
Introduction to Teichmüller Theory 2023/2024
Problem set 4: Beltrami differentials, quasiconformal maps and measured foliations

Exercise 1 (Beltrami differentials).

(a) Let S, X1 and X2 be Riemann surfaces and let

S
f−→ X1

g−→ X2

be orientation preserving diffeomorphisms. Prove that:

µg ◦ f =

(
∂f

∂z

/ (∂f

∂z

))
· µg◦f − µf

1− µf · µg◦f
.

Solution: We will write fz := ∂f/∂z and fz := ∂f/∂z in order to make the equations
slightly shorter. The reader should however note that in general fz does not equal f z (but
rather f z). That is, attention should be paid to where the bar ends.

We compute, using the chain rule:

µg◦f =
(g ◦ f)z
(g ◦ f)z

=
(gz ◦ f) · fz + (gz ◦ f) · f z

(gz ◦ f) · fz + (gz ◦ f) · f z

So

fz

fz
· µg◦f − µf

1− µf · µg◦f
=

fz

fz
·
(gz ◦ f) · fz + (gz ◦ f) · f z − fz

fz
· (gz ◦ f) · fz − fz

fz
· (gz ◦ f) · f z

(gz ◦ f) · fz + (gz ◦ f) · f z − fz
fz

· (gz ◦ f) · fz − fz
fz

· (gz ◦ f) · f z

=
(gz ◦ f) · (|fz|2 − |fz|2)
(gz ◦ f) · (|fz|2 − |fz|2)

=
(gz ◦ f)
(gz ◦ f)

= µg ◦ f.

where we have used that f z = fz and f z = fz.

(b) Prove the following lemma about compositions of quasiconformal maps: Suppose X, Y
and Z are Riemann surfaces and f : X → Y and g : Y → Z are orientation preserving
diffeomorphisms. Then the following holds:

(1) We have that
Kf ≥ 1

with equality if and only if f is a biholomorphism.

(2) We have that
Kg◦f ≤ Kg ·Kf .

(3) Finally,
Kf−1 = Kf .
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Hint for (2): Since Kf (z) depends only on the Jacobian matrix Jf (z) of f at z, this is a
linear algebra question.

Solution: Recall that

Kf = sup
z∈X

Kf (z), where Kf (z) =
1 + |µf (z)|
1− |µf (z)|

.

We have seen that µf (z) = 0 if and only if f is holomorphic at z. So Kf (z) ≥ 1 with
equality if and only if f is holomorphic at z. So this proves the inequality and also that
in the equality case, f is holomorphic at all z ∈ X. Because f is invertible (and invertible
holomorphic functions have holomorphic inverses), f is biholomorphic. This proves (1).

For (2), we use the hint. Write A for the Jacobian matrix of f and B for that of g, both
with respect to some holomorphic coordinates on X, Y and Z. Kf can be computed as
the ratio (major axis)/(minor axis) of the ellipse

∥A−1 · z∥ = 1

thinking of z as a real 2-dimensional vector

(
x
y

)
. Using the standard inner product

⟨·, ·, ⟩ the equation for the ellipse is equivalent to

⟨
(
A−1

)t · A−1z, z⟩ = 1

wher (A−1)
t
denotes the transpose of A−1. The matrix (A−1)

t · A−1 is positive definite,
so it has two orthogonal eigendirections (corresponding to the axes of the ellipse) and the
ratio

Kf (z) =
major axis

minor axis
=

√
λ+
A

λ−
A

where λ+
A denotes the maximal eigenvalue of (A−1)

t · A−1 and λ−
A denotes the minimal

eigenvalue of (A−1)
t · A−1. Note that(

λ+
A

)1/2
= ∥A−1∥∞ and

(
λ−
A

)−1/2
= ∥A∥∞

(the latter holds because the top eigenvalue of A ·At is the inverse of the bottom eigenvalue
of (A · At)−1 = (A−1)

t · A−1. So

Kf (z) = ∥A−1∥∞ · ∥A∥∞, Kg(f(z)) = ∥B−1∥∞ · ∥B∥∞

and
Kg◦f (z) = ∥B−1A−1∥∞ · ∥AB∥∞.

This means that submultiplicativity of operator norms of matrices implies the inequality
we’re after.

Property (3) follows from the fact that Kf (z) = ∥A−1∥∞ · ∥A∥∞.
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Exercise 2 (Measured foliations and quadratic differentials using branched covers)
If X and Y are closed surfaces, then a branched covering is a map f : X → Y such that there
exists a discrete subset S ⊂ X (called the branch points) such that f(S) ⊂ Y is discrete and
outside of S and f(S), f is a covering map.

(a) Suppose (F , µ) is a measured foliation of a closed surface Y and p : X → Y is a branched
covering map. Explain that we can pull this back to a measured foliation (p∗F , p∗µ). In
particular, what are the singularities of (p∗F , p∗µ)?

Solution: We may pull back the decomposition of Y into leaves. Moreover, we can build
charts for X using p and the charts for Y that map the leaves to horizontal lines (and
k-pronged singularities at the singular points) around all the points in X that are not in
the set S described above.

Around the branch points of p, we can restrict to small neighborhoods in the domain
and the image that are both homeomorphic to disks. At these points, p looks like a the
branched cover of the unit disk D, branched at the origin. In particular, it restricts to a
covering map

p : D − {0} → D − {0}.

Up to equivalence, these are characterized by

p∗(π1(D − {0})) ≃ Z < π1(D − {0}) ≃ Z.

That is, they are all equivalent to maps of the form z 7→ zn for some n ∈ N∗. This means
that the pre-image of a regular point of F that happens to coincide with the image of a
branch point of p becomes a (n+1)-pronged singularity. If like wise a k-pronged singularity
of F that lies on the image of a branch point of order n becomes a (n + 1) · k-pronged
singularity.

(b) Now suppose X and Y are equiped with the structure of a Riemann surface and p : X → Y
is a holomorphic branched covering map, i.e. a map that is locally of the form z 7→ zk for
some k ≥ 1. Suppose q is a quadratic differential on Y . Explain that q can be pulled back
by p. Where can we find the zeroes of p∗q? And what are their orders?

Solution: Suppose (U, z) is a chart on X and (p(U), w) a chart on Y . Moreover suppose
that in the latter coordinates, q takes the form q(w) = φ(w)dw2. Then we can set

(p∗q)(z) = φ(p(z)) · d(p(z))2

Since p is a branched covering map, we can cover X with such charts. If q has a zero of
order m (m = 0 is allowed) at a point, which is a branch point of degree k, then p∗q has a
zeroes of order

k ·m+ 2 · (k − 1)

at this the pre-image(s) of this point.
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Exercise 3 (The Euler–Poincaré formula) Suppose V is a vector field on a compact surface
S with isolated zeroes that lie in the interior of S. Recall that the index of a zero of V can be
computed as follows. Let x ∈ S be such that V (x) = 0, then take a small closed disk D around
x in S that does not contain any other zeroes of V . We may identify that tangent bundle over
D with the tangent bundle over some disk in the plane. We then obtain a map

x ∈ ∂D
f−→ V (x)

∥V (x)∥
∈ S1

The degree (or winding number) of this map, for instance the number a such that

f∗ : H1(∂D;Z) ≃ Z −→ H1(S1;Z) ≃ Z

takes the form n 7→ a · n is called the index of V at x and will be denoted indx(V ).

(a) Let V,W : R2 → TR2 ≃ R2 × R2 denote the vector fields given by

V (x, y) =
1√
2
· h(x, y) ·

(
1
0

)
and W (x, y) =

(
y
x

)
,

where h : R2 → [0,∞) is some function that satisfies h(x, y) = 0 if and only if (x, y) =
(0, 0). Compute the indices of V and W at their only zero, the origin.

Solution: In the case of V , the map f is constant, this means it induces the 0-map in
homology and hence ind(0,0)(V ) = 0.

In the case of W , the map f is the reflection through the line x = y, which has degree −1
because it’s one-to-one and reverses orientation.

(b) If FV and FW are the foliations consisting of the integral lines of V and W respectively,
how many prongs does the singularity at the origin have?

Solution: The origin is not really a singularity of FV , that is, it has two prongs and we
can replace the three integral lines (−∞, 0)× {0}, {(0, 0)} and (0,∞)× {0} with a single
horizontal leaf.

In the case of FW , the number of prongs is 4. Indeed, the integral lines of the vector field
are the solutions t 7→ (x(t), y(t)) to

dx(t)

dt
= y(t), and

dy(t)

dt
= x(t)

So x(t) is a solution to
d2

dt2
x(t) = x(t),

i.e. x(t) = a·cosh(t)+b·sinh(t) for some a, b ∈ R. Which gives y(t) = a·sinh(t)+b·cosh(t).
These are exactly the lines of the form x2 + C = y2 (where C = b2 − a2). So the prongs
are the half-lines x = ±y, of which there are 4.
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(c) Suppose a singular foliation Fof R2 with smooth leaves has an even-pronged singularity
at the origin as its only singularity. This means it comes from a vector field. What is the
relation between the number of prongs of the singularity and the index of the vector field
at the origin?

Solution: If V denotes the vector field and P(0,0) then number of prongs at the origin, then

1− P(0,0)/2 = ind(0,0)(V )

Indeed, in the singular Euclidean metric induced by the foliation, the total angle around
the singularity is P(0,0) · π. So the map f we use to define the index is P(0,0)/2-to-1. This
means that its degree is ±(P(0,0)/2− 1). Now, when we loop around the singular point in
the clockwise direction, the orientation of the leaves rotates in the anti-clockwise direction
(the reader is encouraged to draw a picture at this point). This means that the map f is
orientation reversing and hence that its degree is indeed 1− P(0,0)/2.

(d) The Poincaré–Hopf theorem states that∑
x∈S

zero of V

indx(V ) = χ(S).

This was for instance treated in Julien Marché’s course Topologie algébrique des variétés I.
Use this formula to prove the Euler–Poincaré formula for singular foliations. Hint: Recall
that a foliation is orientable if and only if its singularities are all even-pronged. Moreover,
use that an orientable foliation is generated by a vector field.

Solution: Let F be a singular foliation on a compact surface S. Looking at the hint, the
first we want to do is make our foliation orientable. To this end, suppose Σ ⊂ S is the
set of singularities of S. If S has boundary, we can suppose all these singularities lie in
the interior of S. Indeed, if they don’t we can attach small cylinders to the boundary and
extend the foliation on these (using the fact that we only allow four types of behavior of
F near the boundary) in such a way that the resulting foliation no longer has singularities
on the boundary and still has the same number of singularities with the same number of
prongs each. This doesn’t change the Euler characteristic of S, so if the Euler–Poincaré
formula is true for this new foliated surface, it is true for the original one.

First suppose that F is orientable, which means it’s defined by a 1-form or dually by a
vector field the zeroes of which lie in the singularities of F . If Px counts the number of
prongs of a singularity, then the index of this vector field is (2−Px)/2 as we’ve seen in the
previous exercise. So the Poincaré–Hopf theorem immediately implies the Euler–Poincaré
formula.

Now suppose F is non-orientable. We will build a branched cover of S of degree 2 on
which the pullback of F is orientable. To this end, set S ′ = S − Σ. The restiction of F
to S ′ is a smooth foliation and thus has a well-defined tangent bundle. This allows us to
define an orientation homomorphism

π1(S
′, x) → Z/2Z.
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We remind the reader that his can be done as follows. Given [α] ∈ π1(S
′, x) we may

homotope α such that it’s a smooth curve transverse to F . Since S ′ is orientable, we can
designate one of the sides of α as its outside. We pick a parametrization t ∈ S1 7→ α(t)

consider the map S1 → S1 that assigns to t the angle between the tangent vector ˙α(t)
and any outward pointing (in the direction of the outside of α) tangent vector to F . The
degree of this map is some element in Z. The image modulo 2 of this map, yields a well
defined homomorphism π1(S

′, x) → Z/2Z. The image of this map is non-trivial because
F is non-orientable.

So we obtain a double cover of S ′′ → S ′ corresponding to the subgroup of the orientation
homomorphism. Singularities of F with an odd number of prongs lift to a single singularity
with double the number of prongs and singularities of F with an even number of prongs
lift to two singularities each with the same number of prongs.

We have χ(S ′′) = 2χ(S ′). Write S ′′ for the surface in which we have filled the missing
points back in. The construction above yields a branched cover p : S ′′ → S. We have

2χ(S ′′) = 2χ(S ′′) + 2#{singularities on S ′′}
= 4χ(S ′) + 4|Σ| − 2#{odd-pronged singularities on S}
= 4χ(S)− 2#{odd-pronged singularities on S}

On the other hand, by the Euler–Poincaré formula that we have already proved for oriented
foliations (like p∗F),

2χ(S ′′) =
∑
x∈S′′

sing. of p∗F

2− Px

= −2 ·#{odd-pronged singularities on S}+
∑
x∈S

sing. of F

4− 2Px

Combining the two equations above, we obtain the formula we want.
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