Lecture 8

Pants decompositions 1

8.1 Pairs of pants

Even though Definition 7.10 is a complete definition, it is not very descriptive.
In what follows we will describe a concrete cutting and pasting construction
for hyperbolic surfaces.

We start with right angled hexagons. Let vy, ...,7 C H? be consistently
oriented geodesics so that

1 it li—j]=1orif {i,5} ={1,6}
v Nyl = { 0 otherwise.

and the oriented angle at every intersection point is /2. Now let H, ..., Hsg,
be half spaces defined by the geodesics v4,...,7 so that the intersection
NY_,H; is non-empty and compact. Then N H; C H? is called a right
angled hexagon.

The picture to have in mind is:
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Figure 8.1: A right angled hexagon H.

It turns out that the lengths of three non-consecutive sides determine a
right angled hexagon up to isometry.

Proposition 8.1. Let a,b,c € (0,00). Then there exists a right angled
hexagon H C H? with three non-consecutive sides of length a, b and ¢ respec-
tively. Moreover, if H' is another right angled hexagon with this property,
then there exists a Mobius transformation A : H? — H? so that

A(H) = H.

Proof. Let us start with the existence. Let v;,, denote the positive imaginary
axis and set
B={zeH d(z,Vim) =c}.

B is a one-dimensional submanifold of H?. Because the map z + Az is an
isometry that preserves ;,, for every A > 0, it must also preserve B. This
means that B is a (straight Euclidean) line.

Now construct the following picture:



H2

Figure 8.2: Constructing a right angled hexagon H(a, b, c).

That is, we take the geodesic though the point ¢ € H? perpendicular to
Yim and at distance a draw a perpendicular geodesic . furthermore, for
any p € B, we draw the geodesic « that realizes a right angle with the
perpendicular from p to 7;,. Now let

r=d(a,y) =inf{d(z,w); z €7, we a}.

Because of Proposition 7.7, x is realized by the common perpendicular to «
and v. By moving p over B, we can realize any positive value for x and hence
obtain our hexagon H(a, b, c).

We also obtain uniqueness from the picture above. Indeed, given any
right angled hexagon H’ with three non-consequtive sides of length a, b and
¢, apply a Mobius transformation A : H? — H? so that the geodesic segment
of length a starts at ¢ and is orthogonal to the imaginary axis. This implies
that the geodesic after a gets mapped to the geodesic v. Furthermore, one of
the endpoints of the geodesic segment of length ¢ needs to lie on the line B.
We now know that the the geodesic o before that point needs to be tangent
to B. Because a and [ have a unique common perpendicular. The tangency
point of o to B determines the picture entirely. Because the function that
assigns the length x of the common perpendicular to the tangency point is
injective, we obtain that there is a unique solution. O

One of our main building blocks for hyperbolic surfaces is the following:



Definition 8.2. Let a,b,c € (0,00). A pair of pants is a hyperbolic surface
that is diffeomorphic to Xy 3 ¢ such that the boundary components have length
a, b and c respectively.

Proposition 8.3. Let a,b,c € (0,00) and let P and P’ be pairs of pants
with boundary curves of lengths a, b and c. Then there exists an isometry
p:P— P.

Proof sketch. There exists a unique orthogonal geodesic (this essentially fol-
lows from Proposition 7.7, in Proposition 8.6 we will do a similar proof in
full) between every pair of boundary components of P.

These three orthogonals decompose P into right-angled hexagons out of
which three non-consecutive sides are determined. Proposition 8.1 now tells
us that this determines the hexagons up to isometry and this implies that P
is also determined up to isometry. O

Note that it also follows from the proof sketch above that the unique
perpendiculars cut each boundary curve on P into two geodesic segments
of equal length. Moreover, we obtain a standard parmeterization of the
boundary pair of pants.

If P is a pair of pants and § C 0P is one of its boundary components, let
us write £(0) for the length of . Recall that an isometry between Riemannian
manifolds M and N is a diffeomorphism ¢ : M — N so that

dur(z,y) = dy(e(a), ¢(y))
for all x,y € M.

Example 8.4. Given two pairs of pants P; with boundary components 41, o
and 03 and P, with boundary components 77, 72 and 3 so that

0(61) = (),

we can choose an orientation reversing isometry ¢ : 6; — v, and from that
obtain a hyperbolic surface

S:P1|_|P2/N,

where ¢(x) ~ x for all z € §;. Note that S is diffeomorphic to 3 4.



8.2 Simple closed curves

Given a manifold M, recall that two embeddings i, : S' — M are called
freely homotopic, if there exists a continuous map:

H:S'x[0,1] - X

so that
H(t,0) = n(t) and H(t,1) = 7(t)

for all t € S'. The difference between free homotopy and usual homotopy of
loops is that there is no mention of basepoints in the case of free homotopy.

Let X be a hyperbolic surface. We call a smooth map v : S* — X a
closed geodesic if for every t € S! there exists an open set U C S! with t € U
so that

dx (7(s),7() = dsa (s, '),

where the metric dgi : S*xS! — [0, 00) is the metric coming from the quotient
S' =R/(¢(v)Z) (so S! has total length £(~y)). Just like with geodesics in H?,
we will often identify a closed geodesic with its image.

Finally, we will need the following fact, which we shall not prove. A
convex subset of H? here is a subset C C H? so that the geodesic segment
between x and y lies in C' for all z,y € C.

Theorem 8.5. (a) Let X be closed hyperbolic surface. Then there ezists a
COVETING map
p:H> = X

that is a local isometry.

(b) Let X be a hyperbolic surface with boundary. Then there exists a closed
convex subset X C H? and a covering map

p: XX
that is a local isometry.

A proof of (a) for instance be found in [CE08, Theorem 1.37] and (b) is
proved in [Busl0, Theorem 1.4.2]. Note that it follows from the fact that



H? and convex subsets in H? are simply connected that the covers above are
unversal covers.

To see that every closed hyperbolic surface can be constructed by gluing
pairs of pants together, we need the following proposition. Here, a simple
closed curve on a hyperbolic surface X is a closed curve v : S — X that is
an embedding.

Proposition 8.6. Let X be a closed hyperbolic surface and let v : St — X be
smooth map (a closed curve) that is not freely homotopic to a constant map.
There exists a (up to reparameterization) unique closed geodesic 7 : St — X
that s freely homotopic to v. This geodesic is the curve of minimal length
among all curves that are freely homotopic to . Moreover, if v is simple
then so is 7.

Proof sketch. We will prove everything, except the statement about simplic-
ity. The proof will however assume some general covering theory, see [Hat02,
Section 1.3] for details. Let

C:={y:S" = X; 7 freely homotopic to 7}

and set
L=inf{{(y); v € C}.

Now consider a sequence {7, }, so that £(v,) — L. Tt follows from the Arzela-
Ascoli theorem ([Busl0O, Theorem A.19]) that there exists a subsequence
{Yn, }x and a simple closed curve 7 : S* — X so that 7,, — 7 uniformly as
k — oo. Because ¥ minimizeanys length, it needs to be a geodesic (up to
reparameterization).

To show uniqueness, suppose there are two freely homotopic geodesics
1,7 : St — X. Consider the universal cover p : H?* — X. Because 7; and
7, are freely homotopic, we can lift them to continuous maps 71,7 : R — H?
that are homotopic. The fact that v; and 7, are geodesics implies that 7,
and 7, are as well.

By general covering theory, the subgroup of the deck group m1(X) that
leaves 77 invariant also leaves 7, invariant (because they are homotopic). By
a compactness argument, this implies that

T?G%X{dﬁl (t),72(t)} < oo.
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Now we note that when geodesics have at least one pair of distinct endpoints,
the above does not hold. This implies that 7; and 7, have the same endpoints,
which in turn implies they have coincide. O

We note that the three boundary components of a pair of pants are simple
closed geodesics.

Example 8.7. ¢ in Example 8.4 is determined up to ‘twist’. That is, if
we parameterize d; by a simple closed geodesic z : R/(¢(01)Z) — 01 and
¢ 01 — 7 is a different orientation reversing isometry, then there exists
some tg € R so that

' (x(t) = p(x(to + 1))
for all t € R/(€(01)Z) — 6.

8.3 Exercises

Exercise 8.1. Let H be a right angled hexagon with three non consecutive
sides of the same length a > 0.

(a) Show without computing their lengths that the lengths of the other
three sides are also all the same.

(b) Compute the length of the other three sides.
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