
Introduction to Teichmüller Theory 2023/2024
Problem set 4: Beltrami differentials, quasiconformal maps and measured foliations

Exercise 1 (Beltrami differentials and quasiconformal maps).

(a) Let S, X1 and X2 be Riemann surfaces and let

S
f−→ X1

g−→ X2

be orientation preserving diffeomorphisms. Prove that:

µg ◦ f =

(
∂f

∂z

/ (∂f

∂z

))
· µg◦f − µf

1− µf · µg◦f
.

(b) Prove the following lemma about compositions of quasiconformal maps: Suppose X, Y
and Z are Riemann surfaces and f : X → Y and g : Y → Z are orientation preserving
diffeomorphisms. Then the following holds:

(1) We have that
Kf ≥ 1

with equality if and only if f is a biholomorphism.

(2) We have that
Kg◦f ≤ Kg ·Kf .

(3) Finally,
Kf−1 = Kf .

Hint for (2): Since Kf (z) depends only on the Jacobian matrix Jf (z) of f at z, this is a
linear algebra question.

Exercise 2 (Measured foliations and quadratic differentials using branched covers)
If X and Y are closed surfaces, then a branched covering is a map f : X → Y such that there
exists a discrete subset S ⊂ X such that f(S) ⊂ Y is discrete and outside of S and f(S), f is a
covering map.

(a) Suppose (F , µ) is a measured foliation of a closed surface Y and p : X → Y is a branched
covering map. Explain that we can pull this back to a measured foliation (p∗F , p∗µ). In
particular, what are the singularities of (p∗F , p∗µ)?

(b) Now suppose X and Y are equiped with the structure of a Riemann surface and p : X → Y
is a holomorphic branched covering map, i.e. a map that is locally of the form z 7→ zk for
some k ≥ 1. Suppose q is a quadratic differential on Y . Explain that q can be pulled back
by p. Where can we find the zeroes of p∗q? And what are their orders?
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Exercise 3 (The Euler–Poincaré formula) Suppose V is a vector field on a compact surface
S with isolated zeroes that lie in the interior of S. Recall that the index of a zero of V can be
computed as follows. Let x ∈ S be such that V (x) = 0, then take a small closed disk D around
x in S that does not contain any other zeroes of V . We may identify that tangent bundle over
D with the tangent bundle over some disk in the plane. We then obtain a map

x ∈ ∂D
f−→ V (x)

∥V (x)∥
∈ S1

The degree (or winding number) of this map, for instance the number a such that

f∗ : H1(∂D;Z) ≃ Z −→ H1(S1;Z) ≃ Z

takes the form n 7→ a · n is called the index of V at x and will be denoted indx(V ).

(a) Let V,W : R2 → TR2 ≃ R2 × R2 denote the vector fields given by

V (x, y) =
1√
2
· h(x, y) ·

(
1
0

)
and W (x, y) =

(
y
x

)
,

where h : R2 → [0,∞) is some function that satisfies h(x, y) = 0 if and only if (x, y) =
(0, 0). Compute the indices of V and W at their only zero, the origin.

(b) If FV and FW are the foliations consisting of the integral lines of V and W respectively,
how many prongs does the singularity at the origin have?

(c) Suppose a singular foliation F of R2 with smooth leaves has an even-pronged singularity
at the origin as its only singularity. This means it comes from a vector field. What is the
relation between the number of prongs of the singularity and the index of the vector field
at the origin?

(c) The Poincaré–Hopf theorem states that∑
x∈S

zero of V

indx(V ) = χ(S).

This was for instance treated in Julien Marché’s course Topologie algébrique des variétés I.
Use this formula to prove the Euler–Poincaré formula for singular foliations. Hint: Recall
that a foliation is orientable if and only if its singularities are all even-pronged. Moreover,
use that an orientable foliation is generated by a vector field.
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