Exercise 1 (Mapping class group invariance and completeness). Let X be a closed Riemann surface of genus at least 1.

- (a) Show that the Teichmüller metric on $\mathcal{T}(X)$ is invariant under the action of the mapping class group.
- (b) Show that the Teichmüller metric on $\mathcal{T}(X)$ is complete. <u>Hint:</u> Use the homeomorphism $\mathcal{E}: \mathrm{QD}_1(X) \to \mathcal{T}(X)$ defined in the course.

Exercise 2 (Teichmüller lines). Let X be a closed Riemann surface of genus at least 1. Recall that a geodesic segment σ in a metric space (M, d) is a segment such that for any $x, y, z \in \sigma$ such that y lies between x and z we have

$$d(x, z) = d(x, y) + d(y, z).$$

- (a) Show that every geodesic segment in $\mathcal{T}(X)$ is a subsegment of some Teichmüller line.
- (b) Show that there is a unique geodesic in $\mathcal{T}(X)$ between any two points.

Exercise 3 (The torus). Recall that the Teichmüller space of the torus $\mathbb{R}^2/\mathbb{Z}^2$ can be identified with $\mathbb{H}^2 = \mathrm{SL}(2,\mathbb{R})/\mathrm{SO}(2,\mathbb{R})$, in which a point [A] represents $[\mathbb{R}^2/(A \cdot \mathbb{Z}^2), f_A]$, where

$$f_A([(x,y)]) = [A \cdot (x,y)]$$

for all $[(x, y)] \in \mathbb{R}^2/\mathbb{Z}^2$. Prove that the Teichmüller metric d_T and the hyperbolic metric $d_{hyp.}$ on \mathbb{H}^2 satisfy

$$d_{\mathrm{T}} = \frac{1}{2} \cdot \mathbf{d}_{\mathrm{hyp.}}.$$