
Introduction to Teichmüller Theory 2023/2024
Problem set 1: Reminder on Riemann surfaces

Exercise 1 (Group actions).

(a) Suppose D ⊂ P1(C) is a domain and let G < Aut(P1(C)) = PGL(2,C) be such that

– g(D) = D for all g ∈ G

– if g ∈ G \ {e} then the fixed points of g lie outside of D, i.e. the action on D is free,

– for each compact subset K ⊂ D, the set

{g ∈ G; g(K) ∩K ̸= ∅}

is finite. That is, the action on D is properly discontinuous.

Show that the quotient space G\D can be equipped with the structure of a connected
Riemann surface (using local inverses to the projection map π : D → G\D as charts).

(b) Show that G < PGL(2,C) is discrete (with respect to the induced topology) if and only if
the identity element e ∈ G is isolated.

Exercise 2 (Hyperbolic geometry). Let H2 = {z ∈ C; Im(z) > 0}.

(a) Show that
{g ∈ PGL(2,C); g(H2) = H2} = PSL(2,R).

Remark: PGL(2,C) = PSL(2,C) so we can freely switch between the two. However

PSL(2,R) < PGL(2,R) is a proper subgroup, the latter contains

[
1 0
0 −1

]
, whereas

the former does not.

(b) We’re going to prove the Iwasawa decomposition for SL(2,R). Namely, if we set

K = SO(2,R), A =

{(
λ 0
0 1

λ

)
;λ > 0

}
and N =

{(
1 t
0 1

)
; t ∈ R

}
,

then SL(2,R) = KAN , i.e. for every matrix g ∈ SL(2,R), there exist a unique k ∈ K,
a ∈ A and n ∈ N such that g = kan.

- Let (e1, e2) denote the standard basis of R2 and set vi = gei for i = 1, 2. Moreover,
set

w1 = v1, w2 = v2 −
⟨w1, v2⟩
⟨w1, w1⟩

· w1,

where ⟨·, ·⟩ denotes the standard inner product on R2. Show that there exist k ∈ O(2)

and a =

(
λ 0
0 µ

)
with λ, µ > 0 such that

k−1wi = aei, i = 1, 2.
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- Show that there exists an n ∈ N such that

g−1wi = n−1ei, i = 1, 2

- Conclude that g = kan and show that k ∈ K and a ∈ A.

- Show that the decomposition g = kan is unique.

- Bonus: Prove the Iwasawa decomposition of SL(n,R).

(c) Show that PSL(2,R) preserves the Riemannian metric

ds2 =
dx2 + dy2

y2
=

|dz|2

Im(z)
at z = x+ iy ∈ H2.

(d) Prove that the geodesics in H2 are vertical lines and half circles orthogonal to R.

(e) Show that for z, w ∈ H2, their hyperbolic distance d(z, w) satisfies

dist(z, w) = cosh−1

(
1 +

|z − w|2

2Im(z)Im(w)

)
(f) Show that g ∈ PSL(2,R) \ {e} acting on H2 ∪R∪ {∞} has either one or two fixed points.

Moreover, if g has two fixed points, they both lie on R ∪ {∞}.
This leads to the following classification of elements g ∈ PSL(2,R) \ {e}

- g is called elliptic if it has a fixed point in H2

- g is called parabolic if it has a single fixed point in R ∪ {∞}
- g is called hyperbolic (or loxodromic) if it has two fixed points in R ∪ {∞}.

Show that g is elliptic, parabolic or hyperbolic if and only if it can be conjugated into [K],
[N ] or [A] respectively. Finally, express the type of g ∈ PSL(2,R) in terms of tr(g)2.

(g) Show that the action of G < PSL(2,R) on H2 is properly discontinuous if and only if
G < PSL(2,R) is discrete.

(h) Let

Γ(2) :=

{[
a b
c d

]
∈ PSL(2,Z); a ≡ d ≡ 1 mod 2

b ≡ c ≡ 0 mod 2

}
= ker

(
PSL(2,Z) reduction mod 2−→ PSL(2,Z/2Z)

)
Show that Γ(2)\H2 is a Riemann surface.

Exercise 3 (Bely̆ı maps). Suppose that X and Y are compact Riemann surfaces and f :
X → Y is a non-constant holomorphic mapping. Recall that this implies that there exists a finite
subset C(f) ⊂ Y of critical values such that the cardinality |f−1(y)| is constant for y ∈ Y \C(f).
The set R(f) = Y \ C(f) is called the set of regular values of f . The cardinality of |f−1(y)| at
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a regular point y ∈ R(f) is called the degree deg(f) of f . Note that 1 ≤ |f−1(y)| < deg(f) for
all y ∈ C(f).

Bely̆ı’s theorem states that a Riemann surface X is biholomorphic to an algebraic curve
defined over Q if and only if there exists a holomorphic map f : X → P1(C) such that C(f) ⊂
{0, 1,∞}. Such a map is called a Bely̆ı map.

The goal of this exercise is to prove the direction that Bely̆ı proved: if X is defined over Q,
then it admits a Bely̆ı map.

(a) Suppose that X1, . . . , Xk are compact Riemann surfaces and suppose that fi : Xi → Xi+1

(1 ≤ i ≤ k − 1) is a sequence of non-constant holomorphic mappings. Set

f = fk−1 ◦ · · · ◦ f2 ◦ f1 : X1 → Xk.

Prove that z ∈ C(f) if and only if there exists some i ∈ {1, . . . , k− 1} such that the finite
set (fk−1 ◦ · · · ◦ fi+1)

−1(z) ⊂ Xi+1 contains a critical value for fi.

(b) A Bely̆ı map is a holomorphic map f : X → P1(C) that satisfies C(f) ⊂ {0, 1,∞}. Show
that the following maps are Bely̆ı maps:

- The map βn : P1(C) → P1(C) defined by βn(z) = zn.

- The map βm,n : P1(C) → P1(C) defined by

βm,n(z) =
(m+ n)m+n

mmnn
zm(1− z)n.

Where m,n ∈ Z \ {0} and m+ n ̸= 0.

- The map ϕd : Xd → P1(C) Defined as follows. Write Xd = {(x, y) ∈ C2; xd+yd = 1},
compactified by adding d points at ∞, corresponding to the d holomorphic branches
of the dth root. Define the projection map π : Xd → P1(C) by π(x, y) = x. Again,
define βd : P1(C) → P1(C) by βd(z) = zd. We set ϕd = βd ◦ π.

(c) Now suppose
X = {(x, y) ∈ C2; P (x, y) = 0}, with P ∈ Q[x, y]

(and again the completion is performed by adding a suitable finite set of points at infinity)

- Show that there exists a branched covering π : X → P1(C) such that C(π) ⊂ P1(Q) =
Q ∪ {∞}.

- Since C(π) is a finite set, we can assume (potentially by postcomposing with a Möbius
transformation) that ∞ /∈ C(π). Let f1 be the minimal polynomial over Q of C(π) –
the monic polynomial of minimal degree that vanishes on all of C(π). Construct the
sequence of polynomials f2, f3, . . . by letting fi+1 be the minimal polynomial over Q
on the set

C(fi) ∩ C = {f(z) ∈ C; f ′
i(z) = 0}

of finite critical values of fi. Show that the degrees of these polynomials are strictly
decreasing, that is: deg(fi+1) < deg(fi) for i ≥ 1.
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- Since the degree is strictly decreasing, the sequence above terminates with a polyno-
mial fk of degree 1. Now set

f = fk ◦ · · · ◦ f2 ◦ f1 ◦ π : X → P1(C).

Show that C(f) ∩ C ⊂ Q.

- Show that if |C(f)| ≥ 4, we can postcompose f with a holomorphic map g : P1(C) →
P1(C) such that |C(g ◦ f)| < |C(f)|. Conclude that we have proved that X admits a
Bely̆ı map.

(d) Find Bely̆ı maps on X1, X2, X3 and X4, given by:

X1 = {(x, y) ∈ C2; y2 = x(x− 1)(x− 2/3)}

X2 = {(x, y) ∈ C2; y2 = (x− 1)(x− ζ7)(x− ζ27 )} where ζ7 = e2πi/7

X3 = {(x, y) ∈ C2; y2 = x(x− ζ7)(x− ζ27/
7
√
2)} where ζ7 = e2πi/7

X4 = {(x, y) ∈ C2; y2 = x(x+ 2)(x−
√
31 + 1)} ∪ {∞}.

Remark: It’s not so easy to find examples of curves defined of Q but not Q for which
the computation does not get out of hand. Don’t hesitate to use your favorite computer
algebra package to do some of the calculations.
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