| .
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(b) Let r ∈ N and λ1, λ2 ∈ (0,∞)r and let X1 = (X1,1, . . . , X1,r),X2 =
(X2,1, . . . , X2,r) : Ω→ Nr be random variables so that Xi,j are Poisson
distributed with mean λi,j and pairwise independent. Show that

dTV (X1,X2) = O

(
r∑
i=1

|λ1,i − λ2,i|

)

as
∑r

i=1 |λ1,i − λ2,i| → 0.

Exercise 3.4. Let k ≥ 3. Show that

lim
n→∞

Pn,k [The graph is connected] = 1.

Hint: try to estimate En,k [X], where X : Gn,k → N counts the number of
connected compondents of at most n/2 vertices.
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