
Lecture 7

A crash course the geometry of
hyperbolic surfaces

7.1 The hyperbolic plane

Hyperbolic geometry originally developed in the early 19th century to prove
that the parallel postulate in Euclidean geometry is independent of the other
postulates. From this perspective, the hyperbolic plane can be seen as a
geometric object satisfying a collection of axioms very similar to Euclid’s
axioms for Euclidean geometry, but with the parallel postulate replaced by
something else. From a more modern perspective, hyperbolic geometry is the
study of manifolds that admit a Riemannian metric of constant curvature −1.

From the classical point of view, any concrete description of the hyperbolic
plane is a model for two-dimensional hyperbolic geometry, in the same way
that R2 is a model for Euclidean geometry.

Because this is a crash course, we will describe only one model for the
hyperbolic plane: the upper half plane model. We note however that other
models (like for instance the Klein model, the Poincaré model and the hyper-
boloid model) do exist. For a more complete reference, we refer to [Bea95,
Chapter 7].

Given a smooth manifold M , let TM denote its tangent bundle. Recall
that a Riemannian manifold (M, g) is a manifold M equipped with a smooth
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map
g : TM × TM → R,

called the Riemannian metric, so that the restriction gp : TpM × TpM → R
is a real inner product.

Definition 7.1. The hyperbolic plane H2 is the complex domain

H2 = {z ∈ C; =(z) > 0}

equipped with the Riemannian metric gx+iy : Tx+iyH2 × Tx+iyH2 → R given
by

gx+iy(v, w) =
1

y2
(
dx(v) · dx(w) + dy(v) · dy(w)

)
for all x ∈ R and y ∈ (0,∞)

Because they are convenient, we will almost always work in local coordi-
nates x = <(z) and y = =(z) for all z ∈ H2. We will denote the corresponding
tangent vector fields by ∂/∂x and ∂/∂y respectively.

Let us first note that even thought distances in H2 behave very differently
than in Euclidean geometry, the angles are the same. Indeed, locally the
metric is just a scalar multiple of the usual inner product, so angles are no
different.

Example 7.2. Let us compute the hyperbolic length of the straight line
segment between ai ∈ H2 and bi ∈ H2 (denoted [ai, bi]) for 0 < a < b ∈ R.
We may parameterize this segment by

γ : [0, 1]→ [ai, bi] given by γ(t) = (1− t) · ai+ t · bi.

We have
d

dt
γ(t) = −a ∂

∂y γ(t)
+ b

∂

∂y γ(t)
= (b− a)

∂

∂y γ(t)
.

So

g

(
d

dt
γ(t),

d

dt
γ(t)

)
=

(b− a)2

(a+ t(b− a))2
.
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This means that the length of the line segment is given by

`([ai, bi]) =

∫ 1

0

√
g

(
d

dt
γ(t),

d

dt
γ(t)

)
dt

=

∫ 1

0

b− a
a+ t(b− a)

dt

= [log(a+ t(b− a))]10
= log(b/a).

Recall that given a connected Riemannian manifold (M, g), the distance
between two points p, q ∈M is given by

d (p, q) = inf {`(γ); γ : [0, 1]→M smooth, γ(0) = p and γ(1) = q} .

Example 7.3. We claim that for ai, bi ∈ H2 with 0 < a < b ∈ R we have

d (ai, bi) = log(b/a).

In Example 7.2 we have already shown that

d (ai, bi) ≤ log(b/a),

so all we have to do is show the other inequality. Let γ : [0, 1]→ H2 be any
other smooth path with γ(0) = ai and γ(1) = bi. Write

x(t) = <(γ(t)) and y(t) = =(γ(t)),

so γ(t) = x(t) + iy(t). We have

`(γ) =

∫ 1

0

√
g

(
d

dt
γ(t),

d

dt
(γ(t)

)
dt

=

∫ 1

0

1

y(t)

√
ẋ(t)2 + ẏ(t)2dt,

where ẋ(t) = dx(t)/dt and ˙y(t) = dy(t)/dt. As such

`(γ) ≥
∫ 1

0

ẏ(t)

y(t)
dt = log(b/a),

which proves our claim.
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Let Mat(2,R) denote the set of 2× 2 real matrices and define the group

PSL(2,R) =

{(
a b
c d

)
∈ Mat(2,R); ad− bc = 1

}
/

{
±
(

1 0
0 1

)}
.

The group PSL(2,R) acts on H2 by[
a b
c d

]
· z =

az + b

cz + d
(7.1)

for all z ∈ H2 and

[
a b
c d

]
∈ PSL(2,R). Note that the expression above

is well-defined, that is, it does not depend on the representative matrix we
choose. In Exercise 7.1 we prove that this actually defines a PSL(2,R)-action
on H2 and that the action is by isometries. That is

d (Az,Aw) = d (z, w)

for all z, w ∈ H2 and A ∈ PSL(2,R). When acting on H2, the elements of
PSL(2,R) are called Möbius transformations. We claim (but will not prove)
that all orientation preserving isometries of H2 are Möbius transformations.

Proposition 7.4. Let A : H2 → H2 be a smooth map that preserves orien-
tation so that

d (Az,Aw) = d (z, w)

for all z, w ∈ H2, then A is a Möbius transformation.

A consequence of this is the following:

Proposition 7.5. Let z, w ∈ H2. Then

d (z, w) = cosh−1

(
1 +

|z − w|2

2 · =(z) · =(w)

)
.

Proof. First of all, for z and w on the imaginary axis, this formula restricts
to the formula from Example 7.3. As such, our strategy will be to prove that
the expression on the right is invariant under Möbius transformations (as well
as the expression on the left) and then to show that every pair of elements
z, w ∈ H2 can be mapped to the imaginary axis by Möbius transformations.
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The first fact comes down to checking that

|z − w|2

2 · =(z) · =(w)
=

|Az − Aw|2

2 · =(Az) · =(Aw)

for all A ∈ PSL(2,R) and z, w ∈ H2. This is a straightforward computation
that we leave to the reader.

To show that we can move every pair of points to the imaginary axis with
a Möbius transformation, we may assume that not both z and w are on the
imaginary axis.

First suppose that z and w lie on a vertical line {x = b}. In this case the
Möbius transformation z 7→ z − b maps both points to the imaginary axis.

Now suppose that z and w do not lie on a vertical line. Let C be the
unique Euclidean circle through z and w that is perpendicular to the real
line. Let α be one of the two points on the intersection C ∩ R.

z 7→ −1

z − α
is a Möbius transformation. We claim that it sends C to a straight line.
One way to check this is by parameterization. Indeed, suppose C has center
β ∈ R and suppose β > α. We can then parameterize

C(t) = β + e2πit(β − α), t ∈
(

0,
1

2

)
It is a straightforward computation to check that

<
(

−1

C(t)− α

)
=

−1

2(β − α)
.

As such, our Möbius transformation sends z and w to two elements that lie
on a vertical line and we are done.

We note that Möbius transformations preserve the set of half circles or-
thogonal to R and vertical lines in H2 (see Exercise 7.2).

Recall that a geodesic γ : R→ H2 is a smooth path so that

d (γ(t), γ(s)) = |t− s|

for all t, s ∈ R.

It follows from the proof and the two examples above that:
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Proposition 7.6. The image of a geodesic γ : R → H2 is a vertical line or
a half circle orthogonal to R. Moreover, every vertical line and half circle
orthogonal to the real line can parameterized as a geodesic.

We will often forget about the parametrization and call the image of
a geodesic a geodesic as well. Note that it follows from the proposition
above that given any two distinct points z, w ∈ H2 there exists a unique
geodesic γ ⊂ H2 so that both z ∈ γ and w ∈ γ. Furthermore, it also follows
given a point z ∈ H2 and a geodesic γ that does not contain it, there is
a unique perpendicular from z to γ (a geodesic γ′ that intersects γ once
perpendicularly and contains z)

The final fact we will need about the hyperbolic plane is:

Proposition 7.7. Let z ∈ H and let γ ⊂ H2 be a geodesic so that z /∈ γ then

d (z, γ) := inf {d (z, w) ; w ∈ γ}

is realized by the intersection point of the perpendicular from z to γ.

Proof. This follows from Pythagoras’ theorem for hyperbolic triangles. In-
deed, given three points in H2 so that the three geodesics through them form
a right angled hyperbolic triangle with sides of length a, b and c (where c is
the side opposite the right angle), we have

cosh(a) cosh(b) = cosh(c)

(see Exercise 7.3). This means in particular that c > b.

So, any other point on γ is further away from z than the point w realizing
the perpendicular. Because that other point forms a right angled triangle
with w and z.

7.2 Surfaces

A surface is a smooth two-dimensional manifold. We call a surface closed
if it is compact and has no boundary. A surface is said to be of finite type
if it can be obtained from a closed surface by removing a finite number of
points and (smooth) open disks. In what follows, we will always assume our
surfaces to be orientable.
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Example 7.8. To properly define a manifold, one needs to not only describe
the set but also give smooth charts. In what follows we will content ourselves
with the sets (Exercise 7.4 completes the picture).

(a) The 2-sphere is the surface

S2 =
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 1
}
.

(b) Let S1 denote the circle. The 2-torus is the surface

T2 = S1 × S1

(c) Given two (oriented) surfaces S1, S2, their connected sum S1#S2 is
defined as follows. Take two closed sets D1 ⊂ S1 and D2 ⊂ S2 that are
both diffeomorphic to closed disks, via diffeomorphisms

ϕi :
{

(x, y) ∈ R2; x2 + y2 ≤ 1
}
→ Di, i = 1, 2,

so that ϕ1 is orientation preserving and ϕ2 is orientation reversing.

Then
S1#S2 =

(
S1 r D̊1 t S2 r D̊2

)
/ ∼

where D̊i denotes the interior of Di for i = 1, 2 and the equivalence
relation ∼ is defined by

ϕ1(x, y) ∼ ϕ2(x, y) for all (x, y) ∈ R2 with x2 + y2 = 1.

The figure below gives an example.

Figure 7.1: A connected sum of two tori.

Like our notation suggests, the manifold S1#S2 is independent (up
to diffeomorphism) of the choices we make (the disks and diffeomor-
phisms ϕi). This is a non-trivial result, the proof of which we will skip.
Likewise, we will also not prove that the connected sum of surfaces is
an associative operation and that S2#S is diffeomorphic to S for all
surfaces S.
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A classical result from the 19th century tells us that the three simple
examples above are enough to understand all finite type surfaces up to dif-
feomorphism.

Theorem 7.9. Classification of closed surfaces Every closed surface is dif-
feomorphic to the connected sum of a 2-sphere with a finite number of tori.

Indeed, because the diffeormorphism type of a finite type surface does
not depend on where we remove the points and open disks (another claim we
will not prove), the theorem above tells us that a finite type surface is (up to
diffeomorphism) determined by a triple of positive integers (g, b, n), where

- g is the number of tori in the connected sum and is called the genus of
the surface.

- b is the number of disks removed and is called the number of boundary
components of the surface.

- n is the number of points removed and is called the number of punctures
of the surface.

we will denote the corresponding surface by Σg,b,n and will write Σg = Σg,0,0.

7.3 Hyperbolic surfaces

For this section we will mainly follow [Bus10]. A hyperbolic surface will be a
finite type surface equipped with a metric that locally makes it look like H2.

Because we will want to deal with surfaces with boundary, we need half
spaces. Let γ ⊂ H2 be a geodesic. H2 r γ consists of two connected compo-
nents C1 and C2. We will call Hi = Ci ∪ γ a closed half space (i = 1, 2). So
for example {

z ∈ H2; <(z) ≤ 0
}

is a closed half space.

We formalize the notion of a hyperbolic surface as follows:
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Definition 7.10. A finite type surface S with atlas (Uα, ϕα)α∈A is called a
hyperbolic surface if ϕα(Uα) ⊂ H2 for all α ∈ A and

1. for each p ∈ S there exists an α ∈ A so that p ∈ Uα and

- If p ∈ ∂S then
ϕα(Uα) = V ∩H

for some open set V ⊂ H2 and some closed half space H ⊂ H2.

- If p ∈ S̊ then ϕα(Uα) ⊂ H2 is open.

2. For every α, β ∈ A and for each connected component C of Uα∩Uβ we
can find a Möbius transformation A : H2 → H2 so that

ϕα ◦ ϕ−1β (z) = A(z)

for all z ∈ ϕβ(C) ⊂ H2.

Note that every hyperbolic comes with a metric: every chart is identified
with an open set of H2 which gives us a metric. Because the chart transitions
are restrictions of isometries of H2, this metric does not depend on the choice
of chart and hence is well defined.

Definition 7.11. A hyperbolic surface S is called complete if the induced
metric is complete.

7.4 Exercises

Exercise 7.1. (a) Show that the action of PSL(2,R) on H2 defined in (7.1)
is indeed an action. That is, show that if A,B ∈ PSL(2,R) and z ∈ H2

then
Az ∈ H2 and (A ·B)z = A(Bz).

(b) Recall that if M is a manifold and f : M →M a diffeomorphism, then
we obtain a linear map

Dfp : TpM → Tf(p)M
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called the differential of f . One way to describe this map is as follows.
Given v ∈ TpM , Take γ : (−1, 1)→M so that

γ(0) = p and
d

dt
γ(0) = v

and define

(Df)v =
d

dt
(f ◦ γ)(0).

Given A ∈ PSL(2,R), show that its derivative DAz (as a map from H2

to itself) satisfies

gAz(DAzv,DAzw) = gz(v, w)

for all z ∈ H2 and v, w ∈ TzH2.

(c) Given a smooth path γ : [0, 1] → H2 and A ∈ PSL(2,R), we obtain a
new smooth path A ◦ γ : [0, 1]→ H2. Show that

`(γ) = `(A ◦ γ).

Conclude that
d (Az,Aw) = d (z, w)

for all z, w ∈ H2 and A ∈ PSL(2,R).

Exercise 7.2. Let C ⊂ H2 be a half circle orthogonal to R or a vertical
line and let A : H2 → H2 be a Möbius transformation. Show that A(C) is a
vertical line or half circle orthogonal to R.

Hint: consider what a Möbius transformation does to the endpoints (NB:
∞ is a possible endpoint) of half circles orthogonal to R and vertical lines

Exercise 7.3. Pythagoras’ theorem: Suppose x, y, z ∈ H2 form a right angled
triangle (that is, the geodesic between x and y intersects that between y and
z perpendicularly) and let

a = d (x, y) , b = d (y, z) and c = d (z, x) .

Prove that
cosh(a) · cosh(b) = cosh(c).

Hint: just like in the proof of Proposition 7.5 you may assume that the
geodesic between y and z is the imaginary axis.

Exercise 7.4. Define an atlas for S2 and T2.

10



Bibliography

[Bea95] Alan F. Beardon. The geometry of discrete groups, volume 91 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
Corrected reprint of the 1983 original.

[Bus10] Peter Buser. Geometry and spectra of compact Riemann surfaces.
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