Lecture 4
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4.1 Automorphisms

It turns out that a typical regular graph on a large number of vertices does not
have any non-trivial symmetries. This is orginally due to Bollobés [Bol82]
and independently McKay and Wormald [MW84]. Exercise 4.3 follows a
proof due to Wormald [Wor86.

Theorem 4.1. Let k € N>3. We have

lim E, ; [|[Aut(G)|] = 1.

Proof. See Exercise 4.3. [

4.2 The number of simple graphs

Given n,k € N so that n - k is even, let U, ;, denote the set of ismorphism
classes of simple k-regular graphs on n vertices. The following count is inde-
pendently due to Bender and Canfield [BC78], Bollobas [Bol80] and Wormald
[Wor78].



Theorem 4.2. Let k € N>3. Then:

e*(k2*1)/4(n k)N
(k) - n!

’un,k| ~

as n — Q.

Proof. Let G}, , denote the subset of Gy, ;. consisting of configurations that give
rise to a simple graph. We have an obvious map G, ; — U, that consists of
forgetting the labels. This map is far from injective. However, it will turn
out the cardinality of the fibers depends only on n, k and the number of
automorphisms. As such, Theorem 4.1 tells us that up to a small error, we
may assume that this cardinality is constant.

Let us work this idea out. The first thing we will do is add an intermediate
step to the map G, , — U k. Let V, ;. denote the set of k-regular graphs with
vertex set {1,...,n}. We obtain maps

;j;_% L%k _+21nk

by first forgetting the labels of the half-edges and then the labels on the
vertices.

First note that the map Gy, — V. is constant to 1. Indeed, the number
of pre-images of an element G € V, , is equal to the number of ways to label
the half edges at every vertex (note that this uses that G has no loops and
no multiple edges). As such G, — V, is (k)" to 1.

We have a natural action of &,, ~ V,, , where G,, denotes the symmetric
group on n letters, by permuting the labels of the vertices. Furthermore

LLLk:: l&uk/GBn-
By Burnside’s lemma (see Exercise 4.1), we have
1
Ul = — > UG €V -G =G}
me6n

Regrouping the terms sum, we get

1
Uil = — > |Aut(G))

’ GEmG

1 n!
= >0 [{G € Vs [Aut(G)] = a}
" a=1
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Now we use that the map G, ; — V,x is constant to 1 to obtain

1 n! .
Un k| = ol ;a- {G € G2 |Aut(G)| = a}|

Hence ‘{G ; Aut(Q)] }‘
€ G, |Aut =1
(kD) - n! < [l
and
ok 1

n!
Uni| < > a-|{G € Guxi |Aut(G)| = a}|.
a=2

-l T Yl

Let us now first work out the lower bound:
{G € Gas 1At(G) = 13| _ |G| = G € Guss [Aut(G)] > 1}]
(khm - n! - (kD)™ - n! '

Note that a configuration C' € G, gives rise to a simple graph if and only if
Xnk1(C) = Xpr2(C) = 0. As such Corollary 3.8 implies that

= Pn,k [Xn,k,1<C) - Xn,k,Q(C) - 0] : |gn,k| ~ e_Ak’l_)\kg . |gn,k|
as n — 00. On the other hand, Theorem 4.1 implies that
{G € Gni; [Aut(G)| > 1}/ [Gnk| — 0

*

n,k

as n — 0.

For the upper bound we note that

Za. HG e Qn,k;’glf;l’t(Gﬂ =a}| _ E,k [JAut(G)|] — P [[Aut(G)| = 1].

a=2
Thus '
S, G € Gus [Aui()

| = a}|
—0
|gn,k|

a=2

as n — oo by Theorem 4.1.
Putting all of the above together, we see that

Uy o~ Mea =i |Gk B 6—(k—1)/2—(k—1)2/4(n k) B e—(k2—1)/4<n k)
n,k ~ ’ 12 — )

(Khr-n! (kh)r - n! (k) - n!
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4.3 Expansion

This section is mainly based on [HLWO06].

4.3.1 Definition

Loosely speaking, an expander graph is a sequence of graphs that is both
sparse and well-connected. There are many applications for these sequences
of graphs. One of the earliest contexts in which they came up is in a problem
from computer science: building a large network of computers in which it’s
not possible to disconnect a large piece of the network by cutting a small
number of cables (well-connectedness) but not connecting too many comput-
ers to each other (sparseness).

There are two things to be made precise: sparseness and well-connectedness
of a graph. A good candidate for the notion of sparseness is of course a uni-
form bound on the degree. We will set a stronger condition and assume
k-regularity for some fixed k.

The idea of well-connectedness can be made precise with the Cheeger
constant. In the following definition, given a graph G and a set of vertices
U C V(G), we will denote the set of edges that connect U to V(G) \ U by
au.

Definition 4.3. Let G be a finite connected graph. The Cheeger constant
or Ezpansion ratio of G is given by:

h(G) = min{%; UcV(G), Ul < |V(G)|/2}.

An expander graph will be a sequence of graphs that is both sparse and
well-connected:

Definition 4.4. Fix k € N>3. An expander graph is a sequence (Gy,)nen of
connected k-regular graphs so that

V(G| — o
as n — oo and there exists a € > 0 so that
h(G,) > ¢
for all n € N.



4.3.2 Eigenvalues

There exists an equivalent characterisation of expander graphs in terms of
eigenvalues. We first need to define what an adjacency matrix is.

Definition 4.5. Given a graph G on the vertex set {1,...,n}. The adjacency
matrix A(G) € M,(R) is given by

A(G);j = m if and only if ¢ and j share m edges.
Note that A(G) is a self-adjoint matrix and as such has real eigenvalues,
let us denote these by A (G) > A(G) > ... > A\, (G). Note that these

eigenvalues do not depend on the labelling of the vertices. As such it makes
sense to speak of the eigenvalues associated to a graph G.

Lemma 4.6. Let G be a finite k-reqular graph

(a) \(G) = k.
(b) G is connected if and only if \\(G) > X2(G).

Proof. Exercise 4.2. O]

This lemma implies that, given a connected regular graph, the first non-
trivial eigenvalue is given by

AG) = Mo(G).

4.4 Exercises

Exercise 4.1. (Burnside’s lemma) Let G be a finite group and X a finite
set so that G ~ X. Prove that
1
[ X/Gl :@Z]{xeX; g-x=u}|.

geG

Exercise 4.2.



(a)

Let G be a graph and A(G) its adjacency matrix. Show that
(A7),
records the number of walks of length r between vertices ¢ and j.

Prove Lemma 4.6. Hint for part (b) of the lemma: consider the eigen-
values of the matrix

1
Id, — -A
d, . (@),

where Id,, denotes the n x n identity matrix. In particular: show that
the eigenfunctions corresponding to the eigenvalue 0 of this matrix are
constant on connected components.

Exercise 4.3. Disclaimer: This exercise is here for completeness, it will not
be part of the material for the exam.

In this exercise we prove Theorem 4.1. It states that for k£ > 3:

lim E, ; [|[Aut(G)|] = 1.

We will go through the proof of [Wor86] step by step.

In what follows, K, will denote the complete graph (every vertex is con-
nected to every other vertex) on vertex set {1,...,n} and &,, the symmetric
group on n letters. Note that &,, ~ K,.

()

Given o € G, let A(o) denote its support and let

every edge of H has at least one
end in A(o), degy(v) <k for all

v € {l,...,n} with equality for
all v not fixed by c and 0 - H = H

H(o) =< H graph on {1,...,n};

Note that ¢ € &,, is and automorphism of G(C') for some C € G, if
and only if G(C') contains one of the graphs in H (o) as a subgraph.

Given H € H(o)), let Xy : G, — N be the random variable that
counts the number of appearances of H in a configuration. Note that
H comes with labelled vertices, but not with labelled half edges. Show
that there exists a C' > 0, independent of n so that

oc€Gpn HeH(0)) €6, \{Id} HeH( a))



where e(H) denotes the number of edges in H and Id € &,, denotes
the identity element.

(b) We need to introduce some notation. Let o € &,, and H € H (o).

- For 2 <i <6, let s;(0) denote the number of i-cycles in o.
- Let a(o) the cardinality of the support A(o) of o in {1,...,n}.

- Let 7(H, o) denote the number of edges of H (s, the restriction
of the graph H to A(o)

- Let e;(H, o) denote the number of edges of H fixed by o.

- Let m(H,0) =r(H,0)— f(H, o), where f(H, o) denotes the num-
ber of orbits of o on the set of edges E(K,,) contained in H (equiv-
alently these are the number of orbits of o on the edges of H that
have both of their endpoints in A(0)).

Prove the following bounds on the number of choices for a permutation
with parameters given:

- The number of subsets A C {1,...,n} of size of a(c) is bounded
from above by

- Given such a subset A C {1,...,n}, the number of permutations
o € 6,, with support A and s; i-cycles for i = 2,...,6 is at most

a(o)!
H?:2 sil

(¢) Now prove the following bounds for the number of graphs H:

- Given o € 6,, with support A(o) and sy(0) 2-cycles. The number
of choices for the e;(H, o) edges on A(c) that are fixed by o is at

most
2ul7)

- The remaining r(H) — e;(H, o) edges of H with both their end-
points in A form f(H, o) —ei(H, o) full orbits of o (otherwise the
graph H would not be fixed by ). Prove that there are at most

a(o.)2(r(H.U)—m(H,U)—e1(Hp))

(r(H,o) —m(H,o) — e (H,0))!
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(d)

choices for these orbits.

- Prove that after these edges, there are k- a(c) —2-r(H, o) edges
in H left.

- Prove that these remaining edges lie in at most (k- a(o) — 2 -
r(H,0))/2 orbits.

- Prove that there are at most

(n . &) (k-a(o)—2-r(H,0))/2

ways to choose these orbits

Use (b) and (c) to show that the contribution T of all pairs (o, H) with
all the parameters so, ..., sg, a, r, e; and m fixed to the sum in (a) can

be bounded by
RBe . a2(r—m—el) . n(2—k)a/2
T S 6 Si
(r—m—e) [[;_y s
where B > 0 is some constant independent of n. Hint: use that there
exists a constant B’ > 0 so that

B? . pP < pl < pP

for all p € N (This uniform constant B’ > 0 exists by Stirling’s approx-
imation).

Show that this implies that

T<C -n %

Conclude that by summing over all the possible values of the parame-
ters so,...,Sq, a, r, e and m we get

E, [[Auwt(G)] =140 (n’o)

as n — 0.
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