Problem set 5: Hyperbolic surfaces

Exercise 1 (Unique geodesics). The goal of this exercise is to prove that free homotopy classes of essential curves on hyperbolic surfaces contain unique geodesics.
(a) Let us first state the Arzelà-Ascoli theorem. Recall that a map $f: X \rightarrow Z$ between metric spaces X and Z is called L-Lipschitz, for some $L>0$ if

$$
\mathrm{d}_{Z}(f(x), f(y)) \leq L \cdot \mathrm{~d}_{X}(x, y)
$$

for all $x, y \in X$. The Arzelà-Ascoli theorem now states:
Theorem (Arzelà-Ascoli) Let X be a metric space that has a countable dense subset and Z a compact metric space. Suppose $\gamma_{n}: X \rightarrow Z$ is an L-Lipschitz map for all $n \in \mathbb{N}$ and some fixed $L>0$. Then there exists a subsequence $\left(\gamma_{n_{k}}\right)_{k \in \mathbb{N}}$ that converges uniformly on compact sets in X to an L-Lipschitz map $\gamma: X \rightarrow Z$.

Use this theorem to show that every non-trivial free homotopy class on a closed hyperbolic surface X contains at least one closed geodesic that minimizes the length in the homotopy class.
(b) Show that this geodesic is unique. Hint: Suppose that there are two parallel geodesics and lift these to \mathbb{H}^{2}.

Exercise 2 (The band model).

(a) Show that

$$
\mathbb{B}=\left\{z \in \mathbb{C} ;|\operatorname{Im}(z)|<\frac{\pi}{2}\right\}
$$

equipped with the metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{\cos ^{2}(y)}
$$

is isometric to \mathbb{H}^{2}. Hint: this can be done without providing an isometry.
(b) Show that $\mathbb{R} \subset \mathbb{B}$ is a geodesic.

Exercise 3 (Twist curves). Let \mathcal{P} be a pants decomposition of a surface S. Show that there exists collection of disjoint simple closed curves Γ so that for each pair of pants P in $S \backslash \mathcal{P}, \Gamma \cap \mathcal{P}$ consists of three arcs, each connecting a different pair of boundary components of P.

Exercise 4 (Gauss-Bonnet for hyperbolic surfaces).

(a) Suppose T is a hyperbolic triangle with angles $\alpha, \beta, \gamma \geq 0$ at the vertices. Show that

$$
\operatorname{area}(T)=\pi-\alpha-\beta-\gamma
$$

(b) Given a closed orientable hyperbolic surface X of genus g, equipped with a topological triangulation, we may straighten the edges to geodesic segments without moving the vertices. The result is still a triangulation (no intersections between edges will be created), this is a similar result to that of the first exrcise that we will assume. Prove that

$$
\operatorname{area}(X)=4 \pi \cdot(g-1)
$$

without using the Gauss-Bonnet formula (of which this is a special case).

