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Segre classes of tautological bundles

on Hilbert schemes of surfaces

Claire Voisin

Abstract

We first give an alternative proof, based on a simple geometric argument, of a result of
Marian, Oprea and Pandharipande on top Segre classes of the tautological bundles on
Hilbert schemes of K3 surfaces equipped with a line bundle. We then turn to the blow-
up of a K3 surface at one point and establish vanishing results for the corresponding
top Segre classes in a certain range. This determines, at least theoretically, all top Segre
classes of tautological bundles for any pair (Σ, H), where H ∈ Pic Σ.

1. Introduction

Let S be a smooth projective (or compact complex) surface. The Hilbert scheme S[k] is smooth
projective (or compact complex) of dimension 2k. For any line bundle H on S, we get an asso-
ciated vector bundle H[k] on S[k], whose fiber at a point [Z] ∈ S[k] is the vector space H0(H|Z).
If S is a K3 surface and c1(H)2 = 2g − 2, we set

sk,g :=

∫
S[k]

s2k

(
H[k]

)
,

where si(H[k]) is the ith Segre class of H[k]. This integral is indeed a number which depends only
on k and g (see Theorem 1.2). The following result is proved in [MOP17a].

Theorem 1.1. One has sk,g = 2k
(
g−2k+1

k

)
.

Here the binomial coefficient is defined for k > 0. It is always 1 for k = 0, and the formula
for
(
n
k

)
for any n is (

n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
.

In particular, we have
(
n
k

)
= 0 if n > 0 and n < k. The theorem above thus gives, in particular,

the vanishing

sk,g = 0 when g − 2k + 1 > 0 and k > g − 2k + 1 . (1.1)

The proof of this vanishing statement in [MOP17a] is rather involved; in Section 2, we will give
a direct geometric proof, based on a small improvement of Lazarsfeld’s arguments in [Laz86].
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Segre classes of tautological bundles

(We discovered after writing up the paper that this improvement had already been proved by
Knutsen [Knu01].)

We will then show how the vanishing (1.1), even only in the smaller range g = 2k − 1,
g = 2k, implies Theorem 1.1. We simply use for this the following result, which is due to
Tikhomirov [Tik94] (see also Ellingsrud–Göttsche–Lehn [EGL01] and Lehn [Leh99] for related
statements).

Theorem 1.2. The Segre numbers
∫
S[k] s2k(H[k]) for a projective surface S equipped with a line

bundle H depend only on the four numbers

π = H ·KS , d = H2 , κ = K2
S , e = c2(S) .

We will denote these Segre numbers by sk(d, π, κ, e). It follows from Theorem 1.2 that the
numbers sk,g can be computed as well by considering a surface Σ which is the disjoint union
of a K3 surface S′, equipped with a line bundle H ′ of self-intersection 2(g − 1) − 2, and an
abelian surface A, equipped with a line bundle θ with θ2 = 2. We will show in Section 3 that the
formula obtained by this observation (this is a particular case of (1.3) below), combined with
the vanishing result (1.1), uniquely determine the numbers bk :=

∫
A[k] s2k(θ[2k]) and finally the

numbers sk,g for all k, g, knowing that s1,g = 2g − 2, b0 = 1, b1 = 2.

In Section 2, we will establish similar vanishing results for a K3 surface S blown up at one
point. Let S̃ be such a surface, and let H = τ∗L(−lE) with 2g − 2 = L2, where L generates
PicS.

Theorem 1.3. For k > 2, one has the following vanishing for the Segre numbers s̃k,g,l :=∫
S̃[k] s2k(H[k]):

s̃k,g,l = 0 for k = l, l + 1 and g − l(l + 1)

2
= 3k − 2 . (1.2)

Equivalently, sk(7(k − 1), k − 1,−1, 25) = 0 and sk(7(k − 1) + 1, k,−1, 25) = 0 for k > 2.

We will also prove that these vanishing statements together with Theorem 1.1 determine all
Segre numbers sk(d, π, κ, e). We use for this the following complement to Theorem 1.2 (see [Leh99,
EGL01]), obtained by observing that the Hilbert scheme S[k] of a disjoint union S1 t S2 is the

disjoint union for l = 0, . . . , k of S
[l]
1 ×S

[k−l]
2 , while all the data d, π, κ, e for the pairs (Σ, H) are

additive under disjoint unions (S,L) = (S1, L1) t (S2, L2).

Lemma 1.4. With the notation Sd,π,κ,e(z) =
∑

k sk(d, π, κ, e)z
k, one has

Sd,π,κ,e(z) = Sd1,π1,κ1,e1(z)Sd2,π2,κ2,e2(z) (1.3)

with d = d1 + d2, π = π1 + π2 etc.

To conclude this introduction, we mention Lehn’s conjecture [Leh99, Conjecture 4.9].

Conjecture 1.5. One has

Sd,π,κ,e(z) =
(1− w)a(1− 2w)b

(1− 6w + 6w2)c
, (1.4)

where a = π − 2κ, b = d− 2π + κ+ 3χ, c = (d− π)/2 + χ, χ = (κ+ e)/12 and the variable w is
related to z by

z =
w(1− w)(1− 2w)4

(1− 6w + 6w2)3
. (1.5)
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This conjecture is proved in [MOP17a] for K3 and, more generally, K-trivial surfaces, that is,
for κ = π = 0. Although we were not able to prove it in general, our results imply the following.

Corollary 1.6. Lehn’s conjecture is equivalent to the fact that the development in power series
in z of the Lehn function fd,π,κ,e(z) defined as the right-hand side in (1.4) using the change of
variables (1.5) has vanishing Taylor coefficient of order k for k > 2 and for e = 25, κ = −1 and
(d, π) = (7(k − 1), k − 1) or (d, π) = (7(k − 1) + 1, k).

Shortly after this paper was written, Marian–Oprea–Pandharipande [MOP19] and Szenes–
Vergne independently were able to check that the Lehn function satisfies the vanishing properties
stated in Corollary 1.6, thus completing the proof of Lehn’s conjecture.

Let us mention the following intriguing question: Lehn’s conjecture (now a theorem) singles
out the class of pairs (S,H) with the following numerical properties:

H2 = 0 , H ·KS = 2K2 = 2χ(OS) . (1.6)

These conditions are indeed equivalent to the vanishing of the exponents a, b and c appearing
in (1.4), so that for these pairs, one has the vanishing s2k(H[k]) = 0. It would be nice to have a
geometric proof of this.

2. Geometric vanishing

Let S be a K3 surface with PicS = ZH, where H is an ample line bundle of self-intersection
2g−2. In this section, we give a geometric proof of the vanishing result (1.1) proved in [MOP17a].

Proposition 2.1. The Segre classes s2k(H[k]) vanish in the range

3k − 1 > g > 2k − 2 . (2.1)

In particular, sk,2k = 0 and sk,2k−1 = 0 when k > 2.

Proof. Sections of H provide sections of H[k] or, equivalently, of the line bundle OP(H∗
[k]

)(1). In

fact, all sections of H[k] come from H0(S,H). As we are on a K3 surface, H0(S,H) has dimension
g + 1. We thus have a rational map φ : P(H∗[k]) 99K Pg such that φ∗OPg(1) = OP(H∗

[k]
)(1). The

top Segre class of H∗[k] (or H[k]) is the top self-intersection of c1(OP(H∗
[k]

)(1)) on P(H∗[k]). We

observe that the first inequality in (2.1) says that dimP(H∗[k]) > dimPg, so the proposition
is a consequence of the following lemma, which is a mild generalization of Lazarsfeld’s result
in [Laz86] saying that smooth curves in |H| are Brill–Noether generic.

Lemma 2.2. If g > 2k − 2, the vector bundle H[k] is generated by the sections coming from
H0(S,H).

Indeed, this last statement says that the rational map φ is actually a morphism, so that the
top self-intersection of a line bundle pulled back via φ is 0.

Proof of Lemma 2.2. This result had been already proved in [Knu01]. The proof is by contra-
diction. It is obtained by applying Lazarsfeld’s arguments in [Laz86]. For the convenience of the
reader and because Lazarsfeld considers only subschemes supported on smooth curves, we give
the complete argument: If z ∈ S[k] is a point such that H0(S,H) → H[k],z is not surjective, z
corresponds to a length k subscheme Z ⊂ S such that the restriction map H0(S,H)→ H0(H|Z)
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is not surjective, hence H1(S, IZ(H)) 6= 0. By Serre duality, we thus have a nonzero class
e ∈ Ext1(IZ , H−1), which provides a torsion-free rank 2 sheaf E fitting into an exact sequence

0→ H−1 → E → IZ → 0 . (2.2)

Note that the original Lazarsfeld argument deals with all subschemes which are locally com-
plete intersection, for which E is locally free (assuming that k is minimal). We have c1(E) = H−1

and c2(E) = k. It thus follows that

χ(E , E) := h0(End(E))− dim Ext1(E , E) + dim Ext2(E , E) = 4χ(OS) + c1(E)2 − 4c2(E)

= 8 + 2g − 2− 4k .

The second inequality in (2.1) thus gives

χ(E , E) > 2 .

We thus conclude (applying Serre duality showing that dim Ext2(E , E) = h0(End(E))) that E has
an endomorphism f : E → E which is not proportional to the identity, hence can be assumed
to be of generic rank 1. Let B be the line bundle defined as F∗∗, where F is the saturation of
Im f in E . The line bundle B must be a power of H. The nonsplit exact sequence (2.2) shows
that Hom(E , H−1) = 0 since hom (IZ , H−1) = 0, so B must be trivial or a positive power of H.
It follows that F is equal to H⊗k ⊗ IW for some k > 0 and for some 0-dimensional subscheme
W ⊂ Z (which can appear only where E is not locally free). As H⊗k ⊗ IW is not contained in
H−1, it must map nontrivially to IZ via f : E → IZ , so that finally k = 0 and IW ⊂ IZ . As
IZ ⊂ IW and End(IZ) = CId, we conclude that, in fact, f induces an isomorphism IW ∼= IZ
and the sequence (2.2) is split, which gives a contradiction.

We note for later reference the following simple fact on which the proof of Proposition 2.1
rests. We will say that a line bundle H on a variety X is k-ample if the vector bundle H[k] on X [k]

is generated by its global sections; 1-ample means that H is generated by sections, and 2-ample
means that H is very ample.

Lemma 2.3. Let Σ be a surface, H a line bundle on Σ. Assume that H is k-ample and h0(Σ, H) <
3k. Then s2k(H[k]) = 0.

3. Proof of Theorem 1.1

We are going to prove Theorem 1.1 for 2g − 2 > 0, that is, g > 1, by induction on g. The case
where g is nonpositive works similarly, by induction on −g. Let S′ be a K3 surface equipped
with a line bundle H ′ such that c1(H ′)2 = 2(g − 1) − 2. Let A be an abelian surface with a
principal polarization θ, so that c1(θ)2 = 2. The surface Σ = S′ t A equipped with the line
bundle HΣ which is equal to H ′ on S′ and θ on A has the same characteristic numbers as our
original pair (S,H), where S is a K3 surface and H is a polarization with self-intersection 2g−2.
On the other hand, Σ[k] is the disjoint union

Σ[k] =
l=k⊔
l=0

S′
[k−l] ×A[l] ,

and on each summand S′[k−l]×A[l], the vector bundle HΣ,[k] equals pr∗1H
′
[k−l]⊕ pr∗2 θ[l]. We thus

conclude that we have the following formula, where bl :=
∫
A[l] s2l(θ[2l]) (this is a particular case
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of (1.3)):

sk,g =
l=k∑
l=0

blsk−l,g−1 . (3.1)

Corollary 3.1. The numbers sk,g for g > 1 are fully determined by the numbers bl for 0 6 l 6 k
and the numbers sl,1 for l 6 k and s1,g for g > 1 (or s0,g).

Remark 3.2. We have b0 = 1 and b1 = 2 and, similarly, s0,g = 1 and s1,g = 2g − 2.

Lemma 3.3. Suppose that the numbers bl, for 0 6 l 6 k−1, and the numbers sl,1, for 0 6 l 6 k−1,
are given, with b0 = 1 and b1 = 2. Then the numbers sk,1 and bk are determined by the conditions
b0 = 1 and b1 = 2, equation (3.1) and the vanishing equations

sk,2k = 0 , sk,2k−1 = 0 (3.2)

for k > 2 proved in Proposition 2.1.

Proof. Indeed, by Corollary 3.1, all the numbers sl,g′ for g′ 6 g− 1 and l 6 k− 1 are determined
by bl for 0 6 l 6 k − 1 and sl,1 for 0 6 l 6 k − 1. We thus can write (3.1) as

sk,g = sk,g−1 + ( · · · ) + bk ,

sk,g−1 = sk,g−2 + ( · · · ) + bk ,

...

where the expressions ( · · · ) in the middle are determined by bl for 0 6 l 6 k − 1 and sl,1 for
0 6 l 6 k − 1. Combining these equations, we get

sk,2k = sk,1 + ( · · · ) + (2k − 1)bk , (3.3)

sk,2k−1 = sk,1 + ( · · · ) + (2k − 2)bk ;

hence, we can see the equations sk,2k = 0 and sk,2k−1 = 0 as a system of two affine equations in
the two variables sk,1 and bk, whose linear part is invertible and whose constants are determined
by bl for 0 6 l 6 k − 1 and sl,1 for 0 6 l 6 k − 1. The numbers sk,1 and bk are thus uniquely
determined by these equations and the numbers bl for 0 6 l 6 k−1 and sl,1 for 0 6 l 6 k−1.

Corollary 3.4. There exist unique sequences of numbers sk,g, for k > 0 and g > 1, and bl, for
l > 0, satisfying

(i) b0 = 1, b1 = 2,

(ii) s0,g = 1, s1,g = 2g − 2,

(iii) sk,2k = 0, sk,2k−1 = 0 for k > 2,

(iv) sk,g =
∑l=k

l=0 blsk−l,g−1.

Proof of Theorem 1.1. The numbers s′k,g := 2k
(
g−2k+1

k

)
satisfy the vanishings s′k,2k = 0 and

s′k,2k−1 = 0 for k > 2, that is, condition (iii) of Corollary 3.4. They also satisfy the condition
s′1,g = 2g − 2, that is, condition (ii) of Corollary 3.4. In order to show that sk,g = s′k,g, it suffices
by Corollary 3.4 to show that they also satisfy condition (iv) for adequate numbers b′l, which is
proved in Lemma 3.5 below.

Lemma 3.5. There exist numbers b′l for l > 0 with b′0 = 1 and b′1 = 2 such that for any g > 1,

s′k,g =

k∑
l=0

b′ls
′
k−l,g−1 . (3.4)
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Proof. We observe that as a function of g, the polynomial s′k,g is of degree exactly k, with leading

coefficient 2k. Hence, the s′l,g for 0 6 l 6 k− 1 form a basis of the space of polynomials of degree
k − 1, and for k fixed, there exist uniquely defined numbers b′l,k for l = 0, . . . , k, with b′0,k = 1,
such that for any g,

s′k,g =
k∑
l=0

b′l,ks
′
k−l,g−1 . (3.5)

Let us prove that b′l,k = b′l,k−1 for l 6 k − 1. We have(
g − 2k + 1

k

)
=

(
g − 2k

k

)
+

(
g − 2k

k − 1

)
,

that is,

2s′k−1,g−3 = s′k,g − s′k,g−1 , (3.6)

with the convention that s′k,g = 0 for k < 0. It follows by the definition of b′l,k that

2s′k−1,g−3 =

k∑
l=0

b′l,ks
′
k−l,g−1 −

k∑
l=0

b′l,ks
′
k−l,g−2 =

k∑
l=0

b′l,k(s
′
k−l,g−1 − s′k−l,g−2) ,

which gives, by applying (3.6) again to each term on the right-hand side,

2s′k−1,g−3 = 2
k∑
l=0

b′l,ks
′
k−l−1,g−4 = 2

k−1∑
l=0

b′l,ks
′
k−l−1,g−4 .

By the definition of b′l,k−1, this provides b′l,k = b′l,k−1.

4. Further geometric vanishing results

We discuss in this section similar geometric vanishing results for the Segre classes on the blow-up
of a K3 surface at one point. The setting is thus the following: S is a K3 surface with PicS = ZL,
where L2 = 2g − 2 and x ∈ S is a point. The surface S̃ is the blow-up τ : S̃ → S of S at x with
exceptional curve E, and H := τ∗L(−lE) ∈ Pic S̃ for some positive integer l. Our main goal is to
discuss the analogue of Lemma 2.2 in this context. Note that when H is very ample, the curve
E has degree l in the embedding given by |H|, so that the vector bundle H[k] can be generated
by sections only when k 6 l + 1.

To start with, we have the following result.

Proposition 4.1. Let S be a K3 surface with Picard group generated by L, where L2 = 2g− 2.
Let τ : S̃ → S be the blow-up at a point x ∈ S. Then, for H = τ∗L(−lE), if

4 + 2g > (l + 1)2 , (4.1)

one has H1(S̃,H) = 0. It follows that h0(S̃,H) = g + 1− l(l + 1)/2.

Proof. We argue by contradiction. The proof follows Reider’s [Rei88] and Lazarsfeld’s [Laz86]
methods. Assume H1(S̃,H) 6= 0. Then, by Serre duality, Ext1(H,O

S̃
(E)) 6= 0, which provides

a rank 2 vector bundle E on S̃ which fits in an exact sequence

0→ τ∗L−1((l + 1)E)→ E → O
S̃
→ 0 . (4.2)

The fact that the extension class of (4.2) is not trivial translates into h0(S̃, E) = 0. We have
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c2(E) = 0 and c1(E)2 = 2g − 2− (l + 1)2, so that (4.1) gives the inequality

χ(End E) = 8 + c1(E)2 − 4c2(E) > 2 .

It follows that h0(S̃,End E)+h0(S̃,End E(E)) > 2, hence h0(S̃,End E(E)) > 1. Thus there exists
a φ ∈ Hom(E , E(E)) which is not proportional to the identity. The characteristic polynomial of φ
has its trace in H0(S̃,O

S̃
(E)) = H0(S̃,O

S̃
) and determinant in H0(S̃,O

S̃
(2E)) = H0(S̃,O

S̃
). It

is thus a polynomial with coefficients in C and has a root λ. Replacing φ by φ−λ IdE (where we
see IdE as an element of Hom(E , E(E))), we can in fact assume that φ is generically of rank 1.
Let A = Kerφ ⊂ E . We have A = τ∗Lα(βE), and E fits in an exact sequence

0→ A→ E → B ⊗ IW → 0 , (4.3)

where B is the line bundle τ∗L−1−α((l + 1− β)E). As B = Imφ, we have B ↪→ E(E). From the
exact sequence (4.2), we immediately conclude that α 6 0 and (−1 − α) 6 0, so that α = 0 or
α = −1.

First assume α = 0. Then as h0(S̃, E) = 0, we conclude that β < 0, hence l + 1 − β > 0.
Then (4.3) gives

c2(E) = A ·B + degW > −β(l + 1− β) > 0 ,

which gives a contradiction.

In the remaining case α = −1, we conclude that B = O
S̃

((l + 1 − β)E), so that we have
a nonzero morphism O

S̃
((l − β)E) → E . This provides a line bundle A′ ⊂ E defined as the

saturation of the image of this morphism, and we know that A′ = τ∗Lα
′
(β′E) with α′ > 0. We

can then apply the previous argument with A replaced with A′, getting a contradiction.

Pushing forward the arguments above, we now prove the following result.

Theorem 4.2. Let S be a general K3 surface with Picard group generated by L and x ∈ S
a general point. Then for k > 2, the line bundle H = τ∗L(−lE) is k-ample on S̃ for k = l or
k = l + 1, and g − l(l + 1)/2 = 3k − 2.

Remark 4.3. When g − l(l + 1)/2 = 3k − 2 with k = l or k = l + 1, one has, for l > 0,

4 + 2g = l(l + 1) + 6k > (l + 7)l > (l + 1)2 ,

so that Proposition 4.1 applies, which gives H1(S̃,H) = 0 and h0(S̃,H) = g + 1 − l(l + 1)/2 =
3k − 1.

Proof of Theorem 4.2. With the assumptions of Theorem 4.2, assume that H is not k-ample.
Therefore, there exists a 0-dimensional subscheme Z ⊂ S̃ of length k such thatH1(S̃,H⊗IZ) 6= 0.
Using the duality H1(S̃,H⊗IZ)∗ = Ext1(IZ ,−H+E), this provides us with a rank 2 torsion-free
sheaf E on S̃ fitting in an exact sequence

0→ τ∗L−1((l + 1)E)→ E → IZ → 0 . (4.4)

The numerical invariants of E are given by

c2(E) = k , c1(E)2 = 2g − 2− (l + 1)2 ,

from which we conclude that

χ(E , E) = 8 + 2g − 2− (l + 1)2 − 4k ;

hence,

h0(End E) + h0(End E(E)) > 8 + 2g − 2− (l + 1)2 − 4k . (4.5)
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By assumption, g − l(l + 1)/2 = 3k − 2, so 2g − 2− (l + 1)2 = 6k − 6− (l + 1) and (4.5) gives

2h0(End E(E)) > 2 + 2k − (l + 1) ;

hence, 2h0(End E(E)) > 2 because k > 2 and k = l or k = l + 1. Thus, there exists a morphism

φ : E → E(E)

which is not proportional to the identity. As before, we can even assume that φ is generically
of rank 1. One difference with the previous situation is the fact that E is not necessarily locally
free, and furthermore c2(E) 6= 0. The kernel of φ and its image are torsion free of rank 1, hence
are of the form A⊗IW and B ⊗IW ′ for some line bundles A and B on S̃ which are of the form

A = τ∗Lα(βE) , B = τ∗L−1−α((l + 1− β)E) .

As before, we must have α 6 0 and −1−α 6 0 because B injects into E(E). Hence, we conclude
that α = 0 or α = −1.

Case (i). If α = 0, then we have a nonzero morphism O(βE) ⊗ IW → IZ . It follows that
β 6 0. If β = 0, this says that IW ⊂ IZ and that the extension class of (4.4) vanishes in

Ext1
(
IW , τ∗L−1((l + 1)E)

)
.

But the restriction map

Ext1
(
IZ , τ∗L−1((l + 1)E)

)
→ Ext1

(
IW , τ∗L−1((l + 1)E)

)
is injective as it is dual to the map H1(S̃, IW (H))→ H1(S̃, IZ(H)), which is surjective. Indeed,
the spaces are respective quotients of H0(H|W ) and H0(H|Z) by Proposition 4.1, which applies
in our case as noted in Remark 4.3. So we conclude that β < 0. We now compute c2(E) using
the exact sequence

0→ A⊗ IW → E → B ⊗ IW ′ → 0 ,

with A = O(βE) and B = τ∗L−1((l + 1− β)E). This gives

c2(E) = degW + degW ′ − β(l + 1− β) > −β(l + 1− β) > l + 2 .

This contradicts c2(E) = k 6 l + 1.

Case (ii). If α = −1, then we use instead the inclusion B ⊗ IW ′ ⊂ E(E), with B = O((l +
1− β)E), and argue exactly as before.

We deduce the following vanishing for the Segre numbers sk(d, π, κ, e), defined as the integral∫
Σ[k] s2k(H[k]) for any pair (Σ, H), where Σ is a smooth compact surface, and

d = H2 , π = H · c1(KΣ) , κ = c1(Σ)2 , e = c2(Σ) .

Corollary 4.4 (cf. Theorem 1.3). One has the following vanishing for sk(d, π,−1, 25):

sk(7(k − 1), k − 1,−1, 25) = 0 , sk(7(k − 1) + 1, k,−1, 25) = 0 (4.6)

for k > 2.

Proof. Take for Σ the blow-up of a K3 surface at a point, so κ = −1 and e = 25. Furthermore,
assuming PicS = ZL with L2 = 2g − 2, and letting H = τ∗L(−lE) as above, we have

d = H2 = 2g − 2− l2 , π = H · c1(KΣ) = l . (4.7)
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We consider the cases where

g − l(l + 1)

2
= 3k − 2 (4.8)

with (i) k = l + 1 or (ii) k = l.

Using (4.7), in case (i), equation (4.8) gives d = 7(k − 1) and π = k − 1, and in case (ii), it
gives d = 7(k − 1) + 1 and π = k, so that we are actually computing sk(7(k − 1), k − 1,−1, 25)
in case (i) and sk(7(k − 1) + 1, k,−1, 25) in case (ii). Remark 4.3 says that assuming (4.8),

H1
(
S̃,H

)
= 0 , h0

(
S̃,H

)
= 3k − 1

in cases (i) and (ii). Theorem 4.2 says that under the same assumption, H is k-ample on S̃.
Lemma 2.3 thus applies and gives s2k(H[k]) = 0 in both cases, which is exactly (4.6).

Remark 4.5. In [Leh99, Section 4], Lehn gives the explicit polynomial formulas for 2!s2, . . . , 5!s5

as polynomial functions of d, π, κ, e with huge integral coefficients. For example

5!s5 = d5 − 100d4 + d3(3740 + 10e− 50π − 10κ) (4.9)

− d2(62000− 3420π + 700e− 860κ) + d
(
384384 + 15e2 + 15960e− 30eκ

− 150πe+ 15κ2 + 150κπ − 75610π − 24340κ+ 375π2
)
− 400e2 − 117120e

+ 3920πe+ 960κe+ 226560κ− 4720κπ − 560κ2 + 530880π − 9600π2 .

It is pleasant to check the vanishing statements (4.6) for k = 2, . . . , 5 using these formulas. For
k = 5, one just has to plug the values e = 25, κ = −1, d = 28 and π = 4, or e = 25, κ = −1,
d = 29 and π = 5 into (4.9).

We conclude this note by showing that all the Segre numbers are formally determined by the
above results and formula (1.3).

Proposition 4.6. The vanishings (4.6) together with the data of the numbers sk(d, 0, 0, 24) and
sk(d, 0, 0, 0) determine all numbers sk(d, π, κ, e).

Note that for d = 2g − 2, the number sk(d, 0, 0, 24) is the number sk,g of the introduction,
and these numbers are given by Marian–Oprea–Pandharipande’s Theorem 1.1. For d even, the
numbers sk(d, 0, 0, 0) correspond to the Segre classes of tautological sheaves on Hilbert schemes
of abelian surfaces equipped with a line bundle of self-intersection d. They are fully determined,
by multiplicativity, by the case of self-intersection 2, where one gets the numbers b′k appearing
in our proof of Theorem 1.1.

Proof of Proposition 4.6. According to [Leh99, EGL01], and as follows from (1.3), the generating
series Sd,π,κ,e(z) =

∑
k sk(d, π, κ, e)z

k is of the form

Sd,π,κ,e(z) = A(z)dB(z)eC(z)πD(z)κ (4.10)

for power series A, B, C, D with 0th order coefficient equal to 1. Theorem 1.1 determines the
series A(z) and B(z). We thus only have to determine C(z) and D(z). The degree 1 coefficients
of the power series C(z) and D(z) are immediate to compute as s1 = d. We now assume that
the coefficients of the power series C(z) and D(z) are computed up to degree k − 1. The degree
k coefficient of Sd,π,κ,e(z) = A(z)dB(z)eC(z)πD(z)κ is of the form πCk + κDk + ν, where ν is
determined by d, e, π, κ, the coefficients of A and B, and the coefficients of order at most k − 1
of C and D. The vanishings (4.6) thus give the equations

0 = (k − 1)Ck −Dk + ν , 0 = kCk −Dk + ν ′ ,
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which obviously determines Ck and Dk as functions of ν and ν ′.

We finally prove Corollary 1.6 of the introduction.

Proof of Corollary 1.6. Let fd,π,κ,e(z) be the Lehn function introduced in Conjecture 1.5. As
Lehn’s conjecture is proved by [MOP17a] for π = κ = 0 (the K-trivial case), the coefficients
fk,d,π,κ,e of the Taylor expansion of fd,π,κ,e in z (not w) are the Segre numbers sk(d, 0, 0, e) when
π = 0 and κ = 0. If, furthermore, they satisfy the vanishings fk,d,π,κ,e = 0 for e = 25, κ = −1
and d = 7(k − 1), π = k − 1 or d = 7(k − 1) + 1, π = k, the proof of Proposition 4.6 shows that
fk,d,π,κ,e = sk(d, π, κ, e) for all k, d, π, κ, e as, by definition, fd,π,κ,e has the same multiplicative
form (4.10) as Sd,π,κ,e.
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