
Introduction to Teichmüller Theory 2023/2024
Problem set 1: Reminder on Riemann surfaces

Exercise 1 (Group actions).

(a) Suppose D ⊂ P1(C) is a domain and let G < Aut(P1(C)) = PGL(2,C) be such that

– g(D) = D for all g ∈ G

– if g ∈ G \ {e} then the fixed points of g lie outside of D, i.e. the action on D is free,

– for each compact subset K ⊂ D, the set

{g ∈ G; g(K) ∩K ̸= ∅}

is finite. That is, the action on D is properly discontinuous.

Show that the quotient space G\D can be equipped with the structure of a connected
Riemann surface (using local inverses to the projection map π : D → G\D as charts).

Solution: First of all, since D is connected and π is continuous, G\D is connected.

In order to show that G\D is Hausdorff, we consider two distinct points

π(z1) ̸= π(z2) ∈ G\D

where z1 and z2 are two pre-images in D. Define

An = {w ∈ D; |w − z1| < r/n} and Bn = {w ∈ D; |w − z2| < r/n},

where r > 0 is small enough so that

K = A1 ∪B1 ⊂ D.

Now, suppose that for all n ≥ 1 we have

π(An) ∩ π(Bn) ̸= ∅

This means that we can find some sequence an ∈ An and gn ∈ G so that

gn(an) ∈ Bn

for all n ∈ N. This means that

∅ ≠ gn(An) ∩Bn ⊂ gn(K) ∩K

for all n ∈ N and hence by the third assumption, the set {gn}n∈N is finite. This means
that there is a subsequence so that gn = g for some fixed g ∈ G and all n large enough

z2 = lim
n→∞

gn(an) = lim
n→∞

g(an) = g(z1),
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which contradicts π(z1) ̸= π(z2) and hence proves that G\D is Hausdorff.

All that remains is to find an atlas. To this end, select a precompact open disk Kz ⊂ D
around each z ∈ D. By assumptions (2) and (3) we can choose Kz small enough so that
no non-trivial translate g(Kz) intersects it. This implies that the map

π|Kz : Kz → G\D

is a homeomorphism onto its image. So we set

Uz = π(Kz) and φz = (π|Kz)
−1 : Uz → D.

This means that the transition maps are of the form

φz ◦ φ−1
w = (π|Kz)

−1 ◦ (π|Kw).

Given any element ζ in the domain of this map, we have

φz ◦ φ−1
w (ζ) = g(ζ) =: ξ

for some g ∈ G and ξ ∈ D. Near ζ we have π = π|Kw while near ξ we have π = π|Kz .
Since π = π ◦ g for all g ∈ G, we obtain

π|Kz = π|Kw ◦ g

and hence
φz ◦ φ−1

w = g

near ζ, which is holomorphic.

(b) Show that G < PGL(2,C) is discrete (with respect to the induced topology) if and only if
the identity element e ∈ G is isolated.

Solution: G is discrete if and only if for all g ∈ G there exists some open set U ⊂ PGL(2,C)
such that U ∩G = {g}. In particular, if G is discrete then the identity is isolated.

Conversely, if the identity is isolated, there is some open set U ⊂ PGL(2,C) such that
U ∩G = {e}. Left multiplication by g ∈ G is a homeomorphism PGL(2,C) → PGL(2,C),
so gU is an open set. This means that

{g} = g{e} = g(U ∩G) = gU ∩G.
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Exercise 2 (Hyperbolic geometry). Let H2 = {z ∈ C; Im(z) > 0}.

(a) Show that
{g ∈ PGL(2,C); g(H2) = H2} = PSL(2,R).

Remark: PGL(2,C) = PSL(2,C) so we can freely switch between the two. However

PSL(2,R) < PGL(2,R) is a proper subgroup, the latter contains

[
1 0
0 −1

]
, whereas

the former does not.

Solution: First we show that PSL(2,R) preserves H2. Suppose g =

[
a b
c d

]
∈ PSL(2,R)

and z ∈ H2. Then

Im(g(z)) =
1

2i

(
az + b

cz + d
− az + b

cz + d

)
=

1

2i

(ad− bc)(z − z)

|cz + d|2

=
Im(z)

|cz + d|2

> 0.

So PSL(2,R) indeed preserves H2.

On the other hand, if g preserves H2, it also needs to presrve ∂H2 = R ∪ {∞}. Write

g =

[
a b
c d

]
∈ PGL(2,C).

If c, d ̸= 0 and c ̸= −d, we can normalize the matrix such that d = 1. We then get that

g(0) = b, g(∞) =
a

c
and g(1) =

a+ b

c+ 1

are three distinct elements of R.

0 = Im(g(1)) =
1

2i

(a+ b)(c+ 1)− (a+ b)(c+ 1)

|c+ 1|2

=
1

2i

(g(∞)c+ g(0))(c+ 1)− (g(∞)c+ g(0))(c+ 1)

|c+ 1|2

=
g(∞)(c− c) + g(0)(cd− cd)

|c+ d|2

=
(g(∞)− g(0))(c− c)

|c+ 1|2

So c and hence a are real, so g ∈ PGL(2,R). By computing Im(g(z)) as before, we prove
that ad− bc > 0. We can divide by the root of the determinant so that ad− bc = 1.

If c, d ̸= 0 and c = −d, we can normalize the matrix such that d = 1 and c = −1. We get
that

g(0) = b, g(∞) = −a
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are both real. Moreover, because Im(g(z)) needs to be positive, we again obtain that
ad − bc > 0, which again allows us to divide by the root of the determinant such that
ad− bc = 1.

If c = 0, then d ̸= 0 and we can normalize such that d = 1. This means that

g(0) = b ∈ R, and g(1) = a+ b ∈ R

so both a, b ∈ R. Again using that Im(g(z)) > 0 and normalizing, we obtain that g ∈
PSL(2,R).
If d = 0, then c ̸= 0 and we can normalize such that c = 1. This means that

g(∞) = a ∈ R, and g(1) = a+ b ∈ R,

so both a, b ∈ R. Using that Im(g(z)) > 0 and normalizing one last time, we obtain that
g ∈ PSL(2,R).

(b) We’re going to prove the Iwasawa decomposition for SL(2,R). Namely, if we set

K = SO(2,R), A =

{(
λ 0
0 1

λ

)
;λ > 0

}
and N =

{(
1 t
0 1

)
; t ∈ R

}
,

then SL(2,R) = KAN , i.e. for every matrix g ∈ SL(2,R), there exist a unique k ∈ K,
a ∈ A and n ∈ N such that g = kan.

- Let (e1, e2) denote the standard basis of R2 and set vi = gei for i = 1, 2. Moreover,
set

w1 = v1, w2 = v2 −
⟨w1, v2⟩
⟨w1, w1⟩

· w1,

where ⟨·, ·⟩ denotes the standard inner product on R2. Show that there exist k ∈ O(2)

and a =

(
λ 0
0 µ

)
with λ, µ > 0 such that

k−1wi = aei, i = 1, 2.

Solution: w1

∥w1∥ and w2

∥w2∥ form an orthonormal basis of R2 (the equations defining w1

and w2 are an application of the Gram-Schmidt procedure). In particular, there exists
an element k ∈ O(2) such that

k−1 wi

∥wi∥
= ei =⇒ k−1wi = ∥wi∥ · ei.

We can set a =

(
∥w1∥ 0
0 ∥w2∥

)
.
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- Show that there exists an n ∈ N such that

g−1wi = n−1ei, i = 1, 2

Solution: We have

g−1w1 = e1 and g−1w2 = e2 −
⟨w1, v2⟩
⟨w1, w1⟩

· e1.

So we can set n =

(
1 ⟨w1,v2⟩

⟨w1,w1⟩
0 1

)
.

- Conclude that g = kan and show that k ∈ K and a ∈ A.

Solution: We have
n g−1wi = ei = a−1k−1wi, i = 1, 2.

Because (w1, w2) is a basis, this means that g = kan.

Moreover, we have

1 = det(g) = det(k) det(a) det(n) = det(k) det(a).

The determinant det(k) ∈ {±1} and det(a) > 0. This implies that det(k) = 1 and
hence that det(a) = 1.

- Show that the decomposition g = kan is unique.

Solution: Suppose k1a1n1 = k2a2n2. Then

k−1
2 k1 = a2n2n

−1
1 a−1

1 ∈ K ∩ ANA.

Now we observe that

ANA =

{(
λ t
0 λ−1

)
; t ∈ R, λ > 0

}
= AN.

This implies that
K ∩ ANA = {e}

and hence that k1 = k2 and

a−1
2 a1 = n2n

−1
1 ∈ A ∩N = {e}

and thus that a1 = a2 and n1 = n2.

- Bonus: Prove the Iwasawa decomposition of SL(n,R).

Solution: The strategy is the same.
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(c) Show that PSL(2,R) preserves the Riemannian metric

ds2 =
dx2 + dy2

y2
=:

|dz|2

Im(z)2
at z = x+ iy ∈ H2.

Solution: We’re first going to use 2-dimensional real differential geometry to prove that

f ∗
(

|dz|2

Im(z)2

)
=

∣∣∣∣dfdz (z)
∣∣∣∣2 |dz|2

Im(f(z))2

Writing f(x + iy) = u(x + iy) + iv(x + iy) for two smooth real valued functions u, v and
taking p ∈ H2, we obtain

(f ∗dx)2p =

((
∂u

∂x

)2

+

(
∂v

∂y

)2
)∣∣∣∣∣

p

· (dx2
p + dy2p)

+

(
∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y

)∣∣∣∣
p

· dxp · dyp.

The fact that f is holomorphic (and hence satisfies the Cauchy–Riemann equations) means
that the mixed term disappears.

Moreover, one computes that at z = p,∣∣∣∣∂f∂z
∣∣∣∣2 = ∣∣∣∣12

(
∂

∂x
− i

∂

∂y

)
f(z)

∣∣∣∣2 =
((

∂u

∂x

)2

+

(
∂v

∂y

)2
)∣∣∣∣∣

p

,

thus proving our original claim.

Now write f(z) = (az + b)/(cz + d). A computation similar to the one in item (a) shows
that |f ′(z)|/Im(f(z)) = 1/Im(z), thus proving that f preserves the metric.

(d) Prove that the geodesics in H2 are vertical lines and half circles orthogonal to R.

Solution: Let us first try to compute the length between a pair of points ai and bi on the
imaginary axis with 0 < a < b. Let γ : [0, 1] → H2 be any smooth curve with γ(0) = ai
and γ(1) = bi. We will write γ1(t) = Re(γ(t)) and γ2(t) = Im(γ(t)). Then the length of γ
is

ℓ(γ) =

∫ 1

0

1

γ2(t)

√(
∂γ1(t)

∂t

)2

+

(
∂γ2(t)

∂t

)2

dt

≥
∫ 1

0

1

γ2(t)

∣∣∣∣∂γ2(t)∂t

∣∣∣∣ dt
with equality if and only if ∂γ1(t)/∂t = 0 for all t ∈ [0, 1]. Furthermore∫ 1

0

1

γ2(t)

∣∣∣∣∂γ2(t)∂t

∣∣∣∣ dt ≥ ∫ 1

0

1

γ2(t)

∂γ2(t)

∂t
dt
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with equality if and only if ∂γ2(t)/∂t ≥ 0 for all t ∈ [0, 1]. Moreover, we may assume that
the points where ∂γ2(t)/∂t = 0 are isolated, because intervals on which this derivative is
0 don’t contribute to the integral. So γ2 is strictly increasing and hence invertible. This
implies that we can apply the substituion rule and get

ℓ(γ) ≥
∫ b

a

1

d
ds = log(b/a).

Since (for example) the curve γ(t) = ai + (b− a)it has ℓ(γ) = log(b/a), we conclude that
the distance between these points log(b/a) and the moreover, the unique geodesic segment
between them lies on the vertical line.

Given two points z, w ∈ H2, we can map them onto the imaginary axis with a Möbius
transformation g ∈ PSL(2,R). The distance between their images on the imaginary axis is
uniquely realized by a segment σ on the imaginary axis. Since PSL(2,R) acts by isometries,
the distance between z and w is uniquely realized by g−1σ. Möbius transformations send
lines and circles to lines and circles and moreover are confromal (they preserve angles. So
the image of σ (lying on the image of the imaginary axis under g−1) lies on a circle that
intersects the circle R ∪ {∞} orthogonally. This concludes the proof.

(e) Show that for z, w ∈ H2, their hyperbolic distance d(z, w) satisfies

dist(z, w) = cosh−1

(
1 +

|z − w|2

2Im(z)Im(w)

)

Solution: If z = ai and w = bi like in the solution to the previous question, the formula
we found for their distance coincides with the claimed formula.

Now suppose z, w ∈ H2 are generic points. Draw the geodesic through z and w and map
it to the imaginary axis with an element g ∈ PSL(2,R). This allows us to compute their
distance.

As a result, if we show that d(g(ai), g(bi)) is indeed given by the formula above for all
a, b > 0 and g ∈ PSL(2,R), we are done. This is a computation that is similar to the ones
we’ve done above.

(f) Show that g ∈ PSL(2,R) \ {e} acting on H2 ∪R∪ {∞} has either one or two fixed points.
Moreover, if g has two fixed points, they both lie on R ∪ {∞}.
This leads to the following classification of elements g ∈ PSL(2,R) \ {e}

- g is called elliptic if it has a fixed point in H2

- g is called parabolic if it has a single fixed point in R ∪ {∞}
- g is called hyperbolic (or loxodromic) if it has two fixed points in R ∪ {∞}.

Show that g is elliptic, parabolic or hyperbolic if and only if it can be conjugated into [K],
[N ] or [A] ⊂ PSL(2,R) respectively. Finally, express the type of g ∈ PSL(2,R) in terms
of tr(g)2.
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Solution: H2 = H2 ∪ R ∪ {∞} is a closed disk and g : H2 → H2 is a continuous function.
By the Brouwer fixed point theorem, this implies g has at least one fixed point. g is also
a Möbius transformation and hence uniquely determined by the image of three distinct
points. So if g has at least three fixed points, it needs to be the identity. We conclude that
g has either one or two fixed points on H2.

Now, suppose g has two fixed points. If they both lie in H2, then, because g is an isometry
of H2, g also fixes the unique geodesic segment between them setwise. But that means it
must fix every point is this segment and hence that it’s the identity. If only one of the
points lies in H2 and the other in R2 ∪ {∞}, then g preserves the geodesic ray between
these two points. This again means that it fixes every point on the geodesic ray (it can’t
translate along it, because it must fix the beginning) and thus that g is the identity.

To solve the second question, we observe that conjugating g ∈ PSL(2,R) \ {e} does not
change its type. Indeed, if we write Fix(g) ⊂ H2 for the fixed point set of g, we have
Fix(hgh−1) = h(Fix(g)).

Now if g ∈ [K], it fixes i so it’s elliptic. If g ∈ [N ] it fixes ∞, but no other point of R∪{∞}
so it’s parabolic and if g ∈ A, it fixes 0 and ∞.

Conversely, if g is elliptic, we can map its fixed point to i, which conjugates it into [K].
If g is parabolic we map its fixed point to ∞, thus conjugating it into [N ] and if g is
hyperbolic, we map its fixed points to 0 and ∞, so that it cpnjugates into [A].

Finally, the characterization of elements in terms of their trace can either be done using

the Iwasawa decomposition again or by using the fixed point equation for g =

[
a b
c d

]
.

The latter reads
az + b

cz + d
= z =⇒ az + b = cz2 + dz

and thus
cz2 + (d− a)z − b = 0.

The discriminant of this equation is

(d− a)2 + 4bc = a2 + d2 − 2ad+ 4bc = (a+ d)2 − 4 = tr(g)2 − 4

So: g is elliptic if and only if tr(g)2 < 4, parabolic if and only if tr(g)2 = 4 and hyperbolic
if and only if tr(g)2 > 4.

(g) Show that the action of G < PSL(2,R) on H2 is properly discontinuous if and only if
G < PSL(2,R) is discrete.

Solution: First suppose that G is not discrete. By Exercise 1(b), there mus exist a sequence
(gn)n of elements in G such that gn → e as n → ∞. Then gn(i) → i as n → ∞ (this
for instance follows from the fact that the hyperbolic distance d(gn(i), i) can be written
explicitly in terms of the matrix coefficients of gn, that are supposed to converge to those of
the identity). This then means that if K is a compact set containing a closed disk around
i, gn(K) ∩K ̸= ∅ for gn large enough and hence contradicts proper discontinuity.
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Now suppose that G is discrete. This means that it must be countable (G is a subgroup
of a Lie group, so in particular a subset of a manifold). If we enumerate G,

G = {g1, g2, . . .}

then the matrix norms ∥gn∥ → ∞ as n → ∞. A computation yields that for any g ∈
PSL(2,R),

∥g∥2 = 2 cosh(d(i, g(i)).

In particular d(i, gn(i)) → ∞ as n → ∞. Now is K ⊂ H2 is compact, this means it’s
closed and contained in some closed (hyperbolic) disk around i. Since only finitely many
gn’s keep K inside this ball, we get that the number of translates of K that intersect K
itself is finite.

(h) Let

Γ(2) :=

{[
a b
c d

]
∈ PSL(2,Z); a ≡ d ≡ 1 mod 2

b ≡ c ≡ 0 mod 2

}
= ker

(
PSL(2,Z) reduction mod 2−→ PSL(2,Z/2Z)

)
Show that Γ(2)\H2 is a Riemann surface.

Solution: Because all the matrices in Γ(2) have coefficients in Z, Γ(2) < PSL(2,R) is
discrete. By Exercise 1(a), the only thing left to show is that Γ(2) does not have any fixed
points inside H2.

Suppose g =

[
a b
c d

]
∈ Γ(2). By item (f), g has a fixed point in H2 if and only if

(a+ d)2 < 4.

So we would need, a = −d or a = −d+ 1. We know that 1 ≡ a ≡ d mod 2. So we would
need that a = −d. But then

ad = −a2 = bc+ 1 ≡ 1 mod 4

However a mod 4 ∈ {[1], [3]} and

−12 ≡ −32 ≡ 3 mod 4,

a contradiction.

Exercise 3 (Bely̆ı maps). Suppose that X and Y are compact Riemann surfaces and f :
X → Y is a non-constant holomorphic mapping. Recall that this implies that there exists a finite
subset C(f) ⊂ Y of critical values such that the cardinality |f−1(y)| is constant for y ∈ Y \C(f).
The set R(f) = Y \C(f) is called the set of regular values of f . The cardinality of |f−1(y)| at a
regular point y ∈ R(f) is called the degree deg(f) of f . Note that 1 ≤ |f−1(y)| < deg(f) for all
y ∈ C(f). Finally, recall that x ∈ X is called a regular (resp. critical) point if f ′(x) ̸= 0 (resp.
f ′(x) = 0). The regular (resp. critical) values of f are exactly the images of the regular (resp.
critical) points.
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(a) Suppose that X1, . . . , Xk are compact Riemann surfaces and suppose that fi : Xi → Xi+1

(1 ≤ i ≤ k − 1) is a sequence of non-constant holomorphic mappings. Set

f = fk−1 ◦ · · · ◦ f2 ◦ f1 : X1 → Xk.

Prove that z ∈ C(f) if and only if there exists some i ∈ {1, . . . , k− 1} such that the finite
set (fk−1 ◦ · · · ◦ fi+1)

−1(z) ⊂ Xi+1 contains a critical value for fi.

Solution: First version: this is direct from the chain rule. Second version: a critical value
of f is a point where f has fewer inverse images than usual, this must happen somewhere
along the chain of compositions.

(b) A Bely̆ı map is a holomorphic map f : X → P1(C) that satisfies C(f) ⊂ {0, 1,∞}. Show
that the following maps are Bely̆ı maps:

- The map βn : P1(C) → P1(C) defined by βn(z) = zn.

Solution: We write P1(C) = C ∪ {∞}. Moreover, we assume n > 1, if not the
function does not have any critical points. In the chart (C, z 7→ z), the derivative
of βn vanishes at 0 only. In the chart (P1(C), z 7→ 1

z
), the derivative vanishes at ∞.

Conclusion C(βn) = {0,∞}.

- The map βm,n : P1(C) → P1(C) defined by

βm,n(z) =
(m+ n)m+n

mmnn
zm(1− z)n.

Where m,n ∈ Z \ {0} and m+ n ̸= 0.

Solution: We have

β′
m,n(z) = (m− (n+m)z)zm−1(1− z)n−1.

which has a simple zero at z = m/(m + n). Since βm,n

(
m

m+n

)
= 1, we obtain that

1 ∈ C(βm,n). The other critical values are 0 (when (m,n) /∈ {(1, 1), (1,−2), (−2, 1)}
and ∞ (when (m,n) /∈ {(−1,−1), (−1, 2), (2,−1)}.

- The map ϕd : Xd → P1(C) Defined as follows. Write Xd = {(x, y) ∈ C2; xd+yd = 1},
compactified by adding d points at ∞, corresponding to the d holomorphic branches
of the dth root. Define the projection map π : Xd → P1(C) by π(x, y) = x. Again,
define βd : P1(C) → P1(C) by βd(z) = zd. We set ϕd = βd ◦ π.

Solution: The critical values of π are the dth roots of unity and ∞. βd sends these to
1 and ∞ respectively, without creating new critical values.

(c) Now suppose
X = {(x, y) ∈ C2; P (x, y) = 0}, with P ∈ Q[x, y]

(and again the completion is performed by adding a suitable finite set of points at infinity)
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- Show that there exists a branched covering π : X → P1(C) such that C(π) ⊂ P1(Q) =
Q ∪ {∞}.

Solution: We can use the projection map π : X → P1(C) defined by π(x, y) = x (and
mapping the points at infinity to ∞). Indeed, by the holomorphic implicit function
theorem, at the points {

(x, y) ∈ X;
∂P

∂y
(x, y) ̸= 0

}
we can parametrize X holomorphically x 7→ (x, φ(x)), where φ : C → X is a local
root of P in the second coordinate, that is, we have P (x, φ(x)) = 0. The composition
π ◦ φ is the identity, which implies there are no critical points in this set.

The remaining points are solutions to a system of polynomial equation with coeffi-
cients in Q, i.e.

P (x, y) = 0,
∂P

∂y
(x, y) = 0.

These two polynomials are relatively prime. Indeed, P is irreducible, so the only way
they wouldn’t be relatively prime is if P were to divide ∂P/∂y, which is not possible
because the latter has lower degree in y. This implies that their intersection has
finitely many points with coordinates in Q. As such, the projection map π maps this
set (containing all the critical points) into P1(Q).

- Since C(π) is a finite set, we can assume (potentially by postcomposing with a Möbius
transformation) that ∞ /∈ C(π). Let f1 be the minimal polynomial over Q of C(π) –
the monic polynomial of minimal degree that vanishes on all of C(π). Construct the
sequence of polynomials f2, f3, . . . by letting fi+1 be the minimal polynomial over Q
on the set

C(fi) ∩ C = {f(z) ∈ C; f ′
i(z) = 0}

of finite critical values of fi. Show that the degrees of these polynomials are strictly
decreasing, that is: deg(fi+1) < deg(fi) for i ≥ 1.

Solution: Our goal is to check that the degree of fi+1 does not exceed the number
of finite critical points of fi. Write f ′

i =
∏

j pj, where pj are irreducible polynomials
over Q. Moreover, write dj = deg(pj). We have∑

j

dj = deg(fi)− 1.

The roots of pj form a complete set of conjugate algebraic numbers. Applying fi (a
rational polynomial) to these roots yields another complete set of conjugate algebraic
numbers. The union of these sets of roots is exactly the set C(fi)∩C of finite critical
values of fi, which hence also forms a complete set of conjugate algebraic numbers.

This implies that the minimal polynomial qj over Q of the set of images of the roots
of pj has degree dj. fi+1 is the product (without repetition) of these polynomials qj.
So

deg(fi+1) ≤
∑
j

dj < deg(fi).
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- Since the degree is strictly decreasing, the sequence above terminates with a polyno-
mial fk of degree 1. Now set

f = fk ◦ · · · ◦ f2 ◦ f1 ◦ π : X → P1(C).

Show that C(f) ∩ C ⊂ Q.

Solution: By (a),

C(f) ∩ C =

(
(fk ◦ · · · ◦ f1)

(
C(π)

)
∪

k⋃
j=2

(fk ◦ · · · ◦ fj)
(
C(fj−1)

))
∩ C

The polynomial fi+1 sends the finite critical values of fi (or π) to 0. Moreover,
fi+2, . . . , fk are rational polynomials, so the critical values stay in Q.

- Show that if |C(f)| ≥ 4, we can postcompose f with a holomorphic map g : P1(C) →
P1(C) such that C(g ◦f) ⊂ Q and |C(g ◦f)| < |C(f)|. Conclude that we have proved
that X admits a Bely̆ı map.

Solution: We first apply a Möbius transformation g0 ∈ PGL(2,Q) such that {0, 1,∞} ⊂
C(g0 ◦ f) ⊂ Q ∪ {∞}. Because g0 is an automorphism of P1(C), it does not increase
the number of critical values. Suppose that z ∈ C(g0 ◦ f) \ {0, 1,∞}. We may write
z = m/(m + n) with m,n ̸= 0 and m + n ̸= 0. So we can set g1 = βm,n from item
(b). Indeed C(g1) ⊂ {0, 1,∞}, so it doesn’t create any new critical values and more-
over g1(z) = 1. Again applying item (a), we get what we want. Since the procedure
strictly decreases the number of critical values, we can repeat it until we’ve reached
three critical values.

(d) Find Bely̆ı maps on X1, X2, X3 and X4, given by:

X1 = {(x, y) ∈ C2; y2 = x(x− 1)(x− 2/3)}

X2 = {(x, y) ∈ C2; y2 = (x− 1)(x− ζ7)(x− ζ27 )} where ζ7 = e2πi/7

X3 = {(x, y) ∈ C2; y2 = x(x− ζ7)(x− ζ27/
7
√
2)} where ζ7 = e2πi/7

X4 = {(x, y) ∈ C2; y2 = x(x+ 2)(x−
√
31 + 1)} ∪ {∞}.

Remark: It’s not so easy to find examples of curves defined of Q but not Q for which
the computation does not get out of hand. Don’t hesitate to use your favorite computer
algebra package to do some of the calculations.

Solution: The curves are listed in increasing order of computational difficulty.

For X1 we apply the procedure from the proof above:

- The critical of the projection map π : (x, y) ∈ X1 7→ x ∈ P1(C) are C(π) =
{0, 1, 2/3,∞}. The finite critical values are already rational, so we can directly move
on to the second stem of the process.
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- The critical value we want to get rid of is 2/3 = 2/(2+1), so we use β2,1. This means
that a Bely̆ı map on X1 is given by

(x, y) 7→ β2,1 ◦ π(x, y) =
27

4
x2(1− x).

For X2:

- π : (x, y) ∈ X2 7→ x ∈ P1(C) are C(π) = {1, ζ7, ζ27 ,∞}. The minimal polynomial f1
of {1, ζ7, ζ27 ,∞} is f1(z) = z7 − 1

- C(f1)∩C = {f1(0)} = {−1}, so C(f1 ◦π)∩C = {f1(1), f1(ζ7), f1(ζ27 ),−1} = {0,−1},
which means that we can move on to the next step.

- Composing with the Möbius transformation β : z 7→ −z, we obtain a map branched
at {0, 1,∞}, given by:

β ◦ f1 ◦ π : (x, y) 7→ 1− x7.

For X3

- The critical values of the projection map π : (x, y) ∈ X2 7→ x ∈ P1(C) are C(π) =
{0, ζ7, ζ27/

7
√
2,∞}. We could try to apply the procedure from the proof above again,

but in this case there is a better functions to compose with. β7 : x 7→ x7 maps the
finite critical values directly into Q, without creating any new ones. We have

C ∩ C(β7 ◦ π) =
{
0, 1,

1

2

}
.

- Now we just need to get rid of 1/2 = 1/(1 + 1), so we apply β1,1 : x 7→ 4x(1 − x).
This means that

(x, y) 7→ β1,1 ◦ β7 ◦ π(x, y) = 4x7(1− x7)

is a Bely̆ı map on X2.

Finally, for X4 we have:

- The critical values of the projection map π : (x, y) ∈ X3 7→ x ∈ P1(C) are C(π) =
{0, 2,∞,

√
31− 1}.

- The minimal polynomial of C(π) ∩ C is

f1(x) = x(x+ 2)(x−
√
31 + 1)(x+

√
31 + 1)

= x(x+ 2)(x2 + 2x− 30)

= x4 + 4x3 − 26x2 − 60x

so

f ′
1(x) = 4x3 + 12x2 − 52x− 60

= 4 · (x3 + 3x2 − 13x− 15)

= 4 · (x+ 1)(x− 3)(x+ 5).
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So the finite critical values of f1 are

C(f1) ∩ C = {f1(−1), f1(3), f1(−5)} = {31,−225}

because f1(3) = f1(−5) = −225. In particular, we’re already in the situation that

C(f1 ◦ π) = {0, 31,−225,∞} ⊂ Q,

so we don’t need to construct f2.

- We move on to the second step of the process: reducing the number of elements. First
we pick a Möbius transformation g0 ∈ PGL(2,Q) such that g0(0) = 0, g0(∞) = ∞
and g0(31) = 1, concretely

g0(z) = z/31.

So C(g0 ◦ f1 ◦ π) = {0, 1∞,−225/31}. We write

−225

31
=

−225

−225 + 256

and apply β−225,256, given by

β−225,256(z) = −3131225225

256256
(1− z)256

z225
.

So all in all, the Bely̆ı map is given by

(x, y) ∈ X3 7→ −225225

256256
(x4 + 4x3 − 26x2 − 60x− 31)256

(x4 + 4x3 − 26x2 − 60x)225
∈ P1(C).
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