
Lecture 4

Random graphs II

4.1 Automorphisms

It turns out that a typical regular graph on a large number of vertices does not
have any non-trivial symmetries. This is orginally due to Bollobás [Bol82]
and independently McKay and Wormald [MW84]. Exercise 4.3 follows a
proof due to Wormald [Wor86].

Theorem 4.1. Let k ∈ N≥3. We have

lim
n→∞

En,k [|Aut(G)|] = 1.

Proof. See Exercise 4.3.

4.2 The number of simple graphs

Given n, k ∈ N so that n · k is even, let Un,k denote the set of ismorphism
classes of simple k-regular graphs on n vertices. The following count is inde-
pendently due to Bender and Canfield [BC78], Bollobás [Bol80] and Wormald
[Wor78].
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Theorem 4.2. Let k ∈ N≥3. Then:

|Un,k| ∼
e−(k

2−1)/4(n · k)!!

(k!)n · n!

as n→∞.

Proof. Let G∗n,k denote the subset of Gn,k consisting of configurations that give
rise to a simple graph. We have an obvious map G∗n,k → Un,k that consists of
forgetting the labels. This map is far from injective. However, it will turn
out the cardinality of the fibers depends only on n, k and the number of
automorphisms. As such, Theorem 4.1 tells us that up to a small error, we
may assume that this cardinality is constant.

Let us work this idea out. The first thing we will do is add an intermediate
step to the map G∗n,k → Un,k. Let Vn,k denote the set of k-regular graphs with
vertex set {1, . . . , n}. We obtain maps

G∗n,k → Vn,k → Un,k
by first forgetting the labels of the half-edges and then the labels on the
vertices.

First note that the map G∗n,k → Vn,k is constant to 1. Indeed, the number
of pre-images of an element G ∈ Vn,k is equal to the number of ways to label
the half edges at every vertex (note that this uses that G has no loops and
no multiple edges). As such G∗n,k → Vn,k is (k!)n to 1.

We have a natural action of Sn y Vn,k, where Sn denotes the symmetric
group on n letters, by permuting the labels of the vertices. Furthermore

Un,k = Vn,k/Sn .

By Burnside’s lemma (see Exercise 4.1), we have

|Un,k| =
1

n!

∑
π∈Sn

|{G ∈ Vn,k; π ·G = G}|

Regrouping the terms sum, we get

|Un,k| =
1

n!

∑
G∈Vn,k

|Aut(G)|

=
1

n!

n!∑
a=1

a · |{G ∈ Vn,k; |Aut(G)| = a}|
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Now we use that the map G∗n,k → Vn,k is constant to 1 to obtain

|Un,k| =
1

(k!)n · n!

n!∑
a=1

a ·
∣∣{G ∈ G∗n,k; |Aut(G)| = a

}∣∣
Hence ∣∣{G ∈ G∗n,k; |Aut(G)| = 1

}∣∣
(k!)n · n!

≤ |Un,k|

and

|Un,k| ≤
∣∣G∗n,k∣∣

(k!)n · n!
+

1

(k!)n · n!

n!∑
a=2

a · |{G ∈ Gn,k; |Aut(G)| = a}| .

Let us now first work out the lower bound:∣∣{G ∈ G∗n,k; |Aut(G)| = 1
}∣∣

(k!)n · n!
≥
∣∣G∗n,k∣∣− |{G ∈ Gn,k; |Aut(G)| > 1}|

(k!)n · n!
.

Note that a configuration C ∈ Gn,k gives rise to a simple graph if and only if
Xn,k,1(C) = Xn,k,2(C) = 0. As such Corollary 3.8 implies that∣∣G∗n,k∣∣ = Pn,k [Xn,k,1(C) = Xn,k,2(C) = 0] · |Gn,k| ∼ e−λk,1−λk,2 · |Gn,k|

as n→∞. On the other hand, Theorem 4.1 implies that

|{G ∈ Gn,k; |Aut(G)| > 1}| / |Gn,k| → 0

as n→∞.

For the upper bound we note that

n!∑
a=2

a · |{G ∈ Gn,k; |Aut(G)| = a}|
|Gn,k|

= En,k [|Aut(G)|]− Pn,k [|Aut(G)| = 1] .

Thus
n!∑
a=2

a · |{G ∈ Gn,k; |Aut(G)| = a}|
|Gn,k|

→ 0

as n→∞ by Theorem 4.1.

Putting all of the above together, we see that

|Un,k| ∼ e−λk,1−λk,2 · |Gn,k|
(k!)n · n!

=
e−(k−1)/2−(k−1)

2/4(n · k)!!

(k!)n · n!
=
e−(k

2−1)/4(n · k)!!

(k!)n · n!
.
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4.3 Expansion

This section is mainly based on [HLW06].

4.3.1 Definition

Loosely speaking, an expander graph is a sequence of graphs that is both
sparse and well-connected. There are many applications for these sequences
of graphs. One of the earliest contexts in which they came up is in a problem
from computer science: building a large network of computers in which it’s
not possible to disconnect a large piece of the network by cutting a small
number of cables (well-connectedness) but not connecting too many comput-
ers to each other (sparseness).

There are two things to be made precise: sparseness and well-connectedness
of a graph. A good candidate for the notion of sparseness is of course a uni-
form bound on the degree. We will set a stronger condition and assume
k-regularity for some fixed k.

The idea of well-connectedness can be made precise with the Cheeger
constant. In the following definition, given a graph G and a set of vertices
U ⊂ V (G), we will denote the set of edges that connect U to V (G) \ U by
∂U .

Definition 4.3. Let G be a finite connected graph. The Cheeger constant
or Expansion ratio of G is given by:

h(G) = min

{
|∂U |
|U |

; U ⊂ V (G), |U | ≤ |V (G)| /2
}
.

An expander graph will be a sequence of graphs that is both sparse and
well-connected:

Definition 4.4. Fix k ∈ N≥3. An expander graph is a sequence (Gn)n∈N of
connected k-regular graphs so that

|V (Gn)| → ∞
as n→∞ and there exists a ε > 0 so that

h(Gn) > ε

for all n ∈ N.
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4.3.2 Eigenvalues

There exists an equivalent characterisation of expander graphs in terms of
eigenvalues. We first need to define what an adjacency matrix is.

Definition 4.5. Given a graphG on the vertex set {1, . . . , n}. The adjacency
matrix A(G) ∈ Mn(R) is given by

A(G)ij = m if and only if i and j share m edges.

Note that A(G) is a self-adjoint matrix and as such has real eigenvalues,
let us denote these by λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G). Note that these
eigenvalues do not depend on the labelling of the vertices. As such it makes
sense to speak of the eigenvalues associated to a graph G.

Lemma 4.6. Let G be a finite k-regular graph

(a) λ1(G) = k.

(b) G is connected if and only if λ1(G) > λ2(G).

Proof. Exercise 4.2.

This lemma implies that, given a connected regular graph, the first non-
trivial eigenvalue is given by

λ(G) = λ2(G).

4.4 Exercises

Exercise 4.1. (Burnside’s lemma) Let G be a finite group and X a finite
set so that Gy X. Prove that

|X/G| = 1

|G|
∑
g∈G

|{x ∈ X; g · x = x}| .

Exercise 4.2.
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(a) Let G be a graph and A(G) its adjacency matrix. Show that

(Ar)ij

records the number of walks of length r between vertices i and j.

(b) Prove Lemma 4.6. Hint for part (b) of the lemma: consider the eigen-
values of the matrix

Idn −
1

k
A(G),

where Idn denotes the n× n identity matrix. In particular: show that
the eigenfunctions corresponding to the eigenvalue 0 of this matrix are
constant on connected components.

Exercise 4.3. Disclaimer: This exercise is here for completeness, it will not
be part of the material for the exam.

In this exercise we prove Theorem 4.1. It states that for k ≥ 3:

lim
n→∞

En,k [|Aut(G)|] = 1.

We will go through the proof of [Wor86] step by step.

In what follows, Kn will denote the complete graph (every vertex is con-
nected to every other vertex) on vertex set {1, . . . , n} and Sn the symmetric
group on n letters. Note that Sn y Kn.

(a) Given σ ∈ Sn, let A(σ) denote its support and let

H(σ) =

H graph on {1, . . . , n};
every edge of H has at least one
end in A(σ), degH(v) ≤ k for all
v ∈ {1, . . . , n} with equality for

all v not fixed by σ and σ ·H = H

 .

Note that σ ∈ Sn is and automorphism of G(C) for some C ∈ Gn,k if
and only if G(C) contains one of the graphs in H(σ) as a subgraph.

Given H ∈ H(σ)), let XH : Gn,k → N be the random variable that
counts the number of appearances of H in a configuration. Note that
H comes with labelled vertices, but not with labelled half edges. Show
that there exists a C > 0, independent of n so that

En,k [|Aut(G)|] ≤
∑
σ∈Sn

∑
H∈H(σ))

En,k [XH ] ≤ 1+
∑

σ∈Sn \{Id}

∑
H∈H(σ))

(C/n)e(H),
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where e(H) denotes the number of edges in H and Id ∈ Sn denotes
the identity element.

(b) We need to introduce some notation. Let σ ∈ Sn and H ∈ H(σ).

- For 2 ≤ i ≤ 6, let si(σ) denote the number of i-cycles in σ.

- Let a(σ) the cardinality of the support A(σ) of σ in {1, . . . , n}.
- Let r(H, σ) denote the number of edges of HA(σ), the restriction

of the graph H to A(σ)

- Let e1(H, σ) denote the number of edges of H fixed by σ.

- Let m(H, σ) = r(H, σ)−f(H, σ), where f(H, σ) denotes the num-
ber of orbits of σ on the set of edges E(Kn) contained in H (equiv-
alently these are the number of orbits of σ on the edges of H that
have both of their endpoints in A(σ)).

Prove the following bounds on the number of choices for a permutation
with parameters given:

- The number of subsets A ⊂ {1, . . . , n} of size of a(σ) is bounded
from above by

na(σ)

a(σ)!

- Given such a subset A ⊂ {1, . . . , n}, the number of permutations
σ ∈ Sn with support A and si i-cycles for i = 2, . . . , 6 is at most

a(σ)!∏6
i=2 si!

.

(c) Now prove the following bounds for the number of graphs H:

- Given σ ∈ Sn with support A(σ) and s2(σ) 2-cycles. The number
of choices for the e1(H, σ) edges on A(σ) that are fixed by σ is at
most

2a(σ).

- The remaining r(H) − e1(H, σ) edges of H with both their end-
points in A form f(H, σ)− e1(H, σ) full orbits of σ (otherwise the
graph H would not be fixed by σ). Prove that there are at most

a(σ)2(r(H.σ)−m(H,σ)−e1(H,σ))

(r(H, σ)−m(H, σ)− e1(H, σ))!
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choices for these orbits.

- Prove that after these edges, there are k · a(σ)− 2 · r(H, σ) edges
in H left.

- Prove that these remaining edges lie in at most (k · a(σ) − 2 ·
r(H, σ))/2 orbits.

- Prove that there are at most

(n− a)(k·a(σ)−2·r(H,σ))/2

ways to choose these orbits

(d) Use (b) and (c) to show that the contribution T of all pairs (σ,H) with
all the parameters s2, . . . , s6, a, r, e1 and m fixed to the sum in (a) can
be bounded by

T ≤ Ba · a2(r−m−e1) · n(2−k)a/2

(r −m− e1)!
∏6

i=2 s
si
i

where B > 0 is some constant independent of n. Hint: use that there
exists a constant B′ > 0 so that

B′p · pp ≤ p! ≤ pp

for all p ∈ N (This uniform constant B′ > 0 exists by Stirling’s approx-
imation).

(e) Show that this implies that

T ≤ C · n−C·a

(e) Conclude that by summing over all the possible values of the parame-
ters s2, . . . , s6, a, r, e1 and m we get

En,k [|Aut(G)|] = 1 +O
(
n−C

)
as n→∞.
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