Lecture 9

Models of random surfaces

9.1 Pants decompositions

A direct consequence of Proposition 8.6 is that every closed hyperbolic surface
of genus g > 2 can be obtained from iterating Example 8.4. That is, every
closed hyperbolic surface can be built by gluing together pairs of pants.
Indeed, just take a system of homotopy classes of closed curves that cut
the surface into pairs of pants. Proposition 8.6 tells us that each of these
homotopy classes contains a unique geodesic

Let us formalize the notion of a pants decomposition:

Definition 9.1. Let X be a closed surface. A pants decomposition of X is
a set of pairwise disjoint simple closed curves {71,...,7,} so that
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is a disjoint union of pairs of pants.

An Euler characteristic argument shows that if X is a closed surface of
genus ¢, then the number of curves in a pants decomposition is necessarily
equal to 3g — 3.

Figure 9.1 gives some examples:



Figure 9.1: Four pants decompositions of a closed surface of genus 5.

To decide whether or not pants decompositions are the same up to dif-
feomorphism, the following graph is very useful:

Definition 9.2. Let X be a closed surface and let P = {7,...,7,} be a
pants decomposition of X. The dual graph Gp to P is the graph obtained
by setting

- V(Gp) to be the set of connected components of X \ P,

- E(GP) =P and

- 7; is incident to a conneceted component C' € V(Gp) if and only if it
is a boundary component of C'.



Note that Gp is a connected 3-regular graph with 3¢ — 3 edges and hence
2g — 2 vertices.

Proposition 9.3. Let X be a closed surface and let Py and Py be pants
decompositions. There exists a diffeomorphism ¢ : X — X so that p(P1) =
©(Po) if and only if Gp, and Gp, are isomorphic graphs.

Proof. Exercise 9.1. [
Note that this proposition implies that there are finitely many pants

decompositions of a given surface up to diffeomorphism.

We already noted that every closed hyperbolic surface can be obtained
by gluing pairs of pants together. In fact, only pairs of pants with boundary
of a bounded length (in terms of the genus) are needed, this is a theorem by
Bers. The best bound is due to Parlier [Par14].

Theorem 9.4. Fvery closed hyperbolic surface of genus g has a pants de-
composition in which every curve has length at most

20 g.

9.2 Teichmailler space

For applications later on, we will need a nice space to parameterize our
hyperbolic surfaces. This role will be played by Teichmiiller space. The
definition we give is not the usual definition and in a course on Teichmiiller
theory would be a theorem (originally proven by Fenchel and Nielsen)

Definition/Theorem 9.5. Let g > 2. Teichmiiller space is the manifold
Ty = (0,00)%973 x R¥~3,

The coordinates ¢; are called the length coordinates and the coordinates 7;
are called the twist coordinates.



Given a closed surface X with a pants decomposition P = {1, ..., 734-3},
we define a hyperbolic surface for every point (¢, 7) € 7, as follows.

First of all, assign the length ¢; to ~; for i = 1,...,39 — 3. Because of
Proposition 8.3, this completely determines the geometry of the pair of pants
Py, ... Py 5 in the decomposition, we only need to decide how to glue them
together (we need to pick diffeomorphisms ¢; ,, between the corresponding
boundary components). Let P and P’ be the (not necessarily distinct) pairs
of pants that meet at ~; and use the standard parameterization described
earlier to parameterize the corresponding boundary components ¢; ; : S* — P
and ;5 : S* — P'. Now define

®i 01— 0i

by
@i(0i1(t)) = 0in(Ti — ).

The picture to have in mind is the following.

0;
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Figure 9.2: Twist.

The surface corresponding to (¢, 7) € 7, is now given by

2g9—2

x(tr)= || B/~

i=1



where ¢;(x) ~ x for all z € §;; and all i = 1,...,3¢g — 3. Because this
surface depends on the pants decomposition P, we will sometimes denote it
by Xp(¢, 7).

We note however that different points in 7, can give rise to isometric
hyperbolic surfaces. For instance, there is an isometry

X(gl, C. 783973,7'1, ... ,7'3973) — X(@l, ... ,63g73,7'1 —|—€1,7'2 . ,7'3973).

The quotient space M, obtained by identifying points in Teichmiiller space
that define isometric surfaces is called the moduli space of closed hyperbolic
surfaces of genus g. Note that from our definitions it is not clear that M,
is independent of the pants decomposition we use to define it. We will not
prove the fact that it is indeed independent of the pants decomposition.

We also note that, even though we will not pursue this issue in this
course, whereas the topology of Teichmiiller space is very well understood,
the toplogy of moduli space is a lot more complicated, so much so that many
questions on it remain open.

In order to do probability theory later on, we need a volume form. To this
end we will define the Weil-Petersson volume form. Again, we will not use
the standard definition but rely on a theorem by Wolpert [Wol82] to define
it.

Definition/Theorem 9.6. Let A C 7, be measurable. The Weil-Petersson
volume of A is given by

VOIWP(A) = / dgl tee dgggfg . dTl cee dngfg.
A

This measure descends to M.

It is easy to see from the definition that the Weil-Petersson volume of
7, is infinite. From work by Wolpert [Wol82|, it turns out that the Weil-
Petersson volume of M, is finite. The explicit bounds we need are due
to Schumacher and Trappani [ST01], based on work of Penner [Pen92] and
Grushevsky [Gru01].

Theorem 9.7. There exist constants ay,as > 0 so that

af - g% < volwp(M,) < aj - g%.



The fact that volwp(M,) < oo leads to the following notion of random
surfaces:

Definition 9.8. Let g € N>, and let B(M,) be the Borel algebra of M,,.
We define the probability measure Pwp : B(M,) — [0, 1] by

VOIWP (B)

Pwe[B] = volwe (M,)’

for all B € B(M,).

9.3 Minimal total pants length

The goal of this section is to apply the probabilistic method to study the
lengths of pants decompositions. Concretely, we will present a proof, due to
Guth, Parlier and Young [GPY11], that there are surfaces that do not allow
short pants decompositions.

Let us start with the definition of a random variable, which we will call
minimal total pants length, PL : M, — R by

39—3

PL(X) = min {Z 0(c;); {e;}27° forms a pants decomposition of X} :
i=1

As a direct corollary of Theorem 9.4, we obtain:

Corollary 9.9. Let X € M,, then

PL(X)<60-g*>—60-g.

The main question in this section is how sharp this upper bound is. To
this end, define M PL : N>, — R by

MPL(g) =sup{PL(X); X € M,}.

We will prove the following theorem due to Guth, Parlier and Young
[GPY11].



Theorem 9.10. For all € > 0 we have

lim Pyp [X € M,; PL(X) < ¢7/%] = 0.

g—0o0

Proof. The upper bound follows directly from Corollary 9.9.

The main part of the proof consists of controlling the Weil-Petersson
volume of sets of the form

{X e My; PL(X) <uz}.

Like we noted above, M, is well-defined. The projection
Ty — M,

does however depend on the pants decomposition P. Note however that if for
pants decompositions P and P’ there exists a diffeomorphism ¢ : ¥, — ¥,
such that
o(P) =T
then
mp(l,T) = mp (€, T),

because Xp(¢,7) and Xp/(¢, ) are isometric. This means that if we let Z,
denote the (finite) set of diffeomorphism types of pants decompositions of
>4, we have

39—3
{XeM,y PLX)<z}c |Jmp [ (67) €T, Z;a-sﬂc
Pt and 0 < 7; < ¢;

Write

39—3

Ag,x: {(6,7')67;, Z&ﬁajand()ﬁﬂg&}

i=1

Our observations above imply that

VOIWP({X € M,; PL(X) < $}> < |Ig| - volwp (Ag,x)-

The rest of the proof consists of two steps: bounding |Z,| and bounding
the volume of the set A, .



The bound on |Z| we need is
|Zg| < a%g°

for some a > 0 independent of g. Proving this is Exercise 9.4.

We have
39—3 4
VOIWP(Ag,x> — / H (/ de) dgl ce. dﬁgg_g
>tz i=1 0

39—3

= / [T ¢ der---deses
2itisz

(]

By the arithmetic-geometric mean inequality, we have

39—3 39_3@ 39—3 39

Toe(500) " <vis

i=1 39 =3 9%
for some b > 0 independent of g. So we obtain

39
VOIWP(Ag,x) S bg? dgl tee dﬁgg_g.
g g Eizl 4;<z
It can be proved by induction that

x3g—3
Aly - dln o= —— < 9T
éiﬂiéw 1 o (3g —3)! ‘ g3’
for some ¢ > 0 independent of g.

Putting all our estimates together, we obtain that

259
VOIWP(A%x) S dgﬁ
Using Theorem 9.6, we obtain that
259
]PWP [X € Mg, PL(X) S Jf] S Tgﬁ’

for some r > 0 independent of g. So, if < ¢7/~¢ this probability tends to
0 as ¢ — oo and we are done. O



As a consequence we obtain:

Corollary 9.11. For all € > 0 there exists a gy = go(€) € N>o so that
g " < MPL(g) <60-g* — 60 g

for all g > go.

9.4 Random triangulations

Another model for random surfaces is obtained from random triangulations.
This is a model based on the configuration model of random 3-regular graphs
on 2N vertices. Recall that the basis for the configuration model is a col-
lection of disjoint sets W;(2N), i = 1,...,2N. For convenience, we will just
set

W1(2N> = {]-a 2) 3}7 WQ(ZN) = {47 57 6}7 )
Wan(2N) = {6N —2,6N — 1,6N}.

We want to assign an oriented closed surface S(C') without boundary to
each 3-regular configuration C' on 2NN vertices. This goes as follows. Take 2N
triangles (2-simplices) Ay, ..., Agy, and label the sides of the first triangle
with the labels 1, 2 and 3, those of the second 4, 5 and 6 and so forth (see

the figure below).
12 4ANd ... 6N —=2/A6N —1
ZAVAN A\

3 6
Figure 9.3: 2N labeled triangles.

Each of these triangles naturally comes with an orientation (induced by
the cyclic order of the labels on the sides). For each pair of labels ¢ = {i, j} €
C fix an orientation reversing simplicial map ¢. between the corresponding
sides. We set

se)=[]a/ ~
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where the equivalence relation is given by the collection of maps {@.}eec-
From now on we will speak of configurations on 2N triangles instead of on
2N vertices.

Figure 9.4 gives some examples for N = 1.

) ) 5)
ANA ANA ANA
3 3 3
Figure 9.4: The surfaces corresponding to the configurations

{{1,3},{2,4},{5,6}}, {{1,6},{2,4},{3,5}} and {{1,5},{2,4},{3,6}}:

a sphere, a torus and a sphere respectively.

Let us denote the set of all configurations on 2N triangles by Q5. We
define a probability measure using the counting measure again:

Definition 9.12. Let N € N. We define the probability measure Py :
A

PylA]l = —

N[ ] |QN|

for all A C Q.

The main question we will work on in this course is the topology of these
surfaces. This model can also be turned into a model for random hyperbolic
surfaces, but we will not discuss the geometry of these surfaces in this course
(see [BMO04] for more details).

We first state, but will not prove, a theorem on the connectivity of these
surfaces due to Bollobads [Bol81] and Wormald [Wor81]:

Theorem 9.13. We have
lim Py[S is connected] = 1.
N—oo
Because of the classification of surfaces, this theorem implies that in order
to understand the topology of these surfaces, the only thing that remains to

be understood is the distribution of their genus, which is the content of the
following lecture.
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9.5 Exercises

Exercise 9.1. Prove Proposition 9.3.

Hint: for one of the directions, find a way to use Proposition 8.3 and
the fact that a surjective distance preserving map between closed hyperbolic
surfaces is automatically a diffeomorphism (this is a special case of what is
called the Myers-Steenrod theorem).

Exercise 9.2. Which of the pants decompositions in Figure 9.1 are diffeo-
morphic?
Exercise 9.3. It is known that

P, 5[The graph is connected] — 1

as n — oo for the configuration model for random regular graphs (Bonus
exercise that will not be part of the exam: show this).

Show that the number of pants decompositions of a closed surface of
genus ¢ in which there are no two pairs of pants that share two boundary
components and no curves incident to just one pair of pants is asymptotic to

e 2(6g — 6)!!
62972 . (29 — 2)!

as g — 00.
Exercise 9.4. Let Z, denote the set of diffeomorphism classes of pants de-

compositions.

(a) Given a pants decomposition P of ¥, show that the number of auto-
morphisms of the dual graph Gp can be bounded by

(29 —2) - 6272,

Hint: suppose we know that an automorphism sends a vertex v in Gp
to a vertex w, how many choices are left?

(b) Show that there exists a constant a > 0 so that

|Ig| <a’-g?

Exercise 9.5. Give an example of a sequence of configurations (Cy)s2; so

that S(C}) is a connected surface of genus g for every g.
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