
Introduction to Teichmüller Theory 2023/2024
Problem set 5: Hyperbolic surfaces

Exercise 1 (Unique geodesics). The goal of this exercise is to prove that free homotopy
classes of essential curves on hyperbolic surfaces contain unique geodesics.

(a) Let us first state the Arzelà–Ascoli theorem. Recall that a map f : X → Z between metric
spaces X and Z is called L-Lipschitz, for some L > 0 if

dZ(f(x), f(y)) ≤ L · dX(x, y)

for all x, y ∈ X. The Arzelà-Ascoli theorem now states:

Theorem (Arzelà-Ascoli) Let X be a metric space that has a countable dense subset
and Z a compact metric space. Suppose γn : X → Z is an L-Lipschitz map for all n ∈ N
and some fixed L > 0. Then there exists a subsequence (γnk

)k∈N that converges uniformly
on compact sets in X to an L-Lipschitz map γ : X → Z.

Use this theorem to show that every non-trivial homotopy class on a closed hyperbolic
surface X contains at least one closed geodesic.

Solution: Set
C := {γ′ : S1 → X; γ′ freely homotopic to γ}

and set
L = inf{ℓ(γ′); γ′ ∈ C}.

Now consider a sequence (γn)n so that ℓ(γn) → L. It follows from the Arzelà-Ascoli
theorem that there exists a subsequence (γnk

)k and a closed curve γ : S1 → X such that
γnk

→ γ̃ uniformly as k → ∞. Because γ minimizes length and cannot have length 0
(because then we would have contracted the curve), it needs to be a geodesic.

(b) Show that this geodesic is unique. Hint: Suppose that there are two parallel geodesics and
lift these to H2.

Solution: Suppose there are two freely homotopic geodesics γ1, γ2 : S1 → X. Consider the
universal cover π : C → X. Because γ1 and γ2 are freely homotopic, we can lift them
to continuous maps γ̃1, γ̃2 : R → H2 that are homotopic. The fact that γ1 and γ2 are
geodesics implies that γ̃1 and γ̃2 are as well.

Because γ1 and γ2 are homotopic, we can base them so that they induce the same element
g ∈ Γ, where Γ is the deck group of the universal cover H2 → X. The cyclic subgroup
G⟨g⟩ < Γ leaves both γ̃1 and γ̃2 invariant. Since γ̃1/G and γ̃2/G are compact, we obtain
that

sup
t∈R

{d(γ̃1(t), γ̃2(t)} < ∞.
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Now we note that when geodesics have at least one pair of distinct endpoints, the above
does not hold. This implies that γ̃1 and γ̃2 have the same endpoints, which in turn implies
they have coincide.

Exercise 2 (The band model).

(a) Show that

B =
{
z ∈ C; |Im(z)| < π

2

}
,

equipped with the metric

ds2 =
dx2 + dy2

cos2(y)

is isometric to H2. Hint: this can be done without providing an isometry.

Solution: Our goal is to apply the Killing–Hopf theorem, so we need to show that B is
a complete Riemannian manifold of constant curvature −1. Recall that the Gaussian
curvature of a metric

ds2 = a(x, y)dx2 + b(x, y)dy2

is given by

K = − 1

2
√

a(x, y) · b(x, y)

(
∂

∂y

(
∂a(x, y)/∂y√
a(x, y) · b(x, y)

)
+

∂

∂x

(
∂b(x, y)/∂x

2
√

a(x, y) · b(x, y)

))
.

The derivatives with respect to x vanish and moreover,

∂

∂y

1

cos2(y)
= 2

sin(y)

cos3(y)
.

We also have
√

a(x, y) · b(x, y) = 1
cos2(y)

. So this gives:

K = − cos2(y)
∂

∂y
tan(y) = −1.

Moreover, B for completeness, we will prove that bounded closed sets are compact (this
is sometimes called the Heine–Borel property). To this end, let γ : [0, 1] → B : t 7→
γ1(t) + γ2(t) · i be a smooth curve with γ2(1) ∈ {±π/2}, then

ℓ(γ) =

∫ 1

0

1

cos(γ2(t))

√(
∂

∂t
γ1(t)

)2

+

(
∂

∂t
γ2(t)

)2

dt

≥
∫ 1

0

1

cos(γ2(t))

∣∣∣∣∂γ2(t)∂t

∣∣∣∣ dt =
∣∣∣∣∣
∫ ±π/2

0

1

cos(t)

∣∣∣∣∣ dt = ∞

In particular, the distance to ∂B is infinite and hence bounded closed sets are contained
in closed Euclidean rectangles that fit in B, and are thus compact.
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(b) Show that R ⊂ B is a geodesic.

Solution: Let γ : [0, 1] → B : t 7→ γ1(t) + γ2(t) · i be any curve with endpoints on R. Then

ℓ(γ) =

∫ 1

0

1

cos(γ2(t))

√(
∂

∂t
γ1(t)

)2

+

(
∂

∂t
γ2(t)

)2

dt

≥
∫ 1

0

∣∣∣∣ ∂∂tγ1(t)
∣∣∣∣ dt = ℓ(γ∗)

where γ∗ : [0, 1] → B : t 7→ γ1(t), which runs between the same endpoints.

Exercise 3 (Twist curves). Let P be a pants decomposition of a surface S. Show that there
exists collection of disjoint simple closed curves Γ so that for each pair of pants P in S \P , Γ∩P
consists of three arcs, each connecting a different pair of boundary components of P .

Solution: One way to do this is by using hyperbolic geometry. Put a hyperbolic metric on the
pairs of pants in the decomposition, say with all boundary components of length 1. Moreover,
on each boundary component of such a pair of pants we have two special points that are the
points at which the orthogeodesic segments connecting that component to the other two arrive.
Use gluings that identify these points, so that all these orthodgeodesics glue into some collection
of smooth closed geodesics. Because closed geodesics are homotopically non-trivial (if they were
homotopically trivial, we could lift them to closed geodesics in H2, which don’t exist), we get
the curves we’re after.

(a) Suppose T is a hyperbolic triangle with angles α, β, γ ≥ 0 at the vertices. Show that

area(T ) = π − α− β − γ

Solution: We first assume that γ = 0 and put the corresponding vertex at the point at
∞. We put the other vertices v and w, corresponding to the angles α and β respectively
on the geodesic |z| = 1. A bit of Euclidean trigonometry shows that this means that the
horizontal coordinates of v and w are cos(π−α) and cos(β) respectively. This means that

area(T ) =

∫ cos(β)

cos(π−α)

∫ ∞

√
1−x2

1

y2
dydx = π − α− β.

Now any compact triangle T is the difference of two triangles with an ideal vertex. Indeed,
again put v and w on the circle |z| = 1 and put the vertex u corresponding to the angle γ
vertically above v. Then T (u, v, w) = T (∞, v, w)− T (∞, u, w). So the formula follows.
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(b) Given a closed orientable hyperbolic surface X of genus g, equipped with a topological
triangulation, we may straighten the edges to geodesic segments without moving the ver-
tices. The result is still a triangulation (no intersections between edges will be created),
this is a similar result to that of the first exrcise that we will assume. Prove that

area(X) = 4π · (g − 1),

without using the Gauss–Bonnet formula (of which this is a special case).

Solution: The area of X can be computed as:

area(X) =
∑

T triangle of the
triangulation

area(T ) = π · F −
∑

T triangle of the
triangulation

αT + βT + γT ,

where F denotes the number of triangles and αT , βT and γT the angles at the vertices of
T in some arbitrary order. Now we observe that∑

T triangle of the
triangulation

αT + βT + γT = 2πV,

where V denotes the number of vertices of the triangulation. So

area(X) = 2π(
1

2
F − V ).

If we write E for the number of edges of the triangulation, then E = 3F/2. So 1
2
F = E−F .

Thus
area(X) = 2π(−V + E − F ) = −2πχ(X) = 4π · (g − 1).
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