
Lecture 5

Random graphs III: Expansion

5.1 Expansion through eigenvalues

The fact that expansion can also be measured using eigenvalues is the content
of the following theorem by Dodziuk [Dod84], Alon-Milman [AM85] and Alon
[Alo86]:

Theorem 5.1. Let G be a finite connected k-regular graph, then

k − λ(G)

2
≤ h(G) ≤

√
2k(k − λ(G)).

Proof. We follow the proof from [HLW06, Theorem 4.11] and start with the
lower bound on h(G). Let us (arbitrarily) label the vertices of our graph by
{1, . . . , n} and let A = A(G) be the adjacency matrix of our graph G. Given
vector f ∈ Rn \ {0}, the Rayleigh quotient of f is given by

RA(f) =
〈f, Af〉
〈f, f〉

,

where 〈·, ·〉 : Rn × Rn → R denotes the inner product.

Given S ⊂ {1, . . . , n}, we define fS ∈ Rn by

(fS)i =

{
n− |S| if i ∈ S
− |S| if i /∈ S.
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Note that
〈fS, (1, . . . , 1)〉 = 0

for all S ( {1, . . . , n} so that S 6= ∅. Now write

fS =
∑
i=2

〈fS, gi〉 · gi,

where {gi}ni=1 is an orthonormal basis of eigenvectors of A, so that gi correp-
sonds to λi for i = 1, . . . , n. Note that we may choose g1 = 1√

n
· (1, . . . , 1).

This implies that

〈fS, AfS〉 =
∑
i=2

〈fS, gi〉2 · λi ≤ λ(G) · ||fS||2 .

So we obtain
RA(fS) ≤ λ(G).

On the other hand, an easy computation gives that

||fS||2 = n |S| (n− |S|)

and
〈fS, AfS〉 = n · k · |S| (n− |S|)− n2 |∂S| .

Filling this in in the Rayleigh quotient for a set S ⊂ {1, . . . , n} so that
|S| ≤ n/2 and h(G) = |∂S| / |S|, we obtain that

λ(G) ≥ n · k · |S| (n− |S|)− n2 |∂S|
n |S| (n− |S|)

= k − n |∂S|
|S| (n− |S|)

≥ k − 2 · h(G),

which proves the lower bound.

For the upper bound on h(G) we will use the Laplacian matrix L ∈ Mn(R)
given by

L = k · Idn − A,
where Idn ∈ Mn(R) denotes the n-dimensional identity matrix. Note that L
has eigenvalues k − λi(G), corresponding to the same eigenvectors gi ∈ Rn

for all i = 1, . . . , n. We will again consider the associated Rayleigh quotients,
given by

RL(f) =
〈f, Lf〉
〈f, f〉

,
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for all f ∈ Rn \ {0}.

In what follows, we assume that at most half of the entries of g2 ∈ Rn

are positive (we may assume this, because we can replaye g2 by −g2). Let
Define f ∈ Rn by

fi = max{(g2)i, 0},
for i = 1, . . . , n.

We now make two claims:

Claim 1. We have:
RL(f) ≤ k − λ(G).

Claim 2. We have:
h(G)2

2k
≤ RL(f).

Note that if we prove these two claims, we prove the theorem.

Proof of Claim 1. Let us write supp(f) = V + ⊂ {1, . . . , n}. For i ∈ V + we
have:

(Lf)i = k · fi −
n∑
j=1

Aijfj

= k · (g2)i −
∑
j∈V +

Aij(g2)j

≤ k · (g2)i −
n∑
j=1

Aij(g2)j

= (Lg2)j

= (k − λ(G)) · (g2)i.

As such

〈f, Lf〉 =
n∑
i=1

fi(Lf)i ≤ (k − λ(G))
∑
i∈V +

(g2)
2
i ,

where we used that fi = 0 for i /∈ V + in the second step. This means that

〈f, Lf〉 ≤ (k − λ(G)) · ||f ||2 ,

which proves our claim.
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Proof of Claim 2. To prove this claim, we note that

〈f, Lf〉 =
n∑
i=1

k · f 2
i −

k∑
r=1

∑
j∈{1,...,n}, i and j

share exactly r edges

r · fifj


By reordering the terms above, we can see this sum as a sum over the edges
E(G) of G to obtain:

〈f, Lf〉 =
∑

e∈E(G)

(fv1(e) − fv2(e))2,

where v1(e) and v2(e) are the (not necessarily distinct) endpoints of e (in
arbitrary order).

Now we assume that the vertices {1, . . . , n} are labelled so that f1 ≥ f2 ≥
. . . ≥ fn. We have

h(G) · ||f ||2 = h(G)
n∑
i=1

f 2
i

= h(G) ·
∑
i∈V +

(f 2
i − f 2

i+1) · i

The second equality follows from a telescoping argument and the fact that
by assumption fi+1 = 0 for i = |V +|. Set [i] = {1, . . . i}. By definition of the
Cheeger constant, we have that

h(G) ≤ |∂[i]| /i.

So we obtain:

h(G) · ||f ||2 ≤
∑
i∈V +

(f 2
i − f 2

i+1) · |∂[i]|

=
n−1∑
i=1

(f 2
i − f 2

i+1) · |∂[i]|

=
∑

e∈E(G)
v1(e)<v2(e)

v2(e)−1∑
i=v1(e)

(f 2
i − f 2

i+1).
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With another telescoping argument, we get:

h(G) · ||f ||2 ≤
∑

e∈E(G)
v1(e)<v2(e)

(f 2
v1(e)
− f 2

v2(e)
)

=
∑

e∈E(G)
v1(e)<v2(e)

(fv1(e) + fv2(e)) · (fv1(e) − fv2(e))

Now we use the Cauchy-Schwarz inequality, which says that∑
e∈E(G)

v1(e)<v2(e)

(fv1(e) + fv2(e)) · (fv1(e) − fv2(e))

≤
√√√√ ∑

e∈E(G)
v1(e)<v2(e)

(fv1(e) + fv2(e))
2 ·
√√√√ ∑

e∈E(G)
v1(e)<v2(e)

(fv1(e) − fv2(e))2.

We have:√√√√ ∑
e∈E(G)

v1(e)<v2(e)

(fv1(e) + fv2(e))
2 ≤

√√√√2
∑

e∈E(G)
v1(e)<v2(e)

f 2
v1(e)

+ f 2
v2(e)

=
√

2k · ||f || .

So, using our earlier observation on 〈f, Lf〉, we obtain:

h(G) · ||f ||2 ≤
√

2k · ||f || ·
√
〈f, Lf〉,

which proves Claim 2.

Putting Claims 1 and 2 together yields the theorem.

We already alluded to the following immediate consequence of the theo-
rem above:

Corollary 5.2. Let k ≥ 3. A sequence (Gn)n of k-regular graphs Gn on n
vertices is an expander if and only if there exists an ε > 0 so that

k − λ(Gn) > ε

for all n ∈ N (n even if k is odd).
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k − λ(G) is often called the spectral gap of G, note that it is also the
smallest non-zero eigenvalue of the Laplacian

L(G) = k · Idn − A(G)

of the graph G that we used in the proof of the theorem above.

5.2 Existence

We have not yet discussed whether or not expander graphs exist. The first
proof of the existence of expanders actually was a random construction and
is due to Pinsker [Pin73]. For instance due to work of Margulis [Mar73]
and Lubotzky-Phillips-Sarnak [LPS88], there are also explicit examples of
sequences of expander graphs.

We will give a probabilistic existence proof. In fact, it is known that
random regular graphs are near optimal (their second eigenvalue λ(G) is
essentially as small as it could possibly be) expanders [Fri08] with probability
tending to one. We will follow a shorter proof, due to Broder-Shamir [BS87],
with a result that is less strong. Our exposition is based on that in [HLW06,
Theorem 7.5].

5.2.1 A different model

We will consider a slightly different model than the configuration model that
we have considered so far. This model is called the permutation model and
works as follows. Given k ∈ N and elements π1, . . . , πk ∈ Sn, where Sn

denotes the symmetric group on n letters, a 2k-regular graph G(π1, . . . , πk) =
(V,E, I) is obtained by setting

V = {1, . . . , n}, E =
{
ei,πj(i); i = 1, . . . , n, j = 1, . . . , k

}
and

I = {(ei,j, i), (ei,j, j); i, j = 1, . . . , n} .

In other words, vertex i is connected to vertex πj(i) for all j = 1, . . . , k.
Figure 5.1 gives an example:
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Figure 5.1: The graph corresponding to the permutations π1 = (1 2 3)(4 5)
and π2 = (1 2 3 4 5).

As such, this model gives as a probability space

Ωperm
n,k = Sk

n

of 2k-regular graphs with the usual uniform probability measure Pperm
n,k . Fur-

thermore, we have ∣∣Ωperm
n,k

∣∣ = (n!)k.

It should be stressed that when we consider Pperm
n,k as a probability measure

on the set of isomorphism classes of 2k-regular graphs, we obtain a different
measure than the measure Pn,2k coming from the configuration model.

It does turn out that Pperm
n,k , Pn,2k and the uniform measure Punif

n,2k on the
set of isomorphism classes are all contiguous: if (An)n is a sequence of sets
of isomorphism classes of 2k-regular graphs on n vertices then

Pperm
n,k [An]→ 0 ⇔ Punif

n,2k[An]→ 0 ⇔ Pn,2k[An]→ 0

as n→∞. In particular, if we can prove that a random graph is an expander
with probability tending to 1 in any of these models, we get the same state-
ment for free for the other two models. In the proof of Theorem 4.2 we have
essentially already proved the contiguity of Punif

n,k and the restriction of Pn,k
to simple graphs (see Exericise 5.2). We will not prove it for the permuta-
tion model in this course and will content ourselves with the statement that
graphs coming from the permutation model are expanders. The interested
reader is refered to [Wor99, Section 4] for details on contiguity.
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5.3 Exercises

Exercise 5.1. Fix k ≥ 3 and let (Gn)n be any sequence of k-regular graphs
so that Gn has n vertices. Show that

λ(Gn) ≥
√
k · (1− o(1))

as n→∞.

Exercise 5.2. Recall that Un,k denotes the set of isomorphism classes of
simple k-regular on n vertices and that

G∗n,k = {C ∈ Gn,k; G(C) is simple} .

Let Punif
n,k denote the uniform probability measure on Un,k. Furthermore, let

P∗n,k denote the measure on Un,k obtained from restricting Pn,k to simple
graphs in Gn,k and then pushing it forward to Un,k. In other words, if π :
G∗n,k → Un,k is the map that forgets all labels, then

P∗n,k[A] = Pn,k[π−1(A)| G∗n,k]

for all A ⊂ Un,k. Show that P∗n,k and Punif
n,k are contiguous.
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