
Introduction to Teichmüller Theory 2023/2024
Problem set 3: Mapping class groups

Exercise 1 (Low complexity surfaces).

(a) Show that:

– any two essential (this means they run between the punctures of Σ0,3 and cannot
be contracted into a point or a puncture) simple proper arcs in Σ0,3 with the same
endpoints are isotopic and

– any two essential simple proper arcs that both start and end at the same marked
point of Σ0,3 are isotopic.

Solution:

- Let α and β be two arcs with the same endpoints in Σ0,3. Isotope them into general
position (a finite number of transverse intersections). There is one of the three punc-
tures of Σ0,3 that is not incident to α nor β. As such we can think of α and β as arcs
between two points of S2 − {pt.} ≃ R2.

Now first suppose that they’re not disjoint. Then we can find a disk between α and
β as follows. Parametrize α and β consistently (i.e. α(0) = β(0) and α(1) = β(1)).
Let t ∈ (0, 1) minimal such that α(t) = β(s) for some s ∈ (0, 1). The two segments
α([0, t]) and β([0, s] together form a simple closed curve in R2 that bounds a disk. So
we can isotope α in such a way that the intersection goes away. In order words, we
may assume α and β don’t intersect in their interior. As such their union is a simple
closed curve bounding a disk in R2, which implies they’re isotopic.

- If α and β both start and end at the same point, we argue as follows. First of all, we
can apply the same argument to show that (up to isotopy) they don’t intersect. Since
they’re both essential, they need to both separate the remaining two punctures. This
means that they bound a disk and hence can be isotoped to each other.

(b) Show that MCG(Σ0,2) and MCG(Σ0,3) are trivial.

Solution: Let k ∈ {2, 3} and set S = Σ0,k. Our goal is to show that any orientation
diffeomorphism f : S → S that doesn’t permute the punctures is isotopic to the identity.

Let α be a simple arc between two of the punctures of S. Then by (a), α and f(α) are
isotopic (the same proof works when k = 2). We can isotope f so that is preserves α
pointwise. Then we can restrict f to S−α which is either a disk or a once-punctured disk
of which f preserves the origin. Moroever, since f preserves α pointwise, we can complete
S − α to a closed disk and extend f with the identity on the boundary. By the Alexander
trick, this map is isotopic to the identity, which implies that our original map was.
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(c) Show that MCG(Σ1,1) ≃ MCG(Σ1).

Solution: We have a forgetful homomorphism

MCG(Σ1,1) −→ MCG(Σ1),

thinking of MCG(Σ1,1) as isotopy classes of maps that fix a point on Σ1. We need to show
that this homomorphism is in fact an isomorphism. In class, we have already seen that
for any pair of points p, q ∈ Σ1, we can find a map h : Σ1 → Σ1 that maps p to q and is
isotopic to the identity. So in particular, in every mapping class in MCG(Σ1) we can find
a map that fixes our favorite point, which implies that the map is surjective. In reality,
this doesn’t use the fact that we’re working with the torus and thus works for any surface.

Injectivity is however specific to the torus. Suppose [φ] ∈ MCG(Σ1,1) maps to the identity
in MCG(Σ1). Writing Σ1 = R2/Z2, we may pick a lift

φ̃ : R2 → R2

that fixes the origin. Since [φ] maps to the identity in MCG(Σ1), we have a Z2-equivariant
homotopy H : [0, 1]× R2 → R2 such that

H(0, ·) = φ̃ and H(1, ·) = Id : R2 → R2.

The issue is that H(s, ·) might not fix the origin for all (or in fact any) s ∈ (0, 1). However,
we can modify H by setting

H̃(t, x) = H(t, x)−H(t, 0), t ∈ [0, 1], x ∈ R2.

This is a Z2-equivariant modification, so it passes to Σ1. It is still a homotopy between φ̃
and the identity, because it’s still continuous and the modification does not affect H(0, ·)
and H(1, ·). Finally, H̃(t, ·) fixes the origin for all t ∈ [0, 1], so [φ] is trivial in MCG(Σ1,1)
as well.

Exercise 2 (Curve graphs). The goal of this exercise is to prove that, under a suitable
complexity condition, two types of curve graphs are connected. For more on these graphs
and their relation to surface homeomorphisms and their dynamics, we refer to the course called
Dynamique des homéomorphismes du tore et graphe fin des courbes by Pierre-Antoine Guihéneuf
and Frédéric Le Roux.

(a) Given a surface Σg,n of genus g with n punctures, its curve graph C(Σg,n) is the graph
whose vertices are the isotopy classes of essential simple closed curves on Σg,n, two if which
are joined by an edge if and only if they admit disjoint representatives. Show that, when
g ≥ 2, every vertex in C(Σg,n) has infinite valence.

Solution: If we remove a simple closed curve from Σg,n then the remaining surface still
supports (countably) infinitely many isotopy classes of simple closed curves. All of these
share an edge with the given curve in the curve graph.
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(b) Show that when g ≥ 2, C(Σg,n) is connected. Hint: perform an induction on the number
of self-intersections and use surgeries on the curves to reduce intersections.

Solution: Given two distinct vertices (i.e. isotopy classes of curves) α and β of C(Σg,n), we
need to find vertices γ1, . . . , γn that form a path from α to β. That is, if we write i(γ, γ′)
for the minimal number of intersections between representatives of γ and γ′, then we need
to find curves γ1, . . . , γn such that

i(α, γ1) = 0, i(γ1, γ2) = 0, . . . , i(γn, β) = 0.

We prove that his is possible by induction on i(α, β). If i(α, β) = 0 then we’re good.
If i(α, β) = 1, then the minimial representatives admit a regular neighborhood that is
homeomorphis to a 1-holed torus in Σg,n. Since g ≥ 2, the complement of this subsurface
still supports a simple closed curve, which is connected to both α and β in the curve graph.

So, we suppose that i(α, β) ≥ 2. We now perform a surgery argument. Parametrize the
minimal representatives α and β and take any two intersection points between the curves
that are consecutive on β. The intersections might either have opposite orientations or
equal orientations. In both cases, Figure 1 shows a surgery applied to α and β.

β

α αγ

β

α αγ1

γ2

Figure 1: Two possible surgeries

If the orientations of the intersections are the same, we push α off of itself to the right
and perform the surgery as shown in the picture on the left so as to obtain a curve γ
that intersects α exactly once. This in particular implies that the algebraic intersection
of α and γ is ±1 and hence that γ is essential. Moreover, γ can be connected to α in the
curve graph. It can also be connected to β in the curve graph, because it has one fewer
intersection with β than α does.

If the intersections have opposite orientations (the picture on the right), then we perform
a surgery that yields two curves γ1 and γ2. Both of them are non-null homotopic, because
we assumed that α and β are in minimal position. If they both bound a once-punctured
disk, then α bounds a twice-punctured disk. We can build similar curves γ3 and γ4 on
the other side of α, if they also both bound once-puntured disks, we would get that our
surface is Σ0,4, which violates the condition on genus. In conclusion, we may assume at
least one of γ1 and γ2 is essential, say γ1. This curve does not intersect α and intersect β
twice fewer than α does, so we’re done.
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(c) The non-separating curve graph Cns(Σg,n) is the subgraph of C(Σg,n) whose vertices are all
isotopy classes of non-separating curves. The edge relation remains the same as before.
Show that C(Σg,n) is connected. Hint: use the path that you found for the previous
question and find a way to throw out separating curves.

Solution: We start with the case that n ≤ 1. Suppose that γi in the path we constructed
for the previous question is separating. If γi−1 and γi+1 lie on different components of Σg,n,
we can simply remove γi from the sequence. If γi−1 and γi+1 lie in the same component
then the other component has positive genus (because g ≥ 2 and n ≤ 1). In particular, it
supports a non-separating curve that we may replace γi with.

Now we perform an induction on n to deal with the remaining cases. Suppose γi is
separating. The only issue is that one of the components of Σg,n − γi = S ⊔ S ′, say S ′

might be a punctured disk (otherwise we reduce to the previous case). By induction, we
can find a path in Cns(S) between γi−1 and γi+1 that we can replace γi with.

(d) Let C∗(Σg,n) denote the graph whose vertices are all isotopy classes of non-separating curves
on Σg,n that share an edge whenever their intersection number (minimized over the isotopy
classes) equals 1. Show that C∗(Σg,n) is connected.

Solution: Given two vertices α and β of C∗(Σg,n), they represent vertices of Cns(Σg,n) as
well. We can find a connected path α, γ1, . . . , γn, β in Cns(Σg,n) between these curves. Any
two consecutive vertices in this path represent curves that don’t intersect on Σg,n. Using
the classification of surfaces, we can, for each consecutive pair, find a curve that intersects
both of them once, thus yielding a path in C∗(Σg,n).

Exercise 3 (The Birman exact sequence). Let S be an orientable surface without boundary
with χ(S) < 0. Let Homeo+(S) denote the group of orientation preserving self homeomorphisms
of S.

(a) Fix x ∈ S, define the map ex : Homeo+(S) → S defined by

ex(f) = f(x), f ∈ Homeo+(S).

What is the fiber of this map?

Solution: Above p ∈ S, this is the space of orientation preserving homeomorphisms that
map x to p.

(b) Show that this defines a fiber bundle ex : F → S with fibers homeomorphic to the group
Homeo+(S, x) of orientation preserving homeomorphisms that fix x.

Solution: Our goal is to show that Homeo+(S) is locally homeomorphic to a product of
S with Homeo+(S, x) in such a way that, locally, ex corresponds to the projection on the
first factor.
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Let U ⊂ S be a neighborhood of x ∈ S that is homeomorphic to a disk. We define a map
U → Homeo+(S) that assigns ϕu to u ∈ U , where

ϕu(x) = u

and ϕu varies continuously as a function of u. The map

(u, ψ) ∈ U × Homeo+(S, x) 7→ ϕu ◦ ψ ∈ e−1
x (U) ⊂ Homeo+(S)

is a homeomorphism with inverse

ψ ∈ e−1
x (U) 7→ (ψ(x), ϕ−1

ψ(x) ◦ ψ) ∈ U × Homeo+(S, x).

Now suppose y ∈ S is some other point. Then let ξ : S → S be some homomorphism with
ξ(x) = y. then we obtain a homeomorphism e−1

x (U) → e−1
x (ξ(U)) given by ψ 7→ ξ ◦ ψ. So

this indeed has the structure of a fiber bundle.

(c) Recall that if F → E → B is a fiber bundle, then there is a long exact sequence of
homotopy groups

· · · → πn(F ) → πn(E) → πn(B) → πn−1(F ) → · · ·

Since χ(S) < 0, π1(Homeo+(S)) = {e}. Prove that there exists an exact sequence

1 → π1(S) → MCG(S, x) → MCG(S) → 1.

This is called the Birman exact sequence. It turns out the the image of the loop α ∈ π1(S, x)
is Tα1T

−1
α2

, where α1 and α2 are the boundary curves of a regular neighborhood of α in S
and Tα1 and Tα2 denote the Dehn twists in these curves.

Solution: We get that the sequence

π1(Homeo+(S)) → π1(S) → π0(Homeo+(S, x)) → pi0(Homeo+(S)) → π0(S)

is exact. Now using that π1(Homeo+(S)) = {e}, π0(Homeo+(S, x)) = MCG(S, x),
π0(Homeo+(S)) = MCG(S) and π0(S) = {e}, we get that there is a short exact sequence

1 → π1(S) → MCG(S, x) → MCG(S) → 1

Exercise 4 (The Dehn–Lickorish theorem). The goal of this exercise is to combine
the results of the previous three exercises into the Dehn–Lickorish theorem: the fact that
the mapping class group of Σg,n can be generated by Dehn twists in non-separating simple
closed curves.

(a) Suppose that G is a group that acts by graph automorphisms on a connected graph
Γ such that

∗ G acts transitively on the vertices of Γ and
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∗ G acts transitively on ordered pairs of vertices of Γ that share an edge.

Suppose v and w are two vertices of Γ that are connected by an edge and let h ∈ G
be such that h(w) = v. Then

G = ⟨h, stabG(v)⟩.

Solution: Given g ∈ G, our goal is to show that it can be written as a word in elements
of stabG(v) and copies of h.

Because Γ is connected, there is a sequence of vertices

v0 = v, v1, . . . , vn = g(v)

such that vi is connected to vi−1 by an edge for all i = 1, . . . , n. Now choose gi ∈ G
such that

gi(v) = vi.

By the transitivity of the action, these elements exist. Moreover, we can take g0 = e
and gn = g. We will prove by induction that

gi ∈ ⟨h, stabG(v)⟩.

For g0 we’re good, which settles the base case.

Now suppose gi ∈ ⟨h, stabG(v)⟩. Apply g−1
i to the ordered pair (vi, vi+1). We obtain

the ordered (v, g−1
i ◦gi+1(v)) that share an edge (because vi and vi+1 do and the action

is simplicial). By transitivity on ordered pairs of vertices sharing an edge, we can find
some element f ∈ G that maps (v, g−1

i ◦ gi+1(v)) to (v, w). Observe that

f ∈ stabG(v) and h ◦ g−1
i ◦ gi+1(v) = v,

so hg−1
i gi+1 ∈ ⟨h, stabG(v)⟩ and hence gi+1 ∈ ⟨h, stabG(v)⟩. This means that we’re

done.

(b) Let−→α be an oriented non-separating simple closed curve on Σg,n. Write MCG(Σg,n,
−→α )

for the subgroup of MCG(Σg,n) consisting of mapping classes that preserve −→α and
its orientation and MCG(Σg,n, α) for those mapping classes that preserve α but not
necessarily its orientation. Show there exists a short exact sequence

1 → MCG(Σg,n.
−→α ) → MCG(Σg,n, α) → Z/2Z → 1.

Hint: Let β be another non-separating simple curve that intersects α exactly once
and consider the element TβT

2
αTβ, where Tα and Tβ denote the Dehn twists in α and

β respectively.

Solution: We have a map MCG(Σg,n, α) → Z/2Z measuring whether or not the given
mapping class preserves the orientation. MCG(Σg,n.

−→α ) is the kernel of this map, so
the only thing to check is whether the map is surjective. This is indeed the case,
because TβT

2
αTβ flips the orientation of α.
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(c) Prove by induction on the pair (g, n), with base cases (g, n) = (1, 1) and (g, n) =
(1, 0) that the mapping class group MCG(Σg,n) is generated by Dehn twists in non-
separating curves. Hint: Use the action on C∗(Σg,n) for the induction on genus. Along
the way it will be useful to know that there is a short exact sequence

1 → ⟨Tα⟩ → MCG(Σg,n,
−→α ) → MCG(Σg,n − α) → 1,

where the map between the two mapping class groups is the restriction to the com-
plement of α.

Solution: We have seen the base cases in the first exercise and the lectures, so we
focus on the induction step.

First we perform the induction on n, so we assume that MCG(Σg,0) (or MCG(Σ1,1)
in the case of genus 1, because we need negativity of the Euler characteristic) can be
generated by Dehn twists. By the Birman exact sequence

1 → π1(Σg,n) → MCG(Σg,n+1) → MCG(Σg,n) → 1,

MCG(Σg,n+1) can be generated by the image of π1(Σg,n) (which is finitely generated
by Dehn twists along the curves of a generating set of Σg,n consisting of non-separating
curves, by the previous exercise) and MCG(Σg,n), which is finitely generated by Dehn
twists in non-separating curves (that remain non-separating on Σg,n+1) by induction.

Next up, we deal with the induction on the genus g. We combine item (a) of this
exercise with the result of Exercise 2. Indeed, the action of MCG(Σg+1,n) on C∗(Σg+1,n)
satisfies the conditions of item (a) (essentially by the classification of surfaces) so we
can generate MCG(Σg+1,n) by the stabilizer of a non-separating curve α on Σg+1,n

and an element h that maps some non-separating curve β on Σg+1,n that intersects α
once to α. Denoting the Dehn twists in α and β by Tα and Tβ respectively, h = TβTα
does the job. So all we need to do is understand the stabilizer of α. This uses tbe
short exact sequence from the hint and the one from (b).
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