
Lecture 6

Random graphs IV: The
existence of expanders

6.1 Expansion in the permutation model

We split the proof of the fact that random graphs are expanders over a couple
of lemmas.

The first lemma will be about random walks on the symmetric group.
Given a finite set W = {a1, . . . , ak}, we will write

W r =
{
aε1i1 · · · a

εk
ik

; ij ∈ {1, . . . , k}, εi ∈ {±1}
}
.

We have
|W r| = (2k)r.

Let Pr denote the uniform probability measure on this finite set.

Furthermore, given π1, . . . , πk ∈ Sn and w ∈ W r,

w(π1, . . . , πk) ∈ Sn

will be the permutation obtained by replacing aεi by πεi for all i = 1, . . . , k and
ε ∈ {±1}. As such, we can speak of the set of fixed points of w(π1, . . . , πk),
which we will denote by

Fix(w(π1, . . . , πk))

The relation between eigenvalues and random walks we will use is:
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Lemma 6.1. Let π1, . . . , πk ∈ Sn and set G = G(π1, . . . , πk). Furthermore,
set ρ(G) = λ(G)/2k. Then

ρ(G)2r ≤ E2r [|Fix(w(π1, . . . , πk))|]− 1

for all r ∈ N.

Proof. Given a 2k-regular graph G on n vertices, set P (G) = A(G)/2k. Note
that

tr
(
P (G)2r

)
=

1

(2k)2r
tr
(
A(G)2r

)
=

1

(2k)2r

n∑
i=1

λi(G)2r = 1+
1

(2k)2r

n∑
i=2

λi(G)2r

for all r ∈ N. Recall that all eigenvalues λi(G) are real. Since even powers
of real numbers are positive, we obtain that

ρ(G)2r ≤ tr
(
P (G)2r

)
− 1.

Recall from Exercise 4.2(a) that (A(G)2r)ij counts the number of walks

from vertex i to vertex j in 2r steps. This means that tr (A(G)2r) counts
the number of closed walks of 2r steps. Because (2k)2r counts all walks of 2r
steps, tr (P (G)2r) can be interpreted probabilistically. Indeed we have

tr
(
P (G)2r

)
=

n∑
i=1

pi,2r,

where pi,2r is the probability that a random walk of 2r steps on G, starting
at vertex i ends at vertex i again.

Now we use that our graphs are built out of permutations. We can think
of the edges inG(π1, . . . , πk) as being labeled by the permutations πi and their
inverses π−1i . As such, the walks of length 2r on G(π1, . . . , πk) correspond
one to one to words in the 2k letters {π1, π−11 , . . . , πk, π

−1
k }. Furthermore, if

w(π1, . . . , πk) = πε1i1 · · · π
ε2r
i2r
∈ Sn

is such a word of length 2r (so εi ∈ {±1}), then the vertex we reach by
starting at i and tracing w is given by w(i). Because we are considering
closed walks, we need to understand how often w(i) = i. In other words, we
have

tr
(
P (G)2r

)
= E2r [|Fix(w)|] .

Putting this together with our upper estimate on ρ(G) proves the lemma.
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The lemma above translates the question of the expansion of a random
graph into a question on random words of a given length in random per-
mutations. As such, we will break the argument into two parts: first we
consider the properties of a random word and then consider the number of
fixed points of a word with this given structure.

We start with the properties of words. Let w ∈ Wr, we call w =
(w1, . . . wr) reduced if there is no i ∈ {1, . . . , r − 1} so that wi = w−1i+1.
Given a word that is not reduced, we can reduce it by successively removing
all the pairs of consecutive letters that are each others inverses. The shorter
word we obtain by doing this, will be called red(w).

We call a reduced word w bad if there exist words wa and wb so that
w = waw

j
bw
−1
a for some j ≥ 2.

Lemma 6.2. Let k ≥ 2 and r ∈ N. We have

P2r [red(w) is bad or empty] ≤ r + 1

(k/2)r
.

Proof. To count the number of words with bad reductions, we first count
words in the three letters {(, ), ∗}. A word w = w1 · · ·w2r in these letters is
called admissible if the following conditions hold:

1. w contains as many open as closed brackets:

|{i; wi = ( }| = |{i; wi = ) }| .

2. No bracket in w is closed before it is opened: for any i = 1, . . . , 2r:

|{j ≤ i; wj = ( }| ≥ |{j ≤ i; wj =) }| .

3. Stars only appear when all brackets have been closed: if wi = ∗ then

|{j < i; wj = ( }| = |{j < i; wj = ) }| .

For example, the word (())() ∗ ∗ ∗ ∗()(()) is admissible, whereas the words
((∗)) and )( are not.

Now suppose w ∈ W 2r. We obtain an admissible word in {(, ), ∗} from
a reduction of w to red(w) as follows: place a ∗ in place of every letter that
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remains and place a pair of brackets ( and ) for every pair of inverses that
cancel against each other at some point in the reduction. For example, if

w = a1 · a−12 · a2 · a−11 · a3 · a1

then a corresponding word in {(, ), ∗} is

(()) ∗ ∗.

Note however that the word in {(, ), ∗} depends on the reduction. For
instance, from different reductions of a1 · a−12 · a2 · a−11 · a1 · a3, we obtain
(()) ∗ ∗ or ∗()()∗.

Nonetheless, we can obtain all words w ∈ W 2r that reduce to a word
of length 2l by filling in admissible words in {(, ), ∗} with 2l stars (we just
obtain some words multiple times). Note that the case l = 0 corresponds to
words with an empty reduction.

To count the number of words with a bad reduction, our strategy will be
to count the number of admissible words in {(, ), ∗} with the right number
of stars and then count the number of ways to fill them in.

Note that if a word in {(, ), ∗} is admissible and has 2l stars, then the
position of the r− l open brackets determine the word entirely. Indeed, once
the open brackets have been filled in, every remaining place needs to be either
a closed bracket or a star. To fill these letters in, we read the open places
from right to left. If a star is allowed, we put a star in that place, if not, we
put in a closed bracket. As such, the number of admissible words of length
2r with 2l stars is (

2r

r − l

)
All that remains is to bound the number of choices for the bad word

we put in place of the stars and the pairs of letters we put in place of the
brackets.

Let us start with the former. We need to build a word of length 2l of the
form wa · wjbw−1a . Note that once the lengths of wa and wb are given, j is
determined. Furthermore, the length lb of wb satisfies

lb ≤ (2l − 2la)/2 = l − la
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So we obtain that the number of bad words of length 2l is at most

l∑
la=0

(2k)l−la · (2k)la = (l + 1) · (2k)l.

After this, we need to count how many ways there are to fill in the brack-
ets. Once the letters corresponding to the open brackets have been chosen,
the letters corresponding to the closed brackets are fixed. As such there are

(2k)r−l

choices for this.

This means that the number of words with a bad or empty reduction can
be bounded by

r∑
l=0

(
2r

r − l

)
(l + 1)(2k)r ≤ (r + 1)(2k)r

r∑
l=0

(
2r

r − l

)
≤ (r + 1)22r · (2k)r.

Dividing by the total number of words of length r, we obtain the bound.

Our next intermediate goal will be to bound the probability

Pperm
n,k [w(π1, . . . , πk)(1) = 1]

for any fixed word w ∈ W s for some s ≤ 2k.

We will control this probability using the following heuristic that goes
through the word w step by step (or letter by letter):

- Set v0 = 1.

- Let wi denote the ith letter of w (read from the right). Suppose
wi(π1, . . . , πk) = πεj

- If πεj (vi−1) has not yet been chosen, randomly pick πεj (vi−1) (among
the vertices that have not yet been assigned to the range of πj)
and set

vi = πεj (vi−1).

In this case the ith step is called free.
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- If πεj (vi−1) has already been chosen, set

vi = πεj (vi−1).

In this case the ith step is called forced.

Note that
P[vs = 1] = Pperm

n,k [w(π1, . . . , πk)(1) = 1].

We claim:

Lemma 6.3. Let 0 < s ≤ 2r and let w ∈ W s be a good reduced word. Then

Pperm
n,k [w(π1, . . . , πk)(1) = 1] ≤ 1

n− 2r
+

16 · r4

(n− 2r)2
.

Proof. Let us call the ith step in the process above a coincidence if it is free
and moreover if vi is a vertex that has already been seen before.

Note that the fact that w is reduced implies that if w(π1, . . . , πk)(1) = 1
then at least one coincidence must occur. As such, we obtain the bound

Pperm
n,k [w(1) = 1] ≤ P

[
Exactly one coincidence

occurs and vs = 1

]
+ P

[
At least two

coincidences occur

]
.

Let us denote the event that a coincidence occurs at step i by Ci. Before
the ith step there are at most i vertices that have already been visited. Like-
wise, there are at least n− i vertices that have not yet been assigned to the
range of πj. As such:

P[Ci| v0 = 1, . . . , vi−1 = ui−1] ≤
i

n− i
≤ 2r

n− 2r
.

Note that this bound does not depend on the conditioning. Hence:

P
[

At least two
coincidences occur

]
≤

∑
1≤i<j≤2r

P[Ci and Cj]

=
∑

1≤i<j≤2r

P[Ci]P[Cj| Ci]

≤
∑

1≤i<j≤2r

4 · r2

(n− 2r)2

≤ 16 · r4

(n− 2r)2
. (6.1)
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So, we need to show that

P
[
Exactly one coincidence

occurs and vs = 1

]
≤ 1

n− 2r
.

If w(π1, . . . , πk)(1) = 1, then w gives rise to a closed cycle in the graph
G(π1, . . . , πk). If only one coincidence occurs, then this cycle must look like
the cycle in Figure 6.1: a (possibly empty) “tail” starting at vertex 1 with a
circuit attached to it. The coincidence happens at the vertex where the tail
is attached (v in the image), after which all the steps are forced.

1 v

Figure 6.1: A cycle with a tail.

The word w could run through this cycle in multiple ways: it can run
through the circuit multiple times. However, we necessarily have w = wawbw

−1
a ,

where wa corresponds to the tail and wb is non-empty, since w is reduced. If
the word were to run through the circuit multiple times, the word wb would
be a power. This can’t happen since we are assuming w is good. Finally, we
claim that the decomposition w = wawbw

−1
a is uniquely determined by w.

Indeed, we claim wb (the word corresponding to the cycle) is not of the form
tw′t−1 for any t ∈ W . Indeed, if this were the case, then the step where the
coincidence is supposed to occur would be forced. This observation uniquely
determines wb and hence also wa.

Let t1 be the step where the coincidence occurs. That is, t1 is obtained
by adding the number of letters of wa and wb together (again, this is fixed
once w is fixed). Likewise, let t0 be the number of letters of wa. So

v = vt0 .

We need that step t1 is free and that the vertex v is chosen. We have

P
[
Step t1 if free
and vt1 = vt0

]
≤ 1

n− t1
≤ 1

n− 2r
.
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Note that the latter bound does not depend on when the coincidence occurs.
So we obtain

P
[
Exactly one coincidence

occurs and vs = 1

]
≤ 1

n− 2r
. (6.2)

Adding the bounds (6.1) and (6.2) together, we obtain the lemma.

We are now ready to prove that random graphs are expander graphs:

Theorem 6.4. [BS87] Fix k ∈ N. We have

Eperm
n,k [λ(G)] ≤ 21/2 · (2k)3/4 · (1 + o(1))

as n→∞.

Proof. From Lemma 6.1 we obtain:

Eperm
n,k [ρ(G)] ≤ Eperm

n,k [ρ(G)2r]1/2r ≤ (Eperm
n,k [E2r [|Fix(w(π1, . . . , πk))|]]− 1)1/2r

We have

Eperm
n,k [E2r [|Fix(w(π1, . . . , πk))|]] =

∑
w∈W 2r

∑
π1,...,πk∈Sn

|Fix(w(π1, . . . , πk))|

(2k)2r · (n!)k

=
1

(2k)2r

∑
w∈W 2r

n∑
i=1

Pperm
n,k [w(i) = i]

=
1

(2k)2r

∑
w∈W 2r

n · Pperm
n,k [w(1) = 1]

Using Lemma 6.3, we obtain

Eperm
n,k [E2r [|Fix(w(π1, . . . , πk))|]] ≤

n

n− 2r
+

16 · r4 · n
(n− 2r)2

+P2r[red(w) is bad or empty].

Now we apply Lemma 6.2 and get

Eperm
n,k [E2r [|Fix(w(π1, . . . , πk))|]] ≤

n

n− 2r
+

16 · r4 · n
(n− 2r)2

+
r + 1

(k/2)r
,
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for all n, r ∈ N. Now all we have to do is make a clever choice for r. r(n) =
2 logk/2(n) will do. We obtain

Eperm
n,k [E2r [|Fix(w(π1, . . . , πk))|]]− 1 =

2r(n)

n− 2r(n)
+O(log(n)4/n)

So, if we plug this into our earlier bound, we get that there exists a constant
C > 0 so that

Eperm
n,k [ρ(G)] ≤

(
C log(n)4

n

) 1
4 logk/2(n)

= exp

(
log(n) + log(C) + 4 log(log(n))

4 log(n)
log(k/2)

)
=

(
2

k

) 1
4
− log(C)+4 log(log(n))

4 log(n)

=

(
2

k

) 1
4

· (1 + o(1)),

as n→∞.

This implies that

Eperm
n,k [λ(G)] = 2k · Eperm

n,k [ρ(G)] = 21/2 · (2k)3/4 · (1 + o(1)),

as n→∞.

Like we said before, this proves the existence of expander graphs:

Corollary 6.5. Let k ≥ 3. There exists a sequence (Gn)n of 2k-regular
graphs that forms an expander graph.

Proof. For every n ∈ N there must be a set of permutations π1, . . . , πk ∈ Sn

so that
λ(G(π1, . . . , πk)) ≤ Eperm

n,k [λ(G)] < 2k,

where we used k ≥ 3 for the strict inequality. If we choose one such graph
for every n, we obtain an expander sequence.
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6.2 Exercises

Exercise 6.1. The diameter of an expander. Given a connected graph G,
the diameter of G is given by:

diam(G) = sup {d (v, w) ; v, w ∈ V (G)} ,

where d (v, w) denotes the distance between v and w: the number of edges
in the shortest path between v and w. Moreover, given v ∈ V (G) and r ∈ N,
let

Br(v) = {w ∈ V (G); d (v, w) ≤ r}

denote the ball of radius r around v.

(a) Let k ≥ 3 and let G be a connected k-regular graph on n vertices.
Furthermore suppose G has at least one pair of vertices that do not
share an edge. Show that

diam(G) ≥ logk−1(n) + log(e/k).

Hint: Use the fact that Bdiam(G)(v) covers the whole graph G for any
v ∈ V (G).

(b) For every k ≥ 3 give an example of a sequence of k-regular graphs (Gn)n
so that |V (Gn)| → ∞ as n→∞ and diam(Gn) is linear in V (Gn).

(c) Let k ≥ 3 and let G be a connected k-regular graph on n vertices.
Show that

|Br(v)| ≥ min

{
n

2
,

(
1 +

h(G)

k

)r }
.

(d) Let k ≥ 3 and let G be a connected k-regular graph on n vertices. Set
β = 1 + h(G)/k. Show that

diam(G) ≤ 2 logβ(n) + 3

and conclude that if (Gn)n is an expander graph, then there exist a
constant C > 0 (independent of n) so that

1

C
log(|V (Gn)|) ≤ diam(Gn) ≤ C log(|V (Gn)|)
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for all n ∈ N.

Hint: Take two vertices v, w ∈ G that realize the diameter and expand
balls around them of a radius r so that |Br(v)| ≥ n/2 and |Br(w)| ≥
n/2, where r is the minimal radius with this property.

Exercise 6.2. A simple random walk on a graph G starting at v ∈ V (G) is
a sequence of random variables Xr : Ω→ V (G), r ∈ N with

X0(ω) = v

for all ω ∈ Ω and

P[Xr+1 = v| Xr = w] = A(G)vw/ deg(w),

where A(G) is the adjacency matrix of G.

In what follows, fix k ≥ 3 and let G be a connected k-regular graph on
vertices {1, . . . , n}.

(a) Set P (G) = A(G)/k. Show that

P[Xr = i| X0 = j] = (P (G)r)ij .

(b) Show that ∣∣∣∣(P (G)r)ij −
1

n

∣∣∣∣ ≤ (λ(G)

k

)r
· (n− 1).

(c) Fix j ∈ {1, . . . , n} and let P?r : P(V (G)) → [0, 1] be the probability
measure on V (G) given by:

P?r[S] = P[Xr ∈ S| X0 = j]

for all S ⊂ V (G). Furthermore, let U : P(V (G)) → [0, 1] denote the
uniform probability measure on V (G). That is:

U[S] = |S| /n

for all S ⊂ V (G). Show that

dTV (P?r,U) ≤ n · (n− 1)

2

(
λ(G)

k

)r
.

Hint: Use Exercise 2.1(a).
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