Exercise 1 (Group actions).

(a) Suppose $D \subset \mathbb{P}^{1}(\mathbb{C})$ is a domain and let $G<\operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)=\operatorname{PGL}(2, \mathbb{C})$ be such that
$-g(D)=D$ for all $g \in G$

- if $g \in G \backslash\{e\}$ then the fixed points of g lie outside of D, i.e. the action on D is free,
- for each compact subset $K \subset D$, the set

$$
\{g \in G ; g(K) \cap K \neq \emptyset\}
$$

is finite. That is, the action on D is properly discontinuous.
Show that the quotient space $G \backslash D$ can be equipped with the structure of a connected Riemann surface (using local inverses to the projection map $\pi: D \rightarrow G \backslash D$ as charts).
(b) Show that $G<\operatorname{PGL}(2, \mathbb{C})$ is discrete (with respect to the induced topology) if and only if the identity element $e \in G$ is isolated.

Exercise 2 (Hyperbolic geometry). Let $\mathbb{H}^{2}=\{z \in \mathbb{C} ; \operatorname{Im}(z)>0\}$.
(a) Show that

$$
\left\{g \in \operatorname{PGL}(2, \mathbb{C}) ; g\left(\mathbb{H}^{2}\right)=\mathbb{H}^{2}\right\}=\operatorname{PSL}(2, \mathbb{R})
$$

Remark: $\operatorname{PGL}(2, \mathbb{C})=\operatorname{PSL}(2, \mathbb{C})$ so we can freely switch between the two. However $\operatorname{PSL}(2, \mathbb{R})<\operatorname{PGL}(2, \mathbb{R})$ is a proper subgroup, the latter contains $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, whereas the former does not.
(b) We're going to prove the Iwasawa decomposition for $\operatorname{SL}(2, \mathbb{R})$. Namely, if we set

$$
K=\mathrm{SO}(2, \mathbb{R}), \quad A=\left\{\left(\begin{array}{cc}
\lambda & 0 \\
0 & \frac{1}{\lambda}
\end{array}\right) ; \lambda>0\right\} \quad \text { and } \quad N=\left\{\left(\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right) ; t \in \mathbb{R}\right\}
$$

then $\operatorname{SL}(2, \mathbb{R})=K A N$, i.e. for every matrix $g \in \operatorname{SL}(2, \mathbb{R})$, there exist a unique $k \in K$, $a \in A$ and $n \in N$ such that $g=k a n$.

- Let $\left(e_{1}, e_{2}\right)$ denote the standard basis of \mathbb{R}^{2} and set $v_{i}=g e_{i}$ for $i=1,2$. Moreover, set

$$
w_{1}=v_{1}, \quad w_{2}=v_{2}-\frac{\left\langle w_{1}, v_{2}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} \cdot w_{1}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product on \mathbb{R}^{2}. Show that there exist $k \in O(2)$ and $a=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$ with $\lambda, \mu>0$ such that

$$
k^{-1} w_{i}=a e_{i}, \quad i=1,2 .
$$

- Show that there exists an $n \in N$ such that

$$
g^{-1} w_{i}=n^{-1} e_{i}, \quad i=1,2
$$

- Conclude that $g=k a n$ and show that $k \in K$ and $a \in A$.
- Show that the decomposition $g=k a n$ is unique.
- Bonus: Prove the Iwasawa decomposition of $\operatorname{SL}(n, \mathbb{R})$.
(c) Show that $\operatorname{PSL}(2, \mathbb{R})$ preserves the Riemannian metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}=\frac{|d z|^{2}}{\operatorname{Im}(z)} \quad \text { at } z=x+i y \in \mathbb{H}^{2} .
$$

(d) Prove that the geodesics in \mathbb{H}^{2} are vertical lines and half circles orthogonal to \mathbb{R}.
(e) Show that for $z, w \in \mathbb{H}^{2}$, their hyperbolic distance $\mathrm{d}(z, w)$ satisfies

$$
\operatorname{dist}(z, w)=\cosh ^{-1}\left(1+\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)}\right)
$$

(f) Show that $g \in \operatorname{PSL}(2, \mathbb{R}) \backslash\{e\}$ acting on $\mathbb{H}^{2} \cup \mathbb{R} \cup\{\infty\}$ has either one or two fixed points. Moreover, if g has two fixed points, they both lie on $\mathbb{R} \cup\{\infty\}$.
This leads to the following classification of elements $g \in \operatorname{PSL}(2, \mathbb{R}) \backslash\{e\}$

- g is called elliptic if it has a fixed point in \mathbb{H}^{2}
- g is called parabolic if it has a single fixed point in $\mathrm{R} \cup\{\infty\}$
- g is called hyperbolic (or loxodromic) if it has two fixed points in $\mathbb{R} \cup\{\infty\}$.

Show that g is elliptic, parabolic or hyperbolic if and only if it can be conjugated into $[K]$, $[N]$ or $[A]$ respectively. Finally, express the type of $g \in \mathrm{PSL}(2, \mathbb{R})$ in terms of $\operatorname{tr}(g)^{2}$.
(g) Show that the action of $G<\operatorname{PSL}(2, \mathbb{R})$ on \mathbb{H}^{2} is properly discontinuous if and only if $G<\operatorname{PSL}(2, \mathbb{R})$ is discrete.
(h) Let

$$
\begin{aligned}
\Gamma(2) & :=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{PSL}(2, \mathbb{Z}) ; \begin{array}{ll}
a \equiv d \equiv 1 & \bmod 2 \\
b \equiv c \equiv 0 & \bmod 2
\end{array}\right\} \\
& =\operatorname{ker}(\operatorname{PSL}(2, \mathbb{Z}) \xrightarrow{\text { reduction } \bmod 2} \operatorname{PSL}(2, \mathbb{Z} / 2 \mathbb{Z}))
\end{aligned}
$$

Show that $\Gamma(2) \backslash \mathbb{H}^{2}$ is a Riemann surface.

Exercise 3 (Belyı̆ maps). Suppose that X and Y are compact Riemann surfaces and f : $X \rightarrow Y$ is a non-constant holomorphic mapping. Recall that this implies that there exists a finite subset $C(f) \subset Y$ of critical values such that the cardinality $\left|f^{-1}(y)\right|$ is constant for $y \in Y \backslash C(f)$. The set $R(f)=Y \backslash C(f)$ is called the set of regular values of f. The cardinality of $\left|f^{-1}(y)\right|$ at
a regular point $y \in R(f)$ is called the degree $\operatorname{deg}(f)$ of f. Note that $1 \leq\left|f^{-1}(y)\right|<\operatorname{deg}(f)$ for all $y \in C(f)$.

Belyı̆'s theorem states that a Riemann surface X is biholomorphic to an algebraic curve defined over $\overline{\mathbb{Q}}$ if and only if there exists a holomorphic map $f: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ such that $C(f) \subset$ $\{0,1, \infty\}$. Such a map is called a Belyĭ map.

The goal of this exercise is to prove the direction that Belyĭ proved: if X is defined over $\overline{\mathbb{Q}}$, then it admits a Belyı̆ map.
(a) Suppose that X_{1}, \ldots, X_{k} are compact Riemann surfaces and suppose that $f_{i}: X_{i} \rightarrow X_{i+1}$ $(1 \leq i \leq k-1)$ is a sequence of non-constant holomorphic mappings. Set

$$
f=f_{k-1} \circ \cdots \circ f_{2} \circ f_{1}: X_{1} \rightarrow X_{k}
$$

Prove that $z \in C(f)$ if and only if there exists some $i \in\{1, \ldots, k-1\}$ such that the finite set $\left(f_{k-1} \circ \cdots \circ f_{i+1}\right)^{-1}(z) \subset X_{i+1}$ contains a critical value for f_{i}.
(b) A Bely乞̆ map is a holomorphic map $f: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ that satisfies $C(f) \subset\{0,1, \infty\}$. Show that the following maps are Belyĭ maps:

- The map $\beta_{n}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ defined by $\beta_{n}(z)=z^{n}$.
- The map $\beta_{m, n}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ defined by

$$
\beta_{m, n}(z)=\frac{(m+n)^{m+n}}{m^{m} n^{n}} z^{m}(1-z)^{n}
$$

Where $m, n \in \mathbb{Z} \backslash\{0\}$ and $m+n \neq 0$.

- The map $\phi_{d}: \overline{X_{d}} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ Defined as follows. Write $X_{d}=\left\{(x, y) \in \mathbb{C}^{2} ; x^{d}+y^{d}=1\right\}$, compactified by adding d points at ∞, corresponding to the d holomorphic branches of the $d^{\text {th }}$ root. Define the projection map $\pi: X_{d} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ by $\pi(x, y)=x$. Again, define $\beta_{d}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ by $\beta_{d}(z)=z^{d}$. We set $\phi_{d}=\beta_{d} \circ \pi$.
(c) Now suppose

$$
X=\overline{\left\{(x, y) \in \mathbb{C}^{2} ; P(x, y)=0\right\}}, \quad \text { with } P \in \overline{\mathbb{Q}}[x, y]
$$

(and again the completion is performed by adding a suitable finite set of points at infinity)

- Show that there exists a branched covering $\pi: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ such that $C(\pi) \subset \mathbb{P}^{1}(\overline{\mathbb{Q}})=$ $\overline{\mathbb{Q}} \cup\{\infty\}$.
- Since $C(\pi)$ is a finite set, we can assume (potentially by postcomposing with a Möbius transformation) that $\infty \notin C(\pi)$. Let f_{1} be the minimal polynomial over \mathbb{Q} of $C(\pi)$ the monic polynomial of minimal degree that vanishes on all of $C(\pi)$. Construct the sequence of polynomials f_{2}, f_{3}, \ldots by letting f_{i+1} be the minimal polynomial over \mathbb{Q} on the set

$$
C\left(f_{i}\right) \cap \mathbb{C}=\left\{f(z) \in \mathbb{C} ; f_{i}^{\prime}(z)=0\right\}
$$

of finite critical values of f_{i}. Show that the degrees of these polynomials are strictly decreasing, that is: $\operatorname{deg}\left(f_{i+1}\right)<\operatorname{deg}\left(f_{i}\right)$ for $i \geq 1$.

- Since the degree is strictly decreasing, the sequence above terminates with a polynomial f_{k} of degree 1 . Now set

$$
f=f_{k} \circ \cdots \circ f_{2} \circ f_{1} \circ \pi: X \rightarrow \mathbb{P}^{1}(\mathbb{C})
$$

Show that $C(f) \cap \mathbb{C} \subset \mathbb{Q}$.

- Show that if $|C(f)| \geq 4$, we can postcompose f with a holomorphic map $g: \mathbb{P}^{1}(\mathbb{C}) \rightarrow$ $\mathbb{P}^{1}(\mathbb{C})$ such that $|C(g \circ f)|<|C(f)|$. Conclude that we have proved that X admits a Belyĭ map.
(d) Find Belyı̆ maps on X_{1}, X_{2}, X_{3} and X_{4}, given by:

$$
\begin{gathered}
X_{1}=\left\{(x, y) \in \mathbb{C}^{2} ; y^{2}=x(x-1)(x-2 / 3)\right\} \\
X_{2}=\left\{(x, y) \in \mathbb{C}^{2} ; y^{2}=(x-1)\left(x-\zeta_{7}\right)\left(x-\zeta_{7}^{2}\right)\right\} \quad \text { where } \zeta_{7}=e^{2 \pi i / 7} \\
X_{3}=\left\{(x, y) \in \mathbb{C}^{2} ; y^{2}=x\left(x-\zeta_{7}\right)\left(x-\zeta_{7}^{2} / \sqrt[7]{2}\right)\right\} \quad \text { where } \zeta_{7}=e^{2 \pi i / 7} \\
X_{4}=\left\{(x, y) \in \mathbb{C}^{2} ; y^{2}=x(x+2)(x-\sqrt{31}+1)\right\} \cup\{\infty\} .
\end{gathered}
$$

Remark: It's not so easy to find examples of curves defined of $\overline{\mathbb{Q}}$ but not \mathbb{Q} for which the computation does not get out of hand. Don't hesitate to use your favorite computer algebra package to do some of the calculations.

